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1. INTRODUCTION

The Shipborne Wave Recorder (SBWR) was devised by M.J. Tucker in the early
1950's, (TUCKER, 1956). Since then it has been used extensively for the routine
measurement of waves in sea areas around the British Isles and in the North-East
Atlantic, as well as in other parts of the world. Although considerable advances
have been made in wave measuring instruments over the last 30 years, the SBWR
remains a uniquely reliable and cost-effective system in those areas where a
suitable station keeping ship is available, and so information about its
performance continues to be of interest. Because the SBWR in effect uses the
ship upon which it is mounted as a wave sensor, not only does the response of the
instrument to waves of different wavelengths differ, but the responses of
instruments mounted on different ships differ one from another. Thus,
uncertainties regarding the wavelength response, or equivalently, the frequency

response of the SBWR have limited the accuracy of wave measurement.

Several measurements of the frequency response of the SBWR have been
undertaken on different ships over the years, and in view of the continuing
interest in the instrument another such experiment was conducted in 1980 aboard
the Trinity House Lightvessel at the Channel Station. This work is described in
a report (CRISP, 1987) which attempts, as far as possible, to be a definitive
account of the performance of the SBWR as a wave measuring instrument. This will

be referred to frequently as "Crisp".

The present report describes a method of applying measured frequency
response information to SBWR spectra, which since 1982 have become available on a
routine basis from a number of stations around the British Isles and the near
Atlantic Ocean. The approach proposed in Crisp is followed, i.e. what is
essentially a Froude number scaling is used in an attempt to reconcile the

available measured frequency response data.

1.1 The Analysis of SBWR data

When the SBWR came into use pen and paper chart was the only practical
method of recording bearing in mind that the instrument is used on ships of



opportunity and operated by non-specialist personnel. In fact, the method has
many advantages, two of the most important being the simplicity and reliability
of the equipment and the ease with which the record can be scanned to ensure

correct operation of the instrument.

The records are analysed by the so-called Tucker-Draper (T-D) method,
(TUCKER, 1963; DRAPER, 1967) which is based on work on the statistics of waves by
CARTWRIGHT, 1958 and CARTWRIGHT & LONGUET-HIGGINS, 1956.

Essentially, the method allows estimates of the significant waveheight, Hg
and the mean zero-crossing period T, to be made from 5 basic measurements from
the chart record. There are 4 height measurements and T, is estimated from the
number of zero crossings and the record length. The heights require a correction
for the response of the instrument and this is calculated as the reciprocal of
the instrument's response evaluated at the frequency 1/TZ. Statistical aspects
of this procedure are reviewed by TANN, 1976, and the correction method is

discussed by Crisp.

The advantages of chart roll recording have persisted right up to the
present as regards simplicity and reliability of operation, but the expense and
slowness of the manual analysis method have increasingly been seen as
unacceptable. Thus around 1980 it was decided to install microcomputers onboard
the ships fitted with SBWRs and to process the data at source, the results being

written to magnetic tape.

1t was decided to use spectral analysis of the digital data and the reasons

for this decision are discussed in the next section.

1.2 Choice of method of analysis of digital data

It was realised that the change from analogue to digital recording and from
manual to machine analysis of the data would lead to some differences in the
results since wave statistics are notoriously sensitive to such changes,

particularly as regards the period parameters. In the case of the SBWR whose



response is such a strong function of frequency, differences in the determination

of the period parameters produce changes in the height parameters as well.

While in principle it would be possible to implement the Tucker-Draper
analysis as routine on the shipboard microcomputer the results would not be the
same as a Tucker-Draper analysis of the corresponding pen chart record. The

reasons for this include the following:

(i) The human analyst consistently under-estimates the number of zero-

crossings in the record, particularly at low sea states.

(31) The digital record consistently underestimates the heights of the crests
and the depth of the troughs.

(iid) Low frequency noise, which is occasionally present in SBWR records, is
allowed for in a subjective way by the human analyst but would upset a

simple machine analysis.

In principle, (iii) could be dealt with by high pass digital fitting of the
record before analysis and an approximate correction for (ii) can be applied,
PITT et al., 1978. A carefully tuned algorithm for counting zero crossings which

included hysteresis might emulate the combination of pen chart and human analyst.

However, the spectral method allows the response correction function to be
properly applied, and the frequency band for the calculation of the wave
statistics can be simply defined. If compatibility of the period statistic with
the pen chart results is considered essential, then the spectral method allows a
number of period parameters to be defined in a clear and consistent way. And of
course the spectrum itself is available to users. In short, the spectral method
offers advantages of consistency and flexibility which make its use hard to

resist.

2. THE OPERATION OF THE SBWR AND ITS FREQUENCY RESPONSE

Crisp describes a simple model of the operation of the SBWR which leads to
the result that, considering only the hydrodynamical aspects of the measuring
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system (i.e. disregarding the response of the electronics etc.), the response is
equivalent to the transfer function of the measured pressure fluctuations to the
surface waves. Thus, the problem of defining the frequency response of the SBWR
js equivalent to determining how the pressure at the measurement position on the
ship's hull is related to the surface waves. The simplest assumption that can be
made is that the pressure beneath the waves is the same as it would be in the
absence of the ship. Then, according to the linearised theory of water waves and

assuming that the ship is operating in deep water, the amplitude response, R, is

given by:
R(k) = exp(-kd)
(2.1)
j.e. R(f) = exp(-(2nf)?2d)

g

where k is the wavenumber
f is the frequency of the waves
d is the mean depth of immersion of the pressure sensors

g is the acceleration due to gravity

Some early measurements of the response suggested that it fell more quickly
than indicated by (2.1) and so the depth was multiplied by a factor a (usually
called k). a is set to 2.5 in the Tucker-Draper analysis method. In spite of
this modification the response is still negative exponential, and in Section 3 we
investigate to what extent it agrees with the more recent measurements at our
disposal. Crisp points out that a more realistic theory for the pressure should
include the effect of the interaction of the ship with the waves, and develops an

"interface theory" as a first step in this direction.

3. FREQUENCY SCALING OF MEASURED RESPONSE DATA

Five sets of data are used in this work, three of which have already been
considered by Crisp. These are those made onboard Weather Reporter by CANHAM et
al., 1962, those made onboard Cumulus by VAN AKEN & BOUWS, 1974 and Crisp's own
measurements on the Channel 1ightvessel. To these we add a set of measurements
taken on the S.S. Cairndhu, 1965 and a set made on R.V. Ernest Holt, 1965. These

latter results are based on comparatively little data, each set being the mean of
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Jjust three determinations of the response each of which was based on a single

wave record.

Table 3.1 sets out the main dimensions of the 5 ships.

TABLE 3.1 (all dimensions in metres)

Ship Pressure Length Beam Draught Water
Sensor Depth

Depth
Channel L.V. 2.0 35.0 8.7 3.5 60
O0.W.S. Cumulus 1.5 62.0 12.6 4.5 =1500
O0.W.S. Weather Reporter 2.2 72.0 10.9 4.3 =1500
R.V. Ernest Holt 1.95 53.3 9.1 4.4 =1000
S.S. Cairndhu 3.7 128.0 18.3 5.8 =1000

Figure 3.1 is a plot of the experimental estimates of |R}2 against

frequency, and as can be seen there is a wide scatter in the results.

Now consider equation (2.1). If (like Crisp) we define a scaled frequency

variable

" = /E

gz J g f (3.1)
(2.1) gives R2(&2) = exp(-4n £02) (3.2)
for the "classical" formula
and R2(£,5) = exp(-10n £02) (3.3)

for the "modified" formula.

In Figure 3.2 are plotted the experimental estimates of IR]2 against £, as
well as (3.2) and (3.3) for comparison.
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It will be seen from this plot that although in general the measured
responses do not agree well with either of the exponential forms, the scaling has
reduced the spread between the different ships, (although the measurements from
Cumulus stand out somewhat in the middle of the frequency range).

Now, (3.1) is essentially a Froude number scaling with d as the length
scale. In ship motion work it is more usual to use the ship's length L, to give

a scaled frequency variable

/2nL

gl = J g f (3.4)

and Figure 3.3 shows the experimental estimates of |R}2 plotted against &,.
This scaling provides some reconciliation of the results from the several ships,
however Crisp argued that a scaling based on the product of L and d did rather
better for the observations at his disposal. He thus defined the frequency

variable

= J="" f 3.5
which has dimensions of (1ength)%.
Figure 3.4 shows the experimental estimates of |R|2 plotted against &3.
It will be seen that this does indeed bring the results from the several ships

together, except that the results for Cairndhu (by far the biggest ship) stand
well apart.

(3.5) can be made non-dimensional by using the harmonic mean of L and d
rather than their product to give the freguency variable

gy = /2 L)k f (3.6)

w

Figure 3.5 shows the experimental estimates of |R|2? plotted against &,.
It will be seen that it provides a reduction in scatter between the ships which
is comparable to that obtained by the use of £,. In fact £4 was selected as the

best scaling, for reasons which are discussed later.
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4. FITTING FORMULAE TO THE MEASURED RESPONSE DATA

Since neither the "classical™ nor "modified" formulations of the SBWR
response fit the experimental data well, it was decided to use a completely
empirical approach. To start with the measured data were fitted by non-linear
least squares to a polynomial in the scaled frequency variable £4- A standard
NAG library computer program was used for this. 3rd, 4th and 5th order
polynomials were tried, but since the 4th order was substantially better than the
3rd, while the 5th order did not result in a significant improvement over the
4th, the 4th order polynomial was selected as the most appropriate formulation.
Thus,

RHZ = Ag + Ap Eg + Ap 0a2 + A3ggd + Agget (4.1)

A disadvantage of this formulation is that the values of Ry2 evaluated for
a particular value of &4 can only be expected to be reliable estimates of |R)2
within the range of €4 for which the original data were measured. Moreover from
physical considerations Ry? is expected to approach unity for small values
of £4, and empirically we note that the response approximates a constant at high
values of &5  Accordingly we introduce two further parameters: the values of &4
below which Ry2 should be taken as unity, and above which it should stay
constant. We thus arrive at a 7-parameter specification of the response.

In order to reduce the number of parameters a different formulation was

sought which embodied more clearly the known characteristics of the response.

Eventually the following form was adopted:

RH2 = 1 - Ap{l - exp[-A, &4 - Ap £42 - A3 £4°]} (4.2)

This tends to unity at low frequencies and to a constant (1 - Ag) at high

frequencies.

The experimental data can be expected to be progressively less reliable as

the frequency decreases below 0.1 H;, and so in order to force the fitted curve
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to adopt a physically reasonable shape at the lower frequencies, a group of five
points was added to the data for each ship. These were specified at frequencies
0.0, 0.005, 0.010, 0.015, 0.020 H,, the response being set to unity. Using this
technique, it was possible to use (4.2) throughout the required range of £,4.

In fact, the differences between the responses estimated from 4.1 and 4.2
are marginal, especially considering the scatter in the experimental data, but

4.2 is considered more convenient.

Figures 4.1 to 4.5 show the fits obtained using data from the 5 ships
separately and Figure 4.6 shows the fit obtained for the whole data set.

Table 4.1 gives the corresponding values of the four constants and the rms

error. N is the number of points, including the 5 manufactured ones.

TABLE 4.1
Ship Ag A1 Ao A3 £ rms N
Channel L.V. 0.8468 0.4876 -6.4058 26.691 0.0443 30
0.W.S. Cumulus 0.7734 1.0832 -19.048 64.048 0.0260 28
0.W.S. Weather Reporter 0.8258 -1.0047 8.9790 3.7864 0.0440 22
Ernest Holt 0.83725 2.2130 -21.234 54.182 0.0877 23
Cairndhu 0.82108 0.27094 -7.4233 40.096 0.0531 24
A1l Ships 0.81027 0.50723 -8.1996 35.790 0.0690 127

5. APPLICATION OF THE RESPONSE CORRECTION

According to the simple model described in Crisp, the spectral data must be

corrected as follows:-

S =3 N SER U
corrected measured RH2 RE2
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where Kp is the response function of the electronic double integrator. Before
going on to describe the application of the correction method it will be useful

to document the SBWR spectral data collection programme.

5.1 The SBWR microcomputer data collection programme

The Hewlett-Packard H9915 microcomputer has been in use in the I.0.S.
routine wave data collection programme since 1983 when one was installed at the
shore station for the Isles of Scilly Waverider which was located at the
Coastguard tower on St. Mary's. Since then they have been used successfully at a

number of coastal sites.

In 1980, a microcomputer was installed on one of the ships attending Ocean
Station Lima, MV Starelia, on a trial basis. Subsequently, the second ship
attending the site, OWS Cumulus, was also equipped with a microcomputer, and it
is proposed to accept the spectral data as the main data source from 1984

onwards.

5.2 Operation of the onboard microcomputer

The microcomputer is programmed to initiate a wave recording (hereafter
called an "observation") at intervals of 3 hours at Ocean Station Lima and of
1.5 hours on the Lightvessels attending Seven Stones, Channel and Dowsing. The
wave observation consists of 4096 measurements of the SBWR output separated by
0.5 seconds, giving a total length of 2048 seconds. In the subsequent
processing, the observation is divided into two sections of 1024 seconds.
Firstly, each section is subjected to a number of quality control checks, and
depending on the outcome of these the section is either 'accepted' or 'rejected’.
If a section is accepted its Digital Fourier Transform is calculated using an FFT
method and the sample spectrum is estimated in the way outlined in PITT, 1981.
The main parameters of this calculation are as follows: the section is cosine-
tapered over 1/8 of its length at each end; each sample estimate consists of the
mean of 7 adjacent elementary (periodogram) estimates giving a frequency
resolution of 0.006836 Hz; and 14 degrees of freedom for each estimate. The
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spectrum is then corrected for the response of the double integrator and also for
the hydrodynamic response using the inverse of the classical formula (3.2). A
number of integrated properties of the spectrum are derived including the
spectral moments of integer order from -2 to +4, Hg and T, and Goda's (1970) Qp.
These are then written to magnetic tape. If a section is rejected a single-
record no-data observation is written. In the subsequent on-shore processing,
where there are spectra for two valid sections, these are averaged to give a

final spectrum with 28 degrees of freedom.

5.3 On-shore Processing

The microcomputer tapes were returred to the Taboratory at regular
intervals dictated by the changeover of ships attending 0.S. Lima or by the
relief of the Lightvessels. Here, they were transcribed onto computer compatible

tape and subsequently written to disk. Further processing consisted of:

(a) Assembling the data into monthly files with the correct representation of
missing data.

(b) Recorrecting the spectra by multiplying by the classical formula (3.2) and
dividing by the empirical response (4.2). Both of these corrections are
ship dependent, and (in the case of Lima) in any given month the site may
have been attended by either or both ships.

(c) Recalculating the integrated properties of the spectra i.e. the spectral
moments, Qp, Hg and T,.

The recorded data were then written to disk file in the standard 1.0.S.
spectral wave data format.
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6. EVALUATION OF THE SPECTRA

The success of the correction method was judged rather subjectively by
checking if the part of the measured spectra at frequencies above the spectral
peak was fitted by an £75 tail (under appropriate conditions).

Fig. 6.1 shows spectra from Ocean Station Lima measured during severe
conditions which show satisfactory fits to an equilibrium tajl defined by
S(f) = a'f with a'= 0.00076 m? sec?. The numbers above each graph are year, day
number, time, Hg and T,. The last figure is the quality flag - 0 for accepted,

1 for rejected, and is set during the on-shore processing of the data.

Fig. 6.2 shows some rather poorer fits, and in particular 3 spectra which
were measured with the ship underway. These show a transfer of energy from
higher to lTower frequencies caused by Doppler shifting as the ship ran with the
waves. Note that these observations were not noted as "steaming records" which

4

would have resulted in the quality flag being set to 1.

Fig. 6.3 includes some spectra of 'steaming records' measured when the ship

was steaming into the waves.

The lightvessels at the Dowsing and Seven Stones sites are of similar
length, 35 m, but the pressure sensor depths were 0.8 m and 2.6 m respectively.
In section 3 it was explained that scaling of the frequency by ship's length only
(3.4) and by the harmonic mean of ship's length and pressure sensor depth (3.6)
gave rather similar results in that they both gave a similar degree of

reconciliation of the measured responses of the different ships.

However, we note that (3.4) predicts an identical response for the Dowsing
and the Seven Stones Lightvessels {since they have the same length}, while (3.6)

will make some allowance for the substantially different pressure sensor depths.

Fig. 6.4 and Fig. 6.5 show spectra for the Seven Stones corrected using the
two scaling options, and Fig. 6.6 and Fig. 6.7 show data from Dowsing.
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The differences between the two scaling options are small, but with perhaps
a slightly better fit for the Seven Stones data with Scale 4 (3.6). It was
therefore decided to adopt (3.6) as the best frequency scaling option. It is
recognised that this is a highly subjective assessment, made more difficult by
the fact that these coastal sites are affected by tidal currents and their

associated Doppler shifts.

Fig. 6.8 and Fig. 6.9 show spectra from Channel Lightvessel corrected using
Crisp's results from Channel as fitted by the curve in Fig. 4.1.

Another aspect of the response curves should be considered: this is the
tendency for the response to approach a constant value at a scaled frequency of
about i. It is possible that this may be due to noise dominating the signal at
the higher frequencies and Crisp investigated the effect of non-linear
interaction due to the changing mean depth of the pressure sensor as the ship
heaved. More extensive and detailed calculations were undertaken by the present
writer, but did not satisfactorily explain the form of the response. In view of
this uncertainty, the information from the instrument may be considered suspect
above scaled frequency 0.5, and an equilibrium tail substituted for the measured
spectrum. This method was tried, but the differences between Hg and T, derived
from the 'corrected' spectra and the 'substituted' spectra proved to be
negligible. It was decided to use the empirical correction throughout the
frequency range. At least this has the merit that the measured values of the

spectrum are recoverable by reversing the correction.

7. COMPARISONS BETWEEN Hg AND T; DERIVED FROM CHART RECORDS
AND THE CORRESPONDING SPECTRAL MEASURES

Comparisons were made between the wave parameters estimated from the chart
records using the Tucker-Draper method and those from the spectral technique. In
each case linear regression was used with the line constrained to pass through
the origin. Figures 7.1.1 to 7.1.3 show data from Lima measured during the early
months of 1984. They respectively show comparisons of Hy derived from chart
records i.e. Hg(T-D), with Hg derived from the spectra, the same for T,, and a

comparison between T,(T7-D) and Ty, the first moment period from the spectrum.
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Figures 7.2.1 to 7.2.3 show similar comparisons for the Seven Stones
Lightvessel, 7.3.1.to 7.3.3 are for the Dowsing Lightvessel and 7.4.1 to 7.4.3
are for the Channel Lightvessel.

Table 7.1 gives a summary of the main results of these comparisons.

TABLE 7.1

Measurement Parameters Number of Correlation
site Ind Dep Data Pairs Coeff Slope
Lima Hg(T-D) Hg(Spec) 451 0.9646 0.8806
T,(T-D) T,(Spec) 451 0.8370 0.8473
T,(T-D) T1(Spec) 451 0.8550 0.9296
Seven Stones Hg(T-D) Hg(Spec) 765 0.9287 0.7875
T,(T-D) T, (Spec) 322 0.9387 0.9146
T,(T-D) T1(Spec) 322 0.9405 0.9841
Dowsing He(T-D) Hg(Spec) 656 0.9768 1.0317
T,(T-D) T,(Spec) 656 0.9179 0.8116
T(T-D) T1(Spec) 656 0.9421 0.8624
Channel Hg(T-D) Hg(Spec) 336 0.9547 0.8084
T,(T-D) T,(Spec) 336 0.9372 0.8972
T(T-D) T1(Spec) 336 0.9370 0.9872

It is clear that major discrepancies exist in the estimates for both Hg and
T,. In all cases except Dowsing, the chart-roll estimates of Hg are higher (on
average) than those for the spectra. In the case of Lima, however, it should be
noted that for waveheights up to about 7 m the two measures are in reasonable
agreement. The two very high chart values were the highest to be measured that
winter and the highest was the world record. This discrepancy is clearly a
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statistical effect rather than one associated with the correction procedure. For

Lima, T, from the chart rolls is on average 15% larger than from the spectra.

For Seven Stones, Hg from the charts is fully 21% higher on average than
from the spectra. For the lower waveheights, the chart roll value often exceeds
the spectral value by 50% or more. This is a matter of some concern, as it is
the different analysis and correction methods which have caused the discrepancy.
Seven Stones has the deepest pressure sensor of the vessels considered in this
report, the depth being 2.6m, which results in large corrections being applied at
the shorter periods in the chart roll method. The chart-roll T,'s exceed the

spectral T,'s by 83% on average.

During 1985 there was a period during which the Waverider (W/R) to the West
of St Mary's, Isles of Scilly and the HP9915 on the Seven Stones Lightvessel were
both operational. Now, while the two sites are some distance apart (=22km) and
the Scilly Isles Waverider is considered to be better exposed, nevertheless the
comparison of simultaneous observations from the two systems is of interest.
Figure 7.5 shows the comparison for Hg. The values from the two sources of
spectral data over the range from 1 to 8 m differ by about 73%, the W/R giving
higher values. Remarkably, considering the geographical separation of the two
sites, the measurements are well correlated with a correlation coefficient of
0.93. Fig. 7.6 shows the corresponding comparison for TZ. This shows that the
Seven Stones (SBWR) values exceed the Scilly Isles (W/R) values by 4% on average,
with a tendency for the values to approximate each other closely at the longer
periods, and to diverge at the shorter periods. This is as one would expect
given the higher frequency 1imit to which the moments are summed in the W/R
analysis scheme (0.64 Hz) compared with 0.48 Hz for the SBWR system.

This is a useful indication that the SBWR correction scheme is yielding
sensible results, and suggests that it is the chart-roll method which has
produced waveheights which are too high. By contrast, the Dowsing results show
that the chart-roll values of Hg are lower than the spectral results. The chart-
roll values of T, exceed those from the spectra by 19% on average. Note that the
comparison is for a very restricted range of Hg and T,. The measured Hg does not
exceed 4m, and the great bulk of the values are less than 2m, while T, is between

3 and 8 seconds.
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For the Channel Lightvessel, the value of Hg(T-D) exceed the spectral
values by 19% while the chart-roll T,'s exceed the spectral values by 10% on

average.

Since the chart-roll method is expected to overestimate T,, and the
comparisons confirm this expectation, it is of interest to investigate other
period parameters of the spectrum to see if they better approximate the chart-
roll T,'s. The comparison with T, (the first moment period) is good for Seven
Stones and Channel, rather less good for Lima (chart-roll 7% Tonger than T,) and
poor for Dowsing with the chart-roll results about 14% in excess of the spectral
T,.

8. RECORRECTING HISTORICAL WAVEHEIGHT DATA

Because there are considerable differences between the T-D and the spectral
data there is some interest in developing a method of reconciling the results
from the two methods so that the currently accumulating spectral data can be
combined with the historical T-D data.

8.1 Differences between the T-D and the spectral estimates of Hg

There are essentially three important differences between the T-D and

spectral estimates of Hg:-

(1) There are differences in the statistics of the estimates derived by each
method. Assuming the ideal Gaussian narrow-band sea surface (and perfect
measurements) the r.m.s. error in the estimation of Hg is about 6% in the
case of the T-D method and perhaps 3-4% in the spectral method, and they
are both unbiased estimates of the true Hg. The latter point in particular
is illustrated in Fig.8.1.1-8.1.4 which show Hg calculated from the

uncorrected spectra plotted against the uncorrected values of He(T-D).
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(2)  The correction method is fundamentally different. In the spectral method
the response correction function is applied to each spectral estimate and
then the corrected spectrum is summed to estimate mg, and then Hg is
calculated as 4Jmg. In the T-D method, the uncorrected Hg is estimated and
then a scalar correction is derived as the correction function evaluated at
a (single) characteristic frequency, which is the reciprocal of the mean

zero crossing period of the record.

(3) And, of course, the correction functions used are different.

8.2 The Characteristic Period

Clearly, there is 1ittle we can do about the statistical differences and
except for the few highest values these are not expected to be significant. By
and large it appears to be the correction process (2 and 3) which is responsible
for the differences. In pursuing this, we first wished to find out what
jnaccuracy was introduced hy the use of a scalar correction evaluated at a
characteristic frequency, rather than by using the full procedure of correcting

the spectrum frequency by frequency.
To do this we used the spectral data and plotted

m'gQ(1/Tc) against af2S';Q(F;) (Primes indicate uncorrected values
j

throughout this section)

where S;' is the uncorrected spectral density at frequency fj. m'g is the zeroth

moment of the uncorrected spectrum, i.e.

m'o = 4f3S4"
i

(in general the nth moment of the spectrum will be defined by m, = Af2 Sifin)
i

Q is the correction function to be applied and is given by
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1 1
Q=573 x RgZ
as previously defined. T¢ is the characteristic period and was taken as
Tll (: m'O/m|1)-

The results for Lima, Seven Stones, Dowsing and Channel are shown in
Figures 8.2.1-8.2.4 and summarised in Table 8.2.1. We first note the remarkably
high correlation - clearly the scalar correction method can be used with very
high statistical confidence. Next we see that the scalar corrected values are

biassed below the fully corrected values by about 11%.

Some further comparisons were made using Tc = BT'; where B could be
varied. It was found that at a certain value of B(<1), the bias in the results
could be made to disappear, but at the expense of poorer correlation.

At first sight these results may be surprising, but consider the following.
8.2.1 Why does the scalar correction work so well?

Suppose the correction function is linear in frequency:

C=ag+ aif, say.

Then we can show very easily that T'1 is the appropriate characteristic
period and Teads to an exact correction:

mo Af3S'5(ag + afy)
i

agm'p + ajm',

=m'glag + a3 m'y)

m'O
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where we note that the bracketed quantity is just the correction function

evaluated at frequency 1/T'y

However, § is not linear and we may ask if the above ideas can be extended

to a more general correction function.

Suppose we fit a straight 1ine C to Q so that the sum of the squares of the
residuals (weighted by the measured spectrum) is minimized,

j.e. D=3 (C; - Qy)2S"; where Cy = C(f;) etc.
i

so that 3D = 23(C; - Q;)S'y =0 (8.2.1a)
&ao i
i.e. agm'p *+ aym'y - mg =0 (8.2.1h)
and 3D = 22f(Cy - Q3)8'5 =0
aal 3
i.e. agm'y +am'p -mp =0 (8.2.2)

Equations 8.2.1 and 8.2.2 allow ag and a; to be estimated from the moments
of the corrected and uncorrected spectra; however, for our purposes only 8.2.1 is
of interest. 8.2.la says that mg calculated using the actual correction function
Q is the same as mpy calculated using the fitted straight line correction function
C. 8.2.1b shows that we may apply an exact correction by using C evaluated at
1/T'y. However, in the comparisons described above we used Q(1/T'1) not
C(1/T'y), so that the ordinate of each point differs from unity by a factor
Q (1/T'1)/C(1/T'y).

Moreover, C(1/T'1) =mg = AfZS5'Q;

mg' Af2S';

which is the average of Q weighted by the spectrum, call it Q.

Evidently, for a wide class of spectra Q(l/T'l)/Q remains close to 0.89.
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8.2.2 Estimating Ty

When recorrecting the T-D values of Hg, the period parameter available is
TZ(T-D) not Ty'. We could attempt to calculate the relationship between T,(T-D)
and T1' for a given analytical spectrum using a given instrument response
function. However, the variety of spectral forms found in nature is so wide, and
the counting process used in the estimation of T,(T-D) so difficult to model that

once again we must use empirical correlations.
Ty from the uncorrected spectra (i.e. T1') was plotted against T, from the

T-D analysis for Lima, Seven Stones, Dowsing and Channel. The results are shown

in Figures 8.2.5~-8.2.8 and summarised in Table 8.2.2.

TABLE 8.2.1

Comparison between my fully corrected and mg using a scalar correction

Station and period Slope (Scalar: Full) Correlation Coefficient
Lima (Jan-Mar 84) 0.8948 0.9987
Seven Stones (Apr-May 85) 0.8929 0.9997
Dowsing {Jul-Sep 85) 0.9082 0.9967
Channel (Mar-Apr 86) 0.8741 0.9988
TABLE 8.2.2

Comparison between Ty from the uncorrected spectra and T,(T-D)

Station and period Slope (Tl':TZ) Correlation Coefficient
Lima (Jan-Mar 84) 1.0724 0.8951
Seven Stones (Apr-May 85) 1.0518 0.9183
Dowsing (Jul-Sep 85) 1.0076 0.9557

Channel (Mar-May 86) 1.1262 0.8615
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8.3 Recorrection of Hy(T-D)
On the basis of the previous section, we may correct Hg(T-D) as follows:

Hep = Hg'(T-D) x __1_ JQ(fc)
R e

where Hgp is the corrected value of Hg
Hg'(T-D) is the uncorrected estimate of Hg
Sgp is the empirical coefficient relating the scalar corrected mg' to the
fully corrected mg (as discussed in section 8.2)

fo = 1/{T,(T-D) x Syi75}

where Sti7, is the empirical coefficient relating Ty from the uncorrected
spectrum to T,(T-D).

This was tried on data from Lima, Seven Stones, Dowsing and Channel. Since
Sgp varies only slightly from ship to ship (Table 8.2.1), the mean of the four
was used, i.e. Sgp = 0.8925 with standard deviation 0.014.

Stz differed substantially from ship to ship so the individual values
were used.

Hep is plotted against Hg(spectral) in Figs.8.3.1, 8.3.2, 8.3.3 and 3.3.4.
The correlation and regression coefficients are shown in Table 8.3.1.

Lima, Seven Stones and Dowsing show satisfactory agreement. For Channel
the recorrected heights are about 5% less than the spectral values on average.
Careful investigation failed to reveal the cause of this, although it was noted

that the T1':T, relationship was very variable.



TABLE 8.3.1

Comparison between recorrected Hg(T-D) and spectral Hq

Station and period Slope (Hgp:Hg(spectral)) Correlation Coefficient
Lima (Jan-Mar 84) 1.0482 0.9611
Seven Stones (Feb-Apr 85) 1.0026 0.9347
Dowsing (Jul-Sep 85) 0.9903 0.9751
Channel (Mar-May 86) 0.9505 0.9690

9. CONCLUSIONS

An empirical response function for the SBWR has been developed, based on a

Froude number scaling of the frequency as proposed by Crisp.

The inverse of this function has been used to correct spectral data
measured at four IOSDL SBWR wave measurement sites, and the corrected spectra

have been used to estimate Hg, T, and T,.

When these were compared with Hg and T, estimated from the simultaneous
chart recordings (the so-called Tucker-Draper estimates of Hg and T, Hg(T-D) and
T,(T-D)), considerable differences were noted. As far as T,(T-D) is concerned,
this agrees better with the first moment period of the spectrum, T, than with
the spectral T,. More importantly, serious discrepancies exist between the Hg
estimates for those vessels with rather deep pressure sensors. Both Seven Stones
L.V. and Channel L.V. show differences of about 20%, with Hg(T-D) higher.

Some W/R measurements are presented which suggest that the new correction

method is giving sensible results.

In view of the discrepancies noted in Hg, a method is proposed for
recorrecting historical Hg(T-D) data and this was tried out on the four
installations. For three of these, the recorrected values of Hg agreed well with
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the spectral values, while for the fourth, Channel L.V., some unexplained
residual error remained.
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SPECTRA FROM OCEAN WEATHER STATION LIMA

CORRECTED USING FREQUENCY VARIABLE g Fig. 6-1
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SPECTRA FROM OCEAN WEATHER STATION LIMA

CORRECTED USING FREQUENCY VARIABLE g Fig. 6-2
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SPECTRA FROM OCEAN WEATHER STATION LIMA
CORRECTED USING FREQUENCY VARIABLE é Fig. 6-3
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SPECTRA FROM THE SEVEN STONES LIGHTVESSEL

CORRECTED USING FREQUENCY VARIABLE g Fig. 6-4
4
85 o8 730 2.87 580 8 88 1030 3.18 8400
400. ]E 400. —f
200, —+ 200, —+

85 88 20 184 B8GSO 85 88 130 3172 B.8S O

?
:

85 88 150 37 7010 85 P9 1830 380 6.53 0

f
a2 o



48

SPECTRA FROM THE SEVEN STONES LIGHTVESSEL

CORRECTED USING FREQUENCY VARIABLE g Fig. 6-5
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SPECTRA FROM DOWSING LIGHTVESSEL
CORRECTED USING FREQUENCY VARIABLE g Fig. 6:6
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SPECTRA FROM DOWSING LIGHTVESSEL

CORRECTED USING FREQUENCY VARIABLE (f Fig. 6-7
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SPECTRA FROM THE CHANNEL LIGHTVESSEL
CORRECTED USING FREQUENCY VARIABLE g
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SPECTRA FROM THE CHANNEL LIGHTVESSEL

CORRECTED USING FREQUENCY VARIABLE g
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