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Abstract:
Terrain Based Navigation (TBN) is a method rooted to the early cruise missile navigation sys-
tems, when GPS was not yet available. For decades, TBN has been applied as a complementary
system to INS navigation for Unmanned Aerial Vehicles (UAV). In the field of Autonomous
Underwater Vehicles (AUVs), it has the potential to bound the drift inherent to dead reckoning
navigation, based on INS and/or Doppler Velocity Log (DVL) sensors, as well as to make the
navigation beyond the areas of coverture of the acoustic transponder networks, a reality. This
paper overviews the main concepts related to TBN and present an exhaustive survey of the
works reported in the literature. As a main contribution, a table comparing the motion and the
measurement models, as well as the probabilistic framework used for the estimation is reported.
An effort has been put on unifying the diverse nomenclature used across the surveyed works.
We aim this paper to become an starting point for the researchers interested in this technology,
with pointers to the most interested works in the area.
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1. INTRODUCTION

The Terrain Based Navigation (TBN) problem, also
named terrain aided navigation (TAN) is the name used
by the marine and aerial robotics communities to refer to
the more general problem of mobile robot localization with
a known map. In particular, TBN solves for the robot pose
given an a priori known map, fusing information from dead
reckoning navigation with map referenced observations.
The principle is the same as has been used for centuries:
Localize the vehicle based on observations of known char-
acteristics of the map.

TBN has been mainly applied to aerial and underwater
vehicles. During the last years the accuracy and extension
of the maps has been increased considerably, and TBN
has been adopted as a method to complement INS nav-
igation, as an alternative to when GPS is not available.
In other fields of application, like underwater, TBN is
still at a research stage, not having evolved into a com-
mercial product. During the last two decades, the scien-
tific community working with mobile robots, has pushed
forward the boundaries of the knowledge facing an even
more challenger problem: the Simultaneous Localization
and Mapping ( see Durrant-Whyte and Bailey (2006)).
Recently, these techniques have start to be slowly adapted
to underwater environments (see Mallios et al. (2009)).

? This work was supported by the FREEsubNET project.

Both SLAM and TBN have a great potential to improve
the autonomy of the underwater vehicles, allowing AUVs
to freely move abroad the areas of coverage of the acoustic
transponder networks.

In this paper we focus on the review of the TBN techniques
considering SLAM out of scope of this work. Although
our interest AUV navigation, because TBN is a mature
technique for aerials vehicles, representative works of this
area hav been included in our study. The paper is or-
ganized as follows: First the problem of the autonomous
navigation is presented, then, in chapter two, the TBN
problem is solved in a general form for UUV and AUV, the
seminal work of TERCOM is described in chapter three,
followed by a selection of the most representative Bayesian
estimation TBN techniques carried out so far, grouped
by their main filters in chapter four, to complement this
survey a equations table comparing the main components
of each technique presented so far is provided, to finalize
some conclusions are presented.

2. THE TERRAIN BASED NAVIGATION PROBLEM

Using navigation sensors it is possible to measure the robot
velocity, acceleration and attitude, to be used as the input
for the dead reckoning equations needed to compute the
robot pose. Due to the noisy measurements and the posi-
tion estimate will rapidly grow without bounds. In some
applications GPS can be used to provide absolute fixes to



bound the drift. However other domains like underwater,
covert operations, or out space applications the GPS is
not available. Absolute positioning fixes can be provided
underwater by acoustic positioning like the Long Baseline
System (LBL), the Short Baseline (SBL), the Ultra Short
Baseline (USBL) or the GPS eqquiped intelligent Buoys
(GIB). However, these systems require time for deploy-
ment. Moreover they constrain the vehicle operation to a
certain area of coverage. TBN has a potential to become an
alternative to satellite navigation and acoustic transporter
networks.

TBN takes advantage of existing digital terrain maps of
target area, where the vehicle shall navigate. Conventional
dead reckoning navigation methods provide an a prior
estimate of the robot pose within the map. Then, using
exteropceptive sensors, terrain observations are obtained
to be correlated to the a priori known map in order to
compute the robot pose.

2.1 Problem statement

Let

• {E} be a inertial earth-fixed frame.
• {B} be the robot fixed frame.
• ηt = [x y z φ θ ψ] be the robot pose at time t referenced

to {E}.
• υt = [u v w p q r] be the robot velocity referenced to
{B}.
• Let M(η) be a digital elevation map of the environ-

ment, assumed to be known a priori.
• xt be the state vector, usually containing the robot

pose ηt or its bias εηt .
• zt be the vector of observations coming from extero-

ceptive sensors like:
· st,i: range measurements at bearing i measured

from the radar, the sonar altimeter (i = 0), or
the multibeam sonar profiler (0 ≤ i ≤ N).
· rt,i: projection of the range measurement st,i on

the z vertical axis of the E-frame. For the sake of
simplicity the origins of the sensor and the robot
frames are chosen to be coincident.
· dt: the depth of the UUV measured with respect

to the sea level, usually provided by a pressure
sensor.
· at: the altitude of an aerial vehicle measured with

respect to the sea level, usually provided by a
pressure sensor.

Then the TBN consist on estimating the robot velocity
υt, referenced to the vehicle B-frame, and/or the robot
pose ηt, referenced to the inertial E-frame, by matching
the measured depth dt (altitude at for UAVs) and ranges
st,i with the terrain elevation map stored in M.

2.2 Motion model

A nonlinear kinematics motion model can be used to relate
the robot velocity expressed in the B-frame to the robot
pose referenced to the E-frame:

ẋ = J(η)υ; J(η) = diag{R(η); J2(η)} (1)

where R(η) is the Roll, Pitch and Yaw rotation matrix and
J2(η) (see Fossen (2002)) is the velocity transformation

matrix, which translates the B-referenced angular velocity
vector into the Euler angles derivatives. For AUVs, the
linear velocity is commonly provided by a Doppler Velocity
Log (DVL) sensor, while the angular velocity is commonly
provided from Fiber Optical (FOG) or Ring Laser Gyros
(RLG).

2.3 Measurement model

For an AUV (Figure 1) the measurement model is given
by:

rt,i = Mi(ηt)− dt + vt, ∀0 ≤ i ≤ N (2)

where vt is the measurement noise and N = 0 when a
sonar altimeter is used. If a multi-beam sonar profiler is
used, N is the number of beams. When a vertical sonar
altimeter is used, rt,i = st,i. It is worth noting that
Mi(ηt) is the map elevation at the point where the sonar
i beam intersects the terrain surface. For an aerial vehicle
(Figure 2), the equation becomes:

st = at −M(ηt) + vt (3)

Note that in both cases the map M, also known as terrain
function, is a nonlinear function of ηt. Then, the nonlinear
observation equation can be formulated as follows:

zt = h(xt) + vt; (4)

h(xt) = [h(xt) ... hN (xt)]
T (5)

hi(xt) = Mi(ηxyt)− ηzt + vt (6)

where ηzt = dk and zt is a vector containing the
ground clearance measurements corresponding to each
sonar beam, and xt contains at least the robot pose:

zt = [rt,0 ... rt,N ]T ; xt = [ηt ... ]
T (7)

Fig. 1. Echo radar TBN diagram for UAV

Fig. 2. Multi beam sonar TBN diagram for UUV



2.4 Sonar Profile to Map Correlation

An alternative method to formulate the observation equa-
tion consist on correlating the measured profile zt to the
stored elevation map M to evaluate a degree of similarity
of each candidate pose xt within the map domain, and
select the one which maximizes the correlation. Several
methods have been used in the literature to compute
the correlation: 1) the cross-correlation (COR), 2) The
Absolute Square Distance (ASD), 3) the Mean Absolute
Difference (MAD) and 4) the Minimum Square Distance
(MSD):

COR(xt) = 1/N

N∑
i=1

(zt,i − hi(xt)) (8)

ASD(xt) =

N∑
i=1

(zt,i − hi(xt))2 (9)

MSD(xt) = 1/N

N∑
i=1

(zt,i − hi(xt))2 (10)

MAD(xt) = 1/N

N∑
i=1

|(zt,i − hi(xt))| (11)

These methods are O(n2), since they explore the com-
plete map. Hence, some research has been carry out to
accelerate the process. Baker and Clem (1977) use a dead
reckoning estimate to bound the area where the correlation
is computed and Ingemar Nygren (2003) has designed a
dedicated high speed hardware based on FPGAs to face
the problem. When correlation is used, a simple linear ob-
servation equation is need where zt = argmax

xt

{COR(xt)}.

3. THE SEMINAL WORK OF TERCOM

TBN can be traced back to 50 years ago, when terrain
contour matching (TERCOM) was successfully developed
as a navigation method for cruise missiles. TERCOM
evolved after some years, in many similar approaches
(LACOM, RACOM, SAMSOM, ... (see Siouris (2004))).
TERCOM is a batch oriented algorithm which periodically
correlates the measured bottom profile with the elevation
map (see Figure 3). The algorithm operates in three
phases. First, digital maps of the terrain to be traversed
are selected. At this step, is crucial to select a terrain
with a profile rich enough. This can achieve by means
of computing the terrain roughness (see Equation 12), as
the standart deviation of the terrain function M(ηi) with
respect to the desired flight altitude ai (Figure 1):

σ =

√√√√1/N

N∑
i=1

(M(ηi)− ai)2 (12)

Then, the path with highest standard deviation of the
terrain function is selected. Periodically, during the flight,
at intervals related to the size cells, the altitude with
respect to the bottom is acquired. During this phase, the
aircraft is not allowed to maneuver. Finally, at the last
step, the patches of the digital map are correlated with the
profile acquired by the altimeter using the Mean Absolute
Difference (MAD).

Fig. 3. The principle of Terrain Based Navigation.

4. BAYESIAN ESTIMATION TECHNIQUES FOR
TBN

Let us assume xt to be a Markovian state and

• p(xt−1) be the probability density function (pdf)
describing the probability of the robot of being at
a certain pose at time t− 1,

• p(xt|xt−1, ut) be the state transition probability, also
known as motion model, which allows to predict the
robot pose after certain input ut,
• p(zt|xt) be the measurement probability which given

a map M(x) provides the probability of observing zt
when being at state xt,

then, the TBN problem consists on solving for p(xt), given
p(xt−1), p(xt|xt−1,ut) and p(zt|xt). In the context of
bayesian estimation this can be done through the Bayes
filter (BF):

p(xt) =

∫
p(xt|xt−1,ut)p(xt−1)dxt (13)

p(xt) = ηp(zt|xt)p(xt) (14)

In the most general case, the BF cannot be implemented
because it relies on the close form solution of the inte-
gral shown in (13). Under some conditions, the BF can
be implemented using parametric filters like the Kalman
Filter (KF), the Information Filter (IF) or their non-
linear counter parts like the Extended Kalman Filter
(EKF), the Extended Information Filter (EIF) or the
Unscented Kalman Filter (UKF); or non parametrics fil-
ters like the Point Mass Filter (PMF), the Particle Filter
(PF) or the Rao-blackwellised Particle Filter (RBPF) (see
Thrun (2002)). During the last years, these probabilistic
approaches have become dominant in TBN applications.
The popularity of those Bayesian estimation techniques
has grown because these probabilistic algorithms explic-
itly deal with the uncertainties in both, the motion and
the measurements models. It is well known that these
uncertainties play an important role to solve the robot
navigation and mapping problems. In the following subsec-
tions we review the main works using bayesian estimation
techinques for TBN.



4.1 KF based Solutions to the TBN

It is well known that the Bayes Filter (BF) can be
optimally implemented as a Kalman Filter (KF) when the
following conditions hold:

• The probability density function describing the robot
position p(xt) and the measurement probability
p(zt|xt) are both Gaussian.
• The state transition probability p(xt|xt−1, ut) can be

represented by means of a linear stochastic equation.
• The measurement models are driven by mutually

uncorrelated zero mean white noise sequences.

Some authors like Nygren and Jansson (2004) and Bergem
(1993) have proposed the use of a KF to estimate the
position posterior. The vector state contains the robot
position referenced to the earth fixed frame E (see Nygren
and Jansson (2004)) and sometimes includes also the robot
velocity and even the acceleration, both referenced to the
E−frame (see Bergem (1993)). Depending on the avail-
able sensors for dead reckoning, different methods have
been proposed for motion prediction. Nygren and Jansson
(2004) used an INS for estimating the robot displacement
and performed a reset after each motion step. Bergem
(1993) studied different motion models including: 1) con-
stant velocity, 2) constant acceleration, 3) constant accel-
eration with maneuvering detection to increase/decrease
the uncertainty of the prediction, and 4) the use of col-
ored noise for modeling the exponential auto-correlated
accelerations due to the robot maneuvers.

The most used sensor to perceive the terrain is the multi-
beam echo-sounder. The measured terrain profiles are cor-
related to the stored map to find the robot pose to update
the filter by means of a linear measurement model. Nygren
and Jansson (2004) proposed to use the Absolute Square
Distance (ASD) (see table 1) for profile to map correlation.
Under the assumption of large time between measure-
ments, the author argues that the position prior has a large
variance and hence the problem becomes a ML-estimation
problem. For this case, the asymptotic covariance matrix
is known to be the inverse of the fisher information matrix
which can be computed as the Hessian of the likelihood
function. An alternative method is proposed in Bergem
(1993) who proposed to use a matching strength function
(f) based on an Exponential Normalized Squared Absolute
Distance (ENSAD) for profile to map correlation. First, a
validation gate is defined over the Mahalanobis distance of
the position innovation. It defines a region where the can-
didate measurements statistically compatible with the pre-
dicted measurement should lay. The position maximizing
the f -function within this region is chosen as the measure-
ment. Next a grid of certain resolution is defined within
the validation region and the f -function is evaluated so
the Relative Measurement Covariance Matrix (RMCM) is
computed to be used later for the KF update. A different
approach was used by Di Massa (1997) who proposed to
use a Probability Data Association Filter with amplitude
information (PDAFAI), a variation of the Probability Data
Association Filter (PDAF) rooted in the KF framework.
In this case, the robot velocity is used as a control input
of a linear motion model to predict the robot position.
Again a validation gate is defined where the sonar profile
is matched against the map using the MAD criterion

obtaining a list of matching candidates each one with a
certain probability of being the correct one. As a difference
with respect to a conventional KF which would probably
use the nearest neighbor criteria to select one of them,
the PDAF combines all of them, through a probabilistic
weight average, into a unique matching candidate which
is then used for the update. While in PDAF the MAD
criteria is only used for validating the measurements, in
PDAFAI the MAD is also used to evaluate the matching
probability of each measurement.

When the motion and/or the measurement model are
nonlinear, an Extended Kalman Filter (EKF) should be
used. The EKF uses a first order Taylor expansion to
approximate the nonlinear functions. The accuracy of such
expansion depends on the nonlinearity of the system, and
the width of the posterior. EKF tend to obtain good results
if the state of the system is known with relatively high
accuracy, so that the remaining covariance is small. The
larger the uncertainty the higher the error introduced by
the linearization.

In the feature based map matching method presented by
Sistiaga et al. (1998), the common features founded in the
observed map and the stored one, are matched and used
to find the best transformation between them, thus this
information is used as a measurement to refine the heading
and position of the vehicle using an EKF.

4.2 Multi Model Adaptative Estimation Techniques

EKFs are known to work well when the uncertainty of the
estimate is small. When the uncertainty is very large the
linear Gaussian approximation fails and the filter diverges.
For this reason several authors have proposed to use Multi
Model Adaptative Estimator (MMAE) techniques follow-
ing a classical “Divide and conquer” approach. Instead of
using a unique estimate with a large uncertainty, MMAE
techniques used a cloud of estimates, each one with its own
uncertainty to cover the large uncertain region. Hostetler
and Andreas (1983) used a bank of KFs initialized at
positions biased with respect to the INS estimate. The
filter for which the Average Weighted Residual Squared
(AWRS) between the predicted ground clearance and the
ground clearance measured by the altimeter is chosen as
the navigation output.

Similarly Boozer et al. (1985), proposed the Sandia Iner-
tial Terrain-Aided Navigation (SITAN) where a bank of
three error state KFs is used to estimate the north, east
and vertical channel biases of the INS. SITAN distributes
uniformly the set of KFs covering the area of uncertainty
of the current INS estimate. If a set of fix decision rules are
satisfied, the bias estimates from the best candidate filter
in the bank are added to the reference navigation systems
position to form an estimate of the aircraft’s current posi-
tion. Otherwise, the system is reset to the initial uniform
distribution, and the process starts again. This algorithm
was later adapted to helicopters becoming Heli/SITAN
Hollowell (1990) which uses a bank of one error estate KFs
to estimate the vertical channel bias. In this case, each
EKF represent fixed x-y bias around the INS estimate.
Hence, each static KF uses the same measured altitude,
but compared against a different region of the elevation
map. In order to estimate the true position bias, the 3



by 3 neighborhood cells around the best candidate are
conveniently merged into a unique bias estimate to be used
to reset the INS. Other authors Jianchun et al. (2007)
have recently used the same approach. In Oliveira (2007)
a MMAE method together with a PCA based navigation
algorithm has been proposed. In this case, the navigation
output is a probabilistic weigh average of the set of esti-
mates based on the filter residuals, as an application of the
seminal work of Anderson et al. (1979).

4.3 MCL Solutions to the TBN

PFs, also called sequential Monte-Carlo (SMC) methods,
are recursive filters for solving the Bayesian estimation
problem which can deal with nonlinear motion and/or
measurement models without relying on linearization tech-
niques. PFs use a point mass representation of the density
function to approximate the robot pose posterior. Hence a
set of random samples, “particles”, are used to represent
the probability density. This non parametric representa-
tion of a pdf is able to represent a much broader space
of distributions than Gaussians, like for instance multi
modal pdfs. A Similar approach to the PF is the Point
Mass Filter (PMF) presented by Doucet et al. (2000). The
PMF computes a discrete approximation of the probability
density function of the vehicle position and recursively
updates it with each new measurement from the mapping
and navigation sensors. While PF represent the probability
according to the density of the particles laying in a certain
region, in PMF the particles are distributed according
a static mesh, representing the probability through the
weight of the particles.

In order to improve the accuracy, the grid mesh resolution
is dynamically adapted. Low weight particles are deleted
and when the number of particles is bellow a threshold, the
mesh resolution is increased duplicating the current set of
particles. Anonsen and Hallingstad (2006) compared the
PMF against the PF achieving slightly better results for
the PMF, but at a higher computational cost. For high
dimensional spaces this cost is prohibitive for real time
applications therefore, the same author prosposed to use
submaps to overcome this problem.

The SIR Particle Filter. A widely used variant of the
PF is the Sampling Importance Resampling PF (SIR-PF)
(see Gordon et al. (1993)). The Sequential Information
Sampling PF (SIS-PF) is known to suffer from a strong
degeneracy problem where after a while all but one particle
will have negligible weight. To reduce this effect the SIR fil-
ter introduces a resampling step to eliminate particles with
small weight while duplicating particles with high weight.
A SIR-PF TBN method using an INS for measuring the
robot displacement and an echo sounder for measuring
the altitude has been presented in Karlsson et al. (2003).
This work was later extender to surface vessels using
radar measurements (Anonsen and Hallingstad (2006)).
In their work the authors carry out an analysis of the
navigation performance based on the study of Cramer Rao
Lower Bound (CRLB), presenting an analytical expression
under the stationary assumption. Through Monte Carlo
simulation but using a real map, authors conclude that it
is possible to achieve a RMSE of the SIR-PF TBN system

close to the CRLB but at the cost of using a high number
of particles (> 10000).

In (Maurelli et al. (2008)) a SIR-PF TBN system is
proposed where the robot displacement is measured with
a FOG-DVL navigation system and the range-altitude
as well as range profiles acquired with a Mechanical
Scanning Profiling Sonar are used to sense the terrain.
Authors propose to inject random particles during the re-
sampling process in order to allow the system to recover
from possible wrong convergence situations. A similar
method was formerly described in the Augmented-MCL
algorithm of Thrun (2002). The proposed system has been
tested in 3D through simulation, and in 2D in water
tank as well as in a Marina Environment (Maurelli et al.
(2009)), succesfully solving the TBN problem in those
environments.

The Rao Blackwellised Particle Filter. The PF solution
to the TBN which relies on solving for posterior p(x0:t|z1:t)
through sampling based methods, needs a very large num-
ber of particles to deal with high dimensional state spaces
of x. When the state variable can be divided into two
groups x0:t = [x′0:t,x

′′
0:t]

T and p(x′0:t|z1:t,x′′0:t) is analyt-
ically tractable it is possible to use a Rao-Blackwellised
Particle Filters (RBPF) (Doucet et al. (2000)) using the
chain rule to decompose the posterior:

p(x′0:t,x
′′
0:t|z1:t) = p(x′0:t|z1:t,x′′0:t)p(x′′0:t|z1:t) (15)

A common case appears when p(x′0:t|z1:t,x′′0:t) is a linear-
Gaussian system. In this case each particle includes a KF
(mean & covariance) to estimate x′ (from now on xkf )
and a sample representation of x′′ (from now on xpf )
. In this way RBPF reduces the dimensionality of the
problem being able to achieve faster and more accurate
results. For an aerial vehicle, and describing the altitude
by means of a KF, Nordlund and Gustafsson (2002) have
used a RBPF in a simulated TBN application. The RBPF
has been compared with a standard SIR-PF, using the
same three dimensional state vector. As expected, authors
show that the number of particles needed to estimate the
position is larger when the PF is used. Surprisingly the
accuracy of the RBPF is worse than the accuracy of the
PF, fact that the authors attribute to a wrong modeling
of the altitude noise. The radar sometimes observes the
top of the trees and some times the floor, being the
noise a bi-modal distribution. In underwater applications
Teixeira (2007) used a RBPF to merge measurements of
range to the bottom (sonar altimeter, forward looking
echo sounder , and side looking echo sounder) with dead-
reckoning data (DVL+MRU). In their approach the state
vector contains the 2D robot position and a 2D velocity
bias due to unknown ocean currents. A simple kinematics
model using velocity, heading and depth inputs is used
together with mutually independent Gaussian white pro-
cess noise. Due to the linear nature of the bias model, a
rao-blackwellization process allows to estimate the robot
pose using a PF while estimating the velocity bias using
a KF. The two main contribution of Teixeira consist on
proposing the Smoothed Kernel Particle Filter (SKPF) to
obtain more consistent results and an improved robustness
to outliers and the complementary use of Geophysical Nav-
igation to improve the navigation results in flat terrains.



5. SUMMARY

A summary of the most representative techniques is
grouped by filtering technique in (Table 1). In order to
produce a useful comparative, the same nomenclature has
been used, and is presented below.

6. CONCLUSION

This paper has introduced the TBN problem. To the best
of the author’s knowledge, the most representative works
in the field have been described and classified. To allow
for a more simple comparative, a table with an unified
nomenclature has been presented, detailing: the principal
sensor, the state and the input vectors, the measurement,
the motion and the measurement models, with the aim
of highlighting the fundamental similarities as well as to
strength their main singularities.
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ÿ
]T

n
.u

.
z
t

=
a
rg
m
in

x
t
{

1 N

∑ N i
(r
t,
i
+
d
t
−
M
i(
η t

))
}

ẋ
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ẏ
η D

R
ψ̇
η G

S
]T

z
t

=
η P

D
A
F
A
I

=
P
D
A
F
A
I
([
η x
y
1
,
..
.η
x
y
N

])
x
t+

1
=

x
t

+
T
u
t

+
w
t

z
t

=
x
t

+
v
t

η x
y
i
∈
S

K
F

N
y
gr

en
an

d
J
an

ss
o
n

(2
00

4)
M

B
S

x
t

=
[x
y
]T

u
t

=
∆
η I
N
S

z
t

=
a
rg
m
in

x
t
{∑ N i

(r̃
t,
i
−
M̃
i(
η t

)2
}

x
t

=
x
t−

1
+
u
t

+
w
t

z
t

=
x
t

+
v
t

M
M

A
E

H
o
ll

ow
el

l
(1

99
0)

R
A

x
t,
i

=
ε z

n
.u

.
z
t

=
M

(η
t,
i)
−

(a
t
−
s t

)
x
t,
i

=
x
t−

1
,i

+
w
t

z
t

=
v
t

J
ia

n
ch

u
n

et
al

.
(2

00
7)

A
rr

ay
o
f

R
A

x
t,
i,
j

=
ε z

n
.u

.
z
t,
i,
j

=
M

(η
t,
i,
j
)
−

(a
t
−
r t
,i
,j

)
x
t,
i,
j

=
x
t−

1
,i
,j

+
w
t

z
t,
i,
j

=
v
t

O
li

ve
ir

a
(2

00
7)

M
S

P
S

x
t,
i

=

[ I 3x
3

0
3
x
3

0 3
x
3
R

(ψ
t
)

] [η
T i
εT υ

]
u
t

=
υ
D
V
L

z
t,
i

=
η P

C
A

=
a
rg
m
in
i{
‖m

P
C
A
−
m
i,
P
C
A
‖}

x
t+

1
=
A
i,
t
x
t,
i
+
B
i,
t
u
t

+
w
i

z
t

=
[I

3
x
3

0 3
x
3
]x
t

+
v
t

m
P
C
A

=
U
T n

(m
s
−
m
x
);

A
i,
t

=

[ I 3x
3

T
I 3
x
3

0 3
x
3
R
z
(T
υ
t
)

] ;B
i,
t

=
[T
R

(ψ
)T

0]
T

P
M

F
B

er
gm

an
et

al
.

(1
99

9)
R

A
x
(m

)
t

=
[x
y

]T
u
t

=
∆
η I
N
S

z
t
(m

)
=
a
t
−
s t

x
(m

)
t+

1
=

x
(m

)
t

+
u
t

+
w
t

w
(m

)
t

=
p
e
t
(z

(m
)

t
−
M

(η
(m

)
t

))

S
IR

-P
F

K
ar

ls
so

n
et

al
.

(2
0
03

)
E

S
x
(m

)
t

=
[x
y

]T
u
t

=
∆
η I
N
S

z
t

=
s t

+
d
t

x
(m

)
t+

1
=

x
(m

)
t

+
u
t

+
w
t

w
(m

)
t

=
p
e
t
(z
t
−
M

(η
(m

)
t

))

M
a
u

re
ll

i
et

al
.

(2
00

9)
M

S
IS

x
(m

)
t

=
[x
y
ψ

]T
u
t

=
[∆
η D

R
,
ψ

]T
z
(m

)
t

=
[r
t,
1
..
.r
t,
N

]
x
(m

)
t

=
x
(m

)
t−

1
+
u
t

+
w
t

w
(m

)
t

=
1 N
p
e
t(
∑ N i

z
(m

)
t,
i

+
d
t
−
M

(η
(j
)

t
))

N
o
rd

lu
n

d
an

d
G

u
st

af
ss

on
(2

00
2)

R
A

x
(m

)
t

=
[x
y
ε z

]T
u
t

=
∆
η D

R
z
t

=
(a
t
−
s t

)
x
(m

)
t

=
x
(m

)
t−

1
+

[ I 2x
2

0

] u
t

+
w
t

w
(m

)
t

=
w

(m
)

t−
1
p
(z
t
|x

(m
)

t
)

R
B

P
F

N
o
rd

lu
n

d
an

d
G

u
st

af
ss

on
(2

00
2)

R
A

x
P
F
(m

)
t

=
[x
y

]T
u
t

=
∆
η D

R
z
t

=
a
t
−
s t

x
P
F
(m

)
t+

1
=

x
P
F
(m

)
t

+
u
t

+
w
P
F

t
w

(m
)

t
=
N

(z
t
;M

(η
(m

)
t

)
+
x
K
F
(m

)
t

+
v̂
t
,R

v
+
P
K
F
,(
m

)
)w̄

(m
)

t−
1
)

v
t

=
E
p
v
t
[v
t
];
,R

v t
=
E
p
v
t
[(
v
t
−
v̂
t
)2

]

x
K
F
(m

)
t

=
ε z

n
.u

.
z
t

=
M

(η
(m

)
t

)
−

(a
t
−
s t

)
x
K
F
(m

)
t

=
x
K
F
(m

)
t

+
w
K
F

t
z
K
F
(m

)
t

=
x
K
F
(m

)
t−

1
+
v
t

x
P
F
(m

)
t

=
[x
y

]T
u
t

=
∆
η D

R
z
t

=
a
t
−
s t

x
P
F
(m

)
t+

1
=

x
P
F
(m

)
t

+
u
t

+
w
P
F

t
w

(m
)

t
=
∑ 1 k

=
0
α
k
,(
m

)
t|
t

w̄
(m

)
t−

1

x
G
B
P
1
(m

)
t

=
ε z

n
.u

.
z
t

=
M

(η
(m

)
t

)
−

(a
t
−
s t

)
x
G
B
P
1
(m

)
t

=
x
G
B
P
1
(m

)
t

+
w
G
B
P
1

t
z
G
B
P
1
(m

)
t

=
∑ l k

=
0
x
G
B
P
1
(m

)k
t−

1
α
k

T
ei

x
ei

ra
(2

00
7)

M
B

S
x
P
F
(m

)
t

=
[x
y

]T
u
t

=
υ
D
V
L

z
t

=
[r
t,
b
o
w
r t
,p
o
r
t
r t
,s
ta
r
b
o
a
r
d
]T

x
P
F
(m

)
t+

1
=

x
P
F
(m

)
t

+
I 2
x
2
T
x
K
F
(m

)
t

+
R

(ψ
)u
t

+
w
P
F

t
w

(m
)

t
=
w

(m
)

t−
1
p
e
t

([ M
b
w

(η
t
)

M
p
t
(η
t
)

M
s
b
(η
t
)

] −
d
t
−

[ r bw r p
t

r s
b

])
x
K
F
(m

)
t

=
[ε
ẋ
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