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Rare-earth doped silica fibers have been used for many years to create continuous-wave lasers, 
and Er-doped fiber amplifiers are now widely used in telecommunications.  In addition, 
cladding pumped fiber allows the efficient conversion of multimode radiation from high power, 
low cost, broad-stripe semiconductor laser diodes into the single-mode emission of fiber lasers.  
With its broad gain bandwidth and high optical conversion efficiency, Yb-doped silica fiber 
represents an attractive medium for the generation and amplification of high energy ultrashort 
optical pulses.  However, these potential advantages of Yb-doped silica fiber as a gain and 
nonlinear medium for mode-locked lasers and ultrashort pulse amplifiers have been less well 
studied, and it was not until 1999 that significant research interest first appeared in Yb-fiber 
chirp pulse amplifier (CPA) systems.  This thesis describes the development of the first practical 
and stable, femtosecond, Yb-fiber oscillator, and of an Yb-fiber amplifier based CPA system  
(pulses ~10 µJ, <500 fs).  Novel aspects of the system include the use of a high extinction ratio 
Electro-Optic modulator for pulse selection, and the development of a compact chirped-fiber-
Bragg-grating (CFBG) pulse stretcher that provides both 2nd and 3rd order chirp compensation.   
  Recently published theoretical results have demonstrated that the asymptotic solution for 
ultrashort pulses in a high gain fiber amplifier is a linearly chirped pulse, which can therefore be 
recompressed with a standard grating compressor.  This thesis reports the first experimental 
comparison of nonlinear pulse evolution towards the asymptotic form using a cascaded 
amplifier system.  The ‘direct amplification’ system was constructed by removing the CPA 
stretcher grating, which also enabled the use of a less dispersive and more compact compressor.  
Further system development should lead to the generation of ultrashort pulses at high average 
power levels and >100 kHz repetition rates.   
  Holey fiber (HF) is a recently developed technology that uses rings of air holes around a solid 
core to confine the optical field by average-index effects.  Fibers are highly suitable for 
applications using nonlinear optics because of the tightly confined mode and long interaction 
lengths.  The increased mode confinement possible using HF means that small-core, high air-fill 
fraction HF are an attractive nonlinear medium.  Furthermore, the high index contrast in such 
fibers can create a strong (anomalous) waveguide contribution to the dispersion, and such HFs 
can have anomalous dispersion at wavelengths <1.3 µm, where conventional fiber has normal 
dispersion.  Therefore HFs can support solitons in new wavelength bands.  
  This thesis reports the first demonstration of linear dispersion compensation, soliton 
transmission, and visible continuum generation seeded by a 1.06 µm Yb-fiber source.  In 
addition, an experimental study is reported that used HF seeded from a Ti:Sapphire laser to 
generate continuum in distinct transverse spatial modes of a HF.  Numerical simulations 
suggested that the observed enhancement in UV generation from a higher order mode could be 
due to differences in the dispersion profiles of the fundamental and higher order transverse 
modes. 
  Finally, the development of a novel source of <200 fs pulses, continuously tuneable in 
wavelength from 1.06-1.33 µm, based on the soliton self-frequency-shift principle, is described.  
The source was constructed from a diode-pumped Yb-doped HF amplifier, and the Yb-fiber 
oscillator described above.  The diode pump power controlled the output wavelength. 
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emerging practical applications of ultrafast technology.  The development of compact and 

robust sources of high energy femtosecond pulses has therefore generated strong research 

interest.   

Ytterbium (Yb) doped silica fiber, with its broad gain bandwidth, high optical conversion 

efficiency and large saturation fluence, represents an extremely attractive medium for both the 

generation and subsequent amplification of ultrashort optical pulses [7].  Moreover, Yb-fiber 

systems can be power scaled by the addition of diode-pumped amplifier stages to provide a 

compact, all-fiber, high power, short-pulse system [8, 9].  My supervisor, Professor Richardson, 

obtained industrial funding to develop a practical and robust, high-power short-pulse diode-

pumped Yb-doped fiber based laser and amplifier system.  The system would use the CPA 

technique, whereby pulses are first temporally stretched, then amplified, then finally 

recompressed in order to avoid nonlinear distortion due to high peak powers within the 

amplifiers.  The agreed approach was to develop a passively mode-locked fiber-based oscillator 

to produce ~100 fs pulses as a seed for high power fiber amplifiers.  The final amplified pulses 

would have energy of ~10-50 µJ, and average power of ~500 mW, with pulse duration ~500 fs.  

The system would make use of the ability of the ORC to fabricate specialty chirped fiber-Bragg 

gratings (CFBGs) with both 2nd and 3rd order dispersion in order to create a pulse stretcher, and 

also the ability of the ORC to fabricate large-mode-area (LMA) fiber to develop the final 

amplifier for the system.  The development of this system formed the majority of this PhD 

thesis research.   

For applications requiring high average power but at high repetition rates, and hence lower 

pulse energies, the use of a pulse stretcher is not required since the pulse peak powers, and 

hence nonlinear effects are less significant.  This enables simplified ‘direct amplification’ 

systems to be used, in which the pulse stretcher is omitted, and consequently a much more 

compact compressor can be used.  Recent theoretical research on short pulse evolution in fiber 

amplifiers with normal dispersion (e.g. using Yb-doped fiber), has demonstrated that pulses 

with parabolic temporal and spectral profiles and a linear chirp are the analytic asymptotic 

solution to the propagation equation (modified nonlinear Schrödinger equation (NLSE) with 

gain) [10].  The linear chirp allows such parabolic pulses to be recompressed using a standard 

diffraction grating compressor, and 125 fs recompressed pulses have been demonstrated 

experimentally in single amplifier systems at high average powers (17W, 75MHz repetition 

rate, and 230 nJ pulse energy [11]).  However, using a single amplifier limits the maximum 

potential gain to ~35 dB, so to investigate the possibility of obtaining femtosecond pulses from 

a direct amplification system but with much higher gain, a system was developed based on the 

oscillator and cascaded amplifiers used for the CPA.  This work is presented following the 

description of the CPA research.   
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HFs are a class of microstructured fiber which have a solid core surrounded by a cladding 

region that is defined by a fine array of air holes that extend along the full fiber length [12-14].  

HF technology has developed rapidly in recent years and, due to their far broader range of 

fabrication parameters compared to conventional fiber, HFs have been produced with dispersion 

and nonlinear properties beyond those previously possible.  In particular, high air-fill fraction 

HF can have a much higher index contrast than is possible with conventional fiber, and if this is 

combined with a small core size, the strong waveguide contribution to the dispersion can 

produce an overall anomalous dispersion at wavelengths <1.3 µm, where standard fibers have 

normal dispersion.  Therefore HF can support temporal solitons in new wavelength bands.  A 

small core naturally leads to the fiber having an exceptionally high effective nonlinearity, which 

is ideal for soliton generation.  Moreover, as a result of the increased range of fiber properties, 

new results such as visible supercontinuum generation seeded directly from mode-locked 

Ti:Sapphire lasers have been demonstrated [15], and these results have led to tremendous 

advances in spectroscopy and metrology.  Due to the wide range of applications of such a 

broadband collimated source, there has also been much interest in developing less complex, less 

expensive, seed laser systems.   

The ORC is one of the world-leading centers in HF fabrication and HF applications research, 

and this thesis presents results showing a variety of novel applications of this technology using 

small core high nonlinearity HFs fabricated at the ORC.  Experiments are described which 

demonstrate linear dispersion compensation (low-power), soliton formation (requiring nonlinear 

interaction) and soliton transmission in anomalously dispersive HF using ~20 pJ pulses in a <2 

m fiber length.  The fiber lengths and power requirements are orders of magnitude smaller than 

comparable experiments in standard silica fiber at telecommunications wavelengths.  Further 

experiments are described which used the direct amplification system (described above) to seed 

HF in order to demonstrate the first all-fiber source of visible continuum generation.   

Using HF with a zero dispersion wavelength (ZDW) ~800 nm, with a high-energy 

Ti:Sapphire laser system as the source, the extension of supercontinuum generation in the UV to 

wavelengths as short as 300 nm is reported.  It was observed that the UV intensity was 

enhanced when seed pulses were coupled into a higher-order transverse spatial mode of the HF.  

A significant difference between the fundamental and higher order mode of the HF is the 

dispersion properties of these modes; in particular the higher order mode has a shorter ZDW.  

Numerical simulations are presented which suggest that the differences in dispersion profiles 

could lead to increased power transfer to short wavelengths.  Using the same Ti:Sapphire source 

and HF, and with suitable detuning of the launch coupling into the HF, visible-supercontinuum 

generation in several subsidiary cores of a HF was demonstrated for the first time.   
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Wavelength tuneable, femtosecond optical pulse sources have applications in areas as diverse 

as ultrafast spectroscopy, materials processing, optoelectronics, nonlinear optics and optical 

chemistry.  Traditionally, femtosecond pulse sources have been based on bulk crystal materials 

(most commonly Ti:sapphire).  Whilst excellent performance characteristics have been 

achieved, and successful commercial products and application areas have been developed, these 

traditional sources offer a limited range of directly accessible wavelengths and continuous 

broadband tuning ranges, particularly above 1.1 µm.  In general, extending this femtosecond 

technology to obtain broader tuning ranges and longer wavelengths requires the use of bulk 

parametric nonlinear devices such as OPOs, Optical Parametric Generators (OPGs), or 

Amplifiers (OPAs), pumped by a bulk femtosecond-laser.  Such devices add to the complexity 

and cost, and increase the physical size of the overall system.  The discovery of the soliton-self-

frequency shift (SSFS) in optical fibers was first reported in 1985-1986 [16-18], and opened up 

the exciting possibility of obtaining widely wavelength tuneable femtosecond soliton pulses 

from fiber-based sources (ideally incorporating a fiber based pump laser)[19].  To obtain the 

SSFS effect, the frequency shifting fiber must exhibit anomalous dispersion at both the initial 

seed wavelength and across the required tuning range.  Yb-doped HF has been developed [20-

22], and by using a small core and a high air fill-fraction, these active HFs can, like passive 

HFs, have anomalous dispersion at 1 µm.  Using such a fiber as an amplifier for seed pulses 

from the Yb-fiber mode-locked oscillator (above), a source of ~200 fs pulses, tuneable in 

wavelength from 1.06–1.33 µm was demonstrated.  Wavelength tuning was based on the SSFS, 

and with the output wavelength controlled by the pump power applied to the Yb-doped HF 

amplifier.   

The contents of each chapter of this thesis are summarised as follows.  Chapter 2 provides a 

background summary of the nonlinear fiber optics theory as necessary to understand the 

research presented in the following chapters.  The work in this thesis is predominantly based on 

Yb-doped fiber amplifiers, and Chapter 2 therefore also provides a brief summary of the 

spectroscopy of Yb-doped silica fiber, and describes the procedure used to calculate the 

properties of such amplifiers.  In addition, due to the rapid development of HF technology in 

recent years, and considering that the ORC is one of only a handful of worldwide centres 

developing such fibers, Chapter 2 concludes with a brief overview of HF technology.   

The development of a high power cascaded Yb-fiber amplifier system for ultrashort pulse 

generation is described in Chapters 3-8.  Chapter 3 provides a review of previously reported 

fiber-based CPA research and describes the principal outstanding technological challenges to be 

addressed before practical systems can be developed for a wide range of applications.  The 

specifications and resulting overall approach adopted for the commercially sponsored 

development of an Yb-fiber based CPA system is described, and an overview of the CPA 
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system is presented.  A simplified ‘direct amplification’ system, operating at similar average 

power but higher repetition rate, hence lower pulse energy, is also described.  The direct 

amplification system omits the pulse stretcher and therefore uses a more compact compressor 

compared with the CPA system, but by using the cascade of amplifiers has higher gain than 

previously reported direct amplification systems which have been based on a single amplifier 

stage. 

Chapter 4 describes the development of a highly stable Yb-fiber based, mode-locked 

oscillator.  The oscillator is based on the stretched-pulse principle, and incorporates a 

semiconductor saturable absorber mirror (SESAM) to enable robust self-start mode-locking.  

This oscillator was subsequently used for the seed in our high power systems.  The operating 

principles are presented, then the characterisation of each component in the cavity is described.  

The characteristics of the laser output are presented, including pulse spectrum, autocorrelation, 

and RF noise.  

Chapter 5 reports the development of the pulse stretcher and compressor used for the Yb-fiber 

CPA system.  The effects of uncompensated 3rd order dispersion on the quality of the 

recompressed pulses are demonstrated by numerical calculations.  The design process for the 

bulk grating compressor is described, and experimental measurements of the temporal response 

vs. wavelength are presented.  The development and characterisation of a CFBG stretcher 

incorporating both 2nd and 3rd order dispersion compensation is presented.  The chapter 

concludes by suggesting a future CFBG design to enable shorter pulses to be produced from the 

CPA system e.g. 300 fs pulses, compared to the 500 fs pulses demonstrated using the initially 

developed CFBG.  

Chapter 6 describes the development of the individual amplifier stages for the CPA system.  

First the characteristics of the core-pumped pre-amplifiers are described.  Results of numerical 

modelling are reported that demonstrate the expected increase in gain that could be obtained by 

using modified core-pumped pre-amplifier designs in future systems.  The design and measured 

operating characteristics of the final stage high-power cladding-pumped amplifier are then 

described. 

Chapter 7 presents the performance of the CPA system as a whole.  The output pulse spectra 

are presented at several pulse energies up to a maximum of 80 µJ (before temporal 

recompression).  Stimulated Raman Scattering (SRS) was observed to limit the maximum pulse 

energy from the system.  Results of numerical calculations are presented in order to demonstrate 

that increasing the core size and reducing the length of the fiber used for the final amplifier 

should enable pulse energies >100 µJ to be obtained.  The extent of Self-phase modulation 
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(SPM) induced phase distortion for 100 µJ pulses is calculated, and the high quality of the 

recompressed pulses is shown.  

Chapter 8 presents measurements on ultrashort pulses produced from a direct amplification 

system.  The system was based on the oscillator and amplifier components developed for the 

CPA system of Chapter 7, but was simplified by removing the pulse stretcher, which then 

enabled a more compact compressor to be used.  Pulse spectra and autocorrelation data are 

shown.  Second Harmonic Generation (SHG) Frequency Resolved Optical Gating (FROG) 

measurements are presented, which provide the full temporal phase profile of the pulses.    

Numerical simulations of the pulses from the system are presented, and are shown to be in close 

agreement with the measured pulse parameters.  In addition, the theoretical asymptotic 

‘parabolic’ pulse solution to the modified NLSE with gain is described, and the characteristics 

of the measured pulses are compared to the characteristics predicted for parabolic pulses. 

Chapters 9, 10, and 11 present the research performed using small-core HF with anomalous 

dispersion at wavelengths <1.3 µm.  Chapter 9 describes linear dispersion compensation, and 

the generation and transmission of solitons.  Linear dispersion compensation was demonstrated 

by launching strongly attenuated, positively chirped pulses from the oscillator of Chapter 4 into 

a length of passive HF.  Solitons were produced using the same arrangement except by 

increasing the power launched into the HF.  Further results are presented showing visible 

supercontinuum generation obtained by launching pulses from the direct amplification system 

of Chapter 8 into a similar HF.   

Chapter 10 describes supercontinuum generation extending to 300 nm in the UV produced by 

launching high energy pulses from a Ti:Sapphire laser system into a short length of small-core 

HF.  The UV generation was enhanced by coupling the seed pulses into a higher order 

transverse mode.  Results of full-vector numerical calculations of the dispersion profiles of both 

the fundamental and higher order mode of the HF are presented for the first time.  Results of 

pulse-propagation simulations (using the calculated dispersion profiles of the fundamental and 

higher order mode) are presented; the results suggest that the dispersion profile of the higher 

order mode is responsible for generating increased power at shorter wavelengths.  Visible 

supercontinuum generation in several subsidiary cores of the fiber is demonstrated for the first 

time, and suggestions are presented for the fabrication of a multi-core fiber specifically for 

producing tailored supercontinuum spectra from different sized cores (different dispersion 

profiles) but using a single fiber.  

Chapter 11 describes the development of a source of <200 fs pulses continuously tuneable in 

wavelength from 1.06-1.33 µm, based on the SSFS principle.  The source is based on a diode-

pumped Yb-doped HF amplifier, seeded by pulses from the mode-locked Yb-fiber oscillator 

 6



described in Chapter 4.  The diode pump power was demonstrated to control the output 

wavelength.  The calculated HF characteristics are presented, then the experimental setup is 

described.  Next, the wavelength tuning results are shown.  Finally, results demonstrating 

broadband continuum generation, and pulse compression to ~65 fs are presented. 

Chapter 12 provides a summary of the work in this thesis and describes possible areas for 

further research. 

The thesis concludes with three appendices.  Appendix I describes the method used to 

measure the amplitude noise and timing jitter of a CW mode-locked laser.  Appendix II 

summarises the performance of the mode-locked laser described in Chapter 4, when tested with 

a range of SESAMs in order to identify the optimum modulation depth and saturation fluence 

for robust self-start and stable CW mode-locking.  Appendix III is a list of publications arising 

from my thesis work. 

The work in this thesis consists primarily of the author’s own research, undertaken whilst the 

author was a registered postgraduate student at the University of Southampton.  Any material 

from other sources is referenced accordingly. 
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Chapter 2 Nonlinear fiber optics 

2.1 Introduction 

Nonlinear pulse evolution in fiber is of critical importance for the devices described in this 

thesis.  This chapter provides the nonlinear fiber optics background used to develop these 

devices.  The work in this thesis is predominantly based on Yb-doped fiber amplifiers, and this 

chapter also provides a brief summary of the spectroscopy of Yb-doped silica fiber, and 

describes the procedure used to calculate the properties of fiber amplifiers.  Holey fibers (HFs) 

were used to enable various of the nonlinear experiments described in the latter chapters of this 

thesis.  This chapter describes the procedure used to fabricate HF and provides a brief overview 

of the extended range of dispersion and nonlinear properties that are made possible by HF 

technology. 

This chapter is organised as follows.  In Section 2.2 a brief introduction to the main nonlinear 

optical effects in optical fiber is presented.  In Section 2.3 the spectroscopy of Yb and methods 

for calculating the characteristics of Yb-fiber amplifiers are described. Section 2.4 provides an 

overview of holey fiber technology.   

2.2 Nonlinear effects in optical fibers 

This section is intended to provide an overview of the relevant theory to enable a thorough 

consideration of the experiments described in this thesis.  Starting from Maxwell’s equations, 

the principal dispersive and nonlinear effects relevant to silica fiber are discussed, and the 

derivation of the basic propagation equation, called the nonlinear Schrödinger equation (NLSE), 

is described. 

Ultrashort pulses have broad bandwidths, so the dispersion of the propagating medium must 

be considered, and such pulses can also have high peak powers, which may excite a nonlinear 

response in the propagating medium.  Dispersion arises due to the linear response of the bound 

electrons in silica, and due to the waveguide dispersion of the fiber.  The Kerr nonlinearity 

causes self-phase modulation and cross-phase modulation, and is due to the elastic response (no 

energy exchanged) of the bound electrons to an intense optical field.  Raman and Brillouin 

scattering are caused by inelastic scattering whereby energy is exchanged with the medium 

through the creation or annihilation of phonons.  The nonlinear and dispersive effects can be 
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beneficial, for example when the dispersion is anomalous, the dispersion and nonlinearity can 

combine to support stable pulse forms (solitons) that can propagate without broadening.  

However, the nonlinear effects can also be detrimental, for example with normal dispersion, 

nonlinear effects can distort the pulse profile and significantly increase the minimum duration of 

the pulses produced from an amplifier system. In this section, the equations describing these 

effects are briefly reviewed.   

This section is organised as follows. Section 2.2.1 introduces the wave equation and the 

concept of induced polarisation which are essential to understanding nonlinear properties in 

optical fiber.  In Section 2.2.2, the effects of purely linear dispersion are described.  In Section 

2.2.3 an overview of nonlinear effects is presented, including the effects of self-phase 

modulation (SPM).  Cross-phase modulation (XPM) is described in Section 2.2.4, and 

stimulated Raman and Brillouin scattering are described in Section 2.2.5.  Section 2.2.6 

describes the split-step Fourier method that is typically used to numerically calculate the 

profiles of ultrashort pulses propagating in optical fibers.   

2.2.1 Pulse propagation in optical fiber 

The propagation of optical fields in optical fiber is governed by Maxwell’s equations: 

 
t
BE

∂
∂

−=×∇
r

r
 Eqn. 2.2:1 

 
t
DJH

∂
∂

+=×∇
r

rr
 Eqn. 2.2:2 

 ρ=⋅∇ D
r

 Eqn. 2.2:3 

 0=⋅∇ B
r

 Eqn. 2.2:4 

where E
r

 and H
r

 are electric and magnetic field vectors, respectively, and D
r

 and B
r

 are 

corresponding electric and magnetic flux densities. The current density vector  and the charge 

density 

J
r

ρ  represent the sources for the electromagnetic field. In optical fiber there are no free 

charges, and   and 0J =
r

0=ρ . 

The relationship of the flux densities D
r

 and B
r

 to the electric and magnetic fields ( E
r

and 

H
r

) inside the medium and can be expressed through the constitutive relations given by  

 PED
rrr

+= 0ε  Eqn. 2.2:5 

 MHB
rrr

+= 0µ  Eqn. 2.2:6 
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where 0ε  is the vacuum permittivity, 0µ  is the vacuum permeability, and M
r

 is the induced 

magnetic polarisation. M
r

= 0 in optical fiber because silica is a nonmagnetic medium. By 

taking the curl of , the above equations can be converted into the wave equation that 

describes light propagation  

Eqn. 2.2:1

 2

2

02

2

2

1
t
P

t
E

c
E

∂
∂

−
∂
∂

−=×∇×∇
rr

r
µ  Eqn. 2.2:7 

Eqn. 2.2:7

Eqn. 2.2:7

where ( )00/1 εµ=c is the velocity of light in vacuum.  

To solve , a relation between P
r

 and E
r

 is needed.  Optical fiber has a nonlinear 

response to intense electromagnetic fields due to the anharmonic motion of bound electrons 

under the influence of the applied field.  The induced polarisation P
r

 is thus not linear in the 

electric field, but is described by the more general relation  

  ( )L
rrr

M
rrrr

+++⋅= EEEEEEP )3()2()1(
0 : χχχε  Eqn. 2.2:8 

Eqn. 2.2:8

where , is j),3,2,1()( L=jjχ

)1(χ

th order susceptibility (tensor of rank j+1).  (This relationship 

assumes that the response is both instantaneous and local, and in order to correctly describe 

Raman and Brillouin scattering we relax the assumption of an instantaneous response, and 

consider the delayed response of the medium as described in Section 2.2.5.)  The linear 

susceptibility  is the dominant contribution to P
r

, and its effects are included through the 

refractive index n , and the attenuation coefficient α .  The second-order susceptibility  is 

responsible for second-harmonic generation and sum-frequency generation.  However, centro-

symmetric materials such as amorphous SiO

)2(χ

2 show a zero value for  (neglecting surface 

effects), and therefore silica fiber does not exhibit second-order nonlinear effects. The lowest 

order nonlinear effects in optical fiber originate from the third-order susceptibility , which 

is responsible for phenomena such as third-harmonic generation, four-wave mixing, and the 

intensity dependence of the refractive index.  To obtain significant third-harmonic generation or 

four-wave mixing requires special efforts to achieve phase matching and these processes are not 

considered further in this thesis.  It is then usual to make several simplifying assumptions to 

enable the solution of  and .  First, the nonlinear contribution to the 

polarisation (

)2(χ

)3(χ

NLP
r

) is assumed to be a small perturbation to the linear contribution ( LP
r

) to the 

total induced polarisation.  We then write the total induced polarisation as NLPLPP
rrr

+= , and 

including only the third-order nonlinear effects governed by , we obtain: )3(χ
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  Eqn. 2.2:9 ,')',()'(),( )1(
0 ∫

∞

∞−

⋅−= dttrEtttrPL
rrrr

χε

  Eqn. 2.2:10 .),(),(),(),,(),( 321321321
)3(

0 ∫ ∫∫
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∞−
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These relations are valid in the electric-dipole approximation such that the response of the 

medium is local.   can then be simplified by using the mathematical relation 

EEEE
rrrr

22)( −∇=∇−⋅∇∇=×∇×∇  (where ∇ 0=⋅∇=⋅ ED
rr

ε  and where ε  represents the 

dielectric constant) to give 

Eqn. 2.2:7
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Eqn. 

2.2:11

Eqn. 2.2:11

Eqn. 2.2:11

The following sections demonstrate that by considering the waveguide geometry of an optical 

fiber, and by assuming the spectral width of the pulse is much less than the central carrier 

frequency (slowly varying envelope approximation), the three dimensional wave equation (

) can be reduced to a one dimensional propagation equation for the temporal profile of the 

pulse envelope.  The resulting equation is normally called the nonlinear Schrödinger equation 

(NLSE) and it is possible to solve the equation numerically (and even analytically in the special 

case of solitons) to determine the evolution of a pulse propagating in an optical fiber. 

2.2.2 Linear propagation and dispersion 

Starting from the nonlinear wave equation derived above ( ), this section considers 

the case where the nonlinear polarisation can be neglected.  The result then describes the effects 

of dispersion on a pulse propagating in a fiber with a linear response.  The nonlinear 

polarisation will then be re-introduced in the following section using perturbation theory.  With 

0=NLP
r

,  is linear in E
r

 and takes the following simple form in the Fourier domain: 

 0~)(~ 2
0

2 =+∇ EkE ωε  Eqn. 2.2:12 

where , and due to the low loss of silica fiber 2
0 )2/( kin αε += ε is initially simplified to 

.  Far from material resonances, as is the case in silica fiber in the wavelength 

range 0.5-2.0 µm relevant to the work in this thesis, the linear response of the material can be 

represented by the Sellmeier equation (in contrast to a full quantum mechanical description):   

)(2 ωn)(ωε =

 .1)(
1

22

2
2 ∑

= −
+=

m

j j

jjB
n

ωω
ω

ω  Eqn. 2.2:13 
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In the cylindrical symmetry of a fiber, we use co-ordinates z,, φρ  to write 

)(exp)(exp)()(~),(~ zimiFArEz βφρωω =
r  (i.e. assuming initially no z -dependence of the 

pulse envelope).  A similar equation exists for zH~  (the other four components 

φρφρ HHEE ~,~,~,~  are not independent variables and can be obtained using Maxwell’s 

equations).  Matching the (Bessel function) solutions for )( ρF at the core:cladding boundary, 

an Eigenvalue equation is obtained that must be solved numerically to yield the propagation 

constants for the various fiber modes, )(ωβnm , and hence the transverse mode profile 

)( ρκ mnmF 2222
0 mnmn kn βκ −=, where  at a given frequency.  In a standard step-index fiber the 

number of guided modes is determined by the normalised frequency, or V  value 

)(2 22
clcoco nnV −⋅⋅= ρλ

π
con

co

, where  and n  represent core and cladding indices, 

respectively, and 

cl

ρ  is the core radius [1].  Single mode guidance is obtained for 405.2<V .  

For  values of ~2.0 (typical for single-mode fibers) the field distribution of the fundamental 

mode is approximately Gaussian: 

V

)( ρF

2wπ=effA

~ ) , where core radius, and the 

effective mode area is .  For weakly guiding fibers [2], an approximate expression 

for the propagation constant of the fundamental mode is obtained 

from:

w 2/2(exp −ρ ≈w

( )   )()()( 2222 ωρωωωβ unc co
−−=  where ( )[ ] ( ) 

4/1
)

 ++ 41 V−= 1 4 (ω)ω(2 V)ω(u , 

where  we have expressed the normalised frequency as a function of ω . 

A single mode fiber actually supports two modes that are dominantly polarised in orthogonal 

directions.  Due to small departures from cylindrical symmetry or small fluctuations in material 

anisotropy, the mode propagation constant (effective index) becomes slightly different for the x  

and  polarisation modes and it can be shown that the power between the two modes is 

exchanged periodically with a characteristic “beat length” [3] period: 

y

( ) ( )yxyxB nnL −=− // λββπ= 2 .   

Having obtained the mode-profile, we derive the basic propagation equation.  We assume that 

the optical field is launched on one polarisation axis and maintains its polarisation along the 

fiber length, and that the spectral width ω∆  is such that 0ωω <<∆ , where 0ω  is the central 

frequency (slowly varying envelope approximation).  The rapidly varying part of the electric 

field can then be separated by writing  

 .].)exp(),([ˆ
2
1),( 0 cctitrExtrE +−= ω

rrr
 Eqn. 2.2:14 
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where c.c. stands for complex conjugate, is the polarisation unit vector, and the amplitude x̂

),( trE r
is a slowly varying function of time. Using separation of variables, we write 

)(exp),(~),(),(~
0β00 zizAyxF ωωω −=−

),( yxF

rEz ω  in , which then gives both an 

equation for  (solved to obtain the propagation constant, and hence the mode-profile via 

an Eigenvalue equation, as discussed above); and the following equation for the slowly varying 

envelope: 

Eqn. 2.2:12

 ( ) .0~~~
2 2

0
2

0 =−+
∂
∂ A

z
Ai βββ  Eqn. 2.2:15 

We then introduce a small loss as a perturbation and write ( ) nnnnn ∆+≈∆+= 222ε , where 

02k
in α=∆  and write ( βωββ ∆+= )( )~ , where the small change β∆  can be evaluated using 

first order perturbation theory.  We use the approximation )~(2~
00

2
0

2 ββββ −=−β  to obtain: 

 [ .~)( ]
~

0 Ai
z
A ββωβ −∆+=

∂
∂  Eqn. 2.2:16 

Eqn. 2.2:16To transform  to the time domain, we first expand )(ωβ  using a Taylor series 

expansion about the carrier frequency 0ω ,  

 K+−+−+−+= 2
036

12
022

1
010 )()()()( ωωβωωβωωββωβ  Eqn. 2.2:17 

where 0)( ωωββ == mm
m Tdd , and )2,1,0( K=m .  After returning to the time domain (using 

the inverse Fourier transform) and using co-moving co-ordinates, T )()v/( 1ztzt g β−=−= ,  

we obtain the propagation equation  

 .
26

1
2 3

3

32

2

2 A
T

A
T

Ai
z
A αββ −

∂
∂

+
∂
∂

−=
∂
∂  Eqn. 2.2:18 

Eqn. 2.2:18

Eqn. 2.2:18

This one dimensional propagation equation enables us to study the effects of dispersion.  In 

most cases 2β  is the dominant term in .  The dispersion length is defined as the 

length over which an initially unchirped pulse doubles its temporal width and is calculated using 

( )2β2
0 /TLD = .  For the specific case of a Gaussian pulse envelope, the effects of 32 , ββ can 

be studied analytically, but for the general case,  must be solved numerically.  

However, even for an arbitrary initial pulse profile it can be shown that after propagating for 

several dispersion lengths, the principal effect of 2nd order dispersion is a symmetric broadening 

of the pulse and the creation of a linear chirp, whereas the principal effect of 3rd order dispersion 

is asymmetric broadening of the pulse and the creation of a quadratic chirp.   
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The second derivative, , is called the group-velocity dispersion (GVD) at frequency )( 02 ωβ

0ω .  In the normal dispersion regime 02 >β , and in the anomalous dispersion regime 02 <β .  

The magnitude of 2β  gives the pulse broadening per unit length of the medium and per unit 

bandwidth of the pulse.  Note that the GVD concept is straightforward in application only for a 

homogeneous medium (e.g. a single type of fiber).  The group-delay dispersion (GDD) is the 

absolute time delay accumulated between components per unit frequency difference, and for a 

specific length of material: GDD = material ofLength )( 02 ×ωβ .  For a multi component 

system, GDD is easier to consider because it can be calculated for each component, and 

summed to obtain a total delay.  

2.2.3 Nonlinear polarisation effects 

In addition to the effects of linear dispersion described above, nonlinear polarisation effects are 

an essential component of the work presented in this thesis.  Essentially, the refractive index 

increases slightly with increasing pulse intensity.  To obtain the required quantitative solution, 

we use the expression for the electric field envelope of the pulse ( ) and write 

.].)exp(),([ˆ)21(),( 0 cctitrPxtrP LL +−= ω
rrr

 and .].)exp(),([ˆ)21(),( 0 cctitrPxtrP NLNL +−= ω
rrr

.  

Substituting these relations into Eqn. 2.2:10, we observe that ),( trPNL
rr

 has a term at a frequency 

of 0ω and another term at the third-harmonic frequency of 03ω .  However the latter term is 

negligible unless special efforts are made at phase-matching this process and it is not considered 

further.  The nonlinear absorption coefficient (which defines 2-photon absorption) is also weak 

in silica and is neglected.  We assume (initially) an instantaneous nonlinear response of the 

medium, and ),( trPNL
rr

 can be then expressed as follows:  

Eqn. 2.2:14

 ,),(),( 0 trEtrP NLNL
rr

εε=  Eqn. 2.2:19 

where NLε  is the nonlinear part of the dielectric constant defined by 

 .),(
4
3 2)3( trExxxxNL

r
χε =  Eqn. 2.2:20 

Since  is found to be intensity dependent because of n NLε , it is customary to introduce 

InnEnnn 20
2

20 +==

2n

+

0n

, where in silica at wavelengths close to 1 µm, the linear refractive 

index  is ~1.46, and  (Kerr nonlinearity coefficient) is ~3 x 10-20 m2/W, and I  represents 

the intensity of the signal.  Writing 0
2

2 2kiEnn α+=∆ , and following the same overall 

procedure as described for determining the effects of linear dispersion, the propagation equation 

( ) for the pulse envelope is transformed to the time domain, and becomes:  Eqn. 2.2:16
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Eqn. 2.2:21

where )(02 effcAn ωγ =

ps1≥

.  This equation ( ) is the fundamental equation used to study 

nonlinear pulse evolution in fibers and it is called the nonlinear Schrödinger equation (NLSE).  

The NLSE has been found to be applicable to the study of nonlinear systems in many branches 

of physics.  Due to the assumption of instantaneous nonlinear response that was made when 

deriving , it describes accurately the propagation of pulses that have durations 

( FWHMτ ), that are longer than the nonlinear response time in silica.  For pulses of 

duration ps1≤FWHMτ , the delayed response of must usually be included, as described in 

Section 2.2.5. 

)3(χ

The NLSE can be used to study self-phase modulation (SPM): the nonlinear response to the 

changing intensity of the pulse envelope itself induces a phase change across the pulse.  To 

study the effects of SPM, the dispersion is initially ignored and the NLSE may then be solved 

analytically.  The temporal phase of a signal pulse propagating through optical fiber due to SPM 

is found to be:  

 
λ

π
φ

2
2 ),0(2

),(
tzEnL

tLz effNL =
==  Eqn. 2.2:22 

where λ  is the signal wavelength, and ( )exp(11 LLeff α )α −−=

0/1 PLNL

, where is the actual fiber 

length.  The nonlinear length  is defined as 

L

NLL γ= , where  is the pulse peak power.  

The nonlinear length provides a length scale over which nonlinear effects become important for 

pulse evolution along the fiber.  We also define , which for a given pulse duration 

and peak power provides a measure of the relative importance of dispersive vs. nonlinear 

effects.  When  dispersion is dominant, and when  nonlinear effects are 

dominant.  

0P

>>

NLD LLN /2 =

N12 <<N 12

The time dependent phase change experienced by an optical pulse may be regarded as a 

change in the instantaneous frequency, which is referred to as a frequency chirp. The SPM 

induced spectral broadening is thus a consequence of the time dependence of the induced 

nonlinear phase changes. At the leading edge of a bright pulse, red-shifted wavelengths are 

produced, and at the trailing edge, blue-shifted wavelengths are produced.  The generation of 

new spectral components if coupled with normal dispersion in the fiber, will lead to increased 

temporal broadening of the pulse.  By contrast, in the anomalous dispersion regime pulse 

compression can be achieved.  With , the balance of dispersive and nonlinear effects 

leads to stable pulse forms which propagate without broadening.  These pulses are called 

12 =N
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fundamental solitons and they are an analytical solution to the NLSE, with pulse amplitude 

profile: 

 ( ) ( )( ) ,2/exphsec 00 DLziT/TPA =  Eqn. 2.2:23 

where  is the pulse width (0T FWHMTT 763.10 = ).  The soliton period is defined as 

DLZ )(0 2/π= . 

2.2.4 Coupling between different pulses 

When two optical signals propagate inside a fiber they can interact with each other through the 

Kerr nonlinearity ( ). Each signal experiences SPM (described above) and they also 

influence each other by changing the refractive index experienced by the other signal, resulting 

in a nonlinear phase change.  This phenomenon is known as cross-phase modulation (XPM).   

)3(χ

We first consider the nonlinear refractive index for signals with the same frequency ( 0ω ) but 

travelling on orthogonal fiber axes.  The electric field associated with an elliptically polarised 

optical wave of central frequency 0ω  can be written in the form 

 ,..)exp(]ˆˆ[
2
1),( 0 cctiEyExtrE yx +−+= ω

rr
 Eqn. 2.2:24 

where  and  are the complex amplitudes of the orthogonal polarisation components.  The 

nonlinear part of the induced polarisation (again, ignoring 3

xE yE

rd harmonic components i.e. 

assuming no phase-matching conditions have been applied) is then  

 ,..)exp(]ˆˆ[
2
1),( 0 cctiPyPxtrP yxNL +−+= ω

rr
 Eqn. 2.2:25 

with and given by xP yP ( )∑ ∗∗∗ ++=
j

ijjxyyxjijyxyxjjiyyxxi EEEEEEEEEP )3()3()3(0

2
3 χχχε .  For 

silica fibers, the three independent components of  have nearly the same magnitude in 

silica fibers [4], and are related by .  If 

 are assumed to be identical, we obtain  

)3(χ

)3()3()3()3(
xyyxyxyxyyxxxxxx χχχχ ++=

x
)3(3( and yyxxx χχχ )3( ,yxyx

) ,yy
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If   , as would be the case in strongly birefringent fibers, the last term (cross-term) in 

the above equations contributes negligibly because of the large phase mismatch.  We then write 

BLL >>

jjj EP εεω 0)( =  where ( ) ( ) j
L
j

L
j

L
j

NL
j

L
jj nnnnn ∆+≈∆+=+= 2

22εεε .  Assuming  

and writing 

nnn L
y

L
x ==

{ } { })3(Re
8
3

xxxx
NL

n
χε ≈2 = Re

2
1
n
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Eqn. 2.2:29The first terms in each of the above equations (  and ) account for SPM, 

and the second terms are responsible for XPM.  If the input light is elliptically polarised, the 

XPM induced nonlinear coupling between the field components  and  creates nonlinear 

birefringence.   

xE yE

This effect of XPM between fields of the same frequency but on orthogonal polarisation axes 

is particularly relevant to the operation of the fiber-based mode-locked laser described in 

Chapter 4 of this thesis.  As illustrated schematically in , the polarisation state at the 

fiber output is intensity dependent [5], which can create a fast saturable absorber for mode-

locking.  The input polarisation state to the fiber in the laser cavity is biased such that the 

nonlinear ellipse rotation, which is greater for the most intense central part of the pulse, creates 

an output polarisation state that passes through a polarisation beam splitter with lower loss than 

the polarisation state of the low intensity wings of the pulse.  The net result is that the pulse is 

slightly shortened after each round trip inside the cavity.  (The technique of nonlinear 

polarisation rotation is a variant of additive-pulse mode locking in which orthogonally polarised 

components play the role of two interferometer arms.) 

Fig. 2.1

The XPM-induced coupling is also observed between optical waves with intensities , ,  

traveling on the same polarisation axis but with different frequencies 

iI jI

iω , jω , respectively.  The 

refractive index for each signal can then be expressed [1] as follows:  

 2
2

2
2 2 ji

L
ii EnEnnn ⋅++=  Eqn. 2.2:30 

 2
2

2
2 2 ij

L
jj EnEnnn ⋅++=  Eqn. 2.2:31 

where the linear component of the refractive index has been included due to its dependence on 

the signal wavelength (dispersion).  It is interesting that XPM between the two waves of 

different frequencies is more effective than that between two waves of the same frequency but 
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orthogonal polarisation as it shows a factor of 2 in  and , rather than 2/3 

as in  and  (although the qualitative behaviour is same). 

Eqn. 2.2:30 Eqn. 2.2:31

Eqn. 2.2:28 Eqn. 2.2:29

 

Fig. 2.1. Nonlinear ellipse rotation used to create a fast saturable absorber (from [5]). 
 

This effect of XPM between fields of different frequencies is relevant to the work presented 

in this thesis because the high pulse peak powers in the final fiber amplifier of the CPA system 

(described in Chapters 3-8) result in the creation of a Raman pulse co-propagating with the 

original signal pulse (see Section 2.2.5.2 for calculation of walk-off length of pump and Stokes 

pulses).  Coupling between the pulses is induced by XPM and distorts the signal pulse.  (In 

practice, the CPA system has been designed to minimise stimulated Raman scattering (SRS).) 

2.2.5 Stimulated Raman Scattering 

A consideration of stimulated inelastic scattering from phonons is also important for 

understanding the work presented in this thesis.  SRS can be regarded as scattering from optical 

phonons, and stimulated Brillouin scattering (SBS) can be regarded as scattering from acoustic 

phonons.  Both processes result in a Stokes wave generated at a longer wavelength.  

The Brillouin gain occurs at a frequency shift of ~10 GHz and has a peak gain of 

~6x10-11 m/W for silica.  However the Brillouin gain spectrum is extremely narrow with a 

bandwidth of Bν∆ ~10 MHz.  For a broad bandwidth ( Pν∆ ) pump, the peak gain decreases by 

a factor PB νν ∆

P

∆ .  Therefore, for pulses relevant to the work in this thesis with minimum 

bandwidth of λ∆ >8 nm ( Pν∆ > 2 THz considering a central wavelength of 1 µm), the 

effective Brillouin gain coefficient is reduced by ~106, and hence SBS is not observed.    

In contrast, the Raman gain spectrum is very broad, extending up to ~30 THz, as shown in 

 [6].  The measured Raman gain peak is ~ 1x10Rg -13 m/W (pump wavelength 1 µm) and 

occurs at a Stokes shift ∆ν ~13.2 THz.  The Raman gain is directly related to the delayed 

nonlinear response of the heavy nuclei (slower than the almost instantaneous electronic response 

Fig. 2.2
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which is responsible for elastic scattering) and this delayed temporal response has been 

calculated from the Raman gain profile [6] as shown in  (b).   Fig. 2.2

Fig. 2.2

Fig. 2.2

SRS can be considered for two regimes of pump pulse bandwidth.  For narrow and moderate 

bandwidth pulses (e.g. <∆ Pν 0.5 THz, ps 1>FWHMτ ).  The principal effect of SRS is that the 

pulses can act as a pump and transfer energy to a longer wavelength Stokes signal e.g. at a 

frequency offset close to the Raman gain peak (13.2 THz).  The pump pulse is described by the 

NLSE, but with an intensity dependent loss term to account for the energy transfer to the Stokes 

pulse, and perhaps including a term to account for the influence of the Stokes pulse on the pump 

pulse through XPM.  In contrast, for broad bandwidth pulses (e.g. ∆  THz 4.4≈Pν , 

corresponding to a transform limited 100 fs pulse), in addition to the possible energy transfer to 

an independent Stokes pulse, the long wavelength spectral components may experience 

significant Raman gain pumped by the short wavelength components.  This is the phenomenon 

of intra-pulse SRS, and the NLSE should then be modified to include the delayed temporal 

response of the medium ( (b)), as follows [1]( ) Eqn. 2.2:32

Eqn. 2.2:32 

Eqn. 2.2:32
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The response function )()()1()( ThftfTR RRR +−= δ  includes both instantaneous and delayed 

nonlinear response of the fiber, where 18.0=Rf

∫
∞+

∞−

=')'( dTThR

 is the fractional contribution of the delayed 

Raman response, and the experimentally determined Raman response of silica (Fig. 2.2(b)) is 

used for h , normalised such that .  In order to conserve photon number 

 also includes the so-called self-steepening term that results from including the first 

derivative of the slowly varying envelope of the nonlinear polarisation, 

)(TR 1

NLP
r

, in Eqn. 2.2:7.  The 

likely significance of the delayed response of the medium can also be considered in the time 

domain (see (b)), by assessing whether the pulse duration is comparable to the response 

time of the medium.   
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Fig. 2.2  Raman gain spectrum and delayed time response for silica.  (a) Measured Raman 
gain.  (b)  Delayed time response, , as described in above text. (From [1].)  )(ThR

Fig. 

2.2

(a) 

2.2.5.1 Soliton self-frequency-shift 

For the solitons in holey fibers described in the later part of this thesis (Chapters 9-11) the peak 

powers are sufficiently low, and the fiber lengths sufficiently short, that the generation of a 

strong Stokes pulse from quantum noise does not occur, and the principal effect of SRS is intra-

pulse scattering.  In particular because solitons are stable against small perturbations this effect 

leads to the soliton self-frequency-shift (SSFS), which causes a continuous downshift of the 

soliton frequency as it propagates along the fiber (as illustrated by the results of Chapter 11).  

The approximate functional dependence of the rate of frequency shifting dzfd )(∆  on the 

soliton duration can be explained as follows.  The Raman gain is proportional to the pump 

intensity, which scales as 2τ1  for a soliton of duration τ .  The Raman gain can be seen (

(a) ) to be approximately proportional to the frequency offset ν∆  (for ν∆ <<13 THz), and is 

therefore proportional to τ1 .  The overall Raman gain therefore depends on 3τ1 .  The rate of 

frequency downshift is approximately proportional to the frequency width of the pulse (~ τ1 ), 

which gives an overall rate of frequency downshift dzf )d (∆ ~ 4τ1  [7].  This is a useful 

approximate analytic relationship, but for detailed studies, numerical simulations are usually 

performed.  

2.2.5.2 Threshold power for Stokes pulse generation 

For the pulses in the CPA and direct amplification systems described in the first part of this 

thesis, the peak power is sufficient to create a strong SRS generated Stokes pulse from quantum 

noise.  The main consequence of SRS is that energy is transferred to a longer wavelength Stokes 

pulse (∆νR=13.2 THz corresponding to a 45 nm wavelength shift at a wavelength of 1 µm) and 
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this presents a limit on the maximum pulse peak power that can be produced from these 

systems.  The initial growth of the Stokes signal can be described by   

 ,SSSPR
S IgIIg

dz
dI

+=  Eqn. 2.2:33 

where  is the amplifier gain for the Stokes signal,  is the Raman gain coefficient, 

 are the Stokes and pump intensities.  Neglecting pump depletion due to the Stokes 

wave, the evolution of the pump signal follows  

Sg

PI 

Rg

SI and 

 ,PP
P Ig

dz
dI

=  Eqn. 2.2:34 

where  is the amplifier gain at the seed pulse wavelength.  For a seed pulse intensity at the 

amplifier output (  of , we obtain the solution for  (Eqn. 2.2:35) which can be 

substituted  into Eqn. 2.2:33 to obtain a further equation for  (Eqn. 2.2:36). 

Pg

)Lz = )(LIP )(zI P

)(zI S

 ( ) ,)(exp)()( zLgLIzI PPP −−=  Eqn. 2.2:35 
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+−−=  Eqn. 2.2:36 

Assuming  we then obtain the solution for  ggg SP == )(zI S

 ( ) ,)(exp)0()( gzzLIgIzI effPRSS +=  Eqn. 2.2:37 

where )]exp(1[)1( gzgzeff −−= .  The Stokes wave can build up from quantum noise occurring 

throughout the fiber length, and Smith [8] has shown that this is equivalent to injecting one 

fictitious photon per mode at the fiber input.  Integration over all frequencies gives: 

  Eqn. 2.2:38 ( .)()(exp)( ∫
∞

∞−

+= ωωω dzgzLIgzP effPRS h )

The Raman threshold power ( ) is defined as the pump power at the amplifier output 

which generates the same amount of Stokes power at the amplifier output.  The Raman gain is 

strongly peaked at frequency offset of 13.2 THz from the pump, and by assuming that the 

Raman gain profile can be approximated by a strongly peaked Lorentzian gain profile, Smith [8] 

has calculated to be given, to a good approximation, by 

crP0

crP0

 ( ) .160 ≈effeff
cr

R ALPg  Eqn. 2.2:39 
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Due to the wavelength offset the pump and Stokes pulses travel at different group velocities, 

and the walk-off length is calculated to be 1
_

1
_

−− −= SgPgW vvTL SPT _1_1 ββ −=  

2)( βωω ×−= SPT  where T  is the pulse duration.  For T =5 ps, which corresponds to the 

pulse duration for the directly amplified pulses in Chapter 8, we have (using 

THz 2.132 ×=− πωω SP ) ~2.4 m, and since the interaction between the pump and Stokes 

pulses occurs over a distance of  ~

WL

WL×3  [9], the walk-off of the pulses does not affect the 

calculated Raman threshold for the ~4.5 m long fiber amplifiers in this thesis.  (A similar 

conclusion applies for the CPA system where the pulse duration is ~300 ps.)  In principle, SRS 

can also occur for counter-propagating pulses, but the interaction time (length) is much shorter 

so that the effect is not significant. 

2.2.6 Numerical solution of the nonlinear Schrödinger equation  

Except in certain special cases e.g. solitons, the NLSE ( ) does not have analytic 

solutions, and numerical methods are generally used to propagate an initial pulse form.  A 

technique commonly implemented is called the split-step Fourier method.  To understand the 

method, we write the propagation equation for the pulse envelope, , as  ),( TzA

Eqn. 2.2:21

 ( ) ADN
z
A ˆˆ +=

∂
∂  Eqn. 2.2:40 

where  is the nonlinear operator, and N̂ D̂  is the dispersion operator,   
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Here  includes only the SPM nonlinear term and a loss term, but higher order nonlinear 

terms can be included as necessary.  By assuming that the dispersion and nonlinearity act 

approximately independently over a small propagation distance

N̂

z∆ , the split-step Fourier 

method applies the two operators sequentially 

  Eqn. 2.2:43 .),()ˆ(exp)ˆ(exp),( TzADzNzTzzA ∆∆=∆+

Differentiation with respect to time equates to multiplication by ωi  in the frequency domain, 

so the dispersion operator is more easily treated in the frequency domain by using a fast Fourier 

transform (FFT), before returning to the time domain using the inverse transform (IFFT) in 

order to apply the nonlinear operator.  This procedure is illustrated below for one propagation 

step: 
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2.3 Ytterbium doped silica fiber  

Yb-doped silica fiber has been used as the gain medium for the majority of the work reported in 

this thesis.  This section provides a summary of the spectroscopic properties of Yb-doped silica.  

The Yb spectroscopy governs the range of possible pump and signal wavelengths, and the 

variation in characteristics with temperature.  Results are presented in subsequent chapters of 

this thesis that demonstrate how our Yb-fiber amplifiers were optimised for maximum gain.  

The work was mainly done by experimental optimisation, but supported where necessary by 

numerical calculations.  This section therefore describes briefly the model and computational 

method used to produce the numerical results.   

This section is organised as follows.  In Section 2.3.1, the Yb spectroscopy is briefly 

described.  The following three sections describe the computational method used in order to 

calculate the optimum amplifier length.  Section 2.3.2 provides an overview of the model.  

Section 2.3.3 describes the procedure for calculating the inversion density in a fiber piece which 

is sufficiently short that the inversion density does not vary along the length.  Section 2.3.4 

presents an algorithm that uses the inversion density from the short fiber piece to calculate the 

power at the output of an amplifier of arbitrary length.  Use of that result to optimise the 

amplifier design (e.g. fiber length) is described. 

2.3.1 Ytterbium fiber spectroscopy 

This section provides a brief description of the spectroscopy of Yb-doped silica.  Yb is a 

member of the rare-earth (lanthanide) group of elements within the periodic table [10], all of 

which have the general electronic structure 4fN5s25p65d06s2.  In particular, Yb has the structure 

(Xe)4f145d06s2.  When inserted into a host material, e.g. silica, the outer two 6s electrons of the 

Yb atom, and one of the 4f electrons are used for ionic binding, so Yb becomes triply ionized.  

The spectroscopy of the Yb3+ ion is simple compared to other rare-earth ions [11].  For all 

optical wavelengths, only two manifolds are relevant: the 2F7/2 ground-state manifold and the 
2F5/2 excited-state manifold as shown in (a).  Coulomb interactions split the 4f states into 

terms, spin-orbit coupling splits each term into manifolds, and crystal-field (Stark) interaction 

splits each manifold into sublevels (shown in ).  Electric dipole transitions within the 4f 

Fig. 2.3

Fig. 2.3
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shell are partly-forbidden so Yb3+ has a long upper state lifetime [11] ( ~0.8 ms).  (Mixing of 

wave-functions with opposite parity is brought about by the crystal-field interaction which 

creates weak, but non-zero, transition probabilities.)  

 

Fig. 2.3 (a) The Yb energy level structure, consisting of two manifolds, the ground manifold 
 (with four Stark levels labelled a-d), and a well separated excited state 

manifold  (with three Stark levels labelled e-g).  Approximate energies in 
wavenumbers above ground energy are indicated.  (b) Absorption and emission 
cross sections for a germanosilicate host. The principal features of the spectra have 
been labelled A-E, and are discussed in the text. (From [12] .) 

Fig. 2.3

Fig. 2.3
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(b) (a) 

The large energy gap between the manifolds precludes non-radiative decay via multi-phonon 

emission, even in a host with high phonon energy such as silica.  Excited state absorption (ESA) 

of pump or signal light, or concentration quenching by ion-ion energy transfer processes, does 

not occur with Yb due to the absence of other energy levels (in contrast e.g. to Er), and co-

operative up-conversion (whereby two excited Yb3+ ions emit a single green photon) is a very 

weak process (negligible).  The transitions between sublevels are not fully resolved for Yb3+ 

ions in a glass at room temperature due predominantly to strong homogeneous broadening, 

although weaker inhomogeneous broadening is also observed [13].  It has been pointed out by 

others that the details of absorption and emission spectra depend to some extent on the host 

glass composition [13, 14].  Comparison of various Yb-doped germanosilicate fibers with 

differing content of germanium, aluminium and boron show typical deviations from the cross 

sections shown in  by up to ~30%.  The measured fluorescence decay times are typically 

around 0.8 ms and also vary by ~30% between different fibers; fibers with higher germanium 

content in the core (introduced to achieve a higher numerical aperture) tend to have 

comparatively shorter lifetimes while Yb in a pure silicate glass has a longer lifetime of around 

1.5 ms. 

The absorption and emission spectra of Yb-doped silica are shown in  (b).  Following 

Pask et al. [12], the most obvious features have been labeled (A)-(E).  Pumping at the strong 

absorption peak (A) at 975nm enables efficient pump absorption in a short fiber length.  We 
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note that pumping at the broader feature (B), at 915nm, has several disadvantages for 

applications at 1.06 µm, because it leads to high gain at 975 nm, which can result in ASE if the 

signal is weak, and the reduced absorption cross-section results in a longer absorption length for 

the pump and correspondingly longer devices.  The peak in the emission spectrum (D) from 

1030 nm out to beyond 1100 nm corresponds to transitions from level e to levels b, c and d.  

These transitions can become quasi 4-level in character at longer wavelengths due to the small 

thermal populations of the Stark split lower levels.  To minimise the absorption length, the 

majority of the experiments in this thesis have used diode pumping at wavelengths close to the 

975 nm absorption peak. 

2.3.2 Overview of numerical model 

This section describes a numerical model that is suitable for optimising the Yb-fiber amplifier 

parameters e.g. changing the length to maximise the gain at a given wavelength.  In the most 

general case of unguided pump and signal beams in a bulk gain medium, calculating the power 

distribution at the amplifier output is a complex problem that could require calculation of the 

inversion density in individual small elements throughout the gain volume, which would have 

both transverse and longitudinal variation along the signal propagation direction.  Furthermore, 

gain guiding or antiguiding could cause changes in the mode profile of the signal beam.  

Fortunately, the small-core waveguide geometry of a fiber amplifier has the result that the 

pump, signal, and ASE all propagate along the fiber with constant mode-profiles.  Therefore 

calculating the optimum amplifier parameters decouples to enable independent optimisation of 

the transverse doping/refractive index profile (2 D) and of the fiber length (1D).  

The transverse refractive index profile and Yb-doping geometry are both variable parameters 

for the design of the fiber.  Indeed, this freedom was used by previous researchers at the ORC 

when optimising large mode area (LMA) fiber for power amplifiers and high energy Q-switched 

lasers.  However, optimisation of the fiber refractive index profile and Yb-doping geometry has 

not formed part of the research in this thesis, and therefore further description of the necessary 

calculations are not presented here.  The modelling presented in this thesis was used to optimise 

the fiber length and core size (hence pump/signal intensity) in order to obtain maximum gain. 

A further simplification typically applied when modelling the fiber geometry is to average out 

the radial variation of the inversion density of the active ions (caused by the radial variation of 

the pump, signal, and ASE intensity profiles), by considering the doped region to interact with 

beams of uniform “effective” intensity.  The “effective” intensity calculated by the following 

overlap integral  ( q  = Pump (P), Signal (S), ASE (A) ), which can vary from zero (no 

overlap of intensity and doping profiles) to one (exact overlap):  

qΓ
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where )(),,(),( zPzrIri qqq φφ = , and = total density of Ybtn 3+ ions.  In core-pumped fiber, the 

high-brightness pump has a similar mode-profile (hence overlap fraction) compared to the 

signal and ASE.  However, cladding-pumped fiber (also called double-clad fiber) is used for 

high power applications because it enables pumping with higher power but lower brightness, 

multimode laser-diodes.  In cladding-pumped fiber, the pump is guided in a multimode 

“inner-cladding” and only the signal and ASE are guided in the single or few-moded core.  

Pump power is absorbed from the inner-cladding (passive) to the core (doped with active-ions) 

along the fiber length, but the transverse pump mode-profile along the fiber can remain 

approximately constant provided that asymmetries in the inner-cladding shape continually mix 

the inner-cladding modes.  (Double-clad fiber designs used to achieve efficient mode-mixing 

are described in Chapter 6.)  The calculation of overlap fractions for a double-clad fiber are 

illustrated in , for both signal (core-guided) and pump (guided by inner-cladding).  Fig. 2.4

Fig. 2.4. Schematic of fiber profile showing various effective overlap integrals. 

 

 

Having reduced the required calculation from 3D to 1D, it is then necessary to set-up and 

solve the rate equations in order to determine the population inversion in a given fiber section 

.  However, because these attributes result in rapid ASE build-up, both forward 

and backward propagating ASE must be included in the model since the ASE power can be 

comparable to the signal or pump power.   
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Calculating the population inversion requires considering the spectroscopy of the Yb3+ ion, 

and this is typically modelled as a two-level system.  Considering Yb-as a two level system is 

valid because of the simplicity of the Yb-manifolds involved in optical transitions (as described 

above).  This model assumes a homogeneously broadened lineshape, and homogeneous 

broadening is indeed the dominant broadening mechanism in Yb-doped silica, although there is 

some component of inhomogeneous broadening.  The thermalisation time (establishment of 

Boltzmann distribution within the upper or lower manifolds) is extremely rapid in Yb, and can 
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usually be considered to be instantaneous.  Also the fiber temperature is usually considered to 

be constant because Yb has a small quantum defect and a fiber amplifier has a large surface area 

to volume ratio and naturally dissipates heat efficiently.  Hence the emission and absorption 

cross sections, which are dependent on the Boltzmann thermal population fractions within the 

sublevels, are considered as constants regardless of pump and signal power levels.  Considering 

all of these features, the two-level model is therefore appropriate for Yb-doped silica fiber. 

2.3.3 Calculating the inversion in a short fiber section 

The simplifications described in the previous sections reduce the problem of calculating the 

amplifier parameters (e.g. gain), to a one dimensional problem in a two-level system.  However, 

the tightly confined mode and long interaction length in a fiber amplifier can result in strong 

gain, which results in a large variation in the population inversion density along the amplifier 

length.  One aspect of the model that it is not often possible to simplify is the consideration of 

ASE propagation along the fiber length.  The tightly confined optical mode and long interaction 

length that result from the fiber geometry naturally lead to rapid ASE build-up in both forward 

and backward directions.  The calculation of ASE build-up is described further in Section 2.3.4 

below.  In this section, we consider a length of amplifier sufficiently short that the inversion can 

be considered uniform, and then in the following section we describe a procedure that uses the 

results obtained for this short amplifier section in order to calculate the performance of the 

amplifier as a whole.   

To calculate the population inversion for the short fiber section it is first necessary to select 

the appropriate system of rate equations.  In the CPA system, the time interval between pulses 

(20 ns at 50 MHz rep. rate, increasing to 0.1 ms at 10 kHz rep. rate) is shorter than the upper 

state lifetime of Yb, and the signal can be considered as quasi continuous wave (CW).  The rate 

equations are therefore solved by setting 021 ==
dt

dN
dt

dN
, to obtain the population inversion.  

For a signal power  at wavelengthrSP rλ , the transition rate from level 1 (lower level) to 

level 2 (upper level) is 
r

SrrSar

hA
P
ν

σ ΓN1  where  = number of ions in level 1, 1N arσ = absorption 

cross section (at wavelength rλ ) and rSΓ = overlap integral for the signal, and A is the area of 

the fiber core.  The transition rate from level 2 to level 1 is 
τν

σ 22 N
hA
PN

r

rSer ΓSr + , where 

erσ = emission cross section (at wavelength rλ ),  = number of ions in level 2, and 2N τ  is the 

upper level lifetime. 

 29



Assuming an amplifier configuration with end-reflections suppressed at both ends of the 

fiber, there are in general four beams propagating in the fiber, namely: the signal, the pump 

(which we will assume to be co-propagating, but could also be counter-propagating), and the 

forward ( ) and backward (-) propagating ASE.  The ASE is normally considered to be core-

guided, and therefore to have the same overlap integral as the signal.  For a broad bandwidth 

signal, as is the case for ultrashort pulses considered in this thesis, it is useful to obtain the 

spectral dependence of the gain.  Spectral dependence is included by using the experimentally 

measured wavelength dependence of the absorption and emission cross sections, and then 

modelling the signal as a series of spectral slices of width 

+

λ∆  with central wavelength rλ , and 

signal power , where .  The ASE can be modelled either approximately by 

considering an effective ASE bandwidth and appropriate absorption/emission cross sections, or 

by spectral slicing as suggested for the signal (but perhaps with broader slices than for the 

signal).  In the rate equations below, different wavelength band subscripts, r, k, are used for the 

signal and ASE summation indices to allow for the possibility of different width spectral slices 

being used for the computations of signal and ASE.  In addition, the pump is assumed to be 

forward propagating, but it would be equally possible to consider a backward propagating 

pump.  The rate equations are then: 
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  Eqn. 2.3:3 

and by conservation  .21 NNNt +=  Eqn. 2.3:4 

2.3.4 Calculating the optimum amplifier length  

This section describes a typical algorithm that uses the solution for the population inversion for 

the short section of fiber, considered above, in order to calculate the pump, signal, and ASE at 

the output of the complete amplifier. 
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We write the linear absorption (loss) coefficients of the pump, signal and ASE as Pα , Sα  and 

Aα  respectively.  The convective equations describing the spatial development of the power in 

the pump, signal, and forward (+) and reverse (-) ASE beams are:  

 ( ) ( ) ,,
21 PPePaPPP

P PNNP
dz

tzdP ασσ −−Γ=  Eqn. 2.3:5 

 
( ) ( ) ,

,
12 SrSarerrSrS

rS PNNP
dz

tzdP
ασσ −−Γ=  Eqn. 2.3:6 

 
( ) ( ) .2

,
221

±±
±

∆±−Γ= kAAkkekekakkSkA
kA PhNNNP
dz

tzdP
αννσσσ mm  Eqn. 2.3:7 

Eqn. 2.3:7The second term on the right hand side in  represents spontaneous emission produced 

in the amplifier in the bandwidth kν∆  for both polarisation states.  For an end-pumped 

amplifier with co-propagating pump, boundary conditions for the pump, signal and forward 

ASE are: ( ) inputPP PP _0 = , ( )s PP 0 inputs _= ,  ( ) ( ) ( ) estimateinitialAAA PPP _00 and,00 −−+ ==

12 NNN −

.  Starting 

at the fiber input ( ), it is then computationally straightforward to propagate the convective 

equations stepwise along the fiber by calculating the inversion (

0=z

=∆ ) after each step.  

The equations are propagated forward to calculate ( )LPS , ( )LPP ( )LPA
+, and .  Using these 

calculated values and the boundary condition ( ) 0=− LPA  (which is appropriate because the end 

reflections are assumed to be suppressed), the pump, signal and ASE (-) are then propagated in 

the reverse direction to  to find 0=z ( )0SP , ( )0PP , and ( )0−
AP .  The calculated powers 

obtained for each beam will be different from the input conditions because the initial estimate 

for  was incorrect.  A standard iterative numerical technique (e.g. shooting or 

relaxation) must then be applied to repeat the calculation using a revised estimate for 

 until a self-consistent solution is obtained that satisfies the boundary 

conditions at both the input and the output of the amplifier.  With this solution established, the 

gain, ASE (noise) and lost pump power 

( )AP 0−

( )revised0

estimateinitial _

estimate_AP −

( )LPP  are then known, which gives the amplifier 

performance (e.g. gain = ( ) ( )0/ SS PLP ) for the given amplifier configuration (fiber length, 

pump power, and signal input power).  The optimum amplifier configuration can be determined 

by using the algorithm iteratively with several variations of the parameter to be varied. 

From the extensive modelling and practical work that has been performed with the 

established EDFA technology, the general properties of fiber amplifiers are now well 

established.  Forward pumping (co-propagating) provides higher inversion density at the 

beginning of the amplifier, and is appropriate for small signal (high gain) applications because it 
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results in low noise operation.  Forward pumping is appropriate for the low-noise pre-amplifiers 

in the CPA system because of the small signal strength from the oscillator.  With small input 

signals, high gain is still possible because the power at the amplifier output typically does not 

saturate the gain.  In contrast, reverse pumping (counter-propagating) provides higher inversion 

density at the end of the amplifier, which results in increased output power with the large 

signals (saturated gain).  However, reverse pumping can produce a significant noise fraction for 

very weak input signals if care is not taken to avoid this.  Reverse pumping is appropriate for 

the power amplifier in the CPA system, because a strong input signal has been established by 

using pre-amplifiers, and power extraction is most critical. 

2.4 Holey fiber technology 

Holey fibers (HFs) are a class of microstructured fiber which have a solid core surrounded by a 

cladding region that is defined by a fine array of air holes that extend along the full fiber length 

[15, 16].  HF technology has developed rapidly in recent years, and due to the broader range of 

fabrication parameters compared to conventional fiber, HFs have been produced with dispersion 

and nonlinear properties beyond those previously possible [16, 17].  As a result of the extended 

range of dispersion and nonlinear properties, HFs have led to new applications in spectroscopy 

[18], metrology [19], and communications [20, 21].  Several experiments reported in this thesis 

demonstrate novel applications made possible due to the unique properties of HFs, and this 

section provides an overview of HF technology. 

This section is organised as follows.  The physical structure and guidance mechanism of HF 

is first described.  Then Section 2.4.1 describes the HF fabrication process. Section 2.4.2 

describes the range of dispersion properties possible using HFs.  The nonlinear properties of HF 

are briefly discussed in Section 2.4.3. 

Fig. 2.5. shows an idealised HF structure.  HFs are typically made of a single material, 

usually pure silica, and guide light through a modified form of total internal reflection since 

volume average index in the core region of the fiber is greater than that of the surrounding 

microstructured cladding.  The hole diameter (d) and pitch (Λ=hole to hole spacing), which are 

the critical design parameters used to specify the structure of an HF, are typically on the scale of 

the wavelength of light.  . shows scanning electron microscope (SEM) images of various 

HFs fabricated at the University of Southampton. 

Fig. 2.6
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Fig. 2.5.An idealised HF structure. 
 

The physical differences between HFs and conventional fiber types arise from the way that 

the guided mode experiences the cladding region. In a conventional fiber, this is largely 

independent of wavelength to first-order.  However, in a HF, the large index contrast between 

glass and air and the small structure dimensions combine to make the effective cladding index a 

strong function of wavelength.  Short wavelengths remain tightly confined to the core, and so 

the effective cladding index is only slightly lower than the core index.  However, at longer 

wavelengths, the mode samples more of the cladding, and so the effective index contrast is 

larger.   

An unusual modal property of HFs with a low air fill fraction (  ) is that such 

fibers can be single-moded regardless of operating wavelength [22].  The broad bandwidth 

single-mode operation of HF with a low air fill fraction ( (

4.0)/( <Λd

4.0)/ <Λd ) can be understood 

qualitatively as follows.  The V  value (defined earlier) should be less than 2.405 for single 

mode operation in fiber, which means most of standard single mode fibers produced for 

telecommunications applications are multi-mode for short wavelengths.  For example, SMF28 

has a single mode cut-off wavelength of ~ 1.2 µm.  In HF the light field at shorter wavelengths 

is confined within the silica core area rather than being distributed across the air cladding as is 

the case for longer wavelengths.  Thus, the corresponding effective cladding index increases at 

the shorter wavelengths, keeping the V  value nearly constant and extending the single mode 

bandwidth.   
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Fig. 2.6.  SEMs of various HFs fabricated at University of Southampton: (a) small effective 
area silica HF, (b) high nonlinearity HF in Schott SF57 glass, (c) Yb-doped, air-
clad, Large Mode Area HF for high power cladding-pumping applications, (d) 
Large Mode Area - HF. 

 

(c) (d) 

(b) (a) 

2.4.1 Fabrication of holey fibers 

HFs are typically fabricated by stacking an array of capillaries in a hexagonal configuration 

around a solid rod, which defines a core. The resulting stack (preform), is then drawn down to 

fiber dimensions using a conventional fiber drawing tower.  By selecting the wall thickness and 

tube diameter of the capillaries and by controlling the conditions under which the fiber is drawn, 

a wide range of HFs with different optical properties can be produced.  To fabricate an active 

HF, a doped core must be used for the solid central rod when the preform is stacked.  . 

shows an outline of the procedure used to fabricate an active HF.  This technique was used to 

fabricate the Yb-doped HF for the experiments presented in Chapter 11.  A rare-earth doped 

core may be obtained by using an ultrasonic drill to remove the core from a conventionally 

fabricated MCVD fiber preform.  The well established technology used to fabricate the 

conventional preform enables a low loss core rod to be obtained.  HFs can be jacketed by 

inserting the capillary stack into a thick walled silica tube before drawing into fiber, and the 

resulting fibers can be polymer coated which gives the HF robust handling properties that are 

similar to those of conventional fibers.  To further extend the range of possible structures, 

alternatives to the capillary stacking technique have been developed and recently the University 

of Southampton demonstrated the first HF preform fabricated by extrusion of a glass with a 

lower softening temperature (~600 °C for SF57 versus ~2000 °C for silica) [23]. 

Fig. 2.7
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Fig. 2.7 Procedure used for active holey fiber fabrication. 
 

~100µm 

~1mm 

Yb-doped (~2000ppm) 
conventionally 
fabricated preform.  

Ultrasonic drill used 
to extract Yb-doped 
core (rod) from 
conventionally 
fabricated preform. 

~10mm 

Capillaries stacked 
around Yb-doped rod 
to make holey fiber 
preform. 

 

Holey fiber preform placed 
in fiber drawing tower an
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d 

2.4.2 Dispersion properties of holey fiber 

The unusual wavelength dependence of the effective refractive index in HF leads to a range of 

novel dispersion properties which are relevant for applications [20]. For example, silica fibers 

with a small pitch (Λ<2 µm) and large air holes ( 5.0/ >Λd ) can exhibit anomalous dispersion 

down to wavelengths as low as 550 nm [17] because the exceptionally strong (anomalous) 

waveguide contribution to the dispersion can dominate the (normal) material dispersion of silica 

to provide fiber with overall anomalous dispersion at these short wavelengths.  This has made 

the generation and propagation of optical solitons in the near-IR and visible regions of the 

spectrum a reality [24, 25], something not possible in conventional single mode fibers.  Fig. 2.8. 

shows the GVD of a HF as a function of wavelength for a range of different hole sizes when the 

hole spacing is fixed [16].  We also note that small core, high air-fill fraction holey fibers are 

typically polarisation maintaining because small asymmetries in the fiber geometry result in a 

strong modal birefringence of the orthogonal polarisation modes.  Full vector models are 

therefore essential in order to properly numerically calculate the properties (dispersion, mode 

area) of such fibers. 
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Fig. 2.8. (a) GVD for holey fibers with d/Λ = 0.1, 0.2, 0.3, and 0.45 for Λ = 2.3 µm. Both 
waveguide and material dispersion have been included. (b) GVD for holey fibers 
with d/Λ = 0.28, 0.3, 0.32, and 0.35 in order of increasing GVD at a wavelength of 
1.4 µm for Λ = 2.3 µm. Both waveguide and material dispersion have been included 
[16]. 

(a) (b) 

2.4.3 Nonlinearity of holey fiber 

Due to the tightly confined optical mode, small core, HFs with a high air-fill-fraction in the 

cladding naturally have tightly confined optical mode, and hence a high effective nonlinearity, 

)/()2( 2 effAn λπγ = .  Further increases in fiber nonlinearity should be achievable using fibers 

made of other glasses, such as the Chalcogenides [26], which have around two orders of 

magnitude higher nonlinear optical coefficient compared to silica.  Recently researchers at the 

ORC produced the first results in this direction and demonstrated a HF in SF57 lead glass with 

γ = 550 W-1.km-1, approximately 500 times more nonlinear than conventional SMF28 fiber [23].  

(The SF57 fiber shown in (b) was produced using the extrusion technique.)  With the 

continuing development of fibers fabricated from high nonlinearity glasses, and new HF 

structures made possible by the extrusion technique, the field of HF research offers many 

opportunities for developing future applications based on fiber technology. 

Fig. 2.6
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Chapter 3 Yb fiber based pulse sources 

3.1 Introduction 

There are a wide variety of new and rapidly emerging applications that rely on high peak 

powers and femtosecond interaction times, e.g. two-photon absorption microscopy, materials 

processing, and supercontinuum generation in small core HFs.   Despite the proven capabilities 

of solid state laser systems, there are significant intrinsic limitations on the long-term stability, 

compactness and cost of such systems, which hampers the successful implementation of the 

emerging practical applications of ultrafast technology.  Developing compact and robust sources 

of high energy femtosecond pulses has therefore generated strong research interest, and fiber 

based sources in particular, have developed rapidly during the past ten years.  Optical fibers are 

intrinsically robust and compact components because they are waveguides and they are suitable 

for high average power applications because their geometry leads to efficient heat dissipation 

[1].   

This chapter presents a summary of results previously reported from fiber based systems.  

The principal outstanding areas for further research are then described, followed by an overview 

of the industrially-sponsored CPA system development (the detailed development work is 

presented in Chapters 4 – 8). 

3.2 Summary of related research  

The fiber laser was first demonstrated by Elias Snitzer in 1963 using Neodymium (Nd)-doped 

fiber operating at 1.06 µm.  After much development, the first commercial fiber devices 

appeared in the late 1980s. These lasers used single-mode diode pumping, emitted a few tens of 

milliwatts, and attracted users because of their large gains and the feasibility of single mode CW 

lasing for many transitions of rare-earth ions that are not readily achievable in the more-usual 

crystal-laser version.  The most well-known application of fiber-laser technology is in 1550 nm 

Er-doped fiber amplifiers used in telecommunications.   

Cladding-pumped fiber, which was first proposed in 1974, allows the efficient conversion of 

multimode output radiation from high power, low cost, broad-stripe semiconductor laser diodes 

into the single-mode emission of fiber lasers [2-4].  More than 110 W has been obtained from a 

single mode CW Yb-fiber laser [5], and power of up to 6 kW has been demonstrated from a 
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commercially available multimode fiber laser [6].  Furthermore, diode-pumped double-clad 

fiber lasers can provide broad gain bandwidths (> 100 nm [7]), with optical pumping 

efficiencies as high as 80% [8].  These properties, combined with high optical gain, suggest that 

fiber based systems have many positive attributes compared to bulk crystal or bulk glass 

systems for high power applications. 

However, as other authors have noted [9], the same attributes that make optical fiber 

advantageous (confined mode, long length), constitute a problem for achieving high peak 

powers inside the fiber.  The relatively small mode size (10 µm versus 1–3 mm) and long 

interaction length (1–10 m versus 1–10 cm) of a fiber compared to a bulk solid-state system, 

respectively, means that fiber systems are relatively sensitive to nonlinear effects despite the 

low inherent nonlinearity of silica, and fibers are perhaps not best suited to pulsed operation.  

As discussed in Chapter 2 of this thesis, nonlinear effects such as SPM and ultimately SRS limit 

the maximum energy of pulses that can be obtained from fiber based systems.  However, 

technological developments in the design of doped fibers, coupled to advances in diode 

brightness mean that reasonable pulse energies and peak powers can now be reached with fiber 

systems.  Within many application areas, particularly those that benefit from high average 

power levels (high repetition rate, modest pulse energies) fiber technology can now compete 

and indeed in some cases outperform bulk-laser technology  

3.2.1 High energy CPA systems 

To increase the pulse energies from fiber systems requires that the nonlinear effects should be 

controlled and the basic approach has been to scale down the peak intensity inside the fiber 

core.  The CPA technique, as used in bulk solid state ultrashort pulse systems, has also been 

applied to fiber systems; the pulses are temporally stretched before launch into the fiber 

amplifiers, then recompressed after the final amplifier stage.  However, the largest practical 

stretched pulse duration of ~1 ns is insufficient to overcome the limiting effects of SRS in 

standard core-size fibers.  To produce higher pulse energies, the core size (mode size) is 

increased, which reduces the peak intensity. 

Fiber-CPA work started with Er-doped fibers using established telecommunications 

technology.  Pulse energies of 1 µJ were produced [10], which was approximately the limit 

achievable with standard single-mode fibers.  Using cladding-pumping then enabled higher 

average powers, and the first femtosecond fiber systems with 1 W output was demonstrated in 

1996 [11]. Then large-core single-mode fibers were developed by using a low NA for the fiber 

core to maintain single-mode guidance, with a 16 µm diameter mode [12].  Such fibers were 

used to produce 10 µJ pulses from a single-mode fiber-based CPA system [13] at 1550 nm.   
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The experimental arrangement of a typical fiber-based CPA system is shown in .  In 

1997 [14], the system was the first fiber-based setup to produce 100 µJ picosecond pulses.  The 

system is described in some detail because it demonstrates the various components that are 

necessary in order to obtain high energy pulses.  Due to the tightly confined mode in a fiber 

amplifier, amplified spontaneous emission (ASE) build-up limits the maximum gain that is 

possible from a single amplifier to ~35-40 dB.  The experiment required 50–60 dB total gain for 

boosting pulse energies from an initial 0.1–1 nJ to 100 µJ and therefore used an amplifier 

cascade to achieve the required gain.  The system comprised a femtosecond fiber oscillator, a 

bulk-grating based pulse stretcher and a compressor, and three main amplifier stages (a fourth 

pre-amplifier is not shown).  Acousto-optic modulators (AOMs) between the amplification 

stages were used as optical gates, allowing control of the pulse repetition rate down to the kHz 

range required for achieving maximum pulse energies compared to the MHz repetition rate of 

the mode-locked oscillator.  AOM time gates also prevented cascaded ASE build-up due to the 

feedback between different amplification stages (in a high repetition rate system, optical 

isolators would be necessary).   

Fig. 3.1

Fig. 3.1  Typical fiber based CPA setup.  (System illustrated is based Er/Yb-doped 30 
micron core fiber for the final amplifier. From [14]].]. ) 

 
The increase in pulse energy was enabled by using a larger core fiber.  The final amplifier 

was double-clad Er/Yb-fiber, with a 200 µm cladding and a 30 µm core, and 1.5 m in length.  

This fiber was heavily doped in order to achieve maximum gain in a short fiber length.  The 

maximum pulse energy of 250 µJ (before compressor) was reached at repetition rates below 

1 kHz.  The average output power at high repetition rates was up to 1.2 W.  After 

recompression, pulse energies of up to 100 µJ were achieved, with a pulse duration of 0.7 ps.  
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The output beam had measured M2 ~1.5 and so was approximately single mode.  The core was 

multimode, but single mode output was obtained by using launch from a single-mode source 

that was carefully aligned such that only the fundamental mode of the fiber was excited at the 

input and by using a short fiber length to avoid mode-mixing.   

Until this point, all fiber-based CPA development had used Er-fiber as the gain medium.  

However, Yb-doped silica fiber, with its broad gain bandwidth, high optical conversion 

efficiency and large saturation fluence [15, 16], represents an extremely attractive medium for 

both the generation [17, 18] and subsequent amplification of ultra short optical pulses.  Two 

main advantages of Yb-doped over Er-doped fibers are the significantly broader amplification 

bandwidth (50–100 nm compared to 10–30 nm) and significantly higher optical pumping 

efficiencies (60–80% compared to 30–40%).  In addition, the maximum achievable active-ion 

concentrations in the Yb-doped fiber core can be significantly higher than for Er-doping, thus 

enabling very high optical gain in a relatively short fiber length.  In 1998, a commercial sponsor 

entered into negotiation with Professor Richardson to develop an Yb-fiber based CPA system.  

Professor Richardson had previously demonstrated an Yb-fiber mode-locked oscillator [17], and 

the ORC was a leading research group in field of Yb-fiber fabrication and applications [15, 16].  

The negotiations resulted in a contract to develop a compact, all Yb-fiber, CPA system.   

Since the contract with Professor Richardson was negotiated, several other research groups 

have also recognised and demonstrated the advantages of Yb-fiber for high power pulsed 

applications, and this parallel work is reviewed here for completeness.  Results were presented 

at CLEO 2000 demonstrating 100 µJ, femtosecond pulses [19].  This Yb-fiber CPA system 

produced pulses at 1050 nm using a 25 µm core fiber for the final amplifier.  Due to higher 

pumping efficiencies (compared to Er-fiber systems), average output powers up to 5.5 W at 1 

MHz, were obtained (before recompression), and the broad amplification bandwidth provided 

pulses as short as 220 fs, compared to the 500–700 fs typical from previous Er-fiber CPA 

systems.  (Mode-quality results were not presented.)  Further progress was reported in 2001 [20] 

with the demonstration of pulse energies up to 1.2 mJ at a repetition rate of 1667 Hz using an 

experimental arrangement similar to that shown in , including the use of a bulk-grating 

based pulse stretcher.  The seed-pulse source was comprised of a stretched-pulse Er-fiber mode-

locked oscillator operating at 1550 nm, followed by a length of single mode fiber used to 

frequency-shift the pulses to ~2.1 µm (using SSFS), then a chirped periodically poled Lithium 

Niobate (PPLN) frequency doubling crystal to convert the wavelength to 1050 nm and finally a 

Yb-fiber pre-amplifier was used to increase the seed average power to 330 mW at a 50 MHz 

repetition rate.  The seed pulse bandwidth was 20 nm, and the pulses were linearly chirped with 

2 ps duration [21].  A 2.6 m length of double-clad fiber with 50 µm diameter core, and 350 µm 

inner cladding diameter (NA~0.4) was used for the final amplifier and was pumped with a 20W 

Fig. 3.1
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diode laser array.  The pump for the final amplifier was counter propagated with respect to the 

signal, which reduced the effective propagation length.  The measured output-beam mode 

profile was M2 ~1.16.  The final 1.2 mJ recompressed pulses had duration of 380 fs.  The 

maximum pulse energy was limited by the onset of SRS. 

3.2.2 High average power systems 

In contrast to the high energy pulses at low repetition rates discussed above, there has been 

parallel research interest in developing fiber systems suitable for applications that require high 

average powers at high repetition rates.  For example, material processing speeds may be 

increased; synchronously pumped OPO cavities could be made more compact at higher 

repetition rates, and in spectroscopy, data acquisition rates or statistical accuracy could be aided 

by higher repetition rates.  A high average power CPA system with up to four amplifier stages, 

and using time-gating between the amplifier stages to obtain variable repetition rates has been 

demonstrated [22].  The seed oscillator was a mode-locked Nd:glass solid-state laser and 

produced 1.2 nJ pulses at a repetition rate of 82 MHz.  The maximum average power achieved 

was ~22 W at 1 MHz (fiber core diameter = 55 µm, M2=7), and at a lower repetition rate of 

32 kHz, pulse energies of 100 µJ (average power ~3.2 W) were achieved (fiber core diameter = 

11 µm, M2=1.7). 

However, it has also been demonstrated that much simpler system designs can produce high 

average power ultrashort pulses if the required maximum pulse energy is somewhat lower.  The 

comparative simplicity of high average power systems is because with lower pulse energies, 

they require lower total gain compared to a high energy CPA system and so use significantly 

shorter stretched-pulse durations while still providing suitable management of nonlinear effects.  

The fiber dispersion is an important consideration for direct amplification systems.  Standard 

silica fiber has normal dispersion at wavelengths appropriate for Yb-fiber systems at (1 µm), 

and the action of nonlinear effects (SPM) is to further increase the pulse broadening caused by 

dispersion.  It has been shown that by carefully selecting a suitable combination of fiber core 

diameter and fiber length, that the combined effects of SPM and GVD can produce pulses with 

a linear chirp [23], which facilitates compression with a diffraction grating pair.  (This effect has 

been used with passive fiber for pulse compression [24].)  It has been demonstrated 

experimentally and numerically, and most recently analytically (asymptotic solution) [25, 26] 

that pulses in a fiber amplifier (i.e. experiencing gain) can develop a parabolic temporal and 

spectral profile with a highly linear chirp after sufficient propagation distance.  The rate of 

convergence to the asymptotic form depends on the input pulse profile in comparison with the 

asymptotic pulse profile.  These so-called “parabolic” pulses have been recompressed to <100 fs 

durations [25], and 125 fs duration recompressed pulses have been demonstrated at an average 
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power of 17 W (75 MHz) [27].  At a wavelength of ~ 1.5 µm, standard telecommunications 

fiber has anomalous dispersion, and the maximum pulse energy is then limited by soliton 

formation or modulation instability.  Therefore Er-fiber based systems are unsuitable for direct 

amplification systems.  Dispersion shifted fiber (DSF) can have normal dispersion at 

wavelengths suitable for Er-doped fiber amplifiers.  However, the very low dispersion value 

could result in rather short pulse durations and hence low SRS threshold pulse energies.  In 

addition, DSF has a small core which is again unsuitable for high power applications.  

The experimental arrangement for a high repetition rate direct amplification system is 

simplified compared to that of a fiber based CPA system, because typically one amplifier stage 

is used and the pulse stretcher is omitted.  Time-gating is not required in a high repetition rate 

system, so AOMs are not required before the amplifier and coupling losses are reduced.  

Although a diffraction grating compressor is still required at the system output in order to 

compensate for the linear chirp of the pulses, the compressor is more compact in comparison to 

a CPA system due to the dramatically reduced stretched pulse duration.  Overall, the direct 

amplification systems can provide high average power, yet are simpler, lower loss, and more 

compact, compared to CPA based systems.   

3.3 Remaining technological challenges 

The above review considered the impressive results so-far obtained from fiber based CPA and 

direct amplification systems.  However, there remain several technical challenges to be 

addressed before truly compact, practical, straightforward to manufacture systems can be 

produced for wide application.  Yb-doped fiber appears now to be the preferred gain medium 

for both high pulse energy and high average power sources.  The first technical challenge is 

therefore to produce a practical ultrashort seed oscillator at 1 µm.  Existing oscillators are either 

based on bulk Yb crystals (e.g. product from “TimeBandwidth”), which results in a cavity that 

can be costly to manufacture and requires precise alignment, or (e.g. product from “IMRA”) use 

complex multi-stage systems (start with Er-fiber oscillator, then use the soliton self-frequency-

shift to tune the pulses to 2.1 µm, followed by frequency doubling in PPLN to generate pulses at 

1.05 µm [21]).  Professor Richardson’s research started to address this challenge with the 

development of an Yb-fiber oscillator in 1997 [17], but despite good performance (~65 fs 

pulses), the laser was Ti:sapphire pumped, and employed a complex cavity.  This thesis 

describes (Chapter 4) our development of a much more practical, robust, and very stable diode-

pumped Yb-fiber oscillator.  This oscillator is now commercially available through Positive 

Light Inc., and initial sales have been made [18, 28, 29]. 
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Another outstanding challenge is to develop compact stretcher/compressor technologies.  The 

conventional fiber CPA layout is to use diffraction-grating based stretchers and compressors, 

which are typically large and require careful alignment.  For applications which require a 

frequency doubled output, chirped quasi-phase matching gratings may be appropriate [30].  

Alternatively, chirped fiber Bragg gratings (CFBGs) are highly dispersive and can provide 

suitable time delays in only centimetre lengths of fiber.  Indeed, Neil Broderick et al. at the 

ORC have demonstrated 4-ps pulses with energy of 0.9 µJ using CFBG stretcher and 

compressor gratings in an all fiber CPA system based on large mode area (LMA) fiber 

components [31].  The principal limit on the use of CFBGs is that due to the high peak power in 

the compressor (~100 MW for 50 µJ, 500 fs recompressed pulses), the nonlinearity of the 

grating fiber degrades the pulse quality.  A bulk-grating based compressor is therefore required 

for high energy CPA systems, but it is still possible to use a CFBG stretcher.   

Both 2nd order (GDD) and 3rd order dispersion of a bulk-grating compressor are proportional 

to the grating separation [32].  Therefore, using a long (~0.3 ns) stretched pulse duration that 

requires large GDD, also adds large 3rd order dispersion.  For recompressed pulse durations 

<500 fs, uncompensated 3rd order dispersion would result in a significant pedestal on the 

recompressed pulse.  CFBGs incorporating both 2nd and 3rd order dispersion compensation have 

not previously been reported in CPA systems at 1 µm, and the development of a CFBG pulse 

stretcher with both the correct 2nd and 3rd order dispersion to compensate for the bulk-grating 

compressor is presented in Chapter 5 of this thesis.  The CFBG was fabricated using the 

uniquely flexible CFBG writing technology developed at the ORC [33].  Using the CFBG 

stretcher should provide a robust, compact, and alignment-free stretcher.  As an alternative 

technology, single mode fiber was also considered for the stretcher, but because fiber has the 

same sign of 3rd order dispersion as the bulk grating compressor, it is unsuitable for CPA 

systems producing <500 fs pulses. 

In our CPA and direct amplification systems described in Chapters 3-8, we have included a 

fiberised, 3 GHz bandwidth, electro-optic modulator (EOM) (phase modulator with a LiNbO3 

crystal in one arm) to select single pulses from the 50 MHz pulse train from the mode-locked 

oscillator.  An EOM has several advantages compared to using an AOM for pulse selection.  

First, an EOM can easily accommodate repetition rates above 1 GHz, whereas an AOM has a 

maximum repetition rate of ~50MHz (due to the slow rise time of the acoustic wave), and it is 

typically necessary to sacrifice AOM diffraction efficiency in order to achieve operation above 

~20MHz.  Second, our EOM has a 50 dB extinction ratio, compared to a typical extinction ratio 

of ~ 30dB for an AOM.  In addition, if the amplification system were reconfigured to produce 

longer pulses by temporally slicing from a CW laser source, the EOM would enable <1 ns 
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pulses to be produced, compared to >20 ns pulses if an AOM were used.  Moreover, the EOM 

would also enable pulse generation at higher repetition rates.  

While direct amplification systems are attractive for high average power applications, at the 

time of writing, such systems have only been demonstrated using a single amplifier stage.  This 

restricts the maximum gain to <35 dB, which, depending on the pulse energy from the initial 

source, could restrict the maximum output pulse energy to below that required for certain 

applications.  To avoid this restriction, further research using direct amplification systems, with 

more than one amplification stage, would be interesting.  In addition, it may be useful to use 

time gating in order to introduce the flexibility of a variable repetition rate, both to suit the 

requirements of possible applications, and in order to demonstrate the ultimate pulse energies 

that might be possible from such systems.  SRS will limit the maximum energy, but as with 

CPA systems, pulse energy can be increased by enlarging the fiber core size.  The results from 

an investigation of a direct amplification system using cascaded amplifiers are presented in 

Chapter 8 of this thesis. 

3.4 Overview of CPA and direct amplification system 

3.4.1 Background 

The agreed target specification for our CPA system was for pulses with duration ~500 fs, energy 

10-50 µJ, and average power ~500 mW (repetition rate ~ 50 kHz).  When the scope of the 

research was being agreed, there had been no published reports of Yb-fiber based amplifier 

short pulse systems, and the target pulse peak powers were higher than those reported from 

existing fiber based research (i.e. the system specification represented the state-of the art, 

although results demonstrating pulse energy >1 mJ have since been reported by other 

researchers using a less compact and commercially practical system).  The work developing this 

industrially funded system formed a large proportion of this PhD thesis and is described in 

Chapters 3-7.   

We note that the initial industrial contract specified a very demanding development timetable.  

As a result, it was not always possible to perform as detailed a characterisation of the individual 

system components as would have been desirable and on occasion, initially unpromising results 

were not followed up with more extensive research efforts.  Our approach was rewarded by the 

rapid development of a highly-stable oscillator, which has since been commercialised, and has 

also been used to seed several of the experiments reported in this thesis.  In combination with 

the amplifier cascade, the system has also been used to pump a femtosecond OPO. 

 46



3.4.2 Detailed system configuration 

A schematic representation of the industrially funded CPA system is shown in Fig. 3.2.  To 

address the outstanding technological challenges described above, the agreed research approach 

was to develop a passively mode-locked Yb-fiber-based oscillator to produce ~100 fs pulses to 

be used as a seed for a fiber amplifier cascade.  As with previously reported fiber systems, a 

multi-stage amplifier design was necessary because ASE limits the gain from a single fiber 

amplifier to ~30-35 dB [34].  The system incorporated a high extinction ratio (>50 dB) EOM for 

pulse selection; and used a CFBG pulse stretcher.  ASE build-up was prevented by 

incorporating isolators and AOM time gating (synchronised to the arrival of each pulse) 

between amplifier stages.  These additional components created coupling losses (total ~20 dB).  

We required ~60 dB net gain in order to obtain pulses with an energy of ~50 µJ from our 

oscillator, and it was expected that a cascade of three amplifiers would be necessary to produce 

the required gain, and reasonable overall noise performance.  The subsequent oscillator 

development (Chapter 4) resulted in a stable oscillator with output pulse energy ~50 pJ, which 

confirmed that three amplifiers would be required. 

The desire to obtain a robust and straightforward-to-manufacture system would suggest that 

core-pumping would be the preferred approach.  High-brightness pig-tailed pump diodes, 

spliced directly to WDM couplers, and then to the Yb-doped fiber gain medium, would create 

an integrated fiber system.  However, the core-pumping approach has limited scope for power-

scaling, e.g. the maximum available power from reliable pigtailed diodes is ~350 mW, which is 

below the output power required from the CPA system.  Cladding pumping was therefore 

necessary for the final amplifier stage and possibly for the penultimate amplifier.  Cladding 

pumping has the advantage of using less expensive, low brightness pump diodes.  It was 

decided that the best aspects of both pumping technologies could be exploited by developing a 

core-pumped oscillator and at least one core-pumped pre-amplifier, followed by a 

cladding-pumped power amplifier.  However, selecting a suitable operating wavelength to 

successfully integrate these two technologies in the quasi-three level Yb system is challenging.   

 

Fig. 3.2.  Schematic of the CPA system 
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The emission cross section of 975 nm pumped, Yb-doped silica fiber is peaked at 1030 nm 

(see Chapter 2).  The absorption cross section is highest at wavelengths below ~1030 nm and 

decreases more rapidly than the emission cross section at longer wavelengths e.g. 1060 nm.  

Therefore, high pump intensity can lead to peak gain at wavelengths close to 1030 nm, whereas 

lower pump intensities result in gain at wavelengths >1070 nm.  Core-pumped amplifiers result 

in very high pump-intensities due to ~100% overlap fraction of pump and doped region (doping 

is typically confined to the core), which tends to favour peak Yb gain at 1020-1040 nm.  If 

necessary, the gain can be extended to ~1050-1060 nm by using a longer fiber length because 

the Yb gain at 1060 nm can be pumped by re-absorbed 1030 nm ASE.  In contrast, cladding-

pumped amplifiers result in much lower pump intensities due to reduced pump overlap with the 

doped-region (core).  Low pump intensity creates peak Yb gain at 1070-1100 nm.  In addition, 

relatively long fiber lengths are needed to fully absorb the pump, and thus create an efficient 

amplifier, which again favours operation at long wavelengths due to reabsorption of short 

wavelength ASE.  Shorter fiber lengths are not ideal because they can reduce the amplifier 

efficiency.  Pumping at the 976 nm Yb-absorption peak assists in obtaining the most rapid pump 

absorption in short fiber lengths, and therefore pushes the gain towards shorter wavelengths.  In 

a pulsed system, use of the shortest possible fiber length also minimises detrimental nonlinear 

interactions.  The gain at 1040-1070 nm is also increased by using a lower cladding: core area 

ratio (big core, small cladding) to create higher pump intensities.  The difference between the 

optimally efficient operating wavelengths of core-pumped and cladding-pumped amplifiers 

suggested that a central wavelength of ~1050-1060 nm would enable most effective integration 

of the two technologies within the CPA system.  This wavelength window became the design 

specification for the system, and since the system operating wavelength is determined by the 

oscillator wavelength, this was an important specification for the oscillator.  The final system 

comprised a cascade of two core-pumped pre-amplifiers and a LMA quasi-single mode 

cladding-pumped fiber for the final stage power amplifier. 

Obtaining ultrashort (<500 fs) pulses at the system output required careful consideration of 

the combined effects of group velocity dispersion and nonlinear processes (SPM and SRS) that 

would distort the pulse due to the high peak powers at the system output.  SPM can produce a 

strongly nonlinear chirp such that the recompressed pulse exhibits a broad pedestal containing 

much of the pulse energy.  Avoiding such nonlinear broadening limits the maximum achievable 

pulse energy from a fiber-based system, and in order to increase the pulse energy at which 

nonlinear distortion arises, we used two techniques which reduced the peak intensity within the 

amplifiers.  We use the CPA technique to temporally stretch the initial pulse.  The maximum 

stretched pulse duration is limited by the size of the bulk-grating compressor (grating size and 

grating separation).  To achieve a truly compact system, our industrial sponsor specified the 
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grating size (see Chapter 5 for details), which resulted in a maximum stretched pulse duration of 

~0.3 ns for our system.  With the stretched-pulse duration fixed by the compressor, the 

maximum achievable pulse energy is limited by the onset of SRS in the final amplifier.  Using 

LMA fiber for the final amplifier, decreases the peak intensity (W/cm2) and therefore increases 

the maximum achievable pulse energy that can be cleanly recompressed. 

The detailed development work on this CPA system has formed a major part of this PhD 

thesis research, and is described in the following chapters.  Chapter 4 describes the design and 

realisation of the passively mode-locked, diode-pumped, Yb-fiber laser.  The development of 

the grating stretcher and compressor are described in Chapter 5.  Next, the amplifier 

development is reported in Chapter 6.  The overall performance of the CPA system is described 

in Chapter 7.  The practical implementation of directly amplifying the pulses from the oscillator, 

without temporal stretching, to create a simplified high power source (based on the amplifiers 

developed for the CPA system) has also been investigated.  For this direct amplification system, 

multiple amplifier stages were used in order to obtain higher gain than had been reported 

previously from direct amplification – all previous reports have used a single amplifier stage.  

The performance of the direct amplification system (without pulse stretching) is described in 

Chapter 8. 
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Chapter 4 Mode locked fiber laser 

4.1 Introduction 

This chapter describes the development of a compact, and highly stable stretched pulse laser 

operating at 1.06 µm, based on Yb-doped fiber.  As described in Chapter 3, the laser was 

developed as a seed laser for a CPA system for an industrial sponsor.  Important criteria were 

that the laser should be compact, robust, and stable, and that it should have low noise operation.   

We constructed the oscillator using a Fabry-Perot cavity design, with grating based dispersive 

delay line [1, 2], and SESAM to initiate self-start mode locking [3].  The oscillator uses 

nonlinear polarisation rotation switching to sustain mode-locking.  The oscillator has robust, 

reliable self start, single pulse, mode-locked operation with no Q-switching instabilities, with a 

launched pump power of ~60 mW, and delivers ~30 pJ pulses that are compressible to ~110 fs 

(54 MHz repetition rate; 2.5 mW average output power).  The initial development work on the 

oscillator was performed jointly with Dr. Laurent Lefort, a research fellow working in Professor 

Richardson’s group during the early stages of the CPA project, and his contribution is gratefully 

acknowledged. 

The excellent performance (robust self-start operation with minimal (<0.05%) amplitude 

jitter) of our research prototype, has since enabled us to perform several nonlinear optics 

experiments using this source (e.g. see Chapters 9,10).  The system stability is largely 

attributable to the use of a grating-stabilised, telecommunications-qualified, 976 nm diode pump 

laser. Pump coupling is both conveniently and reliably achieved using a 980nm/1054nm, fused-

tapered WDM coupler.  

This chapter is structured as follows.  Section 4.2 provides a review of previous mode-locked 

fiber laser research and describes the operating principles of our laser.  Section 4.3 provides a 

description of the cavity.  Section 4.4 discusses the characteristics of the Yb-doped fiber.  

Section 4.5 describes the passive fiber components in the cavity and Section 4.6 describes 

various SESAMs that we tested.  The laser performance is described in Section 4.7, and Section 

4.8 presents our conclusions. 
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4.2 Mode-locked fiber laser operating principles 

Ultrashort pulse generation requires either an ultrafast switch, or an environment in which such 

pulses are the most stable state.  Ultrafast sources in the visible are typically based on bulk 

crystal gain media, e.g. Ti:Sapphire, use Kerr lens mode locking as an ultrafast nonlinear 

switch.  An intra-cavity aperture results in relatively high losses for the large diameter CW 

beam, whereas Kerr self-focussing of the high-intensity pulses reduces the beam diameter and 

decreases the loss.  However, such bulk-optics-based cavities require precise alignment and are 

therefore difficult and expensive to construct.  Previous work at a wavelength of 1.5 µm, has 

demonstrated that the anomalous dispersion of standard single mode fiber produces modulation 

instability for a CW beam, and hence initiates pulse formation.  Ultrashort soliton pulses can be 

supported by balancing the effects of GVD and SPM.  The gain medium used at this wavelength 

is Er-doped fiber, and this enables the use of established technology from the 

telecommunications industry.  Whilst modulation instability and soliton effects can generate 

ultrashort pulses, the amplification that occurs every round trip leads to a background 

continuum of wavelengths being produced that can destabilise the circulating soliton.  Therefore 

a filter or ultrafast switch is required, and the first soliton fiber lasers used a nonlinear loop 

mirror  fiber (uses SPM as the nonlinearity) as a fast saturable absorber in a figure of eight 

cavity geometry [4-6].  Later work used a simpler ring cavity geometry with a nonlinear 

polarisation evolution (NLPE) based fast saturable absorber (uses XPM as the nonlinearity) [7-

10].  The soliton power increases with the magnitude of the dispersion, so dispersion shifted 

fiber (providing low total cavity round trip dispersion) has been used to encourage self-starting 

at low powers.  However, the maximum energy from soliton lasers was limited to very low 

pulse energies by the generation of spectral side-bands that resulted in pulse instability and 

breakup into multiple solitons.  

A breakthrough came when, again at 1.5 µm, the group at MIT [11-13] demonstrated that 

quasi-soliton operation was possible in a cavity with lumped sections of large positive and 

negative dispersion, provided that the overall round trip dispersion was close to zero. (In fact, 

the shortest pulses were obtained with small net normal dispersion.)  In this “stretch-pulse” 

configuration, the pulses broaden because of the excess GVD in one section of the cavity, 

before being recompressed in the section of the cavity with opposite sign GVD.  The dispersion 

managed cavity idea leads to the possibility of using bulk optics for the anomalous dispersion 

section, and so it was applicable to wavelengths below 1.3 µm, where conventional fiber has 

normal dispersion.  A passively mode-locked stretched pulse laser based on Nd-doped fiber was 

previously reported in 1993 in a Fabry-Perot cavity with prism-based dispersive delay-line 

(DDL) [14].  NLPE was used as a fast saturable absorber mechanism, and a SESAM was used 
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to induce self-start mode-locking [15].  Although the laser performance in terms of pulse 

duration and quality seemed very good, no data was presented on system stability and 

reliability.  Moreover, this system was end-pumped with two polarisation-multiplexed 150 mW 

laser diodes (808 nm), or with a Kr3+ laser (to obtain the shortest pulses), so the system was still 

not practical for wide application.   

Yb-doped silica fiber offers the advantage of broader gain bandwidth, and in 1996 Professor 

Richardson’s group demonstrated the first mode-locked Yb-doped fiber oscillator [16].  A 

unidirectional cavity design was used that incorporated an optical circulator arrangement and an 

intracavity prism based DDL.  NLPE in the fiber acted as the fast saturable absorber.  The laser 

exhibited good self-starting performance and generated ~65 fs pulses.  However, the cavity was 

large and complex and was pumped with a Ti:sapphire laser.  There have also been a number of 

reports of stretched-pulse lasers operating at 1 µm using high power broad-stripe pump diodes 

and cladding pumped Yb or Nd-doped fiber.  Cladding pumped fiber readily allows scaling of 

the pulse energies achievable from diode-pumped cavities to the nJ regime, but high power 

diode-pump sources are typically not stable against wavelength drift, and are noisier when 

compared to the grating stabilised, high-brightness, single-mode diodes developed over many 

years for core-pumping of erbium doped fiber amplifiers.  Moreover, due to the reduced overlap 

of the pump and signal fields in dual clad fibers, cladding pumped fiber lasers are ordinarily 

much longer in length than core-pumped fiber laser.  Cladding pumped lasers are thus 

inherently likely to be far less stable than cavities based on core-pumped fiber.  

For the new cavity design it was decided that Yb-fiber would be used for the gain medium.  

To ensure low-noise operation, a grating stabilised telecommunications grade laser diode would 

be the preferred pump laser, and using a pigtailed pump diode coupled to the Yb-fiber using a 

WDM coupler would create an all fiber gain-unit.  A Fabry-Perot design would enable a simple 

and compact cavity to be constructed, in preference to the complex ring cavity used previously 

[16].  However, in Fabry-Perot cavities the standing wave pattern of the electric field creates a 

refractive-index grating in the gain medium which creates uneven frequency spacing between 

cavity modes.  This effect increases the threshold power at which mode-beating fluctuations 

build up into a stable pulse i.e. increases the threshold power for self-start mode-locking [17].  

We therefore decided to try incorporating a SESAM into the cavity to enable reliable self-start 

mode-locking.  A bulk grating or prism based dispersive delay line (DDL) would be used to 

compensate for the normal disperison introduced by the fiber.  

4.3 Description of the cavity  

A photograph and schematic of our laser is shown in Fig. 4.1.  The cavity contains a grating-

based intracavity dispersion compensator [1, 2], ~1.0 m of high-concentration, moderately 
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birefringent Yb-doped fiber with angle polished ends to suppress intracavity reflections, and a 

976/1050 nm WDM coupler.  Two polarisers and associated wave plates are included to (1) 

control the bias of the polarisation switch, and (2) adjust the output coupling.  A suitably 

optimised SESAM device (InGaAs MQW absorber, with a rear Bragg mirror made from AlAs-

GaAs quarter layers) is also incorporated to facilitate reliable self-start mode-locking [3].  (The 

SESAM is described in more detail in Section 4.6.)  All intra-cavity optics were anti-reflection 

coated to avoid etalon effects which could disrupt self-starting [15].  The laser is pumped with a 

telecommunications qualified, grating stabilised, 976 nm pump diode (~65mW).  The output 

from the oscillator is extracted from either PBS1 or PBS2.  The axis for the polarisation switch 

is defined at PBS1, where the rejected part of the pulse appears at Port 1.  The half wave plate 

between PBS1 and PBS2 provides adjustable output coupling for the circulating pulses; 

positively chirped pulses are output from PBS2 at Port 3, and negatively chirped pulses are 

output from PBS1 at Port 2.  Having a linear chirp, the pulses are compressible external to the 

cavity, for example using a diffraction grating pair at Port 3 or by propagating the pulses from 

Port 2 along an ~80 cm length of single mode fiber.   

 

 

Fig. 4.1 Experimental configuration (photograph and schematic). PBS, polarising beam 
splitter; HR, high reflectivity mirror. 
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We obtained successful mode locking with both a prism-based and grating-based DDL [16], 

but the prism separation was > 1 m, so we finally adopted the more compact grating based 

design.  The DDL comprised a 600 lines/mm diffraction grating pair, with the beam incident at 

a 30-degree angle with respect to the grating normal.   

4.4 Characteristics of the Yb doped fiber 

The requirements for the Yb-doped fiber are that it should be single mode, should efficiently 

absorb the 975 nm pump, and provide sufficient round trip gain and should have broad gain-

bandwidth (for ultrashort pulses).  The 3rd order dispersion, unlike the 2nd order dispersion, is 

increased rather than compensated by the diffraction grating based DDL; therefore, to minimise 

pulse-distorting effects, we needed to minimise the length of active fiber within the cavity.  In 

order to minimise the length of fiber required for efficient pump-absorption, we used high 

concentration (2,300 parts in 106 by weight) Yb-doped silica fiber (NA 0.21; cutoff ~940 nm) 

pumped at 976 nm (close to the Yb3+ absorption maximum at 975 nm).  The fiber length used 

for all the results presented below was ~1m.  The total length of fiber in the cavity, including the 

WDM, was 1.46 m, and the second and 3rd order dispersion of the 1.46 m length of fiber were 

estimated to be 5.1 x 104 fs2 and 2.9 x 104 fs3, respectively at 1056 nm.  

 

Fig. 4.2  Maximum (open circles) and minimum (closed circles) lasing wavelengths vs. length 
of Yb-fiber (linear cavity with grating for wavelength tuning).  The centre curve 
(closed triangles) shows the wavelength at which the laser gave maximum output 
power. 
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To assess the minimum fiber length that would support a broad gain bandwidth, we tested the 

wavelength tuning range of a CW laser as a function of fiber length using a Fabry-Perot cavity 

with a 4% flat cleave reflection at one end and a lens coupling the beam onto a diffraction 

grating (mounted on a rotation stage) at the other end.  By rotating the grating, we were able to 

tune the lasing wavelength.  We found that the laser wavelength would reliably tune to 1064nm 

for Yb-doped fiber lengths as short as 40 cm.  For a fiber length of 40 cm, the slope efficiency 
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was 56% and the threshold pump power was 40 mW.  Fig. 4.2. shows the minimum and 

maximum lasing wavelengths as the length of Yb-doped fiber is varied from 20 cm to 2 m.  The 

fiber is doped with ~1,500 ppm Yb3+ ions, NA ~ 0.18, cut-off wavelength ~ 940 nm 

(calculated).  In our mode-locked laser cavity, we use ~1.0 m of Yb-doped fiber, which gives 

excellent laser performance. 

4.5 Characteristics of the WDM and birefringence of cavity fiber 

There are two passive fiber components in the laser cavity: the WDM (used to couple the pump 

into the cavity), and boron doped fiber (used in one of the angle polished ends).  This section 

shows the measured characteristics of those components as relevant to the laser. 

The requirements for the WDM are that it should be low loss around 1055 nm, and that it 

should have good pump coupling into the cavity at 976 nm.  At wavelengths that strongly 

couple across the WDM ports i.e. out of the laser cavity, there will be a high cavity loss.  This 

wavelength dependent filter could narrow the oscillator bandwidth, so the WDM should have as 

broad a bandwidth as possible around the 1055 nm central wavelength.  Fig. 4.3. shows the 

reasonably flat transmission from 1020 – 1060 nm, and the efficient out-coupling (for the pump) 

around 980nm. 
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Fig. 4.3 WDM transmission vs. wavelength 
 

Fig. 4.4 Spectrum from oscillator after passing through a 
polariser, then the Boron doped fiber, then 
another polariser. 

 

The fiber for the polished ends should be single mode and low loss.  Although we could have 

polished the WDM and Yb-doped fiber ends directly (avoids splicing), we initially found it 

more convenient (easier to change fiber lengths) to make separate polished ends, and we used 

Boron doped fiber for this because it was readily available since it was used to make the fiber 

gratings for the project, and it was also single mode at 1 µm.  We observed that when using the 

boron fiber the oscillator self-started more reliably, so we characterised the fiber.  By launching 

polarised light from the oscillator and measuring the transmitted intensity viewed through an 
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analyser polariser, ( .) the fiber birefringence beatlength was measured to be 2.6 cm i.e. 

significantly shorter than the 29.7 cm beatlength of the Yb-doped fiber (measured at a 

wavelength of 1510 nm).  We believe that the strong birefringence of the Boron fiber may assist 

the nonlinear polarisation rotation switching since it provides more strongly defined fast and 

slow axes for the orthogonal polarisation modes. 

Fig. 4.4

4.6 Characteristics of the SESAM 

To reduce the self-start threshold power, we incorporated a SESAM to initiate pulsed operation 

[3].  The SESAM modulation depth has conflicting design requirements with regard to avoiding 

Q-switching whilst providing sufficient modulation depth for our high loss cavity.  The 

tendency for SESAM induced Q-switched mode locking (laser output consists of mode locked 

pulses underneath a Q-switched envelope) is avoided if the intracavity pulse energy exceeds a 

critical value , described by following expression (derived by Professor Ursula Keller’s 

group at ETH in Zurich) [18],  

pE

 ( ) 2/1
,,,, RAFAFE AeffAsatLeffLsatp ∆=  

where ([ ) ]absemLsat hF σσν += 2,  is the gain saturation fluence ( =νh  photon energy),   

is the SESAM saturation fluence, and and  are the effective laser mode areas in the 

gain medium and on the SESAM, respectively and 

AsatF ,

LeffA , AeffA ,

R∆  is the modulation depth  Therefore, the 

critical energy to obtain CW-mode-locking increases with increasing modulation depth.  In 

contrast, we require a high modulation depth to provide a sufficient perturbation in our high loss 

cavity.   

It was not obvious which SESAM modulation depth would be the best for initiating robust 

self start mode-locking with single pulse in the cavity.  Professor Keller was therefore kind 

enough to lend us a selection of eleven SESAMs with different modulation depths and recovery 

times to test within our cavity.  The SESAMs were of the low finesse antiresonant Fabry Perot 

type (AFPSA) [3, 19] as typically used in ultrashort pulse sources (see Appendix II for a 

description of the SESAM design and operation).  Before deciding which SESAM to use, we 

characterised the performance of the entire range of SESAMs as described in Appendix II.  The 

SESAM finally chosen was sample Z367.  Whilst the pulse energy in the cavity is largely 

controlled by the peak power necessary for the nonlinear polarisation rotation switching, the 

fluence incident on the SESAM also depends on the spot size of the incident beam, which can 

be optimised by using a telescope with appropriate focal length lenses.  We experimented with 

1:1 focusing and directly butting the fiber end to the SESAM, but obtained the most reliable Q-

 58



switch free operation and robust self-starting using a telescope to reduce the spot size on the 

SESAM (f=11mm lens nearest to the fiber, and f=6mm lens nearest to the SESAM).   

The SESAM (Z367) found to give optimal operation of the oscillator had similar construction 

to SESAM Z273, and the oscillator had almost identical performance with these two SESAMs.  

We therefore believe that the characteristics of the two SESAMs were very closely matched.  

Full characterisation of the SESAM parameters required returning the device to Professor 

Keller’s group, and in order to enable us to continue research using Z367 without interruption, 

we therefore decided to send SESAM Z273 for characterisation.  For Z273, the modulation 

depth vs. wavelength, and the saturation fluence required for bleaching are shown in .  

The slow time constant is ~3ps, the fast time constant is ~100fs, and the modulation in 

reflectivity is ~16%. 

Fig. 4.5

 

Fig. 4.5  SESAM reflectivity:  a) Spectral response.  b) As a function of incident intensity.  
(Figures provided by Professor U. Keller, ETH, Zurich.) 

 

4.7 Laser performance 

The laser performance was characterised in the spectral domain using an optical spectrum 

analyser, and in the temporal domain using a non-collinear second harmonic generation 

autocorrelator.  We also present RF spectra which gives information about the amplitude noise 

and timing jitter of the laser. 
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The dispersion of the DDL was adjusted by varying the grating separation, and we 

investigated the laser performance with various grating separations.  Highly stable operation 

was achieved with a grating separation of 5.4 cm, corresponding to 2nd and 3rd order dispersion 

(double pass) of –8.3 x 104 fs2, and 1.5 x105 fs3 respectively.  The total 2nd and 3rd order 

dispersion in the cavity, including a double pass of the 1.46 m of fiber and the DDL set with the 

optimum grating separation of 5.4 cm, were estimated to be 1.9 x104 fs2 and 2.1 x105 fs3, 

respectively at 1056 nm, which corresponds to a small, net normal group velocity dispersion, 

typical for stretched-pulse cavities [12].  With suitable adjustment of the wave plates, and at 

increased pump powers, the oscillator would also mode-lock with either larger grating 

separation (soliton regime), or with smaller grating separation (substantial net normal 

dispersion).  The soliton regime was characterised by stable mode-locking, but often with 

multiple pulses circulating in the cavity.  With substantial net normal dispersion, mode-locked 

operation was typically more difficult to initiate and was less stable.  Reliable and stable, self-

start, stretched-pulse mode-locking was observed for pump powers as low as 62 mW.  The 

maximum average output power of the laser was 3 mW (~60 pJ pulse energy).  We note that 

there was almost no hysteresis for the range of pump powers below the self-start threshold for 

which mode-locking could be maintained.  At lower pump powers Q-switched mode-locking 

and CW operation were observed.   
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Fig. 4.6  Variation of laser performance with net cavity dispersion.  (See text for details.) 
 

The laser has been in constant use, so we have not had the opportunity to characterise its 

performance in detail with varying grating separation i.e. varying net dispersion.  Instead, we 

have characterised the performance of a “clone” cavity, but which uses a total fiber length of 

1.15 m (WDM = 30 cm, boron fiber = 10 cm, Yb-doped fiber =75 cm), which is slightly shorter 

than the 1.46 m of fiber in the original cavity.  The development and characterisation of the 

clone oscillator was performed jointly with Andy Piper, a graduate student in Professor 
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Richardson’s group.  The measured bandwidth, compressed pulse duration (externally 

compressed from Port 2 using single mode fiber), and time-bandwidth product are shown in 

.  Scaling the optimised grating separation of 4.5 cm used in the clone cavity according to the 

ratio of the fiber lengths in each cavity (1.15m:1.46m) suggests that the optimum grating 

separation of the working cavity should be 5.7 cm, which is close to the 5.4 cm actually used. 

Fig. 

4.6
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Fig. 4.7  a) Spectrum of pulses extracted from Port 2 or Port 3; b) Autocorrelation of 
uncompressed pulses from Port 3 (FWHM 2.4 ps); c) Autocorrelation of 
compressed pulses from Port 2 (dashed line; FWHM 136 fs), and Port 3 (solid 
line; FWHM 108 fs); d) Spectrum of pulses extracted from Port 1 (rejected by 
polarisation switch); e) Autocorrelation of compressed pulses from Port 1 
(rejected by polarisation switch; FWHM ~110 fs). 

Fig. 4.7

 
The output pulse spectrum from Ports 2 and 3 of the laser is shown in Fig. 4.7.a).  The 

spectrum is centred at 1056 nm, and the spectral bandwidth is 18.6 nm.  .b) shows the 

autocorrelation of the uncompressed pulses directly from Port 3 (measured to be similar at 

output Ports 1 and 2).  The output pulses have a strong temporal chirp, and the pulse duration 

was measured using SHG autocorrelation to be ~2.4 ps.  To compress the pulses from Port 3 by 

elimination of the positive temporal chirp, we used a diffraction grating pair and recorded the 

autocorrelation duration to optimise the compressor grating separation.  To compress the pulses 

from Port 2 by elimination of the negative temporal chirp, we coupled the pulses into varying 

lengths of normally dispersive fiber.   
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The dashed and solid lines in .c) show the autocorrelation of the compressed pulses 

from Ports 2 and 3, respectively.  The shortest pulses have an estimated FWHM of 108 fs 

(assuming a Gaussian pulse shape) indicating a compression factor of order 20.  The 

corresponding time bandwidth product of the compressed pulses is ~0.54, typical for a 

stretched-pulse laser.  By comparison, the time bandwidth product for a transform-limited 

Gaussian pulse is 0.44.  Both the autocorrelation and spectrum are seen to be extremely clean 

over the available dynamic range of the measurement equipment. 

c) show the autocorrelation of the compressed pulses 

from Ports 2 and 3, respectively.  The shortest pulses have an estimated FWHM of 108 fs 

(assuming a Gaussian pulse shape) indicating a compression factor of order 20.  The 

corresponding time bandwidth product of the compressed pulses is ~0.54, typical for a 

stretched-pulse laser.  By comparison, the time bandwidth product for a transform-limited 

Gaussian pulse is 0.44.  Both the autocorrelation and spectrum are seen to be extremely clean 

over the available dynamic range of the measurement equipment. 
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We used an external diffraction grating pair to demonstrate that the pulses rejected from 

Port 1 of our laser were also compressible.  The spectrum of these pulses is shown in 

.d); and the compressed pulse autocorrelation is shown in .e).  The spectrum is 

slightly less smooth compared to the circulating pulses, but the compressed pulses are seen to be 

of a similar quality (FWHM ~110 fs).  Following Tamura’s earlier work [20], we may therefore 

be able to eliminate other outputs in order to extract higher power (and still short) rejected 

pulses at Port 1, or to reduce even further the pump power required for self-start mode-locking.  

To produce higher powers, we used Port 2 of the oscillator as a seed for amplification (see 

Chapters 3, 5, 7, 8), and only used Port 1 (rejected output) to trigger the pulse selector and the 

time gating between amplifier stages.  We also note that the grating pair passes the first-order 

diffracted beam, which leaves the zero order beam available as a monitor port or as an 

additional output. 
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pulses at Port 1, or to reduce even further the pump power required for self-start mode-locking.  

To produce higher powers, we used Port 2 of the oscillator as a seed for amplification (see 

Chapters 3, 5, 7, 8), and only used Port 1 (rejected output) to trigger the pulse selector and the 

time gating between amplifier stages.  We also note that the grating pair passes the first-order 

diffracted beam, which leaves the zero order beam available as a monitor port or as an 

additional output. 

    

Fig. 4.8 RF spectra:  a): At the cavity round trip frequency highlighting the low amplitude 
noise of the laser.  b): Seventh harmonic, used to calculate the timing jitter. 
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Fig. 4.8 RF spectra:  a): At the cavity round trip frequency highlighting the low amplitude 
noise of the laser.  b): Seventh harmonic, used to calculate the timing jitter. 
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. shows the RF spectrum at the cavity’s fundamental frequency (53.7 MHz) measured 

by directing the laser output onto a low noise detector (~3 GHz bandwidth), and analysing the 

pulse intensity signal [21] with an  RF spectrum analyser (Marconi Instruments model no. 

2382).  The resolution bandwidth for the scan shown in (a) was 10Hz (span 2 kHz), 

which highlights the low amplitude noise of the laser (calculated to be ~0.05%).  From the 

pedestal on the 7th harmonic peak ( (b), resolution bandwidth 1 kHz) we calculate the 

time jitter of the pulses to be ~2ps.  The method for calculating the amplitude noise and the time 

. shows the RF spectrum at the cavity’s fundamental frequency (53.7 MHz) measured 

by directing the laser output onto a low noise detector (~3 GHz bandwidth), and analysing the 

pulse intensity signal [21] with an  RF spectrum analyser (Marconi Instruments model no. 

2382).  The resolution bandwidth for the scan shown in (a) was 10Hz (span 2 kHz), 

which highlights the low amplitude noise of the laser (calculated to be ~0.05%).  From the 

pedestal on the 7th harmonic peak ( (b), resolution bandwidth 1 kHz) we calculate the 

time jitter of the pulses to be ~2ps.  The method for calculating the amplitude noise and the time 
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jitter are explained in Appendix I [21].  We note that no effort has been made to stabilise the 

laser against external environmental changes.  However, our daily startup procedure has not 

required adjustment of the intra-cavity wave plates provided that the laboratory air conditioning 

maintained similar ambient temperature, and we envisage that enclosing the cavity in a 

temperature controlled housing, would lead to adjustment-free operation.   

If the pump power is high, then there is sufficient gain that the energy of the pulse exceeds 

the threshold for breaking into multiple pulses (a common feature in soliton lasers).  Fig. 4.9. 

shows that the threshold launched pump power is >60 mW and that multiple pulses are observed 

for launched pump powers >80 mW. 
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Fig. 4.9 Single and multi-pulsing regimes: a) output energy, b) pulse width and peak power. 
 

4.8 Conclusion  

In conclusion, we have developed a practical and stable stretched pulse laser operating at 

1.06 µm based on Yb-doped silica fiber.  The Fabry-Perot cavity incorporates a SESAM to 

initiate self-start mode-locking, a diffraction grating based dispersive delay line for dispersion 

compensation, and is pumped with a grating-stabilised telecommunications-qualified single-

mode laser-diode.  Highly reliable and stable, stretched-pulse mode locking (employing 

nonlinear polarisation evolution) could be achieved for pump powers as low as 62 mW.  The 

maximum average output power of the laser in this instance was 3 mW, at a repetition rate of 

53.7 MHz, corresponding to ~60 pJ pulse energy.  The pulses are demonstrated to have a 

smooth spectrum, are compressible externally to 108 fs (assuming a Gaussian pulse profile) and 

have minimal amplitude jitter (~0.05%). 

The setup is based on bulk optical components and XYZ adjustment stages, but in future it 

may be possible to use GRIN lenses directly butted to the fiber ends, and holey fiber instead of 

bulk diffraction gratings for dispersion compensation so as to greatly simplify the cavity set-up.  

We also note that the pulse width was not limited by the Yb3+ gain bandwidth, which has been 

demonstrated to support at least 65fs pulses experimentally [16] and ~30 fs theoretically.  We 
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did not seek to obtain shorter pulses from our cavity, but would consider that this should have 

been possible with further optimisation of fiber length and overall dispersion compensation.   

We believe that laser will prove useful for a wide range of future applications; indeed it has 

already provided useful service in a range of projects at the ORC [22-29].  The laser has now 

been commercialised by our industrial sponsor, and at least one unit is in use with a customer. 
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Chapter 5 CPA Stretcher and compressor  

5.1 Introduction 

An important aspect of our industrially funded CPA system, which differs from previously 

published fiber CPA work, is the use of a compact bulk-grating based compressor, and a 

matched chirped fiber Bragg grating stretcher.  The compact compressor design results in 

significant 3rd order dispersion, which must be compensated by the pulse stretcher if high 

quality <500 fs final recompressed pulses are to be obtained.  This chapter describes our work to 

design an efficient pulse compressor, and a CFBG stretcher with matching 2nd and 3rd order 

dispersion. 

CPA is a technique widely used with high power solid-state laser systems in which a short, 

transform-limited optical pulse is first chirped to stretch the pulse duration, then amplified to a 

high energy, then recompressed to the initial duration by a device of opposite dispersion to the 

pulse stretcher.  This technique avoids high peak intensity in the amplifiers, and hence avoids 

the limiting effects of nonlinearity (SPM, SRS, and self-focusing) thus massively extending the 

peak powers that are attainable from laser systems.  Since the effects of the fiber nonlinearity 

depend on the peak intensity, the design criteria for the stretcher/compressor is for as long a 

stretched pulse duration as possible, within the constraints created by the dimensions of the 

selected pulse stretcher and compressor components. 

Pulse stretching and compression are usually performed with bulk optic devices such as a 

diffraction grating pair, e.g. Galvanauskas et al. demonstrated an Yb-fiber CPA that produced 

380 fs pulses with energies of 1.2 mJ [1] using bulk gratings for both stretcher and compressor.  

However, obtaining the required temporal stretching factors requires grating separations of the 

order of 1 m, which make such systems large and cumbersome.  CFBGs are highly dispersive 

and can provide suitable time delays in only centimetre lengths of fiber.  Indeed, Neil Broderick 

et al. at the ORC have demonstrated 4 ps pulses with energy of 0.9 µJ using CFBG stretcher and 

compressor gratings in an all Er-doped fiber CPA system based on LMA fiber components [2].  

The principal limit on the use of CFBGs is that due to the high peak power in the compressor, 

the nonlinearity of the grating fiber degrades the pulse quality.  In our system, the target final 

(recompressed) pulses with energy of 50 µJ and duration of 500 fs would have a peak power of 

~100 MW and therefore a bulk-grating based compressor is required.  However, it is still 
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possible to use a CFBG stretcher.  Both GDD and 3rd order dispersion of a bulk-grating 

compressor are proportional to the grating separation.  Therefore, using a long (~0.3 ns) 

stretched pulse duration that requires large GDD, also adds large 3rd order dispersion.  For 

recompressed pulse durations <500 fs, uncompensated 3rd order dispersion would result in a 

significant pedestal on the recompressed pulse.  CFBGs incorporating both 2nd and 3rd order 

dispersion compensation have not previously been reported at 1 µm, but using the uniquely 

flexible CFBG writing technology developed at the ORC [3] has enabled us to fabricate a 

CFBG with both the correct 2nd and 3rd order dispersion to compensate for the bulk-grating 

compressor.  Using this CFBG technology should provide a robust, compact, and alignment-free 

pulse stretcher for use in future systems.  The development of this CFBG pulse stretcher is 

presented in this chapter.  Due to the flexibility of the CFBG writing process, we first optimised 

the compressor design for the grating specified by our industrial sponsor, then designed the 

CFBG stretcher to have the required (mirror) dispersion profile.   

This chapter is organised as follows.  Section 5.2 illustrates the effect of uncompensated 3rd 

order dispersion on pulses with bandwidths corresponding to transform limited durations of 

500 fs and 200 fs.  In Section 5.3, we describe the design of the bulk grating compressor.  In 

Section 5.4 we describe the design and development of the CFBG stretcher.  Then in Section 5.5 

we present our conclusions. 

5.2 Effect of uncompensated third order dispersion 

As described above, the high peak powers of the recompressed pulses from the CPA system 

require a bulk grating based pulse compressor, which inherently introduces 3rd order dispersion 

in proportion to the 2nd order dispersion (both are proportional to the diffraction grating 

separation).  To illustrate the effect of uncompensated 3rd order dispersion, we have calculated 

(formula from Agrawal [4]) the effects of uncompensated 3rd order dispersion on Gaussian 

pulses with bandwidths of 7.5 nm and 3 nm, which correspond to transform-limited FWHM 

pulse durations of 200 fs and 500 fs at a wavelength of 1 µm.  We considered two values of 

uncompensated 3rd order dispersion: dD/dλ x Length = 1.5 ps/nm2, and dD/dλ x Length = 

0.5 ps/nm2 (i.e. one third of the value of the first case).  The larger value of 3rd order dispersion 

corresponds to that introduced by the grating compressor design described in Section 5.3.  The 

smaller value of 3rd order dispersion corresponds to the maximum that can be fabricated into a 

CFBG that has both the 2nd order dispersion of the compressor, and also has sufficient spectral 

window (15 nm) to support 300 fs recompressed pulses (see Section 5.4.3 for more details about 

this constraint).   
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The results of our calculations are shown in Fig. 5.1.  For each case we have shown the pulse 

intensity on a linear scale, and the SHG autocorrelation on both a linear and a dB scale.  The 

results show that the distortion from the uncompensated 3rd order dispersion of our compressor 

would be very severe for a 200fs pulse, but less severe for a 500fs pulse.  The FWHM of the 

SHG autocorrelations in Fig. 5.1 b) and e), for increasing 3rd order dispersion 

(0, 0.5, 1.5 ps/nm2), are 283 fs, 1.25 ps, 2.30 ps, for the 200 fs pulse, and 707 fs, 1.05 ps, 1.65 ps 

for the 500 fs pulse.  However, the autocorrelation shape, particularly on a dB scale, gives a 

clearer measure of the pulse quality than the FWHM data because the shape demonstrates how 

uncompensated 3rd order dispersion results in an increasing fraction of the energy in a broad 

pedestal.  We concluded from these calculations that to obtain clean pulses with durations below 

~500 fs would require compensation of the 3rd order dispersion of the compressor.  However, 

for much longer recompressed durations e.g. 1 ps (bandwidth ~1.5 nm) the distortion caused by 

the 3rd order dispersion of the compressor would be less significant, and compensation may then 

be unnecessary. 
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Fig. 5.1.  Effect of uncompensated 3rd order dispersion on Gaussian pulse.  a)-c) 200 fs pulse 
(7.5 nm transform limited bandwidth); d)-f) 500 fs pulse (3 nm transform limited 
bandwidth).  Black line: transform limited pulse.  Red line: 3rd order dispersion 
corresponding to that of bulk grating compressor.  Blue line: 3rd order dispersion 
corresponding to ~1/3 that of the bulk grating compressor. 

 

5.3 Bulk grating compressor 

This section describes the experimental setup and the dispersion design of the bulk grating 

compressor used in our CPA system. 
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5.3.1 Overall layout 

The experimental setup of the bulk-grating compressor is shown in the photograph of  

and the schematic of Fig. 5.3.  The photograph shows the path of the beam (outward pass shown 

in red, return pass shown in blue).  Roof mirrors have been used to translate the beam 

horizontally and vertically to enable just one grating to be used.  This setup has the advantage 

that with the roof mirrors carefully aligned, the grating “pair” is always exactly parallel.  The 

operation of the compressor is perhaps easier to follow on the schematic, where both gratings of 

the equivalent grating pair are shown explicitly (no horizontal translation roof mirror).  The 

schematic also shows the variable design parameters: the grating separation, and the grating 

angle.  As shown in the upper schematic of , a major design constraint is that the 

spectrum would be clipped by the second grating once the grating pair separation is too large for 

the given bandwidth (i.e. the pulse spectral width) and the grating dispersion (determined by the 

grating groove density – lines/mm, and by the angle of incidence).  There is some flexibility in 

designing the dispersion of the compressor because the ratio of 3rd order and 2nd order dispersion 

changes with grating angle as shown by the lower schematic of Fig. 5.3, and quantitatively in 

. 

Fig. 5.2

 

Fig. 5.2  Photograph of compressor. 

Fig. 5.3

Fig. 5.4
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Fig. 5.3.  Schematic of compressor. 
 

Fig. 5.4. Ratio of 23 ββ  vs. input angle onto 
grating.  
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5.3.2 Details of design and performance 

We note that the concept of FWHM bandwidth as applied to pulses is less applicable when 

discussing gratings, and instead we refer to “spectral window” to distinguish that a particular 

wavelength either is, or is not, reflected by the grating.  For a bulk grating the spectral window 

is the wavelength range that will be transmitted through the compressor optics without clipping 

the edges of the grating.  For a CFBG, the spectral window is determined by the range of the 

grating periods written within the core of the fiber.  When calculating the minimum (transform 

limited) temporal pulse duration that would be possible from a grating with a given spectral 

window, we have assumed a pulse FWHM bandwidth equal to half of the spectral window.  

In addition to the agreed overall CPA specifications of <500 fs recompressed pulses, which 

sets a minimum FWHM bandwidth of >5 nm, our sponsors also specified the bulk-grating to be 

used for the compressor (a grating used in some of their other CPA systems).  We are grateful to 

Dr. C. Barty (working with our sponsor at the time of this work) for his assistance with the 

initial compressor design and alignment.  Specifying the bulk grating imposes two additional 

constraints on the compressor deign.  First, if at all possible the grating should be used at the 

angle of incidence for which it is most efficient, which specifies the ratio of (2nd order 

dispersion)/(3rd order dispersion).  Second, the size of the grating (here 10cm) then fixes the 

stretched pulse duration, because the spectral window is already fixed by the bandwidth 

required for the recompressed pulse, and this in turn sets the maximum grating separation.  The 

task of designing the compressor first required selection of the spectral window.  Then, using 

the input angle for which the grating is most efficient, we calculated the maximum grating 

separation in order to avoid clipping.  Finally we calculated the resulting 2nd and 3rd order 

dispersion of the compressor. 
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The grating provided by our sponsor was holographic, with 1500 gr/mm, sinusoidal groove 

profile, gold coated, 10 cm wide, and was manufactured by Richardson Grating Laboratory.  

The beam path through the compressor diffracts off the grating four times, which means that 

high diffraction efficiency is essential.  For example, a diffraction efficiency of 90% leads to an 

overall compressor transmission of , but decreasing the diffraction efficiency to 

80% reduces the compressor transmission by more than a third to  ( .  According to 

the specifications, the grating was expected to have a maximum diffraction efficiency of 89% at 

41 degrees angle of incidence to the grating normal at a wavelength of 1 µm.  Calculating the 

grating efficiency vs. angle of incidence is a specialised topic, beyond the scope of this thesis [5, 

6].  Instead, we measured the diffraction efficiency as a function of angle of incidence using the 

light with the input polarisation found experimentally to have the highest throughput, and the 

results are shown in Table 5.1.  The measured diffraction efficiency is high at angles of 

incidence between 39 degrees and 45 degrees (although our measured efficiencies are somewhat 

lower than the grating specifications).  We conclude that if high transmission is the overriding 

requirement, then the grating compressor should be operated using a 41 degree angle of 

incidence.   

65.0)9.0( 4 =

41.0)8.0 4 =

Both the 2nd order and 3rd order dispersion of the compressor are proportional to the grating 

separation, but the ratio changes with the angle of incidence.  For our grating, the ratio 23 / ββ  

has minimum value of 4 fs at 89 degrees angle of incidence, and the proportion of 3rd order 

dispersion increases rapidly at angles of incidence <45 degrees, as shown in Fig. 5.4.  At a 41 

degrees angle of incidence the ratio 23 / ββ  is 19 fs.  The varying proportion of 3rd order 

dispersion with angle of incidence makes it possible to compensate for small variations in either 

2nd or 3rd order dispersion of the final system, by making small adjustments to the grating angle 

compared to the initial design.  This degree of freedom does not exist with the CFBG stretcher, 

so it is a useful feature of the compressor.  Although small changes in the angle of incidence 

could be useful for optimising the system, large changes could result in excess loss due to 

changes in diffraction efficiency with angle of incidence. 

Table 5.1  Diffraction efficiency of bulk compressor grating  

Angle of incidence (degrees) Diffraction efficiency (%)

36.5 55 
37 68 
38.5 74 
39 79 
41.5 79 
44 80 
45 78 
46.5 75 
47 73 
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We designed the pulse compressor to operate at 41 degree angle of incidence in order to 

achieve maximum efficiency.  We selected the spectral window of 16 nm, being twice the 

measured 8 nm FWHM bandwidth of the amplified pulses. We then calculated that the 

maximum grating separation that keeps this 8 nm spectral window from clipping the grating to 

be 40 cm.  For a central wavelength of 1056 nm, the compressor dispersion parameters were 

then calculated [7] to be: D x Length = 45.5 ps/nm, (GDD = -27x106 fs2/rad); and dD/dλ x 

Length = 1.5 ps/nm2 ( 3β  x Length = 530 x106 fs3/rad2).  In calculating this dispersion, we have 

also included the estimated total dispersion of the fiber amplifiers (D x Length = -0.8 ps/nm, 

dD/dλ x Length = 0.001 ps/nm2), so the above values are the total system dispersion to be 

compensated by the CFBG. 

For this compressor design, we used a network analyser to measure the phase delay vs. 

wavelength as illustrated by Fig. 5.5.  The phase delay measurements were converted to time 

delay measurements by noting that at the test frequency of 1 GHz, a phase delay of 2π 

corresponds to a time delay of 1 ns.  The measured time delay vs. wavelength is shown in 

, which also shows the theoretical delay characteristic.  The measured response corresponds 

closely to the design characteristic. 

Fig. 

5.5

Fig. 5.5. Measurement setup and results showing time delay vs. wavelength for bulk-grating 
compressor. (AOTF=accousto-optic tuneable filter.) 
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We note that single mode fiber has been used by other researchers [8] as a simple, low-loss, 

alternative form of pulse stretcher.  However, the 3rd order dispersion of single mode fiber has 

the same sign as that of the bulk grating compressor, so a fiber stretcher causes additional pulse 

distortion.  Our conclusion that we should compensate for the 3rd order dispersion of the 
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compressor to obtain clean pulses with duration ~500 fs will apply to these fiber stretchers, but 

to consider the suitability of fiber stretchers for longer pulses, we calculated the 2nd and 3rd order 

dispersion to be 2β  = 24x106 fs2/rad.km (D = -40 ps/nm.km); and 3β  = 15 x106 fs3/rad2.km 

(dD/dλ = 0.12 ps/nm2.km), at a wavelength of 1 µm [9].  Hence, for single mode fiber the ratio 

23 / ββ =0.6 fs, compared to 23 / ββ  = 19 fs for our grating compressor.  The 2nd order 

dispersion of the stretcher and compressor would be matched, so the ratio 23 / ββ  shows that 

the uncompensated 3rd order dispersion would be mostly due to the compressor.  Our 

conclusions regarding the suitability of using a single mode fiber stretcher with no 3rd order 

dispersion compensation would therefore be similar to the above, i.e. that such a system would 

only be acceptable for use with longer pulses (narrower bandwidth) e.g. ~1 ps (bandwidth 

~1.5 nm).  

5.4 CFBG stretcher 

CFBG fabrication is performed by selectively exposing the core of a germano-silicate fiber (UV 

sensitive) to intense light pulses from an excimer laser, which creates refractive index variations 

along the fiber core (typically ∆n ~ 10-3 –10-4).  The reflection from each grating period is weak, 

but the ability to fabricate several thousand periods can result in extremely strong gratings [3, 

10].  In a research environment, the strength of the refractive index variation can be relaxed to 

the required strength in a controlled way by annealing the grating at the required temperature.  

(In contrast, for commercial production the exact fabrication parameters would be developed 

and tested in detail, and then the gratings would be written directly to the required strength 

followed only by a low temperature bake to outgas the deuterium loaded fiber after writing.) 

We are grateful to Morten Ibsen, of the fiber gratings group at the ORC, for his collaboration 

on this aspect of the CPA project.  His research group, with input from Professor Zervas, has 

developed a uniquely flexible fiber grating fabrication technology and related grating design 

algorithms, which have allowed the fabrication of gratings with custom designs for 2nd and 3rd 

order dispersion compensation for telecommunications applications at wavelengths near 1.5 µm 

[3, 10].  In designing the required CFBG we have assumed, following direction from Morten 

Ibsen, that gratings with both a broad spectral window and high values of 2nd and 3rd order 

dispersion could be fabricated.  Our contribution to the design process was to calculate the 

required relative time delay at each wavelength for the bulk grating compressor, and this 

information was then used by Morten Ibsen to design the appropriate CFBG stretcher. 

This section describes the development and testing of a series of CFBGs in order to optimise 

the performance of the CPA system.  As mentioned in the introduction, our goal is to 

compensate both the 2nd and 3rd order dispersion of the fiber amplifiers and bulk grating 
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compressor, in order to produce distortion-free compressed pulses at the system output.  The 

first CFBG that we tested had high losses at shorter wavelengths due to “cladding mode losses”.  

The second generation of CFBG was fabricated to control the cladding mode losses by using a 

reduced grating strength compared to the initial grating.  The development process of this 

second generation CFBG demonstrated that due to the large 3rd order dispersion relative to 2nd 

order dispersion, practical constraints imposed by the writing process would limit the spectral 

window of the grating to ~10 nm (corresponding pulse FWHM bandwidth ~5 nm).  This limited 

spectral window would limit the minimum recompressed pulse duration to ~500 fs.  I therefore 

developed a design for a third generation CFBG, with reduced 3rd order dispersion, and which 

we expect could be fabricated with ~15 nm spectral window (i.e. matched to that of the 

compressor), to enable ~300 fs recompressed pulses to be produced. 

This section is organised as follows.  In Section 5.4.1 we present data for the first generation 

CFBG, and explain our observation of excess loss at short wavelengths.  In Section 5.4.2 we 

present data for the second generation CFBG, which incorporated refinements to control the 

cladding mode losses and produced ~500 fs recompressed pulses.  In Section 5.4.3 we propose a 

design for a future CFBG that should enable us to obtain ~300 fs recompressed pulses.  

5.4.1 Performance of first generation CFBG 

Due to the scheduled replacement of the CFBG writing rig during summer/autumn 2000, we 

decided to perform initial testing with an available CFBG with D x length = 18.5 ps/nm, 

dD/dλ x length = 0.1 ps/nm2. 

In 
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CFBG 
50:50  
coupler 

 
 

Fig. 5.6.  Coupling schemes for CFBG.  a) 50:50 coupler; b) Optical circulator.  (FR – 
Faraday Rotator; PBS - Polarising Beam Splitter) 

Fig. 5.6
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To couple light onto the CFBG, we used a 50:50 fiber coupler as shown in  a).  The 

optical circulator arrangement shown in  b) is an alternative coupling scheme used in 

later experiments.  The optical circulator requires more components, but it introduces lower 

coupling losses.  Fig. 5.7 shows the reflected spectra measured from both ends of the CFBG 

using pulses from the mode-locked oscillator described in Chapter 4 as the broadband source.  

The spectra clearly show strong losses at shorter wavelengths when pulses are incident from the 

long wavelength (red) end.  

 75



Red BlueRed BlueRed Blue Blue RedBlue RedBlue Red

Fig. 5.7. Measured spectral response of initial CFBG 
 

The explanation for the difference in reflected spectra for light incident from the two ends of 

the grating is that for such broad spectral window CFBGs, power at shorter wavelengths is 

transferred from the core to cladding modes and is thus lost [11].  Ideally, the CFBG would 

have only one scattering mechanism – when the grating wave-vector k )( oG ν
v

 (matched to light 

of frequency oν  in the high refractive index core) exactly couples the wave-vectors of the 

forward and backward propagating core modes 

i.e.   .  )()()( ,, ocoreforwardocorebackwardoG kkk ννν
vvv

−=

However, for a given frequency, the lower index in the cladding means that the mode there 

has a longer wavelength (shorter wave-vector); so the grating scattering vector, )( oGk ν
v

, can 

also couple a forward propagating core mode of slightly higher frequency )( ννν ∆+= o  (longer 

wave-vector) to a short wave-vector cladding mode (at the same frequency ννν ∆+= o ), 

resulting in lost power 

i.e.   .  )()()( ,, ννννν ∆+−∆+= ocoreforwardocladbackwardoG kkk
vvv

Entering the chirped grating from the low frequency (red) end (high cladding-mode loss), the 

high frequency (blue) components suffer significant power transfer to cladding modes before 

they reach the point in the grating where they are efficiently coupled into backward propagating 

core modes, so they appear to be only weakly reflected.  The problem does not occur when 

entering the grating from the blue end because the blue components are reflected before entering 

into the portion of the grating with the correct wave-vector for coupling the light into cladding 

modes.  Unfortunately, we must enter from the red end in order to match the dispersion of the 

bulk-grating compressor.  We concluded that it would be necessary to control the cladding 

mode losses in order to obtain satisfactory performance from the CPA system.  In the following 

section we describe two methods tested in the second generation CFBG to control these losses. 
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5.4.2 Performance of second generation CFBG 

When designing the second generation of CFBG we decided to test two methods of controlling 

the cladding mode losses.  The first method was to design a CFBG with a spectral window 

much wider than twice the pulse bandwidth, such that the pulse could be reflected from the 

uniform plateau (Fig. 5.7) caused by cladding mode loss that extends across all except the 

longest wavelengths.  Reflecting the pulse from the spectrally flat plateau leaves the reflected 

spectrum undistorted and we considered that the additional ~5-10 dB loss may be acceptable.  

The second method of controlling cladding mode loss was to weaken the CFBG by annealing 

after writing.  A weaker grating scatters less of the shorter-wavelength power to the cladding 

modes, and could therefore actually increase the reflectivity at shorter wavelengths to give a 

generally flatter spectral response. 

To demonstrate the potential of a wide-spectral window grating design for controlling 

cladding mode loss, whilst avoiding the much greater fabrication effort required to produce a 

grating that incorporates large 3rd order dispersion, we initially tested a linearly chirped grating 

with 30nm spectral window.  The reflection and transmission data for this grating are shown in 

 (normalised with respect to input signal).   Fig. 5.8

Fig. 5.8.  Spectral response of linearly chirped grating, with 30 nm spectral window.  
a) Before annealing: Red dotted line: reflection from long wavelength side.  Black 
line: transmitted spectrum.  b) After annealing:  Blue line: (flat spectrum) reflection 
from short wavelength side. Red solid line: reflection from long wavelength side.  
Red dotted line: data repeated from a) for comparison. 
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The transmission curve in Fig. 5.8 a) shows an extinction of >50 dB at a wavelength of 

1055 nm, which demonstrates that this was initially a very strong grating.  The strength of the 

grating also created large cladding mode losses, which are evident from the >15 dB decrease in 

reflection at short wavelengths compared to the peak at 1065 nm.  To reduce the strength and 

thus decrease the cladding mode loss, we annealed the grating, with the results shown in 

 b).  The reflection spectra from both ends of the grating are shown, which confirms that the 

spectral response was only affected by cladding mode losses when the grating was illuminated 

from the long wavelength side.  The reflected spectrum from the long wavelength side of the 
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annealed grating was generally flatter compared to the spectrum from the grating prior to 

annealing.  The maximum reflectivity was slightly reduced, but the reflectivity at short 

wavelengths was dramatically increased.  The relaxation of the raised index periods that results 

from annealing, reduces the average refractive index of the grating, and therefore reduces the 

optical path length in the grating.  The reduced optical path length causes the slight shift of the 

grating spectrum to shorter wavelengths that can be seen by comparing the reflection curves 

from before annealing (dotted red line) and after annealing (solid red line) in Fig. 5.8 b).  From 

these results we concluded that by annealing to provide optimum strength, it would be possible 

to control the problems associated with cladding mode losses.  Using this technique, the entire 

spectral window of the CFBG is useful, and it would therefore be unnecessary to work on the 

short-wavelength low-reflectivity plateau. 

The next CFBG that we tested had a spectral window of 10 nm, and the full 2nd and 3rd order 

dispersion required to compensate for the compressor: D x length = 45.5 ps/nm, dD/dλ x 

length = 1.5 ps/nm2.  For this CFBG design, we again used a network analyser to measure the 

time delay vs. wavelength, as described in Section 5.3.2.  The measured time-delay vs. 

wavelength results and the designed delay vs. wavelength are shown in .  The measured 

response corresponds closely to the design characteristic.   

Fig. 5.9
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Fig. 5.9.  Delay vs. wavelength for 10 nm CFBG.  Both design and measured characteristics 
are shown. 

 

The normalised reflection spectrum of the grating (after annealing) is shown in .  We 

considered that the spectral response was sufficiently uniform that the grating should permit 

cleanly recompressed pulses.  The calculated stretched pulse duration was ~ 45.5 ps/nm x 

5 nm = 220 ps.  Fig. 5.11 shows the SHG autocorrelation measurements of the compressed 

pulses (i.e. after passing through both stretcher and compressor) for both the 30 nm grating and 

for the 10nm grating.  The autocorrelation from the 30 nm CFBG clearly shows the degradation 

in pulse quality caused by uncompensated 3rd order dispersion of the compressor.  By 

comparison, the performance of the 10 nm CFBG is excellent, producing τFWHM = 470 fs pulses 

Fig. 5.10
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with 6nm bandwidth, ∆ν∆τ~0.7.  We conclude that this grating is suitable for producing clean 

pulses with the 500 fs duration required for our industrially sponsored CPA system.  
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Fig. 5.10.  Spectral response of 10 nm spectral 

window CFBG (with 3rd order 
dispersion). Black line: reflection 
from long wavelength side. Red 
dotted line: transmitted spectrum.  

Fig. 5.11 SHG autocorrelation of recompressed pulses. 
Black line: Pulse FWHM=470 fs, from 10 nm 
CFBG. Blue dash dot line: Pulse FWHM=2000 fs 
from 30 nm linearly chirped CFBG.  Inset: pulse 
spectrum after final amplifier of CPA system with 
10 nm CFBG. 
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5.4.3 Further considerations 

The 10 nm spectral window CFBG (Section 5.4.2) with the required 2nd and 3rd order dispersion 

to compensate for that of the compressor, enabled us to produce compressed pulses with 

τFWHM = 470 fs, ∆ν∆τ=0.7 (bandwidth ~6nm).  Due to practical constraints imposed by the 

CFBG writing process and the limited range of available phase-masks, 10 nm was the maximum 

spectral window that it was possible to fabricate for a grating that incorporated the high value of 

3rd order dispersion required to compensate for the compressor.  This limited spectral window 

would limit the minimum recompressed FWHM pulse duration to ~500 fs.  Pulses of this 

duration should be useful for many applications of our CPA system, but to extend further the 

range of potential applications may require the system to produce shorter pulses.   

Morten Ibsen indicated it should be possible to fabricate a larger spectral window CFBG with 

D x Length = 45.5 ps/nm by limiting the 3rd order dispersion to dD/dλ x Length = 0.5 ps/nm2 

i.e. ~ 1/3 of that required by the original compressor design.  We noted in Section 5.3 that by 

changing the angle of incidence onto the grating compressor, the ratio 23 / ββ  could be 

reduced, although this would potentially result in reduced transmission efficiency.  To develop 

our technology to produce ~300 fs pulses, we have therefore designed a third generation CFBG.  

We first redesigned the compressor with reduced 3rd order dispersion as follows: spectral 

window = 15 nm (corresponds to pulse FWHM of ~7.5 nm), 58 degree angle of incidence, 

grating separation of 120 cm, calculated dispersion of D x Length = 40.8 ps/nm, dD/dλ x 

Length = 0.34 ps/nm2 (stretched pulse duration ~ 40.8 ps/nm x 7.5 nm ~300 ps).  The CFBG 

stretcher will be fabricated (not done at the time of writing) with 15 nm spectral window, and 
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dispersion to compensate for that of the redesigned compressor, and should enable us to obtain 

high quality pulses with duration of ~300 fs.  

We noted in Section 5.3 that the diffraction efficiency of our grating reduces significantly at 

angles of incidence above 47 degrees (see ).  However, this reduced diffraction 

efficiency may not prove to be a limitation because as we move towards higher average powers 

from the CPA system it will be necessary to switch to a more efficient compressor grating with 

a reflective dielectric coating (e.g. >95% efficiency), or to use the emerging technology of silica 

transmission gratings that have been designed to handle >100W average power from a CPA 

system [8].  When selecting a new compressor grating, it may be possible to obtain efficient 

diffraction at the angle of incidence required to match the 23 / ββ  ratio of the third generation 

design CFBG.  We therefore consider that the proposed design of CFBG stretcher and 

compressor is a valuable development, as it should enable us to demonstrate significantly 

shorter ( ~300 fs) recompressed pulses from the system. 

Table 5.1

5.5 Conclusion 

In conclusion, we designed and implemented a bulk grating compressor that transmitted a 

spectral window of 16 nm, had grating separation of 40 cm, operated at 41 degree angle of 

incidence, and produced 2nd and 3rd order dispersion of D x Length = 45.5 ps/nm, ( 2β  x Length 

= -27x106 fs2/rad); and dD/dλ x Length = 1.5 ps/nm2 ( 3β  x Length= 530 x106 fs3/rad2).  Our 

calculations indicated that 3rd order dispersion compensation would be necessary in order to 

obtain high quality recompressed pulses with τFWHM <500 fs, and this was confirmed 

experimentally by the large pedestal on the SHG autocorrelation observed when we used a 

linearly chirped CFBG stretcher.  Our initial CFBG tests showed highly uneven spectral 

reflectivity caused by cladding mode losses when light was incident from the long wavelength 

side of the grating.  By optimising the strength of the grating (by annealing the CFBG after 

writing) we have now largely controlled this problem.  We then designed and implemented a 

CFBG stretcher with 10nm spectral window and the correct 2nd and 3rd order dispersion to 

compensate for the parameters of this bulk grating compressor.  The grating had a well 

controlled spectral response and the measured SHG autocorrelation showed that we obtained 

high quality recompressed pulses with τFWHM = 470 fs (∆ν∆τ~0.7).  The stretched pulse duration 

from this grating was calculated to be ~220 ps.  The combination of bulk grating compressor 

and 10 nm CFBG stretcher should satisfy the requirements of our industrial sponsor.   

To develop the CFBG technology to produce τFWHM ~300 fs pulses, we have re-designed the 

pulse compressor to reduce the 3rd order dispersion relative to the 2nd order dispersion (D x 

Length = 40.8 ps/nm, dD/dλ x Length = 0.34 ps/nm2), which should enable the fabrication of a 
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CFBG with spectral window >15 nm and with both 2nd and 3rd order dispersion to compensate 

for the compressor.  The calculated stretched pulse duration from this CFBG is ~300 ps.  The 

redesigned compressor will not operate at the most efficient angle of incidence for our bulk 

grating, but we note that to develop the compressor for use at high average power may require 

replacement of our gold-coated diffraction grating with a very high efficiency dielectric grating, 

and it may be possible to select the replacement grating to have high efficiency at the required 

angle of incidence.  We consider that the proposed design of CFBG stretcher and bulk grating 

compressor should enable ~300 fs recompressed pulses and is therefore a valuable development. 
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Chapter 6 Fiber Amplifier Cascade 

6.1 Introduction 

In this chapter, we describe the design and characterisation of the Yb-fiber amplifiers used in 

the CPA and direct amplification systems described in Chapter 3.  We also describe the 

components use to suppress ASE build-up between the amplifier stages because these 

components are common to both systems.   

A detailed schematic of the complete CPA system is shown in Fig. 6.1.  The system design 

follows common practice by decreasing the pulse repetition rate to reduce gain saturation effects 

and hence achieve higher pulse energies.  The multi-stage amplifier system was necessary 

because ASE limits the gain from a fiber amplifier to ~35 dB [1], but we required ~60 dB gain 

in order to obtain pulses with E>10 µJ from our (highly stable) low power oscillator with pulse 

energy ~ 60 pJ.  If unchecked, ASE would build up along the amplifier cascade and saturate the 

gain of the amplifiers we therefore used isolators and time gating (synchronised to the arrival of 

each pulse) to avoid cascaded ASE.  The necessary additional components created coupling 

losses that totaled ~20 dB, including: 4 dB insertion loss of our pulse selector, 3 dB coupling 

loss between each amplifier, and 10 dB coupling loss from the CFBG pulse stretcher.  We 

therefore required a cascade of three amplifiers to produce the necessary gain.  

As described in Chapter 3, the goal of creating a robust and straightforward-to-manufacture 

system suggested that using core-pumped amplifiers would be the preferred approach.  

However, core-pumped amplifiers have limited scope for power-scaling, e.g. the maximum 

available power from single-mode pump diodes is ~350 mW, and therefore cladding-pumping 

was necessary for the final amplifier stage in order to obtain the required high output power.  

We decided that the best aspects of both pumping technologies could be exploited by 

developing two core-pumped pre-amplifiers, followed by a cladding-pumped power amplifier. 
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This chapter is organised as follows.  We first describe the components used for pulse 

selection and ASE suppression in Section 6.2.  Next, we present our work to optimise the 

amplifiers.  Section 6.3 describes the development of the core-pumped pre-amplifiers.  Section 

6.4 describes the concept of cladding-pumped amplifiers.  Section 6.5 describes a ‘GTWave’ 

cladding-pumped pre-amplifier.  (‘GTWave’ is a cladding pumping scheme patented and 

marketed by Southampton Photonics Inc. (SPI))  Section 6.6 describes LMA power amplifier 

that was cladding-pumped using a conventional end-pumping configuration.  The performance 

of the CPA system as a whole is presented in the following chapter (Chapter 7), and the 

performance of the direct amplification system is presented in Chapter 8. 

 

Fig. 6.1. Detailed schematic of complete CPA system. (FR = Faraday rotator.  MOPA = diode 
pump laser, FC/PC = fiber connector type.) 
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6.2 Pulse selection and amplifier gating  

For pulse selection, we used a high extinction ratio (>50 dB) EOM.  Using this device, the 

repetition rate could, in principle, be reduced to any sub harmonic value of the oscillator.  In 

practice the lowest repetition rate used in our CPA system was limited to ~10 kHz by the 

requirement to saturate the final amplifier.   

ASE build-up along the amplifier chain can be a significant problem at low repetition rates.  

To suppress this, both an isolator and an AOM were inserted between each amplifier.  The 

AOMs were aligned such that the first order diffracted beam was launched into the following 

amplifier stage and were then activated for a only short time window to allow the pulses 

through but to block the ASE background.  The AOMs (supplied by AA Sa., model number AA 

ST110_1.06) are made from TeO2 (acoustic velocity 4200 m/s) with specified rise time of 

160 ns/mm.  With a beam diameter ~1.5 mm, the experimentally determined optimum time 

window (to just avoid clipping of the transmitted pulse) was found to be 320 ns.  The electronic 

timing control system was comprised of a trigger and delay/pulse generators controlling the 

EOM (HP 8131A), and the AOMs (Stanford Research Systems DG 535).  For the trigger, we 

used a fast photodiode at the output port of the oscillator that is not used for seeding the system.  

The electronic timing control system is shown schematically in .  Polarisation 

controllers were used to ensure maximum throughput from the isolators. 

Fig. 6.1

6.3 Core pumped pre-amplifiers 

The peak power in the pre-amplifiers is not high so, when using the CPA technique, 

nonlinearity management is not a concern.  To achieve stable, low-noise operation, we used 

core pumping via a 980:1060 nm WDM in a forward pumped configuration.  The measured 

wavelength coupling characteristics of the WDM are shown in Chapter 4.  We used standard 

single-mode Yb-fiber for the gain medium (identical to that used in the oscillator).  This section 

is organised as follows.  Section 6.3.1 describes the performance of the initial configuration of 

the pre-amplifiers.  Sections 6.3.2 and 6.3.3 describe design refinements that enable increased 

gain to be obtained. 

6.3.1 Initial performance 

The initial configuration of the pre-amplifiers is shown in Fig. 6.2.  Angled ends were used to 

suppress unwanted Fresnel end-reflections.  The length of the Yb-fiber was selected such that 

the ASE spectrum was approximately flat and centered across the wavelength band of the signal 

as shown in . Fig. 6.3
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Fig. 6.2 Pre-amplifier: initial configuration 

Fig. 6.2

Fig. 6.3  Measured pre-amplifier ASE 
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The gain of the pre-amplifiers was characterised using a Nd:YLF seed laser (1047 nm), with a 

signal-generator-driven AOM to control the input duty cycle.  The input and output pulses were 

measured using a photodiode, and calibrated neutral density filters were inserted at the amplifier 

output to match the photodiode voltage to that at the input.  The launch efficiency into the 

WDM was measured before splicing on the Yb-fiber.  For the pre-amplifier of , the 

measured small-signal gain was ~25 dB, and the saturated output power was ≥ 50 mW, as 

shown in Fig. 6.4.  The gain was adequate for our requirements, but would limit future power 

increases in the system, so we have also considered design improvements, described below, that 

should enable increased gain to be obtained. 

Input power (mW)
0.1 1 10

G
ai

n 
(d

B
)

5

10

15

20

Input power (mW)
0 10 20

O
ut

pu
t p

ow
er

 (m
W

)

20

40

60

Fig. 6.4 Gain and output power characteristics of first pre-amplifier. 
 
 

6.3.2 Increased gain using mid-amplifier pump injection 

In this section, we describe a technique for obtaining increased gain from a core-pumped Yb-

doped fiber amplifier by recycling lost short-wavelength ASE.  This technique was first applied 

to Er-doped fiber amplifiers, but to our knowledge, has not been used previously in Yb-doped 

fiber amplifiers.   
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Recycling lost ASE exploits the details of the Yb spectroscopy (see Chapter 2).  In the 1.0–

1.1 µm range, the emission cross section of Yb-doped silica fiber is peaked at 1030 nm.  The 

absorption cross section is highest at wavelengths below ~1030 nm.  Consequently a high 

inversion fraction and strong pumping are required to create gain (and ASE) at 1030 nm; and 

gain at 1030 nm will only occur near the pump end of the fiber.  Importantly, the absorption 

cross section decreases more rapidly than the emission cross section at longer wavelengths e.g. 

1060 nm.  Therefore a much lower inversion, possibly pumped by re-emitted 1030 nm light, can 

create gain at 1060 nm; and gain at 1060 nm is possible further away from the pump end of the 

fiber (in a part of the fiber where there is net absorption of 1030 nm light).  We operate with a 

1060 nm signal, so 1030 nm ASE emitted from the pump end of the fiber is “lost” power.  In a 

paper concerning long wavelength (1570-1610 nm) Er-doped fiber amplifiers, a similar 

relationship between the absorption and emission cross sections at shorter and longer 

wavelengths also resulted in “lost” shorter wavelength (1550 nm) ASE near the pump [2].  It 

was demonstrated that a second length of Er-doped fiber inserted before the point where the 

pump was injected could absorb the “lost” ASE and provide additional gain of up to 4 dB at 

longer signal wavelengths.  Applying this idea to our set-up,  shows the results of 

theoretical modelling (by Dr. J. Nilsson) for our Yb-fiber system, which confirms that by using 

mid-point pump injection, the gain at 1056 nm would increase by ~3 dB compared to the gain 

with a single length of doped fiber.   Note that in . the percentage of the total fiber length 

either side of the pump is shown.  Fig. 6.5 also shows that the peak gain does not change 

significantly when the pump injection point is >30% along the doped fiber length, so some 

variation in the exact position of the pump injection point can be tolerated.  We have employed 

mid-point pump injection for the final design of pre-amplifier used to characterise the 

performance of the CPA system. 

Fig. 6.5

Fig. 6.5

 

• Small-signal gain of core pumped 
Yb-doped fiber amplifier with 
midway forward pump injection.  

• Pump injected at 0,10,20,30, and 
50% of the YDF length. 

• Signal wavelength 1056 nm 

Fig. 6.5  Predicted amplifier gain; midpoint pump injection; 5 µm diameter core; 220mW 
pump. 
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6.3.3 Increased gain using small core fiber  

In this section we describe the technique of using a smaller core Yb-doped fiber for obtaining 

increased small signal gain.  Using a small core with high NA results in a tightly confined 

mode, and hence higher pump intensities for a given pump power.  The concept of obtaining 

increased gain from a more tightly confined mode has previously been applied to Er-doped fiber 

amplifiers [3, 4].  However, to our knowledge, this is the first time that the technique has been 

applied to an Yb-fiber system.   

Fig. 6.6

Fig. 6.6 Predicted amplifier gain: midpoint pump 
injection; 3 µm core fiber; 220mW pump. 

Fig. 6.7  Predicted amplifier gain: midpoint pump 
injection; 3 µm core fiber; 400mW pump. 

 shows simulation results (by Dr. J. Nilsson) for a 3 µm core fiber, using the same 

pump power as the simulations for a 5 µm core fiber shown in .  Using the smaller core 

fiber causes the maximum gain to increase by ~10 dB.  Fig. 6.7 shows simulated results for the 

3 µm core fiber but with an increased pump power of 400 mW; the gain has increased by a 

further 4 dB to 41 dB.  In practice, it will be necessary to splice the 3 µm core fiber to the WDM 

coupler (~5 µm core fiber), which will create a theoretical [5] splice loss of ~0.6 dB per splice.  

It may be possible to reduce the splicing loss by inserting a short length of fiber with 

intermediate core size to create a quasi-adiabatic taper, or by using tapered splices.  There may 

also be an increased coupling loss at the launch to the LMA power amplifier.  Even after taking 

into account the expected splice/coupling losses, the net gain using the 3 µm core fiber is still 

significantly above that obtained from the 5 µm core fiber, so we intend to use such a small core 

fiber in the next upgrade of the system.  

Fig. 6.5

Fiber length  [m]
0 2 4 6

Sm
al

l-s
ig

na
l g

ai
n 

 [d
B

]

25

30

35

0% 

10% 

50% 30% 20% 

Fiber length  [m]
0 2 4 6

Sm
al

l-s
ig

na
l g

ai
n 

 [d
B

]

30

35

40 30%, 50% 

0% 

20%
10%

6.4 Cladding pumped amplifiers 

Cladding-pumped fiber enables low brightness but high power pump diodes to efficiently pump 

high brightness fiber lasers and amplifiers.  To obtain the required power at the CPA system 

output, it was essential that we used a cladding pumped final stage power-amplifier.  In the 

future, we may wish to upgrade the CPA system to produce much higher average power 

e.g. ~10 W.  We therefore evaluated a cladding-pumped pre-amplifier that would potentially 
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provide sufficient input power to saturate the final amplifier even when producing such a high 

average output power.  Section 6.5 describes the evaluation of a cladding-pumped pre-amplifier, 

and Section 6.6 describes the design and performance of the cladding-pumped final stage 

power-amplifier. 

6.5 GTWave pre-amplifier 

This section describes the charactersitics of a cladding pumped pre-amplifier that could produce 

much higher average power compared to a core-pumped pre-amplifier.  The usual arrangement 

for launching the pump into the fiber inner cladding is to use a lens pair and dichroic mirror, and 

is shown in , and this technique was used for the LMA power-amplifier.  However, this 

arrangement is bulky, and requires precise alignment.  An ingenious alternative developed by 

Dr. Anatoly Grudinin and Paul Turner (ORC/SPI: European patent application number 

W0067350) called GTWave fiber, is shown schematically in .  A fiber with a doped core 

is held in contact with a pure silica dummy fiber, encased together in a low refractive index 

outer clad.  The fiber pigtailed pump diode is spliced directly to the dummy fiber, from which 

the power transfers across to the doped fiber and into the Yb-doped core. 

Fig. 6.11

Fig. 6.8

 

Total launched pump power (W)
1.6 1.8 2.0 2.2 2.4

G
ai

n 
(d

B
)

26

28

30

 

Fig. 6.8 Schematic of GTWave fiber: a) cross section 
view (Yb-doping confined to active fiber 
core (shaded)), b) side view. 

 

Fig. 6.9. Gain characteristics of GTWave amplifier.  
Maximum output power = 200 mW.  Bi-
directional pumping with maximum pump 
power from each end of ~1.2W. 

 

a) 

b) 

Yb-doped fiber 
Pure silica  
“Dummy” fiber  

Low refractive 
index coating  

We measured the small signal gain of a GTWave amplifier using pump power >2 W, and 

using an AOM gated Nd:YLF seed (1047 nm).  We obtained ~31 dB small signal gain from an 

amplifier with ~2.5 m doped fiber length as shown in Fig. 6.9.  However the amplifier we tested 

was an early prototype and the pump to signal optical efficiency was only ~10%, due to pump 

leakage from the dummy fiber and incomplete absorption.  GTWave amplifiers using Er-doped 
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fibers are now a standard product produced by SPI, and GTWave Yb-fiber amplifiers are 

scheduled to become a standard product shortly.  We have been unable, as yet, to test a suitably 

optimised Yb-fiber GTWave amplifier, but we plan to return to this technology in the future to 

enable the CPA system to produce higher average power.  For the initial prototype of our 

industrially sponsored CPA system, core pumped pre-amplifiers were used.   

6.6 Power amplifier 

This section describes the pump configuration and fiber design developed for the power 

amplifier used in the CPA and direct amplification systems.  As described in Section 6.4, 

cladding pumping is necessary in order to obtain the >1 W power required at the output of our 

CPA system.  To obtain maximum output power from the amplifier, counter propagating pump 

is used, although this increases the noise figure, and requires a strong input signal (saturated 

gain regime) if acceptably low ASE levels are to be obtained at the amplifier output.  Simply 

using standard single-mode core fiber designs in a cladding pumped configuration would not 

enable us to achieve the required output pulse energy because SRS in the final amplifier would 

limit the maximum pulse energy.  We therefore used a larger core fiber design to increase the 

maximum pulse energy that could be produced by the system.   

This section is organised as follows.  In Section 6.6.1 we review how the maximum pulse 

energy that avoids unacceptable nonlinear distortion scales with the fiber core area and with the 

reciprocal of the fiber effective length.  Then. in Section 6.6.2 we calculate the maximum pulse 

energy possible for a given fiber core geometry due to energy storage limitations.  In Section 

6.6.3 we describe the fiber design used in our system, and in Section 6.6.4 we describe the 

experimental setup used to measure the fiber efficiency when operating as a laser. 

6.6.1 Fiber nonlinearity constraints 

The nonlinear process that limits the maximum pulse energy is SRS.  As described in Chapter 2, 

the threshold pulse peak power for the onset of SRS is approximately 

(16 x ) / ( g  x ), where  is the Raman gain coefficient,  is the effective 

mode area, and  is the effective length of fiber [6].  This is the threshold power for forward 

Raman scattering; the threshold power for reverse Raman scattering is higher.  As an example, 

for a stretched pulse FWHM duration of 0.3 ns, an amplifier fiber length = 2 m, gain = 20 dB, 

and fibers with core diameters = 5, 15 and 30 µm, the Raman threshold power corresponds to a 

pulse with energy of 3, 28 and 113 µJ respectively.  The limiting effects of SRS are considered 

in greater detail in the following chapter.  

effA Raman

effL

effL Ramang effA
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Even below the threshold for SRS, nonlinear pulse phase distortion arises due to SPM, and 

this can increase the duration of the recompressed pulse and decrease the peak to pedestal 

contrast ratio [7].  Although in a CPA system the phase-distortion introduced by SPM can, in 

principle, be pre-compensated by purely linear devices [8], e.g. a spatial light modulator [9], we 

would prefer to avoid this complexity by preventing excessive SPM induced pulse distortion 

from occurring.  Using large core fibers decreases the intensity and hence increases the pulse 

energy threshold for unacceptable SPM induced distortion.  In our system we used LMA fiber 

for the final amplifier with a 15 µm core diameter. 

6.6.2 Energy storage constraints    

As an estimate of the maximum extractable energy, we consider the maximum energy 

Q-switched pulse that can be obtained from a given fiber.  As a direct result of the high gain and 

tightly confined optical mode, rapid energy loss in the form of ASE limits the Q-switched pulse 

energy from conventional single-mode Er and Yb-doped fibers to ~ 10 µJ [10] and 100 µJ [11] 

respectively.  The extractable pulse energy is influenced by the spectroscopic properties of the 

dopant, the available pump power, and the fiber geometry, and a good estimate for the 

maximum energy obtainable from a fiber is Emax~10 x saturation energy.  The saturation energy 

is calculated as Esat= ))((Ah sasess Γ+σσν , where sνh  is the signal photon energy,  is the 

doped area, Γ  is the signal overlap with the active dopant, and 

A

s esσ  and asσ  are the signal 

emission and absorption cross sections [12].  For fibers that have the active dopant confined 

within the core,  that Esat is then approximately proportional to the signal mode area [11], and by 

using large core Yb-doped fibers, single-mode Q-switched pulses with >5 mJ have been 

produced [12].  We conclude that whereas the extractable energy from a conventional single-

mode fiber would probably prove problematic for our target of 10-50 µJ, this limitation would 

be avoided by using LMA fiber.  

6.6.3 Fiber design 

As described above, to overcome the constraints imposed by energy storage and nonlinear pulse 

distortion, we used a large mode design for the fiber core and this section provides details of the 

core design.  Earlier work using large core multimode fiber amplifiers demonstrated increased 

pulse energy and increased threshold for nonlinear distortion, although without necessarily 

maintaining M2 = 1 beam quality [1].  More recently, Fermann et al. at IMRA used large core 

multimode fibers to obtain increased pulse energies, whilst attempting to maintain single-mode 

beam quality by exciting only the fundamental mode at the fiber input [13].  However, the mode 

quality obtained this multi-mode fiber approach is perhaps less inherently robust against 
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exciting higher order modes due to launch alignment drift or fiber perturbation compared to 

using a single-mode fiber. 

Our group has previously demonstrated 0.5 mJ pulses directly from a Q-switched, quasi-

single-mode LMA fiber.  LMA fiber combines a low NA core to reduce the number of guided 

modes to ~3, and a strategic doping pattern designed to greatly enhance the gain of the 

fundamental mode compared to higher order modes to give quasi single-mode output [14].  The 

minimum core NA is set by the ability to reliably fabricate a small index difference, and is 

typically ~0.06.  The addition of a raised index ring within the LMA fiber core significantly 

reduces bend losses, and increases further the size of the fundamental mode.  The increased 

sensitivity to bending loss compared to standard (higher NA) fibers is managed by using fiber 

coils with ~30cm diameter.  . shows the refractive index profile of our Yb-doped LMA 

preform.  The Yb-doped gain region is confined to the central core, which overlaps with a larger 

fraction of the fundamental mode power (intensity maximum at fiber centre), compared to the 

low overlap fraction with the second order mode power (intensity node at fiber centre).  The 

differential overlap encourages single-mode operation.  For many applications, robust M2=1 

mode quality is required, and we therefore chose an LMA power amplifier [14, 15] for the 

initial CPA design.  

Fig. 6.10

Fig. 6.10. Refractive index profile of LMA preform (fiber code number: HD605). 

Core diameter = 15 µm 
NA = 0.06 
Yb conc. = 700 ppm 

 
The length of the amplifier is controlled by the efficiency of power transfer from the cladding 

to the core, which depends on the extent of overlap of the inner-cladding modes with the Yb-

doped core.  Inefficient power transfer can arise because the higher order modes supported by 

the inner-cladding, e.g. helical modes, can have nodes at the fiber centre, leading to unabsorbed 

pump.  Standard techniques to improve the coupling from inner-cladding modes to core modes 
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are to increase the core to inner-cladding area ratio, to use an offset core, and to use an irregular 

shaped inner-cladding (encourages mode-coupling).  We used a preform with milled flat sides, 

which destroyed the cylindrical symmetry of the inner cladding and encouraged mode-mixing 

[16].  A schematic cross section of the preform geometry with milled flat sides is shown inset to 

.  The milled preform is coated with a polymer jacket with lower refractive index to 

create a waveguide for the pump light. 

Fig. 6.10

6.6.4 Experimental setup and results 

The experimental setup used for the power amplifier is shown in .  To obtain maximum 

output power and minimise the effective length (minimum nonlinear distortion) we reverse 

pumped the power amplifier.  The pump diode laser was a Boston Laser Inc. model ML430: 

6 W, 915 nm, fiber coupled into 100 µm diameter, NA = 0.2 core fiber.  The pump was free-

space coupled into the LMA fiber inner cladding (diameter 100 µm; NA ~0.2), and we used a 

dichroic to separate the pump and signal beams.   

Fig. 6.11
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Fig. 6.11 Schematic of LMA amplifier showing the 
pump configuration. 

 

Fig. 6.12. Laser characteristic of LMA (HD605). 

Fig. 6.12

                (Length = 3 m; Flat-cleaved ends). 

Dichroic 
HT < 1 µm 
HR > 1 µm 

IN 

OUT 

3 m Yb LMA fiber 
HD605 

915 nm,  
~6 W pump

 

We first measured the efficiency of a 3 m length LMA fiber by constructing a laser with 4% 

cleaved end reflections.  . shows the laser threshold power of 560 mW and slope 

efficiency of 77%, which demonstrated that the fiber efficiency was acceptable (quantum 

efficiency = 915nm/1030 nm = 89%).  The performance of this fiber as an amplifier is 

demonstrated as part of the overall CPA and direct amplification systems, as presented in 

Chapters 7 and 8. 
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Chapter 7 Overall CPA System Performance 

7.1 Introduction 

In this chapter, we describe the performance of the complete CPA system developed for our 

industrial sponsors.  The overall design of the system was described in Chapter 3, and the 

characteristics of the individual components were described in Chapters 4, 5, and 6.  This 

chapter is structured as follows.  We first describe the pre-amplifier configuration in Section 

7.2, and the design of pulse stretcher in Section 7.3.  In Section 7.4 we present results showing 

characteristics of the final output pulses from the system at repetition rates from the maximum 

of 54 MHz, and as low as 10 kHz (the minimum repetition rate for good signal to ASE ratio).  

Pulses generated with energy ~10 µJ have been cleanly recompressed to ~500 fs.  Section 7.5 

presents calculations which show that by slightly reducing the length, and increasing the core 

diameter of the the fiber for the final amplifier, it should be possible to reduce the effects of 

SRS and SPM sufficiently to enable the system to produce pulses with energy ~100 µJ.  Section 

7.6 presents our conclusions. 

7.2 Configuration of pre-amplifiers 

The core-pumped design of the pre-amplifiers was described in Chapter 6, and gain and ouptut 

power characteristics were presented for core-pumped pre-amplifiers in an end-pumped 

configuration.  It was also shown in Chapter 6, that by using mid-point pump injection in 

preference to end-pumping, it should be possible to obtain increased gain.  When characterising 

the CPA performance for our industrial sponsors, we first converted the pre-amplifiers to this 

configuration as shown in .  The two pre-amplifiers have almost identical construction, 

differing mainly due to different wavelength pump sources.  We assessed the appropriate length 

of Yb-doped fiber by tuning the ASE spectrum.  The total fiber lengths are similar to the end 

pumped pre-amplifiers for which the gain charactersistics were presented in Chapter 6. 

Fig. 7.1
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Pream plifier 1 setup

- Sm all signal gain: 25 dB @  1056 nm
- Saturation output power: 50 m W

966 nm, ~150 mW pump

0.5 m Yb+3

fiber
3 m Yb+3

Fiber HD406

IN OUT

W DM

966 nm, ~150 mW pump

0.5 m Yb+3

fiber
3 m Yb+3

Fiber HD406

IN OUT

W DM

Pream plifier 2 setup

- Sm all signal gain: 27 dB @  1056 nm
- Saturation output pow er: 110 mW

975 nm, ~220 mW pump

1.2 m Y b+3

fiber
2.5 m Yb+3

Fiber HD406

IN OUT

W DM

975 nm, ~220 mW pump

1.2 m Y b+3

fiber
2.5 m Yb+3

Fiber HD406

IN OUT

W DM

Fig. 7.1 Schematic of preamplifiers as used for complete CPA characterisation. 
 

7.3 Configuration of pulse-stretcher  

The targeted stretched pulse duration for the final CFBG stretcher design described in Chapter 5 

was 300 ps.  Due to delays in obtaining our CFBG pulse stretcher, we performed initial tests on 

our amplifier system using ~500 m of single mode fiber as a pulse stretcher.  Using a 20 GHz 

photodiode and sampling oscilloscope, we measured the stretched pulse FWHM to be 322 ps as 

shown in Fig. 7.2. The measured duration is very close to the 300 ps that should be obtained 

from the CFBG, and therefore the CPA pulse energy results that we obtain using the fiber 

stretcher are therefore a valuable guide to the expected performance of the final system using a 

CFBG pulse stretcher.  Using single mode fiber as the pulse stretcher has the advantage of 

transmitting the full bandwidth of the pulses, and because the fiber stretcher is spliced directly 

to the pre-amplifier without requiring a circulator, it results in comparatively low-losses.  The 

disadvantage of using a fiber-stretcher is that it has the same sign of 3rd order dispersion as the 

bulk grating compressor, and the accumulated 3rd order dispersion results in a “ringing” 

structure on the trailing edge of the re-compressed pulse (see Chapter 5). 
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Fig. 7.2 Duration of stretched pulse after ~500 m of single mode fiber. 
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7.4 Experimental results 

This section shows the performance of the CPA system as a whole.  Beam quality (M2) 

measurements were performed on the final amplified pulses using a “Modemaster” supplied by 

Coherent.  The measured beam quality was M2 = 1.3 (fiber core diameter of 19 µm, and outer 

diameter of 100 µm).  We have since found that the mode quality at the amplifier output is 

strongly influenced by the signal launch at the fiber input.  The fraction of the power in the 

higher order mode could be observed directly using an autocorrelation measurement because 

pulses in the fundamental and higher order modes propagated at different velocities along the 

LMA fiber and therefore separated temporally, and which enabled us to see satellite pulses on 

the autocorrelation measurements of the recompressed pulses.  We observed that the intensity of 

the satellite pulses was strongly influenced by the signal launch into the LMA.  We would 

therefore expect that quasi single-mode operation would be obtainable from this 19 µm core 

diameter LMA fiber by optimising the signal launch.   

The average output power and pulse energy vs. repetition rate for a constant pump power of 

3.5 W (>2.0 W launched) are shown in . Fig. 7.3

Fig. 7.3. System output power and pulse energies after the LMA amplifier. 
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The corresponding output spectra are shown in .  At high repetition rates the signal 

spectrum is clean and >10 dB above the ASE, as shown by  (a) and (b).  However, ASE 

at ~1030 nm started to become more prominent at a repetition rate of 100 kHz as shown in 

 (c).  Raman scattering is evident at the highest pulse energies (lowest repetition rates) and 

has transferred a significant fraction of the energy to a broad longer-wavelength band as shown 

by Fig. 7.4 (c) and (d).  From these spectral measurements we concluded that when considered 

as a practical limitation on the acceptable performance of the system, the SRS threshold pulse 

energy for our 15 µm core LMA is above 16 µJ but not as high as 76 µJ.  

Fig. 7.4

Fig. 7.4

Fig. 

7.4
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Fig. 7.4. Amplified pulse spectra for increasing pulse energies.  
The temporal characteristics of the recompressed pulses are not presented because the 

additional 3rd order dispersion of the fiber stretcher results in poor pulse recompressed pulse 

quality (as demonstrated numerically in Chapter 5).  However, more recent results have been 

obtained using CFBG pulse stretcher (spectral window of 7 nm), with the full 2nd and 3rd order 

dispersion required to compensate for the compressor: D x length = 45.5 ps/nm, dD/dλ x length 

= 1.5 ps/nm2).  A typical autocorrelation of a recompressed pulse, after passing through this 

CFBG stretcher and the whole CPA system, is shown in .  At low energies the FWHM 

pulse duration was measured to be 0.5 ps with 5 nm bandwidth, ∆ν∆τ~0.7.  Pulse energies of 

~10 µJ have been demonstrated with this setup (limited by the onset of SRS). 

Fig. 7.5
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Fig. 7.5.  Autocorrelation of recompressed pulse after passing through the entire CPA system 
using a 7 nm CFBG pulse stretcher.  Pulse duration ~0.5 ps. 
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7.5 Extending the system capabilities 

As described in Chapter 3, the target pulse energy for our industrial sponsors is 10-50 µJ, at a 

repetition rate of 10 kHz (average power 0.5 W).  The grating compressor has a transmission 

loss of ~3 dB, so the target pulse energy immediately after the LMA amplifier is 20-100 µJ.  

The maximum pulse energy demonstrated with this system configuration of section 7.4 was 

limited by SRS to ~50 µJ, and in this section we present calculations showing that increasing 

the core diameter of the LMA fiber should enable 100 µJ pulses to be produced.  Having 

established the required system parameters to avoid SRS, we then show numerical simulation 

results used to consider the possible effects of SPM on the quality of the re-compressed pulses. 

We first compare the energy for which SRS was observed experimentally to be unacceptable 

with the calculated SRS threshold energy.  Considering the system configuration with the 

characteristics described above, (measured pulse duration 0.32 ns, 2 m long amplifier fiber, 

15 µm core diameter, and 20 dB gain), the calculated SRS threshold energy is ~30 µJ.  The 2 m 

fiber length used in this calculation corresponds to longer physical length of fiber because 

reverse pumping significantly reduces the effective length of the fiber.  The calculated SRS 

threshold energy is approximately equal to the measured (>16 µJ) threshold energy that was 

estimated from the data in Section 7.4 to correspond to the limit for acceptable spectral 

distortion. 

We used a 915nm pump in our initial setup due to short-term diode availability.  However, 

the strongest absorption peak of Yb-doped fiber is at 975 nm (four times stronger absorption 

compared to 915 nm), so we would like to pump at 975 nm to minimise the fiber length needed 

to absorb the pump.  Switching to a 975 nm source should enable us to use a shorter final 

amplifier in order to achieve pulse energies at least double those presented in .  For 

example, using an estimated final fiber length of L~1.5 m, and a 0.3 ns stretched pulse duration, 

with amplifier gain=20 dB, would result in an increased pulse energy threshold for SRS of 

38 µJ for a 15 µm diameter core (compared to the L=2 m configuration SRS threshold of 30µJ).  

Increasing the core diameter to 29 µm would further increase the SRS threshold pulse energy to 

100 µJ for an amplifier with gain =15 dB, and to 131 µJ for an amplifier with gain=20 dB. 

Fig. 7.4

To estimate the effects of SPM on the quality of the re-compressed pulse, we performed 

numerical modelling.  In performing this modelling, I am grateful to Dr. Rüdiger Paschotta for 

allowing me to use "ProPulse", which is a numerical modelling package he has written for 

simulating pulse propagation in fibers, lasers, and OPO cavities.  One difficulty of modelling 

stretched (i.e. chirped) pulses is that the number of grid points is proportional to the product of 

(Time Range x Frequency Range), so increases with the chirp.  As explained in Chapter 2, the 
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nonlinear phase-shift due to SPM is proportional to the peak power, so the pulse energy and 

duration can be scaled provided that the original peak power is preserved.  To reduce the grid 

size, a shorter pulse with 1/60 of the original duration, i.e. FWHM = 5 ps, was considered but 

without changing the 8 nm bandwidth (bandwidth = half of the final CFBG spectral window).  

The input pulse was a linearly chirped, and has the same peak power as for the 100 µJ, 0.3 ns 

stretched pulse.  The relative importance of SPM and GVD will be slightly different for the 

shorter pulse, but as the fiber length is short, and the 5 ps pulse is still highly chirped (∆ν∆τ~ 25 

times transform limit), the results from the modelling should provide a good indication of the 

behaviour of the longer pulse.  A second simplification is to model propagation in passive fiber 

(no gain) by scaling the length of passive fiber to equal Leff of the amplifier fiber (Leff calculated 

assuming constant gain per unit length).  We believe that this length scaling should provide a 

good indication of the results that would be obtained for a longer fiber which has gain.  The 

simulation parameters were Lamplifier = 1.5 m, G=15 dB (Leff = 0.42 m), core diameter = 29 µm, 

fiber dispersion: D= - 40 ps/(nm.km) throughout.  The re-compression was performed by 

applying a linear chirp (optimised to maximise the peak power), so the higher-order pulse phase 

distortion caused by SPM remains.  Table 7.1 shows the parameters of the re-compressed pulse 

for the various pulse energies that were simulated.  

 
Table 7.1.  Pulse parameters used for numerical simulations in . Fig. 7.6

Fig. 7.6

E (µJ) for 
0.3 ns 
chirped 
pulse 

E (µJ) 
equivalent for 
5 ps chirped 
pulse 

FWHM (fs) of 5ps 
pulse after 
propagation and 
recompression 

Peak 
power (kW)  

Pulse quality: 
(∆ν∆τ)/(0.44), where 
∆τ is the RMS width 
(not FWHM) 

Dispersion 
applied by 
compressor 
(ps2) 

0.01 1.667x10-4 205 0.732 1.05 -0.379 
10 0.1667 239 570 2.19 -0.341 
50 0.8333 206 2580 12.2 -0.189 
100 1.667 151 6170 24 -0.120 
 

 shows the predicted shapes of the re-compressed pulses.  The peak powers have been 

normalised to facilitate comparison of the pulse shapes.  Fig. 7.6(a) shows the power of re-

compressed pulses on a linear scale; and Fig. 7.6(b) shows the power of re-compressed pulses 

measured in dB.  With power plotted on a linear scale, the duration of the compressed pulse 

does not appear to change drastically as the energy increases, but the higher energy pulses have 

distinct side lobes, which contain an increasing fraction of the pulse energy.  Fig. 7.6 (b) shows 

the pulse on a dB scale, and more clearly demonstrates that for the highest energy pulse, there is 

a substantial fraction of the pulse energy in the pedestal, and that the peak:pedestal contrast ratio 

has decreased.  The decrease in contrast could be detrimental for some applications which 

require a short interaction time, because the pedestal would arrive well before the peak, and due 

to the reduced contrast ratio, might have sufficient power to excite the relevant nonlinear 

process, which would effectively prolong the interaction. 
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Fig. 7.6. Simulation results showing distortion due to SPM in final amplifier for  pulses with 
8 nm bandwidth, after recompression by applying a linear chirp.  The pulse energy 
numbers refer to a 0.3 ns duration stretched pulse.  (See Table 7.1 for details of 
pulse parameters.) 

 
From the results of this numerical modelling, we conclude that the effects of SPM induced 

distortion do not prevent the formation of ~300 fs recompressed pulses, with high peak powers, 

but that a substantial fraction of the energy starts to be retained in a broad pedestal, which may 

reduce the range of applications for which the pulses are well suited.  Extending the pulse 

energies to higher levels will require larger core fiber for the final amplifier.  The minimum core 

NA that can reliably be fabricated (also, from a practical standpoint, the minimum core NA that 

has acceptably low bend losses) is ~0.06.  For quasi-single mode fiber (V<3) this limits the core 

diameter to ~15 µm at a wavelength of 1 µm.  However, depending on the length of the 

amplifier, the diameter of the inner cladding, the doping profile (gain guiding), and on the 

launch conditions at the input, it may be possible to use low NA multimode fibers (V~5-15) and 

still obtain M2 < 1.2 output mode quality, as demonstrated in previously reported systems that 

produced output pulses with energy above 1.2 mJ [1].  

7.6 Conclusion 

In conclusion, we have developed a CPA system that produces pulses with energy of ~50 µJ 

immediately after the final amplifier.  The maximum pulse energy was limited by the onset of 

SRS in the final amplifier.  The system comprised a mode-locked fiber laser, a pulse selector, a 

pulse stretcher and compressor, and a cascade of three amplifiers separated by isolators and 

synchronously time-gated AOMs.  Details of all components have been described in previous 

Chapters.  We have described how by using a final amplifier with reduced length of 1.5 m 

(using 975 nm pump instead of 915 nm pump), and with 29 µm diameter core (15 µm core used 

initially), it should be possible to obtain 100 µJ pulses from our system assuming gain in the 

final amplifier of 15 dB, with the energy increasing to 131 µJ assuming 20 dB gain.  We have 

performed numerical modelling with this revised final amplifier design, which demonstrated 
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that the nonlinear pulse distortion due to SPM should not result in unacceptable degradation of 

the quality of the recompressed 100 µJ pulses. 
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Chapter 8 Direct Pulse Amplification 

8.1 Introduction 

This chapter describes our measurements of ultrashort pulses directly launched into a cascade of 

Yb-fiber amplifiers without the use of a pulse stretcher.  The threshold pulse energy for 

unacceptable SRS scales in proportion to the stretched pulse duration [1], and therefore CPA 

system can provide high pulse energies.  However, when the highest pulse energies are 

unnecessary but the application still requires high average power, the direct amplification setup 

is highly-suitable since it is simpler (does not require a pulse stretcher and highly-dispersive 

compressor).  The established high performance levels from diode-pumped Yb-doped fiber 

mean that systems producing such directly amplified pulses are of immediate practical interest.  

Diode-pumped direct amplification systems based on a single amplifier stage have been 

demonstrated to be capable of producing ultrashort pulses at average powers of >17 W [2].  

However, using a single amplifier stage limits the total gain to ~30-40 dB, which restricts the 

range of possible applications and sources.  For example, the mode-locked Yb-fiber laser 

described in Chapter 4 is an extremely attractive source, having robust self-start characteristics, 

and low amplitude noise, but the pulse energy is low (~10 pJ). Use of a single amplifier would 

thus limit the output pulse energy to around 10 nJ, which is insufficient for many applications.  

The experiments reported in this chapter demonstrate that multiple cascaded amplifiers can be 

used to produce pulses with higher pulse energies than single amplifier systems.  Pulses have 

been characterised using SHG FROG in order to directly determine the full chirp profile across 

the pulse.  High quality pulses with energy ~150 nJ and compressed duration ~300 fs have been 

produced, and such pulses have been used to demonstrate an all fiber pumped femtosecond 

OPO [3]. 

Due to the increased pulse peak powers, the directly amplified pulses undergo some degree of 

nonlinear evolution (SPM) within the amplifiers, and we have studied the effects of this 

nonlinear evolution on the recompressed pulses.  Low energy pulses undergo mostly linear 

evolution due to the fiber dispersion, and develop a linear chirp which can be compensated 

using a grating pair at the system output.  At the highest pulse energies the pulses develop a 

parabolic profile, which has recently been described theoretically as an asymptotic solution to 

the nonlinear Schrödinger equation with constant gain [4].  The theory predicts that parabolic 

pulses also have a linear chirp, although with different slope compared to the pulses that have 
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evolved linearly, and so parabolic pulses can also be recompressed to short durations using a 

grating compressor.  The effects of SPM on the quality of the recompressed pulses from the 

CPA system (Chapter 7) were considered by numerical modelling. The modelling showed that 

the initial effect of SPM was to reduce the peak:pedestal contrast ratio of the recompressed 

pulses.  The parabolic pulse solution suggests that by undergoing increased nonlinear evolution 

in the presence of continuous gain, that the chirp across the entire pulse could again become 

linear (although with a steeper slope) which would result in high peak:pedestal contrast ratio for 

the recompressed pulses.  This makes parabolic pulses particularly interesting for applications 

where this contrast ratio is important. 

The ideal theoretical model of unlimited, spectrally flat, gain bandwidth, and unlimited 

amplifier length (asymptotic solution) is not realised in a practical system.  Finite gain 

bandwidth will distort the pulse if the nonlinear spectral broadening (due to SPM) creates a 

pulse bandwidth greater than the amplifier bandwidth.  Finite amplifier length will prevent the 

formation of parabolic pulses if the nonlinear evolution of the pulse has not progressed 

sufficiently to create a linear chirp across the entire pulse by the end of the amplifier fiber.  

These constraints have not interrupted parabolic pulse formation in previous experimental 

reports, which have considered only the evolution of initially unchirped pulses in a single 

amplifier stage.  This chapter reports our results from a system with three amplifiers, which 

demonstrated how the practical constraints were managed in order to obtain higher energy 

pulses that could be cleanly recompressed.  The two main features of the system that disrupt the 

steady pulse evolution are that each amplifier in the chain has different parameters such as gain, 

dispersion and effective nonlinearity (determined by the effective area of the fiber mode); and 

that in order to prevent cascaded ASE from saturating the gain, it is necessary to optically 

isolate individual amplifier stages [5], which also introduces lumped losses between each 

amplifier within the chain (as high as 4.5 dB in our case).  To improve our understanding of the 

pulse evolution towards the asymptotic parabolic shape, we compared the pulse parameters to 

those predicted by the asymptotic solution and also performed numerical modelling using the 

experimentally measured amplifier settings.  Our numerical predictions of the temporal and 

spectral widths of the pulses and of the corresponding pulse chirp, were in close agreement with 

our experimental measurements.  Having obtained a good understanding of the system, the next 

goal will be to use the numerical model to determine the most appropriate setup to obtain 

directly amplified parabolic pulses with energies up to the SRS threshold energy. 

This chapter is structured as follows.  In Section 8.2 we describe the experimental setup. In 

Section 8.3 we outline the numerical model that was implemented to simulate our results.  In 

Section 8.4 we describe our experimental results and compare those results with the results of 
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our simulations, and with the pulse characteristics calculated from the asymptotic parabolic 

pulse solution.  In Section 8.5 we present our conclusions. 

8.2 Experimental setup 

The experimental setup as shown in Fig. 8.1 was similar to the CPA system described in 

Chapter 7.  The principal difference is that the pulse stretcher has been removed, and as a result 

the chirp of the pulse is reduced and a less dispersive compressor is required.  Pulses from the 

oscillator were passed through a high-extinction-ratio EOM, which reduced the repetition rate, 

and thus enabled increased gain to be obtained from the amplifiers.  ASE build-up along the 

amplifier chain was prevented by using both an isolator and an AOM between each amplifier 

stage.  Polarisation controllers (either wave-plates, or fiber based) were used at each amplifier 

stage to ensure maximum transmission through the isolators.  The AOMs were activated for a 

short time window in order to transmit the pulses, but block most of the continuous ASE 

background. 

Grating  
compressor 

Fig. 8.1. Schematic of the cascaded amplifier system used to study parabolic pulse 
formation. 

 
The two pre-amplifiers were constructed from conventional single mode Yb-doped fiber, 

core-pumped via WDM couplers, in a forward pumping configuration for low-noise operation.  

The power amplifier was constructed from double-clad, LMA fiber (ORC fiber code number 

HD 406-02), end-pumped by a 6 W, 915 nm fiberised diode source [6].  The coupling losses 

between each amplifier stage, and the fiber length and maximum gain of each amplifier stage 

are shown in Fig. 8.1.  Details of all of the above components have been described in 

Chapters 3-7.  For the grating compressor we used a pair of 820 groove/mm ruled gratings from 

Richardson Gratings Laboratory, blazed for a wavelength of 1.2 µm (>80% efficiency at 

1.0-1.1 µm).  The system produced output pulses with energies in the range 10-340 nJ.  

Throughout this chapter the individual amplifier stages are referred to as P1 (first pre-amplifier), 

P2 (second pre-amplifier), and LMA (large mode area power amplifier).  

 106



The pulses were characterised both temporally and spectrally as they propagated through the 

amplifier cascade.  The characteristics of the pulses from the oscillator are described in 

Chapter 4.  The pulse FWHM duration at the output from the oscillator was 2.5 ps, with a 

bandwidth (FWHM) of 18.6 nm, with a positive linear chirp.  Due to the normal GVD of the 

amplifier fiber, the pulses broadened temporally at each amplifier stage, and reached a duration 

of ~8 ps after the final amplifier.  The pulses were then recompressed by propagation through a 

diffraction grating pair which has anomalous dispersion.  The spectral evolution of the pulses 

was controlled both by the nonlinear action of SPM, which acted to broaden the spectrum, and 

by gain-filtering due to the finite gain bandwidth of the amplifiers, and which ultimately limits 

the pulse bandwidth.  We measured the pulse spectrum after every amplifier stage using an 

optical spectrum analyser.  Using a ‘Modemaster’ supplied by Coherent Inc., we measured the 

beam quality at the output of the LMA to be M2~1.2.  The pulses were also characterised 

directly after the LMA amplifier using SHG FROG.  In addition, non-collinear SHG 

autocorrelation measurements were recorded for the recompressed pulses (after the grating 

compressor).  

We characterised the system with five different gain (dB) settings to determine which 

proportion of gain in the various amplifier stages would produce high energy pulses that could 

be cleanly recompressed.  Increased gain was obtained by changing the duty cycle using the 

EOM.  A 20% duty cycle was obtained by using a 200 ns window with a 1 ms period (allows 10 

pulses in every 50 to pass through the system).  A 5% duty cycle was obtained by passing a 

single pulse in every twenty (window= 20 ns, period = 370 ns).  The gain was calculated by 

comparing the average input and output powers from each amplifier stage.  The gain settings, 

labelled I-V, are shown in Table 8.1 in order of increasing final pulse energy together with the 

associated pulse energies at the system output.  Reference is made to these labels throughout the 

results section of this chapter.  The gain in P1 was high for all settings.  Setting I produced low 

energy pulses and had low gain in both P2 and LMA.  Settings II and IV had relatively even 

gain in both P2 and LMA; the absolute gain was higher for IV than II, which led to increased 

energy pulses at the system output.  Settings III and V had low gain in P2 and high gain in 

LMA; setting V had higher absolute gain and produced higher energy pulses.  The proportion of 

total gain in the smaller core (high effective nonlinearity) P2, compared to the gain in the larger 

core (lower effective nonlinearity) LMA, was observed to have a strong influence on the shape 

of the chirp of the final pulses. 
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Table 8.1 Gain distribution in amplifier chain. 

Gain (dB) Duty Average  Pulse  

P1 P2 LMA Cycle (%) Power (W) Energy (nJ) 

I 17.0 9.5 11.5 100 0.60 11.2 
II 20.4 11.3 12.6 20 0.52 48 
III 22.6 4.3 22.2 5 0.39 146 
IV 22.6 12.5 14.8 5 0.48 177 
V 22.6 4.3 25.8 5 0.90 334 
 

 
The system performance for each of these gain settings is presented in Section 8.4. However, 

before discussing these results we first briefly describe the numerical model that we used to 

simulate our system. 

8.3 Numerical model 

As described in Chapter 2, we use a modified nonlinear Schrödinger equation (NLSE) in order 

to model the system.  We used a Lorentzian gain profile as shown in the equations below, and 

included both 2nd and 3rd order dispersion, lumped fiber losses between the individual 

amplifiers, and the Kerr effect [7], 
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The amplifiers themselves were modelled with uniform gain per unit length, and a Lorentzian 

gain profile(see ), where T  is the oscillator relaxation time for the Lorentzian gain, 

selected to give the appropriate bandwidth.  The modified NLSE was solved using the standard 

split-step Fourier method with an appropriate change in fiber and gain parameters for each 

amplifier stage.  We are grateful for the assistance of Neil Broderick, who performed the 

numerical simulations.  The dispersion parameters used for all amplifiers were: 

2

3β =25 x 10-3 ps2/m (D= -50 ps/nm/km), 3β =2.5 x 10-5 ps3/m.  The effective nonlinearity 

( ) ( )effAn λπγ 22=  was calculated with  =2.35 x 102n -20 m2/W and using the effective mode 

area for each amplifier as follows: = 15 µmeffA 2 for both P1 and P2, and = 250 µmeffA 2 for the 

LMA. 

For the simulations, the input pulse shape to amplifier P1 was a positive-linearly chirped 

Gaussian pulse with duration (FWHM) of 2.5 ps, and a bandwidth (FWHM) of 13.6 nm. This 

pulse duration was that measured at the output of the oscillator.  The pulse bandwidth (hence 
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chirp) was chosen such that after linear propagation through the (measured) length of the 

amplifiers, with the above dispersion per unit length, the pulse duration (FWHM) would be 

consistent with that measured after the LMA with the system operating at low power 

(corresponding to linear pulse evolution).  The bandwidths of the three amplifiers were 

estimated from the measured spectra after each stage of amplification for pulses at low powers.  

The amplifier bandwidths chosen for modeling were 10 nm for P1, 15 nm for P2, and 40 nm for 

the LMA.  The relatively narrow bandwidths of P1 and P2 are thought to be due to gain 

narrowing, and to spectral filtering from the interplay of the fiber birefringence and the 

polarising isolators between the amplifiers, which could be improved by the use of a less 

birefringent fiber.  With the above parameters held fixed, the only variable parameters in our 

simulations were the gains of the three amplifiers. For each of the experimental pulses 

modelled, the gain of each amplifier stage was chosen to match the experimentally measured 

gain in pulse energy ( ).   Table 8.1

The parabolic solution to the NLSE with gain is a recently discovered phenomenon resulting 

from a self-similarity analysis of pulse evolution in fiber with normal dispersion and constant 

gain. As pulses propagate towards the asymptotic parabolic form, they expand both spectrally, 

due to the nonlinear process of self-phase modulation (SPM), and temporally, due to group 

velocity dispersion (GVD), but maintain a parabolic profile.  Importantly the pulses also 

develop a highly linear chirp across the central region of the pulse, and are therefore 

compressible to short durations, and so are suitable for the generation of high-energy, 

femtosecond pulses.  The asymptotic characteristics of the parabolic pulses are determined only 

by the initial pulse energy, and by the amplifier characteristics, with the initial pulse shape 

determining only the map towards the asymptotic shape.  Parabolic pulses have been 

demonstrated experimentally, and the expected characteristics including the parabolic spectral 

and temporal profile, and linear chirp have been measured [4].   

The analytic asymptotic solution in an amplifier with constant gain (g) per unit length is given 

by the following equation: 
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Once in the asymptotic regime, the parabolic shape is maintained, with exponential scaling of 

the amplitude, and of the effective width parameter according to: 
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The pulse chirp is linear in time: Tg
T

1
2 )3( −=

∂
∂

−= βϕδω , and the slope of the chirp is 

constant: .  In the forward or reverse pumped configuration of P2 or LMA 

respectively, the gain will vary along the amplifier length compared to our assumption of 

constant gain.  However, parabolic pulses have been shown to form (using numerical 

simulations and self-similarity analysis) in amplifiers with both exponentially increasing and 

decreasing gain profiles, and the principal difference compared to the case of uniform gain was 

the rate of parabolic pulse formation [8].  We therefore believe that the calculations assuming 

uniform gain should provide an approximate indication of the chirp if the pulses were strongly 

evolving toward the asymptotic parabolic form, and in Section 8.4, we show a comparison of 

the slope of the chirp calculated for an asymptotic parabolic pulse (using the above equation) 

and the measured slope of the chirp of the experimental pulses.   

1
2 )3( −βg

8.4 Results and discussion 

To characterise the evolution of the pulses, we measured the spectrum after the oscillator and 

each subsequent amplifier stage.  We then used SHG FROG to measure the temporal profile and 

phase of the pulses at the output of the final amplifier [9].  FROG is a technique that uses a 

spectrally resolved autocorrelation to retrieve the phase information of the pulse.  We used a 

grating pair to compress the pulses, and we performed SHG autocorrelation measurements on 

the recompressed pulses.  A summary of the experimental data for a typical pulse 

(Energy =146 nJ) are shown in .  The pulse spectrum after the LMA is shown in  

(a).  The temporal profile of the pulse at the output from the LMA, as retrieved from our SHG 

FROG measurements, is shown in  (b).  The figure also shows the chirp of the pulse, 

which is linear across the central region of the pulse, but changes slope in the wings of the 

pulse.   (c) shows the non-collinear second harmonic generation (SHG) autocorrelation 

of the recompressed pulse after a suitably optimised grating pair compressor. 

Fig. 8.2 Fig. 8.2

Fig. 8.2

Fig. 8.2

Since the grating-based compressor provides a mostly linear chirp, the quality of the 

recompressed pulses can be predicted from the chirp of the pulse after the final amplifier; a 

linear chirp across the entire pulse should lead to a pedestal-free recompressed pulse, whereas a 

pulse with a chirp that varies nonlinearly, e.g. with a different slope of the chirp in the wings 

compared to the central part of the pulse, would prevent the compression of all parts of the 

pulse.  The nonlinear effects of SPM accumulate more rapidly in the most intense central 

portion of the pulse relative to the nonlinear effects in the wings of the pulse.  The slope of the 
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chirp therefore changes first in the central portion of the pulse, and only changes in the wings of 

the pulse after substantial amplification.  Due to the large effective mode area, LMA fiber has a 

low effective nonlinearity compared to standard fiber.  We used LMA fiber for the final 

amplifier.  In contrast, the pre-amplifiers were constructed from standard single mode fiber.  By 

varying the balance of the gain between the three amplifier stages, we changed the relative 

strength of the nonlinear evolution of the pulses.  As described in Section 8.3, we performed full 

numerical simulations using the experimental pulse parameters, which we also compared with 

the experimental data.  In addition, we also calculated the slope of the chirp for an asymptotic 

parabolic pulse for comparison with the measured slope of chirp. 

 

 
Fig. 8.2. Results summary for typical parabolic pulse with E=146 nJ (pulse III from Table 

8.1).  (a) Spectrum. (b) Temporal profile. (c) Autocorrelation of recompressed 
pulse. 

b) c)a)

The variation of the pulse parameters was investigated in detail using the five amplifier gain 

settings recorded in , and the results are presented in the following subsections.  In 

Section 8.4.1 we present experimental spectra recorded after each section of the system.  In 

Section 8.4.2 we present both experimental and simulation results for the temporal profile and 

chirp of the pulses after the final amplifier. In Section 8.4.3 we present experimentally measured 

SHG autocorrelation results for recompressed pulses.  In Section 8.4.4 we compare the pulse 

parameters after the final amplifier to those calculated from the analytic asymptotic solution. 

Table 8.1

Table 8.1

8.4.1 Spectral data after each section of the system 

The spectra obtained from the oscillator, and after each amplifier stage, are shown in Fig. 8.3 for 

three different gain settings.  The evolution of a low energy (11 nJ) pulse (I from ) is 

shown in Fig. 8.3(a). The spectrum after the amplifiers is narrower than that from the oscillator 

as a result of gain narrowing.  Fig. 8.3(b) shows the results for a higher energy (177 nJ) pulse 

(IV) produced from relatively high gain in P2 compared to the LMA.  The spectrum from P2 

already shows the characteristic broadened spectrum associated with parabolic pulse formation 
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with peaks at the longest and shortest wavelengths ("batman" shape) [10].  The nonlinear 

evolution has continued in the LMA resulting in further broadening.  (c) shows the 

highest energy (334 nJ) pulse (V) that was studied.  This pulse was produced from relatively 

weak amplification in P2 and strong amplification in the LMA.  The "batman" shape does not 

emerge until after the LMA.  The shoulder in the LMA spectra at ~1040 nm which appears 

~15 dB lower than the peak, as seen in (b) and (c) is due to cascaded ASE because of the 

reduced pulse repetition rate used to obtain such high energy pulses.  ASE is less prominent in 

(a) because the low energy pulse was produced using a high repetition rate, so the 

amplifier gain was saturated by the signal. 

Fig. 8.3

Fig. 8.3

Fig. 8.3

Fig. 8.3.  Evolution of the pulse spectrum as it passes through the amplifier chain for; a) pulse 
I (11nJ), b) pulse IV (177nJ), c) pulse V (334nJ).  

8.4.2 Phase characteristics after final amplifier 

We investigated the properties of the pulses emerging from the LMA using SHG FROG. The 

FROG fitting errors [9] that we achieved ranged from 0.006 to 0.02, so represent a good fit to 

the data.  Fig. 8.4 shows the pulse shape and chirp of (a) 11nJ pulse (I), (b) 146nJ pulse (III), 

and (c) 334 nJ pulse (V), as reconstructed from FROG data (solid) and from our numerical 

simulations (dotted).  All of the essential temporal and spectral features in the pulses are present 

in the numerical simulations.  The chirp is seen to be linear across the central region of the 

pulse, as is characteristic of parabolic evolution.  Note that both the numerical simulations and 
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experimental results show that the slope of the chirp is different in the wings of the pulses as 

compared to the central region. 

At low energies the slope of the chirp tends to 2 rad.ps-2, due to the linear dispersion, 

determined by the total length of fiber in the system. For higher pulse energies the slope of the 

chirp in the central region of the pulse increases, but remains linear, as expected for parabolic 

evolution.  Although not shown in this figure, we note that the slope of the chirp is higher for 

pulses where the amplification was strong in P2 than for pulses where the main amplification 

took place in the LMA.  This is due to more prominent nonlinear effects in P2 due to the smaller 

core size (compared to LMA).  The results from the numerical simulations are again in close 

agreement with the experimental data. 

 

Fig. 8.4. The measured retrieved FROG data (solid) and numerical simulations (dotted) of 
pulse shape and chirp. a) pulse I (11 nJ), b) pulse III (146 nJ), and c) pulse V 
(334 nJ). 

 

Fig. 8.5 shows plots of (a) the spectral width, (b) the temporal width, and (c) the slope of the 

chirp at the centre of the final pulses, as a function of pulse energy, as obtained from both 

FROG measurements (circles) and our numerical simulations (diamonds). The parameters 

displayed were chosen because they characterised the nonlinear evolution of the pulses and in a 

linear system they would not depend on the amplifier gain.  It can be seen from Fig. 8.5 that 

there are two distinct regimes of pulse formation.  The first regime is characterised by pulses II 

and IV (open circles) which, for a given pulse energy, have relatively broad spectral widths, 

broad temporal widths, and a high slope of the chirp; and the second regime is characterised by 
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pulses III and V (filled circles), which have relatively narrow spectral widths, narrow temporal 

widths and a low slope of the chirp.  The most striking difference between these two regimes is 

in the spectral width of the pulses.  These regimes can be clearly identified in both the numerical 

and experimental results.  The first regime corresponds to approximately equal gain in P2 and 

LMA such that the nonlinear pulse formation occurs predominantly within P2. The second 

regime is when most of the gain is in the LMA such that the nonlinear pulse formation is 

predominantly within the LMA.  In the first regime, the pulses see large nonlinear effects due to 

the high gain in P2.  In the second regime, the peak powers are smaller in the preamplifiers (due 

to the smaller gain), and hence the nonlinear effects are less pronounced.  

 

Fig. 8.5. Plots of a) spectral width, b) temporal width and c) slope of chirp (at the centre of the 
pulse) against pulse energy. The circles represent measured values, and the 
diamonds are calculated from the results of our simulations. Open circles: strong 
gain in P2; Filled circles: gain predominantly in LMA. 

V 

IV 

III II 
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8.4.3 SHG autocorrelation measurements of compressed pulses  

The pulses from the LMA were passed through a grating pair, which compensated the linear 

chirp.  The grating separation was optimised experimentally for each pulse (I-V) in order to 

minimise the FWHM of the autocorrelation peak.  Fig. 8.6 shows SHG autocorrelations of the 

compressed pulses.  Autocorrelation FWHM widths were in the region of 440-490 fs, indicating 

compressed pulse widths of ~300 fs (assuming Gaussian profile).  Fig. 8.6(a) shows how the 

autocorrelations vary with pulse energy in the regime where the gain is mainly in the LMA.  At 
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the highest energies the autocorrelations have broad wings, though the width of the central peak 

changes little.  Fig. 8.6(b) shows the autocorrelations of two pulses of similar energy, but 

representing the two different regimes of amplification.  It can be seen that the 177 nJ pulse 

(IV), which was strongly amplified in P2, has more structure in the wings and a much lower 

fraction of its energy in the central peak compared to the pulse strongly amplified in the LMA 

(III), which is consistent with the more nonlinear chirp measured for the uncompressed pulse.  

The small features visible in several of the autocorrelations at ±6 ps are believed to be due to 

cross correlations between the fundamental and a higher spatial mode propagating at a different 

velocity in the slightly multimoded LMA. 
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Fig. 8.6.  SHG autocorrelation traces of pulses after compensation of the linear chirp using a 
grating pair. a) Pulses of various energies (I, III, V) where gain is predominantly in 
LMA, b) pulses of similar energy with gain predominantly in LMA (III solid) and 
with strong gain in P2 (IV dotted). 

8.4.4 Comparison to asymptotic analytic solution 

Here we compare the slope of the chirp and the duration of the measured pulses with those 

predicted by the analytic asymptotic parabolic solution ( ).  This comparison provides 

an indication of the extent to which the pulses have evolved towards the parabolic form. 

Eqn. 8.3:3

We have calculated the slope of the chirp ( )3( 2βg ) that would be expected for a parabolic 

pulse after P2 and LMA, using 2β  = 25 x 10-3 ps2m-1, and the measured gain from Table 8.2 for 

each of the pulses I-V (assuming constant gain per unit length).  The results are shown in 

 together with the measured value of the slope of the chirp after the LMA from Fig. 8.5c).  

We measured the slope of chirp only after the LMA, but we have calculated the predicted value 

for the slope of chirp after both P2 and after the LMA because of the possibility that a parabolic 

pulse, having formed in the relatively high nonlinearity, smaller core of P2, may subsequently 

evolve linearly in the larger core LMA.  Comparing the results for measured slope of the chirp 

with those of the calculated value expected for the asymptotic parabolic pulse form, shows that 

the two values are different.  The results in  suggest that although the pulses from the 

Table 

8.2

Table 8.2
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system have developed a “batman” spectrum ( ), and nonlinear chirp ( ), further 

evolution towards the parabolic form would be possible if increased gain or longer amplifier 

lengths were available. 

Fig. 8.3 Fig. 8.4

Table 8.2  Slope of chirp: Experimental values and values calculated for parabolic pulses. 

 

Pulse number Gain (g) in P2 
(m-1) 

Gain (g) in LMA  
(m-1) 

Theory: slope of 
chirp after P2 – 
parabolic pulse 
(rad/ps2) 

Theory: slope of 
chirp after LMA 
– parabolic pulse 
(rad/ps2) 

Experimental 
slope of chirp 
after LMA 
(rad/ps2) 

I 0.59 0.76 7.88 10.1 1.9 
II 0.70 0.83 9.37 11.1 3.1 
III 0.27 1.46 3.57 19.5 2.5 
IV 0.78 0.97 10.4 13.0 3.2 
V 0.25 1.70 3.6 22.6 2.9 

We have also compared the duration of the measured pulses to those predicted for parabolic 

pulses with the corresponding energies ( ).  For given amplifier parameters g, β2, γ, the 

duration of a parabolic pulse (FWHM = 1.44T0) is determined absolutely by the pulse energy.  

The pulse durations calculated the parabolic using the estimated launched pulse energy at the 

input to each amplifier, and at the output of the LMA are shown in Table 8.3.  The table also 

shows the experimentally measured results which were estimated using the pulse duration at the 

system output and allowing for pulse dispersion based on the measured spectral widths shown 

in (a). 

Eqn. 8.3:5

Fig. 8.5

Table 8.3  Pulse duration: Experimental results and values calculated for parabolic pulses. 

Pulse energy (nJ) Experimental FWHM (ps) (estimated) Theoretical Parabolic FWHM (ps) 
P1 
input 

P2 
input 

LMA 
Input 

LMA 
output 

P1 
input 

P2 
input 

LMA 
input 

LMA 
output 

P1 
input 

P2 
input 

LMA 
input 

LMA 
output 

0.01 0.22 0.79 11.2 3.5 4.5 5.5 6.8 1.43 1.79 1.04 2.5 
0.01 0.49 2.63 47.8 3.5 4.5 6.5 8.0 0.38 2.07 1.45 3.8 
0.01 0.81 0.87 144.3 3.5 5.0 6.4 8.7 0.36 4.67 0.69 3.8 
0.01 0.81 5.74 173.5 3.5 5.0 7.5 10.2 0.36 2.29 1.70 5.3 
0.01 0.81 0.87 330.5 3.5 5.0 6.4 7.9 0.36 4.67 0.62 4.5 
 

The results from Table 8.3 show that the experimental pulse duration is longer than that 

predicted for a parabolic pulse at all points along the system, but that the rate of increase in 

pulse width as the pulse passes through the system is greater for the parabolic pulse, so that the 

pulse widths slowly converge.  For the lowest energy pulse (I) that evolved mostly linearly, the 

duration increases by a factor of 2 experimentally and by a theoretic factor of 1.7 for a parabolic 

pulse; and for the highest energy pulse (V), the duration increases by a factor of 2.3 

experimentally and by a theoretic factor of 12.5 for a parabolic pulse.  Therefore the relative 

importance of nonlinear broadening is much greater for the parabolic pulse than for the highest 

energy experimental pulse, which remained mostly controlled by linear broadening (GVD).  We 

note that previous studies of parabolic pulse formation have considered only the evolution of 
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unchirped pulses at the system input.  Unchirped pulses converge towards the equivalent energy 

parabolic form because a pulse that is initially longer than the corresponding parabolic pulse has 

less bandwidth, and so broadens less rapidly, whereas a pulse that is initially shorter than the 

equivalent energy parabolic pulse has more bandwidth, and so broadens more rapidly.   

One reason why our experimental pulses are longer than the parabolic form, and therefore 

evolve mostly linearly, is that the experimental pulses are strongly chirped at the input to P1 

(duration = 35 x transform limit).  We suggest that the chirped pulses in our system converge 

only slowly to the equivalent energy parabolic pulse duration because the larger bandwidth of 

our chirped pulses (compared to transform limited pulse) caused more rapid temporal 

broadening due to GVD.  We also compared the pulse bandwidth at the system output to that of 

the equivalent energy parabolic pulse.  High energy parabolic pulses are strongly chirped, so the 

bandwidth can be estimated from the chirp across the temporal FWHM, to give 

, which we estimated to correspond to 61 nm for a 330 nJ pulse (V).  The 

bandwidth of the parabolic pulse is greater than that of the observed pulses, which indicates the 

importance of nonlinear spectral broadening for the evolution of parabolic pulses and which is 

relatively weaker for our experimental pulses.   

FWHMTg 1
2 )3( −=∆ βω

We suggest that in the future, it would be interesting to model the results of some chirp 

compensation at the input to P2 (possibly implemented in practice using holey fiber with 

anomalous dispersion), or using increased gain in P2 and LMA.  It may then be possible to 

optimise the system to produce highly nonlinear evolution towards high energy parabolic 

pulses.  Further evolution towards the parabolic pulse form should produce a highly linear chirp 

across the entire pulse spectrum and result in an improved peak:pedestal intensity ratio, which 

could be useful for applications where this is an important consideration.  Greater nonlinear 

evolution will also result in pulses with greater bandwidth, so to obtain true parabolic pulses 

from the system we may also need to consider increasing the bandwidth of our amplifiers to 

support those pulses.   

8.5 Conclusion 

In conclusion, we constructed an Yb-fiber based oscillator and amplifier system that produced 

good beam quality (M2~1.2) with pulses of energies up to ~150 nJ, which could be cleanly 

compressed to a FWHM duration of ~300 fs.  The system produced pulses of slightly longer 

duration with energies as high as 334 nJ.  The system was robust, diode-pumped, all-fiber based 

and therefore suitable for wide practical application, and has been used to drive a synchronously 

pumped OPO that produced 330 fs pulses with an average power of 90 mW [3].  The OPO 

signal was tuneable across the wavelength range from 1.55-1.95 µm. 
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We have performed a detailed characterisation of the pulses from the system using SHG 

FROG, and have devised a numerical model based on the modified NLSE with gain that 

produced simulated pulse parameters in close agreement with the observed values.  We have 

also compared the evolution of the pulses to the theoretically predicted asymptotic solution, 

which is a pulse with parabolic spectral and temporal shape and linear chirp.  This is the first 

time, to our knowledge, that the evolution of directly amplified pulses has been studied in a 

multi-stage amplifier cascade.  We determined that for the experimental pulses, although SPM 

was clearly evident, there was scope for further nonlinear evolution towards the parabolic form.   

We envisage that with our improved understanding of the direct amplification process it 

should be possible to increase the power levels achieved whilst still producing high quality 

recompressed pulses.  We propose to use our numerical model to investigate the capability of 

our system to produce higher energy pulses with an evolution that has progressed further 

towards the asymptotic parabolic profile, and which we expect could enable <200 fs pulses with 

>>500 nJ energy to be produced.  As discussed in relation to the CPA system (Chapter 7), SRS 

will ultimately limit the maximum energy that can be obtained.  For example, the SRS threshold 

energy would be ~0.4 µJ for 8 ps pulses with a 15 µm diameter core amplifier with L=3.5 m, 

and total gain of 20 dB.  For the same pulse parameters and amplifier gain, the SRS threshold 

energy would increase to ~3 µJ for a core diameter of 30 µm, and L=2 m.  We propose to use 

the modelling to determine the most appropriate configuration for obtaining cleanly 

recompressed pulses with energy approaching this SRS threshold, and then to conduct these 

experiments. 

Finally, as a practical point to be considered for future experiments, we briefly note our 

observation of damage to the output facet of the LMA when running with high-energy parabolic 

pulses.  After a period of operating the system at ~300 mW average power (measured at the 

output of the LMA), we observed that the output mode quality would deteriorate strongly from 

the initial gaussian mode profile (M2~1.1).  Examination of the end of the fiber under the 

microscope revealed damage to the fiber facet and the adjacent ~1 cm of the fiber.  This 

observation of facet damage is consistent with observations by others and attributed to 

breakdown at the silica/air interface due to the high pulse fluence [11].  We considered that our 

observations were most often observed with this parabolic pulse system, rather than with the 

CPA system (Chapter 7), because the stochastic nature of the damage process means that a long 

run-time (this system was used to pump a femtosecond optical parametric oscillator [3]) resulted 

in increased incidence of failure.  A solution to this facet damage may have to be applied in the 

future, and a standard technique is to splice a short length of “dummy” fiber (no core) to the end 

of the fiber.  The diverging beam, with half angle = sin-1 (NA/ncore), is expanded to just less than 

the dummy-fiber diameter (by cleaving the dummy-fiber to the appropriate length).  The fluence 
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of the expanded beam is thus reduced below the damage threshold of the silica/air interface, and 

facet damage is prevented [11].  
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Chapter 9 Solitons in passive holey fiber 

9.1 Introduction 

This chapter describes our demonstration of linear dispersion compensation, soliton pulse 

formation, soliton compression, and ultra-broad supercontinuum generation in a HF that has 

anomalous dispersion for wavelengths above 800 nm.  The HF was seeded with ultrashort 

pulses from the diode-pumped, Yb-doped fiber oscillator described in Chapter 4, operating with 

either one or a pair of amplifiers in a direct amplification configuration, as described in 

Chapter 8.  When it was initially published, the work was the first direct demonstration of linear 

dispersion compensation in an anomalously dispersive HF at wavelengths below 1.3 µm [1, 2].  

Soliton propagation in HF had previously been demonstrated over 3 soliton periods, seeded with 

a Ti:Sapphire laser at ~820 nm [3].  Our report of soliton propagation over 475 soliton periods 

therefore represented an advance over previous work, and demonstrated the potential for HF 

based ultrashort pulse transmission for practical applications requiring a wavelength below 

1.3 µm e.g. ultrafast spectroscopy.  Our work was novel because of the new seed wavelength 

provided by our Yb-fiber oscillator.  The results show the compatibility of the rapidly 

developing HF technology with our practical Yb-doped fiber source for a wide range of 

potential applications. 

The use of soliton effects such as nonlinear pulse compression, propagation, and the soliton 

self-frequency shift (SSFS) in optical fiber have been exploited in a variety of sources operating 

at wavelengths above 1.3 µm, most commonly using lasers based on Er-doped fiber which 

operate around 1550 nm [4].  However it has not been possible to exploit soliton effects within 

sources operating in the visible and near infrared regions of the spectrum, since conventional 

single mode fibers display normal dispersion at wavelengths below 1.3 µm.  HF technology, has 

now enabled the design and fabrication of fibers with anomalous dispersion at wavelengths as 

short as 500 nm [5], and HFs have been shown to be capable of supporting soliton propagation 

over a distance of ~3 soliton periods when seeded from a Ti:Sapphire laser operating at 800nm 

[3].  Whilst the bulk Ti:Sapphire systems used to seed the initial demonstrations of soliton and 

supercontinuum effects in HF are suitable for research, they are far from ideal if one wishes to 

develop practical sources based on HF technology.  The results presented in this chapter 

demonstrate that the Yb-doped fiber system reported in the first part of this thesis is capable of 
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achieving the pulse durations and energies required to exploit the unusual nonlinear properties 

of HFs.   

This chapter is organised as follows.  Section 9.2 describes the characteristics of the HF used, 

and our experimental setup.  In Section 9.3 we describe results showing linear dispersion 

compensation and soliton formation.  Section 9.4 describes our demonstration of soliton 

transmission and supercontinuum generation, and Section 9.5 presents our conclusions. 

9.2 Characteristics of the holey fiber 

A scanning electron microgram (SEM) image of the robust, jacketed, polarisation-maintaining 

HF used in our experiments is shown inset to Fig. 9.1.  The fiber has a small ~1.6 µm diameter 

core with an effective mode area, ~3 µmeffA 2 at λ=1.06 µm, which is approximately 20 times 

smaller than for conventional fibers at this wavelength.  The small core also gives rise to the 

increased power densities and hence high effective nonlinearity of this fiber [4].  The fiber in 

 has a zero dispersion wavelength (λ0) of ~800nm (predicted with a full vector numerical 

model [6], using the SEM photograph of the fiber to define the transverse refractive index 

distribution).   

Fig. 9.1

Fig. 9.1 Experimental system configuration.  Inset: SEM of HF used for the pulse  
compression and preliminary soliton experiments. 
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The high (measured) transmission loss of ~1dB/m is principally due to confinement loss, and 

can be greatly reduced by adding more rings of holey structure around the core.  This was done 

to produce the fiber used for the supercontinuum demonstration reported in this chapter, which 

had a much-reduced loss of 0.1dB/m, and similar fibers with losses as low as 0.01dB/m (at 
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1550 nm) have been reported [7].  The fiber is rigorously single mode at wavelengths above 

1µm, but will support higher order modes at shorter wavelengths.  However, the confinement 

losses increase rapidly at shorter wavelengths, attenuating these higher order modes, so the fiber 

is effectively single mode down into the visible regions of the spectrum.  The fiber is highly 

suitable for polarisation maintaining applications, having a birefringence length of just 1.15 mm 

at 1.06 µm wavelength (polarisation extinction ~21dB between fiber axes).  This high 

birefringence arises from the combination of core asymmetry, high refractive index contrast and 

small-scale structure. 

9.3 Linear dispersion compensation and soliton formation 

The mode-locked seed laser and launch arrangement are shown in .  We used the 

Yb-doped, stretched pulse fiber laser described in Chapter 4 as our master oscillator [8].  For 

supercontinuum generation we amplified the pulses in diode-pumped Yb-doped fiber amplifiers.  

The laser output is exceptionally stable (amplitude noise ~0.05%) and therefore represents a 

very attractive and practical seed for Raman-soliton experiments, which are naturally highly 

sensitive to amplitude noise. 

Fig. 9.1

Fig. 9.2

Fig. 9.2

Fig. 9.2

. shows the results obtained by launching the ~2.4 ps duration positively chirped 

Gaussian pulses directly from the laser into a length of the HF and recording the non-collinear 

SHG autocorrelations and optical spectra of the transmitted pulses.  We used a half wave plate 

at the launch to match the pulse polarisation to a principal axis of the highly birefringent fiber.  

Without taking this precaution, components of the pulses launched on to the orthogonal fiber 

axes were observed to walk-off temporally due to the difference in dispersion between the axes, 

complicating the interpretation of the experiments.  We present data for two launched pulse 

energies: 1 pJ, for which the propagation is close to linear over the propagation lengths 

considered, and 20 pJ, for which significant nonlinear effects become apparent.  Starting with a 

fiber length of ~2.6 m (estimated transmission loss ~2dB) we gradually cut back the fiber length 

to record the evolution of the pulses as a function of propagation distance. 

.a) shows a plot of the pulse FWHM vs. fiber length for pulses in both the linear (1 pJ) 

and nonlinear (20 pJ) regime.  As expected for linear compression of an initially chirped pulse, 

the 1 pJ pulses are seen to initially compress, reach a minimum duration after ~1.2 m, and then 

to broaden again.  The linearity of the compression process is confirmed by the inset spectrum 

.b) in which only a modest spectral broadening is observed at the point of maximum 

linear pulse compression.  Compression by a factor of ~14 to a minimum duration of 170 fs is 

observed, with some higher order phase distortion remaining when compared with the minimum 

duration of 108 fs obtained when we compressed the pulses with a grating pair.  Fitting the data 
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of .a) we estimate the dispersion of the fiber to be ~150 ps/(nm.km) [4].  We believe that 

this is the first direct demonstration of linear dispersion compensation in a HF with anomalous 

dispersion at wavelengths below 1.3 µm [4]. 

Fig. 9.2
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Fig. 9.2   Results obtained launching pulses directly from the laser into 2.2 m length of HF.  
a) Plot of transmitted pulse FWHM vs. fiber length.  b)-d) Autocorrelation and inset 
spectra of pulses transmitted through HF: b) linear regime (1pJ pulses), fiber 
length = 1.15 m  c) non-linear regime (20pJ pulses), fiber length = 0.92 m , d) non-
linear regime, Raman scattering, fiber length = 2.02m. 

Fig. 9.2

Fig. 9.2 Fig. 9.2

Fig. 

9.2

 
 

In the non-linear regime (20 pJ pulses), .a) indicates soliton propagation with minimal 

temporal pulse broadening after transmission through ~2.6 m of fiber, which corresponds 

to ~ 20 soliton periods (as defined by the minimum compressed pulse width and the above 

estimated HF dispersion).  The shortest compressed pulses have a duration of 60 fs (see 

autocorrelation shown in .c).  The symmetric spectrum inset to .c), after 

propagation through 0.92 m of fiber, indicates the effects of SPM, whereas the spectrum in 

.d), after propagation through 2.02 m of fiber, shows a distinct peak at 1.075 µm, which is 

evidence of the SSFS effect.  The low pulse energies (20 pJ, 200 W typical peak power) and 

~1 m length of this fiber required to form solitons [1, 3, 9], are at least an order of magnitude 

lower than those previously required for similar experiments in conventional fiber at 1.55 µm 

[4], which makes these nonlinear effects readily accessible for practical applications. 
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9.4 Soliton transmission and supercontinuum generation 

To achieve higher pulse energies we amplified the laser pulses using direct amplification in 

diode-pumped Yb-doped fiber amplifiers.  The experimental setup is shown schematically in 

.  The SEM of the small core, anomalously dispersive HF used for the higher pulse 

energy experiments is shown in Fig. 9.3.a).  Although not identical to the fiber used in the 

earlier experiments, the fiber in .a) has very similar construction (core diameter, air fill 

fraction), and experimentally measured parameters ( 0eff   ,A λ ) compared to the previous fiber.  

We believe the processes of linear and non-linear pulse compression are acting similarly in both 

experiments.  The key difference is that by incorporating more rings of holes, the fiber shown in 

.a) has much lower confinement losses (~0.1dB/m). 

Fig. 9.1
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Delay (ps)
-15 -10 -5 0 5 10 15

SH
G

 In
te

ns
ity

0

1
Seed
FWHM = 6 ps

Transmitted
FWHM =  400 fs

b)

Wavelength (nm)
1050 1100 1150

In
te

ns
ity

 (d
B

)

-40

0 Transmitted 
pulse

   Seed
6ps, 100pJ

c)

a)

Wavelength (nm)
400 800 1200 1600

In
te

ns
ity

 (d
B

)

-40

0
d)

Seed pulse
(~350fs, 7.5nJ)

 

Fig. 9.3 Results obtained using amplified pulses.   a) SEM of the HF used for amplified pulse 
experiments.  b) Autocorrelation of 70 pJ pulses; at the input (positively chirped, 
FWHM 6ps), and after transmission through 60m of fiber (FWHM ~400fs).  
c) Spectra of input pulses (FWHM 6ps, 100pJ) and wavelength shifted (SSFS) 
pulses after transmission through 60m of fiber. d) Broadband continuum obtained 
by launching 20kW peak power pulses (FWHM~350fs, 7.5nJ) into 7m fiber length.  
The chirp of the input pulses was removed using a diffraction grating compressor. 

Fig. 9.3

Fig. 9.3

 
Launching the uncompressed amplified pulses (strong positive chirp, FWHM~6ps) directly 

into a 60 m length of the HF shown in .a), we observed dramatic temporal pulse 

compression and evidence of SSFS wavelength tuning.  For low launched pulse energies (below 

~10 pJ), we observed that the transmitted spectrum was undistorted but the pulses were 

temporally broadened (beyond the ~50 ps measurement capability of our autocorrelator) due to 

the excess anomalous dispersion of the fiber.  However, on increasing the launched pulse energy 

above ~20 pJ, the FWHM of the transmitted pulses reduced to below 1 ps, and for launched 

pulse energies around ~70 pJ, the output pulse FWHM remained constant at ~400 fs.  .b) 

shows the SHG autocorrelation of the 400 fs transmitted pulses (solitons), and of the 6ps 
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launched pulses.  This demonstration of soliton transmission through 60 m of fiber corresponds 

to ~475 soliton periods, which we believe is the longest transmission distance recorded for 

solitons at this wavelength.  The spectrum shown in .c) clearly demonstrates single 

colour Raman solitons, which were tuneable with increasing launched pulse energy out to a 

maximum wavelength of ~1.12 µm.  This complements the work on SSFS in an active Yb-

doped HF described in Chapter 11 of this thesis, where we achieved a much broader tuning 

range 1.06-1.33 µm [10]. 

Fig. 9.3

Fig. 9.3

Finally, we increased the peak power of the launched pulses to a maximum of ~20 kW 

(350 fs FWHM, E~7.5 nJ) by adding a higher power cladding pumped Yb-doped fiber 

amplifier, a modulator to reduce the pulse repetition rate, and a diffraction grating compressor to 

remove the chirp.  The output of the HF became a spectacular blue/white colour and the ultra-

broad supercontinuum spectrum in .d) shows the enormous broadening into the visible 

region, especially compared to previous supercontinuum demonstrations from all fiber systems 

[11].  As the pulse energy was increased, the spectrum first formed a broad continuum across 

the infrared spectrum, and only at the highest powers did the spectrum move into the visible 

range.  The HF length was 7 m, but we note that visible blue light was seen towards the launch 

end of the fiber indicating that a substantially shorter fiber length could have been used.  Using 

an oscilloscope and detector with ~2 GHz bandwidth, the input pulses were observed to be jitter 

free with FWHM duration of 0.5 ns (true pulse width of ~6 ps), whereas the transmitted pulses 

were smeared across a 2 ns (FWHM) time window with significant jitter, which we interpreted 

as break-up into multiple pulses. 

9.5 Conclusion 

In conclusion, we have directly demonstrated, for the first time to our knowledge, linear 

dispersion compensation in a HF with anomalous dispersion at wavelengths less than 1.3 µm.  

At only 1 mW average powers (peak power ~200W), the fiber supports both soliton 

compression, and pulse propagation without temporal broadening, and using pulses with higher 

peak powers, we generated supercontinuum spectra spanning from below 400 nm to above 

1750 nm.  All experiments were seeded using our diode-pumped Yb-doped fiber source. 
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Chapter 10 UV generation in a silica holey fiber 

10.1 Introduction 

This chapter describes our demonstration of supercontinuum generation extending to 300 nm in 

the UV from a pure silica holey fiber.  The broad spectrum was obtained by launching ultra-

short pulses (~150 fs, 10 nJ at 820 nm) from an amplified Ti:sapphire laser.  The extension of 

HF based supercontinuum generation into the UV should prove to be of immediate application 

in spectroscopy.  By slightly detuning the launch conditions we excited a higher order spatial 

mode which produced a narrower supercontinuum, but with enhanced conversion efficiency at a 

series of blue/UV peaks around 360 nm.  We present numerical simulations, which suggest that 

differences in the dispersion profiles between the modes are an important factor in explaining 

this enhancement.  In a related experiment, using the same laser source and fiber, we 

demonstrated visible supercontinuum from several subsidiary cores, with distinct colours in 

each core.  The subsidiary cores were excited by appropriate input coupling.  Fabrication of a 

fiber with a range of core sizes (dispersion profiles) for tailored supercontinuum generation can 

therefore be envisaged for practical applications [1]. 

Microstructured “holey” fibers have a unique range of optical properties [2, 3] and have 

enabled new applications in spectroscopy [4], metrology [5] and communications [6, 7].  

Although the field of supercontinuum research using conventional fibers has been active for 

many years at wavelengths near 1.5 µm for telecommunications applications [8], the unique 

properties of HFs have enabled the demonstration of visible supercontinuum in HF pumped 

directly with Ti:sapphire oscillators [9].  This demonstration encouraged tremendous new 

research interest to both explain the origin of this remarkable spectral broadening [10, 11] and to 

develop further applications [12].  Visible supercontinuum spectra have previously been 

reported spanning 390-1600 nm using microstructured HF [9, 10], and 375-1500 nm [13] using 

tapered standard fiber.  However, there is strong interest in extending the achievable bandwidths 

still further, particularly towards the ultraviolet (UV) regions of the spectrum [14, 15] for use in 

spectroscopy.   

The dispersion profile of a HF has been shown to strongly influence the spectral shape of the 

supercontinuum produced [11].  We present, for the first time to our knowledge, full vector 

calculations based on the SEM of an actual fiber structure, of the dispersion characteristics of 
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the higher order spatial modes that were observed to produce enhanced UV generation.  Our 

calculations show that the zero dispersion wavelength (λ0) is close to the pump wavelength for 

the fundamental mode for our fiber, but at significantly shorter wavelengths for the higher order 

modes.  We have used these dispersion profiles to perform numerical simulations of the 

continuum spectra in the fundamental and higher order modes, and which are in reasonable 

agreement with the measured spectra.  Our observation that pumping close to λ0 creates a broad 

flat spectrum, whereas pumping above λ0 creates both red-shifted and blue-shifted spectral 

bands, is consistent with the investigations of other authors into the continuum spectra from the 

fundamental spatial mode made using fibers with different core sizes, and hence dispersion 

profiles [11].  

Finally, using the same fiber and laser source, we demonstrated that by varying the input 

coupling appropriately, visible supercontinuum from several subsidiary cores could be 

produced.  The colours of the supercontinuum spectra differed for each subsidiary core, which 

we consider was due to differences between the dispersion profiles of each core and also to 

differences between the input coupling efficiencies.  This initial demonstration of 

supercontinuum generation in a multi-core fiber shows the potential for designing a fiber with 

an array of cores with different dimensions (dispersion profiles) and that could be selectively 

excited for tailored spectral generation from a single fiber structure. 

The choice of fiber material is important for efficient UV generation in order to avoid 

unacceptable absorption (attenuation).  High UV transmission losses affect standard silica based 

fibers, which are used to fabricate tapers for supercontinuum generation, because the ions 

typically incorporated in the fiber core in order to obtain the required transverse refractive index 

profile result in strong absorption in the UV (e.g. germanium doped silica has ~10,000 dB/km 

stronger absorption [16] at 250 nm compared to pure (undoped) silica).  We expect that the 

comparatively low material loss of the single material pure silica HF as used in the experiments 

presented here should make such fibers strong candidates for efficient fiber-based UV 

supercontinuum sources. 

This chapter is organised as follows.  In Section 10.2 we describe the details of the 

experiment, and the properties of the HF.  In Section 10.3, we describe our numerical 

simulations and compare the results to our experimentally measured spectra.  In Section 10.4 we 

report our observations of supercontinuum generation in several subsidiary cores of the fiber, 

and in Section 10.5 we draw our conclusions.  
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10.2 Experimental observation of UV supercontinuum 

Supercontinuum generation was produced by coupling high energy ultrashort pulses into a short 

length of HF.  A schematic of our experimental setup is shown in .  The 

supercontinuum generation at visible and near infrared wavelengths was recorded using a fiber-

coupled optical spectrum analyser, whereas a UV optimised spectrometer and cooled CCD were 

used for wavelengths extending to below 300 nm.  The spectral data presented in this chapter 

were produced using a pump wavelength λpump=820 nm.  Coupling into the fundamental mode, 

which has λ0 close to λpump, produced a yellow coloured supercontinuum, but by coupling into a 

higher order mode, we produced a dramatic change in the colour of the supercontinuum to 

bright blue-white, and we recorded UV spectra for the two-lobed mode showing power 

transferred to a series of peaks around 360 nm.  By pumping at a shorter wavelength, we 

produced a wider variety of colours in higher order modes, as shown in . 

Fig. 10.1

Fig. 10.1. Experimental configuration for characterising supercontinuum extending into the 
UV. 
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This section is structured as follows.  Section 10.2.1 describes the characteristics of the HF.  

Section 10.2.2 presents the results showing UV generation to wavelengths as short as 300 nm in 

the UV.  Section 10.2.3 shows the results obtained by coupling into higher order spatial modes 

(enhanced conversion efficiency into UV peaks).  Section 10.2.4 is a brief report of our 

observations of laser induced damage to the fiber input facet.  

10.2.1 Characteristics of the holey fiber 

A SEM image of our robust, jacketed, polarisation-maintaining HF is shown inset to Fig. 10.1.  

The fiber has a ~1.6 µm diameter core, and a large air fill fraction in the cladding and this 

combination results in a highly confined mode with  ~ 2.5 µmeffA 2.  The fiber is rigorously 

single mode at wavelengths above 1 µm, but supports higher order modes at shorter 

wavelengths.   
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As mentioned in the introduction, we observed supercontinuum generation in higher order 

spatial modes, which was accompanied by enhanced spectral conversion in strong UV peaks.  

To further understand this process, we have calculated the mode area and dispersion properties 

of the fundamental and next lowest order fiber modes as shown in .  The calculated 

dispersion profiles (Fig. 10.2(b)) show that the two polarisation modes (quasi-linearly polarised) 

associated with each transverse mode are not degenerate because the asymmetry of the fiber 

profile leads to mode splitting.  (By comparison, these pairs of quasi-linearly polarised modes 

would remain degenerate for a fiber with an idealised hexagonal hole configuration [17].)  It is 

therefore crucial to use a full vectorial method to calculate the properties of this small-core 

fiber, and we used a full vectorial implementation of the orthogonal function method [18], 

incorporating both odd and even functions to describe the modal fields and HF profile.  The 

material dispersion of silica is incorporated in the calculations directly via use of the Sellmeier 

equation. 

Fig. 10.2

Fig. 10.2

Fig. 10.2

Fig. 10.2

Fig. 10.2

Fig. 10.2

Fig. 10.2

The numerically predicted intensity profiles of the two-lobed spatial modes, and near field 

photographs of continuum generation in each mode are shown in (a) and (d).  A 100x 

microscope objective was used to image the fiber output onto a screen.  The predicted intensity 

profiles match the observed mode shapes well, including details of the asymmetries in each 

direction.  The dispersion predictions for the two-lobed modes and for the fundamental mode 

are presented in (b).  The three pairs of different dispersion profiles (hence different λ0) 

create distinctive supercontinuum spectral shaping.  The zero dispersion wavelengths are: 

λ0 = 795 nm, 838 nm (polarisation dependent) for the fundamental mode; λ0 = 611 nm, 629 nm 

(polarisation dependent) for the mode of (a); and λ0 = 671 nm, 694 nm (polarisation 

dependent) for the mode of Fig. 10.2(d).  The injection wavelength used in our experiments 

λpump= 820 nm) is shown in (b).  The calculated effective mode area ( ) of the 

fundamental mode is shown in (c).  We also calculated  of all six modes to be: 

2.32 µm

effA

effA
2, 2.43 µm2 for the two principal polarisation axes of the fundamental mode; 2.01 µm2, 

2.05 µm2 for the mode of Fig. 2(a); and 2.34 µm2, 2.38 µm2 for the mode of (d) (all 

calculated at a wavelength of 675 nm, which is close to the centre of the observed 

supercontinuum spectra).   
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Fig. 10.2. (a),(d) Numerically predicted intensity profiles (1dB contour spacing) and 
corresponding near-field photographs (produced by imaging the fiber end using a 
100x microscope objective) for two-lobed spatial modes.  (b) Calculated dispersion 
for fundamental and two-lobed spatial modes.  (c) Calculated  for the 
fundamental spatial mode. (Similar for two-lobed modes.)  The solid and dashed 
curves are for the two principal polarisation axes of the highly birefringent fiber. 
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The measured loss of the fiber (fundamental mode) is ~40dB/km at a wavelength of 1.55 µm 

[6].  However single material HFs with losses as low as 0.58dB/km at λ= 1.55 µm have been 

fabricated [19], and therefore excess loss should not be a constraint on the performance of future 

practical devices based on this technology.  Calculations based on the multipole method [19] 

indicate that confinement loss provides a significant contribution toward the total measured loss 

in this fiber, but that it should be possible to reduce the confinement loss for this fiber to well 

below 0.1 dB/km simply by adding more rings of air holes.  The higher order modes extend 

further into the cladding and it is therefore anticipated that the higher order modes would 

experience very large confinement loss, and so would not be observable in long fiber lengths.  

This effect was observed experimentally because for the mode of Fig. 10.2(a), which has λ0 and 

 furthest from those of the fundamental mode, we could much more easily observe 

transmitted power through a 15 cm fiber length compared to a 25 cm fiber length, whereas we 

observed the mode of Fig. 10.2(d) through a longer length of fiber without difficulty.   

effA

 132



10.2.2 Supercontinuum generation into the UV 

In this section we describe our experimental setup and the special precautions used to make 

measurements in the UV.  The experimental arrangement is shown in .  High energy, 

ultrashort (~150fs FWHM) pulses at a wavelength of 820 nm from a mode-locked Ti:sapphire 

laser system (TEM00 mode, average power~10 mW, repetition rate =250 kHz) were launched 

into a ~25 cm length of HF using a 40x microscope objective.  By maximising the coupling 

efficiency, we launched ~25% of the incident power (launched energy ~10 nJ, peak power 

~50 kW).  The supercontinuum at the fiber output was recorded at visible and near infrared 

wavelengths using a fiber-coupled optical spectrum analyser (ANDO AQ6315B), and using a 

UV optimised spectrometer (appropriately blazed diffraction grating; UV enhanced CCD 

detector) for wavelengths at least as short as 300 nm.  We used UV fused silica (UVFS) lenses 

to couple light into the spectrometer in order to avoid the poor transmission of standard BK7 

glass lenses at short wavelengths.   

Fig. 10.1

Fig. 10.3

Fig. 10.3

Fig. 10.3

Fig. 10.3

(a) shows the observed supercontinuum extending from <300 nm to >1600 nm and 

combines the data from the optical spectrum analyser and spectrometer.  We have considered 

the wavelength variation of the spectrometer efficiency, calculated from the efficiency curves of 

each spectrometer element shown in (b).  The overall spectrometer efficiency was 

found to be approximately uniform from ~250 nm to 800 nm, so we have not adjusted the UV 

spectra of (a),(d) for instrument variation.  The spectrometer slit width was held 

constant to minimise variations in spatial mode filtering.  Scatter from higher order diffraction 

of the pump (820nm) and longer wavelengths was removed using a UG1 coloured filter from 

Schott Glass, which blocks most wavelengths >600 nm.  Fig. 10.3(c) shows the overall 

efficiency of the spectrometer with and without the filter.  The differences between the filtered 

and unfiltered spectra should comprise: (i) weak attenuation at the measured UV wavelength, 

and (ii) strong attenuation of longer wavelengths, which removes potential false counts caused 

by 2nd order diffraction.  (d) shows the UV spectra with and without the coloured 

filters.  The differences between the filtered and unfiltered spectra match the absorption of the 

coloured filter at the UV wavelength, so we concluded that scatter from higher order diffraction 

of long wavelengths was not distorting the unfiltered spectrum. The measurements therefore 

confirm that the supercontinuum spectrum extends down to at least 300 nm in the UV.   

For the supercontinuum produced in the fundamental mode of our fiber (λ0 close to λpump), we 

interpret our observation of UV generation to 300 nm, which represents a more extreme 

broadening towards the UV than typically reported [9, 11], to result from differences between 

the precise form of the dispersion profile of our fiber compared to the fibers studied by other 

authors, and perhaps also from our detailed observations using a spectrometer with enhanced 

sensitivity in the UV. 
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Fig. 10.3. (a) Broadband supercontinuum spectrum extending from 300nm (UV) to 1600nm 
(IR). (b) Calculated efficiency of the UV optimised spectrometer.  The spectrometer 
mirror efficiency (not shown) is 92% across the spectral range considered, and is 
included in the overall efficiency.  (c) Transmission characteristics of the coloured 
filter used to eliminate unwanted long-wavelength scatter.  (d) UV spectra from 
300nm to 500nm recorded with and without coloured filter. 
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10.2.3 Enhanced UV in higher order spatial modes 

Despite the wide interest in supercontinuum research, there have been few previous reports of 

supercontinuum in higher order spatial modes [14, 20, 21].  Due to the large index difference 

between core and cladding modes of small core, high air fill fraction HFs, the effective index of 

the fundamental mode, which is mostly confined within the core, is substantially greater than for 

higher order modes, which extend into the holey cladding.  It is therefore comparatively difficult 

to couple to higher order modes of these HFs, and the perturbations which couple modes in 

standard fibers (small variations of core diameter resulting from fabrication, and bending of the 

fiber) are comparatively less effective at mode-mixing.  However,  illustrates that by 

slightly detuning the pump launch from that for optimal launch efficiency, we obtained strong 

coupling into higher order spatial modes accompanied by a visually stunning change in the 

colour of the fiber output from pale yellow ( (b)(ii)) to bright white ( (b)(iii)), 

which led us to investigate the supercontinuum spectrum into the UV. 

Fig. 10.4

Fig. 10.4 Fig. 10.4

Fig. 

10.4

Fig. 10.4

Using a pump wavelength of ~820 nm produced only the fundamental mode of 

(b)(ii), or the two-lobed mode oriented as shown in Fig. 10.4(b)(i),(iii).    We observed that 

the mode-colour of (b)(iii) was associated with the strongest UV generation.  Using an 

OPA system to provide a pump wavelength of ~675 nm (similar pulse energy and duration 
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compared to 820 nm pulses), we observed a wider range of colours produced in higher-order 

modes and with lobes in either orthogonal orientation as shown in Fig. 10.4(b) (iv)-(vi) .  The 

relative ease of generating supercontinuum in higher order modes when λpump = 675 nm 

(compared to λpump = 820 nm) could be because the pump wavelength is then closer to λ0 of the 

higher order modes, although we have not identified the exact mechanism.  

Mirror 
Screen 
(photograph) 

~25cm holey fiber 

a) 

 

Fig. 10.4. (a) Experimental setup for detuning the launch into the HF.  (b) Far-field 
photographs of the colours produced in higher order spatial modes.  (i)-(iii) λpump = 
820 nm; (iv)-(vi) λpump = 675 nm.  The orientations of the modes correspond to 
those of the near field images in Fig. 10.2. 

Fig. 10.4

Fig. 10.4

 

(vi)(v)

(iii)

(iv) 

(ii) b) (i) 

The average power transmitted in the higher order modes was typically ~1 mW, compared to 

~2 mW in the fundamental mode.  The reduction in transmitted power is due to lower launch 

efficiency (off-axis launch) and to somewhat higher transmission losses in this higher order 

mode, but high energy pulses (up to 5 nJ) could still be launched into this higher order mode.  

The orientation of the two-lobed mode was predominantly that shown in (b)(iii), which 

corresponds to the mode of  (d).   Fig. 10.2

Coupling into the two-lobed mode of .(b)(iii) resulted in an enhancement of the 

power at wavelengths close to 360 nm, and a narrowing of the supercontinuum.   (top) 

shows the results from coupling into the two lobed spatial mode (shown inset).   

(lower) shows the results from coupling into the fundamental mode (shown inset).  The 

spectrum from the two lobed mode, (a)(top), was narrower when compared to the 

spectrum from the fundamental mode, (a)(lower), but retained strong spectral 

conversion to <450 nm wavelengths.  Enhanced UV generation at a series of peaks near 

~360 nm is demonstrated in (b) from the two-lobed mode (top plot), but the peaks are 

Fig. 10.5

Fig. 10.5

Fig. 10.5

Fig. 10.5

Fig. 10.5
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not present in the fundamental mode spectrum (lower plot).  A set of neutral density filters was 

used to vary the input power, and which resulted in the increasing intensity levels shown in 

(b).  As described in Section 10.2.2, we used coloured filters to block unwanted scatter from 

the longer wavelengths and that could otherwise distort the UV measurements.  

n in 

(b).  As described in Section 10.2.2, we used coloured filters to block unwanted scatter from 

the longer wavelengths and that could otherwise distort the UV measurements.  

Fig. 

10.5

Fig. 10.5.  Continuum spectra from coupling into two-lobed spatial mode (upper plots), and 
coupling into the fundamental mode (lower plots).  Inset: photographs of 
corresponding far-field modes. (a) Wide span measurements.  (b) Series of UV 
peaks at ~360 nm.  The coloured lines correspond to increasing pump pulse energy: 
+0, 1, 2, 3, 5, 6 dB with respect to the lowest intensity trace.  (Due to different 
signal averaging times, quantitative comparison of upper and lower plots is not 
possible.) 

Fig. 

10.5

Fig. 10.5.  Continuum spectra from coupling into two-lobed spatial mode (upper plots), and 
coupling into the fundamental mode (lower plots).  Inset: photographs of 
corresponding far-field modes. (a) Wide span measurements.  (b) Series of UV 
peaks at ~360 nm.  The coloured lines correspond to increasing pump pulse energy: 
+0, 1, 2, 3, 5, 6 dB with respect to the lowest intensity trace.  (Due to different 
signal averaging times, quantitative comparison of upper and lower plots is not 
possible.) 
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10.2.4 Laser-induced damage to the fiber tip 10.2.4 Laser-induced damage to the fiber tip 

We observed that perturbations to the input launch conditions (e.g. caused by knocking gently 

on the optical table near the lens mount), could somehow change the fiber so that it was no 

longer possible to couple into the fundamental mode, but only into the two-lobed mode.  By re-

cleaving the fiber tip to reveal a new facet we could again excite the fundamental mode.  We 

suggest that our observations are due to optically induced damage to the fiber facet, which 

would cause the pump light to couple into the higher order mode for all launch configurations 

(although we have not identified the precise damage mechanism).  This explanation would be 

consistent with reports from other groups [14, 22] that significant UV generation was only 

obtained following melting of the fiber facet  (as observed from SEM images) when using 1W 

incident average power from a high repetition rate source, but with pulse characteristics 

(FWHM~200 fs, energy ~ 14 nJ) similar to those used in our experiments. 

We observed that perturbations to the input launch conditions (e.g. caused by knocking gently 

on the optical table near the lens mount), could somehow change the fiber so that it was no 

longer possible to couple into the fundamental mode, but only into the two-lobed mode.  By re-

cleaving the fiber tip to reveal a new facet we could again excite the fundamental mode.  We 

suggest that our observations are due to optically induced damage to the fiber facet, which 

would cause the pump light to couple into the higher order mode for all launch configurations 

(although we have not identified the precise damage mechanism).  This explanation would be 

consistent with reports from other groups [14, 22] that significant UV generation was only 

obtained following melting of the fiber facet  (as observed from SEM images) when using 1W 

incident average power from a high repetition rate source, but with pulse characteristics 

(FWHM~200 fs, energy ~ 14 nJ) similar to those used in our experiments. 
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10.3 Comparison of experimental results with simulations 

In this section, we compare the results of our numerical modelling to the experimentally 

measured spectra.  We performed the modelling to provide insight into the mechanisms giving 

rise to the enhanced UV generation in the higher order spatial mode.  When considering which 

parameters to include in the model, we first noted that in order to excite the higher order modes 

it was necessary to detune the launch with respect to that used for optimum coupling into the 

fundamental mode.  In addition, the fibers used in our experiments were quite short (25 cm), so 

strong coupling between modes subsequent to launch would be unlikely.  We therefore 

considered that coupling into the two-lobed mode occurred solely at launch and not by mode-

mixing from the fundamental mode after launch.  This suggested that the properties 

(nonlinearity, dispersion) of the two-lobed mode alone could be responsible for the spectral 

shaping, rather than a more complex inter-modal process.  As described in Section 10.2.1, the 

effective mode areas of the fundamental and two-lobed mode are very similar, implying similar 

effective nonlinearities for these modes.  However, the dispersion properties are dramatically 

different; in particular, the two-lobed mode has λ0~690 nm compared to λ0~810 nm for the 

fundamental mode. The shorter λ0 of the higher order mode would cause phase-matching to 

transfer energy further towards the UV, and would explain the general observation of enhanced 

UV generation.  

To support our suggestion that the difference between the supercontinuum produced in 

different spatial modes is principally due to differences between the dispersion profiles of those 

modes, we performed numerical simulations based on the dispersion profiles for both the 

fundamental mode and for the two-lobed mode shown in (d).  Our numerical model 

(ignoring fiber losses) uses the modified NLSE with gain, as described in Chapter 2, and shown 

below. 

Fig. 10.2
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where  is the electric field envelope,   are the dispersion coefficients at the center 

frequency 

),( tzAA =

0

kβ

ω , )(02 effcAn ωγ =  is the nonlinear refractive index, and  is the effective area 

of the fiber.  The equation has been used by other authors for the numerical study of 

supercontinuum generation [23, 24].  To solve the propagation equation, we used a standard 

split-step Fourier algorithm treating dispersion in the frequency domain and the nonlinearity in 

the time domain, apart from the temporal derivative for the self-steepening effect, which is 

evaluated using Fourier transforms. In performing this modelling, I am grateful to Dr. Rüdiger 

effA
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Paschotta for allowing me to use "ProPulse", which is a numerical modelling package he has 

written for simulating pulse propagation.   

We used the dispersion and A  data from Section 10.2.1, and chose parameters for our 

launched pulses that would correspond to the experimentally observed average transmitted 

power from the fiber (E ~10 nJ, in the fundamental mode, E ~5 nJ, in the two-lobed mode; λ

eff

pump 

= 820 nm, FWHM ~150 fs for both modes).  We also performed simulations for pulses with half 

of these energies and the results were qualitatively similar, with only slight variations in the 

bandwidth. Our simulation results show the expected spectral fine structuring [23] and we have 

applied a rolling average to smooth the data, which is then approximately comparable to the 

time averaged experimental measurements.  We present simulation results for one of the 

principal polarisation axes, but the results were qualitatively similar for the other axis.  We note 

that there are further refinements that can be made to the above NLSE to include effects such as 

loss along the fiber length, ultraviolet and infrared absorption bands, polarisation coupling, and 

the wavelength dependence of the effective mode area.  However, the simulations show 

reasonable qualitative agreement with the experimental spectra. 

 

Fig. 10.6. Experimental (black) and theoretically modelled (red) supercontinuum spectra.  
(a) fundamental mode;  (b) two-lobed mode (Fig. 10.2(d)). 

Fig. 10.6
 

λ (µm)0.4 0.8 1.2 1.6

Intensity (dB)

-40

-20

0

λ (µm)0.4 0.8 1.2 1.6

Intensity (dB)

-40

-20

0(a) (b) 

The results of our simulations (red) and the experimental data (black) are shown in  

for both the fundamental and the two-lobed modes.  The simulation and experimental spectra 

show reasonable agreement: the simulation results for the fundamental mode show a broad, flat 

spectrum with approximate agreement to the experimentally observed bandwidth; and the 

simulation results for the higher order mode show a narrower spectrum, but with significant 

power at blue wavelengths.  Given the complexity of the phenomenon of supercontinuum in 

higher order modes, and the approximations made in our simulations, exact agreement between 

simulations and experimental observations could not be expected.  However, the main features 

observed in our simulation results are consistent with our experimental spectra.  Our simulation 

results are also consistent with both experimental and theoretical results from other groups that 
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have used fibers with different λ0 in relation to the pump wavelength, but always in the 

fundamental spatial mode: i.e. pumping near λ0 produced a broad, flat spectrum, and pumping 

on the anomalous dispersion side of λ0 produced discrete red-shifted and blue-shifted bands 

[11]. 

Fig. 10.6

Fig. 10.6

 (b) shows that the principal difference between the simulation and experimental 

spectrum for the higher order mode is that the simulation shows a lower intensity near λ0 

(690nm).  We suspect that the higher intensity observed experimentally is likely to arise due to a 

non-ideal launch into the higher order mode resulting in residual excitation of the fundamental 

mode, as shown by the photographs of  and .  Similarly, for the spectrum of 

the fundamental mode shown in  (a), a small fraction of the launch power coupled into 

the higher order mode could be responsible for the shoulder in the experimentally observed 

spectrum at ~450nm that is not present in the simulation result (the simulations predict a peak in 

the higher order mode spectrum at approximately that wavelength).  The simulations predict 

strong pump depletion such that there is no peak remaining at the pump wavelength.  This is 

consistent with the simulations of other authors [10, 20], and we suspect that the experimentally 

observed peak at the pump wavelength is due to a small fraction of the incident power guided 

by lossy cladding modes and observed because the fiber length is short.  Overall, we believe that 

the simulation results provide support for our suggestion that the difference in general form of 

the supercontinuum spectra is principally due to the differences between dispersion profiles of 

the fundamental and two-lobed modes.   

Fig. 10.4 Fig. 10.5

Fig. 10.5

10.4 Supercontinuum generation in subsidiary cores 

In this section we describe our observations from a related experiment that produced 

supercontinuum in several subsidiary cores of the fiber.  Examples of multiple core HFs that 

have previously been reported include a dual core HF [25], and a HF containing several cores of 

different dimensions [26].  However, this is the first time, to our knowledge, that 

supercontinuum generation in secondary cores of a HF has been demonstrated.  In the fiber used 

here, the “subsidiary” cores arise where imperfections in the structure have created relatively 

thicker regions of silica.  In the future, it would be straightforward to envisage the systematic 

fabrication of multiple cores using additional solid cores in the capillary stacking process.  The 

experimental arrangement was similar to that used for continuum generation in the higher order 

modes of the principal core ( (a).), using the same pump pulses and HF, but with more 

extreme detuning of the launch.   

Fig. 10.7(a) shows a typical far-field mode shape produced by continuum generation in a 

subsidiary core, observed as scattered light from a white card a few centimetres from the fiber 
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end; the six-fold symmetric pattern in a uniform colour is surprising because the fiber does not 

have a perfectly regular hexagonal structure, and it is substantially different from the far field 

images of higher order modes in the principal core ( ).  However, the observed 

geometric nature of the far field modes was characteristic of our observations of continuum 

generation in subsidiary cores. 

Fig. 10.4

 

Fig. 10.7. (a) Example far-field image observed when continuum produced in a subsidiary 
core of this multi-core fiber. (b)-(d) Near-field pictures showing continuum in 
principal and subsidiary cores, with overlaid SEM of fiber structure.   Note that 
(b) and (c) are single pictures, whereas (d) is a composite image to show the variety 
of colours seen in different cores.  The diamond shapes in (b) indicate the subsidiary 
cores in which we observed continuum generation. 

Fig. 10.7
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 (b)-(d) shows near-field pictures of supercontinuum in subsidiary cores that were 

recorded using a 100x microscope objective to focus the fiber output onto a screen.  Using a 

camera on a tripod, we recorded all the near-field images from the same relative position, and 

we then matched the images to the subsidiary cores by overlaying those images onto the SEM of 

the fiber.  In contrast to the far-field image, the near-field images show that the mode shapes 

clearly follow the fiber structure; the modes in (c) and (d) spread into neighbouring 

subsidiary-cores where the struts are broad, and thus the subsidiary core modes are poorly 

confined.   

 (b)-(d) demonstrates that characteristic colours were produced by each core.  The 

colours in any core changed when a half-wave plate was used to rotate the plane of polarisation 

of the input pulses.  The dispersion of a HF has been shown to be a controlling factor for 

supercontinuum spectral broadening [11, 27], and we interpret the distinctive colours associated 

with each subsidiary core to be an indication of the different dispersions of these cores.  The 

size of all the subsidiary cores (~1 µm) was of the same scale as the guided wavelengths, so we 

would expect the waveguide dispersion to be a sensitive function of the precise core 

dimensions.  The strong asymmetry of the subsidiary cores also leads to substantially different 

dispersion properties for the orthogonal polarisation axes, which would cause the continuum 

colour to change with variations of the input polarisation.   

We also considered the increased losses of these subsidiary cores.  In an idealised HF, the 

average refractive index of the periodically arranged cladding, is lower than the refractive index 

of the solid core region, and so light is guided by this effective refractive index difference (∆n).  
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As explained in Section 10.2.1, reducing the confinement losses for small core HFs (to the few 

dB/km) requires a sufficient diameter of holey (microstructured) cladding around each core 

(number of rings of holes) [19].  It has previously been empirically determined that in order to 

confine light of wavelength λ, all fine silica struts surrounding a subsidiary core must be longer 

than λ2~  and narrower than λ2.1~  [26].  The supporting struts in our fiber were short and 

wide compared to the wavelength of the guided light, and the confinement losses of the 

subsidiary cores were therefore high.  The confinement losses were evident experimentally 

because the fiber glowed much more brightly (unguided light) when continuum was produced in 

subsidiary cores compared to when continuum was produced in the main core.  Furthermore, we 

only observed the supercontinuum in subsidiary cores using a short fiber length (15 cm as 

opposed to a 25 cm length for our other measurements).  The average power transmitted through 

the fiber in subsidiary cores was ~0.5 mW compared to ~2.5 mW in the central core, due to a 

combination of the increased confinement losses and the reduced launch efficiency.  However, 

we suggest that it should be possible to dramatically reduce excess losses by choosing an 

appropriately designed fiber structure. 

Overall, we believe that this initial observation if supercontinuum generation in several 

subsidiary cores of a HF demonstrates the potential for fabrication of a fiber with several cores 

of different dimensions for tailored continuum generation from a single fiber. 

10.5 Conclusion  

In conclusion, we have demonstrated supercontinuum generation from 300 nm in the UV to 

above 1600 nm in the IR from a pure-silica HF.  Care was taken to consider the efficiency of 

our UV enhanced spectrometer across the blue/UV spectral range, and we used coloured glass 

filters to block unwanted scatter from longer wavelengths.  By coupling into a two-lobed spatial 

mode, we measured substantially enhanced UV generation in a series of blue/UV peaks at 

wavelengths near 360 nm.  Since the fiber lengths used in our experiment were quite short 

(~15 cm), and because it was necessary to detune the launch in order to couple into the two-

lobed mode, we believe that coupling into the two-lobed mode occurred at launch, and not by 

mode-mixing from the fundamental mode subsequent to launch.  The enhanced UV generated 

would then result from differences in the dispersion profiles of the fundamental and higher order 

two-lobed modes.  To enhance our understanding of this process, we used a full vector model 

based on the SEM of the fiber structure to calculate the dispersion profiles for the fundamental 

mode and for the two orthogonally oriented two-lobed modes, and performed numerical 

simulations of supercontinuum spectra produced by these dispersion profiles.  The simulation 

and experimental results are in reasonable qualitative agreement, which provides support for our 

 141



suggestion that the enhanced UV generation is due in large part to the differences in the 

dispersion profiles of the distinct spatial modes. 

We have also demonstrated visible supercontinuum with distinct colours produced in several 

subsidiary cores of our multi-core fiber.  We interpret the different colours produced by each 

subsidiary core to result from variations in the dispersion profiles of the cores (and from the 

reduced launch efficiency).   

We believe that the extension of HF based supercontinuum generation into the UV will prove 

to be of immediate practical application in spectroscopy.  Following the results presented here, 

we could envisage the design of a fiber with optimised dispersion characteristics for enhanced 

UV generation.  Power scaling to generate substantial UV intensity should be possible by using 

a higher repetition rate system compared to the 250 kHz source used in these experiments; and 

any such work would ideally consider new pump wavelengths in order to exploit more practical 

sources for supercontinuum generation based on diode-pumped Yb-doped fiber amplifiers [28].  

Following our demonstration of supercontinuum in several subsidiary cores, it is now possible 

to consider the fabrication a fiber specifically designed with a selection of multiple cores with 

different dimensions to enable several tailored supercontinuum spectra to be generated from a 

single HF.  
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Chapter 11 Solitons in a holey fiber amplifier 

11.1 Introduction 

This chapter describes our demonstration of soliton pulse formation, amplification and soliton-

self-frequency-shifting in an anomalously dispersive, Yb-doped HF amplifier seeded with 

pulses from our mode-locked Yb-doped, fiber oscillator described in Chapter 4.  The system 

provides a highly practical, all diode-pumped, continuously tuneable, femtosecond pulse source 

operational in the important and difficult to access wavelength range from 1.06 - 1.33 µm [1, 2].  

In other experiments multi-pulse, multi-coloured, soliton formation was observed with 

wavelength shifted pulsed output to beyond 1.58 µm.  Supercontinuum generation and nonlinear 

pulse compression to durations of 65 fs were also obtained using other configurations. 

Wavelength tuneable femtosecond optical pulse sources have a wide variety of applications, 

including ultrafast spectroscopy, and optical chemistry.  Traditionally, femtosecond pulse 

sources have been based on bulk crystal materials, and extending this technology to obtain 

broad tuning ranges has required the use of bulk parametric nonlinear devices such as OPOs.  

The discovery of the soliton-self-frequency shift (SSFS) in optical fibers was first reported in 

1985-1986 [3-5], and opened up the exciting possibility of obtaining widely wavelength 

tuneable femtosecond soliton pulses from fiber-based sources (ideally incorporating a fiber 

based pump laser) [6].   

To obtain the SSFS effect, the frequency shifting fiber must exhibit anomalous dispersion at 

both the initial seed wavelength and across the required tuning range. The recent demonstration 

that small core HFs [7] (or less practically, it is possible to use tapered standard fibers with 

similarly small core dimensions [8]),can have anomalous dispersion at wavelengths shorter than 

1.3 µm, where conventional silica fibers have normal disperison, has therefore extended the 

possible SSFS wavelength tuning range.  The work presented in this chapter demonstrates 

wavelength tuning from 1.06-1.33 µm based on the SSFS technique. 

This chapter is structured as follows. Section 11.2 describes the physical operating principles 

of the system, gives details of how the system was implemented, and the properties of the HF.  

In Section 11.3 we describe and discuss the results of our experiment, and in Section 11.4 we 

draw our conclusions. 
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11.2 System operating principles and implementation 

As described above, our source comprises an Yb-doped fiber seed laser, and an Yb-doped HF 

amplifier.  A schematic of the system is shown in Fig. 11.1.  The mode-locked laser produces 

ultrashort pulses at 1.06 µm with a positive linear chirp.  The pulses are launched into the 

anomalously dispersive, Yb-doped HF amplifier, together with a separate pump beam (diode 

laser) that controls the gain.  As a result of the amplification and nonlinear pulse evolution of 

the pulses as they pass through the amplifier, Raman solitons form and are continuously 

wavelength shifted through the SSFS.  The nonlinear evolution of the pulses depends critically 

on the pulse peak power, so the wavelength of the Raman solitons at the amplifier output is 

tuned by varying the gain in the amplifier (controlled by the pump laser).  In this way, 

monocolour soliton output pulses have been wavelength tuned throughout the 1.06-1.33 µm 

range.   

 

Fig. 11.1  Experimental setup, showing the in-house mode-locked Yb-fiber seed laser (diode-
pumped), the launch arrangement for seeding the pulses and pump laser to the 
Yb-doped HF amplifier, and an inset SEM showing the HF structrure. 
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In this section, we describe in greater detail the system operating principles, experimental set-

up and the theoretically calculated properties of the HF.  Section 11.2.1, describes the operating 

principles of the system, and then section 11.2.2 provides details of the seed oscillator 

performance and the arrangement for launching seed pulses and CW pump power into the 

amplifier.  Section 11.2.3 explains the HF characteristics. 
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11.2.1 Operating principles 

The pulse evolution within the amplifier is governed by the complicated interplay between gain, 

dispersion, and nonlinear interactions.  A schematic illustration of the key features of the pulse 

evolution, both in the spectral domain and in the time domain, is shown in .   Fig. 11.2

Fig. 11.2 Representation of the pulse evolution with propagation distance along the HF 
amplifier.  (a) Frequency domain: optical spectra.  (b) Time domain: pulse 
duration/peak power. 
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The pulses at the amplifier input have a positive linear chirp and a peak power below that 

required for soliton formation (chirped pulses have τFWHM = 2.4 ps, peak power ~5 W, 

compressible to τFWHM ~ 110 fs using a grating pair).  Fig. 11.2 shows that in the time domain, 

the pulse duration initially decreases due to linear pulse compression over the first few tens of 

centimetres of the amplifier since the HF has anomalous dispersion (~100 ps/(nm.km)) which 

compensates the initial positive chirp.  At this stage, there is no nonlinear distortion of the 

initial, smooth spectrum.  Then as the pulse is progressively amplified and compressed the peak 

power rapidly increases and soon exceeds the threshold for nonlinear interactions and the 

formation of a fundamental, or (possibly) a higher order soliton. The higher order soliton pulse 

evolution is manifested in the temporal domain where the pulse undergoes soliton compression, 

so further increasing the peak power and accelerating the nonlinear pulse evolution.   

As described in Chapter 2, the effects of intra-pulse SRS transfer the energy from the high-

frequency part of the pulse spectrum to the low-frequency part.  This destabilises the pulse and 

ultimately results in break up of the pulse into a peak and pedestal, and most importantly, to the 
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formation of a Raman soliton.  The Raman soliton pulse is a stable entity, which, due to the 

SSFS effect, continuously downshifts its central frequency (moves to longer wavelengths) as it 

moves along the amplifier.  It should be noted that the SSFS process is strongly dependent on 

the pulse duration (∆τ) as the rate of frequency shift is proportional to ∆τ -4 (see Chapter 2 for 

further discussion). 

The final wavelength of the solitons at the amplifier output is sensitive to the amplifier gain 

settings i.e. gain distribution, pump power and the amplifier length.  The gain window of the 

Yb-doped amplifier extends from approximately 1.03-1.12 µm, so the wavelength-shifting 

soliton will experience further gain after formation until either the amplifier gain is saturated, or 

the pulse wavelength is red-shifted beyond the gain window.  Once the SSFS has shifted the 

wavelength of the pulses beyond the ~1.12 µm upper limit of the amplifier gain spectrum, the 

soliton will neither be amplified, nor suffer absorption due to the Yb-doping, and will propagate 

as if it was in a passive HF.  However, the Yb-doped core will continue to act only on the non-

Stokes-shifted pedestal of the initial pulse that is left after the Raman-soliton has been 

generated.  By using an over-long amplifier, the excess (unpumped) length could act as an 

absorber for residual unshifted radiation at the seed wavelengths, whilst passing with minimal 

attenuation the SSFS red-shifted components, which fall outside the Yb absorption band, to 

leave a spectrally filtered, wavelength-shifted Raman soliton at the system output.   

The maximum wavelength shift of the Raman soliton increases steadily with the length of 

fiber used, so the maximum obtainable wavelength will, in principle, have an upper bound set 

by the absorption of silica at around 2.3 µm [9].  Other factors may limit this in practice, such as 

the variation of the fiber dispersion over the wavelength range of interest.  

Finally, it is worth noting that depending on the seed pulse energies, amplifier length, and 

pump power, it is possible to enter a more complicated regime of pulse evolution where the 

pulse breaks up into multicoloured solitons at the amplifier output.  In our experiments we 

managed to form pulse-bursts with as many as six individual multicoloured pulses, and in some 

instances wavelengths approaching 1.58 µm were observed.  Here, the seed pulse (or a 

previously formed Raman soliton) breaks up into several Raman solitons, each of which will 

have somewhat different characteristics at the point of formation and that will evolve separately 

with further propagation.  A burst of multi-coloured solitons is thus observed at the end of the 

amplifier.  

For simplicity, in the above discussion we have considered only the case of a forward 

pumped amplifier and positively chirped seed pulses, as this was the configuration that we 

studied in the greatest detail experimentally, and which gave the best tuning characteristics.  We 

note that in other configurations e.g. a forward pumped amplifier with close to transform limited 
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seed pulses, the general features of the pulse formation processes would not change 

dramatically. 

While the description given above is purely qualitative, it should be noted that detailed 

models have been applied numerically to describe Raman soliton formation in fiber amplifiers.  

For example, an approach based on a modified NLSE, which incorporated terms to describe a 

gain medium with a Lorentzian line shape and allowing for the effects of gain saturation along 

the amplifier length has been reported previously [10]. This model treats the stimulated Raman 

scattering using an optically driven molecular vibration model.  The model was used to simulate 

the amplification of ~500fs pulses in an Er-doped fiber amplifier and good quantitative 

agreement between the experimental and theoretical data was obtained. Others have performed 

simulations of the propagation of pulses having a width approximately equal to the inverse 

bandwidth of the amplifier, and suggest that the Maxwell-Bloch equations are necessary if an 

accurate quantitative analysis of the system is required [11].  These theoretical approaches, with 

the inclusion of appropriate gain spectrum as a function of amplifier length, could readily be 

adapted to model our experiments in HF, although we have not done this at the time of writing, 

and we expect to return to this in the future 

11.2.2 System implementation 

Our experimental set up is shown in .  The two principal components are a mode-

locked seed laser emitting ultrashort pulses at 1.06 µm, and an anomalously dispersive Yb-

doped HF amplifier.  The characteristics of our diode-pumped Yb-doped fiber oscillator are 

presented in Chapter 4. 

Fig. 11.1

The positively chirped pulses from our oscillator were launched into a length of Yb-doped HF 

amplifier, which for the majority of experiments undertaken was co-directionally pumped using 

a 966 nm diode based MOPA (maximum output power of ~250 mW).  We achieved 

approximately 20% coupling efficiency into the HF for both the seed pulses and the pump 

radiation, giving a maximum launched pulse energy of ~10 pJ, and up to 50 mW of launched 

pump.  We used a half wave plate to match the laser output polarisation to a principal axis of the 

highly birefringent Yb-doped HF.  We note that our results were insensitive to the orientation of 

the 966 nm diode pump polarisation relative to the fiber polarisation axes. The pulses emerging 

from the output end of the amplifier were characterised in the frequency domain using an 

optical spectrum analyser, and in the time domain using a non-collinear, second harmonic 

intensity autocorrelator with ~10 fs resolution.  For our experiments the HF amplifier had a 

length between 1.7 m and 9 m. 
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11.2.3 Characteristics of the Yb -doped holey fiber 

A SEM of the transverse cross section of the Yb-doped HF used in these experiments is shown 

in Fig. 11.3(a). The holey cladding region was fabricated using standard capillary stacking 

techniques [12], and an Yb-doped solid rod was used to form the core. The core of this fiber is 

approximately 2 µm in diameter, and the surrounding cladding is largely composed of air.  The 

fiber was observed to be strictly single mode for all wavelengths considered here (including the 

966 nm pump wavelength). 

Wavelength (µm)
0.8 1.0 1.2 1.4 1.6

D
 (p

s/
nm

/k
m

)

-50

0

50

100

Zero dispersion 

 Wavelength tuning 

1.5 µm 

2.6 µm Wavelength (µm) 
0.8 1.0 1.2 1.4 1.6

A
ef

f (
µm

2 )

2

3

(a) (b) (c) 

Wavelength tuning range 

Aeff ~ 2.5 µm2 

Fig. 11.3 Characteristics of the Yb-doped HF: (a) SEM of the structure, showing the 
dimensions of the elliptical core.  (The metallic coating required for producing SEM 
images enlarges the fine silica silica bridges by ~ 50 nm.  This is taken into account 
when calculating the fiber characteristics.); (b) Dispersion predictions for the two 
principal polarisation axes; (c) Effective mode area predictions for the two principal 
polarisation axes. 

Fig. 11.3

 
Yb3+ ions are incorporated across the central 1.7 µm of the core, to a concentration of 2000-

3000 ppm, as estimated from white light measurements on fibers drawn from the unetched 

Yb-doped fiber preform used to fabricate the core rod.  The HF used in the present experiment 

was recently used to make the first demonstration of a mode-locked HF laser, and a slope 

efficiency of > 60% was achieved [13]. 

We use a full vector model based on the SEM of the actual HF structure to predict the fiber’s 

characteristics (dispersion and effective area).  The model's predictions for the mode area (Aeff) 

and dispersion (D) as a function of wavelength are shown in .  To demonstrate the 

effect of the fiber asymmetry we have shown results for both polarisation axes.  Unsurprisingly, 

the Aeff does not differ greatly on the separate polarisation axes.  Aeff is ~2.5 µm2 at a 

wavelength of 1.55 µm, which is approximately 30 times smaller than for a standard single 

mode fiber (eg. Corning SMF28).  We also note that Aeff increases with increasing wavelength, 

indicating that the mode is more tightly confined to the fiber core at shorter wavelengths.  To 

give an indication of its exceptional nonlinear properties, we note that for a 200 fs (FWHM) 

pulse (1.06 µm wavelength) propagating within this fiber, the fundamental soliton power and 
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soliton period are approximately 50W and 60cm, respectively.  As mentioned previously, these 

values are significantly lower than the comparable values for experiments performed by other 

authors in standard fiber (λ~1.5 µm).  The dispersion properties of the two axes are markedly 

different, which indicates that the dispersion is much more sensitive to the hole arrangement 

compared to Aeff.  The zero dispersion wavelengths for the separate polarisation axes are at 

770 nm and 830 nm respectively, and at a wavelength of 1.06 µm the dispersion on the two axes 

differs by ~35 ps/(nm.km).  The relatively flat dispersion curves, particularly in the 1.0-1.3 µm 

wavelength range combined with the high effective nonlinearity of the fiber, facilitate good 

wavelength tuning through the SSFS effect.  

As a consequence of the combination of core asymmetry, high refractive index contrast and 

the small scale of the structure, this fiber is extremely birefringent (strongly polarisation 

maintaining). In Fig. 11.4 we plot the transmission characteristics of polarised broadband light 

at 1540 nm through crossed polarisers and 1.2 m of the fiber. From a measurement of the 

spectral period of the transmission we estimate a birefringent beat length of just 0.3 mm at 

1.54 µm. This agrees well with our prediction of 0.27 mm from the model described in 

Chapter 9. As far as we are aware this is one of the shortest beat-lengths ever obtained for an 

optical fiber. 

 

Fig. 11.4 Transmission spectrum (after a polarisation beam splitter) showing the high 
birefringence of this elliptical core HF (1.2m length). 

 

11.3 Results and discussion 

The output characteristics of our system were of three distinct types.  Perhaps the most useful 

from a practical perspective is the single colour, wavelength tuneable soliton regime.  Here, we 

obtained high quality pulses at a distinct wavelength tuneable from 1.06 – 1.33 µm, with the 

wavelength controlled by varying the pump power of the amplifier.  We could also obtain more 

complex spectral output, which we characterised as multi-colour solitons and also broadband 
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continuous spectra.  These spectra were observed when we used seed pulses with ~25% higher 

energy (the oscillator has a variable output coupling) compared to the single colour soliton 

regime, and (generally) at the highest pump powers.  Finally, by using as shorter length 

amplifier and reducing the chirp of the seed pulses, we could avoid the pulse break-up and 

wavelength shifting effects and observe temporal compression of the seed pulses.  We describe 

each regime of operation in greater detail below. 

11.3.1 Single colour, wavelength tuneable solitons 

We found that forward pumping an approximately 4 m length of HF amplifier was the optimal 

configuration for producing single colour, wavelength tuneable solitons.  In particular, we used 

a 4.7 m length of amplifier fiber, and measured the output spectra and autocorrelations of the 

pulses emerging from the amplifier as a function of pump power.  In Fig. 11.5 (a) we show the 

superposed spectra of the pulse emerging from the amplifier as the incident pump power 

delivered to the amplifier is increased. As can be seen in Fig. 11.5(a) a single, spectrally distinct 

Raman soliton of ~20 nm bandwidth is generated at the system output for pump powers above 

the minimum threshold power required to obtain appreciable SSFS effects (>50 mW incident 

pump power). As the pump power is increased, the final wavelength of the pulses progressively 

increases.  Residual radiation at the original seed wavelength of ~1056 nm remains in each 

instance. The dependence of the final pulse wavelength on the amplifier pump power is shown 

in Fig. 11.5 (b). The final central wavelength of the pulses is seen to vary in an almost linear 

fashion with the level of incident pump power.  

 

Fig. 11.5 Tuneable single colour solitons: (a) Superimposed spectra of the solitons shifted to 
progressively longer wavelengths (1.06–1.33 µm); (b) Plot of the soliton 
wavelength vs. amplifier (incident) pump power. 
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We attribute the increase in soliton wavelength with pump power to the fact that at higher 

pump powers the resultant change in gain distribution causes the Raman solitons to form earlier 

within the amplifier, thereby leaving them a greater length of fiber within which to walk-off to 

longer wavelengths through SSFS. 
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We also performed pulse autocorrelation measurements for pulses at various output 

wavelengths (amplifier pump powers), to establish how the pulse quality varied across the 

tuning range. The results of these measurements are shown in Fig. 11.6.  To illustrate the typical 

pulse quality, we show in (a) the autocorrelation function and spectrum at a wavelength 

of 1212 nm. The pulse duration in this instance was 150 fs, and the time bandwidth product 

was 0.48.  By comparison, the time bandwidth product for a transform limited soliton 

( sec  intensity profile) is 0.32.  The measurements plotted in (b) show that 

pulse duration remains approximately constant ~ 180 fs FWHM as the wavelength is tuned, and 

that the pulse quality as defined by the time.bandwidth product remains high across the full 

tuning range. 

)/( 0
2 TTh

Fig. 11.6

Fig. 11.6

Fig. 11.6  Autocorrelation measurements of the wavelength shifted solitons: (a) Spectrum and 
corresponding autocorrelation traces for the seed pulse for a wavelength shifted 
pulse at 1.24 µm; (b) Plot of the pulse duration and Time Bandwidth product vs. 
soliton pulse wavelength. 
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Lastly, we investigated the effect of reversing the amplifier pump direction. Using the 2.4 ps, 

linearly chirped pulses directly from the mode-locked laser as a seed for a 1.7 m length of 

amplifier fiber, we obtained a similar SSFS tuning curve but obtained a maximum wavelength 

shift to only 1.12 µm.  The wavelength tuning range was therefore much narrower when 

compared to that achieved for the forward-pumped amplifier.  The reduction in wavelength 

tuning range is understandable since in this backward-pumping configuration any unbleached 

length of Yb-doped fiber at the front of the amplifier absorbs the signal, thereby frustrating 

soliton formation early within the fiber.  The effective length of fiber available for wavelength 

shifting through SSFS is therefore reduced compared to the forward-pumping configuration. 
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Note that due to the practical difficulties of working with such small core fibers, compounded 

by the issue of pulse break up and wavelength shift within the amplifier, it was not possible for 

us to quantify the precise gain experienced by a given pulse for a given pump power and 

amplifier configuration.  All that we are really able to say is that the maximum overall single 

pass gain through the system was greater than approximately 17 dB.  This estimate considers the 

amplifier setup used in the experiments i.e. a flat cleaved facet at the input (to maximise the 

launched signal), which would provide 4% feedback; and an angle cleaved (reducing feedback 

to <1%) at the exit end of the amplifier.  In every amplifier configuration we were able to 

increase the pump power sufficiently in order to obtain laser operation (at some wavelength 

within the Yb bandwidth) from the system, so for the end-reflections as stated above, this 

indicates at least 17 dB gain. 

11.3.2 Multi-colour solitons and continuous spectra 

It did not prove possible for us to extend the single pulse tuning range beyond 1.33 µm.  Instead, 

when we maximised the output power of our seed oscillator, to increase the launched pulse 

energy to ~12 pJ (compared to ~9 pJ for the single-colour soliton experiments) we observed the 

generation of multicolor pulses (separated in wavelength and time) which increased in number 

as we increased the pump power, as shown in .   Fig. 11.7

Fig. 11.8

Using a longer (9m) length of amplifier fiber, and operating at the highest pump powers, we 

observed more complex spectra, including increased numbers of multi-colour solitons, and a 

broadband continuous (time-averaged) optical spectrum - similar to that achieved in 

supercontinuum generation experiments in passive HF [7].  Fig. 11.8(a) shows that for the most 

complex multi-colour soliton spectra, a far greater maximum wavelength shift up to 1.58 µm 

could be seen (measuring the peak with the maximum red-shift).  A typical example of a 

broadband continuous spectrum, is shown in (b) with wavelengths extending from 

1.03 µm to 1.62 µm.  This broad spectrum could be useful for applications such as optical 

coherence tomography.  At present this mode of operation is not fully understood.  
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11.3.3 Temporal compression  

We also investigated the conditions required to produce temporal compression of the input 

pulses (through multi-soliton effects) as a function of amplifier pump power.  By changing both 

the chirp of the input pulses, and the length of amplifier fiber we investigated the optimum 

conditions for pulse compression.  The chirp of the input pulses was optimised by extracting 

negatively chirped pulses from the oscillator (previously we had selected the output port for 

positively chirped pulses), and transforming these pulses to have a small positive chirp by 

propagation through a length of standard fiber.  Cutback measurements were performed to 

obtain pulses of the desired duration and hence chirp.  In a similar fashion we optimised the 

amplifier length with respect to the minimum pulse duration at the amplifier output by 

measuring the output pulse duration in a series of cutback measurements on the amplifier fiber.  

By launching the optimally chirped pulses (~0.02 ps/nm) pulses into a 2.8 m long HF amplifier, 

we obtained compressed pulses down to 67 fs FWHM.  The autocorrelation and spectrum of the 

compressed pulses is shown in  (a), (b) respectively.  Although we expect the soliton Fig. 11.9

 

 

Fig. 11.7 Multicolour  solitons showing (a)–(c)  
increasingly complex spectra as the 
amplifier pump power is increased. 

 

Fig. 11.8 (a) Typical example of complex multi-
coloured soliton spectra, extending out to 
λ~1.58 µm. (b) Broadband continuous 
spectrum extending out to λ~1.62 µm. 
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formation process in this case to be broadly similar to that described previously, since the chirp 

of the input pulses is smaller it is more rapidly compensated (by the anomalous dispersion of the 

HF) in a shorter length of amplifier fiber.  Break-up into multiple solitons is prevented because 

the pulses exit the amplifier before evolving beyond the  temporally compressed state. 

 

Fig. 11.9  Temporally compressed pulses:  (a) Autocorrelation trace (pulse FWHM~67 fs); 
(b) Spectra of seed pulse (dashed line) and compressed pulse (solid line). 
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11.4 Conclusion 

In conclusion, we have developed a continuously tuneable soliton source based on diode-

pumped active microstructured HF seeded using pulses from a femtosecond, mode-locked fiber 

source.  Tuning of the output wavelength is controlled by changing the amplifier pump power.  

Discrete single colour solitons are demonstrated to be of high quality (∆ν∆τ ~ 0.55), and the 

central wavelength is tuneable across the range 1.06-1.33 µm. Multicoloured solitons are 

demonstrated at wavelengths up to 1.58 µm, and continuous spectra are demonstrated spanning 

from 1.03 µm to 1.62 µm. We demonstrated temporal compression of the pulses to 67 fs 

(FWHM), compared to the minimum pulse duration of 110 fs obtainable using linear dispersion 

compensation of pulses directly from our oscillator (using a diffraction grating pair). 

We have modelled the dispersion properties of the HF using the exact fiber structure 

(recorded using SEM photographs) and we have presented a brief overview of the relevant 

physical processes on which the system is based.  Note, that our present results, combined with 

previously reported results from SSFS systems [9] mean that it is now possible to generate 

femtosecond pulses at any wavelength from 1 µm to 2.2 µm using fiber based techniques.  

Furthermore, it is likely that with detailed quantitative modelling and optimisation of our 

present system, it may well be possible to develop this single source to give SSFS wavelength 

tuneable output anywhere in the range from 1 - 2 µm.  We believe this to be an exciting 
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development of fiber technology, providing a device with potential for widespread practical 

applications. 
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Chapter 12 Conclusions 

12.1 Introduction 

The work presented in this thesis lies in two distinct research areas.  First, the development of 

an Yb-fiber based CPA system was described in Chapters 3-7, and the characteristics of a direct 

amplification system (based on shared components from the CPA system) were described in 

Chapter 8.  In the second part of this thesis, investigations of nonlinear effects in small core 

holey fibers were described in Chapters 9-11.  In this chapter, each topic is briefly summarised 

and suggestions for potential future research are considered.   

12.2 High power Yb-fiber systems 

12.2.1 Yb-fiber oscillator 

The oscillator development for our industrially sponsored contract has been completed.  The 

oscillator is stable (<0.05% amplitude jitter), self starting, and represents a suitable source for a 

range of applications [1, 2].  The sponsoring company has already sold a clone of the prototype 

oscillator (standard mounts on a breadboard).  It is now for the sponsoring company to develop 

suitable packaging in order to create a successful product for a broader market.  The oscillator 

incorporated a telecommunications grade, grating-stabilised pump diode with pigtailed output, 

which was spliced directly to at WDM coupler and then to the Yb-doped fiber to create a robust, 

all-fiber gain block.  The cavity used a simple Fabry-Perot design to enable straightforward 

manufacturing, and incorporated a SESAM in order to obtain robust self-start mode-locking.   

Whilst we are fully satisfied that the oscillator meets the requirements of our sponsor, there 

are several possible improvements we may wish to implement.  Andy Piper (co-worker) and I 

have recently developed an environmentally stable version of the oscillator that incorporated 

Faraday rotators at both ends of the fiber gain section.  The Faraday rotators cause the 

polarisation of the pulses to be rotated by 90 degrees when traveling in opposite directions along 

the fiber, so any linear polarisation changes in the cavity caused by twisting the fiber or thermal 

fluctuations should average to zero over a round trip [3].  With the Faraday rotators included in 

the cavity, mode-locking is maintained while the fiber is disturbed, and also over a wide 

temperature range.   
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In future, timing jitter may be reduced by putting the oscillator in a housing, and perhaps by 

using a more rigid end-mirror mount.  We would also like to move towards an all fiber cavity by 

replacing the bulk grating pair with a length of anomalously dispersive HF, and by replacing the 

PBS with a fiber polariser (indeed, first results in this direction have been reported by other 

groups [4, 5]).  We may also experiment with using a 90:10 fiber coupler for the output.  

Moving to an all-fiber-pigtailed cavity should lead to timing jitter limited only by thermal 

effects and quantum noise, as has been demonstrated from recent investigations into the 

ultimate stability limits of Er-fiber ring lasers by researchers in the metrology community [6]. 

To increase the range of potential applications for the oscillator, it would also be useful to 

investigate the possibility of exploiting the potential Yb-bandwidth (>50 nm) to generate shorter 

(e.g. <50 fs) pulses, for example by including a prism-based DDL for reduced 3rd order 

dispersion.  Further research could consider cavities based on cladding-pumped Yb-fiber to 

achieve much higher average powers and pulse energies.  In addition, the parabolic pulse 

concept could enable ‘similariton’ lasers to produce high power, large bandwidth pulses for 

very high performance future Yb-fiber lasers.     

12.2.2 CPA System 

This thesis described the development of a CPA system that produced ~16 µJ pulses at a 

repetition rate of 100 kHz (average power 1.6 W), and with pulses that could be recompressed 

to ~500 fs (see Chapter 7).  The maximum pulse energy was limited by the onset of SRS.  

Numerical predictions were presented, which demonstrated that by using a fiber for the final 

amplifier with a larger core diameter (29 µm) and shorter length (1.5 m), the system should be 

capable of generating 100 µJ pulses that could be recompressed to <500 fs duration.  Such 

pulses should prove useful for a wide range of practical applications.  The CPA included a 

CFBG stretcher incorporating both the 2nd and 3rd order dispersion to compensate the chirp of 

the bulk-grating compressor.  The CFBG stretcher research included the development of a 

procedure for annealing the grating after writing in order to control the cladding-mode losses.  

We also designed a future-generation compressor-stretcher combination, that would reduce the 

3rd order dispersion to enable a broader bandwidth CFBG to be used.  The proposed design 

should be suitable for generating <300 fs recompressed pulses.   

To further enhance the system capabilities, perhaps it would be useful to perform further 

modelling (using the methods described in Chapter 2) in order to optimise the gain and noise 

figure of the amplifiers.  It is not yet clear whether such work would be most appropriately 

performed by researchers at the ORC, or by our industrial sponsor as they fully develop the 

CPA system into a commercial product.   
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Since the start of the CPA system development work presented in this thesis, other groups [7] 

have demonstrated Yb-fiber CPA systems producing 1.2 mJ pulses (repetition rate 1.7 kHz) 

with 380 fs duration, and M2=1.16, using a 50 µm core (length = 2.6 m) fiber for the final 

amplifier.  The maximum pulse energy was limited by the onset of SRS, so obtaining higher 

energy pulses will require use of larger core fiber.  It therefore appears that significant further 

increases in pulse energy may not be practical if high beam quality is to be maintained.  Fibers 

are, however, well suited to high average power operation, and perhaps the most interesting 

avenue for future research is to maintain the pulse energy at ~100 µJ but to exploit the ever-

increasing power and reducing cost of pump laser diodes to develop a much higher average 

power CPA system operating at a higher repetition rate e.g. 100 µJ at 1 MHz implies 100 W 

average power.  Yb-fiber technology is advantageous in this area because Yb has a low quantum 

defect, and fiber has a favourable geometry for heat dissipation.  These advantages have been 

fully exploited for CW operation where industrial research has led to a commercial Yb-fiber 

laser with an average power of 6 kW [8].  

The extreme fields possible by focussing diffraction limited 100 µJ, <200 fs pulses, would 

have power density ~1016 W/cm2, which could enable future application in new areas including 

femtosecond high harmonic generation extending into the UV and x-ray spectral regions.  Fiber 

pumped, ultrashort pulse, x-ray sources could be envisaged for the rapidly developing science of 

single molecule biological imaging. 

12.2.3 Direct amplification system 

The direct amplification system described in Chapter 8 of this thesis produced pulses with 

energy of 330 nJ at an average power 0.9 W.  The pulses were recompressed to a duration of 

~300 fs.  The system was robust and stable, and these attributes were demonstrated by using the 

system to pump a femtosecond OPO [9].  The still unique, to our knowledge, aspect of the 

direct amplification system as presented in this thesis, is that the system used a cascade of 

amplifiers.  Much higher total gain should therefore be possible compared to the single stage 

amplifier systems demonstrated by other authors [10, 11].  By using initially chirped pulses 

from the oscillator combined with low gain in the smaller core pre-amplifiers, the system was 

operated so as to avoid excessive SPM distortion to the pulses (i.e. mostly linear evolution 

under influence of GVD).  The limiting effects of SRS were not observed.   

Theoretical work reported by other groups suggests that through an appropriate combination 

of gain, SPM and GVD and after sufficient propagation distance, the nonlinear effects can 

generate pulses with a parabolic temporal and spectral profile and which have linear chirp.  

Therefore these parabolic pulses can be recompressed to sub-picosecond durations despite the 

significant influence of nonlinear effects [11].  Parabolic pulses have been demonstrated 
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experimentally at high average powers (17 W at 75 MHz repetition rate) in single stage 

amplifier systems [10].   

As suggested above in relation to the possible further CPA development, the increasing 

availability of affordable, and very high power pump laser diodes suggests that it would be 

interesting to investigate multi-stage direct amplification systems producing >100 W average 

power, and with pulse energies ultimately limited by the onset of SRS.  (The maximum pulse 

energy limit set by the onset of SRS increases in proportion to the pulse duration, and therefore 

we would expect that the maximum energy of pulses from a direct amplification system would 

be approximately two orders of magnitude smaller compared to those from a high average 

power CPA system.)  Dr. Andrew Malinowski (co-worker) has recently performed initial 

experiments at such high average power levels using our Yb-fiber oscillator and a cascade of 

two Yb-fiber amplifiers.  Pulse energies of ~500 nJ pulses were demonstrated at an average 

power of 25 W (repetition rate 50 MHz), with recompressed pulse duration ~250 fs. 

A robust high-repetition rate fiber-based source of high peak power pulses could be envisaged 

for high speed microstructuring of materials, and would enable dramatic improvements in 

processing times for industrial processing applications.  Frequency doubling/quadrupling of the 

pulses into the visible/UV would be interesting for ultrafast chemical and biological studies, and 

for ultra-fast imaging. 

12.3 Nonlinear effects in holey fiber 

12.3.1 Holey fiber based supercontinuum generation 

The work presented in Chapter 10 of this thesis demonstrated supercontinuum generation 

extending to wavelengths below 300 nm in the UV from a small core HF.  Enhanced UV 

generation was obtained by launching the seed pulses into a higher order transverse mode.  

Numerical simulations suggested that differences in the dispersion profiles between the 

fundamental and higher order mode could explain the enhanced UV generation.  We note that in 

recent work, Efimov et al. [12] have demonstrated UV generation in a high-order mode of a 

microstructured fiber, extending to 260nm in the UV.   

As with previous demonstrations of HF based supercontinuum generation [13], our high 

energy ultrashort seed pulses were generated from a Ti:Sapphire laser system.  There appears to 

be an opportunity to develop practical sources of HF based supercontinuum generation, since 

collimated (bright) sources of broadband radiation, and the ability of HF to be a waveguide for 

such supercontinuum could be useful for a wide range of applications that use spectroscopic 

techniques.  The demonstration of supercontinuum generation from a HF pumped by a fiber 
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based direct amplification system, as presented in Chapter 9, is one step towards such a practical 

source.   

It has been shown that supercontinuum generation using ~100 fs pulses occurs through the 

mechanism of soliton fission, which results in a low degree of temporal coherence of the 

continuum [14].  Recent research has concentrated on reducing the amplitude noise of the 

supercontinuum by using input pulses with much shorter pulse durations (e.g. <30 fs pulses 

from Ti:Sapphire lasers), and shorter lengths of HF [15, 16]  The primary mechanism of spectral 

broadening is then SPM and four-wave-mixing, and this short pulse / short fiber approach 

therefore leads to an increases the temporal coherence of the continuum.  (The threshold energy 

for forming a higher order soliton increases for shorter pulses, and soliton fission is therefore 

avoided.)  Further practical development of highly coherent, low noise supercontinuum appears 

to be dependent on the commercial development of lower cost ultra-short pulse sources.  Fiber 

technology is an attractive alternative to bulk crystal devices, offering a route to power scaling 

of the average output power. 

12.3.2 Wavelength tuneable holey fiber amplifier source 

The work presented in Chapter 11 of this thesis demonstrated a novel source of ultrashort 

pulses, continuously wavelength tuneable from 1.06-1.33 µm.  The pulse durations 

were <250 fs and the pulse energies were ~50pJ (average power ~3mW).  The system was 

based on the SSFS in an Yb-doped HF amplifier that was seeded from our Yb-fiber oscillator.  

Sources of wavelength tuneable ultra-short pulses are useful for many applications, and systems 

based on the SSFS and have potential for practical devices because they use low cost 

components, and do not require external pulse compressors.  Following interest in our HF 

amplifier system from a commercial enterprise, a patent application has been submitted based 

on the results presented in this thesis [17-19].  Further numerical and practical work (exploiting 

latest developments in HF fabrication expertise) would be appropriate to extend the tuning 

range of the system to the silica water absorption peak at 2.1 µm, and to increase the output 

pulse energy.  Future research could include extending the range of accessible wavelengths by 

frequency doubling into the visible region of the spectrum.  
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Appendix I Measuring noise characteristics of CW 
mode-locked lasers  

This Appendix describes the method used to measure the amplitude noise and timing jitter of a 

CW mode-locked laser [1].  

The output pulses of a mode-locked laser are not perfectly periodic, but have random 

fluctuations in intensity (amplitude noise), and timing (temporal jitter). 

If  is the output intensity of a perfectly mode-locked laser: 0F

∑ +=
µ

µ )()(0 TtftF  

(where  is the temporal intensity of an individual pulse in the train, and )(tf T = the period 

between pulses), then the noisy laser output , can be written: )(tF

)()()()()()( 000 tJTtFtAtFtFtF &++= . 

The second term represents the random amplitude fluctuations, and the third term represents 

fluctuations in repetition rate ( , with a fractional jitter so that 

). 

µµµµµ ttftfttf ∆+≈∆+ )()()( &
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The RF power spectrum of the laser intensity is given by the Fourier transform of the 

autocorrelation function of  (pure real), and can be expressed as )(tF

[ ]∑ ++∆=
µ

µµµ ωµπωωδωωω )()2()()()()()( 222
JAF PPfP . 

)(ωAP  and )(ωJP  are the power spectra of  and  respectively, )(tA )(tJ

Tf r ππω 2=2=∆  is the spacing between the frequency bands, )(ωf  is the Fourier 

transform of the amplitde-profile of the individual ideal pulses (considered to remain constant), 

and µ  is an integer running from minus infinity to plus infinity. 

The sum represents a series of frequency bands, and each ideal peak is modified by the 

amplitude noise and time jitter terms.  Fig I.1. is a sketch indicating the individual contributions 

from the amplitude noise and time jitter.   is the peak of the CP δ -function contribution,  is 

the peak of the timing jitter contribution, and  is the peak of the amplitude jitter contribution.  

BP

AP
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As the jitter term is proportional to , this contribution increases for higher harmonics, so we 

can distinguish the two noise contributions.   

2µ

] 21

 

Fig. I.1.  Noise bands around the nth harmonic of a mode-locked laser, indicating amplitude 
fluctuations  and temporal jitter . )( AP )( BP

ωn 

Power spectral 
density 

PB 

PC 

PA 

Frequency 

 

The RMS intensity fluctuations (deviation E∆  of pulse energy E ) and temporal jitter 

(deviation ∆  from the pulse repetition time t T ) can be determined as: 

( ) ( ) ωω dPEE A∫
+∞

∞−

=∆ 2 ,  and 

( ) ( ) ωω dPTt J∫
+∞

∞−

=∆ 2 . 

The integrals can be approximated as the product of the frequency width (FWHM) and the 

maximum power of the nth harmonic peak: 

( ) ( )nPfdP ωπωω ∆≈∫
+∞

∞−

2 . 

We then obtain the following formula for the amplitude jitter ( resf∆  = selected resolution 

bandwidth of spectrum analyser): 

( )[ . 0 resAnCA ffPPEE ∆∆=∆ =

As we do not see any pedestal on the fundamental peak, we estimate an upper bound on the 

amplitude noise by taking ∆ = 395 Hz = width at base of peak, and = -80dB = 10Jf CA PP / -8, 

giving EE∆ = 0.04% as stated in Chapter 4.   
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As the amplitude noise is much smaller that the time jitter term, we ignore it when calculating 

the time jitter, and obtain: 

( ) ( )[ ] 2112 resJnCB ffPPnTt ∆∆=∆ −π , 

where  is the order of the harmonic, (n ωω ∆×= nn ).  From the pedestal on the 7th harmonic, 

we can estimate = 23.53 kHz (FWHM of pedestal), and = -58 dB = 10Jf∆ CB PP / -5.8, giving 

Tt∆ ≈10-4. 
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Appendix II SESAM selection for mode-locked 
Yb-fiber laser 

As explained in Chapter 4, we included a SESAM in the laser cavity in order to obtain reliable 

self-start mode-locking.  Professor U. Keller of ETH Zurich was kind enough to lend us a 

selection of 11 SESAMs with different modulation depths and recovery time constants, and 

before finally deciding which SESAM to use, we characterised the performance of the laser 

with the entire range of SESAMs. There are three different families of SESAMS, the 

performance of the laser with each SESAM is described in this appendix.   

The SESAMs tested were of the low-finesse Antiresonant Fabry-Perot Saturable Absorber 

(A-FPSA) type, illustrated schematically in Fig. AII.1 [1].  Constructing the FPSA to operate at 

antiresonance makes the device broadband, and hence suitable for use in ultrafast lasers.  

Bandgap engineering and modern semiconductor growth technology have allowed for accurate 

control of the device parameters such as absorption wavelength, saturation energy, and recovery 

time.  The reflectivity spectrum is determined by the number of layers in the bottom mirror 

(typically ~35 for our SESAMs), and by the dimension of the Fabry-Perot cavity.  Low finesse 

A-FPSA devices use the air-InGaAs interface as the top-mirror (~30% reflection), which avoids 

post-growth processing.  The absorber recovery time is controlled by growth temperature; a 

lower growth temperature produces a faster recovery time.  The semiconductor used is III-V 

(InGaAs), and electron trapping is to point defects created by the excess group V atoms [1].   

 

Fig. AII.1.Schematic of A-FPSA structure.  The bottom mirror is a Bragg mirror formed by 
pairs of AlAs-AlGaAs (or AlAs-GaAs) quarter-wave layers. (From [1].) 

 

When investigating the laser performance with the various SESAMs, we also varied the 

grating separation to control the net cavity dispersion.  With excess negative dispersion, we 

observed soliton mode-locking, where the pulses were sustained because of a balance between 

GVD and SPM, and excess energy transferred to the low intensity wings of the pulse was 

removed by nonlinear polarisation rotation switching after each cavity round trip.  With 

approximately nil net cavity dispersion, the cavity operated in stretch-pulse configuration 

(pulses again maintained by nonlinear polarisation rotation switching).  The pulses produced in 
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the stretch-pulse configuration were spectrally broader and had a shorter duration compared to 

solitons.  We also observed SESAM mode-locking (i.e. not assisted by nonlinear polarisation 

rotation switching), which produced much longer duration pulses that were unsuitable for our 

requirements. 

F842, F843, F844, F845, F846 

This family of SESAMs are low modulation depth (1% – 4%) devices with fast recovery times.  

Plots of the recovery time and reflectivity data for F844 are shown in Figures AII.2 and AII.3.  

The SESAMs were tested with the fiber directly butted to the front surface.  We observed 

SESAM, soliton, and stretch-pulse mode-locking with all of these SESAMs except F842 (which 

did not initiate mode-locking).  In every case the stretch-pulse operation showed significant 

(~40%) amplitude fluctuations.  The mode-locking was most robust to cavity perturbation with 

F846.  A consistent problem with using these SESAMs was that the fiber end burned quite 

regularly, requiring re-cleaving, and re-butting. 

 

 

Fig. AII.2. Pulse probe reflectivity curve used to measure the recovery time of F844.  (Figure 
provided by Professor U. Keller, ETH, Zurich.)  

 

 

Fig. AII.3. Measured reflectivity spectrum of F844.  (Figure provided by Professor U. Keller, 
ETH, Zurich.) 
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Z273, Z274, Z276 and Z365, Z367, Z384 

These two families are both of a similar construction.  They are high modulation depth (10% - 

17%) devices with slow recovery time of ~3 ps and fast recovery time of ~100 fs.  (A plot of the 

reflectivity of Z273 is shown in Chapter 4.)  All were tested initially with matched focal length 

lens pair coupling.  SESAMs Z274, Z365, and Z384 did not initiate stretch-pulse mode-locking, 

and were not investigated further.  SESAMs Z273, Z276, and Z367 did initiate single pulse 

stretch-pulse mode-locking, but because the operation with Z276 was not as robust and required 

higher pump power for self-start, we chose only to investigate further the SESAMs Z273 and 

Z367. 

Final operation of Z367, Z273 

We found that excellent single pulse stretch-pulse mode-locked self-start operation was 

obtained with both of these SESAMs.  We focussed the beam more tightly onto the SESAMs by 

using lenses with focal lengths of 11.0 mm nearest to the fiber and 6.24 mm nearest to the 

SESAM.  The pulses at the cavity output were compressed by an external grating pair, to 

produce pulses as short as 108 fs (assuming a Gaussian profile). 

Although we did not make detailed measurements, our qualitative opinion was that the 

operation with Z367 was slightly more robust, had a shorter self-start time, and produced a 

smoother spectrum at the ‘rejected’ output port of the laser compared to operation with Z273.  

Z367 was used in the optimised and fully characterised laser. 
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Chapter 1 Introduction 

This PhD thesis presents research aimed at broadening the technology base available for 

practical fiber based sources of ultrashort pulses.  The first part of this thesis reports the 

development of a high-power, short pulse source based on Yb-doped fiber components.  The 

second part of this thesis reports research on the use of Holey Fiber (HF) for ultrashort pulse 

applications including broadband continuum generation, and to generate wavelength tuneable 

~200 fs pulses.  Much of the HF based research used the short pulse source, described in the 

first part of this thesis, for the seed pulses.   

There are a wide variety of applications that rely on nonlinear interactions with materials, for 

example two-photon absorption, nonlinear frequency generation in Optical Parametric 

Oscillators (OPOs) and supercontinuum generation in nonlinear small core fibers.  For these 

nonlinear applications, the powers must be sufficient to excite the relevant nonlinear process, 

and obtaining sufficient power is generally only possible using pulsed sources.  Recently, basic 

investigations on laser–matter interaction [1, 2] have shown that ultra-short (mode-locked) laser 

sources are advantageous in comparison to nano-second sources (Q-switched) for machining 

various solid materials with high precision [3].  This is because ultrashort pulses can ablate the 

material before heat has time to diffuse away from the exposed region, resulting in improved 

resolution and reduced collateral damage (e.g. melting, or micro-cracking).  Given sufficiently 

high beam quality and amplitude stability, it is also possible to detect (2-photon microscopy) 

and ablate (material processing) features of a dimension less than the wavelength, by arranging 

that only in the centre of the focal volume is the intensity high enough to excite the required 

nonlinear processes [4].  Meeting the requirements for a wide variety of existing and emerging 

applications therefore requires pulses with: (i) sub-picosecond duration, (ii) megawatt peak 

power (µJ pulse energy), (iii) M2 ~1 beam quality, and (iv) low amplitude noise. 

Regenerative amplifiers using the chirped pulse amplification (CPA) technique [5] have 

generally been applied to realise the above parameters with repetition rates of up to 10 kHz [6].  

However, ultrashort-pulse bulk crystal solid-state lasers are typically very complex systems, 

with a large number of components inside a long free-space optical cavity. The performance of 

such bulk crystal lasers is critically dependent on the thermal and modal conditions in the gain 

medium. Therefore, there are significant intrinsic limitations on the long-term stability and 

compactness of such laser systems, which hampers the successful implementation of the 

 1
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