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Abstract

We discuss No-dominated leptogenesis in the presence of flavour dependent ef-
fects that have hitherto been neglected, in particular the off-diagonal entries of the
flavour coupling matrix that connects the total flavour asymmetries, distributed in
different particle species, to the lepton and Higgs doublet asymmetries. We derive
analytical formulae for the final asymmetry including the flavour coupling at the No-
decay stage as well as at the stage of washout by the lightest right-handed neutrino
Ni. Moreover, we point out that in general part of the electron and muon asym-
metries, depending on the initial conditions, can completely escape the wash-out at
the production and a total B — L asymmetry can be generated by the lightest RH
neutrino wash-out yielding so called phantom leptogenesis. Taking any of these new
effects into account can enhance the final asymmetry produced by the decays of the
next-to-lightest RH neutrinos by orders of magnitude, opening up new interesting
possibilities for No-dominated thermal leptogenesis. We illustrate these effects for
two models which describe realistic neutrino masses and mixing based on sequential

dominance.



1 Introduction

Leptogenesis H] is based on a popular extension of the Standard Model, where three
right-handed (RH) neutrinos Ng;, with a Majorana mass term M and Yukawa couplings
h, are added to the SM Lagrangian,

L = Lo +iN gy, 0" Ngi — hail Lo Nri® — % M;Np Ngs+he. (i=1,2,3, a=e,u,1).

1)
After spontaneous symmetry breaking, a Dirac mass term mp = v h, is generated by the
vev v = 174 GeV of the Higgs boson. In the see-saw limit, M > mp, the spectrum
of neutrino mass eigenstates splits in two sets: 3 very heavy neutrinos N;, Ny and Nj,
respectively with masses M; < M, < Mj, almost coinciding with the eigenvalues of M,
and 3 light neutrinos with masses m; < my < mg, the eigenvalues of the light neutrino
mass matrix given by the see-saw formula [2]

1
m, = —mp — mbh . (2)

M

Neutrino oscillation experiments measure two neutrino mass-squared differences. For

2 whereas for in-

and mi —mi = Am?,
2 - For my > my, =
VAmMZ 4+ Am2 = (0.050 & 0.001) eV [3] the spectrum is quasi-degenerate, while for
my < Mgy = /Am2, = (0.0088 4 0.0001) eV [3] it is fully hierarchical (normal or in-

verted). The most stringent upper bound on the absolute neutrino mass scale comes from

normal schemes one has m? — mj = Am?2,,
2

verted schemes one has m$ —mJ = Am?2, and mJ — mi = Am

cosmological observations. Recently, quite a conservative upper bound,
m; <0.2eV  (95%CL), (3)
has been obtained by the WMAP collaboration combining CMB, baryon acoustic oscilla-

tions and supernovae type Ia observations [4].

The CP violating decays of the RH neutrinos into lepton doublets and Higgs bosons
at temperatures 7" 2 100 GeV generate a B — L asymmetry one third of which, thanks
to sphaleron processes, ends up into a baryon asymmetry that can explain the observed
baryon asymmetry of the Universe. This can be expressed in terms of the baryon-to-
photon number ratio and a precise measurement comes from the CMBR anisotropies
observations of WMAP M],

nSMB = (6.240.15) x 1071, (4)

The predicted baryon-to-photon ratio np is related to the final value of the (B — L)

asymmetry N5, by the relation
ng ~ 0.96 x 1072N%_, | (5)
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where we indicate with Nx any particle number or asymmetry X calculated in a portion of
co-moving volume containing one heavy neutrino in ultra-relativistic thermal equilibrium,
so that e.g. Ny (T > M) = 1.

If one imposes that the RH neutrino mass spectrum is strongly hierarchical, then there
are two options for successful leptogenesis. A first one is given by the N;-dominated sce-
nario, where the final asymmetry is dominated by the decays of the lightest RH neutrinos.
The main limitation of this scenario is that successful leptogenesis implies quite a restric-
tive lower bound on the mass of the lightest RH neutrino. Imposing independence of the

final asymmetry of the initial RH neutrino abundance and barring ﬂﬁhase cancelations in

4
M, 2 3 x 10° GeV . (6)

the see-saw orthogonal matrix entries the lower bound is given by

This implies in turn a lower bound T, = 1.5 x 10? GeV on the reheating temperature as
well dg] E' The lower bound Eq. (@) is typically not respected in models emerging from
grand unified theories. It has therefore been long thought that, within a minimal type I
see-saw mechanism, leptogenesis is not viable within these models [11].

There is however a second option [12], namely the Ny-dominated leptogenesis scenario,
where the asymmetry is dominantly produced from the decays of the next-to-lightest RH
neutrinos. In this case there is no lower bound on the lightest RH neutrino mass M.
Instead this is replaced by a lower bound on the next-to-lightest RH neutrino mass M,
that still implies a lower bound on the reheating temperature.

There are two necessary conditions for a successful No-dominated leptogenesis scenario.
The first one is the presence of (at least) a third heavier RH neutrino N3 that couples
to Ny in order for the CP asymmetries of Ny not to be suppressed as oc (M;/Ms)?. The
second mnecessary condition is to be able to circumvent the wash-out from the lightest
RH neutrinos. There is a particular choice of the see-saw parameters where these two
conditions are maximally satisfied. This corresponds to the limit where the lightest RH
neutrino gets decoupled, as in heavy sequential dominance, an example which we shall
discuss later. In this case the bound, My 2> 10'Y GeV when estimated without the inclusion
of flavour effects, is saturated. In this limit the wash-out from the lightest RH neutrinos
is totally absent and the CP asymmetries of the Ny’s are maximal.

In order to have successful No-dominated leptogenesis for choices of the parameters
not necessarily close to this maximal case a crucial role is played by light flavour effects

. If My < 10°GeV < My, as we will assume, then before the lightest RH neutrino

IFor a discussion of flavour-dependent leptogenesis in the supersymmetric seesaw scenario and the
corresponding bounds on M7 and Tien, see |9, !]]
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wash-out is active, the quantum states of the lepton doublets produced by N,-decays
get fully incoherent in flavour space , , ] In this way the lightest RH neutrino
wash-out acts separately on each flavour asymmetry and is then much less efficient dﬁ] .
It has then been shown recently that within this scenario it is possible to have successful
leptogenesis within models emerging from SO(10) grand-unified theories with interesting
potential predictions on the low energy parameters [19]. Therefore, the relevance of the
Ns-dominated scenario has been gradually increasing in the last years.

In this paper we discuss Nao-dominated leptogenesis in the presence of flavour depen-
dent effects that have hitherto been neglected, in particular the off-diagonal entries of the
flavour coupling matrix that connects the total flavour asymmetries, distributed in differ-
ent particle species, to the lepton and Higgs doublet asymmetries. We derive analytical
formulae for the final asymmetry including the flavour coupling at the No-decay stage as
well as at the stage of washout by the lightest RH neutrino N;. We point out that in
general part of the electron and muon asymmetries will completely escape the wash-out
at the production and a total B — L asymmetry can be generated by the lightest RH
neutrino wash-out yielding so called phantom leptogenesis. These contributions, that we
call phantom terms, introduce however a strong dependence on the initial conditions as
we explain in detail. Taking of all these new effects into account can enhance the final
asymmetry produced by the decays of the next-to-lightest RH neutrinos by orders of mag-
nitude, opening up new interesting possibilities for N-dominated thermal leptogenesis.
We illustrate these effects for two models which describe realistic neutrino masses and
mixing based on sequential dominance.

The layout of the remainder of the paper is as follows. In section 2 we discuss the
production of the asymmetry from Ns-decays and its subsequent thermal washout at
similar temperatures. In section 3 we discuss three flavour projection and the wash-out
stage at lower temperatures relevant to the lightest RH neutrino mass. This is where
the asymmetry which survives from Ns-decays and washout would typically be expected
to be washed out by the lightest RH neutrinos in a flavour independent treatment, but
which typically survives in a flavour-dependent treatment. This conclusion is reinforced
in the fuller flavour treatment here making N, dominated leptogenesis even more relevant.
The fuller flavour effects of the Ny-dominated scenario are encoded in a compact master
formula presented at the end of this section and partly unpacked in an Appendix. Section

4 applies this master formula to examples where the new effects arising from the flavour

2Notice that if M; > 10° GeV and K; > 1 the wash-out from the lightest RH neutrino can be still
avoided thanks to heavy flavour effects B, @] However, throughout this paper we will always consider

the case M; < 10° GeV which is more interesting with respect to leptogenesis in grand-unified theories.
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couplings and phantom leptogenesis play a prominent role. We focus on examples where,
due to the considered effects, the flavour asymmetry produced in one flavour can emerge

as an asymmetry in a different flavour, a scenario we refer to as the flavour swap scenario.

2 Production of the asymmetry from N,-decays and

washout

In the Np-dominated scenario, with M, respecting the lower bound of M, > 10 GeV and
M, < 10° GeV, one has to distinguish two stages in the calculation of the asymmetry. In
a first production stage, at T' ~ Ty ~ My, a B — L asymmetry is generated from the N,
decays. In a second wash-out stage, at T' ~ M, inverse processes involving the lightest
RH neutrinos, the N;’s, become effective and wash-out the asymmetry to some level.

In the production stage, since we assume 102 GeV > M, > 10°GeV, the B — L
asymmetry is generated from the Ny-decays in the so called two-flavour regime |14, IE, Iﬁ]
In this regime the 7-Yukawa interactions are fast enough to break the coherent evolution
of the tauon component of the lepton quantum states between a decay and the subsequent
inverse decay and light flavour effects have to be taken into account in the calculation of
the final asymmetry. On the other hand the evolution of the muon and of the electron
components superposition is still coherent.

If we indicate with |¢3) the quantum state describing the leptons produced by Ns-
decays, we can define the flavour branching ratios giving the probability Ps, that |(s) is
measured in a flavour eigenstate [(,) as Py = |(a]l2)|>. Analogously, indicating with
|04) the quantum state describing the anti-leptons produced by Ny-decays, we can define
the anti-flavour branching ratios as Py = [{€4]05)[%.
given by the average Py, = (Pay + Pa)/2. The total decay width of the Ny’s can be

expressed in terms of the Dirac mass matrix as

The tree level contribution is simply

(mh mp)as (7)

and is given by the sum [y = 'y + ' of the total decay rate into leptons and of the total

decay rate into anti-leptons respectively. The flavoured decay widths are given by

2

~ M.
Do = 87?3}2 [Mpacl? (8)

and can be also expressed as a sum, fga = I'yy + ['a, of the flavoured decay rate into

leptons and of the flavoured total decay rate into anti-leptons respectively.
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Notice that the branching ratios can then be expressed in terms of the rates as P, =
[50 /T and Py, = [y /T5. The flavoured CP asymmetries for the No-decays into a-leptons
(v = e, u, 7) are then defined as

[0 — Do
Eoq = — =2 2o (9)
Iy + Ty
while the total CP asymmetries as
= - = o - 10
=2 Fz + Fz ; =2 (10)

The three flavoured CP asymmetries can be calculated using @]

o0 = T 2o {1 Prhes11h0] S0 22t P, 000 | 1)

2 J B

where ; = (M;/M,)? and

f(x):gx{( +x)1n(1+x)—2_x]. (12)

w

T 1—2z
The tree-level branching ratios can then be expressed as

FOC @ 2
2o g o) ~ Ll (13

Py, =
“ 2 (m}; mD)22

Defining APsy = Pay — Pag, it will prove useful to notice that the flavoured asymmetries

can be decomposed as the sum of two terms [15],

APQoz
9

Pa €9 + (14)

where the first term is due to an imbalance between the total number of produced leptons
and anti-leptons and is therefore proportional to the total CP asymmetry, while the second
originates from a different flavour composition of the lepton quantum states with respect
to the CP conjugated anti-leptons quantum states.

Sphaleron processes conserve the flavoured asymmetries A, = B/3— L, (o = e, u, 7).
Therefore, the Boltzmann equations are particularly simple in terms of these quantities
]. In the two-flavour regime the electron and the muon components of [¢3) evolve
coherently and the wash-out from inverse processes producing the Ny’s acts then on the
sum Na, = Na, + Na,. Therefore, it is convenient to define correspondingly P0 =

Py + P2OM and €9, = €9 + €9,. More generally, any quantity with a subscript “y’ has to
6



be meant as the sum of the same quantity calculated for the electron and for the muon
flavour component.

The asymmetry produced by the lightest and by the heaviest RH neutrino decays
is negligible since their C'P asymmetries are highly suppressed with the assumed mass
pattern. The set of classic kinetic equations reduces then to a very simple one describing

the asymmetry generated by the Nj-decays,

dN
y M= Dy (Ny, — N, (15)
)
dNa, .
oS = o D, (Ny, — N}) — P3, Wy ;;T CD Na, (16)
dNA‘r (&l
o = D (Ny, — NyL) = P W a;f C? Ny, . (17)

where zo = M, /T. The total B — L asymmetry can then be calculated as Ng_; = Na_ +
Na,. The equilibrium abundances are given by N3l = 23 Ky(22)/2, where we indicated
with /C;(z2) the modified Bessel functions. Introducing the total decay parameter Ky =
To(T = 0)/H(T = M,), the decay term Dy can be expressed as
Iy 1
D =—=K — 18
o) = g =Koz (1) (19
where (1/7)(z2) is the thermally averaged dilation factor and is given by the ratios
K1(22)/Ka(z2). Finally, the inverse decays wash-out term is given by

Wy(z) = EKQ Ky (2) 22 (19)

The total decay parameter K, is related to the Dirac mass matrix by

~ T
™Mo ~ My MMp)2o
Ky =—, where Mo u
My M,

(20)

is the effective neutrino mass M] and m, is equilibrium neutrino mass defined by E, Iﬂ]

16 /2 /g v
m, =
3 \/5 My

It will also prove convenient to introduce the flavoured effective neutrino masses mo, =

~ 1.08 x 1073 eV. (21)

PQOQ my and correspondingly the flavoured decay parameters Ko, = ona Ky = Mg /my, S0
that Za mga = 7’7L2 and Za Kga = KQ.



The flavour coupling matrix C H, H, , , , Iﬂ] relates the asymmetries stored in
the lepton doublets and in the Higgs bosons to the A,’s. It is therefore the sum of two
contributions,

Cap = Cly+ CHy, (22)
the first one connecting the asymmetry in the lepton doublets and the second connecting
the asymmetry in the Higgs bosons. Flavour dynamics couple because the generation
of a leptonic asymmetry into lepton doublets from N; decays is necessarily accompanied
by a generation of a hypercharge asymmetry into the Higgs bosons and of a baryonic
asymmetry into quarks via sphaleron processes. The asymmetry generated into the lepton
doublets is moreover also redistributed to right handed charged particles. The wash-out
of a specific flavour asymmetry is then influenced by the dynamics of the asymmetries
stored in the other flavours because they are linked primarily through the asymmetry into
the Higgs doublets and secondarily through the asymmetry into quarks.

The condition of chemical equilibrium gives a constraint on the chemical potential
(hence number density asymmetry) of each such species. Solving for all constraints one
obtains the C,p explicitly. If we indicate with C () the coupling matrix in the two-flavour

regime, the two contributions to the flavour coupling matrix are given by

iy _ [ A17/589 —120/589 g he) _ (1647589 224/589 @)
—30/589  390/589 164/589 224/589

and summing one obtains

oo _ (€8 O\ _ ([ 581/589 104/589 -
—\ o o 194/589 614/589 )

A traditional calculation, where flavour coupling is neglected, corresponds to approximat-
ing the C-matrix by the identity matrix. In this case the evolution of the two flavour

asymmetries proceeds uncoupled and they can be easily worked out in an integral form

(4, i, A,

~P, [ deh Wah)

Naa(22) = N e + €94 k(225 Kaa) (25)
where the efficiency factors are given by
z2 dN . _po % dzl 2!
oK) = = [y S S D), (26)

We will neglect the first term due the presence of possible initial flavour asymmetries and
assume 2" < 1. The efficiency factors and therefore the asymmetries get frozen to those

at a particular value of the temperature given by Tr, = My /z5(Ks,), where [26]
25(Kon) ~ 2+ 4 K91 ¢ %on = O(1 + 10) . (27)
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Defining 77, = min(7y,., T, ), the total final B — L asymmetry at 77, is then given by

Ngf}} = Eoy /'Q(Kgfy) + €9, K/(KQT) . (28)
Assuming an initial thermal Ns-abundance, the final efficiency factors x(Ks,) = k(22 =
00, Ky,) are given approximately by

K(Kao) ~ % {1 — exp (—%Km ZB(KQQ))} . (29)

N KQa ZB
On the other hand, in the case of vanishing initial abundances, the efficiency factors are
the sum of two different contributions, a negative and a positive one,
f f 0 f 0
/{/204 = K’—(K2’ P2a) + I{—l—(KQ? P204) . (30)
The negative contribution arises from a first stage where Ny, < Nﬁg, for 29 < 257, and is
given approximately by

2 7r a POa
Kk (Ky, PY) ~ ~ 55 e <e% Ny (zea) 1) . (31)
2«

The Ny-abundance at z5! is well approximated by the expression
N(K>)

(1+ VNTRD)

that interpolates between the limit Ky > 1, where 25" < 1 and Ny, (23") = 1, and the
limit Ky < 1, where z5* > 1 and Ny, (25%) = N(K3) = 3nK>/4. The positive contribution

arises from a second stage when Ny, > Ny!, for 2z, > 25", and is approximately given by

Ny, (25%) ~ N(K>)

(32)

2 Kaa 2B (K2a) NN, (zeq)
£ 0
H+(K2a P2a) -

— |1 —€e" 2
25(Kaq) Ko (

If flavour coupling is taken into account, we can still solve analytically eqs. (IH) performing

(33)

the following change of variables

N, N, Uyy Uyr
Mol =U ), where U= T (34)
NAT/ NAT UT"y UT/T

is the matrix that diagonalizes
2 2
2 — 2 2 )
P 207' C7("Y) P 207' 07('7')
9



ie. UP)U" = diag(Pj.,, Py,). In these new variables the two kinetic equations for the

flavoured asymmetries decouple,

dNp , o
T = o Da(Nw, = NR) = P Wo Na (36)
dNA / e
7"— 827-/ D2 (NN2 - N]\/%) - PQOT/ W2 NAT/ ) (37)
2

where we defined

<5W>EU (52”> . (38)
Ear! Eor

The solutions for the two Na_, are then still given by eq. ([23)) where, however, now
the ‘unprimed’ quantities have to be replaced with the ‘primed’ quantities and therefore

explicitly one has

NZA:TL ~ ey K(Kay) (39)

NZ:TL ~ Egp K(KQT/).

Notice that the B — L asymmetry at T ~ T7 is still given by Ngf? = NK:TL + NX:TL.

The two Na_’s can be calculated from the two N, A,,’s using the inverse transformation
Ny N Ul Uz
T | =UT lp | whee UT'=( vp ) (40)
NAT NAT/ Uf'y’ UTT’
To study the impact of flavour coupling on the final asymmetry, we can calculate the ratio

Np_
R= B-L

— b-L 41
NB—L|0:1 ( )

between the asymmetry calculated taking into account flavour coupling, and the asym-
metry calculated neglecting flavour coupling, corresponding to the assumption C' = [.
If we want first to calculate the value of R at the production stage, we have to express
NEEEL in terms of the ‘unprimed’ quantities in eq. (89). This is quite easy for the Ky,
since one has simply to find the eigenvalues of the matrix Py. Taking for simplicity the

approximation C%) ~ @ ~ 1, one obtains

P, =~ (1 + /(P — P +4C2 C? Py PST) : (42)

N = N

10



Notice that, both for & = 7 and o = 7, one has Py, ~ Py + O(4/ C'ﬁ) Oi?) if Py, ~
P}, ~1/2and Py, ~ PQOQ—I—O(C'SE) (Jﬁ?) if Py, < Py, or vice-versa. Considering moreover
that, if Ky, > 1, one has approximately x(Ky,) ~ 1/K3:2, one can write

NITE o ey (), (44)
K:TL ~ g K(Kr)

We have now to consider the effect of flavour coupling encoded in the primed CP asym-
metries. If these are re-expressed in terms of the unprimed CP asymmetries we can

obtain explicitly the flavour composition of the asymmetry generated at 7' ~ T}, plugging

egs. ([#4) into eqgs. (40),

Ng:TL = Uiyl/ [Uw"y 527 + Uw”r 527] /{(KQW) + Uil/ [UT"y 527 + UT’T 627’] I{(KQT) ) (45)

Y T
NZ:TL = U,:vl/ [U'y/'y €2y + U’y’T 827-] /'Q(Kgfy) + U;rl/ [UT"y €2y + UT/T 627] K/(KQT) s (46)
Ng“ph = Na T Ny (47)

We can distinguish two different cases. The first one is for Py ~ ]3207 ~ 1/2, implying
Ky, = Ky, = K3/2 and therefore x(Ky,) = k(Ky;) = k(K>/2). In this situation one can

see immediately that

Ng:TL ~ g9, k(K2/2), and Ng;TL ~ g9, K(K3/2). (48)
Therefore, in this situation and barring the case €2, = —&2,, one has not only Ng'_v? ~
NgffL} o> implying R™ 7T = 1, but even that the flavour composition is the same

compared to a usual calculation where flavour coupling is neglected. However, if €9, =

—&9,, then a more careful treatment is necessary. From the eqs. ([@2) one finds PQOW, =

(1+/C2c2y2 £ P, = (1— c{? ¢2)/2. This difference induced by the off-

diagonal terms of the C® matrix prevents an exact cancelation or at least it changes the
condition where it is realized, an effect that occurs also within N; leptogenesis ‘ﬂg]

Let us now see what happens on the other hand when either Py or P20W is much smaller
than the other. At the first order in the C® off-diagonal terms, one has

(2) PQO'y (2) PQO’Y
U ~ 1 Cyr PY —PY : U1~ 1 TPy —PY, . (49)

2) PY - 2 P
C( 2 1 -C 2 1
™ PY Py, ™ PPy,

Let us for definiteness assume that Py < PQO7 and that K > 1, as it naturally occurs bar-

ring fine tuned choices of parameters. In this case one has necessarily x(Ks;) > k(Ks,).

11



We can therefore specify eqs. ([@T7]) writing approximately for the flavour asymmetries in
the two flavours,

N ey K(Kay) — O e, k(K (50)
NZ:TL >~ 627/1([(27-), (51)

where we neglected all terms containing products either of two off-diagonal terms of
C®, or of one off-diagonal term times k(Ky,). We can therefore see that the total final

asymmetry cannot differ much from the standard calculation,
Ngng ~ €2y /'Q(Kgfy) + o7 K/(KQT) — C,(ﬁ_) Eor K/(KQT) s (52)

implying
RT~TL ~ 1 — 0@ Ear K(K2r)
T €2y K/(KQ/Y) + E2r I{(KQT)

This holds because the dominant contribution comes from the tauonic flavour asymmetry

. (53)

that is not changed at first order. Notice by the way that since C'A(YQT) > ( and necessar-
ily 5, > 0. the effect of flavour coupling even produces a reduction of the total final
asymmetry E

On the other hand the asymmetry in the sub-dominant flavour v can be greatly en-

hanced since the quantity

T K. T
RATE = S B N ‘1 — C'ﬁ) car i(Kor) (54)
= (K
T le=r

can be in general much higher than unity. In this respect it is important to notice
that the assumption Py < P207 does not necessarily imply €5, < €3, since €5, S
1079 (M,/10%°V) \/Pj,. Notice also that if P < Pj

o, then the 7 flavour asymmetry

is sub-dominant and can be strongly enhanced.

There is a simple physical interpretation to the enhancement of the sub-dominant
flavoured asymmetry. This can be given in terms of the effect of tau flavour coupling
on the final 7 asymmetry that is described by the off-diagonal terms of the C® matrix.
The dominant contribution to these terms comes from the Higgs asymmetry produced
in Ny + I, + ¢ decays. Let us still assume for definiteness that P < P20v and that
Ky > 1. This implies that the v asymmetry is efficiently washed-out and there is a

substantial equilibrium between decays and inverse processes.

3This result differs from the one of ﬂZj] where, within N7 leptogenesis, the authors find an enhancement
instead of a reduction. This is simply explained by the fact that we are also accounting for the Higgs
asymmetry that determines the (correct) positive sign for C’gQT).

12



On the other hand the 7 asymmetry is weakly washed-out and for simplicity we can
think to the extreme case when is not washed-out at all (true for K5, < 1). An excess of
tau over vy asymmetry results in an excess of Higgs over v asymmetry. This excess Higgs
asymmetry increases the inverse decays of £, over the £, states (or vice versa, depending
on its sign) and ‘soaks up’ either more particle or more anti-particle states generating an
imbalance. Hence one can have RK:TL > 1 thanks to the dominant effect of the extra
inverse decay processes that ‘switch on” when C' # I.

This effect had been already discussed within N;-dominated leptogenesis dﬂ] Our
results, for the asymmetry at the production stage, are qualitatively similar though we also
took into account the dominant contribution to flavour coupling coming from the Higgs
asymmetry and we solved analytically the kinetic equations including flavour coupling
without any approximation. As we already noticed, quantitatively, the account of the
Higgs asymmetry produces important effects. For instance, when the Higgs asymmetry is
included, the results are quite symmetric under the interchange of ]3207 and P since the
total matrix C'® is much more symmetrical than C*?).

There is however a much more important difference in this respect between Nj-
dominated and N;-dominated leptogenesis. While in the latter case a strong enhancement
of the sub-dominant flavoured asymmetry does not translate into a strong enhancement
of the final asymmetry, in the case of the Ny-dominated scenario this becomes possible,
thanks to the presence of the additional stage of lightest RH neutrino wash-out, as we

discuss in the next section.

3 Three flavour projection and the N; wash-out stage

At T ~ 10? GeV the muon Yukawa interactions equilibrate as well. They are able to break
the residual coherence of the superposition of the muon and electron components of the
quantum states |[f5) and |/,) . Consequently, the “y’ asymmetry becomes an incoherent
mixture of an electron and a muon component and the three-flavour regime holds M, IE]

Therefore, for temperatures 7" such that 10° GeV > T’ >> M, one has a situation
where the asymmetry in the tau flavour is still given by the frozen value produced at
T ~ Ty, (cf. eq. ([@6)), whereas the asymmetries in the electron and in the muon flavours
have to be calculated splitting the v-asymmetry produced at T ~ Ty, (cf. eq. ({H)) and
the result is

PY
Nay(T') = ps+ 53 NaTF, (O=ep) (55)
2y

13



where the “phantom terms” p. and p,,, for an initial thermal Ns-abundance N}\‘}Q, are given
by
po= (- pren) M 6= (56)
2y
and one can easily check that p. + p, = 0. Notice that, because of the presence of the
phantom terms, the electron and the muon components are not just proportional to the
y-asymmetry.

Let us show in detail how the result eq. (B3) and the expression for the phantom terms
can be derived. The derivation is simplified if one considers the As asymmetry as the
result of two separate stages: first an asymmetry Ny, ends up, at the break of coherence,
into the ¢ lepton doublets and then it is flavour redistributed and sphaleron-converted
in a way that Na; = —Nf . Actually part of the Nz; asymmetry gets redistributed and
sphaleron-converted immediately after having been produced. However, in our simplified
procedure, the notations is greatly simplified and the derivation made more transparent
but the final result does not change, since flavour redistribution and sphalerons conserve
the Ay asymmetries.

After these premises, we can say that the asymmetry in the ¢ lepton doublets at the

break of coherence is simply given by
Ni, = fos NZNTL — fas NngL : (57)

where fos = [(s|l2y)]* = Pas/Poy and fos = [(l5|05,)|> = Pas/Pay. With some easy

passages one can then write

N, = 5 (s fos) (NE7Te 4 NI (59)
+ % (fas + fos) NLT:TL (59)
= —pit g (oot fos) NI (60)
where in the last expression we introduced the phantom term
ps = g (s — o) (NI 4 NZVTE) (61)

(;onsidferin% now that N Z ~L L N L{ ~ P207 N }\1,12 and that, using first fo5 = Pos/Ps, and
fas = Pas/ P, and then the eq. (I4]), one has

1 £y po Pys
B} (f25 - f25) sz = — | 25 — on €2y (62)
2
5 (f25 + f26) = —P207 ) (63)



one finally finds

* P2O5 T~T)
NLéz_p5+P—%NLV L, (64)
where the phantom terms can be expressed in terms of the CP asymmetries as
P .
ps = |25 — =2 €2y | NI, (65)

As a last step one has finally to take into account flavour redistribution and sphaleron
conversion so that the eq. (535) follows.

The phantom terms originate from the second contribution in eq. ([I4]) to the flavoured
CP asymmetries. One can see indeed that if AP, = AP, = 0, then p, = p, = 0. On
the other hand, these terms do not vanish if the leptons and the anti-leptons produced
by the decays have a different flavour composition, such that at least one APys # 0, even
when €9, = 0. In this particular case one can indeed see that p, = 9. = —€9, = —p,,

It should be noticed that, remarkably, the phantom terms are not washed-out at the
production. This happens because in this stage the e and p components of the leptons
and anti-leptons quantum states are still in a coherent superposition. The phantom terms
originate from the components of the electron and muon asymmetries dependant only on
differences between the flavour compositions of leptons quantum states £, and anti-lepton
quantum states Z/%' These cannot be washed-out by the N, inverse processes, which can
only act to destroy the part of the electron and muon asymmetries proportional to €9,
itself.

However, it should be also noticed that if one assumes an initial vanishing No-abundance,
the phantom terms vanish. This happens because in this case they would be produced
during the Ny production stage with an opposite sign with respect to the decay stage
such that an exact cancelation would occur implying a vanishing final value H Therefore,
the phantom terms seem to introduce a strong dependence on the initial conditions in
Ny-flavoured leptogenesis.

When finally the inverse processes involving the lightest RH neutrinos become active at
T ~ M, the wash-out from the N;-decays acts separately on the three flavour components
of the total B — L asymmetry ]

4This can be understood, for example, in the following way. An inverse decays of a lepton with
an Higgs, corresponds to the creation of a state orthogonal to |f2,), that we indicate with |[¢3.), or to
|02,), that we indicate with |F2J’_v> One has [lg:) = (€u]l24) |[c) — (Ce|lay) |£,) and |F2J,;> = (Cu|ly,) |0e) —
(Ce|ls) [€,). Therefore, each inverse decay will produce, on average, an electron and a muon asymmetry
given respectively by ALY = (fa, — f2,)/2 and ALfL'd‘ = (f2e — fae)/2, opposite to those produced by
one decay.
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The wash-out from the lightest RH neutrinos is more efficient than the wash-out
from the next-to-lightest RH neutrinos since it is not balanced by any production and it
therefore acts on the whole produced asymmetry.

Taking into account the flavour coupling matrix, the set of kinetic equations describing

this stage is given by

dNa, _
le

- Z CO WP Na, , (,B=e,p,7) (66)

where z; = M; /T and, more generally, all quantities previously defined for the Ny’s can
be also analogously defined for the Ny’s. In particular the P s, the K;,’s and W, are
defined analogously to the PY | to the Ky,’s and to W, respectively.

The flavour coupling matrices in the three-flavour regime are given by

151/179 —20/179 —20/179 37/179 52/179 52/179
C'® = | —25/358 344/537 —14/537 |, C"® =| 37/179 52/179 52/179 |,
—925/358 —14/537 344/537 37/179 52/179 52/179
c® o) o 188/179 32/179  32/179
cO=|c® cf) ¢ | = 49/358 500/537 142/537
c® o) ¥ 49/358 142/537 500/537

If flavour coupling is neglected both at the production in the two-flavour regime (corre-
sponding to the approximation C'® = I) and in the lightest RH neutrino wash-out in the
three-flavour regime @)rresponding to the approximation C® = I), the final asymmetry

|

NgfL = ZNia

PO s s
= > [p“po ey K(Knerp) | €75 0 o m(Kop) e ¥ 190 (67)

d=e,p

is then given by

It is interesting that, even though K; > 1, there can be a particular flavour a with at
the same time 1 ~ K, < K, and a sizeable g5, = O(107° — 107%). In this case the final
asymmetry is dominated by this particular a-flavour contribution, avoiding the lightest
RH neutrino wash-out, and can reproduce the observed asymmetry. Therefore, thanks to
flavour effects, one can have successful leptogenesis even for K; > 1, something otherwise
impossible in the unflavoured reglme Mplj

Let us now comment on the phantom terms ps and on the conditions for them to

be dominant so that a scenario of ‘phantom leptogenesis’ is realized. First of all let
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us importantly recall that we are assuming zero pre-existing asymmetries. Under this
assumption the phantom terms would be present only for a non zero initial Ny abundance
while they would vanish if an initial vanishing N, abundance is assumed.

A condition for phantom leptogenesis is then that

0
26

Ips| > i—%s% K(Koerpy)| and K5 <1,
either for 6 = e or for 6 = p or for both. In this situation the final asymmetry will
be dominated by that part of the electron-muon asymmetries that escape the wash-out
at the production thanks to the quantum coherence during the two flavour regime. A
first obvious condition is ps # 0. Another condition is to have Ky, > 1 since otherwise
the phantom terms are not crucial to avoid the wash-out at the production that would
be absent anyway. Another necessary condition for the phantom leptogenesis scenario

to hold is that either K;, <

Y

1 or Ky, < 1, otherwise both the electron and the muon
asymmetries, escaping the wash-out at the production, are then later on washed-out by
the lightest RH neutrino wash-out processes. However, as we will see, this condition is
not necessary when the flavour coupling at the lightest RH neutrino wash-out stage is
also taken into account.

Conversely a condition for ‘non-phantom leptogenesis’ relies on the following possibil-
ities: either an initial vanishing N, abundance, or that ps; >~ 0, or Ky, < 1, or that both
Ky > 1 and K;, > 1. Again this third condition seems however not to be sufficient to
avoid the appearance of phantom terms in the expression of the final asymmetry when
the flavour coupling at the lightest RH neutrino wash-out stage is also taken into account.
Therefore, it should be noticed that the effects of flavour coupling and of phantom terms
cannot be easily disentangled.

In the following we will focus on the effects induced by flavour coupling, also in trans-
mitting the phantom terms from the electron and muon flavours to the tauon flavour.

Let us now see how the eq. ([67) gets modified when flavour coupling is taken into

account (only) at the production. In this case one has
Nb p = NOTEem &8 NITE o= F 80 g N~ o= R K (68)

where NK:TL, Nz:TL and NKTNTL are given by eqgs. (1) and (B3). In the specific case

when P). < Pj., the eqs. @) specialize into egs. (G0) and (BI) and we can therefore
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write

PO n
Np , = (pe + P—%e [527 K(Kay) — 0527) Eor “(KQT)}) e My (69)
2y
P x
(pu + P—zoe [527 K(Kay) — C’(ﬁ-) o7 H(KQT)]> e ¥ +
v

Eor K(KQT) 673% Kar .

Let us finally also examine the changes induced by flavour coupling in the description
of the lightest RH neutrino wash-out stage in the three-flavour regime, removing the
approximation C® = I. One can see from eqs. (6)), that the wash-out acts in a coupled
way on the three-flavour components of the asymmetry. An exact analytical solution can
be obtained applying again the same procedure as in the two flavour regime. If we define
P, G PLCG) PG
P=| py,CR PLCl) PLOR |, (70)
PY.CR PY.CE) PY.CY

the set of kinetic equations can be recast in a compact matrix form as

dNa ,
— _W., PN 1
le Wl 1 A (7 )

where Na = (Na, Na,,, Na,). If we perform the change of variables

‘/e//e ‘/e//‘u ‘/e//T
NA// =V NA s where V = V,u”e VH”H Vp,”T (72)
VT-//e VT_N/J/ Vr//,r

is the matrix that diagonalizes Py, ie. VPPV™' = P}, = diag(PL,, P}, Pl.,) and
Nav = (Na_,, N AN A_,), the kinetic equations for the flavoured asymmetries decouple

and can be written as

dN .
2% — — W, P Nav. (73)
d21
The solution in the new variables is now given straightforwardly by
i TnTy 35K, 0 AT~TL —35 K 0 nT~TL —35 Ky
Ng// = <NA6// - e 8 Kle ) NAH// - e 8 Kl“ ) NAT// - e 8 KlT > Y (74)
where K, = P, K. Applying the inverse transformation, we can then finally obtain

the final flavoured asymmetries

-1 -1 -1
ee!! Vﬂe// ‘/;e”
f v —1 arf . -1 -1 -1 -1
NA = V NA” s Wlth V = ‘/e“u V.U',U'N ‘/Tu// 3 (75)
-1 -1 -1
‘/67.// VMTN ‘/;.7.//
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or explicitly for the single components

f 2: -1 T~T, -3 K
NAa = Vao// |:NO¢” fems 10//]
Oé//
-1 —3—7rK1 "
= Voza” e s “
a//

where the Ng;TL’s are given by eqs. ([@3)), (46) and (B3). This equation is the general

analytical solution and should be regarded as the “master equation” of the paper. It can

S NZ;TL] | (76)
16

be immediately checked that taking U =V = I one recovers the standard solution given

by eq. ([€7). In the Appendix we recast it in an extensive way for illustrative purposes.

4 Examples for strong impact of flavour coupling

The general solution of eq. (7@, with approximate analytical solutions for U and V
plugged in, is of course rather lengthy and its physical implications are difficult to see.
To make eq. ([[6) more easily accessible we partly unpack it in the Appendix. In order to
better understand whether it can yield results significantly different from those obtained
by eq. (€7), we will now specialize it to some interesting specific example cases that
will highlight the possibility of strong deviations from the case when flavour coupling is
neglected, i.e., of Ry (cf. (AIl) values significantly different from unity. The scenario
we will consider in the following, and which will be useful to illustrate the possibility of
large impact of flavour coupling effects, will be referred to as the “flavour-swap scenario”.
Notice that even though in general the phantom terms are present and we have indicated

them, these can be always thought to vanish in the case of initial vanishing abundance.

4.1 Simplified formulae in the “Flavour-swap scenario”

In the “flavour-swap scenario” the following situation is considered: Out of the two
flavours e and p, one has Ki5 < 1 (where 0 can be either e or ). The other flavour
will be denoted by 3, so if 6 = e then 3 = p or vice versa. For K3 we will assume that
Ky ~ Ky ~ Ky > 1, such that asymmetries in the 5" as well as in the 7" flavours
will be (almost) completely erased by the exponential N; washout. The only asymmetry
relevant after N; washout will be the one in the flavour ¢”.

Obviously, this already simplifies eq. (76) significantly. Now one has, similarly to what
happened before with the K./, that K50 = K5 (1+ 0(0225)3) ~ Kj5. At the same time
Kigryr = Kigy (1 + O(C’gzﬂ)) and therefore Kig(-y» ~ K; > 1. This implies that in
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eq. ((f@)) only the terms with o’ = §” survive , while the terms with o/ = 5", 7" undergo
a strong wash-out from the lightest RH neutrino inverse processes and can be neglected.
Therefore, if we calculate the final flavoured asymmetries and make the approximation

exp(—37m K15/8) ~ 1, from the general eq. ([A.3)) we can write

Ni, = Vg Virg Nay™ + Vg Virs Nay ™ + Vg Vorr Ny (77)
Ngé = V:%H %”ﬁ NA;TL + V:%H %”6 NA:TL + V:Sé“ ‘/5”7 Ng:TL ’ (78)
NA, = Vogn Virs Ny o Vg Virs N+ Viogy Vi N (79)

where the three Nx~7"’s are given by the eqs. (50), (5I) and (55). The matrices V and
V=, whose entries are defined by the eqs. (72) and (73] respectively, at the first order in
the C® off-diagonal terms, are given by

1 Cél?;) - 67‘ PE? 1 _Oéz) CeT Pﬂ?
p _ P
Vel o 1 —ofpe | Vi ol 1 o |- (60)
3 3 3) 3
o Cﬁ,} 1 —Cﬁe —Cﬁu) 1
Therefore, we find for the three Nga’s
~ 5 AT~ 3) A7T~T. 5 Pls oo
Niﬂ ~ Cgﬂ Pt N - _Céé NA& " +C 0(57' Plt N Ar " (81)
@ Py @)
~ — ps + —5- PO [527/€(K27) — 077' Eor K/(KQT)] )
£ 8) Pls o T~T. 5 A TeT
NL, ~ -Cf P}) N4 N — ) Pg N (82)
1T
Py Py
~ D5 + P—206 [527/{(K27) — C,s,r Eor K (KQT)} — ngi) P—lo(s Ear H(KQT) 9
2,y 1T
3) ~(3) T~T. 3) A7T~T. 3) ~(3) T~T.
Ny, = Cia ngﬂ p? Npg " — Cﬁa) Na; v = Cia CéT Pgs Na ™" (83)

12

PO
N OT:; {p5 + 50 ) [0y (Kay) — Cﬁ) Eor H(KQT)]} .

The total final asymmetry is then given by the sum of the flavoured asymmetries. It can
be checked that if flavour coupling is neglected (C? = C®) = I), then one obtains the

expected result
0

N Pss
Np_ L—NT e = ps +P0

corresponding to an asymmetry produced in the flavour 9, i.e. in the only flavour that

e,k (Kay) (84)

survives washout by the lightest RH neutrino.
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However, taking into account flavour coupling, new terms arise and the final asymme-

try can be considerably enhanced. More explicitly, we have approximately

N{%L ~ (1 — Cé? — 0(3)> {p + ]:0) [5275([(%) — Cﬁ) Eor K(KQT)]} C(gT) Jio eor K(Ka,),

(85)
where P/ P = K5/ K, and where we have neglected all terms that contain the product
either of two or more off-diagonal terms of the coupling matrix, or of one or more off-
diagonal term with k(K»,) < 1.

From eq. (88]) one can readily see examples for strong enhancement of the asymmetries
due to flavour coupling, i.e. conditions under which Rf > 1. In particular, let us consider
in the following the case that k(K,,) < 1, ie. k(Ky,) < k(Ks;). Then one of the
two additional terms in eq. (8H), only present due to flavour coupling, can dominate the
produced final asymmetry and R > 1 results. We will now discuss these two cases in
more detail and give examples for classes of models, consistent with the observed neutrino

masses and mixings, where they are relevant.

e Case A: Enhancement from flavour coupling at N, decay

Let us assume k(Ks,) < k(K»,) and in addition P/P.. = Ki5/K;, < 1. Then

the first and third terms in eq. ([88) dominate and we can estimate

P
NE—L >~ PDs — 0(2

T PO Eor K (KQT). (86)

In this case the final asymmetry is dominated by two terms that, for different rea-
sons, circumvent the strong wash-out of the v component. The first term in eq. (8d)
is the phantom term ps that escapes the wash-out since it was ‘hidden’ within the
coherent v lepton combination of an electron and a muon component. From this
point of view it should be noticed that since the lightest RH neutrino wash-out acts
only on the ¢ flavour but not on the g flavour, it has the remarkable effect to destroy
the cancelation between the two phantom terms p; and pg having as a net effect the
creation of B — L asymmetry, a completely new effect. The second term in eq. (8)
is what we have seen already: because of flavour coupling at the production, the
large asymmetry in the 7 flavour necessarily induces an asymmetry in the v flavour
as well. Notice that there is no model independent reason why one of the two terms

should dominate over the other.

e Case B: Enhancement from flavour coupling at N; washout

21



Another interesting case is when r(Ky,) < k(Ky,) and in addition Pps/Pj, <
Pps/ Py . In this case the first and fourth terms in eq. (85) dominate and we obtain

approximately

0

N, ~ps—CP % ear i(Kar) . (87)

ir

We can see that again we have the phantom term avoiding the wash-out at the production
and a second term arising from the flavour coupling at the wash-out by N;. We note that
this term is not even proportional to the flavoured asymmetry e95 and is just due to
the fact that thanks to flavour coupling the wash-out of the large tauonic asymmetry
produced at T' ~ T}, has as a side effect a departure from thermal equilibrium of the
processes Ny < l. + ¢',l. + ¢. This can be understood easily again in terms of the
Higgs asymmetry that connects the dynamics in the two flavours. It is quite amusing
that thanks to flavour coupling an electron asymmetry is generated even without explicit

electronic CP violation.

4.2 Example for Case A within Heavy Sequential Dominance

To find realistic examples where the two cases A and B with strong impact of flavour
coupling are realised, we will now consider classes of models with so-called sequential
dominance (SD) [29, 130, H, @] in the seesaw mechanism. To illustrate case A, we may in
particular consider a sub-class called heavy sequential dominance (HSD). To realise case
A within HSD, in eq. (8H) and eq. (80) we assign flavours 6 = p and § = e.

To understand how heavy sequential dominance works, we begin by writing the RH

neutrino Majorana mass matrix Mgg in a diagonal basis as

Me 0 0
Mgr=1| 0 Mz 0 |, (88)
0 0 My

where we have ordered the columns according to Mgr = diag(M;, My, M3) where M; <
My < Mj. In this basis we write the neutrino (Dirac) Yukawa matrix A, in terms of (1, 3)

column vectors C;, B;, A; as

A,,z(C B A), (89)

in the convention where the Yukawa matrix is given in left-right convention. The Dirac
neutrino mass matrix is then given by m{p = A, v,. The term for the light neutrino

masses in the effective Lagrangian (after electroweak symmetry breaking), resulting from
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integrating out the massive right handed neutrinos, is

v (v A;) (AT w;)v? N (v Bi)(B] v;)v? N (v Ci)(CTvy)v?
eff My Mp Mc

(90)

where v; (i = 1,2,3) are the left-handed neutrino fields. heavy sequential dominance
(HSD) then corresponds to the third term being negligible, the second term subdominant

and the first term dominant:

AA; B;B; C;C;

. 91
My > Mp > Mc (o1)
In addition, we shall shortly see that small #;3 and almost maximal 693 require that

[Ar] < [Asf = [As]. (92)

We identify the dominant RH neutrino and Yukawa couplings as A, the subdominant ones
as B, and the almost decoupled (subsubdominant) ones as C.

Working in the mass basis of the charged leptons, we obtain for the lepton mixing

angles:
| As|
tanfys ~ —— 93
an tas Ay’ (93a)
B
tan 912 ~ ~| 1| —= , (93b)
C3| Ba| cos ¢y — 53| B3| sin 3
5 |Bi|(A3By + A3Bs) M i95] A
03 ~ ez¢4‘ 1|( 2 D2 + 33/23> A + e | 1| 7 (930)
[|A2|2+|A3|2] MB \/‘A2‘2+ ‘Ag‘Q
where the phases do not need to concern us.
The neutrino masses are:
(|A42]* + [As]?)v?
~ 94
ms MA ) ( a)
|Bl|21)2
~ 94b
my S%QMB 9 ( )
my ~ O(C*?*/Mc) . (94c)
Tri-bimaximal mixing corresponds to:
[Ail = 0, (95)
[Ao| = A3, (96)
|Bi| = [B| =|Bs, (97)
ATB = 0. (98)

23



This is called constrained sequential dominance (CSD).
For Nj leptogenesis, the flavour specific decay asymmetries are €9, where the leading
contribution comes from the heavier RH neutrino of mass M4 = M3 in the loop which

may be approximated via eq. (1) as:

3 My, 1

_ 2 (3t
e L BE™ [B:(BTA)A,] . (99)

€20 N

Clearly the asymmetry vanishes in the case of CSD due to eq. (@) and so in the follow-
ing we shall consider examples which violate CSD. The mixing angles are given by the

following estimates:

AQ \/ﬁBl 1 A1 T
tanfoy ~ — ~ 1, tanbo~v ——— ~ —, O3~ —— ~ —.
P P BBy V2 P B4, V2

Suppose we parametrize the Yukawa couplings consistent with these mixing angles as:

(100)

1
Ay =As, Ay =rAy, B3=qDBy, B = 5(1 +q) By (101)

where r,q < 1 are some parameters related to 013 and 615 via eq. (I00), then we find,

3 r
Eop & BT Momg, €2, = qeau, E2e N 2 €2p- (102)

The flavoured effective neutrino masses mo,, M1, are given by:

_|B|?? |G
Y p—

Mo, Miqa MC ~ 7. (103)

Neutrino oscillation experiments tell us that r,¢ < 1 are small (here we shall assume
r ~ 0.2 and ¢ ~ 0.3 as a specific example consistent with current experimental results)
and we find

(149)°
4

ffb2 mo
Ky, = —% ~ — ~ 10, Ky ~

My m

K2/u Kor ~ C]2 K2/u (104)

which allows strong washout for Ky, (7 = p+e) with weak washout for Ky,. By assuming
that C1,Cy < C3 we have,
o ﬁllT

Kir = 2 w102 Ky, Ky, < K (105)
My mo

which allows for strong washout for K, (at least if m; ~ mgy) with weak washouts for
Ky, Ky,

Thus, without flavour coupling and phantom terms, we would have strong (exponen-
tial) N; washout for Ky, ~ 10, with negligible N; washout for K., K;, < 1. Since
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€2¢ N 569, < 0.1, we may neglect €9, and then we find that the term proportional to
€9y K(Koy) is strongly washed out since Ky, ~ 10. Therefore, without flavour coupling
and phantom effects, N5, would be negligibly small in this scenario.

While, allowing for the effects of flavour redistribution and including the phantom

term, we find (cf. eq. (B6)),

K
2we0) o (K. (106)

f
N ~ —
B-L ™~ Pu T

Ko,y v

Since Ky, /Koy ~4/(5+2¢q) ~ 0.7 and p, >~ e9,[1 — (4/(5+2¢q))(1+7/2)] = 0.2, then
we have,
N_p, ~0.2¢e3, — 0.7CP ey, k(Ko,), (107)

where Ky, ~ ¢* Ky, ~ 10¢* ~ 1 leads to only weak wash out with &9, ~ —==°—
being large. Notice that there is a partial cancelation of the two terms but this is just
depending on the particular choice of values for r» and ¢. This is an example, consis-
tent with neutrino data, where N5 _; would be very small without flavour coupling and
phantom term, but will be quite large including the two effects that both produce a large

contribution.

4.3 Example for Case B within Light Sequential Dominance

To give an example for case B (i.e. an example where K. < Ky, K1, while g5, > €5, €2
and Ky, < Ks,), we may consider another class of sequential dominance, namely light
sequential dominance (LSD). Now, in eq. (83) and eq. (87) we have to replace 6 = e and
B = p.

In the example of LSD we will consider, using the same notation for the dominant,

subdominant and subsubdominant RH neutrinos and corresponding couplings, we have:

My 0 0
Mgr=1| 0 Mo 0 |. (108)
0 0 M;p

The lightest RH neutrino with mass M4 dominates the seesaw mechanism. We have again
ordered the columns according to Mggr = diag(M;, My, M3) where My < My < Ms. For

the neutrino (Dirac) Yukawa matrix we use the notation

A1 Ol Bl
A= |4y Cy By|,. (109)
A3 CY3 BB
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More specifically, let us now consider, within LSD, a variant of CSD called partially
constrained sequential dominance (PCSD) @] where |Ay| = |As| = a and |By| = |By| =
|Bs| = b, but Ay # 0. In addition, we may assume C = (C4,Cy, C3) with C; = 0 and
Cy/C3 = ( < 1 as a specific example. Under these conditions, and using A; = rAs =

V20,345 defined in the previous section, we can write the neutrino Yukawa matrix as

\/50130, 0 b
A = a Cc b|. (110)
—a c b

The flavoured effective neutrino masses ms,, M1, in this specific LSD scenario are
given by:

_ Coz 2,2 _ Aa 2,,2
mMoq = | ]\4| ! ~ Mg, Miqg = | | ! . (111)
C

M4
For my., my, and m;, we obtain explicitly

- V2 013 a|*v?
Me = =~ =M 01,

_ _ la|>v?*  ms
oy My, =My, = TR (112)

The parameters K, are related to the m;,’s simply by K;, = m;,/m*. Since we know
from neutrino oscillation experiments that the leptonic mixing angle ;3 is small (at least
< 10°) we have that K. < Ky, = Ky, ie.

ms3

Klu:KlTN % N50 (113)
and K. K
le le 2
K.,  Ki (vV2615) (114)

Consequently, the asymmetries in the 7 and in the p flavours will be almost completely
washed out by the N; washout related to K, and Kj,. In the e-flavour we have weak

N;-washout.

Furthermore, using % ~ my, we obtain at the N, decay stage
ma ma
KQT ~ KQP« ~ C% < K27'7 and ng =0 y (115)

which implies
Koy = Ky + Ky < Koy (116)
The N, decay asymmetries, ignoring the contribution with N; in the loop which is
very small for the considered case that N; < Ny, are given via eq. ([[I]) by
3 My 1
16702 M3 BTB
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Im [B;(B'C)C,] . (117)



Using B and C' as specified above eq. (II0) and m; ~ %, we obtain for the decay

asymmetries g,

3
Eor _W Mg ma, &9y = €€27— L €927y, E2e = 0. (118)

Considering eq. ([83) and noting that Ky, = 0 together with 5. = 0 implies ps = 0
we see that all terms apart from the one proportional to C’éi) are strongly suppressed
provided that ( is sufficiently tiny (¢ < 7). In other words, the considered LSD scenario
provides an example for case B, a final asymmetry dominated by flavour coupling effects

at the N; washout stage, as in eq. (87). Explicitly, we obtain for the final asymmetry

K. 3¢ Mym m
Nj oy~ —C8) 2 cor i(Kap) ~ S0 (V2013) s (m—l) (119)

5 Conclusions

We have discussed various new flavour dependent effects in the Ny-dominated scenario
of leptogenesis and have shown that these effects are important in obtaining a reliable
expression for the final asymmetry. In particular we have emphasized the importance
of the off-diagonal entries of the flavour coupling matrix that connects the total flavour
asymmetries, distributed in different particle species, to the lepton and Higgs doublet
asymmetries. We have derived analytical formulae for the final asymmetry including the
flavour coupling at the Ns-decay stage, where effectively two flavours are active, as well
as at the stage of washout by the lightest RH neutrino N; where all three flavours are
distinguished. The interplay between the production stage and the wash-out stage can
then result in a strong enhancement of the final asymmetry.

We have also described a completely new effect, “phantom leptogenesis”, where the
lightest RH neutrino wash-out is actually able to create a B — L asymmetry rather than
destroying it as usually believed. This is possible because the individual wash-out on
each flavoured asymmetry can erase cancelations among the electron and muon phantom
terms and therefore lead to a net increase of the total B — L asymmetry. In this way
the wash-out at the production is basically fully circumvented for part of the produced
electron and muon asymmetries. We also noticed however that the phantom terms also
strongly depend on the specific initial conditions.

We have not fully explored the changes induced by these new effects in the complete pa-
rameter space in this paper. They are, however, encoded in the general “master formula”

eq. (7)) for the final asymmetry. Based on this equation we have identified a sufficiently
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generic scenario, the “flavour swap scenario”, where we proved that a strong enhancement
of the final asymmetry due to flavour coupling and phantom terms is clearly possible. We
have illustrated these two effects for two models which describe realistic neutrino masses
and mixing based on sequential dominance.

In conclusion, the off-diagonal flavour couplings as well as phantom terms can have
a strong impact on the baryon asymmetry produced by Nj-dominated leptogenesis and
thus have to be included in any reliable analysis. We have derived exact analytic (and also
compact approximate) results that allow this to be achieved. The results in this paper
open up new possibilities for successful No-dominated leptogenesis to explain the baryon
asymmetry of the universe.
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Appendix

In this Appendix we recast eq. ([{@]) in a more extensive way in order to illustrate a generic

feature of it. Each final v asymmetry is now the sum of three contributions,

f o -1
NAa - Voze”

> Ve N’i;TL] e ¥ K (A1)
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In the approximation Ko ~ K., Ky ~ Ky, Ki» >~ Ky, it becomes

> Vers NigTL] et (A2)
B

~ _ 37
3 |
&)

28




+ Vi

T~T -3 Ky,
> Vs NE; ] B
B

This expression shows how now each a asymmetry is not simply given by one term
containing a N; wash-out exponential suppression term described by e =37 %1/8 but it

—37TK167£0¢/8' In this way, even

also contains terms that are washed out by exponentials e
though K, > 1, there can still be unsuppressed contributions to Nan from terms with
K546 < 1. Even though these terms are weighted by factors VO;;1 containing off-diagonal
terms of the C'® matrix, they can be dominant in some cases and therefore, in general,
they have to be accounted for.

We can also recast this last equation in even a more explicit form unpacking the second

sum as well,

NE, & Vi [Vare NI 4 Vo, NETTE 4 Vi NETTH] 00 (A3)
+ Voo |:Vuue NAT 4+ Vi N 4 Vi, Ng;ﬂ] e 5 K
+ v [VT NI™TE 4 Vi, NOT 4 Vi, NngL] LKL
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