

Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

Editors: **W. Clegg and D. G. Watson**

1,4-Phenylene-bis-(3,4-dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide) bis(tetrabutylammonium chloride) acetonitrile disolvate

Mark E. Light, Philip A. Gale and Korakot Navakhun

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

Mark E. Light,* Philip A. Gale
and Korakot Navakhun

School of Chemistry, University of
Southampton, Highfield, Southampton,
England SO17 1BJ

Correspondence e-mail: light@soton.ac.uk

Key indicators

Single-crystal X-ray study

$T = 120\text{ K}$

Mean $\sigma(\text{C-C}) = 0.005\text{ \AA}$

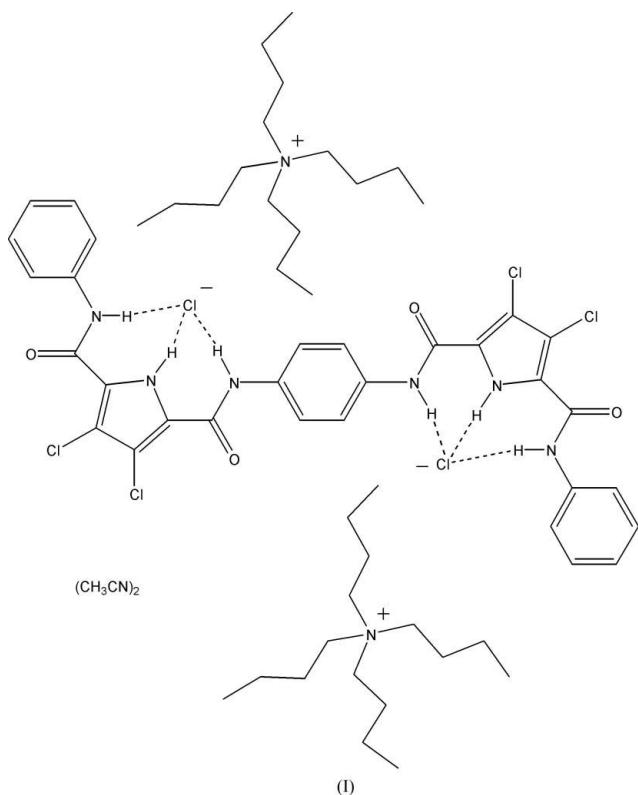
Disorder in solvent or counterion

R factor = 0.060

wR factor = 0.144

Data-to-parameter ratio = 18.0

For details of how these key indicators were automatically derived from the article, see <http://journals.iucr.org/e>.


1,4-Phenylene-bis-(3,4-dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide) bis(tetrabutylammonium chloride) acetonitrile solvate

The title compound, $\text{C}_{30}\text{H}_{20}\text{N}_6\text{O}_4\text{Cl}_4\cdot 2\text{C}_{16}\text{H}_{36}\text{N}^+\cdot 2\text{Cl}^- \cdot 2\text{C}_2\text{H}_3\text{N}$, contains two hydrogen-bonded chloride anions bound to 1,4-phenylene-bis-(3,4-dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide) as the tetrabutylammonium salt. There is also a short pyrrolic hydrogen bond ($\text{N}\cdots\text{Cl} = 3.068 (3)\text{ \AA}$), and two longer ones to the amino H atoms [$\text{N}\cdots\text{Cl} = 3.269 (3)\text{ \AA}$ and $3.275 (3)\text{ \AA}$]. The neutral molecule lies on an inversion centre situated at the centre of the central benzene ring.

Received 22 March 2005
Accepted 6 April 2005
Online 9 April 2005

Comment

1,4-Phenylene-bis-(3,4-dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide) crystallizes from tetrabutylammonium chloride acetonitrile solution as a tetrabutylammonium chloride acetonitrile solvate, (I).

The receptor adopts an S-shaped conformation around a centre of inversion with one chloride bound on each side. The pyrrole and terminal benzene ring pairs are coplanar, and the angle between the central and terminal benzene rings is $32.02 (4)^\circ$. Of the three hydrogen bonds to the chloride, the pyrrolic one is the shortest, with an $\text{N}\cdots\text{Cl}$ distance of $3.068 (3)\text{ \AA}$, whilst the two either side are longer, with distances of $3.269 (3)\text{ \AA}$ and $3.275 (3)\text{ \AA}$.

Experimental

The receptor molecule, 1,4-phenylene-bis-(3,4-dichloro-5-phenylcarbamoyl-1*H*-pyrrole-2-carboxamide), (1), was synthesized according to literature methods (Gale *et al.*, 2002). Crystals of the acetonitrile solvate of the tetrabutylammonium chloride complex were grown by slow evaporation of an acetonitrile solution of (1) in acetonitrile in the presence of excess tetrabutylammonium chloride.

Crystal data

$C_{30}H_{20}N_6O_4Cl_4 \cdot 2C_{16}H_{36}N^+ \cdot 2Cl^- \cdot 2C_2H_3N$
 $M_r = 1308.24$
 Monoclinic, $P2_1/c$
 $a = 8.5720 (2) \text{ \AA}$
 $b = 21.1088 (5) \text{ \AA}$
 $c = 19.3520 (6) \text{ \AA}$
 $\beta = 93.5560 (10)^\circ$ **precision OK?**
 $V = 3494.90 (16) \text{ \AA}^3$
 $Z = 2$

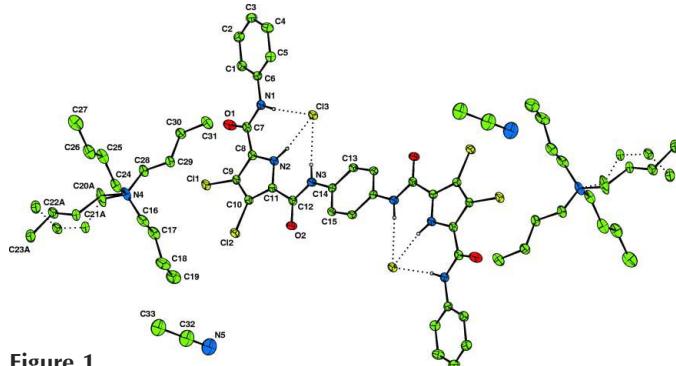
Data collection

Bruker-Nonius KappaCCD area-detector diffractometer
 φ and ω scans
 Absorption correction: multi-scan (SORTAV; Blessing, 1997)
 $T_{\min} = 0.906$, $T_{\max} = 0.990$
 13653 measured reflections

Refinement

Refinement on F^2
 $R[F^2 > 2\sigma(F^2)] = 0.060$
 $wR(F^2) = 0.144$
 $S = 1.11$
 7107 reflections
 395 parameters
 H-atom parameters constrained

$D_x = 1.243 \text{ Mg m}^{-3}$
 Mo $K\alpha$ radiation
 Cell parameters from 35384 reflections
 $\theta = 2.9\text{--}26.4^\circ$
 $\mu = 0.30 \text{ mm}^{-1}$
 $T = 120 (2) \text{ K}$
 Needle, colourless
 $0.15 \times 0.07 \times 0.05 \text{ mm}$


7107 independent reflections
 4902 reflections with $I > 2\sigma(I)$
 $R_{\text{int}} = 0.046$
 $\theta_{\max} = 26.4^\circ$
 $h = -10 \rightarrow 10$
 $k = -26 \rightarrow 25$
 $l = -24 \rightarrow 24$

$w = 1/[\sigma^2(F_o^2) + (0.0389P)^2 + 4.3109P]$
 where $P = (F_o^2 + 2F_c^2)/3$
 $(\Delta/\sigma)_{\max} = 0.001$
 $\Delta\rho_{\max} = 0.70 \text{ e \AA}^{-3}$
 $\Delta\rho_{\min} = -1.05 \text{ e \AA}^{-3}$
 Extinction correction: SHELXL97
 Extinction coefficient: 0.0023 (4)

Table 1
 Hydrogen-bonding geometry (\AA , $^\circ$).

$D - H \cdots A$	$D - H$	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
N1—H91 \cdots Cl3	0.88	2.40	3.269 (3)	171.6
N2—H92 \cdots Cl3	0.88	2.20	3.068 (3)	166.8
N3—H93 \cdots Cl3	0.88	2.40	3.275 (3)	171.2

H atoms were identified in a difference map and then placed in calculated positions (N—H 0.88, aromatic C—H 0.95, methylene C—H 0.99, methyl C—H 0.98) and refined using a riding model [$U_{\text{iso}}(\text{H}) = 1.2$ or 1.5 times U_{eq} (parent atom)]. One arm of the tetrabutyl-

Figure 1

Structure of the title compound, with displacement ellipsoids drawn at the 35% probability level and non-acidic H atoms omitted for clarity. Both disorder components are shown.

ammonium is disordered. It has been modelled as split over two possible orientations with one third and two thirds occupancy. C—C and C—N distances were restrained to standard values and the displacement parameters of split atom pairs were constrained to be equal. The deepest hole is located 1.28 \AA from C9.

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: CAMERON (Watkin *et al.*, 1993); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the EPSRC for funding the crystallographic facilities. PAG thanks the Royal Society for a University Research Fellowship and Universities UK for an ORS studentship to KN.

References

Blessing, R. H. (1997). *J. Appl. Cryst.* **30**, 421–426.
 Farrugia, L. J. (1999). *J. Appl. Cryst.* **32**, 837–838.
 Gale, P. A., Navakhun, K., Camiolo, S., Light, M. E. & Hursthouse, M. B., (2002). *J. Am. Chem. Soc.* **124**, 11228–11229.
 Hooft, R. (1998). COLLECT. Nonius BV, The Netherlands.
 Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr and R. M. Sweet, pp. 307–326. New York: Academic Press.
 Sheldrick, G. M. (1990). *Acta Cryst. A* **46**, 467–473.
 Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
 Watkin, D. M., Pearce, L. & Prout, C. K. (1993). CAMERON. University of Oxford, England.