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UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 
 

FACULTY OF MEDICINE, HEALTH AND LIFE SCIENCES 

SCHOOL OF BIOLOGICAL SCIENCES 

 

Doctor of Philosophy 

 

TARGETING THE CALCIUM ATPASE TO THE ENDOPLASMIC 
RETICULUM 

by Helen Rachel Watson 
 
 
 
 
The sarco/endoplasmic reticulum calcium ATPase (SERCA) pumps calcium from the 
cytoplasm into the lumen of the endoplasmic or sarcoplasmic reticulum (ER/SR), removing 
excess Ca2+ from the cytoplasm and replenishing ER/SR Ca2+ stores. SERCA is located in 
both the ER and the ER-Golgi intermediate compartment, and so is likely maintained in the 
ER by retrieval. To locate the ER retrieval signal(s) in SERCA, a series of chimeric calcium 
pumps have been constructed. Sections of SERCA were replaced with corresponding sequence 
from its plasma membrane counterpart; plasma membrane calcium ATPase (PMCA). 
Replacing the C-terminus of SERCA with corresponding PMCA sequence results in 
mistargeting of the protein to the plasma membrane. The opposite construct (consisting of 
PMCA with the C-terminus replaced by that of SERCA) is located in the ER, suggesting that 
the ER retrieval signal lies towards the C-terminus of the protein. Many of the chimeras built 
were located in the ER. This is likely to be due to protein misfolding in some cases. Attempts 
were made to detect the unfolded protein response in cells expressing chimeras by measuring 
levels of the chaperone protein BiP. BiP upregulation was only seen when the unfolded 
protein response was induced pharmacologically, and not in cells expressing chimeras. More 
subtle mutagenesis was then carried out to assess the role of the tenth transmembrane domain 
of SERCA in ER retrieval and CD8 reporter constructs were used to study the tenth 
transmembrane domains of SERCA and PMCA. The study then focussed on determining the 
mechanism by which SERCA is retrieved to the ER. Rer1p and BAP31 are both candidate 
receptors for the retrieval of SERCA. An antibody to two epitopes in human Rer1p was raised 
and characterised. Immunoprecipitation and cross-linking showed that although Rer1p appears 
not to interact with SERCA, BAP31 shows a potential interaction and therefore could be 
involved in the retrieval of the calcium pump to the ER.  
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1. Introduction 

1.1 Eukaryotic cells, organelles and membrane proteins 

Within the plasma membrane surrounding eukaryotic cells lie distinct membrane bound 

compartments: organelles. Each organelle contains a specific complement of proteins, 

equipping it to carry out its particular role within the cell. Cell viability depends on the correct 

functioning of its proteins and organelles and so the billions of protein molecules inside each 

eukaryotic cell1 must be delivered to the appropriate compartment and maintained there. With 

the exception of a handful of proteins encoded by the mitochondrial genome, all proteins 

begin synthesis on cytosolic ribosomes. Signals within the proteins then direct them from the 

cytoplasm to their target destination within the cell. Each organelle employs specific 

machinery to recognise these sequences and in some cases, recognise additional sorting 

signals which determine whether a protein resides there or is passed to another compartment. 

The external (plasma) membrane of the cell and the organellar membranes within it each 

contain a specific compendium of membrane proteins. Membrane proteins play many and 

diverse roles in eukaryotic cells. Channels and transporters move substances across 

membranes, receptors receive and propagate signals from outside and inside the cell, and 

certain proteins in the plasma membrane play a role in cell adhesion. In addition, the display 

of some membrane proteins on the surface of cells or organelles functions as an identity tag 

which can be recognised by proteins involved in intracellular protein traffic1,2.  

 

1.2 Overview of the secretory pathway 

The secretory pathway consists of a series of membrane bound organelles linked by membrane 

traffic in forwards (anterograde) and backwards (retrograde) directions. Approximately 30% 

of all cellular proteins enter the secretory pathway by insertion into the endoplasmic reticulum 

(ER)3. Some remain there, while others are transported by anterograde transport to the ER-

Golgi intermediate compartment (ERGIC) then the Golgi (through the cis, medial and trans 

cisternae) and into secretory vesicles destined for the plasma membrane. Proteins arrive at 

endosomes predominantly by retrograde traffic from the cell surface, and the route to 
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lysosomes is via endosomes. This incredibly complex pathway is simplified in figure 1.1. 

Proteins can also be maintained in any compartment in the secretory pathway either by 

mechanisms of retention or retrieval from downstream compartments. Although some 

trafficking pathways within the secretory pathway are understood, many of the protein 

components and mechanisms involved are still yet to be elucidated4,5. In this review I will 

discuss in detail the initial targeting events that cause protein delivery to the ER and how ER 

proteins are then maintained in that compartment, focussing on the targeting and trafficking of 

an ER calcium pump.  

 
Figure 1.1 The secretory pathway 

A simplified diagram of the secretory pathway showing forward (anterograde) and backward 

(retrograde) traffic. Arrows are coloured according to the donor and acceptor compartments of 

the transport complex. Based on Bonifacino, J.S. and Glick, B.S., 20044. 

 

1.3 Calcium signaling and calcium ATPases 

Calcium (Ca2+) is a vital intracellular messenger involved in many different cellular signalling 

pathways including those causing muscle contraction, gene transcription and cell death6. In 

order to function as such a ubiquitous messenger, effective organisation of calcium 

concentrations within the cell is critical. At rest, the cytoplasmic calcium concentration is 

approximately 100 nM, with the cellular calcium pool concentrated in internal stores. 
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Extracellular calcium concentrations are around 20,000 times higher than intracellular 

concentrations7. The cell devotes significant amounts of ATP to maintaining these large 

gradients between the cytosol and external milieu. Any calcium released into the cytoplasm 

for signalling purposes must be quickly removed, either into internal stores or out of the cell 

entirely, as prolonged increases in cytoplasmic calcium can result in aberrant signalling and 

cell death6. Calcium was selected early in evolution over other abundant cations (magnesium, 

sodium and potassium) for use as a biological messenger, capable of triggering a vast array of 

cellular events. Due to their size, calcium ions have the ability to coordinate to oxygen atoms 

in binding sites with varying bond lengths, as opposed to smaller magnesium ions which 

favour a perfect octahedral site. This flexibility suits biological systems, and allows calcium to 

bind to a range of often irregularly shaped binding sites found in target proteins8.  

 

Calcium signaling 

The question of how calcium is able to exert specific effects, given its large variety of binding 

partners, is an important one. Certainly the varying affinities of different proteins for calcium 

allow some discrimination between calcium signals of different amplitudes, but other factors 

are also involved. Calcium enters the cytoplasm, through influx channels, from the internal 

stores (endoplasmic or sarcoplasmic reticulum and mitochondria) or from outside the cell. 

Spatially isolated calcium ‘sparks’ or ‘puffs’ can cause a local effect (termed an elementary 

event) in the immediate vicinity, giving spatial control of the signal. An example of an effect 

caused by such a local signal is the release of secretory vesicles, such as in the case of 

neurotransmitter release at synapses which is triggered by a local influx of calcium upon the 

arrival of an action potential6,7. These initial calcium sparks can also induce global calcium 

waves which proliferate throughout the cell. Skeletal muscle contraction is triggered by 

release of calcium from the sarcoplasmic reticulum (SR; specialised ER found in muscle cells) 

upon membrane depolarisation. Voltage dependent calcium channels in T-tubules (invaginated 

sections of the plasma membrane close to the SR) let calcium in as the muscle cell is 

depolarised, causing further release of calcium from the SR through ryanodine receptors. This 

elevation in cytoplasmic calcium concentration causes shortening of the sarcomeres 
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(contractile units of muscle) by allowing myosin and actin filaments to slide together, having 

the overall effect of shortening the muscle filaments and causing contraction9,10.  

 

Oscillations in cytoplasmic calcium concentrations can be detected by some proteins. 

Calmodulin (CaM) is a conserved calcium binding protein containing four calcium binding 

sites in EF-hand motifs. Upon calcium binding, CaM transforms into a more elongated, active 

conformation. Active CaM has a wide variety of target proteins including calcium-calmodulin-

dependent protein kinase II (CaMKII). CaMKII is able to detect the frequency of calcium 

spikes in the cytoplasm and translate that information into differing levels of kinase activity, in 

order to phosphorylate target proteins. Upon CaM binding, CaMKII is autophosphorylated 

causing activation of the enzyme. This autophosphorylation can maintain the activity of the 

enzyme as the cytosolic calcium decreases, giving the protein an ability to ‘remember’ 

calcium spikes. Repeated calcium spikes can therefore increase the activity of the enzyme in a 

stepwise fashion, allowing specific interpretation of the frequency of calcium signals11.  

 

Calcium ATPases 

Regulation of cytoplasmic calcium and refilling of internal stores of calcium are both crucial 

for the effectiveness of calcium signalling, upon which so many processes rely. The 

sarco/endoplasmic reticulum calcium ATPases (SERCAs), secretory pathway calcium 

ATPases (SPCAs) and plasma membrane calcium ATPases (PMCAs) work in concert to 

maintain calcium concentrations within internal calcium stores, compartments of the secretory 

pathway and in the cytoplasm12-14. These enzymes all belong to the P-type ATPase family 

(named after the phosphorylated intermediate formed during the catalytic cycle) and are 

similar to each other in both structure and function13.  

 

SERCAs 

SERCA is, at least structurally, the most well characterised enzyme of this group of P-type 

ATPases. The SERCA pumps were initially described as a ‘relaxing factor’ which could allow 

muscle cells to relax following contraction, but were later shown to be involved in calcium 

signalling events in all cells15,16. SERCA uses the energy generated by ATP hydrolysis to 
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drive calcium ions against their concentration gradient across the ER or SR membrane, into 

the lumen. By virtue of its high abundance in skeletal muscle tissue, SERCA can be purified in 

relatively large amounts. This has allowed extensive structural analysis by X-ray 

crystallography; something that still eludes many membrane proteins, including PMCA. The 

first crystal structure of SERCA1 was published by Toyoshima et al. in 2000 and paved the 

way for subsequent structural studies, which followed in the next few years15,17,18. The first 

structure provided a snapshot of the calcium pump in a calcium bound E1 conformation, and 

confirmed structural features previously suggested, including ten transmembrane segments, 

two calcium ion binding sites and three distinct cytoplasmic domains17. As a result of this, and 

the subsequently elucidated structures, we now have a collection of freeze-frames of SERCA 

in different conformations, which have hugely increased our understanding of the 

conformational changes that occur during the catalytic cycle of the enzyme18.  

 

The sarcoplasmic reticulum calcium ATPase (SERCA1a) contains ten transmembrane helices, 

small lumenal loops, and a large cytoplasmic domain which can be subdivided into three 

functionally and spatially distinct domains (figure 1.2). The P (phosphorylation) domain 

contains the conserved residue Asp351, which is phosphorylated upon ATP binding. The ATP 

binding site is located in the N (nucleotide binding) domain of the enzyme. The structure of 

the N domain showed Phe487, Lys515 and Lys492 positioned close to the bound ATP 

analogue, TNP-AMP, all of which are residues previously shown by mutagenesis to be 

important for nucleotide binding. The smallest of the cytoplasmic domains, the A (actuator) 

domain, undergoes significant movement during calcium transport and is believed to assist in 

dephosphorylation of the enzyme following calcium release17,18. The ten transmembrane 

helices (M1-M10) of SERCA differ in length and orientation with respect to the membrane 

surface. The two calcium ion binding sites are located within the transmembrane domain, and 

binding of calcium is sequential. The first calcium ion binds between M5, M6 and M8 and the 

second binds very close to (almost ‘on’) M418. Prior to the availability of the crystal structure 

of the ATPase, site directed mutagenesis of residues in M4, M5, M6 and M8 had implicated 

these helices in calcium binding19. The bound calcium ions are stabilised in their binding sites 

by residues Asn 768, Glu771 (M5), Asn796, Thr799, Asp800 (M6) and Glu908 (M8) which 

contribute to a hydrogen bonding network, coordinating the ions18.  
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Figure 1.2 X-ray crystal structure of SERCA in the E1 Ca2+ ADP bound state 

This structure of SERCA in the E1 conformation is bound to two Ca2+ (shown in green) and 

ADP (shown in yellow space fill). The three cytoplasmic domains; actuator (A), 

phosphorylation (P) and nucleotide binding (N) domains are labelled. The phosphorylated 

residue, D351, is shown in red space fill. The protein is coloured from blue at the N-terminus 

to red at the C-terminus. Based on Toyoshima 200818. PDB code 2ZBD, rendered using PDB 

Protein Workshop. 
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Our understanding of the mechanistic details of the catalytic cycle of SERCA has been 

dramatically improved by the availability of over 20 crystal structures of the enzyme in 

different conformations. The E1-E2 mechanism is the generally accepted model for the 

transport of calcium into the ER or SR lumen by SERCA (figure 1.3)18. This model is based 

upon the transition of high affinity calcium binding sites facing the cytosol to low affinity 

calcium binding sites facing the ER or SR lumen. Two calcium ions enter SERCA from the 

cytoplasmic side and bind to the high affinity sites of the E1 state. This causes the P and A 

domains to separate, allowing ATP to reach and phosphorylate Asp351, following nucleotide 

binding to the N domain. Transfer of the γ-phosphate of ATP to Asp351 causes occlusion of 

the bound calcium ions in their binding sites by the M1 helix, preventing exit into the 

cytoplasm. Phosphorylation causes transport of calcium ions into the lumen by breaking the 

salt bridge between Lys684 and Asp351. This moves two small helices (P1 and P2) close to 

the loop between M6 and M7, causing movement of the M6-M7 loop and subsequent changes 

in the packing of the M6 and M7 helices and affinity of the calcium binding sites. The A 

domain rotates, moving M4, M5 and M6, and removing the calcium binding sites. ADP is 

released upon phosphorylation, and the E2 state is formed. The destruction of the calcium 

binding sites, by movement of the M6-M7 loop and A domain rotation, results in release of the 

calcium ions into the lumen, gated by movement in M1 and M2. Further rotation of the A 

domain allows dephosphorylation and closure of the luminal calcium release gate, returning 

the pump to the E1 state in preparation for the next cycle. These large conformational changes 

that SERCA undergoes enable the protein to couple phosphorylation and calcium transport; 

two processes that are spatially separated by relatively large distances within the protein. 

Evidence from the numerous snapshots of the protein we have from crystal structures shows 

that the C-terminal region of SERCA undergoes the least structural changes during the 

catalytic cycle12,18,20.  
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Figure 1.3 Reaction scheme of SERCA 

Structures are coloured from blue to red from the N- to C-termini. All putative intermediates 

are shown in the centre, with four shown in structural detail. The binding site of the inhibitor 

thapsigargin (TG) is shown. Based Toyoshima, C. 200818. PDB codes are 1SU4 (E1 2Ca2+), 

2ZBD (E1 2Ca2+ ADP), 2ZBE (E2P) and 2AGV (E2), rendered in PDB Protein Workshop. 
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There are three human SERCA pump isoforms; SERCA1, SERCA2 and SERCA3, encoded by 

three separate genes; ATP2A1, ATP2A2 and ATP2A3 respectively. RNA splicing of the 

transcripts of these genes produces SERCA1a/b, SERCA2a/b/c and SERCA3a/b/c/d/e/f 

isoforms. Different SERCA isoforms are adapted to different functions and vary in the cell 

types in which they are expressed. SERCA1a is the predominant isoform in fast-twitch 

skeletal muscle and functions as the ‘relaxing factor’ to reduce calcium concentrations in the 

cytoplasm of myocytes and bring about relaxation16. SERCA1b plays the same role in 

neonatal muscle15,21. SERCA2a is found in cardiac muscle and slow-twitch skeletal muscle. 

The ubiquitous SERCA2b is expressed in all tissues and functions as a house-keeping ER 

calcium pump. The RNA splicing of SERCA2b creates an eleventh transmembrane domain, 

resulting in a luminal C-terminus in contrast to the cytoplasmic C-termini of the other SERCA 

isoforms. It has been proposed that this extended C-terminus may allow regulation of the 

activity of the pump15,21-23. SERCA3 is present in several cell types including platelets, 

lymphocytes, Purkinje neurons, intestinal epithelial cells and endothelial cells. SERCA3 has a 

lower affinity for calcium than either SERCA1 or SERCA2, and its unusual distribution in 

specialised cell types may reflect a specific function in cells with high cytoplasmic calcium 

concentrations15,24. SERCA3a, b and c, produced by differential splicing of the ATP2A3 gene, 

show variations in their C-termini and in their affinities for calcium25. The more recently 

described SERCA3d is expressed in many more tissues than the other SERCA3 isoforms, 

suggesting that like SERCA2b, SERCA3d has a house-keeping function in many tissues26.  

 

Why are so many isoforms of SERCA required? Different cell types have specific 

requirements for calcium pumping into the ER or SR, and this corresponds to the SERCA 

isoform(s) present in each cell type. For example, the fast turnover number of SERCA1a 

renders it suitable for fast-twitch muscle cells which require rapid removal of calcium from the 

cytoplasm and replenishment of SR stores, in preparation for the next contractile event. In 

contrast, SERCA2b is used in non-muscle cells as a house-keeping pump with a slower 

turnover but higher affinity for calcium ions, allowing it to function at low cytoplasmic 

calcium concentrations15. SERCA2a and SERCA2b are co-expressed in pancreatic cells, but 

are physically separated within the cell, possibly indicating that different calcium pools are 
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spatially separated and maintained by different SERCAs, allowing precise control of different 

calcium signalling events27.   

 

Phospholamban (PLB) is a small (52 amino acids), C-terminally anchored, membrane protein 

located in the SR of cardiac, slow-twitch and smooth muscle cells15,28,29. PLB mediates the 

‘fight or flight’ response in cardiac muscle as a result of β-adrenergic stimulation. The 

interaction of PLB with SERCA2 has an inhibitory effect on the pump, which is reversed upon 

phosphorylation of PLB by protein kinase A (PKA) or calmodulin kinase. cAMP produced as 

a result of β-adrenergic stimulation activates PKA causing phosphorylation of PLB and 

subsequent dissociation of PLB from SERCA2, resulting in an increased affinity of the 

calcium pump for calcium ions and a more rapid relaxation of the muscle30. PLB binds to a 

groove in the transmembrane region of SERCA formed by M2, M4, M6 and M9, interfering 

with calcium binding by M4 and M6 in order to inhibit the pump. The cytosolic portion of 

PLB interacts with that of SERCA, compromising the large conformational changes that 

SERCA requires for activity29.  

 

Sarcolipin (SLN) is another short (31 amino acids) membrane spanning protein which can be 

considered a functional PLB homologue due to conservation of sequence and function 

between the two proteins. SLN modulates SERCA1 activity in fast-twitch muscle and cardiac 

muscle31. SLN expression in slow-twitch muscle is much lower, mirroring the distribution of 

SERCA1 in this cell type32. SLN has the same effect on SERCA as PLB and is thought to 

interact with the same site in SERCA31. Unlike PLB, SLN is not regulated by phosphorylation, 

but instead its effect on SERCA is modulated by levels of SLN in the SR membrane15. 

Heterodimers of PLB and SLN have superinhibitory effects on SERCA31. The increase in 

protein interactions in a ternary complex of PLB, SLN and SERCA renders it more stable than 

complexes of the calcium pump with only one modulator protein, making the inhibition 

stronger and longer lived. This superinhibitory effect is also attributed to the disruption of 

PLB pentamers in the membrane and increased PLB/SLN dimers. PLB pentamers are most 

probably unable to inhibit SERCA due to their size, whereas the heterodimer with SLN is 

superinhibitory, causing increased inhibition of SERCA31.  
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Calcium in the secretory pathway 

Aside from the obvious requirement for calcium in the ER and SR, the cell also needs to 

maintain high concentrations of calcium in the ERGIC and Golgi13,33. The ERGIC contains 

SERCA pumps and has the capacity for both calcium intake from the cytosol and storage of 

calcium by binding proteins. Furthermore, specific inhibition of SERCA by thapsigargin 

results in the secretion of KDEL (Lys-Asp-Glu-Leu) containing proteins that are normally 

retrieved from the ERGIC by the KDEL receptor (discussed in detail later in this review), 

indicating that calcium is required for protein traffic between the ERGIC and ER33. Calcium 

concentrations in the Golgi are high, and are maintained by both SERCAs and the secretory 

pathway calcium ATPases, SPCAs. Like SERCAs, the SPCAs are P-type ATPases with very 

similar overall domain architecture to the SERCA pumps13. SERCA is located in the cis-

Golgi, whereas SPCA is the dominant calcium pump in the trans-Golgi. How this differential 

targeting of these similar proteins to different parts of the Golgi is achieved is not understood, 

but one possibility is that they are able to sense the increasing levels of cholesterol present 

from the proximal to distal sides of the Golgi, and distribute themselves accordingly13. 

Similarities in symptoms of the diseases caused by mutations in SERCAs or SPCAs show that 

regulation of calcium both in the cytoplasm and throughout the secretory pathway is critical. 

Loss of one copy of the human SERCA2 (ATP2A2) gene results in Darier disease, 

characterised by loss of skin cell adhesion and skin lesions34. Patients with Hailey-Hailey 

disease, caused by a loss-of-function mutation in one copy of the human ATP2C1 gene 

(encoding the SPCA1 pump), exhibit very similar symptoms to those seen in Darier disease13. 

The symptoms of these diseases and the similarities between them have been, in part, 

attributed to the decreased abundance in intracellular calcium stores (either in the ER or 

Golgi), and the resulting disruption of glycosylation and folding of cell surface proteins on 

their journey through the secretory pathway13. Mutation of the human ATP2A1 gene 

(corresponding to the SERCA1 isoform) causes Brody disease which has entirely different 

symptoms to the two diseases described above. Brody disease patients show muscle cramping, 

consistent with the role of SERCA1 as a ‘relaxing factor’ in skeletal muscle9. The similarities 

and differences in the physiological roles of ER/SR and secretory pathway calcium pumps are 

elegantly illustrated by the study of their associated diseases, which show the diverse 

consequences of mutations in the genes encoding them.  
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PMCAs 

The plasma membrane calcium ATPases (PMCAs) are also members of the P-type ATPase 

family, and their role is to transport calcium, against its concentration gradient, out of the 

cytoplasm and into the extracellular milieu35. Although the crystal structure of PMCA is yet to 

be solved, its sequence and functional similarity to SERCA allows structural predictions to be 

made (see figure 1.4). The C-terminus of PMCA is longer than that of SERCA and contains a 

calmodulin binding domain, which permits regulation of the pump as calcium concentrations 

in the cytoplasm fluctuate. A rise in calcium in the cytoplasm increases the proportion of 

calcium bound calmodulin. This activated calmodulin binds to PMCA, causing displacement 

of an autoinhibitory domain of the pump and increasing the affinity of PMCA for calcium by 

about 10 to 20 fold35.  

 

 
Figure 1.4 Predicted architecture of PMCA 

PMCA contains three cytoplasmic domains (A, P and N) and ten transmembrane domains. 

This figure shows the calmodulin unbound state of the pump, in which the calmodulin binding 

domain (CaM-BD) binds PMCA and acts to inhibit the pump. Upon activation by calcium, 

calmodulin is able to bind PMCA at the CaM-BD, displacing the domain from its inhibitory 

position and activating the pump. Adapted from Di Leva, F. et al. (2008)35. 
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In humans and rats, and most probably other mammals, PMCA RNA undergoes alternative 

splicing, resulting in production of various isoforms from four different genes36. It is assumed 

that, like SERCA, the varying isoforms are required to fulfil different functions, as they differ 

in characteristics including affinity for calcium and sensitivity to activation by calmodulin36. 

PMCA1 and 4 are most likely the house-keeping isoforms, as they are expressed in all tissues. 

Loss of both copies of the PMCA1 gene causes embryolethality in mice, supporting the 

hypothesis that PMCA1 is the crucial house-keeping pump. PMCA2 and 3 are more 

specifically expressed in certain tissue types and are considered to be involved in specific 

signalling events rather than functioning as house-keeping enzymes. For example, PMCA2 

plays a role in signalling within the hair cells of the auditory system, loss of which is 

manifested as deafness in PMCA2 null mice37. The same question arises here as when 

discussing the Golgi and ER calcium pumps; what are the differences between the proteins 

that cause SERCA to locate primarily to the ER, SPCA to the Golgi and PMCA to the plasma 

membrane? This question will be addressed later in this review when I focus on how the 

SERCAs are maintained in the ER.  

 

1.4 Endoplasmic reticulum protein targeting 

ER resident proteins such as SERCA, as well as proteins destined for other compartments of 

the secretory pathway or plasma membrane such as SPCA and PMCA, all undergo a common 

targeting step to the ER3,38. All ER targeted proteins begin synthesis on cytosolic ribosomes. 

The majority are targeted to the ER during translation and complete their synthesis at the ER 

membrane. A small subset of proteins, including the SERCA modulator proteins PLB and 

SLN, are targeted following complete synthesis in the cytoplasm. Information contained 

within sequences of ER targeted proteins is recognised by protein and RNA machinery in the 

cytoplasm and brings about their targeting to the ER membrane28,39,40.  

 

The signal hypothesis proposed by Blobel, Sabatini and Dobberstein in the 1970s was an 

important landmark in our understanding of protein targeting to the ER41,42. The initial 

hypothesis suggested that a ‘unique sequence of codons’ at the very beginning of a translating 

mRNA causes a translating ribosome in the cytoplasm to associate with the ER membrane, 



 25

targeting the nascent protein to the ER42. This was thought to occur via a ‘binding factor’ able 

to bind both the ribosome and a ‘factor on the membrane’ thus allowing attachment of the 

translating ribosome to the ER membrane41. This requirement for a factor located exclusively 

on the ER membrane provides a simple answer as to how ribosomes and their nascent chains 

are specifically targeted to the ER. The N-terminal targeting sequence (or signal sequence) is 

now known to be recognised by the signal recognition particle (SRP) which binds to the signal 

sequence, the ribosome and the SRP receptor at the ER membrane. Binding of the SRP causes 

a pause in translation as the complex is targeted to the SRP receptor in the ER membrane. The 

ribosome then docks onto the translocon (a pore in the ER membrane) and following 

dissociation of the SRP and the SRP receptor, the majority of the protein is then synthesised at 

the ER membrane43,44. This mode of targeting is known as co-translational targeting, as 

opposed to post-translational targeting in which the full length protein is made before its 

delivery to the ER membrane40. In this discussion, I will focus on co-translational ER 

targeting, and will review post-translational targeting at the end of the section.   

 

Signal sequences 

The signal hypothesis has held up remarkably well against the onslaught of 35 years of 

research by biochemists and cell biologists in the field. Detailed analysis of the signal 

sequence (the ‘unique sequence of codons’ initially suggested) has shown that relatively 

diverse sequences can be recognised and cause ER targeting42,45,46. An analysis of random 

sequences by Kaiser et al. in 1987 demonstrated that approximately one-fifth of random 

peptides fused to yeast invertase resulted in secretion of the protein, highlighting the low 

sequence specificity with which signal sequences are recognised45. Although no specific 

sequence motifs seem to be required for recognition, signal sequences do share these common 

characteristics: a sufficiently hydrophobic stretch (20-30 amino acids), a basic region at the N-

terminus and a polar domain at the C-terminal end of the hydrophobic section44,47. In the 1975 

paper which expanded on the signal hypothesis, Blobel and Dobberstein suggested that the 

signal sequence can be cleaved from the new protein following synthesis, or in some cases is 

left attached if it is required for the activity of the protein42. We now know that there are two 

possible fates for the N-terminal signal sequence following targeting of the protein to the ER 
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and the completion of protein synthesis. It can be removed by signal sequence peptidase, or 

can be retained and form a transmembrane domain in the mature protein47. Cleaved signal 

sequences are present in all soluble and secreted proteins targeted to the ER as well as many 

(but not all) membrane proteins48. The amino acids on the N-terminal side of the signal 

peptidase cleavage site (-1 and -3 with respect to the cleavage site) as well as the length of the 

hydrophobic stretch and the hydrophilicity of the domain N-terminal to the hydrophobic 

domain can all influence the likelihood of signal sequence cleavage47,48. Although it is 

generally understood that signal sequences are degraded by the proteasome following their 

detachment from the mature protein, there is evidence that they fulfil post-cleavage roles. For 

example, signal sequence derived peptides can be presented at the plasma membrane by MHC 

(major histocompatibility complex) class I molecules as part of a reporting system whereby 

surface expression of self-peptides prevents attack by cells of the immune system49.  

 

An uncleaved signal sequence that forms a transmembrane domain in the mature protein is 

termed a ‘signal-anchor’ sequence as it fulfils both signalling and anchoring roles during 

targeting and insertion into the membrane50. These signal sequences bring about targeting to 

the ER in the same way and by using the same machinery as cleaved signal sequences51. In 

order to remain attached to the protein and insert into the membrane, signal-anchor sequences 

must be void of signal peptidase cleavage sites and the hydrophobic stretch of amino acids 

must be of the correct length to span the lipid bilayer. Signal-anchor sequences can insert into 

the bilayer with either their N- or C-termini in the ER lumen to form type I and type II 

membrane proteins respectively. Charged residues on the N-terminal side of the hydrophobic 

region and a shorter hydrophobic region increase the chance of type II topology, whereas type 

I topology is favoured by a longer hydrophobic region and few or no charges at the N-

terminus47.  

 

The signal recognition particle (SRP) 

The ‘binding factor’ that recognises the signal sequence of a nascent protein was discovered 

by Walter and Blobel almost ten years after the signal hypothesis was published41,52. They 

purified six proteins required for the co-translational translocation of ER targeted secretory 
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proteins, a complex which would be coined the ‘signal recognition protein’ (SRP)52. Further 

work revealed that the SRP was in fact made of both proteins and RNA, and was renamed the 

‘signal recognition particle’53. 

 

We now have a much clearer view of the structure and function of the SRP. The mammalian 

SRP comprises six proteins and a RNA molecule of 300 nucleotides. The SRP can be split into 

two domains: the Alu domain (containing the SRP9 and SRP14 proteins) and the S domain 

(the remaining four proteins SRP19, SRP54 and the heterodimer SRP68/72). The M domain 

(contained within the SRP54 subunit of the S domain) is the site of signal sequence binding. 

The M domain contains a hydrophobic pocket lined with methionine residues which, due to 

their flexible side chains, allow the binding of varied hydrophobic signal sequences. 

Interactions between basic residues at the N-terminus of the signal sequence and the 

negatively charged SRP RNA strengthen the binding of the signal sequence to the SRP39,43. 

There are two main contact sites between the ribosome and the SRP. One is between the 

SRP9/14 heterodimer in the Alu domain and small ribosome subunit rRNA and the other is an 

interaction between the SRP RNA in the Alu domain and protein and rRNA in the large 

ribosomal subunit. There is also an interaction between the S domain of SRP and proteins near 

the exit tunnel of the ribosome43.  

 

As a signal sequence begins to protrude from the ribosomal exit tunnel (after synthesis of 

around 70 amino acids if the signal sequence is at the very N-terminus of the protein), the SRP 

binds to the nascent chain and to the ribosome and causes a pause in translation39,53. It is 

thought that the SRP can bind any ribosome and any nascent chain with a low-affinity in order 

to ‘sample’ for a signal sequence protruding from the ribosome39,54. Recent work suggests that 

the SRP can detect the presence of signal anchor sequences hidden within the ribosome exit 

tunnel, causing tighter binding of the SRP to the ribosome than the low affinity sampling 

interaction, in preparation for the exit of the hydrophobic sequence54. Once the signal 

sequence has left the exit tunnel of the ribosome and has bound to the M domain of the SRP, 

the SRP-ribosome-nascent chain complex is competent for targeting to the ER (figure 1.5)55. 

This targeting event is mediated by the SRP receptor, an ER membrane associated 

heterodimeric protein consisting of one α- and one β-subunit. The β-subunit has one 
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membrane spanning helix, anchoring the receptor in the membrane and the α-subunit is 

cytoplasmic. Three G-proteins regulate the cycle of SRP-ribosome-nascent chain binding to 

the SRP receptor. Two of these are in the SRP receptor (one in each of the α- and β-subunits) 

and one is in the SRP itself (within SRP54). In order for the SRP to bind the SRP receptor, all 

three G-proteins must be in the GTP bound form. The GTP bound SRP54 subunit binds to the 

GTP bound SRP receptor α-subunit, which is anchored to the ER via interaction with the GTP 

bound β-subunit of the receptor. The nascent chain is transferred to the translocon (a pore in 

the ER membrane close to the SRP receptor), GTP hydrolysis causes dissociation of the 

ribosome-SRP-SRP receptor complex, and translation is resumed through the translocon56.  

 

Signal sequence mediated targeting, SRPs and SRP receptors are extremely well conserved in 

evolution, and exist in eukaryotes and prokaryotes39. In bacteria, N-terminal signal sequences 

can result in protein delivery to the plasma membrane (as opposed to the ER in eukaryotes)44. 

The structure of the SRP and SRP receptor are similar in prokaryotes and eukaryotes, the main 

differences being that the prokaryotic SRP receptor is only peripherally associated with the 

membrane (rather than containing a membrane spanning subunit as in eukaryotes)39. In higher 

eukaryotes, co-translational, SRP dependent targeting is the dominant mechanism for protein 

delivery to the ER, whereas yeast and prokaryotes appear to favour post-translational 

targeting, requiring ATP dependent chaperones and not SRP40,57,58. Tail-anchored proteins are 

a class of eukaryotic proteins (including the SERCA modulator peptides PLB and SLN)28 

which are post-translationally delivered to the ER membrane, due to the proximity of the only 

hydrophobic sequence to the C-terminus of the protein. This sequence (which acts as the 

signal sequence and membrane anchor) does not leave the ribosome exit tunnel until synthesis 

is complete, and so cannot be recognised by targeting factors until this point. Targeting of tail-

anchored proteins to the ER appears to require ATP dependent chaperone proteins, and the 

involvement of the SRP in some cases, although the pathway (or pathways) by which this 

occurs is not well understood40,59,60. 
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Figure 1.5 SRP dependent ER protein targeting 

The main events in SRP dependent protein targeting are summarised. Protrusion of a signal 

sequence from a cytoplasmic ribosome allows binding of the SRP, resulting in a pause in 

protein synthesis. The SRP then binds the SRP receptor, targeting the ribosome and nascent 

chain to the ER. Once at the ER membrane, the SRP and SRP receptor dissociate from the 

ribosome and nascent chain, and translation is resumed through the translocon into the ER 

lumen. Following completion of synthesis, soluble proteins are released into the lumen, and 

membrane proteins (as shown in this figure) move laterally into the ER membrane. Based on 

Egea, P.F. et al. (2005)39.  
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The translocon 

The eukaryotic Sec61 translocon (SecYEG in prokaryotes) is a heterotrimer consisting of the 

large Sec61 subunit (SecY in prokaryotes) with ten transmembrane domains and the two 

smaller Sec61β and Sec61γ subunits (prokaryotic SecG and SecE respectively)61. Obtaining 

the X-ray crystal structure of the SecYEβ translocon from the archaea Methanococcus 

jannaschii was an important step forward in understanding this protein complex, and how it is 

able to translocate proteins across the ER membrane in eukaryotes, or plasma membrane in 

prokaryotes62. The channel was shown to consist of two linked transmembrane sections 

(transmembrane domains 1-5 and 6-10 of the large Y subunit), a single transmembrane 

domain not essential for function (β subunit) and a transmembrane domain linked to an 

amphipathic helix on the cytoplasmic face of the membrane, clamping together the two halves 

of the large Y subunit (the E subunit). Comparison of this structure with the structure of the 

bacterial SecY translocon from E. coli (obtained with electron microscopy) shows these two 

protein complexes to be very similar. The M. jannaschii crystal structure provides a snapshot 

of the channel in its closed conformation. A short helix functions as a ‘plug’ and sits in the 

channel, preventing unwanted traffic of peptides and small molecules through the membrane. 

The channel itself forms an hourglass like structure which, at its narrowest point, forms a pore 

ring made up of hydrophobic amino acids. This is thought to provide a mechanism by which a 

seal can be maintained even when the channel is translocating a nascent chain. The division of 

the large membrane spanning Y subunit and the hinge between transmembrane domains 1-5 

and 6-10 offer a solution as to how membrane proteins can exit the translocon into the bilayer. 

A lateral gating mechanism can be envisaged in which the two halves of the pore open and 

allow hydrophobic segments to move into the lipid bilyer, without contacting the hydrophobic 

environment of the cytosol62.   

 

The translocon itself is a passive complex, so the driving force for translocation of proteins 

must come from elsewhere. In eukaryotic cells, the luminal chaperone BiP works as a ratchet, 

holding onto the elongating peptide as it enters the lumen of the ER, preventing it slipping 

back towards the ribosome and resulting in a net movement of the protein into the ER. 

Bacterial translocons appear to use a pushing rather than pulling mechanism. The cytosolic 
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ATPase SecA associates with the translocon on the cytoplasmic side and pushes the nascent 

chain through the plasma membrane58. In 2008, Zimmer et al. published the crystal structure 

of a bacterial SecYEG channel in complex with SecA, giving important insight into how ATP 

hydrolysis by SecA is coupled to peptide translocation through the translocon63. Comparison 

of this structure with the closed M. jannaschii structure shows it to be in more of an open 

conformation, which the authors propose is a ‘pre-active’ state. Interaction of SecA with the 

channel causes loosening of the plug helix in preparation for translocation, and a 

rearrangement of the transmembrane domain to allow insertion of a domain of SecA termed 

the two helix finger. The model of peptide transport proposed in this paper is one in which 

SecA clamps the translocating chain and the two helix finger contacts the peptide and pushes 

it into the channel63. This hypothesis was tested by Erlandson et al. who used mutagenesis 

studies to show that residues at the tip of the two helix finger of SecA are important for protein 

translocation. A ‘molecular endoscope’ technique was then employed to probe the 

environment surrounding a translocating chain. Crosslinking of different positions of this pre-

protein endoscope to SecA demonstrated that the two helix finger pushes the translocating 

chain directly into the translocon channel64.  

 

For single-pass membrane proteins, exit from the translocon by the lateral gating mechanism 

is easy to envisage, but for complex polytopic membrane proteins, exit from the translocon 

and assembly in the membrane is more difficult65. Transmembrane domains of polytopic 

membrane proteins interact with the translocon, TRAM (translocating chain-associated 

membrane protein), and other accessory components, and are held at the translocon to prevent 

them from diffusing away from the rest of the protein with which they need to assemble. 

Transmembrane domains of polytopic membrane proteins contain more charged and polar 

residues than those of single-pass proteins. These residues may cause a requirement for the 

protein to assemble, at least partially, before its release into the bilayer. The process by which 

membrane proteins assemble at the translocon and move into the bilayer is complex and it 

appears that different proteins assemble in different ways, with some transmembrane domains 

showing a greater affinity for the translocon than others66-68.  
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1.5 Traffic through the secretory pathway 

Following arrival at the ER, the entrance to the secretory pathway, proteins can be targeted to 

several different destinations, or leave the cell entirely. As mentioned above, much of the 

detail of the complex secretory pathway still remains unsolved, but here I will attempt to 

review what is known about the major compartments and trafficking routes, before looking 

more closely at transport between the ER and the Golgi with respect to the ER protein 

SERCA.  

 

The endoplasmic reticulum 

Upon synthesis into the ER through the translocon, it is crucial that proteins are folded into the 

correct conformation. As the nascent chain enters the ER, BiP functions as a ratchet, 

preventing the growing peptide from sliding back into the cytosol, and following translation, it 

also enables newly synthesised proteins to fold into their mature conformation, along with 

other chaperones such as calnexin and calreticulin. Some chaperones, including protein 

disulphide isomerase (PDI), catalyse disulphide bond formation in proteins entering the ER, 

assisting in their proper folding. Oligosaccharyl transferase catalyses N-linked glycosylation 

of proteins containing the appropriate motif (Asn-X-Ser/Thr) as they enter the ER lumen3. In 

addition to assisting correct folding of proteins, ER chaperones also detect and provide 

solutions to aberrant folding of proteins. The ER employs two mechanisms to regulate protein 

folding. The unfolded protein response is elicited in the ER as a result of increasing amounts 

of unfolded proteins, and causes upregulation of ER chaperones in order to increase the 

capacity of the organelle to fold proteins. ER-associated degradation describes 

retrotranslocation and destruction of terminally misfolded proteins by the proteasome69. 

Protein misfolding and the ER will be discussed in more detail in chapter 4. 

 

ER exit 

Following synthesis, correct folding and any relevant modification, proteins destined for 

downstream compartments of the secretory pathway must then leave the ER. ER exit sites 

(ERES) are punctuate structures on the ER membrane characterised by the presence of 
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components of the COPII (coat protein II) complex which mediate budding and transport of 

vesicles from the ER towards the Golgi70. Activation of Sar1, a small GTPase by its GEF 

(guanine nucleotide exchange factor), Sec12, causes the GTPase to insert an amphipathic tail 

into the bilayer, initiating the formation of the COPII complex. Heterodimeric proteins 

Sec23/24 and Sec13/31 are then recruited and coated vesicles are formed with the assistance 

of Sec16, which binds to the other components and stabilises the complex70,71. Cargo selection 

by COPII coats is controlled by Sec24 which binds ER export motifs on cargo proteins (such 

as LxxLE and DxE) and incorporates them into transport vesicles72. Other factors, aside from 

specific motifs, are thought to contribute to ER export of proteins. Transmembrane domain 

length is thought to be a determinant of ER export. Shortening of transmembrane domains (by 

8 or more amino acids) of the exported (plasma membrane) protein VSVG results in exclusion 

from ERES and retention in the ER73. It has been suggested that as the membrane thickness 

through the secretory pathway increases, ERES should have slightly thicker bilayers than the 

rest of the ER membrane, favouring incorporation of longer transmembrane domains73. 

However, this difference, if there is indeed a difference, is subtle, and the changes in 

transmembrane domain length required to cause mislocalisation of VSVG to the ER are large. 

Elongation of transmembrane domains has been shown to mislocalise ER proteins to the 

plasma membrane28,74, but again, the changes required are large in comparison to the subtle 

differences between thickness of the ER and plasma membranes. Bulk flow is also thought to 

account for protein exit from the ER, as cargo is incorporated into COPII vesicles in a non-

selective manner independent of export motifs or cargo receptors75.  

 

Between the ER and the Golgi lies the ER-Golgi intermediate compartment (ERGIC), also 

known as the vesicular tubular clusters. The nature and dynamics of the ERGIC has been the 

subject of much debate in organelle biology. Many scientists are reluctant to describe it as a 

stable membrane bound organelle comparable to the ER or Golgi, but acknowledge it as a 

transport intermediate. Two models exist to explain the dynamics of the ERGIC. The stable 

compartment model describes an ERGIC which receives COPII vesicles from the ER and 

sends cargo towards the cis-Golgi in budding vesicles, all the time maintaining its integrity as 

a stable compartment76. The maturation, or transport complex, model proposes that the ERGIC 

is a collection of fused vesicles which move forwards as one complex towards the Golgi 
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where they become a new cis-Golgi. Recent evidence has pointed towards the stable 

compartment model76,77, although there is also evidence to suggest that the ERGIC functions 

as a transport complex78. Regardless of whether the ERGIC is stable or a transient transport 

complex, it is generally agreed that it plays a role in protein sorting, and may also be involved 

in protein folding and quality control33,76. Retrograde transport from the ERGIC or early Golgi 

back to the ER will be discussed in a later section of this review.  

 

The Golgi 

For proteins that leave the ER or ERGIC and continue in an anterograde direction without 

retrieval, the Golgi is the next destination. The mammalian Golgi is usually perinuclear and is 

composed of cisternae arranged in stacks79. Proteins enter the Golgi at the cis face (closest to 

the ER), travel through the medial-Golgi and leave the organelle at the trans-Golgi80. Proteins 

travelling through, or residing permanently in, the Golgi, may be subject to modifications 

including N-linked glycosylation, modification of existing N-linked glycans and O-linked 

glycosylation81.  

 

COPI coated vesicles are associated with the Golgi and are thought to play a role in the traffic 

of proteins through the Golgi in retrograde and possibly also anterograde directions. The 

extent to which COPI vesicular transport accounts for anterograde movement through the 

Golgi is unclear. Anterograde cargo has been shown to enter COPI vesicles, and vesicular 

transport has been proposed to provide a fast route through the Golgi for certain cargo 

proteins. However, the prevailing mechanism for anterograde transport from the cis- to trans-

Golgi is thought to be cisternal maturation, in which proteins are moved across the Golgi 

simply by a constant forward motion of cisternae through the stack. This would explain how 

large structures such as collagen aggregates are able to progress through the Golgi, as the size 

of these complexes disallows packaging into vesicles. In the cisternal maturation model, Golgi 

resident proteins are maintained in the correct part of the Golgi by retrograde vesicular 

transport in COPI vesicles. It seems likely that both vesicular transport and cisternal 

maturation play a role in transport through the Golgi to differing extents for different 

proteins79.  
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The question of how Golgi resident proteins are maintained in the correct region of the Golgi 

is an important one and has, so far, only partially been answered. In some cases, 

transmembrane regions of Golgi enzymes appear to be key to their localisation, whereas 

certain trans-Golgi proteins are dependent on short cytoplasmic sequences which cause their 

retrieval from the cell surface to the trans-Golgi82. How transmembrane domains confer 

localisation of Golgi proteins is not entirely understood. One explanation is that they cause the 

proteins to oligomerise and form large complexes. Termed the ‘kin recognition’ mechanism, 

this model proposes that proteins can detect their arrival at the correct compartment, at which 

point they oligomerise into large complexes which are too large to fit into transport vesicles. 

This explanation is incongruous with the cisternal maturation model, in which large protein 

complexes would be able to travel forwards without the necessity for transport vesicles5,82. 

Another explanation raises the notion of transmembrane domain length dictating localisation, 

as mentioned above with respect to ER export. It is feasible that the average difference 

between shorter Golgi transmembrane domains and longer plasma membrane transmembrane 

domains cause the Golgi proteins to be excluded from budding membrane at the trans-Golgi, 

and inclusion of proteins destined for the plasma membrane82.  

 

Exit from the Golgi 

The mechanism of sorting within, and exit from, the trans-Golgi is not as well characterised as 

some other pathways in the secretory pathway. Trans-Golgi to plasma membrane carriers 

(TPCs) is a term used to describe the vesicles into which cargo destined for the plasma 

membrane is packaged, although what these carriers are coated with is unknown. In polarised 

cells, sorting from the trans-Golgi into TPCs allows differentiation between proteins destined 

for apical and basolateral membranes. Glycosylphosphatidylinositol (GPI) anchored proteins 

and proteins containing N- or O-linked glycans show a preference for apical targeting, 

whereas basolateral targeting is dependent on short, cytosolic motifs83. In nonpolarised cells, 

plasma membrane targeting motifs have proved elusive, and transport of proteins may be, at 

least in part, attributable to bulk flow84. The carriers that transport proteins from the trans-

Golgi to plasma membrane have been proposed to be pleiomorphic bodies, larger in size than 
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secretory vesicles coated by COPI, COPII or clathrin which would allow transport and 

secretion of large protein complexes83-85.  

 

The endocytic pathway 

Proteins present at the plasma membrane can be internalised by endocytosis. Endocytosis 

begins with invagination of the plasma membrane, mediated by clathrin or other coat proteins. 

This invagination undergoes scission from the plasma membrane by protein machinery, and 

the resulting vesicle fuses with an endosome; a sorting compartment with access to several 

onward destinations86,87. Numerous proteins have been shown to traffic from the endosomes to 

the trans-Golgi, facilitated by the retromer complex. The retromer complex, conserved from 

yeast to mammals, is a collection of proteins that causes vesicles to bud from the endosomal 

membrane. Sorting nexins (SNXs) also play a role in the process, causing tubulation of 

membranes. Short, hydrophobic sequences in cytoplasmic tails of proteins have been shown to 

cause retromer mediated endosome to trans-Golgi retrieval87,88. Ubiquitinated proteins 

destined for degradation in lysosomes travel through endosomes, and are recognised by the 

ESCRT (endosomal sorting complex required for transport) complex88. Lysosomal enzymes 

are transported from the trans-Golgi to the lysosomes by recognition of their mannose 6-

phosphate tags by mannose 6-phosphate receptors89. There is also a recycling route from the 

endosomes to the plasma membrane for cell surface proteins such as receptors. This route is 

considered a ‘fast’ recycling route and requires the CART (cytoskeleton-associated recycling 

or transport) complex, which recognises the cytoplasmic tails of its cargo88. Sorting at the 

trans-Golgi and traffic to the endosomal pathway is complex, and many gaps in our 

understanding remain. I have not discussed this pathway in any detail, but simply highlight the 

importance of sorting signals and vesicular traffic here; something which seems to be a 

universal phenomenon throughout the secretory pathway4.  

 

Vesicular transport 

The events of vesicle budding and fusion are key to the traffic of proteins through the 

secretory pathway. Although the protein machinery that causes these events varies from 

compartment to compartment, the overall mechanism is similar in most cases (figure 1.6). The 
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main events occurring during vesicular transport are vesicle budding from the donor 

membrane (including the mechanisms of concentrating and excluding cargo), vesicle 

targeting, and vesicle fusion4. Selection of cargo for incorporation into vesicles is carried out 

by receptors (such as the KDEL receptor discussed below), or by direct interaction of targeting 

motifs with coat proteins (in the case of di-lysine proteins and the COPI coat)90,91. Coat protein 

complexes share common features. Initiation of COPII formation requires the small GTPase 

Sar1 and the equivalent event in COPI formation is dependent upon Arf; another small 

GTPase. Both COPI and COPII require various GEFs and GAPs (GTPase-activating proteins) 

in order to form vesicle coats. Clathrin coats, which form endocytic vesicles at the plasma 

membrane, are similar to COPI and COPII coats and also use the small GTPase Arf for coat 

formation. Clathrin coats are more complex, as they require adaptor proteins which form a 

layer between the membrane and the clathrin itself, unlike the COPI and COPII components 

which interact directly with the donor membrane4. Coat complexes serve to distort the shape 

of the membrane so as to form vesicles. In order to release the vesicle from its donor 

membrane, a scission event must occur, mediated by dynamin at endocytic vesicles or likely 

by polymerisation of coat proteins in COPI and COPII vesicles4,92.  

 

Following release from the donor membrane, transport vesicles arrive at their destination 

either by diffusion, or by ‘walking’ along the cytoskeleton aided by motor proteins kinesin, 

dynein and myosin. Tethering is the first interaction that the vesicle forms upon arrival at its 

destination, mediated by recognition of coated vesicles by tethering factors. Different transport 

routes are specified by interaction of tethering factors on the acceptor membrane, with coat 

proteins on the vesicle. The small GTPases Rabs aid this process by recruiting tethers to 

specific locations on the acceptor membrane, and may also be involved in the uncoating of 

vesicles93. After the interaction of the vesicle and target membrane tethering factors, a closer 

interaction is formed by SNAREs (soluble N-ethylmaleimide sensitive factor association 

protein receptors). SNAREs are present on the vesicle and target membranes, referred to as v-

SNAREs and t-SNAREs respectively. SNAREs also confer specificity to the targeting process 

as only certain v- and t-SNAREs can interact with each other. As well as targeting vesicles, 

SNAREs also promote fusion between vesicles and their acceptor membranes. The coming 

together of the four α-helices involved in SNARE association (one from the v-SNARE and 
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three from the t-SNARE) results in a trans-SNARE complex which pulls together the two 

membranes. This closeness of the membranes brought about by the interaction of SNAREs, 

enables the energy barrier of membrane fusion to be lowered and fusion to occur4.  

 

The complexity of the secretory pathway and transport within it has only been touched upon 

here. Common mechanisms are at work in many cases to ensure specific delivery of proteins 

to the correct compartment. Some of the protein machinery and sequences involved in protein 

transport through the secretory and endocytic pathways are shown in figure 1.7. I will now 

focus on the transport between the ER, ERGIC and Golgi with respect to maintaining SERCA 

and other proteins in the ER.  

 

 
Figure 1.6 Vesicular protein transport 

A summary of the main events in vesicular protein transport; budding, movement, tethering 

and fusion. The key protein components are shown. Adapted from Cai, H. et al. (2007)93.  
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1.6 Maintaining proteins in the endoplasmic reticulum 

SERCA has been shown to be present in both the ER and ERGIC and so is presumably 

retrieved from the ERGIC to the ER33,94. Several mechanisms for protein retrieval have been 

characterised to different extents. Some may be applicable to SERCA and some are not. I will 

now review known mechanisms for the maintenance of proteins in the ER.  

 

The KDEL motif  

The discovery by Munro and Pelham in 1987 of the four amino acid KDEL (lysine-aspartate-

glutamate-leucine) motif at the C-termini of soluble ER luminal proteins was an important 

breakthrough in understanding how proteins are maintained in the ER90. By mutating the ER 

luminal proteins BiP, grp94 and protein disulphide isomerase (PDI) which all have a 

conserved C-terminal KDEL motif, they demonstrated that the KDEL sequence is necessary 

and sufficient for correct localisation of these proteins in the ER. Not only does removal of 

KDEL from ER proteins cause their secretion, but adding KDEL to normally secreted proteins 

results in their retention in the ER. The authors point out that retention in the ER is most likely 

a selective and active process whereas export to the plasma membrane is non-selective. The 

reasoning behind such a suggestion is that truncated grp78 (lacking KDEL) is able to travel 

through the secretory pathway and be secreted. Grp78 however has no requirement for a 

specific secretion motif (as under normal circumstances is located in the ER) implying that 

travel to the plasma membrane is a default, signal independent process. They suggest that their 

“data could be explained if the proteins were not held in the ER, but instead were continually 

retrieved” from some downstream compartment; a crucial hypothesis and one which has 

remained prominent in the field since its suggestion in this paper90.  The KDEL system of 

protein retrieval to the ER appears to be almost entirely conserved in yeast. Shortly after the 

publication of the KDEL sequence, Pelham and co-workers showed that in yeast, a C-terminal 

HDEL (histidine in place of lysine) motif plays the role of the KDEL sequence95.  

 

When the KDEL and HDEL motifs were characterised, it was unclear whether they functioned 

by anchoring proteins in the ER (direct retention) or by causing receptor mediated retrieval 

from the early Golgi. Evidence and logical reasoning was in favour of the latter theory. In 
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order to hold the entire ER pool of KDEL containing proteins in the ER, a binding protein 

must be in very high abundance, whereas a retrieval receptor would only bind a small subset 

of proteins whilst they are being returned, leading to a more efficient and less easily saturable 

mechanism90,96. Studies looking at diffusion of luminal ER proteins in oocytes show that 

KDEL proteins move freely through the ER, suggesting that a retrieval (rather than static 

retention) mechanism is responsible for their localisation97. In 1990, the ERD2 gene (ER 

retention defective) was characterised and found to encode the receptor for HDEL motifs in 

yeast98,99. ERD2 encodes a membrane spanning Golgi protein, mutants of which secrete the 

ER luminal (HDEL containing) protein BiP99. The use of yeast genetics then enabled the same 

group to test their hypothesis that the ERD2 gene did indeed code for the HDEL receptor98. 

The yeast K. lactis utilises a DDEL not HDEL (as in S. cerevisiae) retrieval motif. 

Transferring the DDEL recognising ERD2 gene from K. lactis to S. cerevisiae resulted in 

retrieval of both HDEL and DDEL compared to wild type S. cerevisiae which only weakly 

retained DDEL proteins. This highlighted the role of the product of the ERD2 gene in specific 

recognition of ER retrieval motifs98. Since the characterisation of the yeast HDEL receptor, 

three human homologues of the ERD2 gene have been identified that each appear to have 

different specificities for different variations of the KDEL motif in soluble ER proteins100-102.  

 

How does recognition of KDEL (or KDEL-like) motifs by the KDEL receptor bring about the 

retrieval of proteins from the early Golgi to the ER? The KDEL receptor has been detected in 

purified rat COPI vesicles103 and the requirement of COPI for retrieval of HDEL and KDEL 

proteins has been demonstrated both in vitro104 and in vivo105.  The binding of the KDEL (or 

HDEL) ligand to the KDEL receptor (or Erd2) induces oligomerisation of the receptor. FRET 

studies indicate that the oligomeric receptor then interacts with an Arf1 GTPase activating 

protein (GAP) and components of the COPI machinery106. Phosphorylation of the C-terminus 

of the KDEL receptor is required for it to interact with Arf-GAP and COPI components and 

bring about retrieval of the bound ligand107. The KDEL receptor must have a means of 

releasing its cargo into the ER after binding it in the early Golgi. The decrease in pH from the 

ER to Golgi is an attractive theory, as this change could be detected by the KDEL receptor, 

causing it to release its cargo into the ER. This has been shown to be the case, as the KDEL 
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receptor preferentially binds ligand at an acidic pH and releases it in the neutral pH of the 

ER108.  

 

Di-lysine and di-arginine retrieval signals 

The di-lysine motif is a cytosolic, C-terminal signal on type I membrane proteins which causes 

retrieval from the ERGIC or early Golgi to the ER109-111. One lysine must be positioned at -3 

(from the C-terminus) and another at -4, although Jackson and colleagues showed that moving 

the second lysine to the -5 position still resulted in ER localisation109. The amino acids 

surrounding the di-lysine motif (especially those in -2 and -1 positions) contribute to the 

strength of the signal, for example KKAA is a stronger signal than KKYF112. This shows that 

different proteins can be maintained in the ER at different levels, and simply having a di-

lysine retrieval motif does not dictate exactly how the protein will be distributed at steady 

state. Post-translational modifications of di-lysine proteins have been shown to occur in post-

ER compartment(s), resulting in the proposal that these proteins cycle between the ER and the 

ERGIC or Golgi. This implies that retrieval (rather than retention) is the mechanism that 

causes their maintenance in the ER, presumably analogous to the way in which KDEL 

proteins are maintained111. Di-lysine proteins have been shown to interact with components of 

the COPI machinery which appears to function as the receptor for this signal91,113. There is 

some controversy as to which subunit(s) of COPI di-lysine motifs bind. Photocrosslinking 

showed an exclusive interaction between di-lysine containing peptides and γ-COP (although 

as the COPI complex dissociated, the di-lysine motif was also able to interact with α- and β`-

COP)114,115. Eugster et al. demonstrated the importance of the WD40 domains in α- and β`-

COP for binding di-lysine motifs and causing ER retrieval of di-lysine containing proteins116, 

whereas Zerangue et al. argue that only α-COP (through its WD40 domain) is a specific 

receptor for strong di-lysine motifs112. Controversy remains over exactly how COPI binds di-

lysine motifs, but it is clear from genetic screens that perturbation of the complex prevents 

retrieval of di-lysine containing proteins, and that one or more of the subunits bind di-lysine 

directly91,112,113,116.  
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N-terminal di-arginine signals on type II membrane proteins have also been shown to cause 

COPI mediated transport back to the ER80,117. As with the di-lysine signal at the C-terminus, it 

appears that the position of the di-arginine signal with respect to the N-terminus is crucial for 

its function; the arginines must be located at positions 2 and 3, 3 and 4, 4 and 5, 2 and 4 or 3 

and 5117. Initially it was proposed that the similarity of the di-arginine motif to the di-lysine 

motif pointed to a common retrieval mechanism117. This is likely to be the case, as di-arginine 

proteins also seem to bind directly to components of the COPI machinery, although different 

parts of the COP protein complex are involved118.  

 

Rer1p – a retrieval receptor for membrane proteins 

A possible candidate for the ER retrieval of SERCA is the Golgi-resident protein Rer1p. 

Rer1p (retention of ER proteins) was identified by analysing yeast strains which lacked the 

ability to retain Sec12p (an ER protein involved in COPII vesicle formation) in the ER119-122. 

Initial studies in yeast demonstrated that mutations in the RER1 gene cause localisation of 

Sec12p in the late Golgi and at the cell surface but do not affect the localisation of the soluble 

ER protein BiP119. Following the identification of Rer1p as a receptor for Sec12p, other yeast 

proteins were shown to be dependent upon Rer1p for ER localisation. α1,2-mannosidase 

(Mns1p)123, Fet3p (a yeast iron transporter)124, Sec71p and Sec63p (both involved in 

translocation of proteins into the ER)125 and Sed4p (involved in COPII vesicle formation)126,127 

have all been shown to be dependent upon Rer1p for ER localisation. Interestingly Sed4p 

contains a C-terminal HDEL motif (the yeast KDEL equivalent), but seems to require Rer1p 

for correct localisation. In fact, the transmembrane domain of Sed4p is sufficient for Rer1p 

mediated ER retrieval and shows significant homology to the transmembrane domain of 

Sec12p. The same study illustrated the Rer1p independent ER localisation of Sec20p, showing 

that not all ER membrane proteins need Rer1p for maintenance in the ER126.  

 

A human homologue of Rer1p (44% identical and 65% similar to yeast Rer1p) was identified 

and cloned from HeLa cells in 1997122. Human Rer1p has the same predicted W-shaped 

topology and orientation (cytosolic N- and C-termini) as the yeast protein122. The role of 

Rer1p in human cells appears to be the same as in yeast. Overexpression of human Rer1p 
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complemented the absent yeast Rer1p in deficient strains and rescued the phenotype, 

highlighting the extent of conservation in at least this trafficking pathway (and presumably 

others) between yeast and man122. Since its characterisation, human Rer1p has been implicated 

in the ER retrieval of mammalian proteins. Nicastrin (a component of the intramembrane γ-

secretase protease complex) has been shown to interact with Rer1p via polar residues in the 

transmembrane domain of nicastrin128. Knockdown of Rer1p using RNA interference in HeLa 

cells resulted in an increase in nicastrin at the cell surface, but studies of the kinetics of 

glycosylation in the Golgi suggested the presence of another mechanism for ER retention of 

nicastrin in addition to the recognition of the transmembrane domain by Rer1p128. The authors 

of this study propose that Rer1p and another ER retention mechanism control the residence 

time of nicastrin in the ER in order to allow it to interact with the other components of the γ-

secretase before leaving the Golgi and travelling to the cell surface128. A different group have 

shown that Rer1p mediates ER maintenance of Pen2, another component of the γ-secretase. 

They illustrated using coimmunoprecipitation and reporter constructs containing different 

domains of Pen2, that Rer1p interacts with the C-terminal portion of the first transmembrane 

domain (of two transmembrane domains) of Pen2129. A reporter construct containing the C-

terminal portion of the first transmembrane domain of Pen2 was localised to the ER, and 

treatment of HEK293 cells with Rer1p siRNA resulted in redistribution of this construct to the 

plasma membrane129.  

 

The mechanism by which Rer1p returns proteins to the ER is not yet understood. Rer1p does 

not appear to recognise a single motif like KDEL, but seems able to bind to a variety of 

membrane proteins, the common feature of which is the presence of polar residues within a 

transmembrane domain128,130. Mutation of polar residues to leucine residues within the 

transmembrane domain of yeast Sec12p leads to a reduction in Rer1p binding131. It has been 

proposed that the oligomeric state of Rer1p substrates may be important for their recognition. 

Yeast Sec71p and Sec63p are part of the hetero-oligomeric translocon, and may be recognised 

as monomers by Rer1p in the early Golgi, causing their return to the ER and formation of the 

translocon complex130. Fet3p must form a complex with Ftr1p (the other subunit of the iron 

transporter) before it can travel to the plasma membrane, and whilst unassembled, it remains 

in the ER as a result of Rer1p mediated retrieval124. Similarly, both nicastrin and Pen2 are part 
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of a protein complex which must be formed in the ER before it can move to the plasma 

membrane where it fulfils its role as an intramembrane protease128,129. In these cases, one can 

imagine that the subunits of the protein complex display Rer1p recognition domains and are 

retrieved to the ER until they are oligomerised and travel through the Golgi to the plasma 

membrane. This theory could also explain how proteins dissociate from Rer1p upon their 

return to the ER, as their integration into protein complexes may involve higher affinity 

interactions than those between the proteins in question and Rer1p130. It also points to a quality 

control function of Rer1p, preventing unassembled protein subunits from prematurely 

escaping to the plasma membrane124.  

 

Sato et al. have demonstrated that Rer1p mediated ER retrieval is a COPI dependent 

process131. In yeast mutants lacking COPI components, Rer1p dependent ER proteins (Sec12p, 

Sec71p and Sec63p) travel to the late Golgi, and Rer1p itself is mislocalised to the vacuole. In 

the same study, it was also shown that the cytoplasmic C-terminal 25 amino acids of yeast 

Rer1p are required for its localisation in the Golgi, and for its activity as a retrieval receptor, 

as Rer1p lacking its C-terminus is unable to complement a Rer1p deficient yeast strain. In 

vitro binding assays demonstrated that the interactions between Rer1p and COPI components 

take place via the C-terminus of Rer1p131. Presumably the binding of the C-terminus of Rer1p 

to COPI components causes the integration of both Rer1p and its bound cargo into retrograde 

transport vesicles which travel to the ER, but the precise mechanistic details of this process are 

unclear131.  

 

Although the exact mechanism by which Rer1p returns proteins to the ER is not entirely 

understood, and other than polar residues in transmembrane domains there is no consensus 

sequence for recognition by Rer1p, it seems clear that it plays an important role in maintaining 

some membrane proteins in the ER. Rer1p is conserved between yeast and man, and the 

complementation study by Füllekrug et al. illustrated that mammalian Rer1p fulfils the same 

role as yeast Rer1p in returning proteins from the early Golgi to the ER122. More research in 

this field is needed to understand the exact mechanism of Rer1p mediated return of proteins to 

the ER, and to further characterise the role and targets of Rer1p in mammalian systems.  
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BAP31 – a possible retrieval receptor for retrograde transport 

BAP31 (B cell antigen receptor associated protein of 31 kDa) was initially discovered as a 

binding partner of the immunoglobulin D B cell antigen receptor132,133. BAP31 is a membrane 

protein with three putative membrane spanning regions and a C-terminal cytoplasmic dilysine 

motif132-134. BAP31 can form a heterodimer with the related (47% identical), 29 kDa protein 

BAP29 which is important for the function of BAP31132,133,135,136. BAP31 exhibits the typical 

reticular distribution of an ER protein both when detected by an antibody in 

immunofluorescence and when fused to a fluorescent protein tag137,138. Some studies have 

shown colocalisation of BAP31 with the ER-Golgi intermediate compartment marker ERGIC-

53136,138. Others claim it to be absent from this compartment and present in a juxtanuclear 

compartment that is not the Golgi or an ERGIC-53 positive intermediate compartment, but a 

quality control compartment containing proteins involved in retrotranslocation134. The 

involvement of BAP31 in the sorting and vesicular transport of membrane proteins out of the 

ER has been demonstrated for several proteins including cellubrevin137, MHC class I 

molecules139 and members of the tetraspanin family of plasma membrane proteins140.   

 

MHC class I molecules are synthesised at the ER and travel to the cell surface upon loading 

with a high affinity antigenic peptide. BAP31 interacts with MHC class I molecules and has 

been shown to play a role in export of the protein out of the ER (towards the plasma 

membrane); increasing BAP31 levels (by overexpression in HeLa cells) leads to an increase in 

the amount of MHC class I at the cell surface. Increasing peptide loading of MHC class I 

molecules results in an increase of BAP31 in the ERGIC, as presumably a greater proportion 

of it is involved in forward traffic of MHC towards the cell surface136. In addition, 

overexpression of BAP31 increases the stability of MHC class I at the cell surface, suggesting 

that it may play a role in quality control of the protein in the ER, possibly by retrieval of MHC 

proteins which have dissociated from their antigenic peptide in a post-ER compartment138. 

Evidence from these studies on MHC class I suggests that BAP31 can be involved in both 

anterograde and retrograde protein transport from and to the ER. Cytochrome P450 2C2 (an 

ER membrane protein) is directly retained in the ER (rather than maintained there by retrieval 

from the ERGIC or Golgi) and has been shown to interact with BAP31141. Knockdown of 

BAP31 by RNA interference causes a redistribution of cytochrome P450 2C2 from the ER to 
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the nuclear membrane, perinuclear structures (containing the Golgi marker GM130) and 

plasma membrane141. How BAP31 causes retention of cytochrome P450 2C2 is unclear, but a 

transient interaction between the two proteins has been proposed to occur during synthesis and 

or folding of P450 2C2, followed by targeting of the cytochrome away from ER exit sites, or 

interaction with another protein that prevents ER exit by bulk flow141.  

 

BAP31 is thought to retain membrane bound immunoglobulin D in the ER142 and assist with 

the folding and quality control of the ER protein tyrosine phosphatase-like B (PTPLB)143. The 

plasma membrane chloride channel, cystic fibrosis transmembrane conductance regulator 

(CFTR), also seems to require BAP31 for maintenance in the ER during protein synthesis and 

folding144. Reduction of BAP31 expression results in an increase of CFTR at the cell surface, 

suggesting a role for BAP31 in retention or retrieval of this protein in the early secretory 

pathway. This effect is dependent on the dilysine motif at the C-terminus of BAP31, indicating 

that its role in the trafficking of CFTR involves cycling of the protein between the ER and 

early Golgi144.  

 

The proteins that have so far been shown to interact with BAP31 (mentioned above) are all 

membrane proteins. In at least some cases, BAP31 interacts with transmembrane domains of 

its cargo132,137,141. For example, the interaction of BAP31 with membrane bound 

immunoglobulin D is heavily dependent on a threonine residue in the transmembrane 

sequence of immunoglobulin D132. How BAP31 works mechanistically to control trafficking 

and quality control of proteins is not understood. The next challenge will be to elucidate how 

BAP31 is seemingly able to carry proteins in both anterograde and retrograde directions in the 

early secretory pathway.  

 

How far have we come in understanding ER retrieval? 

Since 1987, and the proposal that the KDEL motif mediates protein retrieval to the ER from a 

downstream compartment90, we have made significant progress in understanding the various 

mechanisms of protein retrieval to the ER. KDEL and HDEL signal mediated retrieval of 

soluble proteins is arguably the most well studied and characterised mechanism for retrograde 



 47

transport to the ER, and this knowledge is useful in understanding other mechanisms. For 

example, the pH dependent association and dissociation of KDEL receptor and ligand108 may 

be a mechanism shared with other receptors and their ligands. SERCA does not contain a 

KDEL, di-lysine or di-arginine motif. Interestingly, no sarcoplasmic reticulum proteins 

contain KDEL sequences, which may indicate that the retention or retrieval of proteins in this 

compartment may be different to the ER at large145.  

 

It is possible that Rer1p or BAP31 may play a role in SERCA trafficking. BAP31 has been 

shown to retrieve membrane proteins to the ER, but how it works is not understood. Rer1p 

interacts with polar residues in transmembrane domains128,130. SERCA has many polar 

residues within the membrane spanning regions (including those involved in calcium binding 

and transport), many of which face inwards or are totally inaccessible from the bilayer. Even 

with crystal structures of the protein18, it is hard to predict which polar residues would be 

accessible to a receptor like Rer1p, but at present Rer1p is the most likely candidate for 

retrieval of SERCA to the ER. Studies using chimeric proteins have been carried out to 

attempt to identify the regions of SERCA that are important for ER retrieval. By replacing 

sections of SERCA sequence with corresponding sequence from PMCA, it is possible to 

identify key regions of SERCA. These studies indicate that the N-terminus of SERCA plays a 

role in its retrieval to the ER94,146,147, but how this region is recognised remains unknown. The 

limitations and the value of studies of this type will be discussed in greater detail in chapter 3. 

It is possible that the slight differences in the transmembrane segment lengths between 

SERCA and PMCA could cause differential targeting of these proteins to the ER and plasma 

membrane respectively. However, in such a complex polytopic protein that undergoes such 

large conformational changes and has helices of different lengths within it, it seems hard to 

envisage this being the only factor contributing to ER localisation of the protein. 

  

There is still much to learn about retrieval of proteins to the ER. Although motifs such as 

KDEL and di-lysine seem relatively specific and clear cut, there are many proteins (including 

SERCA) that do not contain any canonical signals. In addition, Rer1p and BAP31 appear not 

to recognise specific motifs, more certain characteristics of protein domains. This renders 

sequence analysis based searches for binding partners difficult, if not impossible.  
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1.7 Conclusion  

Although biochemists and cell biologists have come a long way in understanding the 

intricacies of the secretory pathway (summarised in figure 1.7), many of the mechanisms and 

protein machinery which regulate protein transport remain elusive. The last two decades have 

seen a dramatic increase in our ability to solve the complex maze of intracellular protein 

traffic, accelerated by the power of yeast genetics, combined with recent advances in high 

resolution microscopy and structural studies. Some of the mechanisms that retrieve proteins 

from the ERGIC or Golgi to the ER, including KDEL and di-lysine signal mediated retrieval, 

are well characterised. However, many proteins located in the ER, including SERCA and its 

modulator peptides phospholamban and sarcolipin, do not contain these signals and are 

maintained there by as yet unknown mechanism(s)5,28,33,90.  

 

It is known that SERCA is located in the ER, ERGIC and early Golgi13,33 and is presumably 

maintained in the ER by a process of retrieval. SERCA contains none of the canonical 

retrieval motifs such as KDEL or di-lysine, and it is unknown what sequence(s) within 

SERCA cause it to be maintained in the ER. Furthermore, no existing mechanisms or protein 

machinery have yet been associated with this process. The aim of this investigation is to define 

what sequence(s) within SERCA are responsible for this retrieval to the ER, and what protein 

machinery is involved. 
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Figure 1.7 The secretory pathway - sorting motifs and protein machinery 

Some sequence motifs and protein machinery involved in transport through the secretory and 

endocytic pathways are shown. Based on figures from4,39,88.  
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2. Materials and Methods 

2.1 Molecular biology 

The vector – pcDNA3.1 (+) 

The vector used throughout the cloning procedures described below is pcDNA3.1 (+) from 

Invitrogen (see figure 2.1).  

 

LB broth 

Bacterial cultures were grown in LB (Luria-Bertani) broth made from 6.2 g LB EZMix 

(Sigma-Aldrich) and 300 ml distilled water, sterilised by autoclaving for 20 minutes at 15 

lb/in2 and 121 °C. The broth was supplemented with ampicillin (final concentration 60 µg/ml) 

or kanamycin sulphate (final concentration 25 µg/ml) once the media had cooled to 50 °C or 

below.   

 

LB agar plates 

4.5 g agar (Melford) and 6.2 g LB were added to 300 ml distilled water and the mixture 

sterilised by autoclaving. Ampicillin (60 µg/ml) or kanamycin sulphate (25 µg/ml) were added 

as described above, and the medium was poured into 9 cm petri dishes and left to set. The 

plates were used immediately or stored at 4 °C until required. 

 

DH5α E. coli electrocompetent cell preparation  

The bacterial strain used throughout this investigation was DH5α E. coli. To prepare 

competent cells, 50 ml of antibiotic free LB media was inoculated with a single colony of 

DH5α E. coli electrocompetent cells. This was grown overnight in a shaking incubator at 37 

°C. 1 l of LB media was inoculated with the entire 50 ml overnight culture and shaken for 

approximately two hours at 37 °C until an OD of 0.6 (at 600 nm) was achieved. The cells were 

then pelleted at 3000 g for 10 minutes. The cell pellets were washed twice by resuspending in 

sterile water, and were combined in two 50 ml tubes and centrifuged again at 3000 g. The cells 
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were resuspended in sterile 10% glycerol and 70 µl aliquots were frozen in liquid nitrogen. 

The cells were stored at -80 °C until required.  

 

Small scale DNA purification (Miniprep) 

Overnight cultures were grown in 5 ml LB media (supplemented with appropriate antibiotic) 

by picking a single colony of DH5α E. coli containing the desired construct using a sterile 

pipette tip, and placing the tip into the media. The cultures were grown in a shaking incubator 

at 37 °C overnight. Plasmid DNA was obtained using the Wizard™ Miniprep kit (Promega) as 

detailed in the manufacturer’s instructions.  

 

PCR 

The polymerase chain reaction (PCR) was used to generate fragments for DNA constructs 

built in this investigation. Primers were designed using the Oligo software (Molecular Biology 

Insights). Pfu DNA polymerase, buffer and dNTPs were obtained from Promega (UK).   

PCRs of 100 µl total volume were set up in 0.5 ml tubes as follows: 

Sterile distilled water   81.2 µl 

Pfu DNA polymerase buffer  10.0 µl 

dNTPs (25 mM each dNTP)  0.8 µl 

DNA template (100 ng/µl)  1.0 µl 

Primer 1 (100 ng/µl)   2.5 µl 

Primer 2 (100 ng/µl)   2.5 µl 

Pfu DNA polymerase (2.5 U/µl) 2.0 µl 

The tubes were placed in a Peltier thermocycler (MJ Research) and reactions carried out 

according to the cycle in table 2.1. 30 cycles were used for amplification unless stated 

otherwise. The products of the reactions were cleaned to remove primers, buffer and unused 

dNTPs using the Qiagen QIAquick PCR purification kit (following manufacturer’s 

instructions).  

PCR was also used to verify the successful ligation of inserts directly from bacterial cells. This 

was carried out by picking a colony from agar plate following a ligation and dipping it into the 

PCR mixture. Colonies were also grown in known positions on a second agar plate so those 
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containing inserts could be grown and DNA purified. Ligated DNA verified in this way was 

also sequenced.  

 

 
Figure 2.1 pcDNA3.1 vector 

The pcDNA3.1 (+) vector was used throughout the cloning and expression of the chimeric 

SERCA/PMCA constructs. It contains a CMV promoter for high levels of expression in 

mammalian cells, as well as a bacterial origin of replication and ampicillin resistance gene for 

selection of positive E. coli colonies. The SV40 origin of replication allows high levels of 

protein expression in cell lines containing the large T-antigen.  
From http://www.invitrogen.com/content/sfs/manuals/pcdna3.1_man.pdf 
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Step Process Temperature (°C) Duration  

1 Denaturation 95 45 seconds 

2 Denaturation 

Annealing 

Elongation 

95 

Primer Tm -5 

72 

45 seconds 

45 seconds 

2 minutes per kb of target 

3 Final elongation 72 10 minutes 

Table 2.1 PCR cycle 

This shows the general reaction cycle used for PCR in this investigation. Annealing 

temperatures and elongation times were adjusted according to the primer Tm and the length of 

target DNA respectively. 

 

Restriction digests 

DNA digests are used for diagnostic purposes or to prepare DNA for a ligation. Restriction 

enzymes (NEB, Promega) are used to cut DNA at specific sequences. One unit of restriction 

enzyme is defined as the amount required to cut 1 µg of the 35 937 base pair adenovirus-2 

DNA in one hour (see NEB catalogue). NheI and KpnI cut adenovirus-2 DNA 4 and 8 times 

respectively. Therefore, in the case of a NheI/KpnI double digest on the SERCA-EGFP 

construct (9133 base pairs containing one site each of NheI and KpnI), approximately one unit 

of NheI and half a unit of KpnI will be required to digest 1 µg of this DNA in one hour. An 

example of a 20 µl digest is shown here:  

DNA     1 µg 

NheI     1 unit 

KpnI     0.5 unit 

Bovine serum albumin (BSA)  1 µl 

Buffer (10x)    2 µl 

Sterile distilled water   to make volume up to 20 µl 

Restriction digests were incubated at 37 °C for 1 hour. Agarose gel electrophoresis was then 

used to determine the sizes of the fragments produced. These digests were scaled up to allow 

cutting of large amounts of vector and insert for ligation reactions.  
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Agarose gel electrophoresis 

1% agarose gels were made from 1 g agarose and 100 ml 1x TAE buffer (50x TAE: 242 g 

Tris, 57.1 ml glacial acetic acid, 1.9 g NaEDTA and 1 l water, pH 8.0) and heated in a 

microwave until molten. Ethidium bromide was added to a final concentration of 0.3 µg/ml 

before the gel was poured into a mould with combs for the wells. After setting, the gel was 

placed into a tank containing TAE buffer and the gel loaded with DNA samples in gel loading 

buffer (5 ml glycerol, 30 mg bromophenol blue and 1 ml TAE, made up to 10 ml with distilled 

water). The samples were separated at 125 V and 200 mA for approximately 30 minutes and 

visualised and photographed with a UV transilluminator and camera.  

 

Extraction of DNA from agarose gel by ‘freeze-squeeze’ 

This technique was used to purify vector DNA after restriction digest in preparation for a 

ligation reaction. Vector DNA was digested with restriction enzymes as described above. The 

entire digest volume was loaded into one large well on a 1% agarose gel, and the cut vector 

separated from the excised fragment by electrophoresis. The gel was visualised on a UV 

transilluminator and the vector band cut out from the gel with a scalpel blade. A plug of 

siliconised glass wool was placed at the bottom of a 0.5 ml tube and the gel band was added to 

the tube. The tube was frozen in liquid nitrogen for 5 minutes and then a hole was pierced in 

the top and bottom of the tube after the gel had been allowed to thaw slightly. The 0.5 ml tube 

was placed in a 1.9 ml tube and centrifuged for 4 minutes at 8000 g. The eluted liquid was 

removed and the centrifugation step repeated in a new 1.9 ml tube until no more liquid was 

eluted. This DNA was then cleaned using the Qiagen QIAquick PCR purification kit 

(following manufacturer’s instructions) and eluted into 40 μl sterile distilled water.  

 

Ligation 

Ligation reactions were carried out to insert fragments of DNA into vectors. Insert DNA was 

produced by PCR, digested with appropriate restriction enzymes (as detailed above) and 

cleaned using the Qiagen QIAquick PCR purification kit. Vector DNA was prepared by the 

‘freeze-squeeze’ method (described above) following restriction digest. Two or three separate 
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ligation reactions were generally set up, each with a different ratio of vector to insert to 

maximise the chance of a successful ligation. Ratios were generally between 1:10 and 1:3 

(vector:insert), but in some cases, it was necessary to use higher ratios (up to 1:30). Vector and 

insert DNA were added to 2 µl T4 DNA ligase (Promega) and 2 µl of ligase buffer, making 

the total volume up to 20 µl with sterile distilled water. The reactions were incubated at 16 °C 

for 24 hours. 

 

SOC solution 

20 g tryptone, 5 g yeast extract and 0.5 g sodium chloride (NaCl) were added to 1 l of distilled 

water and autoclaved to produce SOB solution. Glucose was added, after autoclaving, through 

a sterile 0.2 µm filter to a final concentration of 20 mM to make SOC solution. This can be 

stored at -20 °C until required. 

 

Dialysis of DNA and transformation of DH5α E. coli by electroporation 

After ligation, the entire 20 µl volume of a single ligation reaction (containing DNA, buffer 

and enzyme) was placed on a nitrocellulose filter and floated on 10% glycerol which was 

stirred slowly with a magnetic stirrer for 20 minutes. Ligation products were removed from 

the filters with a micropipette and added to DH5α E. coli cells. The bacteria and DNA were 

placed in a Gene Pulser cuvette and a high voltage pulse was applied using an electroporator. 

The cuvette was quickly filled with 1 ml SOC solution following electroporation and the 

bacteria were placed in a sterile 20 ml tube and shaken at 37 °C for 30 minutes. The bacteria 

were then plated onto LB agar plates and grown overnight at 37 °C in LB. Both the LB agar 

plates and LB media used were supplemented with the appropriate antibiotic to select for 

positive transformants.  

Products from QuikChange reactions (described in chapter 5) were also dialysed and used to 

transform E. coli in this way. When new constructs were supplied, 100-200 ng of DNA (in 

water) were used to transform bacteria. In these cases dialysis was not required as such small 

volumes of DNA were used.   
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Ethanol precipitation of DNA for sequencing 

DNA was purified from bacteria as described above. 20 µl sodium acetate (3 M, pH 5.1) and 

200 µl ice-cold 100% ethanol was added to 5-7 µg DNA in a microcentrifuge tube and the 

mixture was incubated on ice for 30 minutes. The sample was then centrifuged in a 

microcentrifuge at 16,000 g for 20 minutes. The supernatant was carefully removed so as not 

to disrupt the pellet, and 1 ml ice-cold 70% ethanol was gently added. The sample was 

centrifuged again at 16,000 g for 10 minutes and the supernatant discarded. The precipitated 

DNA was left to air dry and then sent to MWG Biotech (London, UK) with the appropriate 

primers for sequencing.   

 

Glycerol stocks 

For long term storage of transformed bacteria, 1 ml of bacterial culture was added to 0.5 ml 

sterile glycerol and mixed by inverting. Glycerol stocks are then stored at -80 °C. 
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2.2 Cell culture, fluorescence microscopy and immunofluorescence 

Phosphate buffered saline (PBS) 

For a 10x PBS solution 80 g NaCl, 2 g KCl, 11.5 g Na2HPO4 and 2 g KH2PO4 were diluted in 

distilled water to a total volume of 1 l, and the pH adjusted to 7.2.  

 

Mammalian cell culture and transfection 

COS-7 and HeLa cells were grown in DMEM (Gibco) media with additives as follows (per 

500 ml DMEM); 50 ml foetal bovine serum (Gibco), 5 ml fungizone (Gibco) and 2 ml 

gentamicin (Gibco). Caco-2 cells were grown in low glucose (1 g/L) DMEM (Gibco) 

supplemented with 10% foetal calf serum, 50 iu/ml penicillin, 50 mg/ml streptomycin and 1% 

non-essential amino acids (all from Invitrogen, UK). All cell lines were grown in Iwaki tissue 

culture treated flasks (150 cm2) (Lennox). When cells reached 60-80% confluency, they were 

removed from the flask using trypsin diluted in HBSS (Gibco) and seeded onto coverslips in 

24-well plates or larger plates for transfection (all Nunclon coated, from Thermo Fisher 

Scientific).  

For transfection of cells, FuGENE-6 (Roche) was mixed with DMEM and added to DNA (see 

table 2.2). This mixture was incubated for 20 minutes at room temperature with occasional 

gentle mixing before it was added to cells. Cells were incubated for 48 hours before coverslips 

were mounted and viewed or cells harvested for use in western blotting, immunoprecipitation 

or cross-linking (as detailed in results chapters).  

 

Mammalian cell storage 

COS-7, HeLa and Caco-2 cells were harvested at 90% confluency and collected by 

centrifugation. 6 ml cryogenic medium (10% DMSO, 25% foetal calf serum and 65% DMEM) 

was used to resuspend the cells and 1 ml aliquots were gradually frozen to -80 °C overnight, 

then placed in liquid nitrogen storage.  
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Mowiol mountant 

2.4 g mowiol (Calbiochem) was stirred for 3 hours in 6 ml glycerol and 6 ml water. 12 ml (0.2 

M) Tris HCl was then added and the pH adjusted to 8.5. The mountant was then stirred at 50 

°C for 10 minutes and centrifuged at 5000 g for 15 minutes to remove any insoluble material. 

Citifluor was added to a final concentration of 0.1%. The mowiol can then be stored at -20 °C 

until required.  

 

Culture Dish DMEM (µl) FuGENE-6 (µl) DNA (µg) 

24-well plate (for 4 wells)  100 3 1 

10 cm dish 600 20 7 

15 cm dish 1400 46 15 

Table 2.2 Transfection of mammalian cells  

Quantities of DNA, DMEM and transfection reagent (FuGENE-6) are shown for the various 

sized transfections used in this investigation. DMEM and FuGENE-6 were mixed together 

before DNA was added.  

 

Concanavalin A conjugate plasma membrane labelling 

Concanavalin A (conA) binds glycoproteins on the cell surface and can be used to locate the 

plasma membrane of non-permeabilised cells when conjugated to a fluorophore28. ConA 

conjugated to Alexa Fluor 594 (Molecular Probes) was used to visualise the plasma 

membrane. The conA conjugate was diluted in PBS (1% BSA) to a concentration of 250 

µg/ml and transfected COS-7 cells were incubated with this for 10 minutes. The conA 

conjugate was removed and the coverslips washed twice with PBS. The coverslips were then 

mounted onto glass slides in mowiol (CalBiochem) with 0.1% citifluor (Agar Scientific). 

 

TGN46 antibody labelling of the trans-Golgi network 

Live transfected COS-7 cells were treated with brefeldin A (Sigma-Aldrich) at a concentration 

of 5 µg/ml for 1 hour, to improve separation and visualisation of the trans-Golgi network94,148. 

The cells were fixed with ice-cold methanol for 15 minutes and then washed twice with PBS. 
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Cells were blocked with a solution of PBS containing 2% low fat dried milk (Marvel) and 

0.01% Triton X-100 (Sigma-Aldrich) for 30 minutes at 37 °C. Cells were then washed three 

times (leaving 10 minutes for each wash) with PBS (0.01% Triton X-100). Sheep anti-human 

TGN46 (Serotech) was the primary antibody used, diluted to 1:50 with PBS Triton. 100 µl 

primary antibody was added to each well of the 24-well plate and incubated at 37 °C for one 

hour. Coverslips were then washed three times with PBS Triton as above. The secondary 

antibody used was rabbit anti-sheep IgG conjugated to Texas Red (Abcam) and was diluted 

1:100. 100 µl secondary antibody was added to each well and left for one hour at 37 °C. The 

coverslips were again washed three times and mounted in mowiol (0.1% citifluor). 

 

Confocal microscopy 

Laser scanning confocal microscopy was carried out with a Leica TCS SP2 confocal 

microscope. Samples were viewed under oil with a 40x objective (numerical aperture 1.25) 

and pinhole diameter of Airy 1. Leica LCS software was used for image acquisition and to 

produce overlays of images from different channels. EGFP was excited at a wavelength of 488 

nm and emission measured between 500-600 nm, Texas red was excited at 594 nm and 

emission measured between 605-700 nm, Alexa Fluor 594 was excited at 594 nm with 

emission measured between 605-670 nm and DAPI was excited at 350 nm and emission 

measured between 450-470 nm. All emission bandwidths were freely adjustable with the 

acousto optical beam splitter (AOBS). Ar/Kr, HeNe 543/594, HeNe 633 and Mai Tai 

multiphoton lasers were used to excite samples.  
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2.3 Protein techniques 

Polyacrylamide gel electrophoresis 

SDS polyacrylamide gel electrophoresis (SDS-PAGE) separates proteins by molecular weight. 

Gels consist of a stacking gel into which the samples are loaded, and a longer resolving gel 

through which they run. Different percentage gels can be made according to the size of the 

protein to be resolved; a higher molecular weight protein should be run on a lower percentage 

gel. Compositions of resolving and stacking gels are shown in tables 2.3 and 2.4 respectively. 

Acrylamide was added in the form of ProtoGel (National Diagnostics), composed of 37.5:1 

acrylamide to bisacrylamide solution. Ammonium persulfate (APS) and 

tetramethylethylenediamine (TEMED) were added immediately before pouring the gel. 

Resolving gels were first poured and left to set before the stacking gel was poured and combs 

to form the wells inserted. Before running, combs were gently removed and gels placed in 

tanks containing running buffer (5x running buffer: 15 g tris, 72 g glycine and 5 g SDS made 

up to 1 l with water). The wells were rinsed out using running buffer before loading. 1.0 mm 

gels were made using Biorad glass plates and were run in Biorad tanks. In some cases, pre-cast 

14% Novex tris glycine gels were used and run in the XCell SureLock gel tank with Novex 

tris glycine SDS running buffer (all Invitrogen).   

 

 Percentage Resolving Gel 

For two gels: 10% 12% 15% 

ProtoGel 3.3 ml 4 ml 4.9 ml 

Tris HCl (1.5 M pH 8.8) 1.7 ml 1.7 ml 1.7 ml 

SDS (10%) 100 µl 100 µl 100 µl 

APS (25%) 120 µl 120 µl 120 µl 

TEMED  5 µl 5 µl 5 µl 

Water 4.78 ml 4.08 ml 3.18 ml 

Table 2.3 Composition of resolving gels for SDS-PAGE  

Amounts of each component of the resolving gels used in SDS-PAGE are shown. TEMED 

and APS were added last, immediately before gels were poured.  
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For two gels: Stacking Gel 

ProtoGel 0.6 ml 

Tris HCl (3.6 M pH 9.3) 1.6 ml 

SDS (10%) 40 µl 

APS (25%) 20 µl 

TEMED  4 µl 

Water 1.7 ml 

Table 2.4 Composition of stacking gel for SDS-PAGE  

Quantities of components of the stacking gel are shown here. The same stacking gel was used 

regardless of the percentage of the resolving gel.  

 

Sample buffer was composed of the following: 

Tris HCl (0.625 M, pH 6.8) 1 ml 

10% SDS   2 ml 

Glycerol   1 ml 

β-mercaptoethanol  0.5 ml 

Water    5.3 ml 

Bromophenol blue can be added to the buffer in order to visualise the samples as they are 

loaded into the gel.  

 

Preparation and running of samples on SDS polyacrylamide gels 

HeLa and COS-7 cells used in western blots were transfected as described above, or left 

untransfected and plated onto Nunclon coated plates and grown for 48 hours. Media was 

removed from the plates on which cells were grown. Cells were harvested as detailed in results 

chapters. Where required, total protein concentrations of material were calculated using the 

Pierce BCA kit (as manufacturer’s instructions for microplate procedure) and 96 well plates 

were read using Revelation software (Dynex Technologies). Following preparation and 

heating, samples for SDS-PAGE were briefly centrifuged in a microcentrifuge and loaded into 



 62

the gel with a SeeBlue Plus2 Pre-Stained Standard marker (Invitrogen) in one well. Samples 

were separated at 65 mA and 125 V until the buffer front reached the bottom of the gel.   

 

Transfer to nitrocellulose 

In order to carry out a western blot, the samples must be transferred from the SDS 

polyacrylamide gel to a nitrocellulose membrane. The gels were placed onto Hybond-C 

nitrocellulose membrane (Amersham Biosciences) and placed between two sheets of filter 

paper, supported in the transfer apparatus by two nylon scouring pads. The tank was filled 

with transfer buffer (0.025 M Tris, 0.192 M glycine, 20% methanol) and transfers were carried 

out at 500 mA and 100 V for 2 hours. Membranes were blocked in PBS tween (0.05%) 

supplemented with 5% low fat dried milk (Marvel) overnight before being analysed in a 

western blot.  

 

Western blot procedure 

Following blocking, nitrocellulose membranes were washed three times in PBS tween (0.05%) 

allowing 10 minutes for each wash. Primary antibody (diluted in PBS tween to the appropriate 

concentration) was added and incubated with the membrane for 1 hour at room temperature. 

The membrane was then washed three times with PBS tween to remove any unbound primary 

antibody. Horseradish peroxidase (HRP) conjugated secondary antibody was added (diluted in 

PBS tween to the appropriate concentration) and incubated with the membrane for 1 hour. The 

membrane was washed three times with PBS tween before analysis. Proteins were detected 

using SuperSignal West Dura Extended Duration Substrate (Pierce) and a VersaDoc Model 

3000 imaging system (Biorad).  

 

Stripping western blots 

Western blots were stripped of antibodies to allow reprobing with different antibodies, for 

example a loading control. The membrane was incubated with stripping buffer (100 mM β-

mercaptoethanol, 2% SDS and 62.5 mM Tris in water, pH 6.7) at 50 °C for 30 minutes. The 

membrane was then washed three times (allowing 10 minutes for each wash) with large 
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volumes of PBS tween (0.05%) to remove the stripping buffer and then blocked for 30 

minutes with PBS tween supplemented with 5% low fat dried milk. The blot was washed three 

times with PBS tween before antibodies were applied as described above.   
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3. Searching for the ER retrieval signal of SERCA using chimeric 

proteins 

3.1 Introduction 

Chimeric proteins can be a useful tool in the search for sorting signals in proteins, and have 

been used to locate ER retrieval signals in SERCA94,146,147. By replacing sections of SERCA 

with corresponding sequence from the plasma membrane pump, PMCA, regions of SERCA 

that cause ER localisation can be detected. Due to the conservation of sequence, function and 

overall domain architecture between SERCA and PMCA, it is possible to select corresponding 

regions of the proteins to exchange by aligning the two sequences. A series of EGFP 

(enhanced green fluorescent protein) tagged SERCA/PMCA chimeras have been built, with 

the aim of locating the sequence(s) in SERCA that mediate its retrieval to the ER. The 

chimeras have been expressed in COS-7 cells and their localisation analysed using confocal 

microscopy and immunofluorescence. Conclusions can then be drawn based on the 

assumption that chimeras localised to the ER contain sequence information that mediates ER 

retrieval, whereas those localised to the plasma membrane do not.  

 

EGFP tags have been used to determine the localisation of the chimeras in this study. Proteins 

were C-terminally tagged in order to avoid interference with ER targeting of the calcium 

pumps which is mediated by SRP recognition of their N-termini38. EGFP and other fluorescent 

proteins are ubiquitous in cell biological and biochemical research as they provide a means of 

detecting a protein of interest using fluorescence microscopy. By virtue of their intrinsic 

fluorescence, fluorescent proteins can be used to detect proteins inside living cells, eliminating 

the need for membrane permeabilisation and use of fluorescent antibodies. In addition to the 

use of fluorescent proteins as a tool for localising proteins in cells, they can also be used as 

reporters of gene expression and to detect protein interactions using techniques such as 

fluorescence resonance energy transfer and biomolecular fluorescence complementation in 

which the fluorescent protein is divided into two parts and requires interaction of two tagged 

proteins for fluorescence to be emitted149,150.  
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Previous attempts have been made to pinpoint the ER localisation signal in SERCA using 

chimeric proteins. These studies have identified the N-terminus of SERCA as being important 

for ER localisation94,146,147. Carafoli and colleagues suggest that an ER localisation signal lies 

within the N-terminal 28 amino acids of SERCA, as chimeras in which these amino acids were 

added to the PMCA sequence were partially localised to the ER. Crucially however, removing 

these amino acids from SERCA and replacing them with PMCA sequence also produced an 

ER localised chimera, indicating that other regions of SERCA may also be important in its ER 

localisation147. The studies of this type carried out so far have only differentiated between ER 

and plasma membrane localisation94,146,147. It may be possible that chimeras not containing an 

ER retrieval signal could escape the ER but become held in a downstream compartment before 

reaching the plasma membrane. Therefore it may be important to look for localisation of the 

chimeras in the late Golgi apparatus to identify proteins that have escaped the ER retrieval 

process.  

 

One important consideration when using chimeric proteins to study maintenance in the ER is 

the function of the ER in protein quality control. By creating proteins not made by the cell 

under normal conditions, there is a possibility that they will be recognised as misfolded by the 

quality control machinery of the cell, and maintained in the ER by this route151. ER localised 

chimeras could be construed as ‘false positives’ as they appear to contain an ER retrieval 

signal but in reality may be undergoing retrieval as a result of their propensity to misfold. To 

attend to this, several measures were taken when building the SERCA/PMCA chimeras in this 

study to maximise proper folding and exit (where appropriate) from the ER and ERGIC. 

Constructing chimeras from SERCA and PMCA is a logical starting point, as the two proteins 

have approximately 30% sequence identity, a common overall architecture and conserved 

functional domains35,94. This should increase the probability that the chimeras will fold 

correctly, as compared to equally complex membrane-spanning chimeras built from unrelated 

proteins. The chimeras in this study have been built in mirror pairs, containing opposite 

sections of SERCA and PMCA. Assuming there is no redundancy in the signal or misfolding 

of the proteins, one of the pair should be present in the ER and one at the plasma membrane. If 

both of the mirror pair chimeras are localised to the ER, then no conclusions can be made; one 

or both could be misfolded. Plasma membrane chimeras are the most informative, as they have 
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escaped the quality control of the ER and so are presumably correctly folded. This enables 

elimination of any section of SERCA in a plasma membrane localised chimera from the search 

for retrieval signals. Where possible (and in most cases), SERCA and PMCA sequences have 

been joined at regions that are conserved between the two proteins. This measure is taken to 

reduce the probability of misfolding, especially in the area surrounding the join (figure 3.1).  

 
Figure 3.1 Selecting a suitable position to join SERCA and PMCA sequences 

Sequences of SERCA (top line) and PMCA (bottom line) were aligned using ClustalW (at 

Uniprot). The conserved region selected is surrounded by a red box, and the blue arrow 

indicates the point at which the two sequences were joined.  

 

To characterise the chimeras, trans-Golgi localisation was assessed. Although the distributions 

of SERCA and PMCA (shown in figure 3.5) appear very different, without a cell surface 

epitope on any of the chimeras able to be detected by an antibody, it is difficult to declare the 

absence of the reticular constructs at the plasma membrane. It is possible that some constructs 

appearing to be localised in the ER are present in small amounts in the plasma membrane. It is 

also possible that they have escaped the ER retrieval mechanism and continued to travel 

through the secretory pathway, becoming retrieved or retained somewhere upstream of the 

plasma membrane. Therefore, testing all of the reticular constructs for localisation in the trans-

Golgi is a prudent step to take to ensure that those constructs appearing to be in the ER are 

indeed showing retrieval at an early stage in the secretory pathway. The trans-Golgi is 

arguably the last step in the pathway taken by plasma membrane proteins that is easy to detect 

using immunofluorescence. Although presence in the trans-Golgi is not an indication that the 

protein will definitely traffic to the plasma membrane, it does illustrate the loss of ER 

retrieval. Rer1p is a protein that is localised to the ERGIC and Golgi122 but without locating 

compartments of the secretory pathway it is hard to ascertain where Rer1p ends its journey. By 

illuminating the trans-Golgi with antibodies, it becomes clear that Rer1p is present in the 

trans-Golgi, whereas SERCA is not (see figure 3.2). This example highlights the need for 

colocalisation experiments to determine how far chimeric constructs have travelled through 
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the secretory pathway; a technique which previous SERCA/PMCA chimera studies have not 

employed.  

 

 
Figure 3.2 Comparison of SERCA and Rer1p colocalisation with TGN46  

SERCA-EGFP (panels A-C) and Rer1p-EGFP (panels D-F) were expressed in COS-7 cells for 

2 days (A and D) and then treated with BFA and antibodies against TGN46 which were 

visualised using a Texas Red conjugated secondary antibody (B and E). Overlay images of A 

and B, and D and E, are shown in panels C and F respectively. Images were acquired with a 

Leica TCS SP2 AOBS confocal microscope.  

 

The trans-Golgi was detected in these studies with antibodies to the trans-Golgi marker protein 

TGN46 (trans-Golgi network protein of 46 kDa). Cells treated with these antibodies were pre-

treated with brefeldin A (BFA) to improve visualisation of the compartment. BFA causes an 

increase in separation between the trans-Golgi, and the ER and rest of the Golgi stack, 

allowing discrimination between proteins that travel into the early but not late Golgi94,148. BFA 

targets the GEFs of Arf1. Arf1 is a small GTPase which plays a role in the formation of COPI 

vesicles that transport protein cargo from the Golgi to the ER. Despite this, a major result of 

BFA treatment is the accumulation of Golgi enzymes in the ER. This seems counterintuitive, 

SERCA 

Rer1p 

A B C 

D E F 
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as inhibiting COPI coat formation should result in less retrograde transport from the Golgi to 

the ER. Reduction in COPI vesicle formation at the Golgi leads to accumulation of v-

SNARES which would normally be incorporated into COPI vesicles. This increase of v-

SNARE levels at the Golgi causes increased uncontrolled fusion between the Golgi and the t-

SNARE containing ER membrane, leading to redistribution of the Golgi stack into the ER and 

separating it from the trans-Golgi148,152. Concanavalin A (conA) conjugated to Alexa Fluor 

594 was also used to characterise the chimeras by highlighting the location of the plasma 

membrane. Protocols for anti-TGN46 antibody and conA treatment are described in chapter 2.  

 

Creating constructs with an epitope on the extracellular side of the plasma membrane would 

allow determination of their presence at the cell surface upon addition of antibodies to non-

permeabilised cells. Any construct present in the plasma membrane would be detected by a 

specific antibody and could be visualised using immunofluorescence, whereas constructs not 

present at the cell surface would be undetectable by treatment of non-permeabilised cells with 

antibodies. This was attempted by building constructs P/S2bM5-11 and P/S2bM11 from 

PMCA sequence and SERCA2b sequence. SERCA2b has an eleventh transmembrane domain 

and a lumenal C-terminus22 which would be extracellular if the protein were able to travel to 

the plasma membrane. The C-terminal 7 (P/S2bM5-11) or 1 (P/S2bM11) transmembrane 

domains of SERCA2b were used to replace corresponding PMCA sequence with the aim of 

creating a plasma membrane localised chimera which had a extracellular EGFP tag. If one or 

both of these constructs were able to travel to the plasma membrane, the C-terminus of 

SERCA2b could then be fused to chimeric constructs and function as a tool to detect chimeric 

constructs at the plasma membrane. Treatment of non-permeabilised cells expressing these 

constructs with anti-GFP antibodies would then allow identification of those chimeras that are 

located at the plasma membrane. P/S2bM5-11 and P/S2bM11 constructs were characterised 

using selective permeabilisation experiments in which it is possible to permeabilise the plasma 

membrane whilst leaving the ER membrane intact28. Addition of anti-GFP antibodies to cells 

with non-permeabilised, partially permeabilised or completely permeabilised membranes 

allows determination of the localisation of the C-terminus of the protein in the ER lumen, 

cytoplasm or on the extracellular side of the plasma membrane. The selective permeabilisation 

protocol used in these experiments is detailed in the methods section of this chapter. 
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3.2 Methods 

All general molecular biology, cell culture and transfection and microscopy protocols are 

described in chapter 2. cDNAs encoding rabbit SERCA1 and rat PMCA3 were provided by 

Dr. P. Adams and Prof. G. Shull as in Newton et al. (2003)94. The human SERCA2b construct 

was a gift from Prof. F. Wuytack153. In order to build the chimeric constructs detailed in this 

chapter, both single and multi-step polymerase chain reaction (PCR) methods were employed. 

Where possible, sections of DNA were amplified by PCR with unique restriction sites at each 

end of the fragment. For example, in the construction of chimera S/PNtermM1-2, (see figure 

3.12) a section of PMCA DNA was amplified and cut with restriction enzymes (NheI and 

KpnI) to generate sticky ends. This fragment was ligated into SERCA EGFP in the pcDNA3.1 

(+) expression vector (see chapter 2) which had been cut with the same restriction enzymes. 

This technique was used for all chimeras where it was possible to change sequence between 

restriction sites in the gene.  

 

In the case of chimeras in which smaller fragments were exchanged between the two genes, it 

was not possible to simply insert these fragments using restriction digest and ligation. 

Restriction sites were not present in the genes at these points and finding an appropriate 

sequence to mutate into a unique restriction site (whilst keeping the protein sequence the 

same) was not possible in such a small window of DNA. This was overcome with the use of 

multi-step PCR154. An example of this is the construction of chimera S/PM1 (see figure 3.3) in 

which three small sections of DNA were ‘stitched’ together using PCR before the full length 

fragment was inserted into the vector. The primers at the very ends of the insert were 

composed of SERCA or PMCA sequence, a restriction site (NheI or KpnI in this example) and 

6 or more random base pairs to allow efficient digestion of the resulting fragment by 

restriction enzymes. The primers within the insert (in this case flanking the sequence encoding 

M1) comprised SERCA or PMCA sequence (depending on the template used) with an 

overhang of sequence from the other gene to allow the resulting fragments to be annealed. The 

three initial PCRs were carried out separately, analysed by agarose gel electrophoresis, and 

cleaned using the Qiagen QIAquick PCR purification kit to remove all primers. The three 

products were combined in a fourth reaction, initially using five cycles of elongation and no 
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primers in order to produce a full length insert from the three fragments. The two primers 

flanking the restriction sites at each end of the insert were then added and a 30 cycle PCR was 

carried out to produce a full length insert. The primers used in the construction of chimera 

S/PM1 are shown in table 3.1. Primers for all chimeric SERCA/PMCA constructs are listed in 

appendix 1. The protein produced from these primers is shown in figure 3.4. The reagents and 

general protocol for PCR is detailed in chapter 2. For this example, the annealing temperatures 

and elongation times are shown in table 3.2.  

 

 

Primer Sequence 

A 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

B 5’-GTCACGTCCTGCAGGGCTTCTATCACCAGCTCCCACAGG-3’ 

C 5’-CCTGTGGGAGCTGGTGATAGAAGCCCTGCAGGACGTGAC-3’ 

D 5’-AAGGCAGTGATGGTCTCTCCCTCGTCTTCTGCCCCACCAG-3’ 

E 5’-GGGGCAGAAGACGAGGGAGAGACCATCACTGCCTTCGTTG-3’ 

F 5’-CCGCGATGTTGGTACCCGAG-3’ 

Table 3.1 PCR primers used in the construction of chimera S/PM1  

Restriction sites are underlined in green, SERCA and PMCA sequence are shown in red and 

blue respectively and extra base pairs to ensure efficient restriction digest are in black. Primer 

F is composed entirely of SERCA sequence as the restriction site and bases either side are 

contained within the gene.  
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Figure 3.3 PCRs carried out in the construction of S/PM1 

The architecture of chimera S/PM1 is shown at the top with the sequence encoding M1-M10 

represented by vertical lines labelled 1-10. Red and blue show SERCA and PMCA sequence 

respectively. NheI and KpnI restriction sites and the 5’ and 3’ ends of the DNA are indicated. 

The first three reactions and corresponding primers (A-F) (see table 3.1) are shown on the left, 

and their products on the right. The black regions of the primers show 6 (or more) base pairs 

5’ of the restriction sites. 1 and 2 inside the filled rectangles denote sequence encoding M1 

and M2 of the resulting protein.  
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Reaction Primers Annealing (°C) Elongation (min) Cycles Template 

1 A, B 55 1 30 SERCA 

2 C, D 45 1 30 PMCA 

3 E, F 59 1 30 SERCA 

4a None 60 2 5 Products 1, 2 and 3 

4b A, F 60 2 30 Products 1, 2 and 3 

Table 3.2 Details of the PCRs carried out to produce S/PM1  

Reaction 4 was carried out in two steps. The overlapping sections of the three previous 

products acted as primers in 4a, allowing amplification of the full length insert. Primers A and 

F were then added to the reaction and the fragment amplified in reaction4b. 

 

 
Figure 3.4 Alignment of SERCA and PMCA to show the sequence of the S/PM1 protein 

The join between SERCA and PMCA in S/PM1 is shown. The alignment between SERCA 

(top lines) and PMCA (bottom lines) was carried out using BLAST (at NCBI). SERCA and 

PMCA sequences in the chimera are surrounded by red and blue boxes respectively. Dashed 

blue lines indicate continuation of the sequence on the second line.  

 

Ligation of inserts into vectors is covered in chapter 2. Briefly, the insert (purified to remove 

primers) and the pcDNA3.1 (+) vector (in this example containing the SERCA EGFP 

construct) were both cut using restriction enzymes (NheI and KpnI in this example) to 

generate sticky ends. Ligation reactions were performed and the products of the reactions were 

transformed into DH5α E. coli cells. Ampicillin was used to select for positive transformants, 

and the presence and sizes of inserts was confirmed by restriction digest or colony PCR, 

followed by sequencing. DNA from colonies was purified using the Wizard™ Miniprep kit 

(Promega).  
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Correct constructs were used to transfect COS-7 cells using FuGENE-6 as detailed in chapter 

2. In addition to observation of the distribution of the EGFP tag on the constructs themselves, 

further characterisation was carried out using antibodies to TGN46 (and Texas Red conjugated 

secondary antibodies) and concanavalin A conjugated to Alexa Fluor 594. Cells were viewed 

with a Leica TCS SP2 confocal microscope, described in detail in chapter 2.   

 

For constructs containing the C-terminus of SERCA2b, characterisation was also carried out 

by a selective permeabilisation protocol modified from Butler et al. (2007)28. Two days after 

transfection in 24 well plates, COS-7 cells expressing the appropriate constructs were washed 

in PBS and fixed with 4% formaldehyde (in PBS) for 15 minutes. Cells were washed with 

PBS alone (no membrane permeabilisation), or supplemented with 0.01 mg/ml saponin (for 

plasma membrane permeabilisation) or 0.1% Triton X-100 (for entire membrane 

permeabilisation). Blocking was carried out with PBS supplemented with no detergent, 

saponin or Triton X-100 and 2% low fat dried milk (buffer P) for 30 minutes. Mouse anti-GFP 

antibodies (Roche) were added at a 1:100 dilution in the appropriate buffer P for 1 hour at 37 

°C. Antibody was removed, and cells washed three times in buffer P (allowing 5 minutes for 

each wash). Anti-mouse Texas Red conjugated secondary antibody (GE healthcare) was added 

at 1:50 in Triton X-100 buffer P and incubated for 1 hour at 37 °C. Adding Trition at this step 

does not interfere with the primary antibody binding, and permeabilisation of all membranes 

allows faster movement of the antibody within the cells and more efficient removal of 

unbound antibody. Secondary antibody was removed and cells were washed three times in 

Triton X-100 buffer P and once in PBS before being mounted as described in chapter 2.  
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3.3 Results 

All chimeras constructed were expressed in COS-7 cells and their subcellular distributions 

were assessed using confocal microscopy and immunofluorescence. A full list of all the 

chimeras constructed, and where they are located is shown in figure 3.12.  

 

 
Figure 3.5 Expression of SERCA-EGFP and PMCA-EGFP in COS-7 cells 

COS-7 cells were transfected with DNA encoding SERCA-EGFP (A-C) and PMCA-EGFP 

(D-F) in pcDNA3.1 (+). After 2 days, cells were treated with BFA and anti-TGN antibodies (B 

and E) and analysed by laser scanning confocal microscopy. Overlay images are shown in 

panels C and F, with inlaid images showing enlarged images of the trans-Golgi.  

 

SERCA-EGFP (figure 3.5) shows a reticular pattern, typical of ER/ERGIC proteins. The lack 

of colocalisation with TGN46 shows that SERCA does not reach the trans-Golgi. Cells 

expressing PMCA-EGFP (figure 3.5) show a clear outline of the plasma membrane and 

colocalisation of the protein with the trans-Golgi marker TGN46. 

SERCA-EGFP 

PMCA-EGFP 

A B C 

D E F 
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Figure 3.6 Constructs built to detect a retrieval signal at the N-terminus of SERCA 

COS-7 cells were transfected with EGFP tagged chimeras as indicated. After 2 days, cells 

were treated with conA conjugated to Alexa Fluor 594 (top panels) or BFA and antibodies 

against TGN46 visualised using a Texas Red conjugated secondary antibody (bottom panels). 

Images were obtained using a Leica TCS SP2 confocal microscope. The architecture of the 

constructs and their locations are shown below, with SERCA and PMCA in white and black 

respectively, and transmembrane domains shown as vertical lines.  

S/PNterm S/PM1 S/PM2 

P/SNterm P/SM2 P/SM1 
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Figure 3.7 Chimeras to determine the importance of M1 and M2 in retrieval  

COS-7 cells expressing S/PM1-2 (A) or P/SM1-2 (B) are shown 2 days after transfection. 

Cells were treated with BFA and anti-TGN46, followed by Texas Red conjugated secondary 

antibody. Analysis was carried out with confocal microscopy. SERCA sequence is shown in 

white and PMCA in black. Vertical lines represent transmembrane helices.  

 

Previous studies of this type have highlighted the N-terminus of SERCA as containing 

sequence important for maintenance in the ER94,146,147. For this reason, the N-terminal portion 

of SERCA was divided into three sections and replaced with corresponding PMCA sequence 

(see figure 3.6). S/PNterm and P/SNterm are located in the ER. Replacing M1 or M2 of 

SERCA sequence with that of PMCA, results in the protein localising to the plasma membrane 

(P/SM1 and P/SM2). The opposite constructs (S/PM1 and S/PM2) show ER localisation. 

ConA surface labelling and TGN46 colocalisation were used to characterise these constructs. 

The effect of both M1 and M2 in combination was tested by building S/PM1-2 and P/SM1-2 

which showed localisation in the ER and plasma membrane respectively (figure 3.7). These 

constructs do not indicate the presence of an ER localisation signal within the first two 

transmembrane domains of SERCA. In order to analyse the ability of the rest of the SERCA 

sequence to cause ER localisation, six constructs were then made in which the whole SERCA 

pump was divided into three sections and each one replaced with corresponding PMCA 

sequence.  

A B 



 77

 
Figure 3.8 Chimeras to search for a retrieval signal in the entire SERCA sequence  

COS-7 cells were transfected with the constructs shown above. After two days, the reticular 

constructs were treated with BFA and TGN46 antibodies which were visualised with a Texas 

Red conjugated secondary antibody. All images were obtained by confocal laser scanning 

microscopy. The compositions of the chimeras are shown below with SERCA in white, 

PMCA in black and transmembrane helices shown by vertical lines. The localisation of each is 

shown on the right.  

P/SNtermM1-2 S/PNtermM1-2 S/PM3-4 

P/SM3-4 S/PM5-10 P/SM5-10 
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The localisations of the six constructs in figure 3.8 suggest that the C-terminus of SERCA 

contains information dictating its retrieval to the ER. Replacement of the C-terminus of 

SERCA with that of PMCA (S/PM5-10) causes mislocalisation of the protein to the plasma 

membrane, whereas PMCA containing the C-terminus of SERCA (P/SM5-10) shows ER 

localisation and is not present in the trans-Golgi.  

 

Further chimeras were constructed to dissect the C-terminus of SERCA in an attempt to locate 

the ER retrieval signal. These are shown in figure 3.9. Involvement of the last four and last 

two transmembrane helices of SERCA in retrieval was analysed. However, S/PM7-10, PM7-

10, S/PM9-10 and P/SM9-10 were all localised in the ER and did not travel as far as the trans-

Golgi. This may indicate misfolding of some or all of these constructs. This will be described 

in detail in the discussion section of this chapter. Chimeras SM1-2M9-10 and SM1-2/PM9-10 

were constructed with the aim of determining whether M9 and M10 of SERCA play a role in 

retrieval. In both constructs, the first two helices of SERCA were included. M1 is required to 

cause initial ER targeting38, and M2 was included to allow correct orientation of M9 and M10 

in the membrane. A flexible ten amino acid linker (Gly-Gly-Gly-Gly-Ser)2 was used to 

connect M1-2 and M9-10. Both of these chimeras showed a reticular distribution and were not 

present in the trans-Golgi (see figure 3.9).  
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Figure 3.9 Chimeras to detect a retrieval signal at the C-terminus of SERCA 

COS-7 cells were transfected with DNA encoding constructs as indicated. After 2 days, cells 

were treated with BFA and anti-TGN46 antibodies, visualised using a Texas Red conjugated 

secondary antibody. Images were acquired by confocal microscopy. The constructs and their 

localisations are shown below the panels (SERCA in white and PMCA in black).  

S/PM7-10 P/SM7-10 S/PM9-10 

P/SM9-10 SM1-2M9-10 SM1-2/PM9-10 
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Figure 3.10 SERCA2b based constructs 

COS-7 cells were transfected with DNA encoding either P/S2bM5-11 (A) or P/S2bM11 (B). 

They were analysed by confocal microscopy 2 days following transfection. The chimeras and 

localisations are shown with SERCA2b sequence in white and PMCA in black. Vertical lines 

represent the transmembrane helices.  

 

SERCA2b constructs, P/S2bM5-11 and P/S2bM11, were built for reasons detailed above. 

They both appeared to be ER localised as shown in figure 3.10. To characterise the topology 

of these constructs, selective permeabilisation was carried out, as described above. Step-wise 

permeabilisation of COS-7 cells expressing SERCA-EGFP, PMCA-EGFP and P/S2bM5-11 is 

shown in figure 3.11. These results confirm that the C-terminus of SERCA2b in the P/S2bM5-

11 construct is located inside the ER lumen in contrast with SERCA and PMCA which have 

cytoplasmic C-termini. This experiment also demonstrated that the construct is not present at 

the cell surface, as no signal was seen when non-permeabilised cells were treated with anti-

GFP antibodies.  

A B 
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Figure 3.11 Selective permeabilisation to determine protein topology  

COS-7 cells were transfected with SERCA-EGFP (A-H), PMCA-EGFP (I-P) or P/S2bM5-11 

(Q-W). After 2 days, cells were treated with saponin to permeabilise the plasma membrane (C-

E, K-M, S and T), Triton X-100 to permeabilise all membranes including the ER membrane 

(F-H, N-P and U-W) or PBS alone to keep all membranes intact (A, B, I, J, Q and R). Anti-

GFP antibodies were added to detect the C-terminal EGFP tag on the proteins and visualised 

using a Texas Red conjugated secondary antibody (B, D, G, J, L, O, R, T and V). Overlay 

images where signal was seen with the antibody treatment are shown (E, H, M, P and W).  

P/S2bM5-11 Q R 

S T 

U V W 
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Figure 3.12 Summary of all chimeras  

All chimeras constructed are shown, with names on the left hand side. They are all C-

terminally tagged with EGFP. Their localisations in the ER or plasma membrane (PM) are 

shown, and their amino acid composition (numbers relating to SERCA and PMCA protein 

sequences) is detailed in the two columns on the far right. White sections correspond to 

SERCA (or SERCA2b) sequence and black to PMCA. Vertical lines indicate transmembrane 

helices.  
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3.4 Discussion 

In this investigation, sections of SERCA and PMCA sequence have been joined in order to 

create a series of chimeric calcium pumps which have been used to detect regions of SERCA 

required for ER localisation. Previous studies on the trafficking of SERCA have made use of 

chimeras of this type. These studies have shown the N-terminus of SERCA is key to its 

maintenance in the ER94,146,147. The aim of the experiments reported in this chapter was to 

build on existing chimera studies in order to locate the sequence(s) in SERCA required for ER 

retrieval. Newton et al. reported the requirement for the first 211 residues of SERCA for its 

maintenance in the ER94. Two studies by a different group have also demonstrated a 

requirement for the N-terminus of SERCA. Foletti et al. used SERCA/PMCA chimeras to 

show that the first 85 amino acids of SERCA were sufficient to cause ER localisation146. This 

conclusion was drawn from an ER localised chimera consisting of PMCA sequence with a 

substitution of SERCA sequence at the N-terminus. Importantly, the opposite construct to this 

(which presumably would be localised to the plasma membrane) was not built in the study, 

leaving the possibility of ER maintenance by the quality control machinery open. More work 

from the same group in a paper by Guerini et al. suggests the first 28 amino acids of SERCA 

have a role to play in ER retrieval of the protein. However, the authors point out that there is 

likely to be sequence elsewhere in the pump involved in retrieval, as in cells expressing 

chimeras consisting of PMCA and the N-terminal 28 residues from SERCA, less than half 

showed ER localisation of the chimera147.  

 

Due to the interest raised by these studies in the N-terminus of SERCA, this investigation 

began with a detailed analysis of the role played by the N-terminal residues of SERCA in ER 

retrieval. Six chimeras were built in which amino acids at the N-terminus of the pump were 

mutated. S/PNterm, S/PM1 and S/PM2 are based upon SERCA sequence with PMCA N-

terminus, M1 or M2 respectively substituted for corresponding SERCA sequence. These 

chimeras were all ER localised (see figure 3.6), suggesting that either none of these regions in 

SERCA are required for ER retrieval, or that the chimeras did not undergo proper folding. In 

order to clarify this situation, the mirror opposites of these constructs were built (P/SNterm, 

P/SM1 and P/SM2) and localisation in COS-7 cells was determined (also shown in figure 3.6). 
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Both P/SM1 and P/SM2 were localised at the plasma membrane, indicating that neither M1 

nor M2 of SERCA are sufficient to cause ER retrieval. Like its mirror opposite, P/SNterm was 

also located in the ER, allowing no conclusion to be drawn at this stage with respect to the 

very N-terminal section of SERCA preceding M1. The ability of the combination of both M1 

and M2 of SERCA to cause retrieval to the ER was also tested by building S/PM1-2 and 

P/SM1-2. The results (shown in figure 3.7) confirmed that M1 and M2 together are unable to 

cause ER localisation. Replacing M1 and M2 of PMCA with corresponding SERCA sequence 

produced a protein localised to the plasma membrane, whereas SERCA with corresponding 

PMCA sequence replacing M1 and M2 was still able to be retrieved to the ER.  

 

As neither M1 nor M2 (both separately or in combination) of SERCA appear able to cause 

retrieval from the ER, the SERCA pump was then divided into three sections and six 

constructs were built to systematically test each third of the protein for ER retrieval 

capabilities. The localisations of these chimeras in COS-7 cells are shown in figure 3.8. Both 

P/SNtermM1-2 and S/PNtermM1-2 were located in the ER and did not travel as far as the 

trans-Golgi. As these mirror opposites are both located in the ER, no conclusions can be 

drawn here, and misfolding of one or both chimeras cannot be ruled out. The middle section of 

SERCA (amino acids 212-711) does not appear to be required for ER localisation, as 

replacement of this portion with corresponding PMCA sequence (S/PM3-4) results in an ER 

localised chimera and its introduction into PMCA (P/SM3-4) does not cause ER retrieval. The 

C-terminal section of SERCA was shown to be needed for ER localisation. Chimera S/PM5-

10 in which the last third of SERCA was replaced with corresponding PMCA sequence 

showed plasma membrane localisation, indicating that this section of the protein is needed for 

correct localisation.  P/SM5-10 however, showed ER localisation, as presumably the SERCA 

sequence within this construct is causing the protein to be retrieved to the ER. By analysing 

the localisations of these six chimeras, it seems likely that the sequence in SERCA which 

mediates its retrieval to the ER is located within residues 712-1001, at the C-terminus of the 

protein.  

 

Further chimeras were then built to dissect the C-terminus in an attempt to narrow down the 

location of the ER retrieval signal, as shown in figure 3.9. Chimeras S/PM7-10 and P/SM7-10 
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were built to determine whether the ER retrieval signal lies within M7-10 of SERCA. Both of 

these constructs showed an ER distribution and did not travel to the trans-Golgi. S/PM9-10 

and P/SM9-10 were constructed in an attempt to determine the role (if any) of the last two 

transmembrane helices of SERCA in ER localisation. Again, both of these constructs were 

located in the ER. As misfolding and subsequent ER retention by the quality control 

machinery of the cell may be accountable for the localisation of these chimeras, two constructs 

were then built consisting of only four transmembrane domains. The aim of this experiment 

was to determine whether the ER retrieval signal of SERCA is located within M9-10 of 

SERCA, and it was hoped that by using smaller, simpler constructs, the propensity of the 

proteins to misfold may be reduced. M1 and M2 of SERCA were connected by a flexible ten 

amino acid linker (Gly-Gly-Gly-Gly-Ser)2 to M9-10 of SERCA (SM1-2M9-10) or to M9-10 

of PMCA (SM1-2/PM9-10). Both of these constructs were ER localised and were not present 

in the trans-Golgi. The results from these six constructs (all shown in figure 3.9) do not 

provide answers as to where in the C-terminal section of SERCA the retrieval signal is 

located. It is possible that some or all of these proteins are misfolded and that their ER 

localisation is due to the action of quality control mechanisms within the cell. Protein 

misfolding and possible ways to detect and circumvent it in studies such as this will be 

discussed in detail in chapters 4 and 5.   

 

SERCA2b/PMCA chimeras P/S2bM5-11 and P/S2bM11 were built for reasons detailed 

above. They were expressed in COS-7 cells and were located in the ER, as shown in figure 

3.10. The use of M11 from SERCA2b as a tool to detect cell surface localisation of chimeras 

was not pursued, as adding sequence for this extra transmembrane domain to PMCA (in 

P/S2bM11) resulted in the mislocalisation of PMCA to the ER. This may be a result of protein 

misfolding, but there is a possibility that information in this final transmembrane helix of 

SERCA2b may cause ER retrieval. Either way, adding this sequence to chimeric constructs 

would not have been a suitable assay to test for plasma membrane localisation. The selective 

permeabilisation experiment used to detect the C-terminal EGFP tag on the P/S2bM5-11 

construct is shown in figure 3.11. This confirms that the protein is orientated correctly, as the 

EGFP tag appears to be in the ER lumen (as opposed to cytoplasmic in the case of SERCA 

and PMCA which both have 10 rather than 11 transmembrane helices). Anti-GFP antibodies 
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were only able to bind to the C-terminus of P/S2bM5-11 when all membranes had been 

permeabilised with Triton X-100. No signal was seen from antibodies added to cells in which 

only the plasma membrane had been permeabilised by treatment with saponin.  

 

The chimeric proteins constructed in this investigation illustrate that the sequence(s) required 

for ER retrieval is located between residues 712-1001 of SERCA. Further dissection of the C-

terminus yielded only ER localised chimeras from which no conclusions could be drawn. 

Although chimeric proteins can provide important information about targeting signals in 

proteins, the fact that the ER is a destination for misfolded proteins is problematic when 

searching for ER localisation signals. For this reason, plasma membrane localised constructs 

are required for drawing conclusions in this type of study. Where possible, SERCA and 

PMCA sequences were joined in conserved regions in an effort to avoid misfolding. However, 

with such complex polytopic membrane proteins it is impossible to predict how changing the 

sequence may affect the overall tertiary structure of the resulting protein, and whether 

misfolding will occur. Although SERCA and PMCA show significant homology, without the 

crystal structure of PMCA no accurate estimations can be made as to the structures of the 

resulting proteins. Figure 3.13 shows an example of a chimera used in this study and 

highlights the complexity of such a protein.  

 

In addition to potential misfolding of the chimeras, other explanations may exist for the 

presence of both chimeras from a mirror pair in the ER. In some cases, redundancy in the 

retrieval signal may explain the localisation of opposite constructs to the ER. For example, in 

the case of chimeras S/PM9-10 and P/SM9-10 (see figure 3.12), it is possible that there is 

sequence either side of the join between SERCA and PMCA that is sufficient to retrieve the 

protein, and as a result both are retrieved to the ER.  
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Figure 3.13 Chimera S/PNtermM1-2  

In chimera S/PNtermM1-2, the first 211 residues of SERCA (shown in blue) were replaced 

with corresponding PMCA sequence. The rest of the pump consists of SERCA sequence (red). 

The primary structure of the chimera is shown below with PMCA and SERCA in black and 

white respectively and vertical lines indicating transmembrane helices. The SERCA structure 

(PDB code 1SU4) was rendered in Rasmol.  
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As mentioned above, the SERCA and PMCA pumps are large and complex proteins which are 

folded and held together by many intramolecular interactions. It is conceivable that PMCA 

contains the same or similar ER retrieval signal as SERCA, but in the correctly folded plasma 

membrane pump this sequence information may be masked by sequence elsewhere in the 

protein. Changing the sequence of PMCA by creating protein chimeras may expose this 

sequence, causing ER localisation of the pump mediated by PMCA not SERCA sequence. 

However, if the plasma membrane is indeed a ‘default’ localisation for proteins travelling 

through the secretory pathway90, it seems illogical that more, rather than less, information is 

required to arrive there. The lines between misfolding and masking and unmasking of signals 

become blurred here, introducing potential for ambiguity in the interpretation of results. The 

importance of plasma membrane chimeras should be highlighted again here. By trafficking to 

the plasma membrane, these chimeras are able to escape the quality control machinery and are 

therefore not misfolded. Without additional studies to determine the folding of ER chimeras, 

plasma membrane chimeras are required for conclusions to be drawn from this type of study.  

 

Over 20 crystal structures of SERCA in different conformations have now been published18. 

The availability of these structures means that the conformational changes of the pump during 

its catalytic cycle can be pieced together, rather like a flick-book of static images which come 

together to form an animation. If SERCA is indeed recognised by a receptor in the early Golgi 

in order to be retrieved to the ER, it would be easier to envisage this happening by recognition 

of a stationary rather than very dynamic portion of the pump. Looking at the collection of 

snapshots we now have of SERCA during calcium transport, it is clear that the protein 

undergoes very large conformational changes. The C-terminal transmembrane helices (M9 and 

M10) of SERCA appear to be the least dynamic part of the protein18. If transmembrane 

domains form part of the retrieval signal of SERCA then M9 and M10 seem likely candidates 

based on the fact that they do not move a great deal during calcium transport by SERCA. This 

fits well with the data from the chimeras presented here which show that the C-terminus of 

SERCA is necessary and sufficient for ER retrieval.  

 

From observing the subcellular localisations of the chimeras built in this chapter, it can be 

concluded that the C-terminal section (residues 712-1001) of SERCA is required for its 
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retrieval to the ER. As so many of the chimeras constructed in this investigation (17 chimeras 

out of a total of 22) are localised in the ER, there is a significant possibility that at least some 

of these are misfolded and are maintained in the ER by quality control rather than specific 

sequence mediated retrieval. In the next chapter, possible ways of detecting misfolding in 

chimeric proteins will be discussed.   
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4. Detecting protein misfolding in chimeric calcium pumps 

4.1 Introduction 

Protein quality control is a vital part of cellular homeostasis. It is crucial that the cell can 

detect aberrant folding of proteins and take measures to allow re-folding or to activate 

degradation pathways in the case of terminally misfolded proteins155. This study makes use of 

mammalian systems to overexpress complex, heterologous proteins. An understanding of the 

quality control systems of the cell and methods to detect protein misfolding is therefore 

important, particularly when we may consider localisation of a chimera in the ER as a read-out 

of signal mediated protein retrieval.  

 

The results presented in the previous chapter show that many of the SERCA/PMCA chimeras 

are located in the ER. In some cases, this ER localisation is likely to be due to protein 

misfolding rather than specific sequence mediated ER retrieval. For example, both 

P/SNtermM1-2 and S/PNtermM1-2 are located in the ER despite being constructed from 

opposite sections of SERCA and PMCA (see figure 3.12). Evidence from other chimeras in 

this study (S/PM5-10 and S/PM1-2) show that the N-terminal section of SERCA is not 

required for ER localisation, suggesting that P/SNtermM1-2 and possibly also S/PNtermM1-2 

are maintained in the ER by quality control rather than signal mediated retrieval. It is also 

interesting to note that most of the chimeras in which the C-terminus of the protein has been 

mutated show ER localisation. The lower sequence homology between SERCA and PMCA C-

termini in comparison with the rest of the protein sequences could conceivably increase the 

propensity of these chimeras to misfold. If a suitable assay could be developed to test for 

misfolding in these chimeras, it would be possible to gain more of an insight as to where in 

SERCA the ER retrieval signal is located.  

 

Two mechanisms are used by the ER to detect and respond appropriately to misfolded 

proteins; the unfolded protein response (UPR) and ER-associated degradation (ERAD)69. The 

unfolded protein response (UPR) describes the changes the ER undergoes in order to tackle 

elevated levels of unfolded protein in the organelle. Under normal circumstances, the ER 
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employs a range of chaperones to facilitate protein folding in the lumen. These chaperones are 

often calcium dependent and bind to proteins to allow folding, as well as catalysis of post-

translational modifications including N-linked glycosylation and disulphide bond formation69. 

BiP is a chaperone which binds to unfolded proteins in order to hold them in a folding-

competent state. It uses cycles of ATP hydrolysis to bind and unbind the unfolded protein, 

allowing an opportunity for correct folding with each cycle. BiP exists as both a monomer 

(which binds unfolded proteins) and an oligomer (which acts as a pool of unbound BiP in the 

ER). A marked increase in unfolded protein leads to depletion of the oligomeric pool of BiP, a 

change which may begin a signalling pathway ultimately resulting in adaptation of the ER and 

initiation of the UPR155. Other sensors of the UPR include IRE1 and PERK; transmembrane 

kinases able to communicate the presence of unfolded proteins in the ER lumen to 

downstream activators in the cytoplasm. The UPR is characterised by activation of signalling 

pathways which increase the protein folding capacity of the ER. As a result of the UPR, the 

role of the ER as a site of protein synthesis is compromised, with a decrease in transcription of 

genes involved in translation. This allows upregulation of transcription of genes encoding ER 

resident chaperones. An increase in the size of the ER is also observed during the UPR69,155.  

 

The ERAD pathway is distinct from the UPR and is responsible for the degradation of 

terminally misfolded proteins69. This degradation is carried out by the ubiquitin proteasome 

system located in the cytoplasm. Any protein in the ER lumen or membrane must first be 

transported across the membrane and into the cytoplasm where it is then conjugated to 

ubiquitin; a small protein which functions as a tag for destruction by the proteasome. 

Terminally misfolded proteins are recognised by chaperones in the lumen, including BiP, and 

escorted to a channel which is able to retrotranslocate the misfolded protein back across the 

ER membrane into the cytoplasm. It is not clear whether this channel is the same Sec61 

translocon that allows synthesising peptides into the ER lumen, or if another protein pore is 

required. After crossing the ER membrane, misfolded proteins are targeted for destruction by 

the addition of polyubiquitin chains, catalysed by enzymes located on the cytoplasmic side of 

the ER membrane. The ubiquitinated protein is then degraded in the catalytic core of the 26S 

proteasome69,156,157.  
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The UPR is characterised by specific upregulation of certain proteins69. Misfolding of 

chimeras in this study could feasibly be detected by measuring expression levels of UPR 

proteins including the chaperone BiP. In order to measure this in cells expressing 

SERCA/PMCA chimeras, suitable controls have been used. The cystic fibrosis transmembrane 

conductance regulator protein (CFTR) is a chloride ion transporter usually localised to the 

plasma membrane. The ΔF508 mutation of the CFTR gene causes the protein to be recognised 

as misfolded and maintained in the ER. This mutation, causing deletion of a phenylalanine in 

the CFTR channel, manifests as cystic fibrosis in individuals homozygous for the mutant 

allele157,158. ΔF508 CFTR is an appropriate positive control to use here for detecting 

misfolding in the chimeras. Both CFTR and PMCA are multi-spanning membrane proteins 

which, when correctly folded, arrive at the plasma membrane. ΔF508 CFTR has been shown 

previously to elicit the UPR and to cause BiP upregulation, as measured by increased BiP 

mRNA levels158. Another control that has been used in this study is the treatment of cells with 

tunicamycin; a pharmacological agent which causes aberrant folding of proteins in the ER by 

inhibiting N-linked glycosylation, resulting in the induction of the UPR159. The experiments 

described here attempt to detect misfolding in calcium pump chimeras by observing 

expression levels of the UPR marker protein BiP in cells expressing various constructs.  
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4.2 Methods 

All general techniques (molecular biology, cell culture, transfection, microscopy and western 

blotting) are described in chapter 2. The GFP-tagged ΔF508 CFTR construct was a gift from 

Prof. B. Stanton160.  

 

Pharmacological induction of the UPR was carried out by incubating cells with tunicamycin 

(Sigma-Aldrich) at a final concentration of 5 µg/ml for 24 hours, as described in Bartoszewski 

et al. (2008)158. COS-7 and HeLa cells for western blotting were grown and transfected on 10 

cm culture dishes (as detailed in chapter 2). Cells were harvested by washing twice with ice 

cold PBS before adding 400 µl sample buffer (as in chapter 2, but without bromophenol blue) 

at 60 °C to each plate, and scraping cells from the plates. Sample buffer was supplemented 

with 40 µl mammalian protease inhibitor cocktail (Sigma Aldrich). Samples were sonicated 

for 1 minute and aliquots frozen in liquid nitrogen. Protein concentrations were estimated 

using the Pierce BCA kit as described in chapter 2. Densitometry of western blots to quantify 

protein levels was carried out using the Versadoc Model 3000 imaging system (Biorad) and 

Quantity One software. Actin was used as a loading control for western blotting.  

 

Antibodies and dilutions used in western blots were as follows: mouse anti-GFP, 1:500 

(Roche); rabbit anti-BiP, 1:1000 (Abcam); mouse anti-actin, 1:10000 (Sigma-Aldrich); sheep 

anti-mouse IgG conjugated to horseradish peroxidase (HRP), 1:2000 (GE Healthcare) and goat 

anti-rabbit IgG conjugated to HRP, 1:3000 (Abcam). GE Healthcare HRP conjugated 

secondary antibodies were affinity adsorbed (against rat, human and mouse).  

 

Antibodies and dilutions used in immunofluorescence were rabbit anti-BiP, 1:50 (Abcam) and 

donkey anti-rabbit IgG conjugated to Texas Red, 1:100 (GE Healthcare). Cells were incubated 

with 4',6-diamidino-2-phenylindole (DAPI) (Sigma-Aldrich) at 1 µg/ml for 10 minutes to 

visualise nuclei. 

 

Two mirror pairs of chimeras were selected for these experiments. P/SM1-2 and S/PM1-2 are 

localised to the plasma membrane and ER respectively, so presumably at least P/SM1-2 is 
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correctly folded. P/SNtermM1-2 and S/PNtermM1-2 are both located in the ER, and the 

SERCA sequence in P/SNtermM1-2 has been shown by other constructs not to be required for 

ER localisation, suggesting that one or both of these constructs may be misfolded.  
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4.3 Results 

HeLa cells were transfected with various constructs, empty expression vector, treated with 

tunicamycin or left untransfected (all were left 48 hours before harvesting). Cell lysates were 

prepared and samples were analysed by western blotting to measure the levels of BiP and 

determine whether any constructs elicit the UPR in cells.  

 

 
Figure 4.1 Measurement of BiP levels in HeLa cells expressing chimeric constructs  

HeLa cells were transfected with constructs for 48 hours, or left untransfected or treated with 

tunicamycin. Lanes are as follows: (1) HeLa cells only, (2) tunicamycin treated, (3) empty 

pcDNA3.1 vector, (4) SERCA-EGFP, (5) PMCA-EGFP, (6) P/SM1-2, (7) S/PM1-2, (8) 

P/SNtermM1-2, (9) S/PNtermM1-2. Samples were analysed by western blotting to measure 

levels of BiP expression under different conditions. GFP antibodies were used to detect 

calcium pump expression and actin was used as a loading control.  

 

Figure 4.1 shows the levels of BiP expression in HeLa cells expressing different constructs, 

treated with tunicamycin or left untreated. The expression of EGFP tagged constructs was also 

confirmed with fluorescence microscopy (not shown). Densitometry was then carried out on 

these blots to determine the expression of BiP relative to actin. 

1            2          3          4          5          6         7         8         9 
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Lane Construct Actin BiP BiP/Actin Localisation 

1 None 67 37 0.6 - 

2 None + tunicamycin 17 52 3.1 - 

3 pcDNA3.1 (empty vector) 32 8 0.25 - 

4 SERCA-EGFP 62 16 0.26 ER 

5 PMCA-EGFP 36 8 0.22 PM 

6 P/SM1-2 14 4 0.29 PM 

7 S/PM1-2 47 7 0.15 ER 

8 P/SNtermM1-2 51 6 0.12 ER 

9 S/PNtermM1-2 29 4 0.14 ER 

Table 4.1 Densitometry to quantify BiP expression in HeLa cells expressing chimeras  

The expression of BiP in HeLa cells under each condition was calculated by densitometry 

relative to actin levels. Numbers indicate volumes of each band, compared to a zero value 

taken from a section of the blot containing no bands. The lane numbers correspond to the blot 

shown in figure 4.1. Localisations of constructs in the ER or plasma membrane (PM) are also 

shown.  

 

Table 4.1 shows quantification of the blots in figure 4.1. Only cells treated with tunicamycin 

show an increase in BiP levels over that seen in untreated, untransfected cells. The GFP 

antibody detected only very low levels of chimeric calcium pump expression. Due to these 

low expression levels of the chimeric constructs in HeLa cells, the experiment was repeated in 

COS-7 cells which express higher amounts of protein from this expression vector due to the 

expression of the SV40 large T-antigen in this cell line161 (see Invitrogen pcDNA3.1 manual). 

Protein concentration assays were carried out on the samples and an equal amount (12 µg) of 

protein was loaded from each condition (see figure 4.2). Again, as with HeLa cells, the only 

detectable BiP upregulation was seen in cells treated with tunicamycin, with no increase in 

BiP levels seen in cells transfected with any of the calcium pump constructs or empty vector.   
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Figure 4.2 Expression of BiP in COS-7 cells expressing chimeras  

COS-7 cells were transfected with constructs for 48 hours, or left untransfected or treated with 

tunicamycin. Lanes are as follows: (1) COS-7 cells only, (2) tunicamycin treated, (3) empty 

pcDNA3.1 vector, (4) SERCA-EGFP, (5) PMCA-EGFP, (6) P/SM1-2, (7) S/PM1-2, (8) 

P/SNtermM1-2, (9) S/PNtermM1-2. Samples were analysed by western blotting to measure 

levels of BiP expression under different conditions. GFP antibodies were used to detect 

calcium pump expression.  

 

 

As no increase in BiP levels was seen with any of these constructs by western blotting, 

immunofluorescence was employed in an attempt to observe BiP expression. It is possible that 

the transfection efficiency (approximately 10%) of these constructs may dilute any BiP 

overexpression to a point at which it becomes undetectable by western blot. By using 

immunofluorescence, it may be possible to observe differences in BiP expression between 

transfected and untransfected cells containing chimeric calcium pumps. COS-7 cells were 

transfected with the same constructs as above and treated with BiP antibodies, visualised using 

a Texas Red secondary antibody. This is shown in figure 4.3. No notable difference can be 

observed between BiP levels in transfected and untransfected cells, even in cells transfected 

with CFTR ΔF508 which has been shown to upregulate BiP expression158.  

1           2          3          4          5          6         7         8         9 
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Figure 4.3 BiP detection in COS-7 cells expressing constructs by immunofluorescence  

COS-7 cells were transfected with constructs as indicated for 48 hours, or left untransfected. 

EGFP fluorescence is shown in the left hand columns. BiP was visualised by 

immunofluorescence using a Texas Red conjugated secondary antibody (middle columns). 

DAPI was used to stain the nuclei. Overlay images are shown in the third columns. Images 

were acquired by confocal microscopy. Scale bars are 10 µm.  
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4.4 Discussion 

The experiments described here were carried out in an attempt to detect activation of the UPR 

by expression of misfolded proteins in mammalian cells. As explained in section 4.1, it is 

possible that at least some of the ER localised chimeric calcium pumps constructed in this 

study are maintained in the ER as a result of protein misfolding rather than specific signal 

mediated retrieval. More information could be gained from the localisations of the set of 

chimeras if it were known which proteins were located in the ER as a result of misfolding. 

Plasma membrane localised proteins (PMCA and P/SM1-2) were used in these experiments as 

controls for correctly folded proteins, and tunicamycin and the misfolded CFTR ΔF508 were 

employed as known inducers of the UPR158,159. In addition, some cells were transfected with 

empty pcDNA3.1 (+) vector only, to ensure that the transfection procedure did not elicit the 

UPR.  

 

Western blotting was used to detect increases in BiP expression in HeLa cells transfected with 

chimeric constructs. Figure 4.1 shows very low expression of all EGFP tagged constructs in 

HeLa cells (detected with a GFP antibody) except SERCA-EGFP. BiP and actin levels were 

measured by densitometry and the relative amount of BiP (adjusted according to actin) was 

calculated (as shown in table 4.1).  The results show that only cells treated with tunicamycin 

showed a marked increase in the amount of BiP expressed over untreated and untransfected 

cells. This positive control demonstrates that BiP levels are indeed increased in the UPR when 

elicited by tunicamycin, but similar effects were not seen with any of the transfected 

constructs.  

 

The same experiment was then carried out COS-7 cells in order to increase the expression 

levels of recombinant proteins. The pcDNA3.1 expression vector used throughout this study 

(see chapter 2) contains the SV40 origin of replication, allowing episomal replication of the 

vector in cell lines containing the large T-antigen. The COS-7 cell line contains the large T-

antigen and so is able to replicate the vector, allowing for higher gene expression in 

comparison to other cell lines such as HeLa which lack the large T-antigen161 (see Invitrogen 

pcDNA3.1 manual). Equal amounts of total protein from COS-7 cells transfected with EGFP 
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tagged constructs, tunicamycin treated, or untransfected were analysed by western blotting 

with a BiP antibody. These blots are shown in figure 4.2 and demonstrate that, as in HeLa 

cells, the only condition which causes a detectable increase in BiP expression is treatment with 

tunicamycin.  

 

The western blotting data presented in this chapter indicate that none of the constructs 

expressed in HeLa or COS-7 cells cause an increase in BiP levels. This could simply reflect 

the proper folding of all constructs, or it could be that some of the constructs cause an 

upregulation of BiP, but due to the proportion of cells which are transfected (around 10%) this 

increase is not detectable by western blot. In the case of tunicamycin treated cells, a clear 

response is seen. All cells in the sample will come into contact with tunicamycin and so all 

cells should show an increase in BiP levels. In the case of the transfected cell samples, it is 

feasible that any increase in BiP expression is diluted by the untransfected majority. This 

problem highlights the requirement for near 100% transfection in experiments where protein 

expression is quantified in this way. This can be achieved using stable transfectants selected 

by antibiotic treatment (see Invitrogen pcDNA3.1 manual).  

 

Immunofluorescence was used as an alternative method to observe BiP expression. 

Untransfected cells in transfected conditions served as internal controls to which cells 

expressing EGFP tagged constructs could be compared. Cells were treated with BiP 

antibodies, visualised with a Texas Red conjugated secondary antibody and analysed by 

confocal microscopy. Figure 4.3 shows no observable difference in BiP abundance in cells 

expressing any of the constructs, as compared to untransfected cells. EGFP tagged CFTR 

ΔF508 was used as a control, as it has previously been shown to cause the UPR and upregulate 

BiP expression158. However, no difference was seen in BiP between cells expressing the 

mutant chloride channel and untransfected neighbouring cells. This result suggests that 

immunofluorescence is not a suitable technique to measure increases in protein expression in 

this system, as it is not possible to detect upregulation of BiP in cells transfected with CFTR 

ΔF508.  
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The inconclusive nature of the data presented in this chapter suggests that these methods may 

not be subtle enough or appropriate for detecting misfolded proteins in this system. ER 

localisation of at least some of the chimeric calcium pumps may be a result of misfolding, but 

it has not been possible to detect misfolding with the experiments described here. The 

mechanisms of how non-glycosylated proteins (such as the calcium pumps described here) are 

maintained in the ER due to misfolding is not well understood. Interactions with BiP and 

calnexin are thought to play a role, with the possibility that the KDEL motif of BiP is partially 

responsible for ER retention of the misfolded protein162. It may be possible to determine which 

chimeric calcium pumps are misfolded by measuring interactions with BiP or calnexin, but 

without a clearer understanding of these mechanisms of ER retention, finding a definitive test 

for misfolding in these proteins is not straightforward. The next chapter will describe the 

building of constructs likely to have reduced propensities to misfold, in order to circumvent 

this problem of ER retention as a result of protein misfolding.  
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5. Searching for an ER retrieval signal in the tenth 

transmembrane domain of SERCA 

5.1 Introduction 

The localisations of the chimeric constructs described in chapter 3 demonstrate that the 

sequence in SERCA required for ER localisation is contained within residues 712-1001. 

Constructs built to dissect this section of the pump yielded only ER localised proteins, and 

experiments to test for misfolding in the chimeras (see chapter 4) were inconclusive. This 

chapter describes the attempts made to overcome the problem of misfolding by building 

simpler constructs and constructs in which only small changes have been made to the SERCA 

sequence. In addition, bioinformatics has been used to compare SERCA sequences with those 

of PMCA and the Golgi calcium pump SPCA1 and to locate the positions of specific residues 

within the tenth transmembrane domain (M10) of SERCA.  

 

Structural studies of SERCA in different conformations have yielded much information on the 

movement of the pump during its catalytic cycle18. When searching for localisation signals in 

SERCA, it is important to consider the pump as a dynamic, three-dimensional protein within 

the lipid bilayer, rather than simply a static primary protein sequence. It is unknown what 

protein machinery is responsible for maintaining SERCA in the ER. However, if the 

mechanism is analogous to KDEL or di-lysine mediated retrieval, then it is likely to involve a 

membrane spanning receptor91,99. Assuming this is the case for SERCA, a signal located close 

to the membrane spanning domains of the protein would seem most likely, and a signal 

located in the dynamic cytoplasmic A, P or N domains18 would be unexpected. As shown in 

chapter 1 (figure 1.3), structural information suggests that M9 and M10 of SERCA move very 

little during the transport of calcium, in comparison with the rest of the protein18. It is easier to 

envisage the recognition of SERCA by a membrane spanning receptor if the retrieval signal is 

located in a static, rather than mobile, portion of the protein. Any large conformational 

changes in the vicinity of the retrieval signal would alter the location of the signal relative to 

the membrane and the membrane spanning receptor, suggesting that static sections of the 

protein are most likely to contain retrieval information.  
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It is possible that the retrieval signal in SERCA is located within the membrane spanning 

regions of the pump. If SERCA is recognised by Rer1p or a similar receptor, then polar or 

charged residues in one of the transmembrane helices could be responsible for ER 

localisation130. Unfortunately, it is not possible to simply detect a retrieval signal by searching 

for polar or charged residues within membrane spanning helices, as polytopic, ion transporting 

membrane proteins like SERCA have a high prevalence of charged residues in their membrane 

spanning regions. By looking at the structures and conformational changes of SERCA, it is 

possible to predict which, if any, charged or polar residues would be accessible from the 

bilayer. This will be discussed later in the chapter by looking at the structure of the pump, but 

it seems likely that a lysine at position 972 points out into the membrane, making M10 of 

SERCA a candidate for recognition by Rer1p or a similar receptor. Interestingly, this lysine is 

conserved amongst SERCAs but not in PMCAs. PMCA3 contains a phenylalanine at the 

corresponding position (see figure 5.1). There are charged and polar residues in M1 and M2, 

but as shown in chapter 3, these transmembrane domains are not required for ER localisation 

of the protein. Charged residues are also present in the other transmembrane domains, but 

many of these are involved in calcium binding and are not accessible from the bilayer12,18.  

 

 
Figure 5.1 Alignment of M10 sequences from SERCA and PMCA  

Human SERCA1 (residues 965-985; top) and PMCA3 (residues 1035-1056; bottom) 

sequences were aligned using ClustalW (at Uniprot). Lysine 972 in SERCA and the 

corresponding phenylalanine in PMCA are marked with a red box. The sequences of rabbit 

SERCA1 and rat PMCA3 M10s (used in this study) are identical to these human sequences.  

 

Mutagenesis studies will be used here to determine the importance of K972 for SERCA 

localisation. The length of M10 will also be increased by adding leucine residues in an attempt 

to disrupt the position of any signal within this helix in the membrane. This technique has 

been used previously to cause mis-targeting of cytochrome b5
74 and the SERCA modulators 
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phospholamban and sarcolipin28 to the plasma membrane. Plasma membrane localisation 

caused by elongating transmembrane segments suggests that the signal causing the protein to 

remain in the ER is within the membrane. Using this approach, it may be possible to determine 

whether the ER retrieval signal of SERCA is within M10. Another technique employed here to 

compare SERCA and PMCA M10 sequences is the use of a CD8 reporter construct163. This 

plasma membrane localised construct has a single transmembrane domain and has been fused 

to an EGFP tag in this study. By replacing the CD8 transmembrane domain with SERCA or 

PMCA M10 sequence and observing the localisation of the protein, it may be possible to 

determine the ability of these sequences to cause ER retrieval.  

 

M10 of SERCA has been selected for further investigation in the search for the retrieval signal 

of the pump. It is less mobile than the rest of the protein during the catalytic cycle, increasing 

the chance of recognition by a membrane spanning receptor18. It contains a conserved charged 

residue (lysine 972) which could be recognised by Rer1p or a similar receptor130. Due to its 

location at the end of the protein sequence, it is accessible from the bilayer, is not totally 

surrounded by other helices, and it is not involved in binding of calcium as M4, M5, M6 and 

M8 are18. In addition, the data presented from the chimeras constructed in this study (see 

chapter 3) show that the C-terminal portion of SERCA is required for ER localisation.  
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5.2 Methods 

General methods (molecular biology, cell culture and microscopy) are detailed in chapter 2.  

 

To produce the SERCA K972F and SERCA M10 3Leu constructs, site-directed mutagenesis 

was carried out according to the QuikChange protocol (Stratagene).  

The following reagents were used: 

Sterile distilled water   38.0 µl 

Pfu DNA polymerase buffer  5.0 µl 

dNTPs (25 mM each dNTP)  1.0 µl 

DNA template (100 ng/µl)  1.0 µl 

Primer 1 (100 ng/µl)   2.5 µl 

Primer 2 (100 ng/µl)   2.5 µl 

Pfu DNA polymerase (2.5 U/µl) 1.0 µl 

 

The reactions were carried out in a thermocycler as shown in table 5.1, with step 2 repeated 20 

times. The template used in all mutagenesis in this chapter was the SERCA-EGFP construct.  

 

Step Process Temperature (°C) Duration  

1 Denaturation 95 30 seconds 

2 Denaturation 

Annealing 

Elongation 

95 

Primer Tm -5 

72 

30 seconds 

1 minute 

19 minutes 

Table 5.1 QuikChange mutagenesis cycle  

The cycle used for the QuikChange mutagenesis is shown here. Annealing temperatures were 

adjusted according to the primers used.  

 

The products from the QuikChange reactions were analysed by agarose gel electrophoresis. 

Parental DNA was removed from successful products by adding 1 µl DpnI (10 U/µl; Promega) 

to entire reaction volumes and incubating for one hour at 37 °C. This step allows removal of 

any non-mutated DNA, as DpnI selectively cleaves only methylated DNA. The newly made 
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mutated DNA will be unmethylated and so remain uncleaved. DpnI digested products were 

then used to transform DH5α E. coli. by electroporation (as described in chapter 2), and 

positive transformants were selected and DNA extracted for sequencing.  

 

The primers used in the construction of K972F (in which lysine 972 in SERCA is replaced 

with phenylalanine) and SERCA M10 3Leu (in which 3 leucine residues are added into the 

middle of SERCA M10) are shown in table 5.2. Primers were designed using the Oligo 

software (Molecular Biology Insights) to incorporate mutations into the SERCA sequence. 

The three extra leucines in SERCA M10 3Leu were positioned between L975 and P976 in 

M10.  

 

Primer Sequence 

K972F_fwd 5’-TGGCTGATGGTTCTGTTTATCTCTCTGCCAGTTATCGGTC-3’ 

K972F_rev 5’-AACTGGCAGAGAGATAAACAGAACCATCAGCCATTGAGTC-3’ 

M10 3Leu_fwd 5’-CTCTCTGCTGCTGCTGCCTGTTATCGGTCTGGACGAAATC-3’ 

M10 3Leu_rev 5’-TAACAGGCAGCAGCAGCAGAGAGATCTTCAGAACCATCAG-3’ 

Table 5.2 Primers used in the production of K972F and M10 3Leu SERCA mutants  

The forward (fwd) and reverse (rev) primers used to make SERCA K972F and SERCA M10 

3Leu are shown, with 5’ and 3’ ends marked. The mutated sequences are shown in red. In the 

case of K972F, the mutation was a substitution, and for M10 3Leu, an insertion.  

 

The CD8 reporter constructs were used to test the ability of the M10 sequences of SERCA and 

PMCA to cause ER retrieval. The original CD8 construct was a gift from Dr. M.N.J. 

Seaman163. The CD8 gene was amplified from this construct using PCR and inserted into 

pcDNA3.1 (+) between NheI and HindIII. This allowed insertion of the CD8 gene upstream of 

a myc epitope linker sequence (EQKLISEEDLPVAT) and the EGFP tag, resulting in the C-

terminally tagged CD8-EGFP protein as shown in figure 5.2. This was constructed to ensure 

that the EGFP tag would not disrupt the trafficking of CD8 to the plasma membrane. 
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Figure 5.2 Structure of CD8 reporter constructs  

The general structure of the CD8 constructs is shown here. All constructs contain a cleaved N-

terminal ER signal sequence (black and white striped), transmembrane domain (TMD; in red) 

which was replaced with SERCA and PMCA M10 sequence to produce CD8 SERCA M10 

and CD8 PMCA M10 respectively, and a C-terminal EGFP tag (green). The N-terminal 

section is extracellular (or ER luminal in ER localised constructs), and the C-terminal tail is 

cytoplasmic.  

 

In addition to CD8-EGFP, CD8 SERCA M10 and CD8 PMCA M10 were also built, in which 

the transmembrane domain of CD8 was replaced by SERCA or PMCA M10 sequence. These 

constructs were built using multi-step PCR as described for the SERCA/PMCA chimeras in 

chapter 3. Briefly, DNA encoding the extracellular and cytoplasmic domains of CD8 was 

amplified by PCR, using primers with sequence overlapping the beginning and end of the M10 

of SERCA or PMCA. The desired M10 (SERCA or PMCA) was amplified with flanking 

sequence from the CD8 extracellular and cytoplasmic domains at the 5’ and 3’ ends 

respectively. These reactions produced three fragments which were ‘stitched’ together in a 

fourth reaction to produce the full length insert. This was ligated into the vector between NheI 

and HindIII, upstream of the EGFP gene, to produce constructs as shown in figure 5.2, with 

SERCA or PMCA transmembrane domains in the place of the CD8 transmembrane domain. 

The primers used in the production of these constructs are listed in appendix 2.  
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5.3 Results 

Bioinformatics approaches were used to compare SERCA M10 to the M10 sequences of 

PMCA and the Golgi pump SPCA, and to analyse the structure of M10.  

 

 
Figure 5.3 M10 sequences of ER, Golgi and plasma membrane calcium pumps  

The sequences of human SERCA1 (AT2A1), SPCA1 (AT2C1) and PMCA3 (AT2B3) were 

aligned using ClustalW (Uniprot). The lysine at position 972 in SERCA, and the 

corresponding residues at the same position in SPCA and PMCA are shown with a red box. 

The aspartate at position 981 in SERCA is also shown with a green box.  

 

Figure 5.3 shows an alignment of M10 sequences from SERCA, SPCA and PMCA. Neither 

the Golgi or plasma membrane pumps contain a lysine or any positively charged amino acid at 

the same position. There is an aspartate at position 981 in SERCA which is not present in 

SPCA or PMCA. Uncharged amino acids are located in the corresponding positions in these 

pumps.  

 

The structure of the pump was then studied to determine if either of these charged residues 

would be accessible from the bilayer. Figure 5.4 shows where on the tenth transmembrane 

domain these charged residues lie, and that only K972 appears to be exposed to the lipid 

bilayer. Helical wheel projections (shown in figure 5.5) were used to show the location of 

K972 and D981. Like the crystal structure, the projection shows that these residues are on 

opposite sides of the M10 helix. SERCA M10 was compared to the transmembrane domain of 

nicastrin which has been shown to interact with Rer1p. The transmembrane domain of 

nicastrin has a polar face which has been proposed to be involved in its interaction with 

Rer1p128.  
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Figure 5.4 Location of charged residues in M10 of SERCA  

Structures of SERCA in the E1 calcium bound conformation (PDB code 1SU4) to show 

charged residues in M10. (A) shows the structure of SERCA from blue at the N-terminus to 

red at the C-terminus. K972 (orange) and D981 (yellow) are shown in space fill, and the first 

(M1) and last (M10) transmembrane helices are labelled. (B) shows the surface of SERCA in 

the same orientation as (A) with red and blue indicating negatively and positively charged 

residues respectively. K972 is circled in blue. (A) and (B) were created with PDB Protein 

Workshop and WebLab ViewerPro respectively.  
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Figure 5.5 Helical wheel projections of SERCA M10 and NCT transmembrane domain  

Helical wheel projections of SERCA M10 and the transmembrane domain of nicastrin (NCT) 

showing the positions of polar and charged residues within the α-helices. Red bars indicate 

possible interaction sites of Rer1p with these transmembrane domains. In SERCA M10, this 

corresponds to the region close to K972 (residue 8 in the helix), as all other polar or charged 

residues point into the structure rather than out into the bilayer. D981 (residue 17) is located 

on the opposite face of the helix. Helical wheel projections were created with Protean 

(DNASTAR).  

 

 

To determine the role of K972 in the tenth transmembrane domain of SERCA in ER retrieval, 

the residue was mutated to phenylalanine (as in PMCA) to create SERCA K972F. In addition, 

the SERCA M10 3Leu construct was created in which three extra leucine residues were added 

to SERCA M10. This elongation of the transmembrane domain by adding three hydrophobic 

residues will most likely cause a change in the position of M10 in the bilayer and may disrupt 

interaction with a retrieval receptor such as Rer1p. These constructs (both carrying C-terminal 

EGFP tags) were expressed in COS-7 cells and fluorescence microscopy was used to 

determine their localisations. Both of these constructs were located in the ER (as shown in 

figure 5.6), showing a reticular pattern indistinguishable to that produced by SERCA-EGFP.  

SERCA M10 NCT 
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Figure 5.6 COS-7 cells expressing SERCA K972F or SERCA M10 3Leu  

COS-7 cells were transfected with DNA encoding either SERCA K972F (A) or SERCA M10 

3Leu (B). Cells were analysed by confocal microscopy 2 days following transfection. Scale 

bars are 10 µm.  

 

To determine the ability of M10 sequences from SERCA and PMCA to cause ER retrieval, the 

CD8 constructs were built as discussed above. Figure 5.7 shows the distribution of EGFP 

tagged CD8 in COS-7 cells. It colocalises with the trans-Golgi marker and appears to be 

present at the plasma membrane. Cells expressing CD8 constructs in which the 

transmembrane domain has been replaced by M10 of SERCA or PMCA are shown in figure 

5.8.  Both CD8 SERCA M10 and CD8 PMCA M10 show reticular localisation and are not 

present in the trans-Golgi. 

A B 
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Figure 5.7 COS-7 cells expressing CD8-EGFP  

COS-7 cells were transfected with the CD8-EGFP construct (A). After 2 days, cells were 

treated with BFA and anti-TGN46, visualised with a Texas Red conjugated secondary 

antibody (B). An overlay is shown (C). Images were obtained by confocal microscopy. Scale 

bars are 10 µm. 

A 

B 

C 
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Figure 5.8 COS-7 cells expressing CD8 SERCA M10 or CD8 PMCA M10  

COS-7 cells are shown 2 days following transfection with CD8 SERCA M10 (A-C) or CD8 

PMCA M10 (D-F). Cells were treated with BFA and TGN46 antibodies to locate the trans-

Golgi, revealed using a Texas Red conjugated secondary antibody (B and E). Overlay images 

are shown (C and F). Images were acquired using confocal microscopy. Scale bars are 10 µm. 

A B C 

D E F 

CD8 
SERCA 
M10 

CD8 
PMCA 
M10 
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5.4 Discussion 
The constructs described in this chapter were built in an attempt to circumvent the problem of 

ER localisation as a result of misfolding. The chimeric constructs shown in chapters 3 and 4 

were built from two proteins which, although similar, are both complex and large. The 

interactions between different domains of SERCA and PMCA that were joined together are 

undoubtedly numerous and are also largely unpredictable. For this reason, smaller scale 

mutations were used in the experiments described here, and single transmembrane domains 

were isolated for insertion into the CD8 reporter construct.  

 

Using the crystal structures of SERCA and sequence analysis tools, it is possible to make 

predictions about where individual residues are positioned within the protein structure. This is 

of use when considering possible interaction sites for retrieval receptors such as Rer1p. Rer1p 

has been shown to interact with polar residues in transmembrane domains and is a possible 

candidate for the retrieval of SERCA to the ER128,130. Figure 5.3 shows two charged residues 

(K972 and D981) in SERCA M10 that are not present in the M10 sequences of the plasma 

membrane (PMCA) or Golgi (SPCA) calcium pumps. The absence of these residues in the 

other pumps may indicate that they are involved in ER localisation. To investigate this further, 

the positioning of these residues was determined in the 3-dimensional structure of SERCA. 

Figure 5.4 shows the position of these charged residues in M10. K972 appears to be accessible 

from the bilayer, whereas D981 faces into the protein and cannot be seen on the outside 

surface. This suggests that while K972 may be able to be recognised by a membrane spanning 

receptor such as Rer1p, D981 most probably could not as it is hidden from the bilayer.  Helical 

wheel projections have also been used to determine how the primary protein sequence is 

distributed in the membrane spanning α-helix of M10. The helical wheel projection of SERCA 

M10 (figure 5.5) shows that K972 is on the opposite face of the helix to D981. This is 

consistent with the positioning of these residues in the crystal structure.  

 

M10 of SERCA has been analysed here for its ability to cause ER retrieval. Reasons for 

selecting this region of SERCA for further investigation are explained in the introduction to 

this chapter (section 5.1). Structural analysis of SERCA shows that K972 faces into the bilayer 

and could feasibly be recognised by a membrane spanning retrieval receptor, such as Rer1p. 
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For this reason, site-directed mutagenesis was used to substitute this lysine for a phenylalanine 

residue. Phenylalanine was selected as a replacement on account of its presence at the 

corresponding position in the M10 of PMCA, which is not capable of ER retrieval. Figure 5.6 

shows that the SERCA K972F mutant is ER localised and does not escape to the plasma 

membrane. This could be due to the fact that K972 is not involved in retrieval and so mutation 

does not lead to mis-targeting. Another possibility is that K972 is involved, but that 

redundancy is built into the system so loss of this residue alone does not cause mis-targeting. 

The ER localisation of the K972F mutant could also reflect misfolding of the protein as a 

result of this amino acid substitution. Without presence of this protein at the plasma 

membrane, it is not possible to unequivocally determine the involvement of K972 in the ER 

localisation of SERCA.  

 

Another approach used to assess the contribution made by M10 in the retrieval of SERCA to 

the ER was extension of the transmembrane helix. By elongating the helix, its position within 

the bilayer is likely to change, and a retrieval motif within the transmembrane domain may be 

distorted, resulting in mis-targeting of the protein. As shown in figure 5.6, this is not the case. 

Adding three extra hydrophobic residues to M10 of SERCA does not result in a loss of ER 

localisation. Again, there is more than one explanation for this result. M10 may not contain a 

retrieval signal, so disruption of this helix has no effect on the localisation of the pump. 

Adding extra residues to the transmembrane domain may also disrupt intramolecular 

interactions with other sections of the pump, and the protein may be retained in the ER by 

quality control mechanisms. It is also possible that three leucine residues are not sufficient to 

distort M10 enough to cause mis-targeting. This could be tested by introduction of more 

hydrophobic residues to the helix to elongate it further. Other studies using this technique have 

inserted 4 (phospholamban), 7 (sarcolipin) or 5 (cytochrome b5) hydrophobic residues to 

create transmembrane domains of lengths 27, 26, and 22 amino acids respectively28,74. The 

addition of three leucine residues to SERCA M10 results in a transmembrane domain of 24 

residues, which may not be a significant enough increase in length to cause mis-targeting to 

the plasma membrane. In addition, phospholamban, sarcolipin and cytochrome b5 are all 

single-pass membrane proteins28,74. The presence of elongated mutants of these proteins at the 

plasma membrane shows that they are not recognised as misfolded. However, disruption of 
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one of the 10 transmembrane domains in SERCA is presumably more likely to result in 

protein misfolding due to the much greater complexity of the membrane spanning region of 

the calcium pump, compared to single-spanning membrane proteins.  

 

The CD8 reporter construct was used as a tool to determine the role played by M10 of SERCA 

in ER localisation. The first experiment conducted was to ensure that the EGFP tag fused to 

the C-terminus of CD8 did not disrupt its trafficking to the plasma membrane. The tag was 

added to the C-terminus of CD8, as the N-terminus of the protein contains a cleaved ER signal 

sequence163. It is possible that the effectiveness of this signal sequence could be compromised 

if the EGFP tag was present at the N-terminus of the protein. Figure 5.7 shows that EGFP 

tagged CD8 is present in the trans-Golgi and plasma membrane. This suggests that the EGFP 

tag does not have an effect on the trafficking of the protein through the secretory pathway.  

 

Sequence encoding SERCA M10 was then used to replace the transmembrane domain of CD8. 

The resulting construct, CD8 SERCA M10 was expressed in COS-7 cells and its localisation 

analysed by confocal microscopy. Unlike the CD8-EGFP construct, CD8 SERCA M10 

showed an ER localisation and was not present in the trans-Golgi (figure 5.8) suggesting that it 

cannot travel through the late secretory pathway.  The reason for this ER localisation could be 

that M10 is causing specific retrieval of the reporter construct, or it could be that the protein is 

misfolding or aggregating. M10 of SERCA would not be found alone in the bilayer under 

normal circumstances, and it is possible that the charged residues that would normally be 

hidden are revealed, thus causing recognition by quality control machinery. To investigate 

this, M10 of PMCA (which is unable to cause ER retrieval of the intact plasma membrane 

calcium pump) was inserted into the CD8 reporter construct in the same position as SERCA 

M10. This construct was also located in the ER (figure 5.8) and did not show colocalisation 

with the trans-Golgi marker. It can be assumed that the localisation of CD8 PMCA M10 in the 

ER must be due to misfolding or aggregation, as this helix cannot cause retrieval of PMCA to 

the ER. Importantly, localisation of CD8 PMCA M10 in the ER does not necessarily suggest 

that CD8 SERCA M10 is located in the ER as a result of misfolding, as the two 

transmembrane domains have different sequences. It is possible that the M10 of SERCA 
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causes specific sequence mediated retrieval of the CD8 reporter, but without testing other 

transmembrane domains of SERCA it is not clear if this is the case.  

 

Despite attempting to circumvent the problem of ER localisation in chimeric proteins as a 

result of possible misfolding, the smaller mutations and simpler constructs described in this 

chapter were unable to provide an answer as to whether M10 of SERCA is involved in ER 

retrieval. The experiments shown here demonstrate that mutating and isolating regions of a 

complex polytopic membrane protein such as SERCA with the aim of finding sequences 

mediating ER localisation is not straightforward. Therefore, to pursue the question of how 

SERCA is retrieved to the ER, further experiments were subsequently carried out to focus on 

the machinery, rather than the sequences, responsible for this process.   
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6. Characterisation of antibodies raised against human Rer1p 

6.1 Introduction 

Rer1p is a possible candidate for the retrieval of SERCA to the ER from the ERGIC or early 

Golgi. It has been shown to interact with several membrane proteins in both yeast and 

mammalian systems, and interaction with transmembrane regions of these proteins seems key 

to the retrieval process119,123-126,128,129. Details of what is known about the mechanisms and 

targets of Rer1p is detailed in chapter 1, section 1.6. Aside from Rer1p and possibly BAP31 

(also discussed in section 1.6), no other known proteins seem likely candidates for the retrieval 

of SERCA to the ER. For this reason, polyclonal antibodies have been raised and affinity 

purified (by Eurogentec, Belgium) against two epitopes in human Rer1p with a view to 

investigating possible interactions between Rer1p and SERCA.  

 

An antibody against human Rer1p would allow several different techniques to be used in an 

attempt to determine whether the protein is involved in the maintenance of SERCA in the ER. 

Techniques such as RNA interference, cross-linking and immunoprecipitation all require an 

antibody which can detect the protein of interest in western blots. In addition, function of the 

antibody in immunofluorescence experiments is of use to ascertain subcellular localisation of 

Rer1p and detect any colocalisation with SERCA. Before the newly raised antibody could be 

used in experiments to detect protein interactions, it first had to be characterised. This was 

done by testing the ability of the antibody to detect endogenous and tagged Rer1p in western 

blots, and using immunofluorescence to determine the subcellular localisation of the protein 

recognised by the antibody.  

 

Rer1p is predicted to have a W-shaped topology with four transmembrane domains (M1-4), 

cytosolic N- and C-termini, very small luminal loops and a large cytosolic loop between M2 

and M3130 as shown in figure 6.1. Two peptides were selected from the sequence of human 

Rer1p to be synthesised and used as antigens in the production of the anti-Rer1p antibodies. 

The residues chosen for the first peptide were within the large cytosolic loop, and the second 

peptide was made from amino acids at the very C-terminus of the protein. The amino acids 
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and positions are detailed in section 6.2 below. The positions of these peptides within the 

whole protein are shown in figure 6.1. These portions of the protein were selected for their 

hydrophilicity and predicted flexibility164. Short peptides (~15 residues) were used to avoid 

the formation of any secondary structures not formed in the full-length protein. These peptides 

were synthesised and fused to the carrier protein keyhole limpet hemocyanin (KLH), which 

helps the peptides elicit a strong immune response. Details of how peptides are selected for 

antibody production by Eurogentec can be found at http://www.eurogentec.com/eu-

home.html. Database searches were also carried out to ensure that the selected sequences were 

not present in any other proteins.    

 

The following chapter describes the characterisation of antibodies raised against two peptides 

from human Rer1p. At the beginning of this study, no commercial antibodies were available to 

Rer1p, so raising one was necessary in order to pursue this line of investigation. During the 

project, a commercial antibody became available (from Everest Biotech), raised to the same 

C-terminal epitope.  

 
Figure 6.1 Rer1p topology and epitopes selected for antibody production  

The predicted topology of Rer1p (green) is shown with the ER or Golgi membrane shown in 

blue. The N- and C-termini of the protein are labelled. The peptides selected as antigens in the 

production of anti-Rer1p antibodies are shown in red. Based on Sato, K., et al. (2003)130.  
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6.2 Methods 

All general methods are detailed in chapter 2 (materials and methods). The Rer1p-EGFP and 

His-Rer1p constructs were obtained from Genecopoeia (MD, USA). The Rer1p-YFP2 

construct was built as part of a separate project. In this construct, Rer1p was tagged at the C-

terminus with the C-terminal section (amino acids 159-239) of yellow fluorescent protein 

(YFP), connected by the flexible ten amino acid linker (Gly-Gly-Gly-Gly-Ser)2.  

 

The antibodies to human Rer1p were raised in two rabbits against the following peptides: 

PKVDPSLMEDSDDGP (loop; residues 85-99) and RRYRGKEDAGKAFAS (C-terminus; 

residues 182-196). KLH was used as a carrier protein and fused to the N-termini of the 

peptides onto a cysteine residue added to the beginning of each peptide. Serum was affinity 

purified against either the loop or C-terminal peptides. Preimmune serum was also supplied 

and was used in western blots to ensure that the animals used showed no existing immunity to 

Rer1p. Eurogentec (Belgium) carried out the peptide synthesis and antibody production. 

 

Lysates of COS-7, HeLa and Caco-2 cells were used in western blots to detect endogenous 

Rer1p. In addition, various Rer1p constructs were expressed in COS-7 cells and cells 

harvested for western blotting. All cells were cultured and transfected as described in chapter 

2. Cells grown on 10 cm culture dishes were washed twice with ice cold PBS followed by 

addition of 400 µl sample buffer (as in chapter 2, but without bromophenol blue) at 60 °C, 

supplemented with 40 µl mammalian protease inhibitor cocktail (Sigma Aldrich). Cells were 

scraped from the plate and sonicated for 1 minute. Aliquots were frozen in liquid nitrogen. 

Further sample buffer (see chapter 2) was added to lysates and samples were heated to 70 °C 

for 10 minutes before analysis by SDS-PAGE and western blotting.  

 

Antibodies and dilutions used in western blots were as follows: rabbit anti-Rer1p (loop or C-

terminal epitopes), 1:500 (Eurogentec); mouse anti-GFP, 1:500 (Roche); goat anti-Rer1p, 

1:3000 (Everest Biotech); goat anti-rabbit IgG conjugated to HRP, 1:3000 (Abcam); sheep 

anti-mouse IgG conjugated to HRP, 1:2000 (GE Healthcare); donkey anti-sheep IgG 
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conjugated to HRP, 1:3000 (Abcam). GE Healthcare HRP conjugated secondary antibodies 

were affinity adsorbed (against rat, human and mouse).  

 

In immunofluorescence experiments carried out to illuminate the ERGIC, a ‘cold block’ pre-

treatment was used in which cells were incubated at 15 °C for one hour immediately before 

methanol fixation. This procedure enhances visualisation of the ERGIC, which usually shows 

widespread distribution throughout the cell, by concentrating the compartment close to the 

Golgi165. Cells treated with anti-TGN46 antibodies were pre-treated with BFA for one hour (as 

described in chapter 2).  

 

Antibodies and dilutions used in immunofluorescence were as follows: rabbit anti-Rer1p (both 

loop and C-terminal epitopes), 1:50 (Eurogentec); sheep anti-TGN46, 1:50 (Serotec); mouse 

anti-ERGIC-53, 1:50 (Alexis); donkey anti-rabbit IgG conjugated to Texas Red, 1:100 (GE 

Healthcare); sheep anti-mouse IgG conjugated to fluorescein isothiocyanate (FITC), 1:100 

(GE Healthcare); donkey anti-sheep IgG conjugated to Texas Red, 1:100 (Abcam); donkey 

anti-rabbit IgG conjugated to FITC, 1:100 (GE Healthcare).  

 

In situations where double labelling was used, for example cells in which Rer1p and ERGIC-

53 were labelled simultaneously, care was taken to avoid cross-reactivity of secondary 

antibodies with inappropriate primary antibodies. Figure 6.2 shows how this was carried out 

for the two different scenarios. In addition, control experiments were carried out to test all 

primary antibodies in combination with the secondary antibodies to ensure that no cross-

reactivity was occurring. For example, anti-ERGIC-53 (raised in mouse) was tested against the 

secondary anti-rabbit IgG antibody (raised in donkey). No Texas Red fluorescence was seen, 

indicating that the anti-rabbit IgG secondary antibody does not react with the anti-ERGIC-53 

antibody (raised in mouse). All antibodies that were used in double labelling were tested in 

this manner.  
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Figure 6.2 Double labelling immunofluorescence  

The black rectangles indicate two different double labelling scenarios. Proteins which were 

labelled (ERGIC-53, Rer1p and TGN46) are at the top, coloured in green or red for FITC or 

Texas Red labelling respectively. Primary antibodies are on the top line and secondary 

antibodies below. All antibodies are shown by a ‘Y’ and are coloured according to the species 

in which they were raised (also shown in uppercase lettering beside each antibody). 

Conjugations of secondary antibodies are shown in green for FITC or red for Texas Red (TR).  
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6.3 Results 

Characterisation of the antibodies raised against human Rer1p was initially carried out by 

western blotting. Lysates of different cell lines were tested with the antibody that had been 

affinity purified against the C-terminal epitope of Rer1p. As shown in figure 6.3, the antibody 

raised against the C-terminal epitope of Rer1p detected a protein at approximately 50 kDa in 

Caco-2, COS-7 and HeLa cell lysates. This is incongruous with the molecular weight of Rer1p 

which is predicted to be 23 kDa122.  

 
Figure 6.3 Detection of a 50 kDa protein by anti-Rer1p antibody in cell homogenates  

Lysates of Caco-2 (1), COS-7 (2) and HeLa (3) cells were separated by SDS-PAGE and 

analysed by western blotting with affinity purified antibody raised against the C-terminus of 

human Rer1p. The three bands are from different gels and have been aligned according to the 

molecular weight markers run alongside the samples.  

50 kDa 

1 2 3 
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To further characterise the antibody, western blots were carried out to test the ability of the 

antibody to recognise tagged forms of Rer1p. COS-7 cells were transfected with His-Rer1p, 

Rer1p-EGFP or Rer1p-YFP2 and analysed by SDS-PAGE and western blotting (figure 6.4). 

The Rer1p antibody detected all three of these tagged proteins at the correct predicted 

molecular weights, approximately 24 kDa (His-Rer1p), 50 kDa (Rer1p-EGFP) and 33 kDa 

(Rer1p-YFP2). The same gel was then probed with anti-GFP antibodies. Both Rer1p-EGFP 

and Rer1p-YFP2 contain the epitopes for the GFP antibody used, whereas His-Rer1p does not. 

Anti-GFP antibodies detected Rer1p-EGFP and Rer1p-YFP2 at the same sizes as the Rer1p 

antibody.  

 

 
Figure 6.4 Detection of His-Rer1p, Rer1p-EGFP and Rer1p-YFP2 by anti-Rer1p  

COS-7 cells were transfected with His-Rer1p (1 and 4), Rer1p-EGFP (2 and 5) or Rer1p-

YFP2 (3 and 6) and cell lysates were analysed after 2 days. Lanes 1-3 show western blots with 

the antibody raised to the loop epitope of Rer1p. 4-6 shows the same gel as 1-3, reprobed with 

the anti-GFP antibody. Approximate molecular weights are indicated.  

1 2 3 4 5 6 

50 kDa 

22 kDa 

36 kDa 
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During this study, a commercial antibody to human Rer1p became available from Everest 

Biotech (Oxford, UK). This antibody was also raised against the C-terminus of the protein. It 

was tested in western blots to determine whether it would detect the same sized protein as that 

recognised by the antibodies raised by Eurogentec. The commercial antibody also detected a 

protein at 50 kDa in both Caco-2 and HeLa cell lysates, not the predicted weight of 23 kDa 

(figure 6.5). The results from the commercial antibody are indistinguishable from those seen 

with the antibody raised by Eurogentec.  

 

 
Figure 6.5 Detection of a 50 kDa protein by a commercially available Rer1p antibody  

Caco-2 (lane 1) and HeLa (lane 2) cell homogenates were separated by SDS-PAGE and 

analysed by western blotting with anti-Rer1p antibodies (Everest Biotech). The position of the 

50 kDa band from the molecular weight marker is indicated.  

50 kDa 

1 2 
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Immunofluorescence and microscopy were also used to characterise the Rer1p antibodies. 

HeLa cells were transfected with Rer1p-EGFP and treated with the antibody raised to the C-

terminal epitope of Rer1p. Figure 6.6 shows colocalisation with Rer1p-EGFP and the Rer1p 

antibody, visualised using a Texas Red conjugated secondary antibody.  

 

 
Figure 6.6 Detection of Rer1p-EGFP by anti-Rer1p in immunofluorescence  

HeLa cells were transfected with DNA encoding Rer1p-EGFP (A). After 2 days, cells were 

treated with anti-Rer1p antibodies, visualised using a Texas Red conjugated secondary 

antibody (B). An overlay image is shown (C). Images were acquired by confocal microscopy.  

 

 

Endogenous Rer1p could not be detected using the C-terminal or loop anti-Rer1p antibodies, 

so COS-7 cells were transfected with His-Rer1p and a strong signal was seen in transfected 

cells. This strategy was used to assess colocalisation of Rer1p with markers of the ERGIC and 

trans-Golgi as well as SERCA-EGFP. Figure 6.7 illustrates the colocalisation of His-Rer1p, 

detected with the anti-Rer1p loop antibody, with the ERGIC marker ERGIC-53 in cells that 

had been incubated at 15 °C for one hour before antibody treatment. Figure 6.8 demonstrates 

colocalisation of Rer1p with TGN46 in BFA treated cells, indicating the presence of Rer1p in 

the late Golgi.  

A B C 
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Figure 6.7 Colocalisation of His-Rer1p with the ERGIC marker ERGIC-53  

COS-7 cells were transfected with His-Rer1p. After 2 days, cells were incubated at 15 °C for 

one hour and then double labelled with anti-Rer1p (loop epitope), visualised with a Texas Red 

conjugated secondary antibody (A) and anti-ERGIC-53, visualised with a FITC conjugated 

secondary antibody (B). An overlay is shown (C). Scale bars are 10 µm. Images were obtained 

with confocal microscopy.  

 

 

 
Figure 6.8 Colocalisation of His-Rer1p with the trans-Golgi marker TGN46  

COS-7 cells were transfected with DNA encoding His-Rer1p for 2 days. Cells were treated 

with BFA and double labelled with anti-Rer1p (loop epitope), visualised with a FITC 

conjugated secondary antibody (A) and anti-TGN46, visualised with a Texas Red conjugated 

secondary antibody (B). An overlay is shown (C). Scale bars are 10 µm. Images were obtained 

with confocal microscopy.

A B C 

A B C 
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Colocalisation of SERCA with Rer1p was assessed by transfecting COS-7 cells with both 

SERCA-EGFP and His-Rer1p, visualised by immunofluorescence. Figure 6.9 shows 

significant, but not total, colocalisation of SERCA and Rer1p. The majority of the reticular 

network illuminated contains both SERCA and Rer1p, but some distinct areas exist which 

contain only Rer1p. This is demonstrated by the inlay image in panel C in figure 6.9. 
 

 

 

 
Figure 6.9 Colocalisation of SERCA-EGFP with His-Rer1p  

COS-7 cells were transfected with SERCA-EGFP and His-Rer1p constructs. EGFP 

fluorescence is shown in panel A. After 2 days, cells were treated with anti-Rer1p antibodies 

(loop epitope), visualised with a Texas Red secondary antibody (B). An overlay is shown in 

panel C. The inlay image shows an expansion of a section of panel C in which colocalisation 

of SERCA and Rer1p was not seen. Scale bars are 10 µm. Images were obtained with confocal 

microscopy.

A B C 
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6.4 Discussion 

Human Rer1p has a predicted molecular weight of 23 kDa122. The western blots shown in 

figure 6.3 demonstrate that in the three cell lines tested, the protein detected by the antibody 

raised against human Rer1p has an approximate molecular weight of 50 kDa. No bands are 

seen at 23 kDa or any other size. This apparently specific interaction of the antibody with a 

protein of 50 kDa is unexpected, and to investigate this further, western blots were carried out 

on homogenates from cells expressing tagged forms of Rer1p. Figure 6.4 demonstrates the 

ability of the anti-Rer1p antibody to detect His-Rer1p, Rer1p-EGFP and Rer1p-YFP2 at their 

predicted molecular weights of approximately 24 kDa, 50 kDa and 33 kDa respectively. In 

addition, the blot in figure 6.3 was also probed with anti-GFP antibodies which can recognise 

Rer1p-EGFP and Rer1p-YFP2. The anti-GFP antibodies detect bands at the same size as those 

detected by the anti-Rer1p antibody in samples from cells expressing either Rer1p-EGFP or 

Rer1p-YFP2. The results from this experiment strongly suggest that the Rer1p antibody is 

specifically recognising the Rer1p protein. The specific detection of three different tagged 

forms of Rer1p at three different sizes, two of which are also detected with GFP antibodies, 

indicates that the antibody is recognising these heterologously expressed proteins, all of which 

have Rer1p in common. If the antibody was unable to recognise Rer1p, it is almost impossible 

that these three differently sized bands would be detected, given that all that differs between 

the three samples is the tag attached to the transfected Rer1p construct.  

 

During the course of this investigation, a commercial anti-Rer1p antibody became available, 

raised to the same C-terminal epitope on Rer1p. Figure 6.5 demonstrates that in a western blot, 

this antibody also specifically detects a band at approximately 50 kDa in both Caco-2 and 

HeLa cell lysates. Assuming that the 50 kDa protein detected by all three of these antibodies 

tested is endogenous Rer1p, what explanations exist for this unexpected size? 50 kDa is close 

to twice the size of the predicted 23 kDa, suggesting that Rer1p may exist as a dimer. That the 

tagged forms of Rer1p appear to be monomeric could be due to the tags interfering with the 

dimerisation of the protein. A range of temperatures were used in the preparation of the cell 

homogenates for western blotting, from 60 °C to 100 °C, and reducing agents were added to 

the samples in an attempt to disrupt any dimeric protein. Despite this, a band of 50 kDa was 

always seen, with no band at 23 kDa. Post-translational modifications can also cause proteins 
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to be detected at unexpected sizes in western blots. Post-translational processing of proteins 

can both increase and decrease the molecular weight of a protein predicted from its primary 

amino acid sequence. Addition of groups such as fatty acids, phosphates and carbohydrates 

can all increase the molecular weight of a protein, but such a large increase in size (from 23 to 

50 kDa) in the case of Rer1p is unlikely to be entirely due to post-translational 

modifications166. A third possible explanation as to why Rer1p is detected at a much larger 

size than expected is that the detected protein may be a splice variant of Rer1p. Alternative 

RNA splicing describes the RNA rearrangements that occur in order to include or exclude 

certain exons from the final mRNA166. Inclusion of one or more extra exons into the sequence 

of the gene encoding Rer1p may result in a much longer mRNA product and result in the 50 

kDa protein detected by the antibodies used here. Several Rer1p isoforms are reported in the 

databases, but the largest is 214 amino acids in size (accession number Q9P0H9-1) and is 

therefore not large enough to explain the 50 kDa protein seen here. It is possible that there are 

other, as yet undiscovered splice variants of the RER1 gene which result in a larger protein.  

 

Immunofluorescence was also employed to characterise the anti-Rer1p antibodies. Figure 6.6 

demonstrates that, as expected, the antibody to Rer1p colocalises with Rer1p-EGFP. 

Untransfected cells did not show a signal with anti-Rer1p antibodies, presumably due to the 

insufficient amount of Rer1p in these cells combined with the fact that the antibody was not 

raised against a conformational epitope. For this reason, cells were transfected with His-Rer1p 

and the protein was then illuminated using anti-Rer1p antibodies. That the transfected cells 

showed a signal with the antibody but untransfected cells did not (most clearly demonstrated 

in figure 6.7) suggests that the antibody can specifically recognise Rer1p. In figure 6.7, His-

Rer1p was detected using anti-Rer1p antibodies and visualised using a Texas Red conjugated 

secondary antibody. In addition, antibodies directed against the ERGIC marker, ERGIC-53, 

were used to ascertain whether Rer1p was present in this compartment. Colocalisation of His-

Rer1p and ERGIC-53 was indeed seen, indicating that Rer1p travels to the ERGIC, in 

agreement with previous reports of Rer1p localisation122. This is consistent with the role of the 

protein as a retrieval receptor in this part of the secretory pathway.  
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Colocalisation of His-Rer1p and the trans-Golgi marker TGN46 was also tested. Figure 6.8 

shows His-Rer1p transfected cells which were double labelled to detect Rer1p (visualised 

using a FITC conjugated secondary antibody) and TGN46. This demonstrated that Rer1p is 

present in the trans-Golgi. Previous investigations have shown Rer1p to be distributed 

throughout the Golgi, comparable to the distribution of the KDEL receptor which fulfils a 

similar role122,167. Cells expressing SERCA-EGFP were treated with anti-Rer1p antibodies to 

determine the extent of colocalisation between the two proteins. Figure 6.9 shows a large 

amount of colocalisation between SERCA and Rer1p, presumably in the ER and ERGIC. The 

colocalisation is not complete however, as some areas show Rer1p but not SERCA 

localisation. This is most likely to indicate later sections of the secretory pathway, the medial- 

and trans-Golgi, in which Rer1p is present but SERCA is absent. This is consistent with the 

finding that SERCA is absent from the trans-Golgi (see figure 3.5, chapter 3) and, as shown 

here, Rer1p is present in the trans-Golgi (figure 6.8).  

 

Despite the detection of a protein of 50 kDa in cell lysates by western blot, it seems likely 

from the other experiments described here that the Rer1p antibody is capable of specifically 

detecting Rer1p. All three tagged forms of Rer1p tested were detected at the correct sizes, and 

the two constructs containing the GFP antibody epitopes were also detected at the same size as 

with the GFP antibody (figure 6.4). These results suggest that although endogenous Rer1p is 

not detected at its predicted size of 23 kDa, the antibody can detect Rer1p in western blots. 

The antibody produced by Everest Biotech, raised against the C-terminus of human Rer1p, 

also detected a band at approximately 50 kDa in lysates of Caco-2 and HeLa cells. The 

immunofluorescence results show that the antibody can detect both Rer1p-EGFP (figure 6.6) 

and His-Rer1p (figures 6.7, 6.8 and 6.9) and that these proteins show subcellular localisation 

consistent with that of Rer1p. The large overlap in distribution between Rer1p and SERCA 

(figure 6.9) is agreeable with the potential recognition and retrieval of SERCA by Rer1p. The 

antibodies raised to human Rer1p have been characterised and are most probably able to 

recognise Rer1p specifically. This allows immunoprecipitation and cross-linking experiments 

to be carried out in an attempt to detect any interactions between SERCA and Rer1p. These 

experiments will be discussed in the next chapter.  
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7. Searching for interactions between SERCA and potential 

retrieval receptors 

7.1 Introduction 

It has so far not been possible to identify the precise sequence(s) in SERCA which cause it to 

be retrieved to the ER. For this reason, the study has focussed on identification of the protein 

machinery that is involved in the retrieval process, rather than the protein sequences that 

facilitate it. Many techniques exist for detecting protein-protein interactions. 

Coimmunoprecipitation and cross-linking have been selected for use in this investigation in 

order to test whether SERCA interacts with the retrieval receptor Rer1p125 or the putative 

cargo receptor BAP31 which has been shown to interact with both anterograde and retrograde 

cargo between the ER and Golgi136,142,144.  

 

Coimmunoprecipitation and cross-linking are able to detect interactions between membrane 

proteins168. Coimmunoprecipitation makes use of specific antibodies to separate the protein of 

interest from a complex mixture of proteins such as a cell lysate. The antibodies are added to 

the lysate and specifically bind the protein of interest. By adding antibody binding protein 

such as protein A or G attached to sepharose or agarose beads, it is possible to immobilize the 

antibody-antigen complex and separate the proteins from the lysate by centrifugation. The 

antigen and any other proteins that have been coimmunoprecipitated are then separated from 

the antibodies and beads by heating. Proteins that interact with the antigen can be identified by 

SDS-PAGE and western blotting or mass spectrometry168. In these experiments, EGFP was 

used as the antigen with which to isolate the proteins of interest. This technique allowed 

immunoprecipitation of several different EGFP-tagged proteins with the use of one antibody. 

The other advantage of this method is that the EGFP tag will presumably not be involved in 

the interaction between the protein of interest (such as SERCA) and an interacting protein 

(such as Rer1p). This should allow the anti-GFP antibody to bind to the protein of interest 

regardless of whether the target protein is interacting with other proteins. 
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The second technique used here to search for protein-protein interactions was chemical cross-

linking which allows low-affinity interactions to be strengthened and detected168. The cross-

linker selected for this investigation was DTBP (dimethyl-3,3’-dithiobispropionimidate). 

DTBP is a water soluble, bifunctional, membrane permeable cross-linking agent containing 

two imidoester groups that react with amine groups on proteins. DTBP is cleavable upon 

reduction of the disulphide linkage in the centre of the molecule128,169. By adding DTBP to 

microsomal membranes, it is possible to capture protein-protein interactions between 

membrane proteins. Immunoprecipitation can then be carried out to enrich the sample for the 

protein of interest, and by cleaving the cross-linker, in this case by reduction, it is possible to 

identify proteins that interact with the protein of interest. This can be done by SDS-PAGE and 

western blotting if candidate proteins are known and antibodies to these proteins exist.  

 

The only known candidate proteins for the process of retrieval of SERCA to the ER are Rer1p 

and BAP31. As discussed in detail in section 1.6 (chapter 1) Rer1p has been shown to retrieve 

membrane proteins from the Golgi to the ER, with interactions between the membrane 

spanning regions of Rer1p and target proteins being an important factor in this process119,123-

126,128,129. BAP31 has been implicated in the anterograde and retrograde transport of proteins 

between the ER and Golgi136,142,144. This is discussed in detail in section 1.6 (chapter 1). 

Therefore, there is a possibility that BAP31 may interact with SERCA in the ERGIC or early 

Golgi and mediate its retrieval to the ER, presumably via the di-lysine motif at the C-terminus 

of BAP31132. Antibodies to BAP31 are already commercially available, and the antibodies 

raised to Rer1p (discussed in the previous chapter) have been characterised and appear to be 

specific for Rer1p. Therefore, through the use of coimmunoprecipitation and cross-linking 

techniques, it may be possible to detect any interaction between SERCA and Rer1p or BAP31. 

BAP31 is thought to be involved in the maturation and trafficking of both the wild-type and 

the ΔF508 mutant of the CFTR chloride ion channel144. GFP-tagged ΔF508 CFTR has been 

incorporated into these experiments as a protein which is likely to show an interaction with 

BAP31.  
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7.2 Methods 
All general molecular biology, cell culture and transfection protocols are detailed in chapter 2. 

The GFP-tagged ΔF508 CFTR construct was a gift from Prof. B. Stanton160. The calnexin-

EGFP construct was obtained from Genecopoeia (MD, USA).  

 

COS-7 cells for coimmunoprecipitation experiments were grown on 15 cm culture dishes and 

transfected with DNA constructs encoding SERCA-EGFP, PMCA-EGFP or CFTR ΔF508-

GFP. After 2 days, media was removed from plates and cells were washed twice in ice-cold 

PBS. RIPA buffer (Pierce) (1.9 ml) supplemented with 19 µl mammalian protease inhibitor 

cocktail (Sigma Aldrich) was added to each 15 cm dish and cells scraped off. Cells were 

sonicated for 30 seconds and centrifuged at 16 000 g for 15 minutes. The BCA protein 

concentration kit (Pierce) was used to estimate the protein concentration of the supernatant, 

according to manufacturer’s instructions. The supernatant was then divided into aliquots and 

frozen in liquid nitrogen. 8 µg (20 µl) mouse anti-GFP antibody (Roche) was added to 

approximately 100 µg of transfected COS-7 sample. A control was also carried out in which 

antibody was added to 100 µl RIPA buffer. These mixtures were incubated overnight at 4 °C. 

Immobilized protein G (Pierce) was washed twice in RIPA buffer and 50 µl washed resin 

slurry was added to each sample of COS-7 and antibody. The protein G, antibody and sample 

mixtures were mixed end-over-end at room temperature for 2 hours. 0.5 ml RIPA buffer was 

added to each sample before centrifugation at 2500 g for 3 minutes. The supernatants were 

discarded and this step was repeated a further three times. The washed pellet was then 

resuspended in 25 µl sample buffer (as in chapter 2) and heated to 80 °C for 10 minutes. 

Samples were centrifuged at 2500 g for 3 minutes. Supernatants were collected and loaded 

onto a SDS PAGE gel for separation and analysis of immunoprecipitated proteins by western 

blotting.  

 

The cross-linking protocol used was modified from that described by Spasic, D. et al. 

(2007)128. Microsomes were first made from COS-7 cells expressing constructs. COS-7 cells 

were transfected with SERCA-EGFP, PMCA-EGFP or calnexin-EGFP on 15 cm culture 

dishes. Media was removed from plates and cells were washed twice in ice-cold PBS. 500 µl 

PBS supplemented with 5 µl protease inhibitor cocktail was added to each plate, and cells 
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were scraped off the plates. Cells from four 15 cm culture dishes (all expressing the same 

construct) were combined and pelleted by centrifugation at 800 g for 10 minutes. Cells were 

resuspended in homogenisation buffer (250 mM sucrose, 10 mM Hepes, 1 mM EDTA, pH 

7.4) supplemented with protease inhibitor cocktail. Cells were then homogenised and 

centrifuged at 400 g for 10 minutes to pellet nuclei. The supernatant was ultracentrifuged at 

100 000 g for 1 hour and microsomal membranes were resuspended in 100 µl microsome 

buffer (125 mM NaCl, 50 mM Hepes, pH 7.4) and homogenised. Protein concentrations of 

microsomes were determined using the BCA kit, supplementing samples with SDS (final 

concentration 2%) to solubilise membrane proteins.  

 

Microsomes were cross-linked by adding 3 mM DTBP (Pierce) and incubating for 30 minutes 

at room temperature. Cross-linking reactions were quenched with 50 mM Tris at room 

temperature for 30 minutes. Triton X-100 was added (at a final concentration of 1%) and 

samples were incubated for 30 minutes at 4 °C to extract the proteins from the membranes. 

Centrifugation at 16 000 g for 15 minutes produced cleared cell extracts which could then be 

used in the coimmunoprecipitation procedure described above. Pellets of cross-linked 

immunoprecipitated material were resuspended in sample buffer (as in chapter 2 but without 

β-mercaptoethanol). Resuspended samples were split into two equal parts. One part was 

reduced (to cleave the DTBP cross-linker) by adding β-mercaptoethanol. The other half of the 

sample was left non-reduced. These samples were then analysed by SDS-PAGE and western 

blotting.  

 

The antibodies and dilutions used in western blots were as follows: rabbit anti-Rer1p (loop or 

C-terminal epitopes), 1:500 (Eurogentec); mouse anti-GFP, 1:500 (Roche); rabbit anti-BAP31, 

1:1000 (Abcam); donkey anti-rabbit IgG conjugated to HRP, 1:10 000 (GE Healthcare); sheep 

anti-mouse IgG conjugated to HRP, 1:2000 (GE Healthcare). GE Healthcare HRP conjugated 

secondary antibodies were affinity adsorbed (against rat, human and mouse).  
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7.3 Results 

 
Figure 7.1 Immunoprecipitated EGFP-tagged SERCA, ΔF508 CFTR and PMCA and 

western blot with anti-BAP31  

COS-7 cells were transfected with SERCA-EGFP (1), ΔF508 CFTR-GFP (2) or PMCA-EGFP 

(3). Immunoprecipitation was carried out with an anti-GFP antibody and immunoprecipitates 

analysed by SDS-PAGE and western blotting with anti-BAP31 antibodies. Lane 4 shows a 

RIPA buffer (cell-free) control. Approximate molecular weights (kDa) are indicated.  

 

Coimmunoprecipitation experiments were carried out on lysates from COS-7 cells expressing 

SERCA-EGFP, ΔF508 CFTR-GFP or PMCA-EGFP. The immunoprecipitated material was 

analysed by SDS-PAGE and western blotting. Western blotting with anti-BAP31 (figure 7.1) 

detected a coimmunoprecipitated protein close to the size of BAP31 (31 kDa) with SERCA-

EGFP and ΔF508 CFTR-GFP but not PMCA-EGFP or the cell-free control. The result shown 

in figure 7.1 was not reliably reproducible, so cross-linking with DTBP was used in an attempt 

to stabilise any interaction between SERCA and BAP31. In addition, microsomes were 

purified from transfected cells to enrich samples for proteins of interest. Cross-linked samples 

were analysed by SDS-PAGE and western blotting with anti-GFP and anti-BAP31 antibodies. 

The anti-GFP blot in Figure 7.2 shows the increase in size of EGFP tagged protein as a result 

of cross-linking to other proteins. The anti-BAP31 blot in Figure 7.2 also demonstrates the 

shift of cross-linked material to much larger molecular weights, and the presence of a band at 

approximately 60 kDa which is likely to represent the BAP29/BAP31 heterodimer133,135. 
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Figure 7.2 Cross-linking of microsomes from COS-7 cells expressing SERCA-EGFP  

Microsomes from COS-7 cells expressing SERCA-EGFP were treated with the cross-linker 

DTBP. SDS-PAGE and western blotting with anti-GFP and anti-BAP31 was used to analyse 

the samples. Anti-GFP and anti-BAP31 blots were carried out on the same gel. Lanes are as 

follows: (1) non-cross-linked SERCA-EGFP microsomes, (2) cross-linked reduced SERCA-

EGFP microsomes and (3) cross-linked non-reduced SERCA-EGFP microsomes. 

Approximate molecular weights (kDa) are indicated.  

 

 

The results in figure 7.2 confirm that cross-linking with DTBP is effective in this system. 

Blots with both anti-GFP and anti-BAP31 reveal an increase in higher molecular weight 

protein complexes under cross-linking conditions. To investigate the possibility that SERCA 

interacts with BAP31, immunoprecipitation with anti-GFP antibodies was carried out on 

SERCA-EGFP microsomes that had been cross-linked with DTBP. Figure 7.3 shows a 

western blot of such a sample with anti-BAP31 antibodies. Under both reducing and non-

reducing conditions, a band at the predicted size of BAP31 was detected. The non-reduced 

sample shows more material at higher molecular weights, consistent with the cross-linker 

being uncleaved. This again suggests that BAP31 is interacting with SERCA, but like the 

immunoprecipitation shown above, this result was not consistently reproducible. 
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Figure 7.3 Cross-linking and immunoprecipitation of SERCA-EGFP microsomes  

Microsomes purified from COS-7 cells expressing SERCA-EGFP were cross-linked with 

DTBP and protein was immunoprecipitated with anti-GFP antibodies. Reduced (1) and non-

reduced (2) cross-linked and immunoprecipitated material was analysed by SDS-PAGE and 

western blotting with anti-BAP31 antibodies. Approximate molecular weights (kDa) are 

indicated.  

 

 

In order to determine whether the potential interaction seen between SERCA and BAP31 in 

the cross-linking experiment described above is specific to an ER retrieval pathway, PMCA-

EGFP and calnexin-EGFP were introduced as controls. Neither protein should interact with 

ER retrieval receptors as neither undergo significant ERGIC to ER transport. The combination 

of cross-linking and immunoprecipitation was again used here. In this experiment, no 

interaction was seen with any of the three EGFP-tagged proteins and either Rer1p or BAP31. 

Figure 7.4 shows a western blot with anti-GFP antibodies on these samples. The non-cross-

linked, non-immunoprecipitated samples show the EGFP-tagged proteins only. The cross-

linked, reduced samples show the heavy and light IgG chains as well as SERCA-EGFP and 

PMCA-EGFP, confirming they have been immunoprecipitated. Calnexin-EGFP is not 

detected here. Any EGFP-tagged proteins in cross-linked, non-reduced samples are obscured 

by a large amount of non-dissociated IgG at 150 kDa.  
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Figure 7.4 Cross-linking and immunoprecipitation of SERCA, PMCA and calnexin  

Microsomes were purified from COS-7 cells expressing SERCA-EGFP (lanes 1, 4 and 7), 

PMCA-EGFP (lanes 2, 5 and 8) or calnexin-EGFP (lanes 3, 6 and 9). Samples were left 

untreated (1-3) or were cross-linked with DTBP (4-9). Following cross-linking, samples were 

immunoprecipitated with anti-GFP and either reduced (4-6) or left non-reduced (7-9). Samples 

were analysed by SDS-PAGE and western blotting with anti-GFP antibodies. A molecular 

weight marker (M) is also shown between reduced and non-reduced samples. Approximate 

molecular weights (kDa) are indicated. 
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7.4 Discussion 

The experiments described in this chapter were carried out in an attempt to detect interactions 

between SERCA and BAP31 or Rer1p, either of which could potentially be involved in the 

retrieval of SERCA to the ER. Although no interaction between SERCA and Rer1p could be 

detected, there was a potential interaction between SERCA and BAP31 observed in some 

experiments.   

 

Immunoprecipitation was first used as a means of detecting interactions between SERCA and 

possible retrieval receptors. Western blotting of immunoprecipitated material with BAP31 

antibodies (figure 7.1) shows that BAP31 is coimmunoprecipitated with both SERCA and 

ΔF508 CFTR but not PMCA. This suggests that BAP31 interacts with SERCA and ΔF508 

CFTR and could feasibly be involved in the trafficking of these proteins between the ER and 

Golgi. PMCA is the only protein out of the three tested that is localised to the plasma 

membrane and presumably undergoes no retrograde transport from the Golgi to the ER. That 

BAP31 is not coimmunoprecipitated with PMCA makes its role in the trafficking of these 

proteins more likely to be in retrograde, rather than anterograde, transport between the Golgi 

and ER. This result was not reliably replicable. For this reason, chemical cross-linking was 

then used as a means of stabilising any interaction between SERCA and BAP31 before 

immunoprecipitation. In addition, microsomes, rather than total cell lysates, were used in an 

attempt to enrich the samples for proteins located in the ER and Golgi membranes.  

 

The ability of DTBP to cross-link proteins in this system was tested. Western blots of cross-

linked microsomes with both anti-GFP and anti-BAP31 antibodies (figure 7.2) show an 

increase in molecular weight of detected proteins. Interestingly, BAP31 also shows a 

prominent band close to 60 kDa under cross-linked conditions. This band is likely to represent 

the heterodimer formed from BAP31 and the related 29 kDa protein, BAP29133,135. Consistent 

with this, the 60 kDa band was not seen under non-cross-linked conditions when samples were 

blotted with anti-BAP31 (figure 7.2, lane 1).  

 

A combination of cross-linking and immunoprecipitation of microsomes from transfected cells 

was used to investigate the possibility that SERCA interacts with BAP31. As seen with the 
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immunoprecipitation experiment, western blotting with anti-BAP31 revealed a 

coimmunoprecipitated protein at the correct size for BAP31. Again, this result was not easily 

reproducible, so further work is required to unequivocally show interactions between SERCA 

(and ΔF508 CFTR as detected in immunoprecipitation) with BAP31.  

 

Figure 7.4 shows cross-linking and immunoprecipitation (with anti-GFP antibodies) of 

microsomes from COS-7 cells expressing SERCA-EGFP, PMCA-EGFP or calnexin-EGFP. 

This was carried out to ensure that the desired proteins were efficiently purified by the 

immunoprecipitation step. Anti-GFP antibodies were used in the blot shown in figure 7.4. The 

most prominent bands in lanes 4-9 represent the mouse IgG used in the immunoprecipitation, 

detected by the anti-mouse secondary antibody used in the blot. Under reducing conditions, 

IgG runs as heavy and light chains at approximately 25 kDa and 50 kDa respectively. Non-

reducing conditions are unable to break the disulphide linkages connecting the heavy and light 

chains so a band is seen at approximately 150 kDa, the molecular weight of the two heavy and 

two light chains that make up the IgG molecule170. Immunoprecipitated SERCA-EGFP and 

PMCA-EGFP can be seen in lanes 4 and 5 respectively (figure 7.4). These proteins have been 

immunoprecipitated with anti-GFP antibodies and have been reduced so run at their predicted 

molecular weights. Calnexin-EGFP is not visible in lane 6, suggesting that the 

immunoprecipitation of this protein was not successful. The presence of EGFP-tagged 

SERCA, PMCA or calnexin cannot be established in lanes 7-9 (figure 7.4) due to the high 

abundance of IgG at approximately 150 kDa.  

 

PMCA is localised to the plasma membrane and so will presumably only interact with BAP31 

if BAP31 is involved in anterograde transport from the ER to the Golgi. Calnexin is localised 

exclusively to the ER and does not enter the ERGIC28, so would not be expected to interact 

with BAP31 as it does not undergo transport in either direction between the ER and Golgi. 

The blot shown in figure 7.4 was reprobed with anti-BAP31 antibodies but no interaction was 

detected between BAP31 and SERCA, PMCA or calnexin.  

 

A combination of cross-linking (to strengthen any low-affinity interactions between SERCA 

and potential retrieval receptors) and immunoprecipitation (to enrich the samples for EGFP-
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tagged proteins) has been used here in an attempt to detect protein machinery that may be 

involved in the retrieval of SERCA to the ER. Cross-linking and immunoprecipitation both 

showed a potential interaction between SERCA and BAP31, but these results could not be 

repeated reliably. The large pool of EGFP-tagged SERCA present in transfected COS-7 cells 

compared to the relatively small population interacting with BAP31 or any other retrieval 

receptor at any one time could account for the unreliability of these results. Differences in 

expression levels of SERCA-EGFP from sample to sample would change the proportion of the 

protein being retrieved at any one time. However, it was hoped that the use of cross-linking in 

combination with immunoprecipitation would cause stabilisation of any interactions occurring 

at the point of cross-linking, increasing the chance of detection. Another explanation could 

simply be that BAP31 is showing non-specific interactions with SERCA and ΔF508 CFTR, 

although the absence of BAP31 coimmunoprecipitated with PMCA (figure 7.1) suggests that 

this interaction may show some specificity at least for ER localised proteins. More work is 

required here to determine if BAP31 shows a specific interaction with SERCA. Other 

techniques could be used to answer this question. The effect of BAP31 on SERCA localisation 

could be determined by using RNA interference to knockdown the expression of BAP31144. 

The presence of SERCA in the late Golgi or plasma membrane of BAP31 knockdown cells 

would indicate that it is important in the maintenance of the calcium pump in the ER. 

Although it has not been possible to demonstrate beyond reasonable doubt that there is an 

interaction between SERCA and BAP31, the use of other techniques in combination with the 

immunoprecipitation and cross-linking shown here may be able to shed some more light on 

this interesting possibility.  
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8. General discussion 

8.1 Introduction 

The localisation of SERCA in the ER is vital for the maintenance of high calcium 

concentrations in the organelle that are required for processes including protein trafficking and 

calcium signalling15,33. In addition to the ER, SERCA is also present in the ERGIC and cis-

Golgi33,94. For this reason, retrieval from downstream compartments is likely to be the primary 

mechanism for the maintenance of the protein in the ER. Several different mechanisms have 

been described for ER retrieval of both soluble and membrane-spanning proteins. Some of 

these mechanisms rely on discreet consensus sequences such as the KDEL90 and di-lysine 

motifs109. No canonical retrieval signals are conserved in SERCA so two possibilities 

therefore exist for its retrieval: either it is retrieved by a receptor such as Rer1p which appears 

not to require a particular sequence motif130, or it is retrieved by a different and so far 

unknown mechanism. This investigation attempted to decipher the sequences and mechanisms 

involved in the retrieval of SERCA to the ER.  

 

8.2 Searching for an ER retrieval signal in SERCA 

In order to determine where in SERCA the sequence(s) mediating ER retrieval are located, a 

series of SERCA/PMCA chimeric calcium pumps were built, and their subcellular 

localisations determined (see chapter 3). This approach has been used before in the search for 

retrieval signals in SERCA. However, no precise conclusions have been drawn from previous 

investigations other than that the N-terminus of the protein is at least partially required for ER 

retrieval94,146,147. For this reason, the first chimeras built in this investigation were designed to 

dissect the N-terminus of SERCA to establish which (if any) regions of the N-terminus are 

required for ER localisation of the pump. By expressing chimeras with C-terminal EGFP tags 

in COS-7 cells, it was possible to determine the subcellular localisations of the proteins. It was 

not possible to determine whether the very N-terminal amino acids of SERCA are important 

for retrieval as both S/PNterm and P/SNterm (see figure 3.12, chapter 3) were located in the 

ER. However, the first and second transmembrane domains of SERCA (M1 and M2 
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respectively) were shown not to be required for ER localisation. Replacing either M1 

(S/PM1), M2 (S/PM2) or both helices (S/PM1-2) of SERCA sequence with corresponding 

PMCA sequence did not disrupt the ER localisation of the protein. Consistent with this, 

replacing M1 (P/SM1), M2 (P/SM2) or both M1 and M2 (P/SM1-2) of PMCA sequence with 

that of SERCA did not cause redistribution of the plasma membrane pump to the ER.  

 

The pump was then divided into three similar sized sections, and six constructs were built to 

scan the whole SERCA sequence for retrieval motifs. This highlighted the C-terminus of 

SERCA (residues 712-1001) as being required for ER localisation of the pump. Replacement 

of this section with corresponding PMCA sequence produced a plasma membrane localised 

pump (S/PM5-10), with the opposite construct (P/SM5-10) showing ER localisation. In order 

to elucidate which section(s) of the C-terminus of SERCA are required for the retrieval 

process, constructs were built in which the C-terminus was dissected further. Unfortunately, 

the ER localisation of all of these constructs rendered drawing any conclusions impossible. 

The localisations of the chimeras built in this study therefore suggest that there is sequence 

mediating retrieval within amino acids 712-1001 of SERCA, but where exactly, and what 

features of this sequence are important remains elusive.  

 

Of the 22 chimeras constructed here, only 5 showed plasma membrane localisation in COS-7 

cells. In several cases, both members of a mirror pair of constructs (containing opposite 

sections of SERCA and PMCA sequence) showed ER localisation. This is unexpected, as 

presumably one would contain the ER retrieval signal of SERCA and one would not. This 

could be explained by redundancy in the system, whereby both members of a pair of 

constructs could contain enough of the retrieval signal to be located in the ER. However, this 

does not explain all of the pairs of ER localised constructs. For example, both S/PNterm and 

P/SNterm are located in the ER but the localisation of S/PM5-10 in the plasma membrane 

demonstrates that the entire N-terminal section is not able to cause ER retrieval. In these cases, 

protein misfolding seems a more likely explanation for the ER localisation observed. Although 

SERCA and PMCA have approximately 30% sequence identity and share common structural 

and functional characteristics, they are both relatively large and complex proteins which 

presumably require many intramolecular interactions to fold correctly. Building chimeras of 
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these two, albeit highly related, calcium pumps may therefore still result in aberrant protein 

folding. In an attempt to reduce the propensity of chimeras to misfold, the two protein 

sequences were joined in conserved regions wherever possible throughout the investigation, 

but this proved to be no guarantee that correct folding would always occur.  

 

If it were possible to detect which of the ER localised chimeras were misfolded, more 

information could be yielded from the results shown in chapter 3. For this reason, experiments 

were carried out in an attempt to detect misfolding in the chimeric constructs (described in 

chapter 4). A large amount of misfolded protein in the ER, such as could be caused by 

overexpression of misfolded SERCA/PMCA chimeras, is known to elicit the UPR69,155. The 

chaperone protein BiP is upregulated as part of the UPR69. This was confirmed in the system 

used here by treating cells with tunicamycin; a known inducer of the UPR159. This treatment 

resulted in a clear upregulation of BiP, as shown in chapter 4 (figure 4.1). It was not possible 

however, to detect initiation of the UPR in HeLa or COS-7 cells expressing any of the 

chimeric constructs when tested by western blotting. This could be because the transfection 

rate of the cells expressing the recombinant chimeras was sufficiently low as to cause dilution 

of any increase in BiP levels by untransfected cells. Immunofluorescence was then tested as a 

means to detect BiP increases in cells exhibiting the UPR. No difference in BiP (detected by 

anti-BiP antibodies and visualised using a fluorescent secondary antibody) was detected 

between transfected cells expressing the constructs tested, and neighbouring, untransfected 

cells. Furthermore, cells expressing the well characterised misfolded CFTR ΔF508 mutant, a 

protein which is known to elicit the UPR158, showed no detectable BiP upregulation in 

immuofluorescence experiments.  

 

Although it has not been possible to detect misfolding in SERCA/PMCA chimeras, this does 

not rule out the possibility that abberant folding of these proteins is occuring. In fact, the only 

positive result seen for protein misfolding (measured by an increase in BiP levels) was 

achieved by treating cells with tunicamycin. Even expression of the known misfolded protein 

CFTR ΔF508 did not show a detectable increase in BiP levels observed by 

immunofluorescence. Further experiments were carried out to locate the retrieval signal and 

attempts were made to circumvent the problem of misfolding. These experiments are 
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described in chapter 5. The tenth transmembrane domain (M10) of SERCA was selected for 

investigation in these experiments. Studies with the chimeras shown in chapter 3 have shown 

that the C-terminal section of SERCA is responsible for ER localisation of the protein. 

Structural studies suggest that M10 is probably the least dynamic of the ten transmembrane 

domains and is accessible from the bilayer18. If the ER retrieval signal of SERCA is located in 

a transmembrane domain (for example if it were recognised by Rer1p or a similar receptor) 

then M10 would be a logical candidate. M10 contains the conserved charged residue K972 

which crystal structures suggest points out into the bilayer18. Rer1p has been shown to 

recognise charged or polar residues in transmembrane domains of proteins retrieved to the 

ER128-130,171, so it is possible that this lysine residue in M10 of SERCA is involved in its ER 

localisation. This was tested by mutating K972 to phenylalanine (the residue in the 

corresponding position in M10 of PMCA) to produce the K972F mutant. This was shown by 

fluorescence microscopy to be located in the ER, suggesting that either K972 is not involved 

in ER retrieval or that this mutation causes misfolding of the protein.  

 

The involvement of M10 in the ER localisation of SERCA was further tested by elongating 

the membrane-spanning helix with the addition of three leucine residues to produce the 

SERCA M10 3Leu construct. This technique has been used by other researchers on single-

pass ER membrane proteins that are mis-targeted to the plasma membrane upon elongation of 

their membrane-spanning helices28,74. If M10 of SERCA is key to its ER retrieval, elongation 

(and the resulting change in position of residues within the membrane) could conceivably 

cause loss of retrieval. However, the M10 3Leu construct was localised to the ER and did not 

escape to the plasma membrane. This could be due to misfolding of the construct or that 3 

leucine residues are not sufficient to cause a significant change in the transmembrane domain 

to disrupt retrieval. Clearly it could also be that the ER retrieval of SERCA relies on sequence 

elsewhere in the protein.  

 

A CD8 reporter construct163 has also been used in the search for retrieval signals in M10 of 

SERCA. Both SERCA and PMCA M10 sequences were used to replace the single 

transmembrane domain of the plasma membrane localised CD8 protein. Although M10 of 

SERCA caused the protein to be ER localised, the M10 sequence of PMCA had the same 
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effect, meaning that no conclusions can be drawn here. These results may simply reflect the 

fact that single transmembrane domains from complex polytopic membrane proteins are not 

able to stand alone in the bilayer without aggregating.   

 

The chimeras and M10 constructs described in chapters 3 and 5 respectively, illustrate that 

manipulating a relatively large, polytopic membrane protein such as SERCA is problematic to 

say the least. Although it was not able to be shown in chapter 4, it is likely that some of these 

constructs are located in the ER as a result of misfolding. The chance of misfolding, combined 

with the use of ER localisation as a read out of signal-mediated retrieval could allow 

misleading conclusions to be drawn. Therefore only plasma membrane localised chimeras 

have been used to draw information on where in SERCA a retrieval signal may be found. Any 

pairs of opposite chimeras in which both members are ER localised have been disregarded in 

the search for the retrieval signal.  

 

8.3 Identifying protein machinery responsible for ER retrieval of SERCA 

Searching for the ER retrieval signal in SERCA using chimeras, M10 mutants and CD8 

reporter constructs pointed to the importance of the C-terminus, but it was not possible to 

isolate any specific region of the protein required for ER localisation. The next stage in the 

investigation was to attempt to identify the protein machinery involved in the ER retrieval of 

SERCA. Aside from Rer1p and BAP31 (both discussed in chapter 1, section 1.6), no 

convincing candidate receptors exist for the retrieval process that proteins lacking canonical 

signals such as KDEL or the di-lysine motif undergo. As Rer1p has been shown to retrieve 

membrane proteins from the early Golgi to the ER in both yeast and mammalian cells119,123-

126,128,129, it was selected for further investigation as a candidate receptor for SERCA. As no 

commercial antibodies to human Rer1p were available at the start of this investigation, 

antibodies were raised (by Eurogentec) to two epitopes in human Rer1p. Chapter 6 describes 

characterisation of these antibodies. Although the predicted molecular weight of Rer1p is 23 

kDa, the antibodies raised in this study detect a protein of 50 kDa in western blots of various 

mammalian cell lysates. However, three different heterologously expressed, tagged forms of 

Rer1p appeared at the correct predicted molecular weights in western blots with these 
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antibodies. This was confirmed in the case of two of these proteins which were also detected 

at the same sizes using an anti-GFP antibody.  

 

Immunofluorescence was also used in the characterisation of these antibodies. The antibody 

was not able to detect endogenous Rer1p by immunofluorescence. This could be due to 

insufficient levels of endogenous Rer1p, coupled with the fact that the antibody was directed 

at a peptide rather than a conformational epitope in the protein. In cells expressing Rer1p-

EGFP however, the antibody, visualised with a fluorescent secondary antibody, showed 

colocalisation with the Rer1p construct in transfected cells. The antibody was also able to 

detect His-Rer1p in transfected cells and illuminated a reticular pattern, typical of ER proteins, 

in these cells. Colocalisation studies showed that His-Rer1p (as detected by the antibody 

raised in this study) is present in both the ERGIC and trans-Golgi. This fits with previous 

reports that Rer1p is distributed throughout the ERGIC and Golgi122. His-Rer1p also showed 

significant, but not total, colocalisation with SERCA-EGFP. This is in agreement with what is 

known about the distribution of the two proteins33,122. The areas where Rer1p is present but 

SERCA is absent presumably represent the medial- and trans-Golgi. The results from this 

characterisation of the anti-Rer1p antibodies raised in this study are consistent with specific 

recognition of the Rer1p protein. Although the endogenous protein appears at 50 kDa and not 

the predicted molecular weight of 23 kDa, detection of tagged forms of the protein, coupled 

with immunofluorescence results, suggest that the antibody is specific for Rer1p.  

 

Immunoprecipitation experiments were then carried out to determine if either Rer1p or BAP31 

interact with SERCA, with a view to determining what protein machinery is responsible for 

this retrieval process. No interaction was found between SERCA and Rer1p. Tantalisingly 

however, BAP31 appeared to coimmunoprecipitate with SERCA and CFTR ΔF508 but not 

PMCA. This result could not be repeated, so cross-linking was employed to strengthen any 

interaction between SERCA and BAP31 before immunoprecipitation. The cross-linker DTBP 

was tested and was able to cause a shift of proteins to higher molecular weights as deteced by 

both anti-GFP and anti-BAP31 antibodies in western blots. A potential interaction was seen 

here between SERCA and BAP31, but again, this could not be reliably repeated. It is possible 

that these proteins interact, and if that is the case, BAP31 may be involved in the retrograde 
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traffic of SERCA to the ER. However, more work is required to verify this and to ensure that 

the potential interaction between BAP31 and SERCA is a specific one.  

 

8.4 Future directions 

The results shown here suggest that the ER retrieval signal of SERCA is located towards the 

C-terminus of the protein, but it has not been possible to determine exactly where in this 

section of the protein the signal lies. Due to the apparent propensity of these chimeric 

constructs to misfold and be retained in the ER, further work of this kind to find the retrieval 

signal is likely to be problematic. It may be necessary to use simpler proteins with fewer 

membrane-spanning helices that also undergo ER retrieval in order to continue the search for 

signals by making large changes to their sequences. SERCA could then be revisited and subtle 

mutations made to the protein, guided by new knowledge yielded from studying other 

proteins. ER retrieval by Rer1p appears not to require a specific consensus sequence as in the 

case of the KDEL system, but instead the receptor has been reported to recognise polar or 

charged residues in transmembrane domains128,130. Transmembrane domains of polytopic ion 

transporters, such as SERCA, exhibit a high prevelence of charged amino acids. Therefore 

searching for what would normally be considered unusual residues in membrane-spanning 

helices of proteins such as SERCA, with a view to discovering a retrieval signal, would 

undoubtedly be misleading.  

 

A useful approach to this problem may be to first determine the protein machinery responsible 

for retrieval of SERCA to the ER. This may shed light on the sequences involved. Rer1p and 

BAP31 should first be tested, as they are logical candidates for this role. If they are both ruled 

out, a proteomics approach could be applied to search for relevant protein interactions. This 

can be done by immunoprecipitation of the protein of interest, resolution of the 

coimmunoprecipitated proteins using SDS-PAGE and identification by mass spectrometry172. 

This approach could be feasbily be used to find the protein machinery responsible for ER 

retrieval of SERCA. Immunoprecipitation and SDS-PAGE of SERCA and PMCA (or a 

plasma membrane chimera) would presumably lead to two different patterns of 

coimmunoprecipitated proteins. Those that are coimmunoprecipitated with SERCA (but not 
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PMCA or plasma membrane localised chimeras) may be involved in retrieval and could be 

identified and characterised. Other proteins interacting with the new candidate retrieval 

receptor(s) could then be determined and by comparing these proteins it may be possible to 

elucidate what features they have in common. This may be a way of not only identifying the 

protein machinery responsible for ER retrieval of SERCA, but also resolving which sections 

of SERCA sequence are required for ER localisation.  

 

Yeast genetics has proved to be a powerful approach in the field of protein trafficking. For 

example, the KDEL receptor was characterised by transferring the ERD2 gene between 

different species of yeast, allowing an elegant demonstration that the protein it encodes 

specifically recognises an ER retrieval motif98. In addition, Rer1p was discovered by screening 

mutant yeast strains that were unable to retain the Sec12p protein in the ER119. It may be 

possible to identify other retrieval receptors in a similar way by observing the ER retention of 

other proteins in yeast. P-type calcium ATPases exist in the yeast Golgi (PMR1) and plasma 

membrane (PMC1)173. However, no ER localised homologue to SERCA has been described in 

yeast so carrying out screens on yeast mutants by looking for SERCA mistargeting is not 

possible. Despite this, screening of yeast mutants may still may be a valuable technique for 

finding other retreival receptors, mammalian homologues of which might be involved in 

SERCA trafficking.  

 

RNA interference has become a staple technique for scientists in many fields, not least cell 

biology. By introducing short RNAs (complementary to a gene of interest) into cells, it is 

possible to acheive a targeted knockdown of a specific gene at the mRNA level174. RNA 

interference has been used to study the interaction of Rer1p with nicastrin and Pen2 (two 

components of the γ-secretase complex)128,129. A significant increase in plasma membrane 

localised Pen2 derived constructs was seen upon knockdown of Rer1p, implicating the 

receptor in the ER localisation of Pen2129. As well as studies on individual proteins, RNA 

interference has been used in higher throughput screening studies to investigate mechanisms 

of secretion. One study by Simpson et al. (2007)175 demonstrated the power of this approach 

by selecting secretory pathway proteins of unknown function and using RNA interference to 

systematically knockdown each gene. The secretion of a fluorescently-tagged temperature 
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sensitive membrane protein was then monitored by fluorescence microscopy. The knockdown 

of several previously unidentified proteins was found to inhibit secretion of the marker 

protein175. It may be possible to knockdown a set of secretory pathway proteins and monitor 

mistargeting of SERCA to the late Golgi or plasma membrane. This could allow identification 

of the protein machinery which mediates the retrieval of SERCA to the ER.  

 

8.5 Concluding remarks 

The aim of the experiments conducted in this investigation was to determine the sequences 

and protein machinery involved in the retrieval of SERCA from the ERGIC or early Golgi to 

the ER. The subcellular localisations of the chimeric calcium pumps built in this study suggest 

that the ER retrieval signal lies between residues 712 and 1001 of SERCA. Chimeras built to 

dissect this C-terminal region further, resulted in ER localised chimeras from which 

conclusions could not be drawn. The protein machinery involved in the retrieval of SERCA to 

the ER remains elusive. There is a possibility that SERCA interacts with BAP31, which may 

mediate the retrieval process. Further work is required to determine whether this is a specific 

interaction, and whether BAP31 is required for maintenance of SERCA in the ER. The KDEL 

and di-lysine motif mediated retrieval processes are now relatively well characterised176,177. 

However, for proteins such as SERCA that lack these motifs there is still much to learn about 

the sequences and machinery that mediate their retrieval to the ER.  
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Appendix 

Appendix 1: Oligonucleotides used in the production of SERCA/PMCA 

chimeras 

PCR primers used in the construction of all SERCA/PMCA chimeras (discussed in chapter 3) 

are shown. Fwd and rev indicate forward and reverse primers respectively. The 5’ and 3’ ends 

of the primers are also indicated.  

 

Mutagenesis of PMCA3 to introduce a KpnI restriction site 
Fwd 5’-ATGCTGCTCTCAGGTACCCATGTCATGGAAGGTTCTGG-3’ 

Rev 5’-CCTTCCATGACATGGGTACCTGAGAGCAGCATAGGATC-3’ 

 

Mutagenesis of PMCA3 to introduce an AflII restriction site 
Fwd 5’-AATGATGGACCAGCTCTTAAGAAGGCAGATGTGGGCTTC-3’ 

Rev 5’-CCCACATCTGCCTTCTTAAGAGCTGGTCCATCATTGGTG-3’ 

 

S/PNterm 
Fwd 5’-GGGAAAGCTAGCGATGGGTGACATGGCGAACAG-3’ 

Rev 5’-ACCAGGAGGTCTTCAAACTGTTCCCACACCAGCTGCAGG-3’ 

Fwd 5’-CTGCAGCTGGTGTGGGAACAGTTTGAAGACCTCCTGGTG-3’ 

Rev 5’-CCGCGATGTTGGTACCCGAG-3’ 

 

S/PM1 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-GTCACGTCCTGCAGGGCTTCTATCACCAGCTCCCACAGG-3’ 

Fwd 5’-CCTGTGGGAGCTGGTGATAGAAGCCCTGCAGGACGTGAC-3’ 

Rev 5’-AAGGCAGTGATGGTCTCTCCCTCGTCTTCTGCCCCACCAG-3’ 

Fwd 5’-GGGGCAGAAGACGAGGGAGAGACCATCACTGCCTTCGTTG-3’ 

Rev 5’-CCGCGATGTTGGTACCCGAG-3’ 

 

S/PM2 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-CCAGCCTCGGCCTCTTCCCCTTCTTCAAACCAGG-3’ 
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Fwd 5’-CCTGGTTTGAAGAAGGGGAAGAGGCCGAGGCTGG-3’ 

Rev 5’-ATATTCCTTAAGACCTCTGAACTGCTTTTCCTTGCTCCAG-3’ 

Fwd 5’-AAAGCAGTTCAGAGGTCTTAAGGAATATGAGCCCGAGATG-3’ 

Rev 5’-CCGCGATGTTGGTACCCGAG-3’ 

 

P/SNterm 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-GTCACGTCCTGCAGGGCTTCTATCACCAGCTCCCACAGG-3’ 

Fwd 5’-CCTGTGGGAGCTGGTGATAGAAGCCCTGCAGGACGTGAC-3’ 

Rev 5’-CATCTTGGTACCTGAGAGCAGCATAGGATC-3’ 

 

P/SM1 
Fwd 5’-GGGAAAGCTAGCGATGGGTGACATGGCGAACAG-3’ 

Rev 5’-ACCAGGAGGTCTTCAAACTGTTCCCACACCAGCTGCAGG-3’ 

Fwd 5’-CTGCAGCTGGTGTGGGAACAGTTTGAAGACCTCCTGGTG-3’ 

Rev 5’-CCAGCCTCGGCCTCTTCCCCTTCTTCAAACCAGG-3’ 

Fwd 5’-CCTGGTTTGAAGAAGGGGAAGAGGCCGAGGCTGG-3’ 

Rev 5’-CATCTTGGTACCTGAGAGCAGCATAGGATC-3’ 

 

P/SM2 
Fwd 5’-GGGAAAGCTAGCGATGGGTGACATGGCGAACAG-3’ 

Rev 5’-AAGGCAGTGATGGTCTCTCCCTCGTCTTCTGCCCCACCAG-3’ 

Fwd 5’-GGGGCAGAAGACGAGGGAGAGACCATCACTGCCTTCGTTG-3’ 

Rev 5’-CTGCTCAATTCGGCTCTGAAGGGCTTCTATGGCGTTC-3’ 

Fwd 5’-GAACGCCATAGAAGCCCTTCAGAGCCGAATTGAGCAG-3’ 

Rev 5’-CATCTTGGTACCTGAGAGCAGCATAGGATC-3’ 

 

S/PM1-2 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-GTCACGTCCTGCAGGGCTTCTATCACCAGCTCCCACAGG-3’ 

Fwd 5’-CCTGTGGGAGCTGGTGATAGAAGCCCTGCAGGACGTGAC-3’ 

Rev 5’-ATATTCCTTAAGACCTCTGAACTGCTTTTCCTTGCTCCAG-3’ 

Fwd 5’-AAAGCAGTTCAGAGGTCTTAAGGAATATGAGCCCGAGATG-3’ 

Rev 5’-CCGCGATGTTGGTACCCGAG-3’ 

 

P/SM1-2 
Fwd 5’-GGGAAAGCTAGCGATGGGTGACATGGCGAACAG-3’ 
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Rev 5’-ACCAGGAGGTCTTCAAACTGTTCCCACACCAGCTGCAGG-3’ 

Fwd 5’-CTGCAGCTGGTGTGGGAACAGTTTGAAGACCTCCTGGTG-3’ 

Rev 5’-CTGCTCAATTCGGCTCTGAAGGGCTTCTATGGCGTTC-3’ 

Fwd 5’-GAACGCCATAGAAGCCCTTCAGAGCCGAATTGAGCAG-3’ 

Rev 5’-CATCTTGGTACCTGAGAGCAGCATAGGATC-3’ 
 

P/SNtermM1-2 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-CCGCGATGTTGGTACCCGAG-3’ 

 

S/PNtermM1-2 
Fwd 5’-GGGAAAGCTAGCGATGGGTGACATGGCGAACAG-3’ 

Rev 5’-CATCTTGGTACCTGAGAGCAGCATAGGATC-3’ 

 

S/PM3-4 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-CCGCGATGTTGGTACCCGAG-3’ 

 

P/SM3-4 
Fwd 5’-GCTTTTCTCGGGTACCAACATC-3’ 

Rev 5’-GTGCCAGATCCCATAGCTATGC-3’ 

 

S/PM5-10 
Fwd 5’-GAGCAGCTTAAGAAGGCAGATGTGGGC-3’ 

Rev 5’-GATCTGTCTAGACTCGAGGGTTACTTGTACAGCTCGTCC-3’ 
 

P/SM5-10 
Fwd 5’-CAACGATGCCCCTGCCCTTAAG-3’ 

Rev 5’-GATCTGTCTAGACTCGAGGGTTACTTGTACAGCTCGTCC-3’ 
 

S/PM7-10 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-CTTCATCATGGTGCGTGAGATCAGGGGCTCCTTGGGACTC-3’ 

Fwd 5’-GAGTCCCAAGGAGCCCCTGATCTCACGCACCATGATGAAG-3’ 

Rev 5’-AATCAGAAGCTTCGGAATACTCTCACCACTCGGATTGCCAGCAG-3’ 
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P/SM7-10 
Fwd 5’-GGGAAAGCTAGCGATGGGTGACATGGCGAACAG-3’ 

Rev 5’-GCCAGCCACTGATCAGAGGTTTGTCCCGGCCATATGG-3’ 

Fwd 5’-CCATATGGCCGGGACAAACCTCTGATCAGTGGCTGGC-3’ 

Rev 5’-GATCTGTCTAGACTCGAGGGTTACTTGTACAGCTCGTCC-3’ 
 

S/PM9-10 
Fwd 5’-GAGTAGCTTAAGAAGGCCGAGATCG-3’ 

Rev 5’-GATCTTTCGAGCATTGATTTCAGACAGGCTGTTGAGAGCAT-3’ 

Fwd 5’-ATGCTCTCAACAGCCTGTCTGAAATCAATGCTCGAAAGATC-3’ 

Rev 5’-AATCAGAAGCTTCGGAATACTCTCACCACTCGGATTGCCAGCAG-3’ 

 

P/SM9-10 
Fwd 5’-CCAGCTCTTAAGAAGGCAGATGTG-3’ 

Rev 5’-CGCATCAAGGACTGGTTCTCATTGAAAAGCTGCATCATGAC-3’ 

Fwd 5’-GTCATGATGCAGCTTTTCAATGAGAACCAGTCCTTGATGCG-3’ 

Rev 5’-GATCTGTCTAGACTCGAGGGTTACTTGTACAGCTCGTCC-3’ 

 

SM1-2M9-10 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-CTCCTCCTCCACTGCCTCCTCCGCCGTTCCGCTCATGCCAAACTC-3’ 

Fwd 5’-GGAGGCAGTGGAGGAGGAGGGTCTATCTGGCTGCTGGGCTCC-3’ 

Rev 5’-CTTTTGTTCAAGCTTACGACGTTC-3’ 

 

SM1-2/PM9-10 
Fwd 5’-TCCTTCGCTAGCCACCATGGAAGCTGCTCACTCTAAGTC-3’ 

Rev 5’-CTCCTCCTCCACTGCCTCCTCCGCCGTTCCGCTCATGCCAAACTC-3’ 

Fwd 5’-GAGGCAGTGGAGGAGGAGGATCTAACCCCATCTTCTGTACCATTG-3’ 

Rev 5’-AATCAGAAGCTTCGGAATACTCTCACCACTCGGATTGCCAGCAG-3’ 
 

P/S2bM5-11 
Fwd 5’-CTACACCTTAAGAAAGCTGAGATTGGCATTGCTATG-3’ 

Rev 5’-CTTTTGCTCAAGAGACCAGAACATATCGCTAAAGTTAGTG-3’ 

Fwd 5’-TATGTTCTGGTCTCTTGAGCAAAAGCTGATCTCTGAAGAG-3’ 

Rev 5’-GATCTGTCTAGACTCGAGGGTTACTTGTACAGCTCGTCC-3’ 
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P/S2bM11 
Fwd 5’-GAGCAGCTTAAGAAGGCAGATGTGGGC-3’ 

Rev 5’-GTAGTTGCGGGCCACAAAAGCGATGACCTGTCCCCAGACC-3’ 

Fwd 5’-CTGGGGACAGGTCATCGCTTTTGTGGCCCGCAACTACCTG-3’ 

Rev 5’-AGAGATCAGCTTTTGCTCAGACCAGAACATATCGCTAAAG-3’ 

Fwd 5’-CGATATGTTCTGGTCTGAGCAAAAGCTGATCTCTGAAGAG-3’ 

Rev 5’-GATCTGTCTAGACTCGAGGGTTACTTGTACAGCTCGTCC-3’ 

 

Appendix 2: Oligonucleotides used in the production of constructs to study 

the tenth transmembrane domain of SERCA 

PCR primers used in the construction of SERCA and PMCA M10 constructs (discussed in 

chapter 5) are shown. Fwd and rev indicate forward and reverse primers respectively. The 5’ 

and 3’ ends of the primers are also indicated.  

 

SERCA K972F 
Fwd 5’-TGGCTGATGGTTCTGTTTATCTCTCTGCCAGTTATCGGTC-3’ 

Rev 5’-AACTGGCAGAGAGATAAACAGAACCATCAGCCATTGAGTC-3’ 

 

SERCA M10 3Leu 
Fwd 5’-CTCTCTGCTGCTGCTGCCTGTTATCGGTCTGGACGAAATC-3’ 

Rev 5’-TAACAGGCAGCAGCAGCAGAGAGATCTTCAGAACCATCAG-3’ 

 

CD8-EGFP 
Fwd 5’-GATCGTGCTAGCACCATGGCCTTACCAGTGACCGC-3’ 

Rev 5’-GATCCAAAGCTTGACGTATCTCGCCGAAAGG-3’ 

 

CD8 SERCA M10 
Fwd 5’-GATCGTGCTAGCACCATGGCCTTACCAGTGACCGC-3’ 

Rev 5’-CAGAACCATCAGCCATTGAGTATCACAGGCGAAGTCCAGC-3’ 

Fwd 5’-GCTGGACTTCGCCTGTGATACTCAATGGCTGATGGTTCTG-3’ 

Rev 5’-TTAAGCCGCTTGCAGTAAAGTTTCAGGATTTCGTCCAGAC-3’ 

Fwd 5’-GTCTGGACGAAATCCTGAAACTTTACTGCAAGCGGCTTAA-3’ 

Rev 5’-GATCCAAAGCTTGACGTATCTCGCCGAAAGG-3’ 
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CD8 PMCA M10 
Fwd 5’-GATCGTGCTAGCACCATGGCCTTACCAGTGACCGC-3’ 

Rev 5’-CACCAGAGCCACTGTTCTGTATCACAGGCGAAGTCCAGC-3’ 

Fwd 5’-GCTGGACTTCGCCTGTGATACAGAACAGTGGCTCTGGTG-3’ 

Rev 5’-CTTAAGCCGCTTACAGTAAAGAGCAATGACCTGTCCCCAGAC-3’ 

Fwd 5’-GTCTGGGGACAGGTCATTGCTCTTTACTGTAAGCGGCTTAAG-3’ 

Rev 5’-GATCCAAAGCTTGACGTATCTCGCCGAAAGG-3’ 

 

Appendix 3: SERCA-EGFP and PMCA-EGFP full length sequences 

The full-length sequences of the SERCA-EGFP (rabbit SERCA1) and PMCA-EGFP (rat 

PMCA3) constructs used are shown here. Relevant restriction sites are underlined in red. The 

start and stop codons are highlighted in yellow and the linker between the calcium pumps and 

EGFP is shown in blue.  

 

SERCA-EGFP 
GCTAGCGAATTCGAGCTCCCGGGATCCATGGAAGCTGCTCACTCTAAGTCTACTGAAGAATGTCTGGCTTACTTC

GGTGTTTCTGAAACTACTGGTCTGACTCCAGACCAAGTTAAGCGACATCTAGAGAAATACGGCCACAATGAGCTT

CCTGCTGAGGAAGGGAAATCCCTGTGGGAGCTGGTGATAGAGCAGTTTGAAGACCTCCTGGTGCGGATTCTTCTG

CTGGCCGCCTGCATCTCCTTTGTGCTGGCCTGGTTTGAAGAAGGGGAAGAGACCATCACTGCCTTCGTTGAGCCC

TTTGTCATCCTCCTGATCCTCATTGCCAATGCCATCGTGAGAGTTTGGCATGAGCGGAACGCTGAGAACGCCATA

GAGGCGCTGAAGGAATATGAGCCCGAGATGGGGAAGGTGTACCGGGCTGACCGCAAGTCAGTGCAAAGGATCAAG

GCTCGGGACATCGTCCCCGGGGACATCGTGGAGGTGGCGGTTGGGGACAAAGTCCCTGCAGACATCCGCATCCTG

TCTATCAAGTCCACCACCCTCCGCGTGGACCAGTCCATCCTGACAGGCGAGTCCGTGTCCGTCATCAAGCACACG

GAGCCAGTCCCTGACCCGCGGGCTGTCAACCAGGACAAGAAGAACATGCTTTTCTCGGGTACCAACATCGCGGCC

GGCAAGGCCCTGGGCATCGTGGCCACCACCGGCGTGAGCACCGAGATCGGGAAGATCCGTGACCAGATGGCCGCC

ACGGAGCAGGACAAGACGCCGCTGCAGCAGAAGCTGGATGAGTTCGGGGAGCAGCTGTCCAAGGTCATCTCCCTC

ATCTGCGTGGCCGTGTGGCTTATCAACATCGGCCACTTCAACGACCCCGTCCACGGGGGCTCCTGGATCCGCGGT

GCCATCTACTACTTCAAGATCGCCGTGGCCTTGGCTGTGGCTGCGATCCCAGAAGGTCTTCCCGCTGTCATCACT

ACCTGCCTGGCCCTGGGCACCCGCCGGATGGCGAAGAAGAACGCCATCGTGAGGAGCCTGCCCTCTGTGGAGACC

CTGGGCTGCACCTCTGTCATCTGCTCTGACAAGACTGGCACCCTCACCACCAACCAGATGTCTGTGTGCAAGATG

TTCATCATCGACAAGGTGGACGGAGACTTCTGTTCGCTGAACGAGTTCTCCATCACCGGCTCCACCTACGCTCCA

GAGGGGGAGGTCCTGAAGAATGATAAACCCATCCGGTCAGGGCAGTTTGATGGGCTGGTGGAGCTGGCCACCATT

TGTGCCCTGTGCAATGATTCCTCCTTGGACTTCAATGAGACCAAAGGCGTCTATGAGAAGGTGGGTGAGGCCACG

GAGACGGCGCTCACCACTCTGGTGGAGAAGATGAATGTGTTCAACACGGAAGTTCGGAACCTCTCGAAGGTGGAG
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AGAGCCAACGCCTGCAACTCGGTGATCCGCCAGCTCATGAAGAAAGAGTTCACCCTGGAGTTCTCCCGAGACAGG

AAGTCCATGTCTGTGTACTGTTCTCCAGCCAAATCTTCCCGCGCTGCTGTGGGCAACAAGATGTTTGTCAAGGGC

GCCCCCGAGGGGGTCATCGACCGCTGTAACTACGTGCGAGTCGGCACCACCCGGGTGCCCATGACTGGGCCGGTG

AAGGAGAAGATCCTCTCCGTGATCAAGGAGTGGGGCACCGGCCGGGACACGCTGCGCTGCCTGGCCCTGGCCACC

CGCGACACGCCGCCCAAGCGAGAGGAAATGGTGCTGGACGACTCCTCCCGGTTCATGGAGTACGAGACGGACCTG

ACGTTCGTGGGCGTCGTGGGCATGCTGGACCCGCCCCGCAAGGAGGTCATGGGCTCCATCCAGCTGTGCCGGGAC

GCCGGGATCCGTGTCATCATGATCACCGGCGACAACAAGGGCACGGCCATCGCCATCTGCCGCCGCATCGGCATC

TTTGGGGAGAACGAGGAGGTGGCAGACCGCGCCTACACCGGCCGCGAGTTTGACGACCTGCCCCTGGCCGAGCAG

CGGGAAGCCTGCCGCCGCGCCTGCTGCTTCGCGCGCGTGGAACCCTCCCACAAGTCCAAGATCGTGGAATACCTG

CAGTCCTACGATGAGATCACGGCCATGACAGGGGATGGCGTCAACGATGCCCCTGCCCTTAAGAAGGCCGAGATC

GGCATAGCTATGGGATCTGGCACCGCCGTGGCCAAGACAGCGTCTGAGATGGTGCTGGCGGACGACAACTTCTCC

ACCATCGTGGCCGCCGTGGAGGAGGGCCGCGCCATCTACAACAACATGAAGCAGTTCATCCGCTACCTCATCTCC

TCCAACGTGGGCGAGGTGGTCTGCATCTTCCTGACGGCCGCCTTGGGGCTGCCCGAGGCCCTGATCCCTGTGCAG

CTGCTGTGGGTGAACCTGGTGACGGACGGGCTCCCGGCCACAGCCCTGGGCTTCAACCCACCAGACCTGGACATC

ATGGACCGGCCCCCCCGGAGTCCCAAGGAGCCCCTGATCAGTGGCTGGCTCTTCTTCCGCTACATGGCCATCGGG

GGCTATGTGGGTGCAGCCACCGTGGGAGCCGCTGCCTGGTGGTTCATGTATGCGGAGGATGGGCCGGGTGTCACC

TACCACCAGCTGACCCACTTCATGCAGTGCACCGAGGACCACCCTCACTTTGAGGGTCTGGACTGTGAGATCTTT

GAGGCCCCAGAGCCCATGACCATGGCCTTGTCTGTGCTGGTGACCATCGAGATGTGCAATGCTCTCAACAGCCTG

TCCGAGAACCAGTCCTTGATGCGGATGCCGCCCTGGGTGAACATCTGGCTGCTGGGCTCCATCTGCCTGTCCATG

TCCCTCCACTTCCTCATCCTCTACGTCGACCCACTGCCAATGATCTTCAAGCTGAAGGCTCTGGACCTGACTCAA

TGGCTGATGGTTCTGAAGATCTCTCTGCCAGTTATCGGTCTGGACGAAATCCTGAAGTTCATCGCTCGTAACTAC

CTGGAAGACCCAGAAGACGAACGTCGTAAGCTTGAACAAAAGCTGATCTCTGAAGAGGACCTACCGGTCGCCACC

ATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGC

CACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACC

ACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGTGCAGTGCTTCAGCCGCTAC

CCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCGCACCATCTTC

TTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAACCGCATCGAG

CTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAACAGCCACAAC

GTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACATCGAGGACGGC

AGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCAC

TACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTCGTG

ACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAACTCGAG 

 

PMCA-EGFP (before addition of KpnI site) 
GCTAGCCTCGAGGATGGGTGACATGGCGAACAGTTCCATTGAGTTCCACCCCAAACCCCAGCAGCAGCGGGAAGT

GCCTCATGTGGGTGGCTTTGGATGCACGCTGGCAGAACTACGCAGCCTCATGGAGCTCCGAGGTGCTGAGGCACT

GCAGAAGATCCAAGAAGCCTATGGGGATGTCAGTGGGCTGTGTAGGAGACTAAAGACCTCACCTACTGAAGGCCT

GGCAGACAACACCAATGACTTGGAGAAACGCAGGCAGATCTATGGGCAGAACTTCATCCCTCCAAAGCAGCCCAA
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GACCTTCCTGCAGCTGGTGTGGGAAGCCCTGCAGGACGTGACTCTCATCATCCTGGAGGTGGCTGCTATCGTCTC

CCTGGGCCTCTCCTTCTATGCACCACCTGGAGAGGAAAGTGAAGCCTGTGGGAATGTGTCTGGTGGGGCAGAAGA

CGAAGGAGAGGCCGAGGCTGGCTGGATAGAGGGGGCTGCCATCCTACTCTCTGTCATCTGTGTGGTGCTGGTCAC

AGCCTTCAATGACTGGAGCAAGGAAAAGCAGTTCCGAGGTCTTCAGAGCCGAATTGAGCAGGAACAGAAGTTTAC

TGTCATCCGAAATGGGCAGCTCCTCCAGGTCCCTGTGGCAGCCCTGGTGGTAGGGGACATTGCCCAGGTCAAATA

CGGAGATCTTCTGCCTGCCGATGGTGTGCTCATCCAAGGCAATGACCTCAAGATCGACGAGAGCTCCCTGACCGG

CGAGTCGGACCATGTGCGCAAATCAGCAGACAAAGATCCTATGCTGCTCTCAGGCACTCATGTCATGGAAGGTTC

TGGAAGAATGGTAGTAACAGCTGTTGGTGTGAACTCCCAGACAGGCATCATCTTTACATTGCTTGGGGCAGGTGG

AGAGGAGGAGGAGAAGAAAGACAAGAAAGCTAAGAAGCAGGATGGGGCTGTTGCCATGGAAATGCAGCCCCTGAA

GAGTGCCGAGGGTGGGGAAATGGAGGAGCGGGAAAAGAAGAAAGCCAACGTACCCAAGAAGGAGAAGTCAGTCCT

GCAAGGGAAGCTCACAAAACTGGCTGTGCAGATTGGGAAAGCAGGATTGGTGATGTCTGCTATCACTGTCATCAT

TCTGGTCCTCTACTTTGTGATTGAGACCTTCGTTGTGGATGGCCGGGTGTGGCTGGCAGAGTGCACACCAGTGTA

TGTGCAGTACTTTGTGAAGTTTTTCATTATTGGAGTCACTGTGTTGGTTGTGGCTGTCCCTGAGGGCCTGCCTCT

TGCTGTTACTATCTCCTTGGCTTACTCTGTTAAGAAAATGATGAAGGACAATAACCTGGTACGCCACCTGGATGC

CTGTGAGACCATGGGCAATGCCACAGCCATCTGTTCTGACAAGACAGGCACACTCACCACCAACCGTATGACAGT

GGTTCAGTCCTACCTAGGAGACACCCACTACAAAGAGATTCCAGCTCCCAGCGCCCTGACCCCCAAGATCCTCGA

CCTTCTGGTTCATGCCATCTCCATCAACAGTGCCTACACCACCAAAATTCTACCTCCAGAGAAAGAAGGCGCTCT

CCCACGCCAAGTGGGCAACAAAACAGAGTGTGCTCTTTTGGGCTTCATCTTGGACCTGAAACGTGACTTCCAACC

TGTACGGGAACAGATACCAGAAGATCAGCTTTACAAAGTGTACACCTTCAACTCAGTTCGCAAGTCCATGAGCAC

AGTTATCCGAATGCCTGATGGTGGCTTCCGCCTCTTCAGCAAGGGAGCCTCAGAGATCCTGCTCAAAAAGTGTAC

AAACATCTTAAACAGCAATGGTGAACTCCGAGGATTTCGTCCTCGGGACCGGGATGACATGGTAAAGAAGATCAT

TGAGCCTATGGCTTGTGATGGCCTCCGCACCATATGCATCGCCTACAGGGACTTCTCTGCTATCCAGGAACCGGA

CTGGGACAATGAGAATGAGGTGGTGGGTGACCTTACCTGCATAGCTGTCGTGGGCATCGAGGACCCTGTGCGACC

TGAGGTCCCTGAAGCCATTCGAAAATGCCAGCGTGCTGGCATTACAGTCCGTATGGTAACTGGAGATAACATCAA

CACTGCCCGGGCTATTGCAGCTAAGTGTGGCATCATCCAGCCAGGGGAGGATTTCCTGTGCCTGGAGGGGAAGGA

ATTCAACAGAAGGATTCGAAATGAGAAAGGCGAGATAGAACAGGAGAGGCTGGACAAGGTGTGGCCCAAGCTTCG

GGTGCTTGCCCGGTCATCTCCCACTGATAAACATACTCTGGTCAAAGGCATAATTGACAGCACAACTGGTGAGCA

GCGGCAGGTGGTGGCTGTGACCGGGGATGGCACCAATGATGGACCAGCCCTTAAGAAGGCAGATGTGGGCTTCGC

CATGGGCATCGCAGGCACTGATGTGGCCAAGGAGGCCTCTGACATCATTCTGACTGATGACAACTTCACCAGCAT

TGTCAAGGCGGTCATGTGGGGCCGCAATGTCTATGACAGCATTTCCAAGTTCCTGCAGTTTCAGTTGACAGTCAA

TGTGGTAGCTGTGATCGTGGCCTTCACGGGTGCCTGCATTACTCAGGACTCTCCTCTCAAAGCTGTGCAGATGTT

GTGGGTGAACTTGATCATGGACACATTTGCCTCACTTGCCCTGGCAACGGAACCCCCAACTGAGTCACTGCTGCT

GCGGAAGCCATATGGCCGGGACAAGCCTCTCATCTCACGCACCATGATGAAGAACATCCTTGGACATGCTGTTTA

CCAGCTTACCATCATCTTTACTCTGCTATTTGTTGGAGAGCTTTTCTTTGACATTGACAGTGGAAGGAATGCACC

TCTGCACTCGCCGCCCTCAGAGCACTACACCATCATCTTCAACACATTTGTCATGATGCAGCTTTTCAATGAGAT

CAATGCTCGAAAGATCCATGGTGAGAGGAATGTCTTTGATGGCATCTTCAGCAACCCCATCTTCTGTACCATTGT

CCTGGGCACCTTTGGAATTCAGATTGTCATTGTCCAATTTGGAGGGAAGCCCTTCAGCTGTTCCCCACTGTCCAC

AGAACAGTGGCTCTGGTGTCTTTTTGTTGGTGTTGGGGAGCTGGTCTGGGGACAGGTCATTGCCACTATCCCCAC
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CAGCCAGCTCAAGTGCCTGAAGGAAGCAGGGCATGGGCCTGGGAAGGATGAGATGACTGATGAAGAGTTGGCGGA

AGGGGAAGAAGAAATTGACCATGCTGAGCGAGAGCTCCGCAGAGGCCAGATCCTCTGGTTTCGGGGCCTCAACCG

GATCCAGACACAGATGGAGGTAGTGAGTACCTTCAAGAGAAGCGGGTCATTTCAGGGTGCTGTGCGCCGGCGGTC

TTCGGTCCTCAGCCAGCTCCATGACGTAACCAATCTTTCTACCCCTACTCACGTAACTCTCTCTGCCGCCAAGCC

CACCAGCGCTGCTGGCAATCCGAGTGGTGAAAGCATTCCGCTCGAGCAAAAGCTGATCTCTGAAGAGGACCTACC

GGTCGCCACCATGGTGAGCAAGGGCGAGGAGCTGTTCACCGGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGA

CGTAAACGGCCACAAGTTCAGCGTGTCCGGCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTT

CATCTGCACCACCGGCAAGCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCCTGACCTACGGCGAGCAGTGCTT

CAGCCGCTACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGAGCG

CACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGCGACACCCTGGTGAA

CCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGGGGCACAAGCTGGAGTACAACTACAA

CAGCCACAACGTCTATATCATGGCCGACAAGCAGAAGAACGGCATCAAGGTGAACTTCAAGATCCGCCACAACAT

CGAGGACGGCAGCGTGCAGCTCGCCGACCACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCC

CGACAACCACTACCTGAGCACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCT

GGAGTTCGTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAATCTAGA 
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