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COMPETITION AND MERGER IN NETWORK ECONOMY 
by    Ke  Li 

 

This thesis is concerned about firm’s merger and competition behavior in modern 
economies in which networks are ever-more important and how to optimize merger 
policy when network externalities present. As a demand-side economics of scale, 
network externalities bring benefit to consumers through merger and acquisition if the 
products from different firms are incompatible. Hence, a merger, which is both 
socially optimal and privately profitable, can exist without considering the 
supply-side economies of scale. Merger policy should be revised to be able to 
recognize these “good” mergers and encourage them. Firm’s incentive to merge is 
enlarged by network effect because merged entities can benefit from a larger network, 
which increases the demand for their product. Moreover, merger and acquisition in 
network world give the merged entities an advantage in competition over the firms 
who stand outside the merger. One of the explanations for this advantage is merged 
entity may inherit indirect network resources, for example complementary products 
producers, from all merged firms, since the mobile of these resources are costly and 
slow. Acquiring more firms brings more indirect network resources to merged entity, 
which makes the products of merged entity more valuable to the consumers. Thus the 
merged entity can charge a higher price or squeeze more market share. Merged entity 
can obtain locked-in consumers from all merged firms is another explanation of the 
advantage. For some information products, such as TV subscription, internet access 
and mobile phone service, consumers need to sign a contract with the service provider 
and are locked by these contracts for a fixed period. Merged entity may inherit these 
locked-in consumers and show a larger initial network to the consumers who are not 
locked at the beginning of the competition. Social planner should be cautious to the 
merger in network world because network externalities magnify the power of the 
merger, which may be utilized by the firms to get dominant position. 
 



Acknowledgement

My �rst thank goes to my supervisor Professor Robin Mason. Without him, this dissertation

would not have been possible. I thank him for his patience and encouragement that carried me on

through dif�cult times, and for his insights and suggestions that helped to shape my research skills.

His valuable feedback contributed greatly to this dissertation.

My rest and the most important acknowledgement is to my family, my parents and my wife,

for always being there when I needed them most, and for supporting me through all these years.



Declaration

I, KE LI declare that the thesis entitled Competition and Merger in Network Economy and

the work presented in the thesis are both my own, and have been generated by me as the result of

my own original research, I con�rm that:

* this work was done wholly while in candidature for a research degree at this University;

* where any part of this thesis has previously been submitted for a degree or any other

quali�cation at this University or any other institution, this has been clearly stated;

* where I have consulted the published work of others, this is always clearly attributed;

* where I have quoted from the work of others, the source is always given. With the exception

of such quotations, this thesis is entirely my own work;

* I have acknowledged all main sources of help;

* where the thesis is based on work done by myself jointly with others, I have made clear

exactly what was done by others and what I have contributed myself;

* none of this work has been published before submission.

Signed:__________________

Date:____________________



Contents

Introduction and Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1 Horizontal Merger with Network Externalities and
Incompatible Products . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Network Externalities with Cournot Competition . . . . . . . . . . . . . . . . . . . . . . . 15

1.2.1 The Competition Model with Network Externalities . . . . . . . . . . . . . . 15

1.2.1 Symmetric and Asymmetric Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . 20

1.3 Merger with Network Externalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Firm's Merger Incentive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 Social Welfare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.4 Merger with Linear Network Utility Function . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.1 The Existence of a "Good" Merger . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.4.1 Chooseing a Suitable Number of Firms to Join the Merger . . . . . . . . 36

1.5 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.6 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 Merger through Acquisition with Inheritable Indirect
Network Externalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.2 The Symmetric Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59



2.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.2.2 Existence of Merged Nash Equilibrium (MNE) . . . . . . . . . . . . . . . . . . 62

2.2.1 Merger with a Single Buyer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.2.1 Merger with Multiple Buyers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.3 Acquisition with Asymmetric Market Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.3.1 Asymmetric Acquisition and the Advantage of the Larger Firm . . . 75

2.3.1 The Incentive of the Acquisition and Dynamic Market Structure . . 77

2.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.6 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

3 Locked-in by Contract, Competition and Network Externalities 94

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

3.2 The Model with Locked-in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

3.2.1 Locked-in and Equilibrium in Duopoly Market . . . . . . . . . . . . . . . . . . 100

3.2.1 Social Welfare in Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.2.1 Locked-in Competition in Oligopoly Market . . . . . . . . . . . . . . . . . . . . 113

3.3 The Model with Locked-in and Network Externalities . . . . . . . . . . . . . . . . . . 116

3.3.1 Linear Network Externalities and the Behaviour of the Firms . . . . 117

3.3.1 Equilibrium Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.4 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.5 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

3.6 Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145



Introduction and Background

Many of the so-called industrial nations are experiencing a transition to information-

based economy, in the sense that ICE (information, communications, and entertainment)

comprises an ever-greater share of national economy (Shapiro and Varian 1999). In the

"New Economy", the economics of networks takes on greater importance in comparison

with traditional economies of scale. Many networks are self-evident: the telephone net-

work, the network of fax machines, the credit-card acceptance network, the Internet etc.

The role of networks in the information economy is even larger than it might appear at the

beginning, because of the presence of many virtual networks: the network of users of Apple

Macintosh computers, the network of owners of compact disk machines, and the network

of users of Microsoft software.

It has been recognized that networks can raise problems for competition policy. But

as yet, little attention has been paid to how merger policy should be applied to networks.

The need for rigorous research on this topic is acute. There have been a number of high-

pro�le mergers in the information sector. A number of mergers have been allowed: Lotus

and IBM, Nynex and Bell Atlantic, Microsoft and Hotmail, WebTV, and Vermeer. How-

ever, several prominent mergers have been blocked altogether, and been subject to substan-

tial modi�cations competition authorities.

In 1991, Borland International announced its intention to acquire Ashton-Tate. The

�rms were two leading suppliers of personal computer based �relational database� pro-

grams. This case was an important early test of how mergers in the personal computer

software industry would be treated by the anti-trust agencies in the US. The DoJ (US De-

partment of Justice) expressed competition concerns that the merged company would be

dominant in the market for relational database software. As a result, Borland agreed to

issue FoxPro, a competitor, a license to the dBase code.

In 1994, Adobe announced its intention to acquire Aldus. The �rms sold the leading

brands of professional illustration software. To prevent the creation of a dominant position

in this market, the US Federal Trade Commission required the merged �rm to divest the

software owned by Aldus to a third �rm.
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In 1994, Microsoft proposed to acquire Intuit, the owner of the leading personal �-

nancial software package. Microsoft's Money product performed many of the same func-

tions. The acquisition was challenged by the DoJ, again on the grounds that the merged

�rm would be dominant in a particular product market. In response to the DoJ's challenge,

Microsoft abandoned the acquisition.

These are just three examples. Detail of these examples and other examples can be

found in Shapiro's (2000) work. In each of these cases, the policy-makers have acted either

to prevent or to modify the merger. The question is whether these are the correct decisions?

In information economy, the consumer's welfare not only depends on the quality of

the products and the price, but also depends on the size of the products' network. Clearly,

people value a large networks more than a small network because it is less possible to meet

compatibility problem. Merger between two networks may create a larger network, which

makes merged entity's products more valuable to consumers without any additional price

reduction or quality improvement. If the cost saving of merger is a kind of supply-side

economies of scale, this network effect can be similarly de�ned as demand-side economies

of scale. Merger, despite increasing concentration in an industry, may nevertheless be

associated with a rise in welfare. Thus, it seems that the social planner should approve more

merger applications in network economy. However, we know that demand-side economies

of scale create positive feedback: a tendency for the strong to get stronger and the weak

to get weaker. Consequently, the merged entity may use their initial advantage to pursue

dominant market status, which may �nally be harmful to social welfare.

Another thing that needs to raise attention is some network externalities do not di-

rectly come from the products. Instead, they come from complementary products market.

A larger network will attract more complementary products supplier and increase competi-

tion, which will �nally reduce the price and bene�t the consumers. These indirect network

externalities may take effect similar as direct network externalities. However, in most of the

time, they are more similar to a kind of resource that has been �xed to a speci�c product,
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since the �rms in complementary market are costly to switch from supplying one product

to another product. The merged entity can inherit these recourses from all of the �rms who

are involved in the merger and get an advantage in the competition compared with other

�rms who stand outside the merger. This also supports the idea that the merger in network

economy should be more restricted by social planner than in traditional economy.

Many literatures have discussed or emphasized how these characteristics of the net-

work effect the market structure in typical industries, such as �nance (Noia 1998), telecom-

munication (Baranes and Flochel 2003), entertainment (Matteucci 2003), internet (Cre-

mer, Rey and Tirole 1992, Baranes and Cortade 2004) and transportations (Brueckner and

Spiller 1992). In this thesis, we are attempting to develop a model without making any

speci�cation in a certain industry environment, reveal some general rules about the merger

behavior of the �rms and provide some propositions for the social planner to consider in a

general network world.

This thesis focuses on the following questions:

When is merger privately pro�table if there are network externalities present?

Obviously, �rms will not undertake mergers that are privately unpro�table. This

means that mergers that reach the attention of policy-makers are a sub-set of all possible

mergers. Salant et al. (1983) show that, when �rms with equal market shares compete in

outputs (the industry is a symmetric Cournot oligopoly), with linear demand and constant

marginal costs (so that there are no synergies), a merger is pro�table only if it involves at

least 80% of the �rms in the industry. An implication of this result is that, in the absence

of synergies, any merger proposal considered by a policy-maker is likely to involve a large

increase in industry concentration. This means, �rstly that there should be a general policy

bias against mergers; and secondly, that this bias can be overturned only if synergies are

strong enough. If we detail the acquisition process, we may get some more counterintuitive

merger threshold without considering synergies. Kamien and Zang (1990) show that, in

an acquisition model with linear demand function, merger equilibrium only exists for an

industry with no more than two competitors.
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Do these conclusions carry over when network externalities are present? In the �rst

chapter of the thesis, we have found that in the same setting as Salant et al. (1983), small-

scale merger can be pro�table if the network externalities are suf�ciently strong. Hence,

a pro�table merger need not a sharp increase in concentration. The intuition is simple:

merging �rms can bene�t from having a larger network, which increases the demand for

their product. This effect can outweigh the other effects identi�ed by Salant et al., in a way

similar to supply-side synergies.

In the second capture, we focus on answering this question under the condition that

only indirect network effect presents. Based on the work of Kamien and Zang (1990), we

�nd that merged nash equilibrium is easier to exist than Kamien and Zang's declaration

if the �rms may inherit indirect network resource. The intuition is, after inheriting indi-

rect network resources from the �rms acquired, buyer in the acquisition can afford more

payment to the seller, so the merger can occur in a more general market condition. .

When there exist multiple equilibra?

The analysis will be more complicated because of the presence of multiple equilibria.

Network externalities naturally give rise to many possible outcomes. These outcomes are

driven by different �expectations�. If an individual expects, for example, everyone else to

buy Firm A's product, then that individual has a strong incentive to buy from Firm A. If

everyone thinks in this way, then Firm A becomes dominant, and its competitor (Firm B)

suffers. On the other hand, if everyone expects FirmB to be dominant, then this expectation

can also be self-ful�lling.

If we don't know the location of the equilibrium after the merger or there exist too

many possibilities, it will be dif�cult for us to carry out further analysis. In this thesis,

we assume the consumer's expectation is full �lled by �rms and �rms are aware of this

when they make output decisions. This means the consumer's expectation is fully reacted

with �rms' output and the network utility function can be directly added to the demand

function to solve the equilibrium. Since the network utility function can be a curve, multiple

equilibria still exist in some cases. However, we �nd that the multiple equilibra only exist
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when the network effect is strong enough. The intuition is the traditional reaction function

of �rms must be bended to a certain level to get more than one cross point. In this thesis,

we limit our analysis in the world, in which the network effect is relatively week. In most

of the chapters of this thesis, we assume the network utility is a linear function bx, and

b < 0:5. This assumption eliminate the possibility of multiple equilibria and greatly reduce

the dif�culty of analysis. We believe most of characteristics of network world are well kept

under this assumption, because products with extremely strong network effect are rare.

Multiple equilibra and more general utility function can be left as an interesting future

work.

When is a merger socially optimal if network externalities present?

The next issue to investigate is whether those mergers which are privately pro�table

are, or can be, socially optimal. We must therefore determine the effects of merger on con-

sumer surplus. There will be two countervailing effects. The standard effect is that merger

increases industry concentration, which generally will be bad for consumer surplus. The

new effect, arising from network externalities, is that merger can create larger networks,

which, other things equal, is good for consumer surplus.

There are many factors that determine the balance between these two effects. The

�rst one is the strength of network externalities. The second is how concentrated this mar-

ket is. Degree of compatibility between competing networks also matters. In the extreme

case in which compatibility is perfect, merger clearly makes no difference to overall net-

work bene�ts. The concentration effect then dominates, and (in the absence of supply-side

effects) any merger is likely to be socially harmful. In this thesis, we mainly consider the

other extreme case ��when all �rms' products are entirely incompatible. In this cir-

cumstance, merger can surely raise consumer surplus by increasing the size of networks

(the main characteristic we want to keep) and the model is simpli�ed without considering

degree of compatibility.

Does the merged entity get an advantage in the competition?
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As the merged entity may bene�t from the reduction of the competitors, all the other

�rms, who are not involved in the merger, can get bene�t as well. Since the merger is

costly, �rms all prefer to stand outside merger and encourage others to get into it if the

reduction of competition is the only effect of merger. However, in network world, there

exists a tendency that: the strong (merged entity) to get stronger and the weak (the �rms

standing outside merger) to get weaker. Thus, there must exist some mechanisms that give

the merged entity an advantage in the competition.

The consumers will always consider the size of network when they are planning

to purchase. Generally speaking, the merged entity will show a larger existing network

than separate ones. This is because some of old consumers are locked by the contract

and the merged entity may inherit these locked-in consumers from every �rm who are

involved in the merger. The new consumers form their expectation of the size of network

according to the number of these locked-in consumers, so the merged entity shows an

advantage. Chapter three of this thesis gives out a preliminary attempt to model this effect.

We assume a duopoly market with a given asymmetric initial locked-in consumers to each

�rm and show that the �rm with more initial locked-in consumers indeed obtains a relative

advantage. The merger process hasn't been considered in Chapter three, but our result can

be easily applied to analyze a merger case. The only difference is we need to treat the size

of the initial locked-in consumers as an exogenous variable when we analyze a merger.

Another origin of this advantage is addressed in Chapter two of this thesis, in which

we assume �rms may inherit indirect network resource from every component. The more

�rms the merged entity acquired, the more indirect network resources he may control.

The consumers obviously prefer a product with more indirect network externalities (more

complementary products supplier), so the merged entity may obtain a relative advantage in

the competition. In this chapter, the direct network effect is not considered, but we will get

similar result when both the direct and indirect network externalities take effect because

these two forces are in the same direction. Moreover, we also reveal that the larger �rm is

easier to acquire smaller �rm than the smaller �rm to acquire larger one in an acquisition

model. It is because the large �rm can afford more acquisition payment than the small
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one. This may hint some mechanism to explain how the market goes from an asymmetric

structure to a monopoly.
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Chapter 1
Horizontal Merger with Network Externalities

and Incompatible Products

Abstract

In this study, we analyzed the horizontal merger between �rms in oligopoly competition

with incompatible products and network externalities. The model is based on Katz and

Shapiro's network externalities model (1985), but allow the consumer's expectations to

react with the �rms' outputs. We reveal that the �rms have more incentive to merge if

they produce network products. For the social planner's problem, we �nd that mergers

may increase social welfare without the consideration of synergies and we develop some

suf�cient conditions for the merger to be socially desirable when general form network

utility presents. As a special case, we applied our model to a linear network utility world,

revealing that private and socially desirable mergers may exist. The suf�cient and necessary

conditions for the existence of such a "good" merger were also obtained for the merger

regulators to consider.
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1.1 Introduction

Merger policy has been traditionally recognized as a central concern that horizontal merg-

ers (between �rms operating the same product and geographic market) can decrease com-

petition and hence social welfare. To avoid a potential monopoly and great reduction of

the competition, mergers are required to be reviewed and authorized by the industry reg-

ulation department of the government before they may be carried out. Roughly speaking,

only a merger that does not increase the concentration in the industry by very much, or

that allows the industry concentration to remain low even after the merger, will be permit-

ted (e.g., the United States Department of Justice (DoJ) 1984 Merger Guidelines, which

speci�ed explicit concentration thresholds when determining whether a merger is to be

allowed). However, for different market structures, different product characteristics and

different times, the consequences of the merger may change the short-term and long-term

social welfare greatly (Fridolfsson and Stennek 2000, Buccirossi 2008).

Using a simple rule as a guideline to judge all merger cases is a weakness and may

be misleading for the social planner, especially in the �New Economy� (Shapiro 2000). An

important reason that the old merger policy should be reconsidered by social planners is

that mergers may bring some positive effect to the consumers in network industries. For

example, fewer mobile phone service providers suggests that consumers have less of chance

to pay the cross net fee. More speci�cally, the merger between MSN and Yahoo Message

suggests you only need to register with one service and can use it to send messages to users

in either company.

As a widely accepted rule, large networks offer more value to users than small ones:

customers value a popular product or network more than an unpopular one. When a con-

sumer gets more people to join the same network or use the same product, he/she may have

a chance to obtain an additional bene�t. This creates a particular form of economy of scale

often denoted as "network externalities". In the information industry, although horizontal

mergers between �rms could reduce the competition, consumers may also have a chance to

enjoy larger network externalities. It is hard to say whether a merger is good or not with-

10



out considering the balance between good and bad. We can imagine such a "good" merger:

a merger which lets the �rms squeeze more pro�ts from the consumers and, at the same

time, the consumers are also happy to accept this merger since they receive bene�ts from

network externalities, which may offset their losses from the higher price after the merger.

This �good� merger increases social welfare and is welcome by both �rms and consumers.

The merger policy should consequently be revised to identify these "good" mergers and

encourage them.

A �good� merger must �rstly be a pro�table merger to the �rms involved. Salant et

al. (1983) revealed that mergers were only privately pro�table if they caused a suf�ciently

large decrease in concentration. This illustrates that mergers in need of attention are only

a sub-set of all potential mergers. Our �rst goal in this study is therefore to determine this

sub-set with the effect of network externalities. The literature has revealed that Salant's

condition, where over 80% of the �rms must get involved in the merger to make the merger

pro�table, should be modi�ed if other conditions or limitations are added to the model.

Perry and Porter (1985) pointed out that Salant's model may underestimate the probabil-

ity of a merger if there is a limit of the output capacities or shortage of capital. Cheung

(1992) illustrated that Salant's threshold may be relaxed to 50% if the demand satisfying

the marginal revenue of the industry is decreasing. Fauli-Oller (1997) further investigated

Cheung's work and found that the probability of mergers may depend on the degree of

concavity of the demand function.

In Cournot competition, �rms' outputs increase after the merger, so every consumer

should receive more or less bene�t from the merger because of the network externalities.

This bene�t allows the �rms to charge a higher price to consumers and squeeze out more

pro�ts. Thus, the incentive of the �rms to merger may increase if the network effect is

considered. For different forms of the utility function of network externalities, the demand

function may be distorted to a linear function with a smaller slope, or a concave function.

The degree of relaxation of Salant's condition may depend upon how large the network

effect is, which is coincident with Fauli-Oller's (1997) declaration. On the other hand,

this result also provides insight that the pro�table merger does not need a sharp increase
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in concentration in the network world, which would normally harm consumer welfare. A

more gentle increase in market concentration will be easier to accept for the consumers,

who need to balance the losses from the increase of the price and the bene�ts from the

increase in network externalities.

The second step of this study is to provide a further narrowing of the candidate merg-

ers we �nd in the �rst step. This means we need to pick up the mergers which may increase

social welfare from all the mergers pro�table to the �rms. Generally speaking, the greater

the network effect is, the more bene�t the consumers may receive and the larger the possi-

bility that we can �nd a �good� merger.

It is easy to identify whether the consumer's welfare increases or not if all �rms'

products are compatible. In a fully compatible case, the network externalities only de-

pend upon the total output from all �rms. Thus, the consumer's welfare increases when the

merger increases the total output and decreases when the merger decreases the total output.

In this thesis, we focus on the situation where the �rm's products are completely incom-

patible. The partial compatibility problem can be a future work and solved under a similar

framework.

In the literature, the social welfare of the merger and market concentration has been

analyzed extensively (Salant et al. 1983, Ferrell and Shapiro 1990a, 1990b, Gaudet and

Salant 1991). Ferrell and Shapiro (1990b) introduced synergies into the competition model

and indicated that the merger may be socially desirable if the supply-side economies of

scale are strong enough. It is easy to see that the synergy has many similar characteristics

to network externalities. With the spirit of Ferrell and Shapiro (1990b)'s work, we can view

network externalities as a demand-side economies of scale, and obtain similar conclusions

that the merger may be socially desirable if the demand-side economies of scale, or the

network effect, is strong enough. The possibility that vertical mergers can raise social

welfare in a network world has been recognized in recent literature. Inspired by the work

of Katz and Shapiro (1994), Jamison (2002) and Weisman (2005) have conducted work

revealing the suf�cient conditions for a vertical merger to be socially desirable. However,

their analysis was based on the merger between the �rms who served multiple markets and
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their network externalities comes from the internalization of other market's products. In

our thesis, we primarily consider the horizontal merger in which all �rms only compete

in a single market and the network effect only connects with the �rms' output in a single

product line.

Before we begin the discussion of merger and social welfare, it is crucial that we

create a simple and ef�cient way to model network effect. Thus, in the �rst part of this

chapter, we spend a whole section discussing the modelling of network externalities and

the possible equilibrium under our model. One of the most successful models of network

externalities to date has been provided by Katz and Shapiro (1985). They developed a

static oligopoly Cournot Model of competition with network effects. Most of the other lit-

erature (found in the survey paper of Farrell and Klemperer (2004) and the book of Shapiro

and Varian (1999)) addresses the characteristics of the network effect based on Katz and

Shapiro's work. In their model, they assumed the expectations of consumers were ful�lled

and introduced a concave utility function to describe the network utility. Katz and Shapiro

predicted that, unlike the traditional Cournot Model, there may exist multiple equilibria

for some utility functions because of the distortion of the reaction functions, even though

a perfect symmetric assumption to each �rm was given. This brings some dif�culties to

policy makers because of the uncertainty of the ex-post status of the merger activities. Al-

though the authorities may know how the market works at the moment, it is hard for them

to predict which equilibrium will be played by the �rms in the future.

In our model, we assume the expectated output of the consumers will perfectly

change with the change in the �rm's real output, rather than assuming that the output of

the �rms has no effect on the expectations of the consumers. This modi�cation enables

us to more precisely simulate the reactions between the �rms and consumers. We �nd

that the asymmetric equilibria only existed in a limited number of cases. When the net-

work effect is very strong, there is no equilibrium and when the network effect is relatively

weak, only a symmetric equilibrium exists. In this thesis, we restrict our discussion to the

case where the network effect is gentle and only a symmetric equilibrium exists, which

avoid the complexity of the selection of multiple equilibria. Although our conclusions are
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compromised on some level, most of the new features that are bought by the network ex-

ternalities to merger are maintained. The conclusions update our understanding of mergers

in the network world. We also provide a list of rules about the reaction functions between

the �rms and clarify the features of network competition that are not pointed out by Katz

and Shapiro's model. This makes a virtual framework for the discussion in the following

sections.

In Section 1.2, we will describe the model, attempt to provide new features of the

�rms' reaction function and derive one of the necessary conditions for the existence of

multiple equilibria. In Section 1.3, we will discuss the �rm's merger incentives and social

welfare in a general utility function context. In Section 1.4, we will introduce a linear util-

ity function and give out suf�cient and necessary conditions for the existence of a "good"

merger in linear utility circumstances. We will also illustrate a rough way to identify "good"

mergers for the social planners under the network environment. Section 1.5 is the conclu-

sion, but also includes future research suggestions.
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1.2 Network Externalities with Cournot Competition

1.2.1 The Competition Model with Network Externalities

We investigate an oligopoly market with n �rms. These �rms produce homogeneous prod-

ucts and chose their outputs to maximize their pro�ts. The products produced by the same

�rm were compatible, but were not compatible to the products produced by the other �rms.

This suggests that if a consumer chose a product from one of the �rms, he/she may bene�t

from an increase in the number of consumers selecting the same �rm, but the change in the

output of other �rms will not affect his/her surplus. A consumer can choose either one or

zero units of the product from one of the �rms. His/her choice depends on the products that

can maximize his/her surplus. The surplus that a consumer derives from purchasing a unit

of the good depends on the number of the consumers who join the network associated with

his/her choice and his/her basic willingness of that product. When the consumers make

their decisions, they are not able to see the choices of others, so their purchases are only

based on their expectations of the network size. We assume this expectation is identical for

every consumer.

The game is played in the following sequence: �rst, consumers form their expec-

tations about the size of the network of each of the �rms. Secondly, the �rms play an

output competition and make an announcement about their output. When the �rms play the

competition game, they fully understand that consumers will change their expectations ac-

cording to their announcement. Thus, we assume that the outputs announced by the �rms

counted upon the possibility that consumers will change their minds. In the third step, con-

sumers revise their expectations about the size of the network of each �rms according to

the announcement made by the �rms. The �rms then commit to their announcement and

generate a set of prices for their products. Finally, the consumers make the purchasing de-

cision by comparing their reservation price, which is based on their revised expectations of

the network sizes, with the price set by the �rms.
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The game described here can be compared with Katz and Shapiro's (1985). In Katz

and Shapiro's model, the �rm's announcement of its planned level of output has no effect

on consumers' expectations. Their assumption may reduce the calculations, however, this

is unlikely to happen in the real world. The consumers will, more or less, change their

expectations of the each �rm's network size after they have seen the announcement of

the �rms. In our model, we assume the consumers fully trust the announcement of the

�rms since �rms will always commit to their announcement. If we use xei to denote the

consumers' expectation outputs of one of the �rms and use xi, i 2 f1; :::; ng, to denote
the real output of this �rm, the assumption can be understood as @xei=@xi = 1 or xei � xi.
Hence, the notation xei will all be writen as xi in the following thesis.

In our model, we make the assumption that consumers are heterogeneous in their

basic willingness to pay for a product without considering the network effect, but homo-

geneous in their valuation of network externalities. More speci�cally, we use r to denote

each consumer's basic willingness to purchase the simple product and u(xi) to denote the

network externalities that a consumer can obtain when he/she purchases Firm i's prod-

uct. Based on the de�nition of the positive network externalities and the characteristics of

most information products, we de�ne that the network externality function as having the

following characteristics:

u(0) = 0;u(xi) > 0;u
0(xi) > 0;u

00(xi) 6 0

Since we assume that all the �rms produce incompatible goods, the network size of the

product is the output of the �rms who produces this product. Without further loss of gen-

erality, we assume r is uniformly distributed between minus in�nity and 1. The uniform

distribution ensures we obtain a linear price function. The assumption that r can go to mi-

nus in�nity gives us an always opened market which suggests we do not need to consider

the corner solution in a covered market.

When a consumer purchases a product from Firm i, he/she will be able to enjoy the

product plus the network externalities that the product brings to him and have to pay the

price the �rm charges. So the consumer's surplus from purchasing a product from Firm i
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is r+ u(xi)� pi. Since the consumers will purchase the product if and only if their surplus
is positive, r+ u(xi) � pi should be positive for the consumer who makes the purchasing
decision. Hence, only the consumers with a type r that is not less than pi� u(xi) will enter
the market. Obviously the minimum r to make r+ u(xi)� pi positive is pi � u(xi). Here,
we use r� to denote the consumer who has no difference between purchasing the product or

not and only the consumer whose type r is not less than r� = pi� u(xi) enter the market.
In addition, pi� u(xi) = pj� u(xj), i 6= j and i; j 2 f1; :::; ng must also be true to keep
the consumers are indifferent in purchasing product between all the �rms and all the �rms

have a positive output.

The total output of all the �rms is:

z =
nX
i=1

xi = 1� r� = 1� pi + u(xi) i 2 f1; :::; ng (1.1)

From the equation (1.1), we know that after each �rm sets their outputs, they will

recieve a price according to its output and the outputs of all other �rms, which is de�ned

as:

pi = 1 + u(xi)� z = 1 + u(xi)� xi �
X
i6=j

xj i; j 2 f1; :::; ng (1.2)

for all i such that xi > 0.
The pro�t of Firm i is:

�i = pixi = xi(1 + u(xi)� z) i 2 f1; :::; ng (1.3)

All the �rms choose their outputs to maximize pro�ts. From the �rst-order condition

of the equation (1.3), we can get:

1 + u(xi) + xiu
0(xi)� 2xi =

X
i6=j

xj i; j 2 f1; :::; ng (1.4)

Equation (1.4) is the reaction function of Firm i against the total output of all other

�rms. If the total output of all other �rms
P
xj is given, we can get the best response of

Firm i by solving this equation.
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Proposition 1.1 If the maximum of the pro�t function of Firm i exists for a given total

output of all other �rms (
P
xj), the �rst derivative of the pro�t function at the maximum is

less than 1.

Corollary 1.1 If u0(xi) > 1 for any xi > 0, the maximum of the pro�t of the �rms
does not exist. Firms' outputs are only bounded by their capacity.

Corollary 1.2 If x�i is the output of the �rm i in an equilibrium, there must have

u0(x�i ) < 1.

If we look at equation (1.2), it is clear that the price function is slightly different

to the standard Cournot model. In a standard Cournot competition, the price will always

decrease with an increase in output because of the increase in competition. However, in

this new model, the increase of the output has two effects. On the one side, it increases

the competition and causes the price to drop. On the other side, an increase in the output

can make goods more competitive because of the increasing network size. Thus, if the

bene�t from an increase in network size is larger than the loss from the dropping price, the

�rm will never stop to produce more products. Because u00(xi) 6 0, the increment of the

network externalities, when the �rm produces one more product, always decreases. Only a

small set of network functions satisfy the situation of Corollary 1.1.1 Because we are only

interested in the situation where the equilibrium exists, the utility functions which exhibits

u0(xi) > 1 for any xi > 0 will not be discussed. This can also be seen as an reinforcement
of the de�nition of the network utility function in our model.2

Corollary 1.2 is a clear consequence of Proposition 1.1. According to the de�nition

of an equilibrium, if x�i is an equilibrium output, it must maximize the pro�ts of Firm i for a

given equilibrium output of all other �rms. Thus, we have u0(x�i ) < 1. This corollary limits

1 There does exist such a network function in real world, such as u(xi) = bx, b > 1.
2 In some papers, condition limu0(x) = 0 as x!1 is added in the de�nition of the utility function. This
condition will eliminate the situation in Corollary 1.1. However, the linear utility function is also ruled out
by this de�ntion from all the possible utility functions. Since the linear utiltity function is the main topic we
will discuss in Section 4 of the paper, we do not introduce this condition in our de�nition.

18



the equilibrium output of the game in certain areas and is helpful when we need to know

some propositions of the equilibrium output, but cannot exactly solve the equilibrium.

Proposition 1.2 The reaction function of Firm i against the total output of all the

other �rms decreases monotonously.

This proposition provides us with a clear picture about the monotonicity of the equa-

tion (1.4), which indicates that the relationship between the outputs of the Firm i and the

total output of all the other �rms is always strategical substitution. Moreover, from the

monotonicity of the function, we know that only unique best response for Firm i can maxi-

mize its pro�ts for a given total output of all other �rms. In Katz and Shapiro's model, they

indicated that the �rms may have more than one best response for a given action of all the

other �rms after accounting for the network externalities. They explained this declaration

using the reaction, stating that it will be a curve rather than a straight line if the network

externality function is non-linear. However, from Proposition 1.1, we know that, in our

model, no matter what shapes of the network utility functions are, the situation indicated

by Katz and Shapiro is not likely to occur.

We can draw the equation (1.4) in the following �gure:

x
j

A B

x
j

xi xi
*

Figure-1.1: Firm i's reaction function

As can be seen, although
P
xj can be any number larger than 0, the Firm i's best

response is bounded. From u00(xi) 6 0, we know u0(x) decreases with an increase in x. If
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u0(0) < 1, we have u0(xi) < 1 for any xi > 0. Thus, xi can be chosen from any positive

number without violation of Proposition 1.1. The Figure-1.1-A illustrates this situation. In

Figure-1.1-A, when the total output of the other �rms is larger than a certain number, Firm

i will always set its output at 0. When
P
xj chooses 0, Firm i will choose its output as the

market is a monopoly. If u0(0) > 1, xi cannot be 0 or any number very near to 0 because of
Proposition 1.1. However, a ! (! > 0) can always be found and u0(xi) < 1 for all xi > !.
We de�ne the minimum ! is !�. Firm i will always at least produce !� if it faces utility

functions with u0(0) > 1. The Figure-1.1-B illustrates this situation. When total output

chosen by all of the other �rms is greater than a certain number, Firm i will always set its

output as !�. When the total output of all other �rms is 0, Firm i sets its output as the

market is a monopoly.

From the �gure we know that, for some products of which u0(xi) is very large when

xi is very small, every �rm can bene�t from setting a positive output regardless of the

intensity of the competition in the market. No �rm can drive others out of the market by

simply increasing its output. However, for some products, of which the utility of network

is relatively small, the competition in the market may drive a �rm out of the market or force

it not to produce when other �rms set a large output level..

1.2.1 Symmetric and Asymmetric Equilibrium

In a traditional Cournot competition, there only exists a unique symmetric equilibrium

in which all the �rms choose equal outputs. The reason behind this is that the reaction

function in the traditional Cournot model is a linear line and that two linear lines only have

one crossing point. After we add the network externalities into the Cournot model, we can

see from Figure-1.1 that the reaction function could be a curve and two curves may cross

more than once in First Quadrant. This is illustrated in Figure-1.2:
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Figure-1.2: Reaction function of Firm i and Firm j

Figure-1.2 illustrates that whether the asymmetric equilibrium exists mainly depends

upon the shape of the reaction function, while the shape of the function is determined by

the form of the network utility function.

Proposition 1.3 The necessary condition for the existence of an asymmetric

equilibrium is u0(0) > 1=2.

According to Corollary 1.1, if the effect of network externalities is strong and u0(x)

is greater than 1 for any x > 0, the equilibrium does not exist since the �rms will continue
to increase their output. If the network effect is medium: u0(0) > 1=2 and u0(xi) < 1, for
some xi, multiple equilibria may exist, which is illustrated in Figure-1.2-A. If the network

externalities are relatively small: u0(xi) < u0(0) < 1=2, the model only has a unique sym-

metric equilibrium. This is because the radian of reaction function is not large enough to

create an asymmetric equilibrium, which is illustrated in Figure-1.2-B. The characteristics

of asymmetric equilibrium are very dif�cult to determine especially when we don't know

the precise form of the network utility function. However, the symmetric equilibrium al-

ways exists according to the �xed point theorem and is relatively easy to calculate. The

following sections will mainly consider the propositions in a symmetric equilibrium.
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1.3 Merger with Network Externalities

1.3.1 Firm's Merger Incentive

We consider a market with n �rms, among which m + 1 �rms intend to merge (0 < m 6
n�1). Whenm = 0, no merger occurs. Whenm = n�1, all the �rms merge into one �rm
and the market becomes a monopoly. We de�ne the percentage of the �rms who choose

to merge as � � m+1
n
. From the previous discussion, we know multiple equilibria may

exist because of the distortion of the reaction functions by non-linear network externalities.

Thus, the output after merger is uncertain since the market could reach any one of the

equilibria. However, In this study, we focus on the the situation in which the network effect

is limited and the asymmetric equilibrium does not exist.3 We assume that �rms know,

before and after a merger, they will always be located in a symmetric equilibrium.

Since all the �rms are symmetric, x1 = x2 = ::: = xn�1 = xn. By combining this

condition with equation (1.4), we can obtain:

1 + u(xi) + xiu
0(xi)� 2xi = (n� 1)xi i 2 f1; :::; ng (1.5)

By solving equation (1.5), we can get the equilibrium output of �rms prior to the merger

and we use x� to denote the solution of equation (1.5).

Proposition 1.4 For any network utility function in our de�nition, there exists and

only exists one symmetric equilibrium.

The intuition behind this proposition is very simple, especially when we refer to

Figure-1.1. According Figure-1.1, the left side of equation (1.5) is monotonically decreas-

ing and we can see the right side of equation (1.5) is a straight line which goes up from

origin. These two functions must cross, but cannot cross more than once in their de�nition

3 The allocation of the asymmetric equilibrium is dif�cult to determine when we don't know the exact form
of the utility function. A more general discussion about the asymmetric equilibrium would therefore be a
good future work and extension of this thesis.
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area. This proposition illustrates that, for any given network utility function and the num-

ber of �rms, n, �rms can always set their output as x� to reach the symmetric equilibrium

and that this symmetric equilibrium is unique.

After the merger, only n �m �rms remain in the market. From the assumption, we
know that they are still located in the symmetric equilibrium. We can use the same method

to solve the equilibrium after the merger. By equation (1.5), we can get:

1 + u(yi) + yiu
0(yi)� 2yi = (n�m� 1)yi i 2 f1; :::; n�mg (1.6)

We de�ne the solution of equation (1.6) as y�. y� is the symmetric equilibrium output of

the �rms after the merger. From Proposition 1.4 we know that y�, which always exists, is

bigger than 0 and unique.

Proposition 1.5 For any given network utility function in our de�nition, the

symmetric equilibrium output of the �rms prior to the merger are less than the symmetric

equilibrium output of the �rms after the merger.

Proposition 1.5 is equivalent to the conclusion that the solution of equation (1.6), y�,

is always larger than the solution of equation (1.5), x�. It is easy to �nd that the left side

of equation (1.5) and (1.6) have the same shape and the right side of the equations are both

straight lines. Because m > 0, the right side of equation (1.6) is always below the right

side of equation (1.5). Since the reaction function is monotonically decreasing, it always

crosses the line (n � 1)xi earlier than (n � m � 1)yi. Thus, y� is always greater than
x�. In a Cournot competition, �rms will increase their output to receive more pro�ts if

the number of the competitors decreases. When the intensity of the competition is reduced

with a decrease in the number of �rms in the market, �rms have less burden to control

their output to keep the price. Although, in our model, network externalities distort the

price function in traditional Cournot model, this rule never changes and will hold for any

network utility function.

We denote the pro�ts of �rms prior to the merger as �(n) and the pro�ts of �rms after

the merger as �(n�m). Salant (1983) has pointed out that one of the suf�cient conditions
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for the �rms to join the merger is they can obtain extra pro�ts from the merger action. This

suf�cient condition can be shown in the following equation:

�(n�m) > (m+ 1)�(n) (1.7)

The left side of the equation is the equilibrium pro�ts of the merged entity and the right

side is the total pro�ts of the �rms who intented to merge prior to merger action taking

place. This equation suggests that the merger will occur only when the merged entity can

receive more pro�ts than the total pro�ts they earned as an individual prior to the merger.

Since we know that �(n � m) and �(n) are all the pro�ts in equilibrium, we can rewrite
equation (1.7) as:

y�p(y�) > n�x�p(x�) (1.8)

Here, p(y�) and p(x�) are the equilibrium prices in the market before and after the merger.

From equation (1.2), (1.5) and (1.6), we can get:

p(x�) = 1 + u(x�)� nx� = x�(1� u0(x�)) (1.9)

p(y�) = 1 + u(y�)� (n+ 1� n�)y� = y�(1� u0(y�)) (1.10)

Since y� > x� and 1� u0(y�) > 1� u0(x�), we have p(y�) > p(x�).

Proposition 1.6 For any given network utility function in our de�nition, the symmet-

ric equilibrium price in the market before the merger is always less than the equilibrium

price after the merger.

Adding network externalities into the demand function will not change the fact that

merger reduces the competition between �rms and �rms can set a higher equilibrium price

after merger.

Substituting (1.9) and (1.10) into equation (1.8), we can obtain:

p
n� <

y�
p
1� u0(y�)

x�
p
1� u0(x�)

(1.11)
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equation (1.5) and (1.6) can be rewriten as:

x� =
1 + u(x�) + x�u0(x�)

n+ 1
and y� =

1 + u(y�) + y�u0(y�)

n� n� + 2 (1.12)

By substituting (1.12) into (1.11), we can obtain:

p
�(n� n� + 2) < n+ 1p

n

(1 + u(y�) + y�u0(y�))
p
1� u0(y�)

(1 + u(x�) + x�u0(x�))
p
1� u0(x�)

(1.13)

We now assume


 � (1 + u(y�) + y�u0(y�))
p
1� u0(y�)

(1 + u(x�) + x�u0(x�))
p
1� u0(x�)

; t(�) =
p
�(n� n�+ 2)

Here, 
 changes with the change of the intensity of network effect. If there is no network

externality, u(x) = 0 and u0(x) = 0. Then, 
 = 1 and equation (1.13) can be rewritten

as:

t(�) <
n+ 1p
n

(1.14)

equation (1.14) is a suf�cient condition for �rms to merge without network externalities.

To understand equation (1.13) and (1.14), we can draw the function t(�) in the fol-

lowing �gure:

(n+1)/n

(n+1)/n

2

t( )

1/n
2 1

1

0.5

0.5

Figure-1.3: Function t(�)

From the de�nition of �, we know that � 2 ( 1
n
; 1]. When � = 1, t(�) = 2. When

� = 1
n
, t(�) = n+1p

n
. From Figure-1.3, we can see that the equation (1.14) will only hold

when � 2 (�1; 1]. From the de�nition: n > 2, we can obtain �1 > 0:8. This result
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coincides with Salant's model (1983). For a given n, m and u(:), we can solve equation

(1.5) and (1.6) to �nd x� and y� and substitute them into 
 to create a value which reveals

the intensity of the effect of network externalities. If 
 > 1, the line t(�) = 
n+1p
n
moves

upward. Then, we can conclude �2 > �1 from the illustration of Figure-1.3. Since equation

(1.13) holds for any � 2 (�2; 1], an 
, which is larger than 1, relaxes the condition for
mergers to be pro�table.

Proposition 1.7 For any network utility function in our de�nition, the condition

for the mergers to be pro�table is always relaxed when we consider the effect of network

externalities.

This proposition illustrates that, for any n, m and u(:), 
 is always larger than 1.

This means the �rms who produce network goods are always more likely to merge than

the �rms who produce goods without network externalities. The network externalities not

only bene�ts the consumers but also the �rms. This can be seen from the fact that, after

the merger, the consumers value the same products more and the �rms can charge a higher

price if network externalities present. If the �rms produce network products, they can ob-

tain two aspects of bene�ts from the merger action. On one hand, the merger reduces the

competition between the �rms and push up the price in the market. On the other hand,

the merger increases every �rm's individual output, hence increasing the goods' network

externalities and making them more attractive to the consumers. Because �rms who pro-

duce network products bene�t more from the merger, the requirement for the merger to be

privately desirable is reduced.

In Salant's model, if we rule out the monopoly case, we need at least �ve �rms in

the market and over 80 percent of the �rms to join the merger to enable the merger to be

privatly pro�table. In our model, this condition can be greatly relaxed. Salant et al (1983)

indicates that social planner should be cautious to any merger proposal since any privately

desirable merger will greatly increase the concentration of the industry. However, in our

model, if the �rms produce network products, the merger may occur with a relatively small
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change in the market structure. Moreover, the consumers have as much potential to bene�t

from the merger behaviour as the �rms. This will be discussed in the next section.

1.3.1 Social Welfare

In a general de�nition, social welfare can be measured as the sum of the total pro�ts of the

�rms and the total surplus of the consumers. The surplus of a consumer, who is type r, is

r + u(xi)� pi. According to the equation (1.2), pi = 1 + u(xi)� z, so we can rewrite the
surplus as r+ z� 1. As we know from the previous discussion, only the consumers whose
type r > pi � bxi = 1 � z enter the market. The total surplus of the consumers can be
calculated as:

S =

Z 1

1�z
(�+ z � 1)d� = z2

2
(1.15)

Equation (1.15) indicates that the consumer's total welfare is the function of �rms' total

output. And the �rms' total output is determined by the number of the consumers who

entered the market. If the total output increases or more consumers join the market, the

consumer's welfare will increase. If the total output decreases or less consumers are willing

to pay for the product, the consumer's welfare will decrease. In the equilibrium, we denote

the total surplus of the consumers before the merger as S(n) and the total surplus of the

consumers after the merger as S(n �m). Combining equation (1.5), (1.6) and (1.15), we
can obtain:

S(n) =
(nx�)2

2
=
(1� x� + u(x�) + x�u0(x�))2

2
(1.16)

S(n�m) = ((n�m)y�)2
2

=
(1� y� + u(y�) + y�u0(y�))2

2
(1.17)

If we know the form of the utility function, we can solve the function (1.5) and (1.6) to

obtain x� and y�. And then, we may substitute them into the above equations and compare

S(n) with S(n�m) to get the effect of the merger to social welfare. If we don't know the
details of the utility function, we can also obtain the effect of the merger to social welfare

when the utility function satis�es some speci�c conditions.
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Proposition 1.8 If �1+2u0(x)+xu00(x) > 0 for any x 2 [x�; y�], the total output of
the �rms and the consumer's welfare increase after the merger. If �1+2u0(x)+xu00(x) < 0
for any x 2 [x�; y�], the total output of the �rms and the consumer's welfare decreases after
the merger.

If�1+2u0(x)+xu00(x) > 0 for any x 2 [x�; y�], we have a relatively large u0(x) and
small u00(x) in the interval [x�; y�]. According to the economic interpretation of the �rst and

second derivatives of the network utility function, the �rst part of this proposition illustrates

that, no matter how small the network externality, the merger will always increase total

output and consumer's welfare as long as the network externality increases very quickly

and this increasing trend is persistent. The second part of the proposition illustrates that the

merger will decrease consumer's welfare if the network utility function is relatively �at and

the trend of increasing drops very quickly with the increase of x, regardless of the absolute

value of the network externalities.

Corollary 1.3 If u0(x�) < 1
2
, the consumer's welfare decreases after the merger.

Corollary 1.4 If u0(0) < 1
2
, the consumer's welfare decrease after the merger.

Corollary 1.3 tells us that if we want to increase the consumer's welfare, we must

have a relatively small equilibrium output prior to the merger to make u0(x�) > 1
2
. Since

we know that the equilibrium output decreases with the increase in the number of the �rms

in the market, this corollary may also indicate that the smaller the number of the �rms in

the industry, the less likely that the merger increases consumer's welfare and total output.

Corollary 1.4 is a more strict, but simple condition for us to identify which network utility

function will decrease the total output and consumer's welfare.
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From (1.3), (1.5), (1.6), (1.9) and (1.10), we can obtain the total pro�ts of �rms in

the equilibrium before and after the merger as:

��ex-ante = nx
�p(x�) = (1� x� + u(x�) + x�u0(x�))x�(1� u0(x�)) (1.18)

��ex-post = (n�m)y�p(y�) = (1� y� + u(y�) + y�u0(y�))y�(1� u0(y�)) (1.19)

From Proposition 1.6, we know that p(y�) > p(x�), so the total pro�ts of the �rms

increase after merger if (n�m)y� > nx�. (n�m)y� > nx� indicates that the total output
increases after the merger or the �rst part of the Proposition 1.8 holds.

It is also easy to know that the �rms who stand outside merger will bene�t more

from the merger action than the �rms who join the merger. Thus, we can also get the

conclusion that if a merger is privately pro�table (make equation (1.13) hold), this merger

must increase the total pro�ts of all the �rms.

More generally, we have the following proposition:

Proposition 1.9 For any network utility function in our de�nition, the total pro�ts

of the �rms always increase after the merger.

This proposition indicates that, no matter how many �rms join the merger or what

the form of the network utility function is, the total pro�ts of the �rms always increase with

the decrease of the number of the �rms in the market. A merger can only exist (privately

pro�table) when enough �rms to join the merger. However, in a social planner's position,

any mergers will de�nitely be pro�table for �rms as a whole. This proposition is true in

both the traditional Cournot competition and the competition with network externalities.

Now we stand at the position of social planner to calculate the effect of the merger

to total social welfare. We denote the total social welfare prior to the merger asW (n) and

the total social welfare after the merger asW (n�m). Combining equation (1.16), (1.17),
(1.18) and (1.19), we can obtain that:

W (n) = S(n) + ��ex-ante =
(1 + u(x�))2 � (x�(1� u0(x�)))2

2
(1.20)
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W (n�m) = S(n�m) + ��ex-post =
(1 + u(y�))2 � (y�(1� u0(y�)))2

2
(1.21)

When we have enough information about the market, for example we know m, n and the

form of the network utility function, the standard way for the social planner to determine

whether the merger increases the total social welfare or not is: �rstly solving the equation

(1.5) and (1.6) to obtain x� and y�, then substituting them into (1.20) and (1.21) and �nally

comparingW (n)withW (n�m). If we cannot obtain the full information about the market
and products, we can still identify the merger which increase the social welfare with the

following proposition:

Proposition 1.10 If W 0(x) > 0 for any x in our de�nition area, the total social

welfare increases after the merger. If W 0(x) < 0 for any x in our de�nition area, the total

social welfare decreases after the merger.

Here,W (x) is a continuous and differentiable function de�ned as:

W (x) =
(1 + u(x))2 � (x(1� u0(x)))2

2
(1.22)

and we can get:

W 0(x) = (1 + u(x))u0(x)� x(1� u0(x))(1� u0(x)� xu00(x)) (1.23)

Since y� > x�, W (n � m) is larger than W (n) when W 0(x) > 0 and is less than

W (n) whenW 0(x) < 0. This indicates that, if the social planner �nds the utility function

satis�es W 0(x) > 0 for any x, they should be glad to boost the merger activities since

any merger can increase the social welfare. One of the typical cases for this situation is

u(x) = bx with b > 1
2
.

If we do not consider the synergies, the social welfare will never increase after the

merger in a world without network externalties. This can get proved by deleting u(:) from

the equation (1.23). If there is no network effect, W 0(x) = �x, which is negative for any
x in de�nition area.
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Corollary 1.5 If �1 + 2u0(x) + xu00(x) > 0 for any x 2 [x�; y�], the total social
welfare increases after the merger.

Corollary 1.6 If �1+ 2u0(x) + xu00(x) > 1� 1
1�u0(x) for any x 2 [x

�; y�], the total

social welfare increases after the merger.

The form and meaning of equation (1.23) is dif�cult to understand. However, Corol-

lary 1.5 gives us a stricter but more explainable condition. From Proposition 1.9, we know

that the total pro�ts of the �rms increase after the merger. Because, in our de�nition, so-

cial welfare equals to the sum of the total pro�ts of the �rms and the consumer's total

surplus, social welfare will de�nitely increases after the merger if the merger increases the

consumer's welfare. This suggests that the social planner should pay attention to the con-

sumer's welfare �rst. If they can make sure the merger bene�ts the consumers, they can

make the conclusion that the merger is a "good" merger without further investigation.

Another interesting question is whether there exists any merger which decreases the

consumer's welfare, but increase the total social welfare? Corollary 1.6 provides us a more

relaxed condition than Corollary 1.5. Since we know that 1 > 1 � u0(x) > 0 for any

x 2 [x�; y�], 1� 1
1�u0(x) is always a negative number. Thus, Corollary 1.6 indicates that there

may exist some network utility function which makes the consumer's welfare decrease, but

social welfare increase after the merger.
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1.4 Merger with Linear Network Utility Function

1.4.1 The Existence of a "Good" Merger

Although we developed some general rules for the social planner to determine whether the

merger will increase social welfare or not in the previous sections, these propositions are

all suf�cient conditions. If we want to obtain the suf�cient and necessary conditions, we

need to solve equation (1.5) and (1.6) and get the absolute value of x� and y�, which will

enable us to give a precise comparison about the social welfare before and after the merger.

To make x� and y� solvable, we introduce a linear network utility function u(x) = bx

instead of the general utility function. Another advantage of the linear utility function is

it is very easy for us to measure the intensity of the network externality. For a general

form of the network utility function, it is hard to compare the intensity of the network

effect between different products, since the relationship may change with the change of

the network size. If we use a linear utility function, the second derivative of the function

is a constant number b, which can always be seen as the indicator of the intensity of the

network effect and will not change with the size of the network. In the following context,

we may use b to indicate a more precise relationship between the intensity of the network

effect with the merger behaviour of the �rms.

We de�ne u(x) = bx, 0 < b < 1. Since u0(x) = b < 1 for any x, our assumption

does not violate Proposition 1.1. By substituting the linear utility function into equation

(1.3) and (1.4), we obtain:

�i = pixi = xi(1 + bxi � z) i 2 f1; :::; ng

1 + 2bxi � 2xi =
X
i6=j

xj i 2 f1; :::; ng (1.24)

Since we only consider the symmetric equilibrium, we have x1 = x2 = ::: = xn�1 =

xn. By solving equation (1.24), we can obtain the unique symmetric equilibrium output of

the �rms as:
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x� = xi =
1

n+ 1� 2b
By substituting x� into equation (1.9), we can get the equilibrium price in the market as:

p(x�) =
1� b

n+ 1� 2b
Thus, each �rm's pro�t is:

�(n) = xp =
1� b

(n+ 1� 2b)2
After the merger, the total number of the �rms in the market is n � m. Since the

procedure to solve the equilibrium after the merger is identical to the procedure to solve the

equilibrium prior to the merger, we only need to change n with n�m to get y�, p(x�) and
�(n�m). If we substitute these results into equation (1.7), we can obtain the condition for
the merger to be privately pro�table as:

�(n�m)� (m+ 1)�(n) = � m(1� b)(n�� A)(n��B)
(n�m+ 1� 2b)2(n+ 1� 2b)2 > 0 (1.25)

Here we use A and B to denote the following equations:

A =
2n+ 3� 4b�

p
4n+ 5� 8b

2
; B =

2n+ 3� 4b+
p
4n+ 5� 8b

2

Proposition 1.11 The suf�cient and necessary condition for the merger to be

privately pro�table is the proportion of the �rms joining the merger is larger than A
n
.

This proposition indicates that if the merger is privately pro�table, the proportion of

the �rms joining the merger must be large enough. If we go back to Figure-1.3, we will

�nd that A
n
is equal to �2 in a linear network world. If there is no network effect (b = 0),

A
n
= 2n+3�

p
4n+5

2n
, which coincides with the result in Salant et al. (1983) 's paper. We can

also tell that @A=@b < 0 for any n > 2; which suggests A goes smaller with an increase

of b. Since b is the intensity of network effect and �2 = A
n
, we may conclude that the

condition for the merger to be privately desirable will be relaxed additionally if these is a
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stronger network effect. Hence, �rms may be willing to merge with just a little increase of

the industry concentration in a market with suf�cient strong network effect.

By substituting x�, y� and u(x) = bx into equation (1.20) and (1.21), we can get:

W (n�m)�W (n) = (4b2 � 2bn� 4b+ 1)(n�� C)
2(n� n�+ 2� 2b)2(n+ 1� 2b)2 > 0

Here, for ease of notation, we use C to denote the the following equation:

C =
2n� 14b� 10bn+ 20b2 � 8b3 � 2bn2 + 8b2n+ 3

4b2 � 2bn� 4b+ 1

Proposition 1.12 The suf�cient and necessary condition for the existence of a

merger, which increases social welfare, is 4b2� 2bn� 4b+1 < 0 and the proportion of the
�rms joining the merger is less than C

n
.

This proposition provides an easy way for the social planner to judge whether the

potential merger increases social welfare if the network utility function is linear. First, the

social planner need to know how strong the network effect (the value of b) is and how

concentrated the industry is (the value of n). If the network effect is very weak, the merger,

which increases social welfare, can only exsits in a relatively less concentrated market. If

the industry is highly concentrated, a relatively large network effect is a must to ensure

these exsits a socially desirable merger. If n and b make 4b2 � 2bn � 4b + 1 > 0, social

planner should block all the merger application. It is because, in this market condition, any

merger will de�nitely decrease social welfare, no matter how many �rms join the merger.

If 4b2�2bn�4b+1 < 0, only the merger with proportion � less than C
n
is a "good" merger.

The social planner needs to compare the proportion of the �rms intending to merge with C
n

to determine whether the merger should be approved.

Proposition 1.13 There exists a merger which is privately pro�table and socially

desirable if and only if n > (2b�1)2(2b+1)
4b2

.

From Proposition 1.11, we know that if a merger is privately pro�table, the propor-

tion of the �rms joining the merger should be greater than A
n
. The �rms always want the
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market goes to more concentrated, since they may charge higher price to the consumers.

Proposition 1.12 tells us that if the social planner wants the merger to increases social wel-

fare, the proportion of the �rms joining the merger should be limited to below a speci�c

number. This is because if the proportion of the �rms joining the merger is larger than C
n
,

all the bene�t from the merger (additional network externalities) will offset by the harm

from reduction of the competition in the market. Thus, a socially desirable merger must

be a merger with gently increasing of market concentration. Proposition 1.13 provides us

with a suf�cient and necessary condition to determine whether there exists an intersec-

tion between Proposition 1.11 and Proposition 1.12. Only the merger which is located in

this intersection is a "good" merger which can be realized. To obtain more intuition into

Proposition 1.13, we can draw the condition in Proposition 1.13 in the following �gure:

10.750.50.250
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Figure-1.4: n > (2b�1)2(2b+1)
4b2

The inequality n > (2b�1)2(2b+1)
4b2

is illustrated in Figure-1.4, where we can see: when

b is relatively small, a large n is needed to keep the inequation existing and when b is rela-

tively large, the requirement for n to make the inequality hold is not very strict. Proposition

1.13 indicates that the existence of the intersection between Proposition 1.11 and Propo-

sition 1.12 depends upon the concentration of the industry and the characteristics of the

products. In an over-concentrated industry with a relatively weak network effect, there will
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be less possibility to have a "good" merger. But if the number of the �rms in the indus-

try is relatively large and the network effect of the products is strong, there will be a better

chance of having a privately pro�table and socially optimal merger, or a "good" merger.

Corollary 1.7 If b > 0:23, any potential merger has the possibility to bene�t both

the �rms and society if a suitable proportion of the �rms join the merger.

This Corollary is also illustrated in Figure-1.4. The horizontal line in Figure-1.4 is

n = 2. Since we know that n > 2, from the �gure, we can conclude that, when b is larger
than a certain number, any n in our de�nition will make n > (2b�1)2(2b+1)

4b2
. This provides

us a more straight condition: when b is larger than 0:23, there will always exist a "good

merger". The only thing that social planner needs to do to realize this "good" merger is to

control the number of the �rms joining the merger.

1.4.1 Chooseing a Suitable Number of Firms to Join the Merger

According to the de�nition,m+ 1 denotes the number of �rms who join the merger. From

the previous discussions, we know that, if social planner knows that a "good" merger exists

in the industry, the next work is to control the proportion, or the number, of the �rms joining

the merger to make sure that the "good" merger is realized.

Proposition 1.14 With the condition that n > (2b�1)2(2b+1)
4b2

, if C > n, any m

larger than 2n+1�4b�
p
4n+5�8b

2
is a suitable m which makes the merger both privately prof-

itable and socially optimal, and if C < n, any m which is between 2n+1�4b�
p
4n+5�8b

2
and

(n+1�2b)(4b2�2bn�6b+2)
4b2�2bn�4b+1 is a suitable m which can make the merger both privately pro�table

and socially optimal.

Corollary 1.8 If b > 0:26, m is only bounded by privately pro�table restriction.

Any m which is larger than 2n+1�4b�
p
4n+5�8b

2
is a suitable m which can make the merger

both privately pro�table and socially optimal.
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Corollary 1.9 If b < 0:19, m is bounded on two sides. Any m which is between
2n+1�4b�

p
4n+5�8b

2
and (n+1�2b)(4b2�2bn�6b+2)

4b2�2bn�4b+1 is a suitable m which can make the merger

both privately pro�table and socially optimal.

If the social planner knows how concentrated the industry is and the intensity of

network effect of the products, Proposition 1.14 provides us a criterion to evaluate whether

the potential merger is good merger or not. Since it is dif�cult to understand the intuition

behind the relationship between C and n, we can only get very little information from this

proposition. However, Corollary 1.8 and 1.9 are more intuitionistic. They illustrate that

when the network externalities are very large (b > 0:26), the social planner doesn't need to

set any restrictions to the merger, since all of the mergers are socially optimal. Therefore,

social planner should encourage the �rms to merge and boost a dominator for the industry.

However, when the network externalities are relatively small (b < 0:19), the number of

�rms who join the merger must be chosen carefully. If m is too large, which means too

many �rms join the merger, the social welfare will be harmed; if m is very small, the

merger is not attractive to the �rms anymore.
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1.5 Conclusions and Future Work

The network effect distorts the reaction function of the �rms in Cournot competition, but

this distortion does not change some of the basic characteristics of the reaction function,

such as monotonicity. The distortion provides a possibility of the existence of multiple

equilibria, which requires a relatively strong network effect. However, extremely large

network effect results in a situation in which no equilibrium exists. This is because �rms

will never stop increasing their outputs if the bene�t from network effect can always offset

the price losses from producing an additional product. In this study, we limit our discussion

to an industry with a relatively week network effect, so the multiple equilibria are ruled out.

Although the conclusions in this chapter are only valid for a section of all the network utility

functions, it still provides us with some information of how the network effect changes the

�rm's behaviour in the competition and merger choice and gives us some hints for the study

of a more general result.

If we only consider the symmetric equilibrium, the network effect will make �rms

more zealous in merger activities, compared with the conclusion of Salant's model. Conse-

quently, a merger with only a relatively small proportion of all the �rms getting involved,

which is not possible in Salant's model, may occur in our model. Merger between the

�rms, who produce network products, can bring some level of bene�t to consumers through

network externalities, so there exists a merger which increases social welfare without the

consideration of supply-side economics of scale.

A linear network utility function will greatly reduce the calculations and bring some

convenience to the denoting of the intensity of the network effect. With the help of the

linear network utility function, we �nd that, in some mergers, the pro�t of the �rms and

the social welfare are not always contradictive. If the network externality is very strong or

the market is not highly concentrated yet, it is possible to exist a "good" merger which is

both privately pro�table and socially optimal. Moreover, if the network externality is large

enough, the social planner doesn't need to set any restrictions to the merger behaviour since

all the mergers which are privately pro�table will be socially optimal as well. However, if
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the network externality is relatively weak, the social planner should set some restrictions to

the number of the �rms joining the merger in order to make the "good" merger be realized.

We recommend that a more general discussion about the situation in which the multiple

equilibria exist be conducted in the future.
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1.6 Appendix

A1.1 Proof of Proposition 1.1

Assume xi maximize the pro�t of �rm i for a given total output of all other �rms. From the

�rst derivative of equation (1.2), we can get:

@pi
@xi

= u0(xi)� 1 (xi > 0)

If u0(xi) > 1, we have @pi=@xi > 0. Assume x0i is slightly larger than xi, then we have

p0i = 1 + u(x
0
i) � x0i �

P
xj > pi. Thus, �0i = p0ix0i > pixi = �i and xi cannot maximize

the pro�t of �rm i, which contradicts with our assumption. Hence, we may conclude that

if xi maximize the pro�t of �rm i for a given total output of all other �rms, there must have

u0(xi) < 1.

A1.2 Proof of Proposition 1.2

Equation (1.4) is the reaction function of �rm i against the total output of all other �rms.

We assume

g(xi) =
X
i6=j

xj = 1 + u(xi) + xiu
0(xi)� 2xi (1.26)

) g0(xi) = u
0(xi) + u

0(xi) + xu
00(xi)� 2 = 2(u0(xi)� 1) + xiu00(xi) (1.27)

Here xi is always the best response for a given
P
xj . From Proposition 1.1, we have

u0(xi) � 1 < 0. By the de�nition, we have u00(xi) < 0 and xi > 0, so it is easy to know
g0(xi) < 0. Hence, we may conclude that the reaction function g(x) is monotonically

decreasing.

A1.3 Proof of Proposition 1.3

Before we begin the proof, we need to prove the following lemma �rst.
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Lemma 1.1 For any two functions, if the slope of one of the functions is always

larger than other's, these two functions have no more than one crossing point.

Proof. Assume functions m(x) and n(x) have two crossing point x1, x2 (x1 6= x2)
and q(x) = m(x) � n(x). Since m(x1) = n(x1) and m(x2) = n(x2), q(x1) = 0 and

q(x2) = 0. q0(x) = m0(x) � n0(x). If m0(x) is always bigger than n0(x), q0(x) > 0 for

any given x. This means q(x) is monotonic increasing and there cannot exist two different

value: x1 and x2 which let q(x1) and q(x2) equal to zero at the same time. So the function

m(x) and n(x) cannot have more than one crossing point.

Proof of Proposition 1.3:

From the equation (1.27)

g0(xi) = 2(u
0(xi)� 1) + xiu00(xi)

From the de�nition xi > 0 and u00(x) < 0, if u0(0) < 1=2, u0(xi) 6 u0(0) < 0:5.

Thus, we have g0(xi) < 2(0:5 � 1) + 0 = �1. Firm i's competitor's reaction is just the
inverse of �rm i's reaction function against to 45 degree line. If the slope of �rm i's reaction

function is less than �1 for any xi, his competitor's reaction function will always bigger
than �1. From Lemma 1.1, we know that �rm i and his competitor's reaction function
will have no more than one crossing point. This means there does not exist more than one

equilibrium. Since the symmetric equilibrium is always exist according to the �xed point

theorem. If there exist asymmetric equilibrium, we must have u0(0) > 1=2.

A1.4 Proof of Proposition 1.4

What we need to do is to prove that equation (1.5) only has a unique solution. Assume

there exist two solution, x1 and x2 for equation (1.5) and x1 > x2 > 0. we have:

g(x1) = 1 + u(x1) + x1u
0(x1)� 2x1 = (n� 1)x1 (1.28)

g(x2) = 1 + u(x2) + x2u
0(x2)� 2x2 = (n� 1)x2 (1.29)
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From the proof of Proposition 1.2, we know that g(x) is a monotonically decreasing func-

tion, so g(x1) < g(x2). Since n > 2, (n� 1)x1 > (n� 1)x2. This makes (1.28) contradict
with (1.29). Thus, we may conclude that there is no more than one solution for equation

(1.5). We can also rewrite equation (1.5) as:

1 + u(xi) + xiu
0(xi)� nxi = xi i 2 f1; :::; ng (1.30)

Since the left part of (1.30) is continuous and differentiable function, equation (1.5) have

more than one solution according to the �xed point theorem. Thus equation (1.5) have and

only have one solution and the market exist and only exist one symmetric equilibrium.

A1.5 Proof of Proposition 1.5

Proving Proposition 1.5 equals to prove the solution of equation (1.6), y�, is bigger than the

solution of equation (1.5), x�. We may de�ne a function:

h(x) = 1 + u(x) + xu0(x)� (n+ 1)x

By the de�nition of the network utility function, we get h(0) = 1 + u(0) + 0u0(0)� (n +
1)0 = 1. As we know that y� is the solution of equation (1.6), we have

h(y�) = 1 + u(y�) + y�u0(y�)� (n+ 1)y� = �my� < 0

Since h(x) is a continuous function, h(0) > 0 and h(y�) < 0, there must exist a � 2 (0; y�)
which makes h(�) = 0.

h(�) = 0() 1 + u(�) + �u0(�)� (n+ 1)� = 0 (1.31)

Obviously, equation (1.31) has a same form as equation (1.5), From Proposition 1.4, we

know that equation (1.31) has and only has unique solution � = x�. Since � 2 (0; y�), we
must have x� 2 (0; y�) or we can say x� < y�.

A1.6 Proof of Proposition 1.7

We need to prove the following lemma �rst:
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Lemma 1.2 For any x 2 [x�; y�] and utility function in our de�nition, 1 + u(x) +
xu0(x)� 2x > 0.

Proof. From (1.26) and (1.27), we know that g(x) = 1 + u(x) + xu0(x) � 2x and
g0(x) = 2(u0(x)�1)+xu00(x). From Corollary 1.2, we know u0(x�) < 1. Since u00(x) 6 0,
for any x > x�, we have u0(x) < 1, which indicates for any x 2 [x�; y�], u0(x) < 1. So

g0(x) < 0 for any x 2 [x�; y�]. The minimum of g(x) is g(y�) if x is chosen from [x�; y�].
Since y� is the solution of equation (1.6), we have:

g(y�) = 1 + u(y�) + y�u0(y�)� 2y� = (n�m� 1)y� > 0

g(y�) = 0 if and only if m = n � 1 which means the merger creates monopoly in the
market. So for any x 2 [x�; y�], g(x) is non-negative.

Proof of Proposition 1.7:

We may de�ne a function:

k(x) = (1 + u(x) + xu0(x))
p
1� u0(x) x 2 [x�; y�]

As we know from Proof of the Lemma 1.2, u0(x) < 1 for any x 2 [x�; y�],
p
1� u0(x)

always has a real value for x 2 [x�; y�]. From the de�nition of the network utility function
(u(x) > 0, x > 0 and u0(x) > 0), we know k(x) > 0 for any x 2 [x�; y�] and k(x) is a
continuous and differentiable function. The �rst derivative of function k(x) is:

k0(x) =
4u0(x)(1� u0(x))� (g(x) + 2xu0(x))u00(x)

2
p
1� u0(x)

From Lemma 1.2, we know that g(x) > 0 for any x 2 [x�; y�] and we also know that

u(x) > 0, x > 0, 1� u0(x) > 0 and u00(x) < 0. So it is easy to see that k0(x) > 0 for any
x 2 [x�; y�]. We can then obtain:

k(y�) > k(x�) =) k(y�)

k(x�)
> 1

() (1 + u(y�) + y�u0(y�))
p
1� u0(y�)

(1 + u(x�) + x�u0(x�))
p
1� u0(x�)

= 
 > 1

for any network utility function in our de�nition and any x 2 [x�; y�].
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A1.7 Proof of Proposition 1.8

We can de�ne the total output in the equilibrium as a continuous and differentiable function:

l(x) = 1� x+ u(x) + xu0(x) =)

l0(x) = �1 + 2u0(x) + xu00(x)

If �1+ 2u0(x) + xu00(x) > 0 for any x 2 [x�; y�], we have l0(x) > 0 and l(y�) > l(x�). So
we can get:

l(y�) = (n�m)y� > l(x�) = nx�

A1.8 Proof of Corollary 1.3 and 1.4

By the de�nition of the network utility function: u00(x) < 0 and

�1 + 2u0(x) + xu00(x) = xu00(x)� 2(1
2
� u0(x))

we can indicate that �1 + 2u0(x) + xu00(x) < 0 if u0(x) < 1
2
. We also know that u0(x) 6

u0(x�) < u0(0) for any x 2 [x�; y�]. So if we have u0(x�) < 1
2
or u0(0) < 1

2
, we may

conclude that u0(x) < 1
2
for any x 2 [x�; y�]. According to Proposition 1.8, these two

conditions are also the suf�cient condition for merger to decrease the consumer's welfare

and total output.

A1.9 Proof of Proposition 1.9

We de�ne a continuous and differentiable function:

v(x) = (1� x+ u(x) + xu0(x))x(1� u0(x))

v0(x) = (g(x) + xu0(x))(1� u0(x)� xu00(x)) + (1� u0(x))xu0(x)

From Lemma 1.2, Corollary 1.2 and the de�nition of the network utility function, we know

that g(x) > 0, 1 � u0(x) > 0, u00(x) < 0 and x > 0 for any x 2 [x�; y�]. So v0(x) > 0 for
any x 2 [x�; y�]. We can then make the conclusion that:

v(x�) = ��ex-ante < v(y
�) = ��ex-post
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for any network utility function and equilibrium output.

A1.10 Proof of Corollary 1.6

The conditionW 0(x) > 0 can be rewrite as:

g(x)u0(x) + xf1� [1� u0(x)][2� 2u0(x)� xu00(x)]g > 0 (1.32)

From Lemma 1.2, we know that g(x) > 0 for any x 2 [x�; y�]. So if we want the equation
(1.32) holds for any x 2 [x�; y�], we only need:

1� [1� u0(x)][2� 2u0(x)� xu00(x)] > 0

() �1 + 2u0(x) + xu00(x) > 1� 1

1� u0(x)
holds for any x 2 [x�; y�].

A1.11 Proof of Proposition 1.11

The proof of this proposition is equivalent to prove that the suf�cient and necessary con-

dition for �(n � m) � (m + 1)�(n) to be larger than 0 is n� � A > 0. Since we know

from the de�nition thatm > 0, 1� b > 0, if we can prove that n��B is negative, we can
then get the conclusion that �(n �m) � (m + 1)�(n) is a positive number if and only if
n�� A > 0. From the de�nition of B:

B

n
=

2n+ 3� 4b+
p
4n+ 5� 8b

2n

= 1 +
3� 4b+

p
4n+ 5� 8b
2n

> 1 +
3� 4 +

p
8 + 5� 8
4

> 1

So B > n for any 0 < b < 1 and n > 2. Since � < 1, we can say n� � B < 0. From the
de�nition of A:

A

n
=
(
p
4n+ 5� 8b� 1)2

4n
<
(
p
4n+ 5� 1)2
4n

As we know that n > 2, we can construct the following inequation:
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0 > 6� 2
p
13 > 6� 2

p
4n+ 5

() 4n+ 5� 2
p
4n+ 5 + 1 < 4n() (

p
4n+ 5� 1)2
4n

< 1

This shows that A
n
< 1 for any 0 < b < 1 and n > 2. Thus, we can make sure there always

exists a � 2 ( 1
n
; 1) which let n�� A > 0.

A1.12 Proof of Proposition 1.12

If 4b2 � 2bn� 4b+ 1 > 0, we can solve this inequality and obtain:

b <
n+ 2�

p
(n+ 2)2 � 4
4

or b >
n+ 2 +

p
(n+ 2)2 � 4
4

Obviously, b � n+2+
p
(n+2)2�4
4

;since n > 2 and 0 < b < 1. If b < n+2�
p
(n+2)2�4
4

, we can

get b < 0:134 since n > 2. By rewriting 4b2 � 2bn� 4b+ 1 > 0, we can obtain:

2bn < 4b2 � 4b+ 1 = (2b� 1)2 < 1

=) 8b3 + 6nb+ 14b < 5 < n+ 3 + (20 + 4n)b2

=) �8b3 + (20 + 4n)b2 + (�6n� 14)b+ n+ 3 > 0

=) 2n� 14b� 10bn+ 20b2 � 8b3 � 2bn2 + 8b2n+ 3

> n(4b2 � 2bn� 4b+ 1) (1.33)

Since we know 4b2 � 2bn� 4b+ 1 > 0, from (1.33), we can get:
2n� 14b� 10bn+ 20b2 � 8b3 � 2bn2 + 8b2n+ 3

4b2 � 2bn� 4b+ 1 > n =) C > n

Since 4b2� 2bn� 4b+1 > 0, the condition to makeW (n�m)�W (n) > 0 is n��C >
0 () � > C

n
> 1. But by the de�nition, we know � 6 1, so we can conclude that there

does not exist a merger which can increase the social welfare if 4b2 � 2bn� 4b+ 1 > 0.
If 4b2 � 2bn� 4b+ 1 = 0, we can obtain:

2n� 14b� 10bn+ 20b2 � 8b3 � 2bn2 + 8b2n+ 3

= �2b(4b2 � 2bn� 4b+ 1) + (n+ 3)(4b2 � 2bn� 4b+ 1) + n = n > 0
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So W (n �m) �W (n) < 0. There does not exist a merger which can increase the social
welfare either.

If 4b2 � 2bn � 4b + 1 < 0, the suf�cient and necessary condition for a merge to

increase social welfare can be written as: � < C
n
.

A1.13 Proof of Proposition 1.13

From Proposition 1.11, we know that if we want the merger to be privately pro�table, we

need � > A
n
. From Proposition 1.12, we know that if we want the merger to be social

desirable, we need 4b2�2bn�4b+1 < 0 and � < C
n
. By Combining these two conditions

together, we can obtain the suf�cient and necessary condition that there exists a merge

which can bene�t not only the �rms but also the whole society is: (i) 4b2�2bn�4b+1 < 0
, (ii) A < C. If an industry system can satisfy these two condition, there must exist an �,

which is between A
n
and C

n
, can satisfy Proposition 1.11 and 1.12 at the same time. From

(i), we can get: n > (2b�1)2
2b

. From (ii), we can get:

2n+ 3� 4b�
p
4n+ 5� 8b

2
<
2n� 14b� 10bn+ 20b2 � 8b3 � 2bn2 + 8b2n+ 3

4b2 � 2bn� 4b+ 1
(1.34)

Since we have condition (i), (1.34) can be rewriten as:

p
4n� 8b+ 5 > 2n

�(4b2 � 2bn� 4b+ 1) � 3 (1.35)

If 2n
�(4b2�2bn�4b+1) � 3 6 0, we have A < C.

if 2n
�(4b2�2bn�4b+1) � 3 > 0, (1.35) can be written as:

4n� 8b+ 5 > ( 2n

�(4b2 � 2bn� 4b+ 1) � 3)
2

() n >
8b3 � 4b2 � 2b+ 1

4b2
=
(2b� 1)2(2b+ 1)

4b2

Since n > (2b�1)2
2b

+ (2b�1)2
4b2

> (2b�1)2
2b

, the suf�cient and necessary condition of (i) + (ii)

can be simpli�ed as: n > (2b�1)2(2b+1)
4b2

.

47



A1.14 Proof of Proposition 1.14

If C > n, the restriction A
n
< � < C

n
can be rewritten as A

n
< � 6 1. This means m isn't

bounded by the social welfare restriction.

A

n
< � 6 1, A

n
<
m+ 1

n
6 1, A� 1 < m 6 n� 1

, 2n+ 1� 4b�
p
4n+ 5� 8b

2
< m 6 n� 1

If C < n, m is bounded by both privately pro�table restriction and social optimal

restriction.

A

n
< � <

C

n
, A

n
<
m+ 1

n
<
C

n
, A� 1 < m < C � 1

, 2n+ 1�
p
4n+ 5

2
< m <

(n+ 1� 2b)(4b2 � 2bn� 6b+ 2)
4b2 � 2bn� 4b+ 1

A1.15 Proof of Corollary 1.8 and 1.9:

C � n = (4b2 � 6b+ 1)n� (2b� 1)2(2b� 3)
4b2 � 2bn� 4b+ 1

:

We know 4b2 � 2bn� 4b+ 1 < 0, (2b� 1)2(2b� 3) < 0 and n > 0. Thus,
if 4b2 � 6b + 1 > 0, we have C � n < 0. From 4b2 � 6b + 1 > 0, we can get

b 6 3�
p
5

4
� 0:19.

If 4b2 � 6b + 1 < 0; we can conclude that, when n < (2b�1)2(2b�3)
(2b�1)2�2b ; C � n < 0 and

when n > (2b�1)2(2b�3)
(2b�1)2�2b , C > n. We may draw the �gure of

(2b�1)2(2b�3)
(2b�1)2�2b as:
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Figure-1.5: (2b�1)
2(2b�3)

(2b�1)2�2b

From Figure-1.5, we can see (2b�1)2(2b�3)
(2b�1)2�2b < 2, when b > 0:26. So If b > 0:26,

C > n. We also know, if b < 0:19, C < n. However, if 0:19 < b < 0:26, the analysis

will be a little more complex. In this situation: if n < (2b�1)2(2b�3)
(2b�1)2�2b , we have C < n. which

means m is bounded by both side. If n > (2b�1)2(2b�3)
(2b�1)2�2b , we have C > n, which means m

isn't bounded by the social welfare restriction.

49



1.7 References

[1] Buccirossi, P., Ciairi, L., Duso, T., Fridolfsson, S., Spagnolo, G., and Vitale, C., �A

Short Overview of a Methodology for the Ex-post Review of Meger Control Decisions�,

De Economist, 156, 2008, 453-475

[2] Cheung, F., K., �Two Remarks on the EquilibriumAnalysis of Horizontal Merger�,

Economics Letters, 40(1), 1992, 119-123

[3] Farrell, J., and Klemperer, P., �Coordination and Lock-In: Competition with

Switching Costs and Network Effects�, Memo, 2004

[4] Farrell, J., and Shapiro, C., �Horizontal Mergers: An Equilibrium Analysis�,

American Economic Review, 80(1), 1990b, 107-126.

[5] Farrell, J., and Shaprio, C., �Asset Ownership andMarket Structure in Oligopoly�,

RAND Journal of Economics, 21, 1990a, 275-292

[6] Fauli-Oller, R., �On Merger Pro�tability in a Cournot Setting�, Economics Let-

ters, 54, 1997, 75-79

[7] Fridolfsson, S., O., and Stennek, J., �Should Mergers be Controlled?�, Memo,

2000

[8] Gaudet, G., and Salant, S., W., �Increasing the Pro�t of a Subset of Firms in

Oligopoly Models with Strategic Substitute�, American Economic Review, 81(3), 1991,

658-665

[9] Katz, M., L., and Shapiro, C., �Network Externalities, Competition, and Compat-

ibility�, American Economic Review, 75(3), 1985, 424-40.

[10] Katz, M., L., and Shapiro, C., �Systems Competition and Network Effects�,

Journal of Economic Perspective, 8(2), 1994, 93-115

50



[11] JAMISON, A., M., �Network Externalities, Mergers and Industry Concentra-

tion�, Memo, 2002

[12] Martin K. Perry and Robert H. Porter, �Oligopoly and Incentive for Horizontal

Merger�, American Economic Review, 75(1), 1985, 219-227

[13] Salant, S., W., Switzer, S., and Reynolds, R., J., �Losses fromHorizontal Merger:

The Effects of an Exogenous Change in Industry Structure on Cournot-Nash Equilibrium�,

Quarterly Journal of Economics, 98(2), 1983, 185-199.

[14] Shapiro, C., �Competition Policy in the Information Economy�, Competition

Policy Analysis, Einar Hope, ed., 2000, Routledge Studies in the Modern World Economy.

[15] Shapiro, C., and Varian, H., �Information Rules: A Strategic Guide to the Net-

work Economy�, Harvard Business School Press, 1999.

[16] Weisman, D., L., �Market Concentration, Multi-Market Participation and Merg-

ers in Network Industries�, Review of Network Economics, 4(2), 2005, 129-141

51



Chapter 2
Merger through Acquisition with Inheritable

Indirect Network Externalities

Abstract

We investigate �rms' acquisition behaviours if they may inherit indirect network exter-

nalities from the �rms they acquired. For a given symmetric initial market structure, we

provide the suf�cient and necessary conditions for the existence of an equilibrium in which

some �rms are acquired by the others and reveal that these conditions are relaxed when the

indirect network is inheritable. For an asymmetric previous market structure, we �nd that

larger �rms acquiring smaller �rms occurs more easily than smaller �rms acquiring larger

ones. Inheritable indirect network externalities can provide an incentive for the �rms to

merge and also help the merged entities maintain their advantage position.
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2.1 Introduction

In network economy, consumers may bene�t from an increase in the number of consumers

who use the same or compatible products. This network externality, which signi�cantly

affects the behaviours of both consumers and �rms, can be explained by two different

origins. The �rst is a direct physical effect of the number of purchasers on the quality of

products. A good example of the direct network effect is the mobile phone network �� It

is easy to understand that a mobile phone network with more users will be more valuable to

its consumers if different networks as a whole are incompatible, or if customers need to pay

a signi�cant mount of money to connect to other networks. Study of the complementary

products market has given rise to another reason for network externalitites. The idea is: if

more consumers choose to use a speci�c product, there will be more �rms that join this

product's complementary market. Competition among these downstream �rms will lower

the price and increase the variety of complementary products, hence increase the utility

of the consumers. These indirect network externalities are found in many IT (information

technology) products, such as platform/software, and can also exist in many traditional

industries, such as automobile/authorized repair agencies.

Indirect network externalities are a potentially important factor that in�uences con-

sumers when they are choosing products. Generally speaking, the more indirect network

externalities he/she may obtain as a result of purchasing the product, the higher price he/she

would be happy to pay. However, it is very dif�cult for consumers to predict the future size

of the networks, since it is nearly impossible for everyone have full information about oth-

ers' choices when making their decisions. In most instances, the consumers evaluate the

size of a network in the current period according to the market size of each �rm in the last

period, which is a more accessible piece of public data and can be seen by everyone. Previ-

ous market size determines how many complementary goods are produced and how many

complementary goods developers and suppliers, who are slow or costly to switch, are al-

ready there. It is therefore resonable that consumers prefer products from �rms with larger

previous market sizes and are willing to pay more for a product that has established market
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status and reputation in a previous time. This consumer's behaviour can be explained by the

fact that indirect network externalities are inheritable, which means that an increase in the

number of consumers who use a product in a previous time will increase the utility of the

consumers who choose the same or compatible product in the current period. In this chap-

ter, we assume that �rms can only inherit the last period's indirect network externalities

and that earlier market structure does not affect the current period.

Inheritable indirect network externality has some similar characteristics with installed

base. However, this special installed base comes from the complementary product market

instead of the product's market itself. Moreover, installed base does not always bring about

network externalities, which is crucial in our model. Goodwill for reputable brand names

can also bring about similar effect for consumers, but goodwill is not always size deter-

mined and can vary among different consumers.

In the current period, �rms can do nothing to in�uence their previous market size,

which means the sizes of the indirect network externalities they may inherit are determined

by history. However, if a �rm acquires another �rm, it may inherit indirect network exter-

nalities from the acquired �rm by making his product compatible with all acquired �rms'

complementary goods. This provides a possibility for �rms to change the sizes of the indi-

rect network externalities involved in their current period products and can be an important

motivation for merger and acquisition activities. A good example of this can occur in the

video game console/game software market. One can imagine that a merger between Sony

(PlayStation) and Microsoft (XBox) would allow creation of a new product (PS-XBox)

that is more competitive in the video game marketplace than Nintendo's Wii, or other sep-

arate brands, since PS-XBox consumers can enjoy all of the games that once could only be

played on either the PlayStation or XBox consoles. Another advantage of the new game

console is that there will exist more game developers for the new PS-Xbox game console,

compared with the case in which two �rms haven't merged. The reason for this is that

those game software developers for PlayStation and XBox, individually, in previous time

may prefer to continue to develop software for the new PS-XBox game station, because

the switch is slow and costly. When a consumer considers purchasing a game console in
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current period, he/she may evaluate how many software and software developers already

exist in the market and form their willingness to pay for PS-XBox. Clearly, consumers will

prefer to pay more for a new, combined game console than previous separate consoles, be-

cause this new game console provides more indirect network externalities and increases

their utilities to purchase this product. The relatively advantage in the product is more sig-

ni�cant if the new syndicate acquires more �rms, but on the other hand, payment for the

acquisition may limit the �rms' bene�t from the merger. Thus, the market structures (how

many �rms in the market and their market size) along with the intensity of the inherited in-

direct network effect determine the �rm's acquisition strategy and the �nal location of the

market equilibrium.

In this chapter, we study �rm's acquisition behaviours when they are faceing a given

previous market structure and a prospect of inheriting indirect network externalities from

the �rms they acquired. Our model is based on Kamien and Zang's (1990) acquisition

model. However, the main purpose of Kamien and Zang's work is to show that mergers are

unlikely to happen in Cournot competitions if there is no other bene�t for the merger ex-

cept an increase of market concentration. Kamien and Zang derive their conclusion only

from a necessary condition for the merger. In their model, the suf�cient condition is not

important and is not discussed since mergers may only occur in very limited cases, given

their assumption. If inheritability is considered, the necessary condition for the existence

of an equilibrium, in which some �rms are merged, will be greatly relaxed and enumera-

tion is impossible. Thus, in our model, the suf�cient and necessary condition is critically

important for the antitrust social planner because it provides a more accurate indicator to

when the merged Nash equilibrium can exist. Another interesting topic we investigate is

whether inheritability can motivate �rms to merge and how much inheritability affects the

concentration of the market. In a traditional Cournot competition, the �rms that have ac-

quired other �rms have no advantage in the competition compared with the �rms that are

not involved with the merger. This is because �rms only compete with their output and the

quality of their products is indifferent. In our model, the inherited indirect network exter-

nalities provide certain advantages to the �rm that acquires others �rms since consumers
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will likely pay more for the products with more inherited network externalities. Firms that

acquire others may use this advantaged to squeeze more pro�ts from their consumers and

increase their output. Moreover, �rms that successfully set up their output advantage in the

current period might secure an advantage position in the next round of mergers and acqui-

sitions. This can explain why it is easier for a larger �rm to acquire smaller �rm than the

other way around and why the markets always tend to be more asymmetric without other

exogenous forces, although the merged Nash equilibrium that will be played is random.

In the literature, horizontal merger is always thought to be a phenomenon that re-

quires study and regulation, since antitrust social planners believe that such a merger has

great potential to reduce competition and social welfare. However, Salant et al (1983)

points out that mergers are much easier said than done. They �nd that, in the Cournot com-

petition model, mergers may only occur when they include more than 80 percent of the

�rms in the industry. This is because the merged entities must be able to generate more

pro�t than the sum of the separate pieces did before the merger. Given further discussion

of the process of a merger through acquisition, Kamien and Zang (1990) indicate that no

merger can happen in an industry with more than seven �rms if the demand function is con-

cave. This can be explained by the fact that each merged entity desires to make at least what

it could, in terms of pro�tability, by unilaterally abandoning the merger. If a linear demand

function is employed in Kamien and Zang's model, merger through acquisition only ex-

ists for an industry with no more than two competitors. Merger under the Bertrand model,

with differentiated products, is studied by Denrckere and Davidson (1984, 1985), but ac-

quisition in a Bertrand competition is also limited because the value of the fringe �rm may

increases when the industry becomes more concentrated (Kosenok, 2005). Stigler (1950)

points out another consideration that may reduce the chances of the merger, which is that

�rms that stay outside of the merger can bene�t more than those �rms that are involved.

Although Inderst and Wey (2004) suggest that this insiders' dilemma can be solved similar

to a public goods problem, it is natural for us to believe that other motivations to explain a

�rm's enthusiasm to merge are likely.
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As to the motivation of mergers from the supply side, Perry and Porter (1985) use an

alternative cost function to show that the mergers may create cost ef�ciencies, which makes

merger easier to exist than in Salant's estimation. Farrel and Shapiro (1990) give a further

investigation and indicate that the merger may have a positive impact on social welfare if

the synergy of the merger is considered. From the demand side, Cheung (1992) shows that

Salant's threshold may be relaxed to 50% if the demand satis�es the marginal revenue of

the industry is decreasing. Fauli-Oller (1997) �nds that the pro�tability of mergers may de-

pend on the degree of concavity of the demand function. In our model, the demand function

may varies with the merger result, while �rms can change the demand function by choosing

different acquisition strategies. However the demand function is linear and �xed after the

merger is �nished. Huck, Konrad and Muller (2004) provide additional reasons for merg-

ers, including internal organization of the �rm, the time structure of decision making, the

information aspect of competition, etc. However, size depended inheritable resource from

the acquired �rms, which can be an important reason for the merger, is not investigated in

extant literature while neither is the suf�cient and necessary conditions for the existence of

a merged Nash equilibrium discussed in the literature.

The direct network effect is �rstly modeled by Katz and Shapiro (1985). They also

suggest, in another paper, that �hardware/software system can be seen as vertical network

which has similar properties as direct network� (Katz and Shapiro, 1994). Empirical analy-

sis shows that this indirect network effect may be important in video game (Clements and

Ohashi, 2005) or personal digital assistant market (Nair et al, 2004). Economides and

White (1998) suggest that the indirect network may be seen as a two-way network and

there are other works (Church and Gandal, 1992; Chon and Shy, 2002) in which the au-

thors try to model this indirect network effect in different markets. More recently, Church

et al (2008) review development of the indirect network theory and provide the condition

for the existence of the adoption externalities in indirect network industries. Our thesis's

indirect network theory is based on these works. We assume that the indirect network effect

is inheritable and offer further discussion on its effects to mergers and acquisitions.
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In Section 2.2, we discuss the suf�cient and necessary conditions for the existence of

a Nash equilibrium, in which some �rms are merged. The model in Section 2.2 is based

on a symmetric initial market and a linear network utility function. In Section 2.3, we

investigate whether the larger �rms have an advantage in an asymmetric market and try to

discuss whether inheriting indirect network externalities can be an incentive for the �rms'

acquisition behaviors. The possibility of market structure changes under our assumption

and its implication to social planners are also discussed in this section. The last section of

this chapter provides our conclusion and offers future possible work relative to this chapter.
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2.2 The Symmetric Model

2.2.1 The Model

Assume there are n (n > 2) symmetric �rms in an oligopoly market and that these �rms

produce homogeneous products and choose their output to maximize pro�ts. The merger

and acquisition between these �rms is processed in two stages: in the �rst stage, every

�rm simultaneously selects a bid vector that includes the bids for all the other �rms and

the reservation price for himself. Then, the �rms merge according to speci�c rules and the

chosen bid vector. In this step, some �rms take the bid offer and leave the market. After

observing the acquisition result, consumers form their valuations for each survived �rm's

products or services. Here, we assume the more �rms a �rm acquires, the more indirect

network externalities this �rm may provide to consumers. Consequently, consumers will

value this �rm's products or services more. In the second stage of the merger and acquisi-

tion game, survived �rms compete with their output to maximize pro�ts according to the

consumer's valuations. The producing cost is not considered in this model. The entire

merger process is one-off, thus, the �rms are myopic and do not consider the next round

bid. In the following paper, we denote the �rms that accept the bid offer and leave the

market as the sellers. And we denote the �rms that acquire at least one �rm as the buyers.

The bid vector of �rm i, in the �rst step, can be written as: Bi = (b1i ; b2i ; b3i ; :::; bni ).

Here, we denote �rm i's bid for �rm j as bji and �rm i's reservation price (bid for itself) as

bii. Since all the �rms are symmetric, �rms always prefer operating themselves to acquiring

others. Thus, �rm i's bid for itself is always larger than its bid for others and we have

bii > bji (j 6= i).4 After all the �rms select his bid vector, each �rm receives an offer

vector from all other �rms and itself as B0i = (bi1; bi2; bi3; :::; bin). Firms merge according to

the following rules: if there exists a biq 2 B0i (q 6= i) for which biq > bij (j = 1::n), we

call �rm q a potential buyer of �rm i. Here, we assume that when �rm i receives an offer

4 This assumption can successfully avoid the acquisition dilemma, which is the situation that Firm A may
acquire Firm B, Firm B may acquire Firm C and Firm C may acquire Firm A. Proof can be found in the
Appendix.
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equal to its reservation price, the �rm will prefer to accept the offer and leave the market to

avoid the uncertainty of the competition. If there does not exist such biq (�rm i's reservation

price is larger than any offer), �rm i will not be acquired by any �rm and will remain until

the next stage. If there is more than one potential buyer (these potential buyers provide

the same offer to �rm i), the potential buyer with the highest rank will win the bid (�rm

i's rank is i, which is an arti�cial, exogenous variable). We also assume that �rms will

�rst consider selling themselves. If the �rm cannot �nd a buyer, it then begins to consider

acquiring others �rms. After the market is restructured by the acquisition procedure, we

assume there are only m (m 6 n) �rms left in the market and each of these has acquired
kl � 1 (n > kl > 1) �rms (here l = 1::m). By the de�nition of kl, we can obtain:

mP
l=1

kl = n

As is known, the indirect network externalities that consumers can obtain from the

buyer are determined by the total initial market size of all the �rms that the buyer acquires.

We denote the market size of �rm i at the beginning of the merger as x0i . Since the �rms are

symmetric, there is: x01 = x02 = ::: = x0n = x0. We also simply assume, before the merger

and acquisition process, that these n �rms compete in a standard Cournot model with the

following price function:

p = 1�
nP
i=1

xi

Thus, the output of each �rm, in the equilibrium, is:

x0 =
1

n+ 1

The indirect network externalities consumers obtain from buying one of the buyer's prod-

ucts is:

u(
P
x0i ) = u(klx

0) = u(
kl

n+ 1
)

If �rm l, a buyer, acquires more �rms in the �rst stage of the game, its products or services

will carry more indirect network externalities and be more valuable to consumers. Similar

to the network externality utility function, this utility function should be characterized as:

u(0) = 0; u(x) > 0; u0(x) > 0 and u00(x) 6 0. For convenience of calculation, we may

assume the utility function of indirect network externalities to be linear as: u(x) = bx
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(0 < b < 1). Here, b is the measure of the intensity of the indirect network externality. We

also assume the price of �rm l's product is determined by the function:

pl = 1 + u(klx
0)�

mP
i=1

xi = 1 +
bkl
n+ 1

�
mP
i=1

xi

Thus, �rm l's pro�t is:

�l = plxl = (1 +
bkl
n+ 1

�
mP
i=1

xi)xl

From the �rst order condition, we can obtain the optimized output of �rm l, xMl , is the

solution of the function:

1 +
bkl
n+ 1

�
mP
i=1

xi � xl = 0 (2.1)

Since these are m �rms left after the merger, there exists m solution functions in the same

form as equation (2.1). If we add these together, we obtain:

m+

b
mP
l=1

kl

n+ 1
� (m+ 1)

mP
i=1

xi = 0

=)
mP
i=1

xi =
m

m+ 1
+

nb

(m+ 1)(n+ 1)
= z (2.2)

Here, z is the total output after the merger. Since b < 1, nb
n+1

< 1 and z < 1. We may

easily get @z=@m > 0 from equation (2.2). This means that total output will decrease with

the decrease of number of the �rms that survive in the last stage, which is coincident with

the standard Cournot competition. We may also �nd that @z=@b > 0. This means that the

stronger the indirect network externalities, the more consumers will join the market. These

extra consumers lured by the indirect network externalities to join the market is: nb
(n+1)(m+1)

.

By substituting z into the optimized output solution function (2.1), we obtain the

equilibrium output of �rm l after the merger as:

xMl =
1

m+ 1
+

b

n+ 1
(kl �

n

m+ 1
) (2.3)

while the equilibrium pro�t of �rm l is:

�Ml = plx
M
l = (

1

m+ 1
+

b

n+ 1
(kl �

n

m+ 1
))2 (2.4)
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If �rm l seizes more �rms from other buyers, kl will increase andm does not change.

From equation (2.3) and (2.4), we can conclude that �rm l will have more output and

pro�ts. Acquiring one more �rm will extend the �rm's output by b
n+1
. From function (2.2),

we know that the total output, z, does not change if n and m are �xed. Thus, if �rm l

increases its output by b
n+1
, there must exist a buyer who loses the same amount of output.

This is different from Kamien and Zang's model (1990) or our model in perper-1. In these

models, after the merger, �rms compete in a symmetric status. The �nal market structure

is symmetric and only determined by how many �rms are left after the merger (here ism).

However, in this model, buyers that acquire more �rms have larger market share in the

equilibrium. This can provide a clue for us to analyze the incentive of the �rms to raise

their bids. It is clear that @xMl =@m < 0. Thus, if the �rm l increases kl by reducing m,

which means the market becomes more concentrated, not only xMl will increase, but also

all the other �rms that remain in the market will bene�t as well.

2.2.2 Existence of Merged Nash Equilibrium (MNE)

For convenience to denote in this chapter, we make the following de�nition:

De�nition 2.1 If the bid game reaches an equilibrium (no �rm chooses to change

its bid vector given all the other �rms' bid vectors) and m < n in the equilibrium, we call

this equilibrium a merged Nash equilibrium (MNE).

In MNE, there at least exists one �rm who has acquired some other �rm in the �rst

stage of the game. We assume �rm l is a �rm that has acquired others. Obviously, �rm l

can choose to give up the acquisition by setting its bid for all the other �rms at 0. If it does,

the kl � 1 �rms, that once may sell themselves to �rm l, must get involved in the second
stage of the competition or consider selling themselves to other potential buyers. In this

effect, the total �rms left in the second stage will increase to m0 (m + kl � 1 > m0 > m).
Following the procedure of calculating �Ml , we can obtain the pro�ts of �rm l when it
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chooses to give up the acquisition in the �rst stage as:

�NMl = (1 +
b

n+ 1
�
m0 + nb

n+1

m0 + 1
)2 (2.5)

Since @�NMl =@m0 < 0, �NMl reaches the minimum whenm0 = m+kl�1. By substituting
m+ kl � 1 into equation (2.5), we may obtain:

�NMl min = (
1

m+ kl
+

b

n+ 1
(1� n

m+ kl
))2

This indicates that �rm l can always guarantee �NMl min pro�t by giving up the acquisition.

Any �rm may also make itself un-acquirable by setting its reservation price as in�n-

ity. If a �rm that decides to sell itself to �rm l changes its mind and chooses to keep itself

un-acquirable, it may increase the number of the �rms that remain to second stage tom+1

and get equilibrium pro�t �D. �D can be calculated in the same manner as above:

�D = (
1

m+ 2
+

b

n+ 1
(1� n

m+ 2
))2 (2.6)

If �rm l wants to acquire a �rm, it must pay at least �D to the seller. Otherwise, the seller

will choose to remain un-acquirable. Thus, the minimum payment for the �rm l to buy

kl � 1 �rms is (ki � 1)�D.

Proposition 2.1 For a given n and b, the necessary condition for the existence of a

MNE is: there exists am and a kl which makes:

�Ml � �NMl min > (kl � 1)�D (2.7)

Here, n > 2; n > m > 1; n > kl > 2 and b 2 (0; 1).

In equation (2.7), �Ml � �NMl min is the pro�t of �rm l in acquisition and is also

the maximum amount that �rm l is willing to pay. We call this amount the budget of �rm

l. This budget must be greater than the minimum payment at which the kl � 1 �rms are
willing to merge. Otherwise, either �rm l will give up on the acquisition or sellers will

deviate from the merger.
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Proposition 2.2 The necessary condition for the existence of a MNE is relaxed by

the increased intensity of the indirect network externalities.

From equation (2.6), we know that the increase of b will decrease the incentive of the

sellers to deviate in most of the cases5. The greater the indirect network externalities, the

less buyers must pay for the acquisition. Let's assume �rm l is the largest buyer, which

means kl > ki (i = 1:::m). From equation (2.3), we know �rm l's pro�t after merger

increase with the increase of b. The change of b has a different effect to �NMl min when

the number of buyers in the MNE is different. In the case that there is more than one

buyer in the MNE, @xNMl min =@b < 0 and the buyers will get less from giving up the

acquisition. Thus, the �rm l is likely to pay more for the acquisition. If there is only one

buyer in the MNE, we will have @xNMl min =@b > 0, which means buyers will obtain more

from giving up the acquisition. However, from the left side of the equation (2.7), we have

@(�Ml � �NMl min)=@b > 0. This indicates that, for �rm l, with the increase of b, the

increase of pro�ts from the merger is greater than the increase of the pro�ts from giving

up the merger. In both of these cases, the total budget that �rm l is willing to pay for

sellers increases with the increase of b. Combining the effect to the seller and the buyer, the

increase of the intensity of indirect network externalities causes �rm l's budget to increase

and makes sellers are happy to accept a lower offer. We can conclude that the necessary

condition for the existence of an MNE will relax.

In Kamien and Zang's model (1990), a MNE only exists for a relatively small n. Es-

pecially when the price function is linear, a MNE only exists for n = 2. This is because the

pro�t from the merger is very low and the incentive for the sellers to deviate is relatively

large if we do not consider any other bene�t of the acquisition. However, in the real world,

mergers happen more frequently than Kamien and Zang's (1990) declaration, which may

be explained partly by Proposition 2.2. If we consider indirect network externalities, �rms

will be rewarded more for their acquisition behaviors. With the increase of the intensity of

5 When and only whenm = n� 1, the deviation pro�t of the sellers increases with the increase of b. This
special case is discussed in a separate section in the following part of this paper. Proposition 2.2 will not be
violated in this special case.
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the indirect network, there are many possible MNEs which may lead to symmetric, asym-

metric equilibrium or monopoly cases. Kamien and Zang (1990) do not discuss suf�cient

conditions for the existence of a MNE since a possible merger is very limited and can be

solved by enumeration. However, if we consider indirect network externalities, the set of

possible MNEs is relatively large, so the suf�cient conditions can be important and may

provide additional pro�les of MNEs.

2.2.1 Merger with a Single Buyer

Similar to MNE, we may give the following de�nition for convenience to denote in the

paper:

De�nition 2.2 If the bid game reaches an equilibrium with m < n, and this

equilibrium contains only one buyer, we call this equilibrium single buyer merged Nash

equilibrium (SBMNE). If this MNE contains more than one buyer, we call the equilibrium

multiple buyer merged Nash equilibrium (MBMNE).

If only one buyer exists, the number of �rms that are involved in the second step

competition must equal n + 1� k. Here, we may ignore the subscript of k since only one
k exists in a SBMNE. In a general MNE model, �Ml and �D are both functions ofm and kl
for a given n and b. In this section, we use �M(k) and �D(k) to denote them because they

are determined solely on k in SBMNE. If we substitutem = n+ 1� k into �NMl min, we

can obtain:

�NMl min = (
1

n+ 1
+

b

(n+ 1)2
)2 = C (2.8)

This indicates that �NMl min is a constant number for a given n and b. We de�ne this

constant number as C.

A Candidate SBMNE and the Suf�cient Condition for its Existence
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Proposition 2.3 The suf�cient condition for the existence of a SBMNE is that there

exists a k 2 [2; n], which allows the inequality:

�M(k)� C > (k � 1)�D(k) (2.9)

hold for a given n > 2 and b 2 (0; 1).

If there exists one or more than one k 2 [2; n] that allows the inequality (2.9) hold for
a given n > 2 and b 2 (0; 1), we may de�ne k� as the smallest k that makes �M(k)� (k�
1)�D(k) > C and

� =
�M(k�)� C
k� � 1 � �D(k�) (2.10)

It is obviously that � is always greater than 0. We call the �rms that haven't been acquired

by the buyer in the SBMNE as non-sellers and the buyer's pro�t after paying out the bids

to all sellers as its net pro�t.

We can construct such a strategy set of a candidate equilibrium:

{buyer's strategy: (bid for himself: 1, bid for all the sellers: �D(k�) + �, bid for all
the non-sellers: 0);

sellers' strategy: (bid for himself: �D(k�) + �, bid for the buyer: 0, bid for all the

other sellers: 0, bid for all the non-sellers: 0);

non-seller's strategy: (bid for himself: 1, bid for the buyer: 0, bid for all the other
sellers: 0, bid for all the other non-seller: 0)}

If we prove that the above candidate strategy set is an equilibrium, we can conclude

that there always exists a SBMNE since there is only one buyer in this equilibrium.

Analysis of the Candidate Equilibrium

(i) For the buyer's strategy, given all others' strategies

Clearly, there is no incentive for the buyer to decrease or increase its bid for itself

since the bids for the buyer from the sellers and the non-sellers are 0. And the buyer has

no incentive to increase its bid for the seller because this will only increase its cost of the

acquisition and decrease its pro�t. From inequality (2.9), we also know that the buyer has
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no incentive to decrease its bid for all the sellers simultaneously. If the buyer does so, it

will become a non-buyer. Being a non-buyer is never the best strategy since inequality (2.9)

provides potential pro�tability for the buyer. The buyer also has no incentive to decrease

its bid for part of the sellers. This can be proved in the following lemma.

Lemma 2.1 Given the strategies of sellers and non-sellers as the candidate strategy

set, the buyer's net pro�t will always be less than C if the buyer chooses to only acquire

fewer than k� sellers.

We may assume that the buyer decreases the number of the �rms it acquires to k0

(k0 < k�). Since k� is the smallest k that makes the net pro�t larger than C, the buyer will

obtain less net pro�t thanC if it chooses to only acquire k0 and pay them �D(k0). Moreover,

the actual payments for each seller are �D(k�) + �, which is larger than �D(k0). The actual

net pro�t the buyer can get will be even less if he chooses to acquire just k0 �rms. This

means that the buyer has no incentive to decrease its bid for part of the sellers. The buyer

also has no incentive to increase or decrease its bid for the non-sellers since the nonseller's

bids for themselves are 1. Considering above discussion together, we can conclude that
the buyer has no incentive to change its strategy when all the others' strategies are given as

the candidate strategy set.

(ii) For the non-sellers, given all others' strategies

Obviously, the non-sellers have no incentive to increase their bids for the buyer since

the buyer's bid for itself is1. Any non-sller has no incentive to increase its bids for other
non-sellers, since all of the non-sellers' bids for themselves are 1. The non-sellers will
not decrease their bids for themselves because all of the others' bids for the non-sellers are

0. Any non-seller has no incentive to increase its bids for one, some, or all of the sellers.

This is shown in the following lemma.
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Lemma 2.2 Given the strategies of the buyer, all sellers and all other non-sellers

as the candidate strategy set, any non-seller will have less pro�t if it chooses to pay more

than �D(k�) + � to acquire one, some, or all of the sellers.

The non-seller may also lure some sellers by raising its bid over �D(k�)+�. However,

the total number of �rms in the last step of the competition will not change and the number

of sellers that the non-seller can acquire is limited, so the non-seller cannot bene�t from

additional reduction in competition intensity. If the non-seller acquires some sellers, it may

bene�t from an increase of its products' indirect network externalities. However, this is

very limited and will be offset by what it needs to pay for the acquisition. The intuition

behind the Lemma 2.2 is the insider's dilemma, which means it is always better to stay

outside the merger than get into it. Thus, starting a bidding war is not a smart strategy

when the buyer has given a non-pro�table high bid to sellers. Adding Lemma 2.2 to our

previous discussion, we can conclude that an outsider has no incentive to change its strategy

when all of the others' strategies do not change.

(iii) For sellers, given all others' strategies

Clearly, sellers have no incentive to increase their bids for the buyers or the non-

sellers since their bids for themselves are 1. Sellers have no incentive to decrease their
bids for themselves either, since this will only reduce their pro�ts, while they also have no

incentive to increase their bids for themselves to be a non-seller, since �D(k�)+� > �D(k�).

However, the seller may increase its bid for itself and set a bid larger than �D(k�) + � for

some or all the other sellers. This makes the seller become a second buyer and allow it to

snatch some of the �rms from the buyer. The following lemma eliminates the idea that this

strategy is better for sellers than our candidate strategy set.

Lemma 2.3 Given the buyer's strategies, the non-sellers and all of the other sellers

as the candidate strategy set, the seller will obtain less net pro�t than �D(k�) + � if it

chooses to stay un-acquirable and acquires one, some or all of the rest of the sellers by

offering more than �D(k�) + �.
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�D(k�) + � is really a decent pay for the seller, which is even larger than the buyer's

net pro�t C. If one of the sellers becomes a second buyer, the total number of �rms in the

last step of the competition will increase by 1. This means that the second buyer must face

a more intensive competition. If the second buyer stands at the same position as the �rst

buyer, it cannot generate a net pro�t more than C since the number of �rms it may acquire

is less than k� and k� is the smallest k that makes the net pro�t larger than C. Thus, if the

second buyer must face a even harder competition, what it may generate is even less and

obviously less than the payment from the buyer, �D(k�) + �. According to Lemma 2.3 and

the discussion above, we can say that sellers have no incentive to change their strategies

given the strategies of buyer and non-sellers as the candidate strategy set.

From (i), (ii) and (iii), we show that the candidate equilibrium is an equilibrium.

Thus, if we have a k 2 [2; n] that lets (2.9) hold, we can �nd out k� by checking all of
the numbers less than k, and there always exists an equilibrium same as the candidate

equilibrium �� Proposition 2.3 is proved.

If we combine Proposition 2.3 and Proposition 2.1, the following corollary is ob-

tained:

Corollary 2.1 For a given n > 2 and b 2 (0; 1), the suf�cient and necessary

condition for the existence of a SBMNE is there exists a k 2 [2; n], which makes �M(k) �
C > (k � 1)�D(k).

Two Special Cases of SBMNE

One of the special cases of SBMNE is only two �rms are involved in the merger. In

this case, m = n � 1 and k = 2. Substituting m and k into equation (2.9), we may easily
obtain the following proposition:

Proposition 2.4 For any given n > 3, if

b > ((
p
2� 1)n2 � (

p
2 + 1))(n+ 1)

(n2 + 2n� 1)n (2.11)
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, there exists a SBMNE in which the buyer only acquires one �rm.

Since

lim
n!1

((
p
2� 1)n2 � (

p
2 + 1))(n+ 1)

(n2 + 2n� 1)n =
p
2� 1

, any b that is greater than
p
2� 1 will automatically make (2.11) hold. We can then get the

following corollary.

Corollary 2.2 For any given n > 3 and b >
p
2� 1, there always exists a SBMNE

in which the buyer only acquires one �rm.

From Corollary 2.2, we may also indicate that there always exists a MNE when b

is not less than
p
2 � 1. This Corollary will be helpful when we discuss the existence of

a general MNE since we only need to consider the situation when b is less than a certain

threshold.

Another very important special case is the one in which the market becomes a monopoly

after the acquisition. In this case, m = 1 and k = n. Similar to Proposition 2.4, we can

obtain the following proposition:

Proposition 2.5 For any given n > 3, if

b > (4n3 + 5n2 + 7n+ 24� 6(n+ 1)
p
4n3 � 15n+ 16)(n+ 1)

(4n3 � 25n2 � 35n+ 12)n (2.12)

, there exists an MNE in which the market becomes a monopoly.

Here, the left side of the inequality (2.12) is divergent when n goes to in�nity. In

order to understand the relationship between these two special cases, we can draw (2.11)

and (2.12) in the following �gure:
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Figure-2.1: Two �rms merger vs Merger to monopoly

From Figure-2.1, we see (2.11) and (2.12) are monotonic concave functions. With the

increase of n, we need a larger b to satisfy both inequalities. This means we need a larger

indirect network effect for the equilibrium to exist with the increasing of the number of the

�rms in the market. We may also see the line drawn by condition (2.11) is above the line

drawn by condition (2.12) for n = 3 and 4. For n > 5, (2.12) always locates above (2.11).
This tells us that it is easier for a �rm to buy all the other �rms (to pursue monopoly) than

just buy only one �rm when n is relatively small. However, when n becomes larger, the cost

of the monopoly strategy increases rapidly and a larger indirect network effect is necessary

in order for the monopoly to remain pro�table. For a relatively large n, a SBMNE with the

merger of just two �rms is easier to realize. For the antitrust social planner, when there are

only a few �rms in the market and competition is weak, a merger leading to monopoly will

be more likely to happen. However, when the number of �rms in the market is large and

highly competitive, the merger is more likely to happen between limited �rms.

More generally, the suf�cient and necessary condition of the existence of a SBMNE

can be seen as a quadratic function of b, given n and k. By solving this function, we may

get b = f(n; k). Plotting f(n; k) with the condition n > k > 2, we obtain the following

�gure:

71



Figure-2.2: b = f(n; k)

Figure-2.2 describes the relationship between b, n and k under the condition of (2.9).

Any point located in the space above the curved surface causes the SBMNE exist. An

interesting proposition here is: if the initial number of �rms in the market is given and this

number is larger than 4, the SBMNE that can exist by the smallest b will not be any one of

the special cases we have discussed above. This threshold equilibrium happens when the

buyer chooses a k� that is located between 2 and n. This can be explained by a double-

side effect of the acquisition: increasing the value of buyer's products because of indirect

network externalities and increasing the payment for sellers. From Figure-2.2, we can also

guess that k� will become smaller with the increase of n and �nally converge at a value

when n goes to in�nity. This will be left to future work.

2.2.1 Merger with Multiple Buyers

When n = 2 and 3, there is no MBMNE. Thus, we only need to consider the situation that

n > 4. The simplest multiple buyer merge equilibrium is the one in which there are two

buyers and each has acquired one seller. This is the only possible MBMNE when n = 4.
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Proposition 2.6 When n = 4, the suf�cient and necessary condition for the existence

of an MBMNE is b >
p
2
4
� 1

3
.

By substituting n = 4;m = 2 and k = 2 into (2.7), we can easily check the necessity

of Proposition 2.6. For suf�ciency, we may construct a candidate equilibrium:

{The �rst buyer's strategy: (bid for himself: 1, bid for Seller A: ( 2
15
b+ 1

3
)2� 1

16
, bid

for Seller B and the second buyer: 0);

The second buyer's strategy: (bid for himself: 1, bid for Seller B: ( 2
15
b + 1

3
)2 � 1

16
,

bid for Seller A and the �rst buyer: 0);

Seller A's strategy: (bid for himself: ( 2
15
b + 1

3
)2 � 1

16
, bid for the two buyers: 0 , bid

for Seller B: 0);

Seller B's strategy: (bid for himself: ( 2
15
b + 1

3
)2 � 1

16
, bid for the two buyers: 0, bid

for Seller A: 0)}

We can prove that, for any b >
p
2
4
� 1

3
, this candidate equilibrium is an MBMNE.

This provides us the suf�ciency for Proposition 2.6.

When n = 4, three possible SBMNEs exist: (k = 2;m = 3), (k = 3;m = 2) and

(k = 4;m = 1). Substituting these three SBMNEs into inequality (2.9), we can obtain the

smallest b that may allow these two SBMNEs exist is 75
p
2�85
92

, 75
p
93�580
616

and 150
p
3711�8260
4127

,

respectively. These three threshold b are all greater than
p
2
4
� 1

3
, so an MBMNE is easier

to exist than an SBMNE.

Proposition 2.7 For any n > 9, if an MBMNE exists, an SBMNE must exist at the

same time.

We de�ne a function:

f(m) = (k � 1)�D + �NMl min��Ml

For any n > 9 and b >
p
2 � 1, we have @f(m)=@m < 06 if we assume n, k and b are

�xed. According to Proposition 2.1, if an MBMNE exists, we must have an m and k that
6 The proof is in Appendix
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makes the inequality (2.7) hold. Let's de�nem� and k� as such a pair that can ful�ll these

conditions. Since it is an MBMNE, we must have m� + k� � 1 < n. So there exists a

m� > m� which makesm�+k��1 = n. Because @f(m)=@m < 0, f(m�) < f(m�) < 0

for a given n, k� and b. By substitutingm� = n+1�k� into f(m�) < 0, we may �nd that

the k� can make the inequality (2.9) in Proposition 2.3 hold. Thus, an SBMNE must exist

with only one buyer that has acquired k� � 1 �rms. Proposition 2.7 shows us that if an
MBMNE exists, the equilibrium, which is constructed by leaving one buyer and separating

all the other mergers, will also exist if n > 9.

Combining Proposition 2.6 and 2.7, we may indicate that, when n is relatively small,

an MBMNE may exist with a smaller b than an SBMNE. However, when n becomes larger

than a certain number, the requirement for the existence of an SBMNE is weaker than the

requirement for the existence of an MBMNE. If the indirect network effect is not strong

enough to make an SBMNE exist, an MBMNE will not exist either. Therefore, in a market

with suf�cient competition, the social planners only need to focus on the existence of an

SBMNE. If they �nd that the market is not ready for an SBMNE, an MBMNE will also be

impossible. This can be concluded in the following corollary:

Corollary 2.3 For n > 9, the suf�cient and necessary condition for the existence of

a MNE is there exists a k 2 [2; n] which makes the inequality (2.9) hold.

For n = 5; 6; 7; 8; 9, we may test one by one to see whether they satisfy the Corollary

2.3 using a procedure that is very similar to the proof for Proposition 2.6.
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2.3 Acquisition with Asymmetric Market Size

2.3.1 Asymmetric Acquisition and the Advantage of the Larger Firm

Assume there are n �rms at the beginning of the merger and that these �rms have different

market sizes in the previous period. Without losing generality, we can assume their initial

market sizes are x01 > x02 > ::: > x0n. We also assume that consumers are uniformly

distributed between 0 and 1 according to their willingness to buy the product. Then, we

have
Pn

i=1 x
0
i < 1. Suppose there are two �rms A and B, which both want to buy r �rms

and x0A > x0B. For ease of denotation, we name these r �rms: s1; s2:::sr. Similar to the

model above, we still have a linear indirect network utility function: u(x) = bx.

Proposition 2.8 If a �rm with larger initial market size cannot bene�t from acquiring

a set of �rms, all other �rms with smaller initial market sizes cannot bene�t from acquiring

this set of �rms either.

First, we consider the situation of Firm B =2 (s1; s2:::sr) when Firm A is the buyer
and Firm A =2 (s1; s2:::sr) when Firm B is the buyer. Following the procedure we use
with the symmetric model, we can get the necessary condition for �rm A to acquire these

r �rms is:

PA = (1 + b(
rP
i=1

x0si + x
0
A)� Z(m))2 � (1 + bx0A � Z(m+ r))2

>
rP
i=1

(1 + bx0si � Z(m+ 1))2 = �D (2.13)

and the necessary condition for �rm B to acquire these r �rms is:

PB = (1 + b(
rP
i=1

x0si + x
0
B)� Z(m))2 � (1 + bx0B � Z(m+ r))2

>
rP
i=1

(1 + bx0si � Z(m+ 1))2 = �D (2.14)

Here, Z(x) is a function of total market output and x is the number of �rms in the competi-

tion. From equation (2.2), we know that total market output after the merger only depends
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on m and will not change with the change of buyers and sellers. So z can be written as a

function of the number of �rms in the competition. PA and PB is the maximum value that

Firm A and Firm B are willing to pay for the acquisition. �D is what both �rms need to

pay to prevent deviation of sellers.

PA � PB = 2b(x0A � x0B)(b
rP
i=1

x0si + Z(m+ r)� Z(m)) (2.15)

Since @Z(x)=@x > 0, we can obtain Z(m+ r) > Z(m). So PA > PB. This means that the

larger �rm is easier to allow the necessary condition hold and Proposition 2.8 is proved.

If the target acquisition �rms are identical, the total deviation payment for these �rms

is the same for all buyers. Thus, the right sides of the inequality (2.13) and (2.14) are both

�D. However, the �rm with a larger initial market size has the ability to pay more for the

acquisition than the �rm with smaller initial market size. This means that the larger �rm

may have an advantage in the acquisition compared with the smaller �rm. Because they

bene�t more, larger �rms are willing to pay more. Thus, the equilibrium is more likely

to occur with a larger �rm as the buyer. From (2.15), we �nd that PA � PB increases
with the increase of x0A � x0B, b and r. This indicates that the advantage of the larger
�rm in the acquisition will be more signi�cant if this �rm is leading more in market size

at the beginning of the merger; the indirect network effect is stronger and the size of the

acquisition is larger.

The other case is Firm B 2 (s1; s2:::sr) when Firm A is the buyer and Firm A 2
(s1; s2:::sr) when Firm B is the buyer. The necessary condition for the Firm A and B to

acquire these r �rms will be different from (2.13) and (2.14). The necessary condition for

Firm A is:

PA >
si 6=BP
i=1:::r

(1 + bx0si � Z(m+ 1))2 + (1 + bx0B � Z(m+ 1))2 (2.16)

While the necessary condition for Firm B is:

PB >
si 6=AP
i=1:::r

(1 + bx0si � Z(m+ 1))2 + (1 + bx0A � Z(m+ 1))2 (2.17)

From (2.16) minus (2.17), we can infer that �rm A's advantage in the acquisition is:

2b(x0A � x0B)(Z(m+ r)� Z(m+ 1)) > 0 (2.18)
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We can indicate that in this case, Proposition 2.8 also holds. Similar to equation (2.15), the

advantage of the larger �rm in the acquisition increases with the increase of x0A�x0B, b and
r. However, when r = 1, this advantage disappears simply because the left side of (2.18)

goes to 0. This tells us that, for a merger in which only Firm A and B are involved, the

larger �rm, A, has no advantage in the acquisition compared with the smaller one, B. In

this special case, Firm A and B have an identical chance as the buyer. The advantage of

larger initial market size can only be shown in a merger that occurs with the introduction

of more �rms.

In the case that �rms merge to form a monopoly, we may obtain the following corol-

lary:

Corollary 2.4 If the �rm with largest previous market size can not afford an

acquisition, other �rms can not afford this acquisition either.

2.3.1 The Incentive of the Acquisition and Dynamic Market Structure

The incentive of the �rm to be a buyer in an MNE is relatively weak and �rms are all want

to be a non-seller if there is only one period. We can �nd this by comparing the bene�t of

the buyer, the sellers and the non-sellers in the candidate equilibrium in Section 2.2.3. In

this equilibrium, the bene�t of the non-seller can be calculated by using the pro�t of the

non-seller after the merger, minus the pro�t if the merger doesn't occur, which is:

MBnon�seller = (
1

n+ 2� k +
b(2� k)

(n+ 1)(n+ 2� k))
2 � C

From MBnon�seller > 0 for any k > 2,7 we know that non-sellers always bene�t from

the mergers no matter how many �rms are acquired by the buyer because they can obtain

more pro�ts by the decreasing number of the competitors, which can be seen from 1
n+2�k�

7 It is because

(
1

n+ 2� k +
b(2� k)

(n+ 1)(n+ 2� k) )� C =
(k � 1)(b� 1)

(n+ 1)(n+ 2� k) +
b(k � 1)

(n+ 1)2(n+ 2� k)
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1
n+1

> 0. Although non-sellers will suffer some loss from relatively small indirect network

externalities ( b(2�k)
(n+1)(n+2�k) < 0), this loss never exceeds what these �rms gain from the

reduction of the competition. The bene�ts of sellers can be calculated using the payment

from the buyer, minus the pro�t if the merger doesn't occur, which is:

MBseller = (�
D(k�) + �)� C

FromMBseller > 0 for any k > 2,8 we know the seller can always bene�t from the merger
as well and the reason is the same as that for the non-seller. The difference is, the non-seller

may obtain more bene�t than the seller, sinceMBnon�seller �MBseller > 0 for any k > 2.
From (2.10), which is the expression of �, we may conclude that the buyer's bene�t is 0 in

our candidate equilibrium. There may exist some other equilibrium by which the buyer's

bene�t is not 0, via bargaining the offer with the sellers. However, the buyer's bargaining

power is limited, since it needs to deter sellers or nonsellers from becoming second buyers

by offering a very high bid.

If the �rms that survive the current round of merger face another round of the merger,

the buyer may have additional bargaining power for the acquisition in the next period than

it has in the current period. An important reason for this is that the market would become

asymmetric and lead by the buyer. The buyer, whose product has more indirect network

externalities, creats more output in the last round of the merger and will become a larger

�rm compared with the non-sellers at the beginning of the next round of the merger game.

From Proposition 2.8, we know that larger �rms have some advantage and that this advan-

tage is affected by the �rm's initial market size. Thus, we might face a situation in which,

in the second round acquisition game just after an SBMNE, only the buyer in the previ-

ous round of the game can �nd a k that will satisfy the condition (2.13) or (2.16), and all

other non-sellers cannot satisfy (2.14) or (2.17). In this situation, only one �rm, the buyer

in previous period, has the chance to acquire others and no others �rms have the ability to

8 This is because

(
1

n+ 3� k +
b(3� k)

(n+ 1)(n+ 3� k) )� C =
nb(k � 2)

(n+ 1)2(n+ 3� k)
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host a merger. In this situation, the buyer does not need to offer a signi�cant price premium

to sellers in the second round of the game to deter a potential bidding war. Moreover, the

buyer also generates more pro�t by providing products with higher indirect network ex-

ternalities to consumers. Combined with the pro�t of these two periods, the buyers will

obtain compensation for what they lost at the �rst period. Thus, the incentive of the �rms

to become a buyer in the �rst period increases.

If there is only one period, the maximum number of �rms that the buyer may acquire

is easy to predict by the suf�cient and necessary condition (2.9). The buyer's ambition

is constrained by the number of �rms (n) and the intensity of indirect network external-

ities (b). The buyer cannot acquire as many �rms as it expects (for example, merge to

monopoly) when n is too large and b is too small, which has been illustrated in the Figure-

2.2. However, if there is more than one round of the merger game, social planners should

notice that the limits of concentration of the market in the �rst period can be exceeded via

a two step acquisition. Sometimes, if the buyer acquires too many �rms in the �rst period,

the merger stops in the second period because the buyer and the non-seller in the second

period are both unable to satisfy the necessary conditions. However, limited acquisition in

the �rst period may open the possibility for additional acquisitions in the future and lead

to a more concentrated market. Thus, an equilibrium in which that the buyer acquires a

very large number of �rms in the �rst period may not always lead to the most concentrated

market structure. All of the possibilities above will be shown in the following example.

For example, we assume n = 100; b = 0:21. There are 30 possible SBMNE since

any k 2 [20; 49]may satisfy the inequality (2.9). If equilibrium in the �rst period is located
at k = 49, the market goes to the most possible concentration and a MNE cannot be found

in the future period acquisition game. This is because, in the next period, the total number

of �rms in the market will be 52. For the buyer, we cannot �nd a r 2 [1; 51] which may
satisfy (2.13) or (2.16). From Proposition 2.8, we know that all other �rms cannot be the

buyer as well in this situation. Thus, there will be no merger in the future rounds of the

game. However, if equilibrium in the �rst period is located at k = 30, we have n = 71

after the �rst period. In the next period, only the buyer in last round of the game may host a
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merger. This is because inequality (2.14) and (2.17) may not hold for any n = 71; b = 0:21

and r 2 [1; 70]. However, the inequality (2.13) may hold for r 2 [9; 27]. If r = 27, the

number of �rms left in the market after the second round of the merger is 44, which is less

than 52. We may conclude that two-step merger may lead to a more concentrated market

structure. In the case that k = 30, if there is no discount for time, the total pro�t of the

non-seller in two periods is around 0:00049. Although the buyer will get 0 pro�t in the �rst

period, it may get around 0:00036 pro�t after payments for sellers in the second period if

equilibrium is located at r = 20. If there is no merger in the second period, the buyer will

obtain around 0:00070, which is signi�cantly greater than the total pro�t of the non-seller

of approximately 0:00036.

From this example, we see that a merger with a great increase of market concentration

may not always be the worst thing for antitrust social planners since it may prevent future

mergers. In addition, a merger with only limited �rms involved should not be treated lightly

since it may lead to a merger with more participating �rms.
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2.4 Conclusions and Future Work

Inheritable indirect network externalities can be a very important factor that require consid-

eration when we analyze �rm acquisition behaviors. The possibility of inheriting market-

size-determined network resources may encourage �rms to acquire other �rms. Hence, the

merged Nash equilibrium can more easily exist than the situation in which there is no other

bene�t for the merger except a reduction of competition. We also �nd that the single buyer

merged Nash equilibrium can more easily exist than a multi-buyer merged Nash equilib-

rium when the number of �rms in the market is relatively large. If social planners �nd out

that a single buyer merger is not possible given current market conditions, they may also

rule out multi-buyer mergers. With the suf�cient and necessary condition for the merged

Nash equilibrium that we indicate in this paper, social planners may more accurately pre-

dict whether a merger will create a concern and may determine how to regulate it properly

if so. However, the model is based on a linear indirect network externality function and

the suf�cient and necessary condition in a more general utility function would be valuable

future work since it can be helpful for social planners to use to solve more general cases.

After calculating the buyer's, seller's and non-seller`s bene�ts from the merger, we �nd that

buyer does not obtain as much bene�t from the merger as the seller and the non-seller if the

model only has one period. This coincides with what we see in the stock market, wherein

the buyer's stock price decreases while the seller's stock price increases after the merger an-

nouncement. However, the acquisition provides the buyer an advantage in the competition

with the outsiders and creates more output since the acquisition allows the buyer's products

to become more valuable to the consumers due to an increase of indirect network external-

ities. Although buyers needs to pay for obtaining this advantage and may only share a very

small part of the bene�t from the concentration of the market compared with the sellers

and non-sellers in current period, this advantage may bring about signi�cant pro�ts to the

buyer in future competition. Moreover, in some special cases, only larger �rms can ac-

quire smaller �rms, while smaller �rms cannot acquire larger ones. Even in the case that

all �rms have an equal chance to acquire others, larger �rms can afford higher payments
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than smaller �rms. Thus, those �rms with larger market sizes always �nd it easier to win

bidding wars. This gives the merged entities a better chance to boost their leading market

positions and the market may move towards a more concentrated structure endogenously.

In this paper, we only provide some examples and use a static model to show the possibility

that merged entities uses their market size advantages to capture future addtional revenue.

If we seek to model the whole process and detail the �rm's strategy and behavior when

�rms are forward looking, a dynamic model would be more accurate and necessary. The

incentive for the �rms to sell themselves and leave the market, such as facing better oppor-

tunity in other markets, could also be added into the model to more accurately simulate the

real world.
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2.5 Appendix

A2.1 Proof of Footnote 4

If Firm A can acquire Firm B, we have bBA > bBB. If Firm B can acquire Firm C, we have
bCB > bCC . According to our assumption bii > b

j
i (j 6= i), we have bAA > bBA , bBB > bCB and

bCC > bAC . Thus, we may indicate that bAA > bAC . This means Firm C's bid for Firm A is

always less than Firm A's reservation price and Firm C is not able to acquire �rm A. The

merger dilemma does not exist.

A2.2 Proof of Proposition 2.1

Assume an MNE exists and there does not exist a pair of m and k which let inequality

(2.7) hold. In the MNE, the buyer has to pay (k � 1)�D to keep the sellers from deviating.
However, the maximum pro�ts the buyer can obtain from the acquisition process is �Ml �
�NMl min which is always less than what it has to pay to keep the merger. Hence, the buyer

always has incentive to deviate from the equilibrium by setting itself as a non-buyer. This

is contradict to our assumption. Thus, we can say there does not exist any MNE if there

does not exist a pair of m and k which let inequality (2.7) hold or there exists a pair of

m and k which let inequality (2.7) hold is the necessary condition for the existence of an

MNE for a given n and b.

A3: The proof of Proposition 2.2

If there exists an MNE, we havem 6 n� 1. Ifm = n� 1, only 2 �rms get merged in the
�rst step of the game and we can rewrite the equation (2.7) as equation (2.11). It is easy to

�nd that larger b makes the inequality (2.11) easier to hold when n is �xed.

Ifm 6 n� 2, we have:

1� n

m+ 2
< 0 =) @

p
�D

@b
< 0 =) @�D

@b
< 0
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So �D decreases with an increase of b.

As we assume kl > ki (i = 1:::m), we can obtain:

kl �
n

m+ 1
> 0 =) @�Ml

@b
> 0 (2.19)

We also knowm+ kl � 1 6 n. Ifm+ kl � 1 < n, we can get:

m+ kl 6 n =) 1� n

m+ kl
< 0 =) @�NMl

@b
< 0 (2.20)

By adding (2.19) and (2.20) together, we can obtain:

@�Ml
@b

� @�
NM
l

@b
> 0() @(�Ml � �NMl )

@b
> 0

Ifm+ kl � 1 = n, the left side of equation (2.7) can be written as:

�Ml � �NMl min (2.21)

= (
1

m+ 1
+

b

n+ 1
(kl �

n

m+ 1
))2 � ( 1

m+ kl
+

b

n+ 1
(1� n

m+ kl
))2

= (
1

m+ 1
� 1

m+ kl
+

b

n+ 1
(kl � 1 +

n

m+ kl
� n

m+ 1
))

(
1

m+ 1
+

1

m+ kl
+

b

n+ 1
(kl + 1�

n

m+ kl
� n

m+ 1
))

In equation (2.21), we have:

kl + 1�
n

m+ kl
� n

m+ 1
= kl + 1�

n

n+ 1
� n

m+ 1
(2.22)

= kl +
1

n+ 1
� n

n+ 3� k > 0

kl � 1 +
n

m+ kl
� n

m+ 1
= kl � 1 +

n

n+ 1
� n

m+ 1
(2.23)

= kl �
1

n+ 1
� n

n+ 3� k > 0

Combining (2.22) and (2.23), we can indicate @(�Ml � �NMl )=@b > 0 if m + kl � 1 = n.
Thus, the left side of the equation (2.7) increases with an increase of b.

Comparing the change of the left side of the equation (2.7) with the change of �D,

we can conclude that, for the largest buyer, the necessary condition for the existence of an

MNE will get relaxed by a larger b.
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A2.4 Proof of Lemma 2.1

If the buyer partly decreases its bid for the sellers, total �rms acquired by the buyer will

be reduced to k0 � 1. Obviously k0 < k�. Given that the strategies of the sellers and

non-sellers are �xed, the pro�ts of the buyer from the acquisition with the new strategy is

�M(k0)� (k0 � 1)(�D(k�) + �). According to the de�nition of k�, we have

�M(k�)� (k� � 1)�D(k�) > C > �M(k0)� (k0 � 1)�D(k0)

By substitutingm = n+ 1� k into �D, we may obtain:

�D(k) = (
1

n� k + 3(1�
nb

n+ 1
) +

b

n+ 1
)

Since
@�D(k)

@k
> 0 =) �D(k�) > �D(k0)

=) �M(k0)� (k0 � 1)(�D(k�) + �) = �M(k0)� (k0 � 1)�D(k�)� (k0 � 1)�

< �M(k0)� (k0 � 1)�D(k�) < �M(k0)� (k0 � 1)�D(k0) < C

A2.5 Proof of Lemma 2.2

If one of the non-sellers sets its bid for some of the sellers higher than �D(k�)+ �, this non-

seller may snatch some �rms from the buyer. We assume this non-seller snatches k00 � 1
�rms from the buyer and its bid for these sellers is �D(k�) + �0. Here 2 6 k00 6 k� and

�0 > �. Although this non-seller snatched some �rms from the buyer, the total number of

�rms in the second stage competition hasn't changed and this number is:

Q =
n+ 1� k� + nb

n+1

n+ 1� k� + 1

From the �rst-order condition of the pro�t function of this non-seller, we can obtain its

output, when the strategy we have de�ned is chosen, is:

x�NS = 1 +
bk00

n+ 1
�Q
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And its pro�t after the acquisition is:

��NS = ((1�
nb

n+ 1
)

1

n+ 2� k� +
bk00

n+ 1
)2

Given k�, we can indicate that the net pro�t of the non-seller from snatching k00 �rms from

the buyer is a quadratic function of k00:

P (k00) = ��NS � (k00 � 1)(�D(k�) + �0)

It is clear that:

P (k�) = �M(k�)� (k� � 1)(�D(k�) + �0)

< �M(k�)� (k� � 1)(�D(k�) + �) = C

and

P (1) = ((1� nb

n+ 1
)

1

n+ 2� k� +
b

n+ 1
)2

> ((1� nb

n+ 1
)

1

n+ 2� 1 +
b

n+ 1
)2 = C

Since the quadratic function P (k00) is convex and P (1) > P (k�), we may conclude that

P (k00) < P (1) for any 2 6 k
00 6 k�. Since P (1) is the pro�t of this non-seller acquiring

nobody, we may say acquiring nobody is always a better strategy than acquiring no more

than k� � 1 �rms.

A2.6 Proof of Lemma 2.3

If one of the sellers becomes a second buyer, the total number of �rms in the last step

competition will increase 1 to

Q0 =
n+ 2� k� + nb

n+1

n+ 3� k� > Q

Assume this seller acquires k000 � 1 �rms and its bid to these sellers is �D(k�) + �0. Here
2 6 k000 6 k� and �0 > �. Following the identical procedure as the proof of Lemma 2.2, we
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can obtain the bene�t for the seller being a second buyer is:

Ps = (1 +
bk000

n+ 1
�Q0)2 � (k000 � 1)(�D(k�) + �0)

< (1 +
bk000

n+ 1
�Q)2 � (k000 � 1)(�D(k�))

< �M(k000)� (k000 � 1)�D(k000) < C (2.24)

We also know:

�D(k�) + � = ((1� nb

n+ 1
)

1

n+ 3� k� +
nb

n+ 1
)2 + �

> �D(2) + � = C + � > C (2.25)

Combining (2.24) and (2.25), we can get:

�D(k�) + � > C > Ps

This means the seller will always obtain less than �D(k�)+ � pro�t if it tries to be a second

buyer.

A2.7 Proof of Proposition 2.4

In the second stage of the game, if only one buyer exists and this buyer only acquires one

�rm, we havem = n� 1 and k = 2 by the de�nition ofm and k. Hence, �M(k), �NM(k)
and �D(k) can be rewritten as:

�M(2) = (
1

n
+

b

n+ 1
)2

�NM(2) = �D(2) = (
1

n+ 1
+

b

(n+ 1)2
)2

The inequality (2.9) can be written as:

(
1

n
+

b

n+ 1
)2 > 2( 1

n+ 1
+

b

(n+ 1)2
)2

By solving this inequality for b, we can obtain (2.11). This means that, for any n > 3,

if b satis�es (2.11), there exists a k = 2 which makes inequality (2.9) hold. According

to Proposition 2.2, we always have an SBMNE if the inequality (2.9) holds. We can then

conclude that there exists an SBMNE in which the buyer only acquires one �rm (k = 2),

if b satis�es (2.11).

87



A2.8 Proof of Proposition 2.5

If the market �nally becomes a monopoly, the only possibility is one buyer acquired all the

other �rms. Thus, this MNE must be a SBMNE with m = 1 and k = n according to our

de�nitions. By substituting k = n into �M(k), �NM(k) and �D(k), we can obtain:

�M(k) =
1

4
(1 +

nb

n+ 1
)2

�NM(k) = (
1

n+ 1
+

b

(n+ 1)2
)2

�D(k) =
1

9
(1 +

(3� n)b
n+ 1

)2

and the inequality (2.9) can be written as:
1

4
(1 +

nb

n+ 1
)2 � ( 1

n+ 1
+

b

(n+ 1)2
)2 > (n� 1)1

9
(1 +

(3� n)b
n+ 1

)2

By solving the above inequality, we can get (2.12). This means, for any n > 3, if we have a
b which satis�es (2.12) , the inequality (2.9) will hold when k = n. From Proposition 2.3,

we know that an SBMNE must exist in which all the �rms merge to become a monopoly.

A2.9 Proof of the suf�ciency of Proposition 2.6

We only need to prove the candidate equilibrium is an MBMNE when b >
p
2
4
� 1

3
.

(i) For the �rst buyer, �xed the strategy of all other three �rms

When b >
p
2
4
� 1

3
, we have inequality (2.7). Thus, the �rst buyer has no incentive

to decrease its bid for Seller A. Obviously the �rst buyer also has no incentive to increase

its bid for Seller A because this will decrease its net pro�t. The �rst buyer has no incentive

to decrease or increase its bid for the second buyer since the second seller's bid for itself is

1. The �rst buyer may increase its bid for Seller B in order to snatch Seller B from the
second buyer. If the �rst buyer chooses to do so, he needs to pay Seller B at least

p
2
4
� 1

3

and its net pro�t would be:

P 6 (1
3
+
b

5
(3� 4

3
))2 � 2(1

5
+
b

6
(1� 4

5
))2 6 1

42
for b >

p
2

4
� 1
3

We know the net pro�t, that the �rst buyer may get if he chooses the strategy as our candi-

date equilibrium, is 1
42
, so the �rst buyer will not choose to snatch SellerB from the second
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buyer. Obviously the �rst buyer has no incentive to change its bid for itself since all the

others only bid 0 for him. In a conclusion, the �rst buyer has no incentive to change its

strategy when other players' strategies are �xed as the candidate equilibrium.

(ii) For the Seller A, �xed the strategy of all other three �rms

If Seller A chooses to deviate, he may get 1
42
pro�t. When b >

p
2
4
� 1

3
, we have

(
2

15
b+

1

3
)2 � 1

16
> 1

42

Thus, Seller A has no incentive to simply increase its bid for itself and deviate from the

acquisition. He also has no incentive to decrease his bid for himself because this will only

decrease his pro�t. Seller A has no incentive to increase his bid for the two buyers since

the buyers' bids for themselves are1. He may choose to increase his bid for Seller B to a
number larger than ( 2

15
b+ 1

3
)2 � 1

16
and increase his bid for himself to1 at the same time.

This would make himself the only buyer. In this case, Seller A's net pro�t is:

PA 6 (
1

4
+
1

5
b)2 � (( 2

15
b+

1

3
)2 � 1

16
) <

1

42

Thus, Seller A will not choose this strategy. In a conclusion, seller A has no incentive to

change its strategy when other players' strategies are �xed as the candidate equilibrium.

The analysis of the second buyer and seller B is similar to (i) and (ii), since the

equilibrium is symmetric and the two buyers and two sellers are in an identical position.

We may then indicate that the candidate equilibrium is an MBMNE when b >
p
2
4
� 1

3
, and

the suf�ciency of Proposition 2.6 is proved.

A2.10 Proof of Proposition 2.7

We de�ne a function:

f(m) = (k � 1)�D + �NMl min��Ml =)

�@f(m)
@m

= (1� bn

n+ 1
)(

k � 1
(m+ 2)3

+
1

(m+ k)3
� 1

(m+ 1)3
)

+
b

n+ 1
(
k � 1
(m+ 2)2

+
1

(m+ k)2
� k

(m+ 1)2
)
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We also de�ne:

� =
k � 1
(m+ 2)3

+
1

(m+ k)3
� 1

(m+ 1)3

� =
k � 1
(m+ 2)2

+
1

(m+ k)2
� k

(m+ 1)2

It is easy to test that � > 0 and � < 0 when n > 5,. From Corollary 2.2, we also know

that there always exists an SBMNE if b >
p
2� 1. So, here, we only need to consider the

situation in which b <
p
2 � 1. Combining all conditions above with n > m + k � 1, we

can obtain:

�@f(m)
@m

(n+ 1) > (n+ 1� bn)�+ b�

> (n+ 1� (
p
2� 1)n)�+ (

p
2� 1)�

> ((2�
p
2)(m+ k � 1) + 1)�+ (

p
2� 1)� (2.26)

We plot the right side of (2.26) in the following �gure:

Figure-2.3

From Figure-2.3, we can see that only 11 pair ofm and k will make the right side of

(2.26) be negative. They are (m = 1; k = 3; 4; 5; 6; 7), (m = 2; k = 2; 3; 4), (m = 3; k =

2; 3) and (m = 4; k = 2). By the de�nition ofm and k, we know n < m � k. Hence, when
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n > 9, none of the above 11 pairs ofm and k exists. Thus, we may conclude, when n > 9,

�@f(m)
@m

(n+ 1) > 0 =) @f(m)

@m
< 0

A2.11 Some calculations in the example of Section 2.3.2

When n = 100 and b = 0:21, we may rewrite the inequality (2.9) as:

(
0:792

102� k + 0:00208k)
2 � 0:000098� (k � 1)( 0:792

102� k + 0:00208k) > 0 (2.27)

By solving (2.27), we may get 49:5 > k > 20:96. Since k is a natural number, k 2 [20; 49].
If k = 30,m = 71 in the �rst period and buyer's market size is:

x0A = 1 +
bk

n+ 1
� m

m+ 1
� nb

(m+ 1)(n+ 1)
= 0:07338

The non-seller's market size is:

x0B = 1 +
k

n+ 1
� m

m+ 1
� nb

(m+ 1)(n+ 1)
= 0:01308

From the de�nition of z, (2.2), we can also obtain:

Z(m) =
71� r
72� r +

71b

72(72� r)

Z(m+ 1) =
72� r
73� r +

71b

72(73� r)
Z(m+ r) = 0:98899

Thus, the inequality (2.13) can be written as:

PA = (1 + b(rx0B + x
0
A)� Z(m))2 � (1 + bx0A � Z(m+ r))2

> r(1 + bx0B � Z(m+ 1))

, which may be solved and get r 2 [9; 27]. The inequality (2.14) can be written as:

PB = (1 + b(rx0B + x
0
B)� Z(m))2 � (1 + bx0B � Z(m+ r))2

> r(1 + bx0B � Z(m+ 1))

, which has no solution when r > 0.

The case when k = 49 may be solved in a very similar way.
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Chapter 3
Locked-in by Contract, Competition and

Network Externalities

Abstract

This paper investigates a single period Cournot competition model in duopoly market with

some of the consumers are locked by the contract. The number of the consumers who

have been locked by each �rm is exogenous. We reveal that multiple equilibria may exist,

while the �rms and social planner always have con�icting incentives in the selection of

the equilibrium. In an extended discussion, we add network externalities and asymmetric

initial market structure into our model. We show that the �rm with more initial locked-

in consumers have an advantage in the competition if there exists a network effect. This

advantage will be extended when the intensity of the network effect increases. Hence,

obtaining more locked-in consumers could be an important incentive for the �rms to merge

in network world.
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3.1 Introduction

In the current information economy, many service providers, such as Telecommunications

companies and Internet service providers (ISP), are asking their consumers to sign a con-

tract with monthly payment, which may last one or several years. During the contract pe-

riod, the consumer must pay the service with an ex-ante speci�c price, no matter whether

he/she consumes it or not. While this distribution method may not reduce the competition

between �rms (Farrell and Shapiro 1989), it is still very popular in the service industry. Two

aspects have been de�ned as potential reasons for this popularity: one is that �rms may use

contracts to maintain their market share, deter potential entrants and reduce the uncertainty

of future pro�ts; the second is that consumers will normally overestimate their future con-

sumption and purchase more than they really need (Vigna and Malmendier 2004).

Many service goods, such as TV subscription, internet access and mobile phone com-

munications, are homogenous and the utility that the consumers can obtain from these

goods will not increase simply by repeated purchase. Moreover, �rms in these industries

may not successfully lure the consumers who have signed a contract with other �rms by

cutting their prices. For example, if one of the consumers has already purchased one year

of unlimited internet access from an ISP, he/she will not obtain any more utility from pur-

chasing another internet access and obviously he/she will not consider purchasing more

internet access from another ISPs during that year, no matter how inexpensive it is.

Since consumers who are locked-in to their service providers with a contract may

be less likely to modify their choice or purchase more, �rms are actually competing in the

part of the market which constructed by two kinds of potential customers: those with a

strong willingness to buy, who can afford a relatively high price and have just �nished a

contract; and those with a weak willingness to purchase, who still stand outside the market

in a previous rounds competition and will not purchase the service unless the price is low

enough. Since some of the consumers with a high willingness to purchase are locked-in by

the contract, the chance for the �rms to meet a consumer who has very high willingness to

buy is relatively lower than the chance that the �rms will meet a low willingness to purchase
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consumer. In other words, the density of the consumers who have a high willingness to

buy and just �nished a contract is lower than the density of the consumers who has low

willingness to buy and are outside the market. This difference affects the price sensitivity

of the total output.. To illustrate this further, we may think such an example: when the price

of the mobile phone is over 1000 USD, only 1 additional consumer will purchase it if the

�rms reduce the price by 1 USD. However, because of the difference in density, when the

price is lower than 100 USD, 100 new consumers will join the market if the �rms reduce

the price by 1 USD. Here, the price of the mobile phone is more sensitive to the total output

when the price is high and when the total output is low. Firms may face a kinked demand

functions with different slope in different output level.

Compared with traditional linear demand function Cournot competition, the kinked

demand function may result in multiple equilibria. Firms may reach an equilibrium at

steeper part of the demand function, which means they only deal with high willingness

consumers and choose a relatively low output level. They may also reach an equilibrium

at �atter part of the demand function, which indicates they compete in an expanding mar-

ket. The existence of these equilibria and their location both depends on the initial market

structure. Our main focus is to locate the equilibrium outputs and reveal the relationship

between these equilibria and the initial market structure. Moreover, we will also investigate

the social welfare and �rms' incentives in equilibrium selection and discuss its implications

to the social planner.

Some economic phenomenons as studied in the literature, have very similar charac-

teristics as a locked-in effect of contract, for example, consumer's loyalty. The locked-in

consumers can be de�ned as 100 percent loyal to the �rms with which they signed the con-

tract. Rosenthal (1980), Deneckere et al (1992), and Fisher and Wilson (1995) have studied

a single period model where part of the consumers only purchase from speci�c �rms. The

difference between loyalty and locked-in by contract is that the �rm's strategy will affect

loyal consumers' behaviours and surplus but will not affect the consumers who are locked

by the contract. Although the loyal consumers will not purchase from other �rms, they can

choose to stand outside the market. If they choose to join the market, they need to pay
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the price in the current period. However, for the consumers who have signed a contract

with a speci�c �rm, they must pay and only need to pay the goods at the previously �xed

price. This means �rms completely do not need to consider locked-in consumers when

they design their competition strategy. Some other similar cases are developed by Var-

ian (1980) and Padilla (1992), who investigated a model with part of the consumers who

cannot choose freely because they can only observe some speci�c �rms' price.

Ferrell and Klemperer (2006) point out that the previous cases (loyalty and imperfect

price information) can all be consolidated and analyzed or interpreted as a single period

model with switching cost. This concept was �rst discussed byWeizsacker (1984) and well

developed by Klemperer. In fact, the contract in our model can also be partly explained by

switching cost. Since the consumers locked-in by the contract will not choose other �rms'

product, we can say these consumers have an in�nite switching cost with the choice of

service providers. However, switching cost model cannot fully characterize the locked-in

contract. This is because all the consumers in the switching cost model (similar to the

loyalty model) must face current market prices. In our model, the locked-in customer only

needs to pay an ex-ante speci�ed price. Another development of our work compared with

the literature about switching costs is that we use an open market instead of a covered

market. In Klemperer's earlier work (1987a, 1988, 1989), he uses a two period model to

investigate the effect of switching cost to the �rms' behaviour. Since he assumes the �rms

follow Cournot or Bertrand competition in the �rst period, the market always shrink in the

second period compared with the total output of the �rst period. Thus, he does not need to

consider the possibility that some new consumers, who never purchase from any �rms in the

�rst period, may enter the market in the second period. Following this structure, most of the

literatures about the switching cost (Klemperer 1987b, 1995, Beggs and Klemperer1992)

choose to examine a more conveniently covered market or a linear city model. In this

chapter, we consider a single period competition with exogenous initial market structure,

which brings the potential possibility that the market may expand in the equilibrium (new

consumers entering the market) and multiple equilibria may exist in some circumstances.
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The development of an open market model may illustrate some new characteristics and

help to solve the market equilibrium for an arbitrary initial market condition.

Network externalities are another important feature of the information economy. In

a simple model without network effects, only the total number of the locked-in consumers

in the initial setting may in�uence the equilibrium, while the component of these locked

customers is irrelevant. However, if we consider the network externalities, the initial mar-

ket structure will be every important in determination of the equilibrium. The �rm with

more locked-in consumers will inherently have an advantage in the competition, since their

product is more attractive to the consumers if all other conditions are equivalent. As an ex-

tension to the basic model, in the second part of this chapter, we provide a further study

of a locked-in model with network effect and asymmetric initial market structure. The

modelling of network externalities is based on the work of Katz and Shapiro (1985)9.

Different to the basic model, the asymmetric initial market structure may result in an

asymmetric equilibrium. The �rms with more locked-in consumers are able to charge a

higher price and take a larger percentage of the market share. In some extreme cases, they

may even deter other �rms from entering the market. The size of the effect of initial advan-

tage is closely connected with the intensity of the network externalities. Strong network

externalities may enhance the effect of initial advantage, but weak network externalities

will make this advantage insigni�cant. Moreover, pure strategy equilibrium will not al-

ways exist in the extended model. The number and location of the equilibrium vary with

the change of the initial market structure and the intensity of the network externalities. We

will solve all the equilibria and provide the suf�cient and necessary conditions for their ex-

istence. The locked-in model with network externalities could be important when study the

�rms' merger behaviour in network economy. If the locked-in consumers from all merged

�rms can be inherited by the new entity, obtaining more locked-in consumers could be an

incentive for the �rms to merge. This is because these locked-in consumers may bring a

relative advantage for the new entity in competition through the network effect.

9 More literatures about the network externalities can be found in the survey paper by Farrell and Klemperer
(2006).
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In Section 3.2, we will describe the basic model, solve for the equilibrium in the

duopoly and oligopoly market and give out a discussion about the social welfare in dif-

ferent equilibria. In Section 3.3, we add the network effect and asymmetric initial market

structure to our basic duopoly model, solve the equilibrium with different asymmetrical

levels and intensities of the network effect. We will also provide the suf�cient and nec-

essary conditions for the existence of all the pure strategy equilibrium in extended model.

Section 3.4 is the conclusion and also recommends future work.
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3.2 The Model with Locked-in

Assume there are only 2 �rms, A and B, in the market. They produce homogeneous prod-

ucts and compete with their outputs. Consumers are heterogeneous in their basic willing-

ness to pay for the product. We denote their basic willingness to pay for the product as r.

r varies across the consumers and is assumed to be uniformly distributed between minus

in�nity and 1 with a density of one. The uniform distribution assumption allows us to ob-

tain a linear demand function for the products. This means that if we nominate a person,

who would like to pay the highest price to purchase the product, he/she has a willingness

that equals 1. And we assume people who dislike the product may have a willingness that

equals minus in�nity. Our model is an opened market, so we do not need to discuss corner

solutions. These assumptions will make it convenient for us when we discuss the model

with network externalities in the second part of the chapter. We also assume the consumers

can only purchase one product from one of the �rms or stands outside the market. Obvi-

ously if both �rms want to have a positive output, they must set their prices to be equal,

because the products are homogeneous to the consumers. Thus, there is only one price in

the market and we denote it as p (1 > p > 0). When a consumer purchases the product

from one of the �rms, the surplus he can obtain is r � p. We know that the consumer will
buy the product only if he/she can obtain a positive surplus from the purchase. Only those

consumers with their willingness (r) larger than p enter the market. Given the uniform dis-

tribution, the market size can be written as z (z = 1� p). Since p > 0, the market size, or
the total output of the �rms, z, is strictly less than 1.

3.2.1 Locked-in and Equilibrium in Duopoly Market
10Now we assume the number of the consumers who are already in the market before the

�rms begin the competition is x0. As we know that if a consumer chooses to purchase the

product, any consumer with a willingness larger than him will also choose to purchase the

10 We only investigate pure strategy nash equilibrium in this chapter.. There may exist mixed strategy nash
equilibrium, but these strategies are not discussed here. However, they may be included in furture work.
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product, it is easy to see that these insiders in previous round competition are uniformly

distributed between 1� x0 and 1. We also assume that half of the insiders in previous time
are locked-in with their service provider because of the purchasing contracts they signed.

This means half of the consumers who joined the market in previous time can neither

change their mind to choose another �rm's product nor quit the market. Hence, when the

�rms choose their outputs, they do not need to consider these locked-in consumers, because

their decisions will not change the behaviour of these customers. To make things easy,

we also assume that these consumers, who are locked in the market, are also uniformly

distributed. The density of the people, who are located and unlocked in [1 � x0; 1], is half
of the density of the people located from 1 � x0 to minus in�nity. The allocation of the
consumers and their willingness can be illustrated in the following �gure:

11-x00 r*r**
8

half densityfull density

Figure-3.1: Consumer's willingness

From Figure-3.1 we can see that the consumers' density in dashed area, [1 � x0; 1],
is just half of the density in solid line area, (�1; 1� x0].

We use xA and xB to denote the output of FirmA andB in current round competition

respectively. Here, xA and xB do not include the outputs for the consumers who are already

locked in the market. The �rms choose the output to maximize their pro�ts and price p is

determined by the market. There exists a person who has no difference between purchasing

the product or not under price p. We denote this consumer's willingness as r� if it is

located in [1 � x0; 1]. From Figure-3.1, we know r� is located in the dashed half density
area. According to our assumption, the people located in the right of the axes have more

incentive to get into the market than the ones located at relatively left. Thus, only the

consumers on the right side of r� purchase the product. In this situation, we have:

101



xA + xB =
1� r�
2

6 x0
2

(3.1)

and the market size z = x0
2
+ 1�r�

2
, which is the sum of the consumers who voluntarily

joined the market and the consumers who are locked by the contract. Since z = x0
2
+ 1�r�

2
6

x0, we know that some of the consumers who purchased produce previously choose to

stand outside the market in current round competition. In other words, the market shrinks

compared with the previous market size.

If the consumer, who has no difference between purchasing the product or not, is

located on the left side of 1� x0. we call his/her willingness r��. From Figure-3.1, we can
see that r�� is located in the full density area. For the same reason as above, we have :

xA + xB =
x0
2
+ [(1� x0)� r��] >

x0
2

(3.2)

and the market size z = x0
2
+ xA + xB = 1 � r��. In equation (3.2), x0

2
represents the

consumers in the half density area, (1 � x0) � r�� is the number of the consumers who
are located in [r��; 1 � x0] with full density. By the de�nition, r�� < 1 � x0, so we know
z = 1 � r�� > x0. This means, besides all the consumers who purchased the product in

previous time, some new consumers with a smaller r are enticed to enter the market. We

can also say that the market expanded compared with the previous market size.

The consumers who have been locked-in by their previous choices must buy the prod-

uct according to contract price they signed with the �rms in previous round competition.

These previous prices have no effect on the �rm's decision right now, and all the prices we

discuss in this chapter are the prices that �rms set for the consumers who can freely choose

(the current market price). The consumers who haven't been locked-in will enter the mar-

ket only if their willingness r is no less than p . Thus, the willingness of the consumer, who

have no difference between purchasing and not purchasing, must be p. If xA + xB 6 x0
2
,

we denote the current market price as p� and we have r� = p�. By rearranging the equation

(3.1), we can get:

p� = 1� 2(xA + xB) (3.3)
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If xA + xB > x0
2
, we denote the price as p�� and we have r�� = p��. By rearranging the

equation (3.2), we will obtain:

p�� = 1� x0
2
� (xA + xB) (3.4)

Proposition 3.1 Firm A and B's outputs are always less than 1 � x0
2
when they

have a positive pro�t.

Since the price has a negative relationship with the total output, Firm A and B will

always curb their output to maintain a positive price. Proposition 3.1 reveals the upper

limit of the �rm's output. This proposition can easily be illustrated in Figure-3.1. From

Figure-3.1, we can see that if any �rm sets its output larger than 1 � x0
2
, some consumers

located on the left side of 0 enter the market. This situation has been ruled out, because the

consumers located on the left side of 0 will not enter the market unless the price is negative.

Different to the traditional model with a linear single slop demand function, here, the

slop of demand function will change at different output levels. In order to provide more

intuition about the relationship between the �rm's output and the market price, we combine

the equation (3.3) and (3.4) and draw the price function as the output of Firm A for a given

output of Firm B in the following �gure:

x0/2- x 1-x0/2- xB

1-x0/2- xB

1-2xB

p

p**

p*

Y

xA

B

Figure-3.2: Firm A's price function given xB.
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In Figure-3.2, we can see the market price will be 0when xA is larger than 1� x0
2
�xB,

so xA is bounded by [0; 1 � x0
2
� xB). From Proposition 3.1, we know 1 � x0

2
� xB > 0.

If xA 6 x0
2
� xB, the market price will obey the function (3.3); if xA > x0

2
� xB, the price

function in the market is function (3.4). Function (3.3) and (3.4) joint at the kink point

Y (x0
2
� xB; 1 � x0). Obviously, with the change of the value of x0 and xB, kink point Y

will move upwards or downwards and the shape of the price function p� and p�� will also

change. In an extreme case (x0
2
< xB), the kink point Y will go to negative side. Hence,

p� part of the price function does not exist and the price is solely determined by p��. The

intuition behind this situation is that the market size will surely expand if Firm B chooses

an output bigger than x0
2
. Here, since x0 is less than 1, kink point Y (x02 � xB; 1� x0) will

never locate below the xA axis. Thus, p�� part of the price function always exists. This is

because Firm A can always choose an output to make the market expand if FirmB chooses

a relatively small output.

Figure-3.2 also reveals that the main difference between our model and the traditional

Cournot model is that the price function in our model is constructed by two straight lines

with different slopes, but in the traditional Cournot comptition, the price function has a

unique slope. From equation (3.3) and (3.4), we know that when xi 2 (x0
2
� x�i; 1 �

x0
2
� x�i), @p��=@xi = 1 ; when xi 2 (0; x02 � x�i], @p

�=@xi = 2. This means that if

the output increases by �x in the locked-in area, the demand (price) of the product will

reduce 2�x. However, in the area that all the consumers can freely join the market, the

price will only decrease �x with an increase of �x in output. For convenience to denote,

we call the consumers who have purchased the product at previous round competition the

old consumers and the consumers who are outside the market in previous time the new

consumers. Combining Figure-3.1 and Figure-3.2, we may conclude that the price is more

sensitive to output if the total output has not reached the level in which some new consumers

join the market. In addition, the �rms have less incentive to increase their output when their

output are relatively low. This is because the price will decrease very quickly when they

increase by a relatively small amount of output. However, if the output has reached a

threshold, the price will be less sensitive to the output and the �rms have more incentive
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to increase their output. This demand structure provides the possibility of the existence of

multiple equilibria.

Firm A will choose an output, xA, from [0; 1 � x0
2
� xB) to maximize its pro�t �A.

If xA is chosen from (0; x02 � xB], we denote the pro�t of Firm A as �
�
A and

��A = xAp
� = xA(1� 2(xA + xB)) (3.5)

From the �rst order condition, we can conclude that when

xA = x
�
A =

1

4
� xB
2

(3.6)

, pro�t ��A reaches its maximum:

��Amax = 2(
1

4
� xB
2
)2 (3.7)

Here, we need to be cautious that we don't know whether ��Amax can be reached or not.

This is because we don't know whether x�A is located in (0; x02 �xB] or not without knowing
the value of xB.

In a similar way, if xA is chosen from [x02 � xB; 1�
x0
2
� xB), we denote the pro�t of

Firm A as ���A and

���A = xAp
�� = xA[1�

x0
2
� (xA + xB)] (3.8)

From the �rst order condition of equation (3.8), we can obtain that when

xA = x
��
A =

1

2
� x0
4
� xB
2

(3.9)

, pro�t ���A reaches its maximum:

���A max = (
1

2
� x0
4
� xB
2
)2 (3.10)

���A max can only be reached when x��A 2 [x02 � xB; 1�
x0
2
� xB).

As we have illustrated in Figure-3.2, when xB > x0
2
, the market will expand no matter

what output Firm A chooses, while Firm A knows only p�� part of the price function exists.

In this situation, Firm A will always choose x��A as its best respondence to Firm B's output.

With the condition xB > x0
2
and Proposition 3.1, we can get x0

2
�xB 6 x��A < 1� x0

2
�xB.

Hence, ���A max can always be reached.
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If xB < x0
2
, for a given xB, whether the market expands or shrinks will depend on

Firm A's behaviour. So Firm A will choose its strategy by comparing the maximum pro�t

it can obtain when market expands with the maximum pro�t it can obtain when market

shrinks. Now we draw ��A and ���A according to the different locations of the x��A and x�A in

the following �gure:

Figure-3.3: The pro�t function of Firm A given Firm B's output.

From equation (3.6), (3.9) and x0 < 1, we have x��A � x�A = 1�x0
4

> 0, so x��A is

always on the left side of x�A in Figure-3.3. From Proposition 3.1 and xB < x0
2
< 1

2
, we

have 1 � x0
2
� xB > x��A > x�A > 0. This means x��A and x�A are not bounded by our

de�nition.

If x��A > x�A > x0
2
� xB, we get Figure-3.3-a. It is easy to see ��Amax cannot be

reached in Figure-3.3-a and ��A is maximized when xA = x0
2
� xB. However, ���A max can

be reached and we have ��A(xA = x0
2
� xB) = ���A (xA =

x0
2
� xB) < ���A max. From

equation (3.6) and x�A > x0
2
� xB, we obtain that the condition to enter the situation in
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Figure-3.3-a is xB > x0� 1
2
. Thus, Figure-3.3-a tells us that, for a given xB 2 [x0� 1

2
; x0
2
),

Firm A will choose x��A as its best response and maximize its pro�t at ���A max. As we

have discussed previously, when xB > x0
2
, Firm A will always choose x��A as its output.

Combining this with the situation in Figure-3.3-a, we can show, for a given xB 2 [x0 �
1
2
; 1� x0

2
), Firm A's best choice is x��A .

If x0
2
� xB > x��A > x�A, we obtain Figure-3.3-b. In this situation, ���A max cannot

be reached. ���A is maximized when xA = x0
2
� xB. But ��Amax can be reached and

we have ���A (xA = x0
2
� xB) = ��A(xA =

x0
2
� xB) < ��Amax. From equation (3.9)

and x0
2
� xB > x��A , we obtain that the condition to enter the situation in Figure-3.3-b is

xB 6 3
2
x0 � 1. Figure-3.3-b tells us, for a given xB 2 [0; 3x02 � 1], Firm A will choose x

�
A

as its best output, which maximizes its pro�t as ��Amax.

If x��A > x0
2
� xB > x�A, we obtain Figure-3.3-c. Here, ��Amax and ���A max can

both be reached, so whether Firm A choose x�A or x��A as its best output depends on which

maximum pro�t is larger. From (3.7) and (3.10):

���A max > ��Amax =) xB >
p
2 + 1

2
x0 �

p
2

2
(3.11)

Inequality (3.11) tells us, if ��Amax and ���A max can all be reached, FirmA's best response

is x��A when xB >
p
2+1
2
x0 �

p
2
2
; Firm A's best response is x�A when xB <

p
2+1
2
x0 �

p
2
2
;

and Firm A's best response can be either x��A or x�A when xB =
p
2+1
2
x0�

p
2
2
, since both of

which yield the same maximum pro�t.

If we put all three situations together, it is easy for us to obtain the following propo-

sition.

Proposition 3.2 For a given x�i 2 [0; 1� x0
2
), when x�i 6

p
2+1
2
x0 �

p
2
2
, Firm i's

best response is 1
4
� x�i

2
and when x�i >

p
2+1
2
x0�

p
2
2
, Firm i's best response is 1

2
� x0

4
� x�i

2
.

(i = A or B)

The intuition behind Proposition 3.2 is: when one of the competitors sets his output

very large (larger than x0
2
), the market will surely expand. Then, its opponent has to follow

the expanding strategy (x��i ) and choose a relatively large output to maximize its pro�t.
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However, when one of the competitors sets its output at a level, which is not large enough

to surely make the market expand, its opponent will have two choices: one is to set an

output to make the market expand; the other is to let the market shrink. Which one is

the best choice depends upon how large the �rst competitor sets its output. If the �rst

competitor's output is relatively small, its opponent will also set a relatively small output

to make the market shrink. If the �rst competitor chooses an aggressive strategy to make a

relatively large output, making the market expand will be a better choice for its opponent.

If both of the �rms follow the expanding market strategy, we will have:

xA =
1

2
� x0
4
� xB
2

(3.12)

xB =
1

2
� x0
4
� xA
2

(3.13)

By solving equations (3.12) and (3.13), we can get xA = xB = 1
3
� x0

6
. The equilibrium

occurs when both the �rms set their outputs equal to 1
3
� x0

6
.

If both of the �rms choose the shrinking market strategy, we will have:

xA =
1

4
� xB
2

(3.14)

xB =
1

4
� xA
2

(3.15)

By solving equations (3.14) and (3.15), we can obtain xA = xB = 1
6
. This means the

equilibrium occurs if both of the �rms set their output equal to 1
6
.

If one of the �rms follows the expanding market strategy and the other one chooses

the shrinking market strategy, there will be no equilibrium. This can be illustrated by

the fact that there is no solution if we substitute (3.12) to (3.15) or substitute (3.13) to

(3.14). The reason behind this is straightforward. After the �rms determine their outputs,

the market must either expand or shrink. If the market expands, the �rm who follows the

shrinking strategy can simply change to choose expanding strategy to increase its pro�t; if

the market shrinks, the �rm who chooses expanding strategy will change it mind in order

to obtain more pro�ts. By the de�nition of equilibrium, there does not exist an equilibrium

in which two �rms choose different strategies.
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Proposition 3.3 For a given x0 2 (0; 5�2
p
2

3
), the market will expand and there exists

a unique symmetric equilibrium in which both of the �rms choose their output as 1
3
� x0

6
.

If x0 2 (5� 3
p
2; 1), the market will shrink and there exists unique symmetric equilibrium

in which both of the �rms set their output at 1
6
. If x0 2 [5�2

p
2

3
; 5 � 3

p
2], there exists two

symmetric equilibria: (xA = xB = 1
3
� x0

6
) and (xA = xB = 1

6
).

To illustrate Proposition 3.3, we can draw the reaction function of Firm A and B in

the following �gure:

K

O J Reaction function of firm A

Reaction function of firm B

xA

xB

1/6

1/3-x0/6

Figure-3.4: Reaction function and equilibria.

In Figure-3.4, the solid lines are the reaction functions of Firm A and B. We can

see the reaction functions of both �rms are constructed by two parallel lines. When xB is

small, Firm A follows the lower one and when xB becomes large, Firm A jumps to follow

the higher one from point K. From Proposition 3.2, we know K =
p
2+1
2
x0 �

p
2
2
. Here,

O and J are the crossing points of the two reaction functions and they are also equilibrium

points. Since K is determined by x0, point K will move along the xB axis when the value

of x0 changes. When x0 is relatively small,K will move to the left side of pointO (K < 1
6
).

In this situation, the lower part of the reaction function of Firm A andB will be too short to

cross. Thus, the two reaction functions only cross at one point, J . This means only unique

equilibrium exists and both of the �rms follow the expanding strategy.
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When x0 becames larger, K will move to the right side of point J (K > 1
3
� x0

6
). In

this situation, the higher part of the two reaction functions will be too short to cross. The

reaction function of Firm A and B will only cross at point O. This means the market only

has a unique equilibrium and both of the �rms follow the shrinking strategy.

For some x0, K will locate between O and J (1
3
� x0

6
> K > 1

6
). In this situation,

the reaction function of Firm A and B will cross at two point and multiple equilibria exist.

Proposition 3.3 tell us that the initial market status (how many consumers are locked-

in) directly determines the location of the equilibrium. If only a few top-end consumers

are locked, �rms will prefer to choose to explore new markets and entice new consumers

to join the market. However, if most of the consumers with positive willingness to pay

have already been locked, �rms prefer to choose the shrinking strategy. This is because

consumers in the new market have a low willingness to buy and �rms must reduce the price

to a suf�ciently low level to attract them. If the price is greatly reduced, �rms will lose more

pro�ts from those consumers with high willingness. This explains that why �rms prefer to

reduce their outputs and increase the price to squeeze pro�ts from those high willingness

customers rather than explore new market.

3.2.1 Social Welfare in Equilibrium

We de�ne the social welfare as the sum of the consumers' surplus plus the pro�ts of the

�rms. Here, we do not consider the welfare of the consumers who are locked-in the market

by previous contracts, since the behaviour of the �rms in the current period has no effect to

their welfare and will not change the pro�ts squeezed from them. For a type r consumer,

his/her surplus equals r� p if he/she chooses to purchase the product and his/her surplus is
zero if he/she stands outside the market. The total surplus of the consumers is the integra-

tion over all the new consumers with their willingness from 1 to r� in a shrinking market

or from 1 to r�� in an expanding market.

For the equilibrium in the expanding market, we de�ne the number of the consumers

in the market, except the consumers who are locked-in, as z��. From Proposition 3.3, we
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have:

z�� = 2x��i = 2(
1

3
� x0
6
) =

2

3
� 1
3
x0 (3.16)

The number of the consumers in the full density area is:

z�� � x0
2
=
2

3
� 5x0

6
(3.17)

In equation (3.16), z�� decreases with an increase of x0. However, in the expanding market,

the number of the consumers in half density area is x0
2
which increases with an increase of

x0. This indicates that the number of new consumers in the full density area (outside

locked-in area) will decrease very fast with an increase of x0. This is illustrated in equation

(3.17) in which the coef�cient of x0 is�5
6
. We can substitute the expanding market outputs

of the �rms into equation (3.4) and obtain:

r�� = p�� =
1

3
� 1
6
x0 (3.18)

We denote the consumers' surplus in the expanding market as S��. By integrating the

consumers' surplus in the half density area and full density area, we can obtain:

S�� =
1

2

Z 1

x0

[r � (1
3
� 1
6
x0)]dr +

Z x0

1
3
� 1
6
x0

[r � (1
3
� 1
6
x0)]dr

=
5

36
� 5

36
x0 +

25

72
x20 (3.19)

We use��� to denote the �rms' total pro�ts in the expanding market. By multiplying (3.17)

and (3.18), we get:

��� = z��p�� = (
2

3
� 1
3
x0)(

1

3
� 1
6
x0) =

2

9
� 2
9
x0 +

1

18
x20 (3.20)

Adding (3.19) and (3.20) together, we can obtain the total social welfare:

W �� = S�� +��� =
13

36
� 13
36
x0 +

29

72
x20 (3.21)

For the equilibrium in the shrinking market, only the consumers in the locked-in area

(half density area) join the market. The number of the new consumers in this situation

are easy to calculate by adding the shrinking equilibrium outputs of Firm A and �rm B

together. If we use z� to denote the total outputs in shrinking market, z� = 2x�i = 1
3
. From
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equation (3.3), we can obtain r� = p� = 1
3
. Thus, the sum of the consumers' surplus is:

S� =
1

2

Z 1

1
3

(r � 1
3
)dr =

1

9

The �rms' total pro�t is �� = z�p� = 1
9
and the social welfare isW � = S� +�� = 2

9
.

Proposition 3.4 In the expanding equilibrium, consumer's surplus and the total

social welfare increases with an increase of the initial locked-in consumers, but the total

pro�t of the �rms decreases with an increase of the initial locked-in consumers. In a shrink-

ing equilibrium, consumer's surplus, total social welfare and the total pro�ts of the �rms

are all constant.

In expanding equilibrium, from (3.17) and (3.18), the total output and the market

price will both decrease with an increase of the initial locked-in consumers, so the total

pro�t of all the �rms must have a negative relationship with x0. However, from Proposition

3.4, we know that the social welfare has a positive relationship with x0. This is because the

consumers' surplus increases faster than the decrease in the �rm's pro�t, so, in aggregate,

the total welfare of the expanding equilibrium increases with an increase in x0. In the

shrinking equilibrium, only the consumers in the half density area will join into the market,

so the �rms actually compete in a traditional Cournot model with half density demand.

From Proposition 3.3, we know the �rms will always choose their outputs as 1
6
, so the

location of the equilibrium and the total welfare will not change with the change of the

initial setting.

Proposition 3.5 If multiple equilibria exist, the social welfare in the expanding

equilibrium is always larger than the social welfare in the shrinking equilibrium. However,

the �rms obtain fewer pro�ts in the expanding equilibrium than the shrinking equilibrium.

Proposition 3.5 tells us the �rms' incentives always contradicts with the social plan-

ner's incentive if there exists two equilibria. The �rms always want to go to the equilibrium

with the smaller output and make the market shrink. However, the social planner prefers
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that the �rms compete at the larger output equilibrium (expanding equilibrium). The im-

plication for the social planner is: if x0 results in two possible equilibria and there are no

regulations for the competition, the �nal equilibrium may locate at the one with less social

welfare. Sometimes, �rms will even set up self-regulations or collude in the competition

to make sure they reach the shrinking equilibrium since this equilibrium bene�ts both of

them. If the social planners want to maximize the social welfare, they should set up some

mechanism to urge the �rms to produce more and reach the equilibrium which makes the

market expand.

3.2.1 Locked-in Competition in Oligopoly Market

The duopoly model can be easily extended to an oligopoly market. The competition analy-

sis is very similar to the duopoly case. The only difference is that �rms consider their

opponent as the total output of all other �rms when they choose their competition strategy.

Assuming there are n �rms in the market, we de�ne these �rms are Firm i and their outputs

as xi (i = 1; 2::n). Other notations have the same meaning as previous section. Following

a similar procedure, we can obtain Firm i's reaction function to the total output of all other

�rms in a shrinking market as:

x�i =
1

4
� 1
2

X
i6=j

xj i; j 2 f1; :::; ng (3.22)

and its reaction function in an expanding market as:

x��i =
1

2
� x0
4
� 1
2

X
i6=j

xj i; j 2 f1; :::; ng (3.23)

Comparing equation (3.22) and (3.23) with equation (3.6) and (3.9), we can see the only

difference between these equations is that
P
xj substitutes xB, since every �rm makes

its decision by considering the aggregate output of all other competitors. According to

Proposition 3.2 and the analysis of Figure-3.3, we can declare that, in an oligopoly market,

when
P
xj 6

p
2+1
2
x0 �

p
2
2
, Firm i's best response is equation (3.22) and when

P
xj >

p
2+1
2
x0 �

p
2
2
, �rm i's best response is equation (3.23) (j 6= i and i; j 2 f1; :::; ng).
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Since the market will either expand or shrink at the end of the period, the �rms who

choose to follow the shrinking strategy (x�i ) will always want to change their mind if the

market �nally expands and the �rms who choose to follow the expanding strategy (x��i ) will

change their minds if they �nd the market �nally shrinks. By the de�nition of equilibrium,

all the �rms must choose the same strategy in equilibrium, so they will either all choose

(3.22) or all choose (3.23).

If all the �rms choose shrinking strategy, by solving the equation (3.22)11, we can

obtain the symmetric shrinking equilibrium output as 1
2(n+1)

. If all the �rms choose the

expanding strategy, by solving the equation (3.23), we can get the symmetric expanding

equilibrium output as 1
n+1

� x0
2(n+1)

. Following the proof of Proposition 3.3, we can obtain

the following proposition:

Proposition 3.6 When x0 > 1� 2
p
2�2

n+1
, there always exists a shrinking equilibrium in

which all �rms symmetrically set their output as 1
2(n+1)

. When x0 6 1� 2
(
p
2+2)n+

p
2
, there

always exists an expanding equilibrium in which all �rms symmetrically set their outputs

as 1
n+1

� x0
2(n+1)

.

For convenience to denote, we de�ne:

�1 = 1� 2
p
2� 2
n+ 1

(3.24)

�2 = 1� 2

(
p
2 + 2)n+

p
2

(3.25)

then:

�2 � �1 =
2(
p
2� 1)(n� 1)

(n+ 1)(2n+
p
2n+

p
2)

(3.26)

Since n > 1, �2 � �1 > 0, and �2 is always in the left side of �1. From equation (3.24) and
(3.25), it is easy to �nd that both �1 and �2 are located between 0 and 1 for any n in our

de�nition. In order to get a more understanding about Proposition 3.6, we draw �1 and �2
in the following �gure:

11 Since all the �rms are symmetric at the equilibrium, equation (3.22) can be rewritten as x = 1=4 �
1=2(n� 1)x. Thus, we can obtain the equilibrium output by solving this equation. A similar method can be
used to solve the expanding equilibrium with equation (3.23).
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210 1

Figure-3.5: Location of �1 and �2

According to Proposition 3.6 and Figure-3.5, there exists a unique equilibrium when

x0 is located between 0 and �1 or between �2 and 1. When x0 is relatively small (x0 < �1),

the �rms will all follow an expanding strategy and reach a unique expanding equilibrium.

When x0 is relatively large (x0 < �2), the �rms will all choose a shrinking strategy and the

unique equilibrium is the shrinking equilibrium. When x0 is located between �1 and �2,

two equilibria exist. In this situation, we cannot determine which equilibrium will actually

be played without more information. If we set n = 2, these conclusions coincide with

Proposition 3.3.

From equation (3.24), (3.25) and (3.26), we know lim(�1) = lim(�2) = 1 and

lim(�2 � �1) = 0 if n �! 1. This means �1 and �2 both move towards 1 when the
number of the �rms in the market increases. However, with the increase of n, �1 moves

more quickly than �2, so the gap between �1 and �2 decreases. When n is very large (per-

fect competition market), both �1 and �2 will be very close to 1 and the gap between them

will be very small. The implication here is, with the increase of n, the chance of exist-

ing shrinking equilibrium decreases. This is because the intensity of competition increases

with an increase in the number of the �rms in the market. Thus, the chance for the �rms to

squeeze more pro�ts from consumers by using the method of cutting outputs will decrease

when n becomes larger. The �rms will be more willing to choose an expanding strategy in

market with relatively large n. When n goes to in�nity, the market is under perfect com-

petition. Thus, there is no chance for the �rms to reach a shrinking equilibrium and the

market output will be �xed at 1.
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3.3 The Model with Locked-in and Network Externalities

In the previous model, the �rms are perfectly symmetric. They produce homogeneous

products and face an identical price function. We also have proven that only symmetric

equilibrium exists in this situation. However, the �rms may compete based on asymmetric

initial market conditions. In the model we discussed previously, the �rm's market shares at

previous round competition will not affect the competition in the current period. However,

this is only correct in a world without network externalities. If the �rms produce network

products, their previous market status may bene�t or harm their competition in the cur-

rent period through the locked-in effect. The �rm with a larger market share in previous

time will have more locked-in consumers in the current period and these locked-in con-

sumers will guarantee a larger network size. Hence, the �rm, which has larger market size

previously, is more attractive to the consumers who can freely choose the product in cur-

rent period. In other words, the �rm with larger output in the previous period will have an

inherent advantage. In this section, we make a modi�cation to our model in Section 3.2

by adding the network externalities and an asymmetric initial market structure. We want to

�nd how much the asymmetric market status will affect the equilibrium output in a network

world.

We consider a duopoly market with Firm A and B competing with their outputs. If

the products have a network effect, the �nal surplus, which a consumer can obtain after

he/she chooses to join the market, will not only depend on the price of the product but

also on how many consumers make the same choice. We assume the two �rms produce

completely incompatible products and the network externalities a consumer can obtain are

u(Xi)
12 when he/she purchases Firm i's product (i = A or B). Here, Xi is the sum of

the number of the consumers who choose Firm i's product in current period (xi) and the

number of the consumers who are locked-in by Firm i. Now, we assume �rmA andB have

x0A and x0B consumers in the previous time (x0A > 0; x0B > 0) and Firm A has a competitive

advantage (x0A > x0B). Similar to previous model, we assume half of x0i are locked-in with
12 According to the generally accepted characteristics of the network utility function, we assume u(x) > 0,
u0(x) > 0, u00(x) 6 0.
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their previous service provider. These locked-in consumers are uniformly distributed. If

the consumer chooses Firm A's product, the network externalities he/she can obtain from

the product is u(x
0
A

2
+ xA)

13. The surplus that a consumer with willingness r can obtain

when he/she chooses Firm A's product, is r + u(x
0
A

2
+ xA)� pA. Here, if both of the �rms

have a positive output, there must have:

u(
x0A
2
+ xA)� pA = u(

x0B
2
+ xB)� pB (3.27)

This is because the surplus a consumer can obtain from purchasing Firm A or Firm B's

product must have no difference, otherwise all the consumers will choose to buy just from

one �rm. From equation (3.27), we can conclude that the �rms may have different prices if

they provide different network externalities. The larger network the �rm can provide, the

higher price he can charge to the consumers. If the �rm has a relatively small network, it

has to reduce the price to attract the consumers to choose its product.

Since only the consumer whose surplus is bigger than zero will enter the market, we

have:

r + u(
x0i
2
+ xi)� pi > 0() r > pi � u(

x0i
2
+ xi)

For the consumer, who have no difference of whether to join the market or not, we have:

r = pi � u(
x0i
2
+ xi) (3.28)

Here, the consumer with a negative willingness can also join the market when pi < u(x0i =2+

xi). Unlike the model without network externalities, the market size is not bounded by 1

anymore.

3.3.1 Linear Network Externalities and the Behaviour of the Firms

We assume, for both products, these is a linear network utility function: u(x) = bx (0 <

b < bmax)14. We also assume that x0A + x0B is bound by 1 (x0A + x0B < 1). Similar to the

13 Actually, the consumer's choice depends on the expectation of the output of the �rms, since they cannot
know the exact output of the �rms prior to making their decision. In this model, we assume the expected
output of the �rms perfectly changes with the real output of the �rms and the expected output can always be
reached. As a result, the �rm's output and the consumer's expectation have no difference.
14 In fact, b can be any positive number. However, we limite our discussion to a relatively small network
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previous model, we can obtain the price function of Firm A with a given output of �rm B,

x0A and x0B. If the consumer, who has no difference of whether to join the market or not, has

a willingness, r, that locates in (1� (x0A+ x0B); 1), the market will shrink. In this situation,
we denote this critical consumer's willingness as r�. According to Figure-3.1 and equation

(3.28), we now have:

xA + xB =
1� r�
2

=
1� [p�A � b(xA +

x0A
2
)]

2
=)

p�A = 1 +
bx0A
2
� (2� b)xA � 2xB (3.29)

If the consumer, who has no difference of whether to join the market or not, has a willing-

ness, r, that locate in (�1; 1�(x0A+x0B)), the market will expand. We then denote his/her
willingness as r��. From Figure-3.1 and equation (3.28), we have:

xA + xB =
x0A + x

0
B

2
+ [1� (x0A + x0B)� r��] =)

p��A = 1 +
bx0A
2
� x

0
A + x

0
B

2
� (1� b)xA � xB (3.30)

If the critical willingness r = 1� (x0A+x0B), the market will maintain its previous size and
equation (3.29) and (3.30) will be identical.

We temporarily treat xB, x0A and x0B as exogenous variables. The price of Firm A's

product is determined by p�A when xA 6
x0A+x

0
B

2
�xB and by p��A when xA >

x0A+x
0
B

2
�xB. To

obtain a clearer picture of the price function of Firm A, We will illustrate it in the following

�gure:

externality by setting b is strictly less than bmax. (bmax � 0:457). bmax is largest b which allows the point
K in Figure-3.7 less than 1. This assumption maintains a majority characteristics of the network effect and
greatly reduces the cases we need to discuss.
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Figure-3.6: Price function of Firm A given xB, x0A and x0B

From Figure-3.6, the slope of the price function of Firm A in a shrinking market is

@p�A=@xA = �2 + b. Since 0 < b < 1
2
, @p�A=@xA is located in (�2;�1). In the expanding

market, the slope of �rm A's the price function is @p��A =@xA = �1 + b > �1. Comparing
Figure-3.6 with Figure-3.2, we can �nd the price function p�A and p��A are both �ater in the

network world and Figure-3.6 can be seen as a graph constructed by pulling every point of

the price function in Figure-3.2 to the left side. The force to pull the price functions can be

explained by the network externalities. This is because, for a given price, more consumers

are willing to join the market if the �rms produce network products and consumers' surplus

is larger in the network model than in the model without network externalities. For a

concave network utility function, network externalities may force the price function to be

concave. But, with a linear network utility assumption, the price functions will maintain

linear.

In Figure-3.6, Y is the joint point of two price functions. At point Y , �rms keep the

market size unchanged and the price in the market is:

p�A = p
��
A = 1� (x0A + x0B) +

bx0A
2
+ b[

x0A + x
0
B

2
� xB] (3.31)

When x0A+x
0
B

2
�xB 6 0, point Y goes to the negative side of the xA axis and the price

function is dominated by p��A . This means that Firm B has chosen a relatively large output,

hence the market will expand no matter what Firm A's strategy is. In this situation, Firm A
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has to follow the expanding strategy. From equation (3.31) and x0A+x0B < 1, we know that

the price is always positive at point Y when x0A+x
0
B

2
� xB > 0. This means, when p�A exists,

point Y will never go downward to the negative side of the pA axis and the price function

will never be dominated by p�A.

To demonstrate with simple notation, we set:

1 +
bx0A
2
� �A, 1 +

bx0B
2
� �B and

x0A + x
0
B

2
� � (3.32)

By our de�nition, �A and �B are larger than 1 and � < 1
2
.

If xB > � and the price function is dominated by p��A , both of the �rms will follow the
expanding strategy and the market will reach the expanding equilibrium. Now, we consider

the circumstances that xB < � and Firm A faces a kinked price function. In this situation,

if xA 6 �� xB, the market price is determined by p�A and the pro�t of the Firm A is:

��A = xAp
�
A = xA[�A � (2� b)xA � 2xB] (3.33)

From the �rst order condition, ��A is maximized when:

xA = x
�
A =

�A � 2xB
2(2� b) (3.34)

and

��Amax =
(�� 2xB)2
4(2� b) (3.35)

If xA > �� xB, the market price is determined by p��A and the pro�t of the Firm A is:

���A = xAp
��
A = xA[�A � �� (1� b)xA � xB] (3.36)

From the �rst order condition, ���A is maximized when:

xA = x
��
A =

�A � �� xB
2(1� b) (3.37)

and

���A max =
(�A � �� xB)2
4(1� b) (3.38)

Here, we must be cautious that ���A max and ��Amax can only be reached when x�A and x��A
are located in their de�nition area.

120



Proposition 3.7 When �i > (2 � b +
p
(2� b)(1� b))�, Firm i will always

choose function x��i as its best response for a given output of Firm �i. When �i < (2 �
b +

p
(2� b)(1� b))�, if x�i 6 �i, Firm i will choose x�i as its best response; and if

x�i > �i, Firm i will choose x��i as its best response. (�i = � + 2���ip
(1�b)(2�b)�b

, i = A or

B)

In order to get a more clear illustration to Proposition 3.6, we draw x0A = x0B, x0A +

x0B = 1 and �i = (2� b+
p
(2� b)(1� b))� (i = A and B) in the following �gure:

j

k

F3

F2 F1

J

K

symmetric function of firm B

xA
0+ xB

0=1

xA
0

xB
0

xA
0= xB

0

=(2-b+[(2-b)(1-b)]
0.5
)

Figure-3.7: The allocation of x0A and x0B

In Figure-3.7, the line KJ is the function �A = (2� b+
p
(2� b)(1� b))� and the

line kj is the function �B = (2 � b +
p
(2� b)(1� b))�. By assuming x0B = 0, we can

solve the function KJ and get:

x0A(K) =
2

2(1� b) +
p
(2� b)(1� b)

(3.39)

In a similar way, by assuming x0B = 0, we can solve function kj and get:

x0A(k) =
2

2� b+
p
(2� b)(1� b)

(3.40)

Comparing (3.39) and (3.40), we �nd that K is always located above k. When x0A = x0B,

�A equals �B, so lineKJ and kj cross at a point located on line x0A = x0B. By our de�nition

that x0A > x0B and x0A + x0B < 1, x0A and x0B can only be chosen from the triangular area

constructed by x0A = x0B, x0A + x0B = 1 and x0A axis. This triangular area is divided by
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KJ and kj into three parts. We de�ne these parts as the F1, F2 and F3 area according to

Figure-3.7.

From Proposition 3.7, we know Firm A will always choose the expanding strategy

if x0A and x0B are located below line KJ and Firm B will always choose the expanding

strategy if x0A and x0B are located below line kj. Thus, in F3, both �rms will choose a

reaction function which makes the market expand, because x0A and x0B are very small in

this area. When x0A and x0B are located above line KJ , Firm A will choose x�A as its best

response if xB 6 �A and choose x��A as its best response if xB > �A. Similarly, when x0A
and x0B are located above line kj, Firm B will choose x�B as its best response if xA 6 �B
and choose x��B as its best response if xA > �B. Since all the points in the F1 area are

located above KJ and kj, Firm A and B will all choose a piecewise function as their

reaction function when x0A and x0B belongs to F1. For any points belonging to the F2 area,

Firm B will choose a piecewise function as its reaction function and Firm A will always

follow an expanding strategy.

The network externalities will affect the structure of Figure-3.7 and the size of F1,

F2 and F3. For any b in our de�nition area, we have @x0A(K)=@b > 0 and @x0A(k)=@b > 0.

From (3.39) and (3.40), we can �nd that x0A(K) = x0A(k) = 2 �
p
2 when b = 0. This

tells us that if b or the intensity of network effect decrease, point K goes down and point

k goes down as well. Hence, F1 area will increase. However, the speed for K to go

down is much quicker than that for point k. When b = 0, k will be caught up by K and

the F2 area will disappear. This coincides with the model without network externalities

in previous sections: KJ and kj become the same line and both have a slope equal to 1.

When b increases, points K , k , J and j will all go up or go right, the F1 area will become

smaller and the F3 area will become larger. This is because the increasing in the network

externalities causes FirmA andB more prefer to use the expanding strategy and they might

to choose the expanding strategy even if the initial market locked-in size is relatively large.
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3.3.1 Equilibrium Analysis

Any pair of x0A and x0B in our de�nition must be located in the F1, F2 or F3 area, so we

separate our discussion of the equilibrium into three cases. There is a proposition which

can be applied to all three cases:

Proposition 3.8 Firm A's expanding reaction function (x��A ) will never cross with

Firm B's shrinking reaction function (x�B); and Firm A's shrinking reaction function (x��A )

will never cross with FirmB's expanding reaction function (x��B ) in each reaction function's

de�nition area.

Proposition 3.8 indicates that there does not exist an equilibrium in which Firm A

chooses the expanding strategy but Firm B chooses the shrinking strategy or Firm A

chooses the shrinking strategy but Firm B chooses the expanding strategy. The reason

behind this proposition is that only one status exists for the �nal market. Every �rm will

change its mind if the wrong reaction function according to the �nal market situation has

been chosen. By the de�nition of the equilibrium, there does not exist an equilibrium in

which two �rms follow different strategies.

x0A and x0B in F3 and F2 area

If x0A and x0B are located in the F3 area, Firm A and B will both choose expand-

ing strategy. Equation (3.37) is the reaction function of Firm A in the expanding market.

Similarly, we can obtain the reaction function of Firm B in the expanding market as:

x��B =
�B � �� xA
2(1� b) (3.41)

We draw (3.37) and (3.41) in the following �gure:

123



(a)

O

Reaction of firm B

Reaction of firm A

WT

S
R

WT

S
R

xB

xA

xB

xA

Reaction of firm B

Reaction of firm A

(b)

Figure-3.8: The reaction functions when x0A , x0B are located in F3

Since x0A > x0B, we have �A > �B andW > R > T . If R > S, we will get Figure-
3.8-a and the equilibrium will occur at point O. Combining (3.37) and (3.41), we can solve

this equilibrium:

xA =
2(1� b)�A � �B � (1� 2b)�

4(1� b)2 � 1 ; xB =
2(1� b)�B � �A � (1� 2b)�

4(1� b)2 � 1 (3.42)

If R 6 S, we will get Figure-3.8-b and the equilibrium will occur at point S. By solving
equation (3.37) with xB = 0, we can obtain the equilibrium:

xA =
�A � �
2(1� b) ; xB = 0 (3.43)

If x0A and x0B are located in the F2 area, Firm A will always follow the expanding

strategy, but FirmB will consider a piecewise reaction function. This case is very similar to

the situation in which x0A and x0B are located in the F3 area. We can make a small revision

to Figure-3.8 to obtain the graph about the reaction functions in this case:
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Figure-3.9: The reaction functions when x0A , x0B are located in F2

In Figure-3.9, Firm B's reaction function is constructed by two parts: x�B and x��B .

Obviously x��B (xA = �B) > x�B(xA = �B) and we also know T is always on the left side

of t15. Hence, x�B is always on the left side of the RT line. If R 6 S, we will obtain

Figure-3.9-b and the equilibrium occurs at point S. This equilibrium is (3.43), which is

the same as Figure-3.8-b. If R > S, we obtain Figure-3.9-a. In this case, whether there

exists a pure strategy equilibrium depends on the position of �B. When �B is small, the

equilibrium is point O and the equilibrium output of the �rms is given out by (3.42). When

�B goes large, the reaction function of Firm A (x��A ) may just cross the gap between x��B
and x�B. There will be no crossing point between the two �rm's reaction functions. Or, we

can say there is no pure strategy equilibrium. However, �B is determined by x0A and x0B,

which are chosen from F3, so �B can only vary in a limited area. In fact, �B may not

go above point O if x0A, x0B and b are chosen from our de�nition area16. This means that

the reaction function of Firm A and B will always intersect and there always exists a pure

strategy equilibrium, no matter whether x0A and x0B are located in F2 or F3 area. We can

15 We can obtain the reaction function of Firm B from (3.41) and (3.44). By setting xB = 0, we can obtain
T and t and

T � t = �B � �
2(1� b) �

�B
2(2� b) =

�B � 2�+ b�
2(1� b)(2� b)

Since �B > 2�, T � t > 0() T > t.
16 The proof can be seen at the proof of Proposition 3.9.
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combine the equilibrium analysis when x0A and x0B are located in F3 and F2 together and

obtain the following proposition:

Proposition 3.9 When x0A and x0B are located in the F2 and F3 area, there

always exists a unique pure strategy Nash equilibrium. If x0A > 
, the equilibrium is:

(xA =
�A��
2(1�b) , xB = 0) and if x

0
A < 
, the equilibrium is: (xA =

2(1�b)�A��B�(1�2b)�
4(1�b)2�1 ; xB =

2(1�b)�B��A�(1�2b)�
4(1�b)2�1 ). (Here, 
 = 2(1�2b)+(4b�2b2�1)x0B

1�b )

Proposition 3.10 If b > b�, there exists a pair of x0A and x0B, which are located

in the F3 or F2 area and leads the market to the equilibrium (xA = �A��
2(1�b) ; xB = 0). If

b < b�, the equilibrium (xA = �A��
2(1�b) ; xB = 0) does not exist for any given pair of x0A

and x0B, which are located in F3 or F2 area. (Here b� � 0:361 and is the solution of

12b3 � 12b2 + 1 = 0)

To obtain more intuition about Proposition 3.9 and 3.10, we can draw x0A = 
 in

Figure-3.7 and get the following �gure:

F2*

EL

D
K

xB
0

xA
0

xA
0= xB

0

F3

F2

xA
0=

Figure-3.10: x0A = 


From Proposition 3.9, we know the market will reach equilibrium (3.43) when x0A
and x0B are located above x0A = 
 and the market will go to equilibrium (3.42) when x0A
and x0B are located below x0A = 
. Since E > L for any b in the de�nition area17, there

17 E = 2(1�2b)
2�5b+2b2 and L is given in A3.8. It is easy to test, for any b 2 (0; bmax), E � L > 0.

126



exists a pair of x0A and x0B in the F3 or F2 area, which is located above x0A = 
 if and

only if D < K. The location of point D depends on b. When b is relatively small, D is

very large and located aboveK. When b increase, pointD will go down. From Proposition

3.10, we know that when b = b�, D equals K. Since b� < bmax, these exists a b, which is

in out de�nition area and larger than b�. When b > b�, D is located below K and any pair

of x0A and x0B located in F2� area (F2� � F2) will lead the market to equilibrium (3.43).
The implication of Proposition 3.9 illustrates that there exists a situation that Firm B

cannot obtain any new consumers because Firm A has an extremely large initial number of

locked-in consumers. In this case, the difference in initial locked-in consumers is so large

that any positive price offered by Firm B will not attract consumers to join its network.

Thus, Firm B has to just produce for their previous locked-in consumers. In Figure-3.10,

any point located in F2� satis�es this condition. We can see these points in F2� all have a

large x0A and relatively small x0B. However, Proposition 3.10 also tells us that only a rela-

tively large difference in initial number of locked-in consumers is not enough for one �rm

to deter another. The Firm with an advantage needs network externalities as a catalyst to

enable its advantage in the initial market structure to become the advantage in the competi-

tion. The �rm with a larger number of locked-in consumers can always bene�t more from

network externalities and obtain certain advantages, while larger network effect will make

this advantage more signi�cant. More speci�cally, if Firm A wants to drive Firm B out of

the market, the intensity of network effect must reach a critical level. To the social planner,

larger network externalities increases the chance that the market becomes a monopoly by

increasing the size of F2� area.

x0A and x0B are located in the F1 area

If x0A and x0B are located in the F1 area, both Firm A and Firm B will choose a

piecewise function as their reaction function.

Proposition 3.11 If x0A and x0B are located in F1 area, there does not exist an

equilibrium in which Firm A have a positive output and Firm B have zero output.
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From the proof of Proposition 3.8, we know that function x�A and x�B are located

below the line x0A + x0B = � and x��A and x��B are located above the line x0A + x0B = �. If

Firm A wants to deter Firm B from getting new consumers, x��B must locate under function

x�A
18. However, this is impossible, since x��i is always located above x�i .

According to Proposition 3.8, only two possible equilibria exist. One is located at the

intersection of functions x�A and x�B and we de�ne this equilibrium as a shrinking equilib-

rium with outputs (xSA; xSB). The other is located at the intersection of functions x��A and

x��B and we de�ne this equilibrium as an expanding equilibrium with outputs (xEA; xEB).

Assume both of the �rms choose the shrinking strategy. By solving x�A and x�B, we

can obtain the shrinking equilibrium outputs:

xSA =
(2� b)�A � �B
2(1� b)(3� b) (3.44)

xSB =
(2� b)�B � �A
2(1� b)(3� b) (3.45)

The suf�cient and necessary condition of the existence of the shrinking equilibrium is that

the intersection of the two shrinking strategy functions is located in the de�nition area. This

equals the conditions that xSA 6 �B and xSB 6 �A.
In the same way, by solving x��A and x��B , we can obtain the expanding equilibrium

outputs as:

xEA =
2(1� b)�A � �B � (1� 2b)�

4(1� b)2 � 1 (3.46)

xEB =
2(1� b)�B � �A � (1� 2b)�

4(1� b)2 � 1 (3.47)

The suf�cient and necessary condition of the existence of the expanding equilibrium is

that the intersection of x��A and x��B is located in the de�nition area, which equals to the

condition that xEA > �B and xEB > �A. Combining these conditions together, we can

obtain the following proposition:

18 The illustration of this can be found in Figure-3.14 in Appendix.
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Proposition 3.12 For a given x0A and x0B located in the F1 area, if xSB 6 �A and
xEB < �A, there exists only one shrinking equilibrium (xSA; xSB); if xSB 6 �A and xEB > �A,
there exist two equilibrium (xSA; xSB) and (xEA; xEB); if xSB > �A and xEB > �A, there exists
only one expanding equilibrium (xEA; xEB); if xSB > �A and xEB < �A, no pure strategy

Nash equilibrium exists.

In order to illustrate this proposition clearly, we draw the following �gure19:

(a) b [0,0.2264]
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Two NE

1/2

1

Q2

Q1

K1

K2

Q

J

K

xB
0

xA
0

no NE

(d) b (0.4133,0.4344]

Two NE

1/2

1

Q2

Q1
K1

K2

Q

J

K
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0
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0
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(e) b (0.4344,0.45]

Figure-3.11: The equilibrium analysis when x0A and x0B are located in the F1 area.

In Figure-3.11, K1Q1 is the function xEB = �A and K2Q2 is the function xSB = �A.

From Proposition 3.12, we know that the expending equilibrium will exist if and only if

(x0A, x0B) is located below K1Q1 and the shrinking equilibrium will exist if and only if

(x0A, x0B) is located above K2Q2. When b is very small, we obtain Figure-3.11-a. In this

19 The �gures, which illustrate the relationship of f1;K;K1;K2g and f1; Q;Q1; Q2g with the change of b,
can be found in Appendix. (NE: pure strategy Nash equilibrium.)
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case, K1Q1 is always above K2Q2. If x0A and x0B are located between K1Q1 and K2Q2,

both of the equilibriums will exist. When b goes larger, K2; K1; K move towards 1. Since

K2; K move more quickly thanK1,K2 will be larger thanK1 when b is larger than 0:2264.

If b 2 (0:2264; 0:3612], we obtain Figure-3.11-b. Here, for some x0A and x0B, there does
not exist a pure strategy Nash Equilibrium. When b goes over 0:3612, point K moves

over K1 and we get the Figure-3.11-c. Here, the area in which these is no pure strategy

Nash Equilibrium increases and the area where there exists two equilibria shrinks. When

b is larger than 0:4133, K2 goes above 1 and we get the Figure-3.11-d. No matter how b

changes, we always have Q1 > Q2 > Q. When b gets close to bmax, Q1 > 0:5 and we

obtain Figure-3.11-e. However, Q2 will always be located between Q and 0:5.

The implication here is: when the the intensity of network effect is very small, the

model we discuss is very similar to the model we discuss in Section 3.2. When the network

externality is larger than a critical value, it is possible that pure strategy Nash equilibrium

does not exist in the market. However, this situation will only happen when the difference

of the initial market share is relatively large. If neither �rm has a signi�cant advantage in

the number of locked-in consumers, the pure strategy equilibrium will always exist. The

possibility that the market goes to a situation where no pure strategy Nash equilibrium

exists will increase with an increase in the intensity of network effect.

Proposition 3.13 In equilibrium, the differences of output, price and pro�t between

Firm A and Firm B increase with an increase of x0A � x0B or b.

In all the equilibriums (shrinking or expanding equilibrium), Firm A's advantage in

the initial locked-in consumers will enable it produce more than its competitor. Moreover,

Firm A can charge a higher price than Firm B since its product brings more network exter-

nalities to consumers. Thus, Firm A will obtain more pro�t than Firm B. This advantage

in output, price and pro�t will increase with the increase of the intensity of network effect,

because the network effect is the key connection between the �rm's advantage in initial

market structure and the advantage in competition.
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This locked-in model with network externalties may provide some hints for social

planners and merger regulators. In network world, obtaining more initial locked-in con-

sumers could be an important incentive for the �rms to merge. If a �rm acquired another

�rm, the buyer can inherit another �rm's locked-in consumers. This will bring the merged

entity an advantage over other �rms who stand outside the merger. Sometimes, �rms may

even utilize a merger strategy to deter other competitors from getting new consumers. The

social planner should be cautious to the merger in network world, that enable the merged

entity to obtain a dominant position with the help of inheriting locked-in consumsers and

network effect.
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3.4 Conclusion and Future Work

In the �rst part of this chapter, we investigate a duopoly Cournot competition model with

half of the consumers in previous round competition are locked by a contract. The locked-

in effect made the density of the consumers who can freely choose service providers not be

uniformly distributed, hence the demand is distorted into a kinked function which may lead

to multiple equilibria. When the number of locked-in consumers are relatively small, �rms

choose the expanding strategy and reach an expanding equilibrium. When the number

of the locked-in consumers are relatively large, �rms choose the shrinking strategy and

reach a shrinking equilibrium. If the number of the locked-in consumers is in a speci�c

interval, there exist two symmetric equilibria. In multiple equilibria, �rms prefer to choose

the shrinking equilibrium but the expanding equilibrium always provides a higher social

welfare. The model can also be extended to an oligopoly market with a similar analysis

procedure. In an oligopoly market, the possibility for the market to reach the shrinking

equilibrium decreases with an increase in the number of �rms.

In the second part of the paper, we add a network effect into our duopoly model.

Comparing with the model in Section 3.2, the main difference is that the previous locked-

in consumers may affect �rms' competition through network externalities. We illustrate

that the �rm with the previous market share advantage may have an advantage in current

round competition. Sometimes, the previous market leader may even deter its competitor

from getting new consumers if the network effect is strong and the initial advantage is sig-

ni�cant. Moreover, the pure strategy Nash equilibrium will not always exist in the network

world. We found out the suf�cient and necessary conditions for the existence of the pure

strategy equilibrium and showed that there may only exist mixed strategy Nash Equilibrium

when the network effect is strong and the difference of the two �rm's previous market size

is relatively large. Since more initial locked-in consumers may bring more advantage in the

current round competition, obtaining more initial locked-in consumers could be an impor-

tant incentive for �rms to acquire others when the buyer may inherit the initial locked-in

consumers from all the �rms acquired.
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3.5 Appendix

A3.1 Proof of Proposition 3.1

Since x0 < 1, we have 1 � x0
2
> x0

2
. If any of the �rm choose their output equal or larger

than 1� x0
2
, the price function will determined by p��. From equation (3.4), we know:

p�� = 1� x0
2
� xA � xB

It is easy to see p�� is less than 0 if any �rm choose an output larger than 1� x0
2
. So if the

�rms want to have a positive pro�t, they must keep the market price positive, or we can say

they must limit their output no more than 1� x0
2
.

A3.2 Proof of Proposition 3.2

The proof of this proposition has been shown in the discussion of the three cases in Figure-

3.3. Here, the only thing which need to be clari�ed is
p
2+1
2
x0 �

p
2
2
2 (3x0

2
� 1; x0 � 1

2
).

We can rewrite
p
2+1
2
x0 �

p
2
2
as:

p
2 + 1

2
x0 �

p
2

2
= x0 �

1

2
� (
p
2� 1)(1� x0)

2

Since x0 < 1, we have (
p
2�1) (1�x0)

2
> 0 and

p
2+1
2
x0�

p
2
2
< x0� 1

2
. We can also rewrite

3
2
x0 � 1 in a similar way:

3

2
x0 � 1 = x0 �

1

2
� (1� x0

2
)

Since
p
2� 1 < 1, we have:

x0 �
1

2
� (
p
2� 1)(1� x0)

2
> x0 �

1

2
� (1� x0

2
)

()
p
2 + 1

2
x0 �

p
2

2
>
3x0
2
� 1

So in our de�nition, we have
p
2+1
2
x0 �

p
2
2
2 (3x0

2
� 1; x0 � 1

2
).
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A3.3 Proof of Proposition 3.3

From the Proposition 3.2, we know the reaction function of �rm A is equation (3.14) for

xB 6
p
2+1
2
x0 �

p
2
2
and is equation (3.12) for xB >

p
2+1
2
x0 �

p
2
2
. The reaction function

of �rm B is equation (3.15) for xA 6
p
2+1
2
x0 �

p
2
2
and is (3.13) for xA >

p
2+1
2
x0 �

p
2
2
.

It is easy to see that xA and xB must be both larger than
p
2+1
2
x0 �

p
2
2
or both less than

p
2+1
2
x0�

p
2
2
in equilibrium, since there are no solution by combining equation (3.12) with

(3.15) or combining equation (3.13) with (3.14).

For any x0 2 (0; 5�2
p
2

3
), we have:

p
2 + 1

2
x0 �

p
2

2
<
1

6

If both xA and xB 6
p
2+1
2
x0 �

p
2
2
< 1

6
, there is no solution by substituting (3.14) into

(3.15). However, if we substitute (3.12) into (3.13), we can get xA = xB = 1
3
� x0

6
> 1

6
>

p
2+1
2
x0 �

p
2
2
. Thus, there exists and only exists one equilibrium xA = xB = 1

3
� x0

6
. In

this equilibrium, both of the �rm follow the expanding strategy, so the market will expand.

When x0 2 (5� 3
p
2; 1),

p
2 + 1

2
x0 �

p
2

2
>
1

3
� x0
6

If both xA and xB >
p
2+1
2
x0 �

p
2
2
> 1

3
� x0

6
, there is no solution by substituting (3.12)

into (3.13). But if we substitute (3.14) into (3.15), we can get xA = xB = 1
6
< 1

3
� x0

6
<

p
2+1
2
x0 �

p
2
2
. Thus, there exists unique equilibrium xA = xB =

1
6
. In this equilibrium,

both of the �rm follow the shrinking strategy, so the market will shrink.

When x0 2 [5�2
p
2

3
; 5� 3

p
2],

1

3
� x0
6
>
p
2 + 1

2
x0 �

p
2

2
> 1

6
(3.48)

By substituting (3.12) into (3.13), we can get xA = xB =
1
3
� x0

6
. And from (3.48) we

know both xA and xB are larger than
p
2+1
2
x0 �

p
2
2
in the equilibrium solution. Thus, the

equilibrium in which the market expands exists. From (3.14) and (3.15), we get xA =

xB =
1
6
. According to (A-8), we know, in this equilibrium, both xA and xB are less than
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p
2+1
2
x0 �

p
2
2
, so the equilibrium in which market shrink exists as well. This proved that

two equilibria exist when x0 2 [5�2
p
2

3
; 5� 3

p
2].

A3.4 Proof of Proposition 3.4

From (3.19), we can obtain

@S��

@x0
=
25

36
x0 �

5

36
> 0 for any x0 2 [

5� 2
p
2

3
; 1)

Since x0 > 5�2
p
2

3
for expanding equilibrium, @S��=@x0 > 0 for any given x0 in the

expanding equilibrium. This means the total surplus of consumers will increase with a

larger initial locked-in area. From (3.20), we can obtain:
@���

@x0
=
1

9
x0 �

2

9

By our de�nition (x0 < 1), @���=@x < 0 for any given x0. This means the total pro�t of

the �rms in the expanding equilibrium will decrease with an increase of x0. From (3.21),

we have
@W ��

@x0
=
29

36
x0 �

13

36
> 0 for any x0 2 [

5� 2
p
2

3
; 1)

Since x0 2 [5�2
p
2

3
; 1) is the condition for the existence of expanding equilibrium, @W ��=@x0 >

0 for any x0 which may yields the expanding equilibrium exist. Thus, we can conclude that,

in expanding equilibrium, we will have a larger social welfare if the number of the locked-

in consumers increases.

In the shrinking equilibrium, Consumer's surplus, total social welfare and the total

pro�t of the �rms are constant.

A3.5 Proof of Proposition 3.5

From Proposition 3.3, we know, if there exist two equilibrium, wemust have x0 2 [5�2
p
2

3
; 5�

3
p
2]. Under this condition, @���=@x0 < 0, so ��� is maximized when x0 = 5�2

p
2

3
. From

equation (3.20), ���(x0 = 5�2
p
2

3
) < 1

9
= ��, so the pro�ts in expanding market is always

less than the pro�ts in shrinking market. We also have @W ��=@x0 > 0 in this interval, so
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W �� is minimized when x0 = 5�2
p
2

3
. From equation (3.21),W ��(x0 =

5�2
p
2

3
) > 2

9
= W �,

so the welfare of the expanding equilibrium is always larger than the welfare of the shrink-

ing equilibrium.

A3.6 Proof of Proposition 3.7

Here, wee only pride the proof for the case that i = A and the proof of the case that i = B

is similar.

If we want ��Amax can be reached by Firm A, there must have:

x�A 6 �� xB () xB 6
2(2� b)�� �A
2(1� b) �M = �+

2�� �A
2(1� b) (3.49)

If we want ���A max can be reached by Firm A, there must have:

x��A > �� xB () xB >
(3� 2b)�� �A

1� 2b � N = �+
2�� �A
1� 2b (3.50)

Here, M and N are de�ned according to equation (3.49) and (3.50). From �A > 1 and

� 6 1
2
, we can get 2� � � < 0. Since b < 1

2
, we have 2(1 � b) > 1 > 1 � 2b > 0. So it is

easy to seeM > N for any b, x0A and x0B in our de�nition.

If ��Amax and ���A max can both be reached, the Firm A need to evaluate which

strategy will lead to a bigger maximum pro�t. If ��Amax > ���A max, Firm A will choose

shrinking strategy and if ��Amax < ���A max, Firm A will follow expanding strategy. By

comparing ��Amax with ���A max, we can get:

��Amax > �
��
A max() xB < �+

2�� �Ap
(1� b)(2� b)� b

= �A (3.51)

When all two maximums can be reached, Firm A will choose x�A as its best response if

xB 6 �A; Firm A will choose x��A as its best response if xB > �A.
By the de�nition of b and 2 � b >

p
(1� b)(2� b) > 1 � b, we have 2(1 � b) >p

(1� b)(2� b)�b > 1�2b > 0. Comparing (3.51) with 3.49) and (3.50), we may easily
obtainM > � > N . Moreover, from (3.34) and (3.37), we know the slopes of function x�A
and x��A are all larger than �1 and the slope of x�A is larger than the slope of x��A . Now, we
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can combine the above result together and draw the reaction function of Firm A for a given

output of Firm B in the following �gure:

(b)(a)
NN MM

xA
**

xA
*

xA
**

xA
*

xB

xA

xB

xA

Figure-3.12: The reaction function of Firm A

If �A > (2�b+
p
(2� b)(1� b))�, �A 6 0 and we obtain Figure-3.12-a. In Figure-

3.12-a, Firm A will only choose function x��A as its reaction function for a positive output

of Firm B. If �A < (2 � b +
p
(2� b)(1� b))�, �A > 0 and we get Figure-3.12-b. In

Figure-3.12-b, Firm A will choose its reaction function as x�A if xB 6 �A and choose to

follow reaction function x��A if xB > �A.

A3.7 Proof of Proposition 3.8

From Proposition 3.7, we know the de�nition area of reaction function x�A is xB 6 �A

and the de�nition area for reaction function x��B is xA > �B. Assume they cross at point

O(m;n), there must havem 6 �A and n > �B. By substitutingm;n into function x�A, we
may obtain:

n =
�A � 2m
2(2� b)

=) m+ n� � = �A + 2(1� b)m
2(2� b) � � 6 �A + 2(1� b)�A

2(2� b) � �

=
(2�� �A)[2� b�

p
(1� b)(2� b)]

2(2� b)[
p
(1� b)(2� b)� b]
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Since 2�� �A < 0; 2� b�
p
(1� b)(2� b) > 0 and 2(2� b)[

p
(1� b)(2� b)� b] > 0,

we havem+ n� � < 0 =)

m+ n < � (3.52)

If we substitutem;n into function x��B :

m =
�B � �� n
2(1� b)

=) m+ n� � = �B � �+ (1� 2b)n
2(1� b) � � > �B � �+ (1� 2b)�B

2(1� b) � �

=
[
p
(1� b)(2� b)� (1� b)](�B � 2�)
2(1� b)[

p
(1� b)(2� b)� b]

> 0

Thus, we have m + n > �, and this contradict with (3.52). We can make the conclusion

that there does not exist such a O(m;n), which is the crossing point of function x�A and

x��B , when m 6 �A and n > �B. For the same reason, x�B cannot cross with x��A in their

de�nition area as well.

In order to illustrate this proof more clearly, we may draw the following �gure:

xA+xB=

xB

xA

Reaction of firm A

Figure-3.13: The bounded area for x�A and x��A .

This proof shows that x�A is always below the dashed line, xA + xB = �, and x��A is

always above this dashed line. This dashed line also seperates x�B and x��B . We can see that

xA+ xB = � divides the plane into two part and x�A and x��B are located in different part, so

they will never cross. This �gure can also explain why there is no cross point for function

x�B and x��A .
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A3.8 Proof of Proposition 3.9

From Figure-3.9, we know that we only need to prove �B line is always below point O,

then we can say that there always exists unique equilibrium when x0A and x0B are located

in F2 area. From (3.42), we can get the xA value of point O is 2(1�b)�A��B�(1�2b)�
4(1�b)2�1 and

we also know �B = � + 2���Bp
(1�b)(2�b)�b

by the de�nition of �i. Thus, we may de�ne a new

function:

y(x0A; x
0
B) = �B � xA (3.53)

Here, we only need to prove that there does not exist a pair of x0A and x0B located in F2 and

F3 area can make y(x0A; x0B) > 0. If we draw y(x0A; x0B) = 0 in Figure-3.7, we can obtain

the following �gure:

y (xA
0, xB

0) =0

L V

U

u

F3

F2

K

xA
0

xB
0

xA
0= xB

0

Figure-3.14: y(x0A; x0B) = 0

By solving the function y(x0A; 0) = 0, we can get:

U =
(1� 2b)[3(1� b) +

p
(1� b)(2� b)]

(2� 6b+ 3b2)
p
(1� b)(2� b) + (1� b)(3� 7b+ 3b2)

Combining (3.39) and the value of U , we can obtain:

U �K =

2� 11b+ 17b2 � 8b3 + (1� 3b+ 4b2)
p
(1� b)(2� b)

(2(1� b) +
p
(1� b)(2� b))((2� 6b+ 3b2)

p
(1� b)(2� b) + (1� b)(3� 7b+ 3b2))
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When 0 < b < bmax, U �K > 0. This means point U is always located above point K.

In a similar way, by solving the function y(x0B; x0B) = 0, we can get :

V =
6(1� b) + 2

p
(1� b)(2� b)

12� 17b+ 5b2 � (3� b)
p
(1� b)(2� b)

If we substitute x0A = x0B into �A = (2� b+
p
(2� b)(1� b))�, we can get:

L =
1

2� 3
2
b+

p
(1� b)(2� b)

Then, we can obtain:

V � L

=
4(2� 3b)(1� b+

p
(1� b)(2� b))

(12� 17b+ 5b2 � (3� b)
p
(1� b)(2� b))(2� 3

2
b+

p
(1� b)(2� b))

When 0 6 b 6 0:45, V � L > 0. So in Figure-3.14, function y(x0A; x0B) = 0 is always

located above the function �A = (2 � b +
p
(2� b)(1� b))� in our de�nition area. This

means all the points (x0A; x0B) in F2 and F3 area make y(x0A; x0B) < 0 and we may indicate

that �B line is always below point O.

From the analysis of Figure-3.8 and 3.9, we know there always exist unique equilib-

rium if (x0A; x0B) is located in F2 and F3 area and the location of the equilibrium depends

on the relation between R and S. We can construct the following inequality function:

R 6 S () x0A >
2(1� 2b) + (4b� 2b2 � 1)x0B

1� b = 


So when x0A > 
, we have R 6 S and the equilibrium is (3.43). When x0A < 
, we have
R > S and the equilibrium is (3.42).

A3.9 Proof of Proposition 3.10

From Proposition 3.9, we know that if the equilibrium (3.43) exists, we must have a pair of

x0A and x0B which causes x0A > 
. In another words, there must exist some points located
in F2, F3 area and also located above x0A = 
 line. We know the slope of function KJ is

less than �1 and the slope of x0A = 
 is 4b�2b
2�1

1�b > �1. Thus, the suf�cient and necessary
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condition for x0A = 
 line crossing F2, F3 area is that the intercept of x0A = 
 is less than

K and larger than zero. By solving
2(1� 2b)
1� b 6 2

2(1� b) +
p
(1� b)(2� b)

= K

we can obtain that b� � 0:3612 and is one of the solution of 12b3 � 12b2 + 1 = 0.

A3.10 Proof of Proposition 3.11

If there exists a equilibrium that �rm A have a positive output and �rm B have zero output,

the two �rms' reaction function must be located as the following �gure:

S
R

xB

xA

Reaction of firm B

Reaction of firm A

Figure-3.15: Firm A drives Firm B out of the market.

In Figure-3.15, the equilibrium occurs at point S, so we must have S > R. We can
get the value of S and R by substituting xB = 0 into reaction functions x�A and x��B .

S > R() x0A >
6� 4b
4� b �

(1� b)(2� b)
4� b x0B

=) x0A + x
0
B > 1 +

2� 3b
4� b +

2� 2b� b2
4� b x0B > 1

According to our assumption, x0A+x0B 6 1, S > R, as which we illustrated in Figure-3.15,
will never occur when x0A and x0B are located in the F1 area. Or we can say S < R for any

give x0A and x0B located in F1 area

A3.11 Proof of Proposition 3.12
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Lemma 3.1 For any b in our de�nition area and any pair of x0A and x0B located in the F1

area, xSA 6 �B if xSB 6 �A.

Proof. From (3.42) and the de�nition of �B, we get:

(2� b)�A � �B
2(1� b)(3� b) 6 �B

() (2� b)�A � �B
2(1� b)(3� b) 6 �+

2�� �Bp
(1� b)(2� b)� b

() (
2(1� b)(3� b)p
(1� b)(2� b)� b

� 3 + b)�B

6 (2(1� b)(3� b)(1 + 2p
(1� b)(2� b)� b

)� b(2� b))�� 2(2� b)(3.54)

From (3.43) and the de�nition of �A, we get:

(2� b)�B � �A
2(1� b)(3� b) 6 �A

() (2� b)�B � �A
2(1� b)(3� b) 6 �+

2�� �Ap
(1� b)(2� b)� b

() (
2(1� b)(3� b)p
(1� b)(2� b)� b

� 3 + b)�A

6 (2(1� b)(3� b)(1 + 2p
(1� b)(2� b)� b

)� b(2� b))�� 2(2� b)(3.55)

Since 2(1�b)(3�b)p
(1�b)(2�b)�b

� 3 + b > 0 for any b 2 (0; bmax) and �A > �B, (3.55) is a stricter
condition than (3.54).

Lemma 3.2 For any b in our de�nition area and any pair of x0A and x0B located in

the F1 area, xEA > �B if xEB > �A.

Proof. From (3.44) and the de�nition of �B, we get:

2(1� b)�A � �B � (1� 2b)�
4(1� b)2 � 1 > �B
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() 2(1� b)�A � �B � (1� 2b)�
4(1� b)2 � 1 > �+ 2�� �Bp

(1� b)(2� b)� b

() (
4(1� b)2 � 1p
(1� b)(2� b)� b

� 3 + 2b)�B

> (4� 12b+ 6b2 + 2(4(1� b)2 � 1)p
(1� b)(2� b)� b

)�� 4(1� b) (3.56)

From (3.45) and the de�nition of �A, we get:

2(1� b)�B � �A � (1� 2b)�
4(1� b)2 � 1 > �A

() 2(1� b)�B � �A � (1� 2b)�
4(1� b)2 � 1 > �+ 2�� �Ap

(1� b)(2� b)� b

() (
4(1� b)2 � 1p
(1� b)(2� b)� b

� 3 + 2b)�A

> (4� 12b+ 6b2 + 2(4(1� b)2 � 1)p
(1� b)(2� b)� b

)�� 4(1� b) (3.57)

Since 4(1�b)2�1p
(1�b)(2�b)�b

� 3 + 2b < 0 for any b 2 (0; bmax) and �A > �B, (3.57) is a stricter
condition than (3.56).

From Lemma 3.1, the suf�cient and necessary condition for the existence of the

shrinking equilibrium can be reduced as xSB 6 �A. From Lemma 3.2, the suf�cient and nec-
essary condition for the existence of the expanding equilibrium can be reduced as xEB > �A.
Combining these two reduced suf�cient and necessary conditions together, we can obtain

this proposition.

A 3.12 Proof of Proposition 3.13

From (3.44) and (3.45), we can obtain:

xSA � xSB =
b(x0A � x0B)
4(1� b)

Thus, @(xSA � xSB)=@b > 0 and @(xSA � xSB)=@(x0A � x0B) > 0.
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From (3.46) and (3.47), we can obtain:

xEA � xEB =
(2� b)(x0A � x0B)
4(1� b)2 � 1

Thus, @(xEA � xEB)=@b > 0 and @(xEA � xEB)=@(x0A � x0B) > 0.

A3.13 Relationship of f1; K;K1; K2g and f1=2; Q;Q1; Q2g with the
Change of b
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