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How the electrolyte limits fast discharge in nanostructured batteries and supercapacitors  
Phil A. Johns, Matthew R. Roberts, Yasuaki Wakizaka

1
, James H. Sanders and John R. Owen* 

School of Chemistry, University of Southampton, SO17 1BJ 

*jro@soton.ac.uk 

Abstract 

Examples of LiFePO4 composite electrodes are shown in which solid state and interfacial processes are not 

the principal rate limiting process during fast discharge. Rate dependence on electrode thickness, electrolyte 

concentration, lithium transference number, and dilution of the active material is explained by a simple salt 

diffusion model. A discharge to 25 % capacity (0.3 mAh) was obtained on a 40 m thick electrode after only 

4 s in an optimised electrolyte - aqueous Li2SO4.   

Keywords lithium ion battery, LiFePO4, discharge rate, electrolyte, composite electrode, transference  

1. Introduction 

One of the greatest benefits of nanostructured electrodes [1-4] is maximisation of the interfacial area 

between the electrode and electrolyte, minimisation of the solid state diffusion distance L; both of these 

should  improve the discharge rate according to L
-2

 if interfacial or solid state transport processes are the 

limiting factors. However, recent work in our laboratory with nanostructured electrodes for lithium ion 

batteries have shown disappointing results compared to the sub-second discharges [1] previously seen in thin 

nickel oxyhydroxide electrodes with aqueous KOH. This paper describes how we have overcome this 

problem in the LiFePO4 electrode, not by addressing the solid nanostructures, but the dimensions and 

composition of the entire electrode, including the electrolyte occupying the void space due to porosity.  

 

LiFePO4, is a popular active material in the lithium ion positive electrode because of its low cost, cyclability, 

modest energy density, and safety [5].  Slow discharge rates were obtained initially because of its low 

electronic conductivity, which resists inter-particle and intra-particle electron transport. Electron transfer 

between particles and the electronic conduction network has recently improved with carbon coating [6-9] ; 

long range electron and ion transport have been improved by careful control of the composition and structure 

                                                 
1
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of the composite electrode  [10] which supports the active material with carbon black and a binder, leaving 

some open porosity for admission of some electrolyte. Concerning electron transport within the particles 

themselves, enormous enhancements in conductivity and consequent rate improvements has been claimed as 

a result of adding dopants to the structure[11]. However, other studies showing much more modest 

enhancements [12, 13]  bring into question whether the real cause may have been a change in particle 

morphology, agglomeration, or electrode porosity as a result of introducing the impurity. Another study 

suggests that phase nucleation co-located with ion and electron injection may be more important than solid 

state diffusion in this material[14].  

 

Gaberscek et al have suggested that a high rate capability in a composite electrode is also strongly dependent 

on the resistance of the ionic and electronic “wiring” [15] and therefore responds to a decrease in the 

electrode thickness.  

 

The present work suggests a third effect - salt diffusion in the composite electrode matrix – may be an 

important factor in high rate discharge. The lithium ion transference number, TLi+ defines the number of 

moles of lithium species transported into the cathode by migration alone during the passage of one Faraday 

of charge. Its complement (1-TLi+) or T- defines the number of moles of lithium that cannot take part in the 

electrode reaction until they have reached the active particle surfaces by diffusion. The aim of this work is to 

assess the significance of restricted lithium salt diffusion in the nanocomposite battery electrode, as 

compared with solid state ion transport effects that have recently drawn much attention from the press with 

reports of ultra-fast discharge rates[16] that are supposed to be due to enhanced solid state transport in 

nanomaterials.  

 

LiFePO4, has a flat discharge curve, due to the co-existence of two phases during discharge. Our model 

assumes that each electrode particle is either fully charged or discharged, interfacial and solid state 
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restrictions are absent, and therefore the electrolyte resistance is the only restriction, at least initially. Current 

should then flow into the particles nearest the separator until they are completely discharged. Subsequently a 

layer of discharged material should proceed deeper into the electrode, while the potential drop to the nearest 

undischarged material increases, producing a linear galvanostatic discharge profile as in Fig. 1(a).  

 

In reality, discharge curves of FePO4 do not resemble Fig. 1(a). Following a small increase in the IR drop, 

the criterion for discharge is a precipitously steep decline in potential as shown in Fig. 1(b). The “shrinking 

core” [17]and other solid state models[14] explains this by saturation of the Li1-xFePO4 phase at the 

electrode/electrolyte interface. We explain the phenomenon by a lithium salt deficiency due to a non-unity 

transference number according to the Sharp Discharge Front (SDF) model shown in Fig. 1(c).   

Fig. 1 here 

2. The Sharp Discharge Front Model 

 

The SDF model incorporates the transference number T+ in a similar way to the simulations of West et 

al.[18] then Fuller, Doyle and Newman[19] with the following approximations.  

 A sharp planar boundary between discharged and charged material perpendicular to the current 

direction. 

 A negligible initial concentration of lithium salt LiX in the composite compared with the total 

demand for lithium during discharge. 

 Constant [LiX]  in the separator. 

 Constant values of the diffusion coefficient DLiX and transference numbers. 

The diffusion equations are as follows: 

dx

LiXd
D

F

jT
J LiXLiX

][
 

(1)    
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dx

LiXd
LiXLiX
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][][ 0  

where   is the thickness of discharged material  

(2)    

A premature end of discharge occurs when  [LiX]  0 and   = max : 
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The degree of discharge, DoD as a function of the current density j is as follows: 

 

jLT

LiXFD

L
DoD
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][

charge ltheoretica
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(4)    

where,  
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(5)    

and 
0

AQ ,  
0

VQ  are the theoretical charge per unit area and volume respectively and [Li] is the molar demand 

for lithium in the charged active material per unit volume of composite.  

Finally  

])[(

][
. 0

2 LiT

LiX

L

D
fDoD  

(6)    

3. Experimental 
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Composite electrode construction. Pellets containing mixtures of LiFePO4 (Aldrich 99.5+% carbon coated, 

battery grade, thin platelets ~2-5 m across), TiO2 (Aldrich nanopowder, 99.7%, anatase) acetylene black 

(Shawinigan Black 100% compressed, Chevron Philips chemical company) and poly tetrafluoroethylene 

PTFE powder (type 6C-N, DuPont) were made into composite electrode pellets with varying percentages of 

LiFePO4. The percentage of LiFePO4 was varied from 1 to 99% (1,2,5,10,20,50,80,95,97 and 99% LiFePO4) 

with the percentage of TiO2 being varied such that the percentage of acetylene black and PTFE remained 

constant (20 and 5% respectively). The LiFePO4 was mixed with the TiO2, acetylene black and PTFE binder 

(or PVdF in cyclopentanone for the experiment with an ionic liquid electrolyte), using a pestle and mortar to 

produce a crude film, this was mechanically rolled to produce an even film of desired thickness (average 

thickness 70 μm) from which electrode pellets (0.95cm
2
) were produced and dried at 120ºC.  

  

Cell assembly. Two electrode cells were constructed using metallic lithium as both counter and reference 

electrode, 1M LiPF6 in ethylene carbonate/dimethyl carbonate (EC/DMC) 1:1 by weight (LP30, Merck) 

soaked in two glass fibre separators (~ 50 m each, GF/F, Whatman) was used as the electrolyte. The 

electrodes/ electrolyte were compressed within a spring loaded stainless steel cell such that the final 

assembly consisted of; stainless steel lid/current collector | metallic lithium counter and reference | Glass 

fibre separators soaked in 1M LiPF6 in EC/DMC | LiFePO4, TiO2 composite pellet | aluminium current 

collector | spring | Stainless steel base (sealed using a Viton rubber O-ring). For the ionic liquid cell the same 

construction was used except the electrolyte was 1M LiTFI in EMI TFSI. For the aqueous cell, the pellet 

was pressed onto platinum gauze and suspended in the 1 M Li2SO4 electrolyte, which contained a carbon felt 

counter electrode and SCE as the reference. 

 

Galvanostatic cycling. Cells were cycled galvanostatically (using a 16-channel VMP2, Princeton Applied 

Research; Biologic-Science Instruments) between 4.5 and 1.2 V vs. Lithium at a variety of current densities 
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with a 1 hour potentiostatic equilibration at the potential limits. The DoD was defined by reference to the 

maximum charge obtained during a discharge at C/7 (140 mA h g
-1

). 

 

4. Results and Discussion 

Fig. 2 shows a dramatic decrease in DoD with electrode thickness at 10 C for the standard electrolyte 

EC:DMC. In the region below 30 % DoD the gradient is approximately -2, corresponding to the theory. The 

restrictions at higher DoD values can be attributed to large electrode particles, the associated interfacial and 

diffusional overpotentials. Also shown is the effect of changing the electrolyte – first to the ionic liquid EMI 

TFSI giving a lower DoD at the same rate, and then to water giving a much higher rate -  900 C in 1M 

Li2SO4. These results are consistent with an ionic liquid diffusion coefficient one order of magnitude lower, 

and an aqueous diffusion coefficient two orders higher, than that of the standard electrolyte.  

 

Fig. 2. here 

Fig. 3 shows that the rate for a given DoD depends on the dilution of the electrode material with a three-fold 

increase in the gradient of the plot below 50 % DoD in Fig 4(c) for the diluted electrode. At higher DoD 

values, the gradient decreases because the discharge includes large particles or agglomerates, where solid 

state diffusion and interfacial processes could well be limiting factors.  

Fig. 3 here 

 

Taking a T+ value of  0.3[20], equation (6) applied to the 80 % LiFePO4 line of Fig. 3(c) gives a value of D ~ 

10
-11

 m
2
 s

-1
 which can be considered reasonable given the low porosity and high tortuosity of the electrolyte 

path within the composite. A recent literature value for the same electrolyte[20] shows D to be between 2 

and 4 x 10
-10

 m
2
s

-1
 over the concentration range 1M to zero. 
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An interesting feature of the results is that the electrolyte diffusion restriction applies only at the higher rates, 

and low DoD. This region represents the discharge of small particles in which the solid state processes are 

fast. DoD restrictions above 50% , showed  lower rates than predicted by the model; however these were not 

very sensitive to the nature of the electrolyte, composite thickness, nor active material dilution and therefore 

can be attributed to the discharge of larger particles, whose diffusion time constants exceed those of 

electrolyte diffusion through the composite network. This illustrates the general point that for a given 

electrode material there is an optimum particle size, below which further decrease is hardly productive 

because of the liquid diffusion restriction in the composite.  We believe that in LiFePO4 this is of the order 

of 500 nm radius – the dimension of most of the particles in our samples.  

    

In conclusion, we state that the salt depletion model has been shown to apply in the fast discharge rate 

regime, as illustrated by the result of a 4-second discharge to 25 % capacity (0.3 mAh, 20 mA cm
-3

 ) with a 

40 m electrode in a 1M Li2SO4 aqueous electrolyte. As indicated in the title, the results may be more 

relevant to redox supercapacitors than batteries. 

 

6. Acknowledgement 

This project was supported by the University of Southampton and the EPSRC DTA. 



 8 

References  
 

1. P. A. Nelson, J. M. Elliott, G. S. Attard and J. R. Owen, Chemistry Of Materials, 14, (2002), 524-

529. 

2. P. G. Bruce, B. Scrosati and J. M. Tarascon, Angewandte Chemie-International Edition, 47, (2008), 

2930-2946. 

3. H. Yamada, K. Tagawa, M. Komatsu, I. Moriguchi and T. Kudo, Journal Of Physical Chemistry C, 

111, (2007), 8397-8402. 

4. Z. C. Shi, Y. X. Li, W. L. Ye and Y. Yang, Electrochemical And Solid State Letters, 8, (2005), 

A396-A399. 

5. A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough, Journal Of The Electrochemical Society, 

144, (1997), 1188-1194. 

6. H. Huang, S. C. Yin and L. F. Nazar, Electrochemical And Solid State Letters, 4, (2001), A170-

A172. 

7. J. D. Wilcox, M. M. Doeff, M. Marcinek and R. Kostecki, Journal Of The Electrochemical Society, 

154, (2007), A389-A395. 

8. M.Armand, J.-F.Magnan, N. Ravet, ed. USPO, USA, 2004. 

9. M. R. Roberts, A. D. Spong, G. Vitins and J. R. Owen, Journal Of The Electrochemical Society, 154, 

(2007), A921-A928. 

10. D. Guy, B. Lestriez, R. Bouchet, V. Gaudefroy and D. Guyomard, Electrochemical And Solid State 

Letters, 8, (2005), A17-A21. 

11. S. Y. Chung, J. T. Bloking and Y. M. Chiang, Nature Materials, 1, (2002), 123-128. 

12. M. R. Roberts, G. Vitins and J. R. Owen, Journal Of Power Sources, 179, (2008), 754-762. 

13. H. Liu, Q. Cao, L. Fu, C. Li, Y. Wu and H. Wu, ELECTROCHEM COMMUN, 8, (2006), 1553-

1557. 

14. G. Y. Chen, X. Y. Song and T. J. Richardson, Electrochemical And Solid State Letters, 9, (2006), 

A295-A298. 

15. M. Gaberscek, M. Kuzma and J. Jamnik, Physical Chemistry Chemical Physics, 9, (2007), 1815-

1820. 

16. B. Kang and G. Ceder, NATURE, 458, (2009), 190-193. 

17. V. Srinivasan and J. Newman, Journal Of The Electrochemical Society, 151, (2004), A1517-A1529. 

18. K. West, T. Jacobsen and S. Atlung, Journal Of The Electrochemical Society, 129, (1982), 1480-

1485. 

19. T. F. Fuller, M. Doyle and J. Newman, Journal Of The Electrochemical Society, 141, (1994), 982-

990. 

20. A. Nyman, M. Behm and G. Lindbergh, Electrochimica Acta, 53, (2008), 6356-6365. 

 

 



 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c)  

 

 

 

 

 

Figure 1 

DoD 

E/V 

(a) 

3.5 

2.5 

0 

 

 

1 

 

 

Increasing rate 

DoD 
(b) 

2.5 

3.5 

E/V 

0 

 

 

1 

 

 

Increasing rate 

Sharp discharge 

 front 

Electrolyte Electrode 

[LiX]0 

D
i
s
c
h

a
r
g

e
d

 

m
a
t
e
r
i
a
l
 

C
h

a
r
g

e
d

 
m

a
t
e
r
i
a
l
 

Moving  

boundary 

[LiX] 

 

L 0 

[Li] 

Flux, JLiX 

d. Figure(s)



 1 

10 20 40 60 80 100 200200

0.1

0.2

0.3

0.4

0.5

0.6
0.7
0.8
0.9

1

D
o

D

Electrode thickness / m

 EC:DMC (10 C)

 EMI TFSI (10 C)

 Water (100 C)

 Water (900 C)

Slope = -2.0

 
 

 

 

 

 

 

 

 

 

 

 

Figure 2 Owen 

d. Figure(s)



 1 

 

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.5

3.0

3.5

4.0

4.5

50 % LiFePO4 50 % TiO2

P
o

te
n

ti
a

l/
 V

 v
s
.L

i

DoD

C-rate 

 0.30
 0.81
 1.60 
 3.19
 7.93
 15.86
 

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.5

3.0

3.5

4.0

4.5

20% LiFePO4 80 % TiO2

P
o

te
n

ti
a

l/
 V

 v
s
.L

i

DoD

C-rate 

 1
 2.5
 5
 10
 25
 50
 100
 

 
 

 

(a)        (b) 

 

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

D
o
D

C  rate
-1
 / h

  [LiFePO
4
] = 6.2 M

 

  [LiFePO
4
] = 1 M

 

 
(c) 

 

 

Figure 3 Owen 

d. Figure(s)


