A simplified 3-D human body–seat interaction model and its applications to the vibration isolation design of high-speed marine craft
A simplified 3-D human body–seat interaction model and its applications to the vibration isolation design of high-speed marine craft
High-speed boats experience a harsh vibration environment and human response to this environment is of increasing interest to naval architects who wish to mitigate the effects of vibration and shocks. Based on published experiment data, a three-dimensional human body model with one degree-of-freedom in each direction is established. This model is combined with a simple seat model to construct a simplified 3-D human body–seat interaction model for naval architects to investigate the integrated interaction system when subjected to ship motions. The governing equations describing the dynamics of the human body–seat interactions are formulated and their theoretical solutions are derived. This model, in association with the experimental data recorded on board a high-speed marine craft, is used to study seat isolation system designs. The spring coefficient of the seat isolation system is chosen to avoid any resonance of the human–seat interaction system excited by sea waves. The damping coefficient of the seat isolation system is determined to attenuate motions at the most common excitation frequencies. The designed system is further checked by considering its response to an individual slam impact where the designed system is compared with typical existing seats to illustrate the potential advantages of the proposed approach. In addition the designed seat is compared with existing seats excited by actual boat loads. The study provides a simplified, effective approach for high-speed craft seat design in reducing the shock and vibration level experienced by the crew.
human–seat interaction, human body model, seat vibration isolation, seat designs
732-746
Coe, T.E.
0e5782e2-9410-4f1c-bb55-61b1d6793d43
Xing, J.T.
d4fe7ae0-2668-422a-8d89-9e66527835ce
Shenoi, R.A.
a37b4e0a-06f1-425f-966d-71e6fa299960
Taunton, D.
10bfbe83-c4c2-49c6-94c0-2de8098c648c
July 2009
Coe, T.E.
0e5782e2-9410-4f1c-bb55-61b1d6793d43
Xing, J.T.
d4fe7ae0-2668-422a-8d89-9e66527835ce
Shenoi, R.A.
a37b4e0a-06f1-425f-966d-71e6fa299960
Taunton, D.
10bfbe83-c4c2-49c6-94c0-2de8098c648c
Coe, T.E., Xing, J.T., Shenoi, R.A. and Taunton, D.
(2009)
A simplified 3-D human body–seat interaction model and its applications to the vibration isolation design of high-speed marine craft.
Ocean Engineering, 36 (9-10), .
(doi:10.1016/j.oceaneng.2009.04.007).
Abstract
High-speed boats experience a harsh vibration environment and human response to this environment is of increasing interest to naval architects who wish to mitigate the effects of vibration and shocks. Based on published experiment data, a three-dimensional human body model with one degree-of-freedom in each direction is established. This model is combined with a simple seat model to construct a simplified 3-D human body–seat interaction model for naval architects to investigate the integrated interaction system when subjected to ship motions. The governing equations describing the dynamics of the human body–seat interactions are formulated and their theoretical solutions are derived. This model, in association with the experimental data recorded on board a high-speed marine craft, is used to study seat isolation system designs. The spring coefficient of the seat isolation system is chosen to avoid any resonance of the human–seat interaction system excited by sea waves. The damping coefficient of the seat isolation system is determined to attenuate motions at the most common excitation frequencies. The designed system is further checked by considering its response to an individual slam impact where the designed system is compared with typical existing seats to illustrate the potential advantages of the proposed approach. In addition the designed seat is compared with existing seats excited by actual boat loads. The study provides a simplified, effective approach for high-speed craft seat design in reducing the shock and vibration level experienced by the crew.
This record has no associated files available for download.
More information
Published date: July 2009
Keywords:
human–seat interaction, human body model, seat vibration isolation, seat designs
Organisations:
Fluid Structure Interactions Group
Identifiers
Local EPrints ID: 155301
URI: http://eprints.soton.ac.uk/id/eprint/155301
ISSN: 0029-8018
PURE UUID: a840f822-28a6-46c6-ac0a-052cc2687b28
Catalogue record
Date deposited: 27 May 2010 12:52
Last modified: 14 Mar 2024 02:42
Export record
Altmetrics
Contributors
Author:
T.E. Coe
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics