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Acceleration in turbulent channel flow

L. Chena, S. W. Colemana, J. C. Vassilicosa† and Z. Hub

(15 January 2010)

We use Direct Numerical Simulations of turbulent channel flow to study the acceleration
A corresponding to the full fluid velocity u and the acceleration a corresponding to the
fluctuating velocity u′ ≡ u−〈u〉 where 〈u〉 is the mean flow. The mean acceleration 〈A〉 = 〈a〉
is not zero, and the fluctuations of the convective and local parts of 〈A〉 around their means
approximately cancel in the intermediate log-like layer. The motions of stagnation points
where u′ = 0 are controlled by a. In this intermediate layer, the fluctuations of a around its
mean come predominantly from the fluctuations of its local part. Stagnation points move with
an average velocity which equals the average fluid velocity at these points. The fluctuations
around this average stagnation point motion decrease in the log-like layer with increasing
distance from the wall.

1. Introduction

It is well known (e.g. [1]) that, in turbulent channel flows for example, as the
Reynolds number increases to infinity, the ratio of the channel width h to the wall
unit distance δν also increases to infinity. As a result, an intermediate range of
distances z from the channel walls forms where δν ≪ z ≪ h/2. Stripped to its bare
essentials, the main assumption behind the intermediate asymptotics which lead
to the form of the mean velocity profile in this intermediate range is this: as the
Reynolds number tends to infinity, something is asymptotically independent of both
h and the fluid’s kinematic viscosity ν in this intermediate range. This something

is usually taken to be the mean shear d
dz U (where U is the mean flow velocity and

z is the wall-normal coordinate). In this case, the immediate consequence of the
intermediate asymptotic assumption is that, in the intermediate range δν ≪ z ≪
h/2,

d

dz
U ≈

uτ

κz
(1)

where uτ is the skin friction velocity and κ is the von Karman constant. The famous
log law of the wall follows directly by integration.

However, a recent work by [2] advances the idea that this something should in
fact be the eddy turnover time τ ≡ E/ǫ where E is the average kinetic energy per
unit mass of the turbulent velocity fluctuations and ǫ is the dissipation rate of this
average kinetic energy per unit mass. In this case, the immediate consequence of
the intermediate asymptotic assumption is that, in the intermediate range δν ≪
z ≪ h/2,

τ ≈
3

2
κs

z

uτ
(2)
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in terms of the constant of proportionality 3
2κs where κs is the stagnation point

von Karman coefficient.
[2] combined this reformulated intermediate asymptotic assumption with (i) a

local balance between energy production and dissipation [3] and with (ii) the fact
that, in turbulent channel flows, the energy production takes the asymptotic form
u2

τ
d
dzU in the limit h/δν → ∞ and in the intermediate range δν ≪ z ≪ h/2 as

a result of the z-integrated momentum balance in the direction of the mean flow.
They were therefore led to the conclusion that, in this intermediate range,

d

dz
U ≈

uτ

κsz
(2E+/3) (3)

where E+ ≡ E/u2
τ . If Townsend’s inactive motions (see [4]) do not introduce a z

and/or a Reynolds number dependence on E+ in the present intermediate asymp-
totic limit, then their conclusion is the same as the usual one, i.e. equation (1).
However, there are no reasons to expect Townsend’s inactive motions not to have
such an impact on E+. Using the high Reynolds number turbulent channel flow
data which [5] obtained by Direct Numerical Simulations (DNS), Dallas et al (2009)

found better support for (3) than for (1), with E+ ∼ z
−2/15
+ in the intermediate

range (z+ ≡ z/δν).
Dallas et al (2009) went on to argue that τ ≈ 3

2κs
z
uτ

implies a particular distri-
bution in space of the instantaneous stagnation points of the turbulent fluctuating
velocity u′ ≡ u−〈u〉 where 〈u〉 is the mean value of the fluid velocity u at a given
distance from the channel walls. Specifically, they argued that τ ≈ 3

2κs
z
uτ

implies
a number density ns of such stagnation points which is inversely proportional to
z+ in the intermediate range δν ≪ z . h/2, i.e.

ns ≈
Cs

δ3
ν

z−1
+ (4)

where Cs ∝ 1/κs. They found good supporting DNS evidence for this inverse
power-law relation in the range δν ≪ z . h/2.

Stagnation points are objectively and unambiguously well-defined quantities
which are bound to be related to coherent structures. Numerous types of coherent
structures have been proposed to explain experimentally observed phenomena in
turbulent shear flow. However, the study of the nature and dynamical influence
of coherent structures, as well as their own evolutionary dynamics, remains an
open research question. Much of this difficulty comes in the myriad of structures
which can be defined, though not without ambiguities (horseshoe- and hairpin-
eddies, pancake- and surfboard-eddies, typical eddies, vortex rings, mushroom-
eddies, arrowhead-eddies, etc.) [6]. In this context, the relation between the spatial
distribution of velocity stagnation points and the mean flow profile is valuable. A
motivation to study the motions of these stagnation points follows immediately
from their unambiguous definition and relations to coherent structures and their
importance in underpinning the mean flow profile. These stagnation points are of
course not static and their motions therefore reflect coherent flow structure dy-
namics behind mean flow profiles. The definition of the velocity V s of stagnation
points (as opposed to the fluid velocity at stagnation points) was introduced by
[7]:

∂

∂t
u
′ + V s · ∇u

′ = 0 (5)
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where u′ = 0. Hence, the fluid acceleration a ≡ ∂
∂tu

′+u′ ·∇u′ controls the motions
of stagnation points and, specfically,

a = −V s · ∇u
′ (6)

at stagnation points. As a result, the motions of stagnation points offer in turn an
immediate motivation for the study of acceleration statistics in a turbulent channel
flow.

Of course, motivations to study acceleration statistics are wider and abound. The
acceleration of a fluid element is perhaps the most direct and basic representation
of fluid motion, reflecting the resultant of all forces acting on the fluid. As a result
acceleration is of great interest for a variety of reasons, ranging from studies of fine
scale intermittency [8] to applications in Lagrangian modelling of turbulence and
turbulent dispersion [9, 10].

As the material derivative of the velocity vector u, the acceleration appears on
the left hand side of the incompressible Navier-Stokes equations

A ≡
Du

Dt
=

∂u

∂t
+ u · ∇u =

−1

ρ
∇p + ν∇2

u, (7)

where p is the pressure and ρ is the fluid density. Previous acceleration studies
have focused on homogeneous isotropic turbulence (HIT). The first studies of ac-
celeration were performed using DNS of HIT [11] and were continued by [12], [8]
and [13]. On the experimental side it has only been recently possible to perform
direct Lagrangian measurements of acceleration by particle tracking [14–16]. Many
of these studies have been concerned with the scaling of the acceleration. For in-
stance, [14] observe Kolmogorov scaling at high Reynolds numbers. On the other
hand [17] has developed a detailed and careful analysis which gives the scaling of
acceleration variance at any Reynolds number and argues that Kolmogorov scal-
ing cannot be observed at any Reynolds number. More recently [18] have reported
hot wire mesurements of acceleration from field experiments at Taylor Reynolds
numbers Reλ up to 104 and do not find Kolmogorov scaling of the acceleration
variance.

This scaling issue depends very sensitively on the so called random Taylor or
sweeping decorrelation hypothesis, first proposed by [19], which states that in high
Reynolds number turbulence the dissipative eddies flow past an Eulerian observer in
a time which is much smaller than the characteristic timescale associated with their
dynamics and which is determined by the sweeping of small eddies by large ones.
[13] explains how this hypothesis means that the local and convective accelerations,
Al ≡

∂u

∂t and Ac ≡ u · ∇u tend to anti-align as Reynolds number increases and
thereby cancel much of each other so that A = Al +Ac is much smaller and scales
in a very different way than both Al and Ac. [13] found compelling DNS evidence
that the sweeping decorrelation hypothesis is increasingly observed with increasing
Reynolds numbers in HIT. [7] explained how the scaling of the stagnation point
velocity V s is in fact reflection of this sweeping decorrelation hypothesis.

The motivations to study acceleration statistics are all clearly closely interrelated:
stagnation points of the fluctuating velocity field partly control the mean flow pro-
file of turbulent channel flows. They result from small-scale turbulence dynamics
which are, at least partly, reflected in the motions of these stagnation points. These
are controlled by the acceleration and the velocity fluctuation gradient fields. The
scalings of these two fields differ because of the sweeping of small dissipative eddies
by large energy containing ones. This sweeping controls the scalings of the accel-
eration and of the stagnation point velocity V s. However, acceleration studies in
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Figure 1. Sketch showing the geometry of the channel flow. Coordinates/velocities are x/u in the stream-
wise direction, y/v in the spanwise direction and z/w in the wall normal direction.

wall-bounded turbulence remain very scarce. For a start, A and a differ in such
flows whereas they are they same in HIT, where 〈u〉 = 0.

To the authors’ knowledge the only investigation of acceleration in wall-bounded
turbulence is that of [20]. They used temporally resolved particle-image velocimetry
measurements to determine the acceleration in a turbulent channel flow at friction
Reynolds numbers Reτ = 550 and 1747. They found that the temporal derivative
of the velocity in a frame moving with the bulk velocity U b to be an order of
magnitude smaller than the temporal derivative of the velocity in a frame not
moving with respect to the wall. Although this gives an initial indication to the
nature of sweeping in turbulent channel flow a more thorough investigation is
needed.

This paper aims to give a description of the nature of acceleration in a turbulent
channel flow. The layout of the paper is as follows. In §2 details of the DNS and of
some of our numerical procedures are given before results are presented. In §3 we
briefly confirm and discuss known mean velocity and vorticity profiles as well as
equation (4) and its relation to the multiscale topography of the flow. Acceleration
field decompositions and some of their basic properties are introduced in §4 so
that §5 and §6 can follow with new results on various mean profiles of the various
acceleration fields introduced in §4. In §7 we present statistics and profiles of the
stagnation point velocities V s and we conclude in §8.

2. Governing equations and summary of mumerical method

The governing equations of incompressible turbulent flow, the continuity and the
momentum equation, are non-dimensionalized with the channel half height h and
the friction velocity uτ . A schematic of the notation for the channel geometry is
given in Fig. 1: the mean flow is in the x-direction and the channel walls are normal
to the z-axis.

The non-dimensional continuity and rotational form of the momentum equation
can then be written as (using Einstein summation notation)

∂uj

∂xj
= 0, (8)
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Table 1. Details of the two turbulent channel flow sim-

ulations. Reτ is the friction Reynolds number, Ni the

number of grid points in the i direction and Lx, Ly and

h are shown in figure 1

Case Reτ Nx × Ny × Nz Lx Ly h

A 360 256 × 256 × 161 12 6 2
B 720 512 × 512 × 321 24 12 2

∂ui

∂t
= ǫijkujωk + δ1iΛ −

∂Π

∂xi
+

1

Reτ

∂2ui

∂xj∂xj
. (9)

Here ωi is the ith vorticity component, ωi = ǫijk
∂uk

∂xj
, with ǫijk being the permu-

tation tensor; Reτ = uτ h
ν is the friction Reynolds number; Π = p + uiui/2 is the

modified non-dimensional pressure and δ1iΛ is the driving mean pressure gradient.
Numerical solutions of the above equations are obtained as in [21] using the

spectral method of [22], with Fourier methods used for spatial discretization in
the streamwise and transverse directions and Chebyshev methods used in the wall
normal direction. The pressure and viscous terms are treated implicitly to avoid
extremely small time steps in the near-wall region. A third order Runge-Kutta
scheme is used to integrate the convective terms. The ‘3/2 rule’ is used for dealias-
ing whenever nonlinear quantities are required, with the additional wavenumbers
generated by this process truncated.

This paper is concerned with two simulations in large computational domains
at different Reynolds numbers (Reτ = 360 and 720). Details of the simulation are
given in table 1. All statistics are collected only after the simulation has reached a
statistically stationary state.

Reynolds decompositions of the velocity field, i.e. u = 〈u〉 + u′, where 〈u〉 =
(U(z), 0, 0), are obtained by calculating the mean flow numerically as 〈u(zk)〉 =

1
NxNz

∑Nx

i=1

∑Ny

j=1 û(xi, yj , zk), k = 1, . . . , Nz. The acceleration due to the fluctuat-

ing velocity was calculated both via a = ∂u′

∂t +u′·∇u′ and a = A−〈u〉·∇u−u·∇〈u〉
(see §4) using a simple first order finite difference for time derivatives. Both meth-
ods give indistinguishable statistics.

3. Mean velocity and vorticity profiles and the topography of turbulent

channel flow

As a validation of our numerics, we check some standard statistics of the velocity
field as first presented in the seminal paper [23]. The mean velocity is shown in
figure 2, where the wall-normal coordinate is given in wall units z+ = z/δν with
δν = ν/uτ . The velocity is normalized by the friction velocity, U+ = U/uτ , with U =
〈u〉 and 〈. . .〉 denoting spatial averaging. Our data show the usual DNS agreement
with U+ = z+ at very small values of z+. Furthermore, U+ = 1

0.41 log z+ + 5.2
provides an approximate fit of the data in a candidate intermediate z+ region
above 30 and well below Reτ , as is also usual with such DNS data.

The root mean square (rms) values of velocity component fluctuations, urms, are
shown in figure 3. [24] indicated that the Reynolds number effect on the turbu-
lent intensity in the spanwise direction is significantly larger than in the other two
directions. In the present study both spanwise and wall-normal rms velocity fluc-
tuations increase with Reynolds number. However the rms value of the streamwise
velocity fluctuations shows negligible change as we increase the Reynolds number,
which is not consistent with [25]. We believe this difference results from the lower
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Figure 2. Mean velocity profile for both simulations.
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Figure 3. Root mean square value of turbulence intensity. Circles indicate streamwise, triangles spanwise
and squares wall normal. Open and filled symbols are for Reτ = 360 and 720 respectively.

accuracy of the finite difference method compared to the spectral method employed
here. It is also worth noting that the peak values of urms in the spanwise and wall
normal directions move away from the wall in terms of wall units as Reτ increases,
whereas the peak value of the streamwise urms does not.

The rms of vorticity normalised by wall variables, i.e., (ω+)rms = ωrmsδν

uτ
is shown

in figure 4. The differences between the two Reynolds numbers are insignificant
except in the near-wall region where the rms value of the vorticity increases with
increasing Reynolds number. Note, in passing, how the flow is clearly not two-
dimensional near the walls. At values of z+ larger than about 30, all three vorticity
curves more or less collapse on each other thus providing evidence of small-scale
isotropy far enough away from the walls. Our results are in qualtitative agreement
with those of [25] who studied turbulent channel flows at Reτ = 160, 395 and 640.

Finally, concerning the multiscale topography of channel flow turbulence, we
confirm the finding (4) of [2] which was achieved with a very different DNS code. We
follow [2] in locating stagnation points u′ = 0 numerically with a Newton-Raphson
method underpinned by a fourth-order Lagrange interpolation. We then count the
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Figure 4. Root mean square value of vorticity normalised by wall variables. Circles indicate vorticity in the
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Figure 5. Number of zero-velocity points as a function of distance from the wall for Reτ = 360.

number Ns of stagnation points within a thin slab of dimension Lx × Ly × δz,
where δz is the thickness of the slab. Figure 5 shows how the number of velocity
stagnation points increases from the wall and then decreases towards the centre of
the channel, taking a peak at z+ = 20. It is clear from figure 5 that the number
density, ns = Ns

LxLyδz
of zero-velocity points in a thin slab of dimension Lx×Ly ×δz

(in this figure δz = δν) parallel to the wall and at a distance z from it, is in
agreement with (4).

The decrease of the number of stagnation points with distance from the wall in
the region z+ ≥ 30 is in qualitative agreement with the increase of streak size with
distance from the wall in that same region (see figure 6) and with the schematic
picture of multi-size attached eddies proposed in [26] (see figure 7). However, it
cannot be expected that all stagnation points correspond to attached eddies as
many of them must also result from small wall-free turbulent eddies. [27] showed
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(a) (b)

(c) (d)

Figure 6. Contours of u at different distances from the wall for Reτ = 360. Blue denotes negative values
and red denotes positive values. (a) z+ = 1, (b) z+ = 27, (c) z+ = 160, (d) z+ = 360.

that the number density of stagnation points in HIT is proportional to (L/η)2

where L is the integral length-scale, η ∼ (ν3/ǫ)1/4 and ǫ is the kinetic energy
dissipation rate per unit mass. Assuming local HIT at a distance z from the wall
in the region z+ ≥ 30, the number Ns of stagnation points within a thin slab of

dimension Lx ×Ly × δν can then be estimated as Ns ≈
LxLyδν

L3
x

Ca(z+)(L/η)2 where

L ∼ z, η ∼ (ν3/ǫ)1/4 ∼ δ
3/4
ν z1/4 (see [1]) and Ca(z+)/L3

x is the number density

of attached addies at a distance z from the wall. Comparing with Ns ∼ LxLy

δ2
ν

z−1
+

which results from (4), it then follows that Ca/L
3
x ∼ δ−3

ν z
−5/2
+ . This would be the

scaling for stagnation points related to attached eddies. It is not the same as the
scaling (4) for all stagnation points.

4. Acceleration field of turbulent channel flow

In the introduction we alluded to the fact that A ≡ ∂u

∂t + u · ∇u and a ≡ ∂u′

∂t +
u′ · ∇u′ are different in turbulent channel flows even though they are equal in
HIT where 〈u〉 = 0. In a statistically stationary turbulent channel flow where
〈u〉 = (U(z), 0, 0) and ∂u

∂t + u · ∇u = 0,

A = a + 〈u〉 · ∇u + u · ∇〈u〉. (10)
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Figure 7. A conceptual sketch of attached eddies of varying distance from the wall.

This decomposition of the acceleration field has the property that

〈A〉 = 〈a〉 (11)

= −
1

ρ
∇〈p〉 + ν∇2〈u〉. (12)

Furthermore, incompressibility and statistical stationarity imply that the first mo-
ments of the acceleration components give the Reynolds stress gradients, i.e.

〈ai〉 =
∂

∂xj
〈u′

ju
′
i〉. (13)

Following [28] we also decompose each acceleration field A and a into local and
convective accelerations, i.e. A = Al+Ac, where Al = ∂u

∂t and Ac = u·∇u and a =

al+ac, where al = ∂u′

∂t and ac = u′ ·∇u′. Note that of all these acceleration terms,
only the total acceleration A and the convective “fully fluctuating” acceleration
ac are Galilean invariant. The Eulerian constituents Al and Ac of the Lagrangian
total A are not Galilean invariant, and neither are a and al

Note also that 〈Al〉 = 〈al〉 = 0 and that

〈A〉 = 〈Ac〉 = 〈a〉 = 〈ac〉. (14)

5. Mean acceleration profiles in turbulent channel flow

In this section we calculate the three average acceleration profiles 〈Ax〉 = 〈ax〉,
〈Ay〉 = 〈ay〉 and 〈Az〉 = 〈az〉 (as functions of z).

As explained in [1], assuming the turbulence to be statistically stationary and ef-
fectively homogeneous in all directions except z, the wall-normal mean momentum
equation implies

∂〈p〉

∂x
=

dpw

dx
, (15)
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where pw = 〈p(x, 0, 0)〉 is the mean pressure on the bottom wall. From the stream-
wise mean momentum equation one obtains

dτ

dz
=

dpw

dx
, (16)

where the total shear stress τ(z) is given by

τ = ρν
dU

dz
− ρ〈uw〉. (17)

In the near-wall region, for fixed time and space, the normalised fluctuating velocity
components u+ ≡ u/uτ , v+ ≡ v/uτ and w+ ≡ w/uτ can be written as Taylor series
expansions [1],

u+ = b1z+ + c1z
2
+ + . . . , (18)

v+ = b2z+ + c2z
2
+ + . . . , (19)

w+ = c3z
2
+ + . . . , (20)

where the boundary conditions u = v = w = 0 and ωz = 0 at the wall have all
been taken into account. The mean streamwise acceleration 〈ax〉 = ∂

∂z 〈uw〉 and in
the viscous sublayer z+ < 5 it then follows that

〈ax〉 =
∂

∂z
〈uw〉 (21)

= −3σ
u2

τ

δν
z2
+, (22)

where the non-dimensional coefficient σ = b1c3 may be assumed to be independent
of Reynolds number.

In the intermediate layer, 30 < z+, z/h < 0.3, if we assume a log law (1) for

simplicity, i.e. ∂2U+

∂z2
+

= − 1
κz−2

+ , and do not take into account the correction (4)

introduced by [2], then

〈ax〉 =
∂

∂z
〈uw〉 (23)

=
2u2

τ

h
− ν

uτ

δ2
νκ

z−2
+ (24)

=
u2

τ

δν

(

2
δν

h
−

1

κ
z−2
+

)

. (25)

where use has been made of the fact that −1
ρ

∂<p>
∂x = 2u2

τ

h . This implies, in particular,

that as z+ increases towards the centre of the channel, 〈ax〉 → 2u2
τ

h 6= 0. These
estimates are in sufficiently good agreement with our simulations as shown in figures
5 and 9(a).

In the spanwise direction, we have

v

(

∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

= 0 (26)
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Figure 8. Average acceleration profiles for all three acceleration components as indicated by the legend
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Figure 9. Mean acceleration normalized by 2u2
τ /h in all three directions for Reτ = 360 and 720. (a) shows

the streamwise direction and (b) the spanwise.

from the incompressibility condition. Substituting equation 26 into the definition
Ay = ∂v

∂t + u∂v
∂x + v ∂v

∂y + w ∂v
∂z , and averaging with the assumptions of statistical

stationarity and homogeneity in the streamwise and spanwise directions, leads to

〈Ay〉 = 〈ay〉 = 0. (27)

Similar analysis in the wall-normal direction under the same assumptions gives

〈Az〉 = 〈az〉 =
∂〈w2〉

∂z
. (28)

This conclusion is also confirmed by our data as shown in figures 5 and 9(b). The
Reynolds number dependencies appear insignificant in this data. The minimum
value of the averaged streamwise acceleration appears at z+ = 9 for both Reynolds
numbers, whilst the minimum value of the averaged acceleration in the wall-normal
direction is at z+ = 18.

6. Quadratic mean acceleration profiles in turbulent channel flow

The Reynolds number scaling of the acceleration variance mentioned in the Intro-
duction was first studied by [29] and [30] in the HIT case. By direct application of
Kolmogorov scaling they obtained 〈aiaj〉 = a0ǫ

3/2ν−1/2δij , where a0 is a universal
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Figure 10. Rms value of u′ · ∇U . Open symbols indicate Reτ = 360 and filled symbols Reτ = 720.

constant independent of Reynolds number and ǫ is the kinetic energy dissipation
per unit mass. It is only relatively recently that it has become possible to measure
acceleration statistics in the laboratory, and the evidence resulting from these mea-
surements as well as DNS and theoretical results are not in clear agreement with
each other and are shedding doubt on the universality of a0, including its presumed
Reynolds number independence (see references mentioned in the Introduction).

In wall-bounded turbulence, the Reynolds number and the dissipation rate are
effectively functions of distance to the wall so that arguments such as those of
[29] and [30] lead to z-dependencies of acceleration variances. Also, there is more
acceleration terms which are of interest in wall-bounded turbulence than in HIT.
In turbulent channel flows we need to consider the variances of A and a and of the
terms by which they differ, i.e. 〈u〉 · ∇u′ and u′ · ∇〈u〉.

6.1. Quadratic mean profiles of 〈u〉 · ∇u′ and u′ · ∇〈u〉

We start with z-profiles of the variances of 〈u〉 · ∇u′ and u′ · ∇〈u〉 in the inter-
mediate layer where we may assume classical log-layer and Kolmogorov scalings
to be good starting approximations. We therefore scale 〈u〉 = (U, 0, 0) with uτ ,
gradients of U with uτ/z and gradients of turbulent velocity fluctuations u′ with
uη/η where η is the Kolmogorov lengthscale at distance z from the wall and uη is
the Kolmolgorov velocity at that distance. Note however, that turbulent velocity
fluctuations themselves are assumed to scale with uτ .

Firstly we consider the term u′ · ∇U . Figure 10 shows that the rms of this term
exhibits a clear power law dependence on z+ with exponent -1 for z+ > 30 and
z/h < 0.3, i.e. the range where our DNS shows approximate agreement with the
log law in figure 2. This is a range which increases with Reynolds number and this
-1 power law can be seen as resulting directly from classical log-layer scalings, i.e.
u′ · ∇U ∼ uτuτ/z.

Secondly, we consider the term 〈u〉 · ∇u′ = U ∂
∂xu′. On the basis of classical

log-law and Kolmogorov scalings, the rms of this term can be estimated as follows
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Figure 11. Rms value of 〈u〉·∇u′ (a) normalized by u2
τ/δν and (b) normalized by
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κ
+ c

”

. Circles

indicate u, triangles v and squares w. Open symbols indicate Reτ = 360 and filled symbols Reτ = 720.

in the intermediate log-layer-like region:

〈u〉 · ∇u
′ ∼ U

uη

η
(29)

∼ uτ

(

log z+

0.41
+ 5.2

)

(ǫη)1/3

η
(30)

∼

(

log z+

0.41
+ 5.2

)

u2
τ

δν
z
−1/2
+ , (31)

where we have made use of ǫ ∼ u3
τ/z , which is the classical expectation in the

log-layer [1], and of η ∼ (ν3/ǫ)1/4 and δν = ν/uτ . Figure 11 shows the z+-profile of
the rms of 〈u〉 ·∇u′ for all three components of u′ and for both Reynolds numbers.
These rms profiles do not show clear agreement with our estimate (31) except,
perhaps, for the streamwise component when plotted as (U · ∇u)/(log z+/κ + c)
versus z+ (see Figure 11b). However, it is clear that all the variances of each
component of 〈u〉 · ∇u′ = U ∂

∂xu′ increase when moving away from the wall, then
reach a peak and then decrease when moving towards the centre of the channel
as qualitatively predicted by (31). The peak value in the streamwise direction is
at z+ = 30 and the peak values in the spanwise and wall-normal directions are at
z+ = 70.

6.2. Quadratic mean profiles of A

The total acceleration A can be decomposed as a sum of the local acceleration
Al = ∂u/∂t, which expresses the rate of change of velocity u due to unsteadiness
at a fixed point in space, and the convective acceleration Ac = u · ∇u, which
expresses the rate of change of velocity u due to convection past a fixed point in
space.

Figure 12 shows the rms values of these total, local and convective accelerations.
The rms values normalised by u2

τ/δν increase slightly with increasing Reynolds
number. In the case of the higher Reynolds number Reτ = 720, the total accelera-
tion A seems to be showing a power law scaling with distance from the wall in the
intermediate log-like layer. The exponent of this power law is −3/4. This scaling
can in fact be obtained from a Kolmogorov estimate of the rms of A as follows:
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Figure 12. Rms value of acceleration terms. Circles indicate streamwise, triangles spanwise and squares
wall normal. Open and filled symbols are for Reτ = 360 and 720 respectively. (a) total acceleration Arms,
(b) local acceleration Al,rms and (c) convective acceleration Ac,rms.

A =
Du

Dt
(32)

∼
u2

η

η
(33)

∼
(uτz

−1/4
+ )2

δ
3/4
ν z

1/4
+

(34)

∼
u2

τ

δν
z
−3/4
+ . (35)

This scaling seems to be confirmed by our simulations only in the higher Reynolds
number case (figure 12a) presumably because of the larger span of the log-like
layer. However, the z-profiles of the rms values of the local and convective acceler-
ations have a less clear form. Note that, whilst the Galilean-invariant Lagrangian
acceleration A may indeed be estimated by Kolmogorov scaling as above, the non-
Galilean-invariant Eulerian accelerations cannot be estimated in this way. Instead,
in the frame where the walls of the channel are not moving, one may write (in
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Figure 13. Ratio of rms values of acceleration terms. Circles indicate streamwise, triangles spanwise and
squares wall normal. (a) Arms/Al,rms, (b) Arms/Ac,rms and (c) Ac,rms/Al,rms. Reτ = 720.

terms of dimensionless constants α, β and β′)

Ac = u · ∇u (36)

∼ uτ (α
uτ

z
+ β

uη

η
) (37)

∼
u2

τ

δν
(αz−1

+ + β′z
−1/2
+ ). (38)

with a neglected additive correction which has the same form but multiplied by
log z+. A similar estimate can be made for the rms of Al. The dominant scaling term

will be z
−1/2
+ at high enough Reynolds number and z+, but our present Reynolds

numbers are not high enough for this to be visible (see figure 12b and c where the
rms values of Al and Ac are plotted). However, one can venture to conclude from
the above estimates that the rms of Al and of Ac are larger than the rms of A.
This conclusion is confirmed by our simulations as shown in figure 13a and b.

[13] showed that in homogeneous isotropic turbulence the local and convective
accelerations are approximately of the same magnitude but anti-aligned and thus
cancel each other to produce a smaller total acceleration. This is predicted by the
random Taylor or sweeping decorrelation hypothesis [19] whereby small eddies in
turbulent flow are passively swept by large edddies. Figure 13 shows that something
similar is the case in our simulations for the total acceleration A throughout the
flow, except near the wall, i.e. z+ < 10, where the fluctuations of the local acceler-
ation Al are the dominant contributor to the fluctuations of the total acceleration
A. It is clear from figures 13a and b, that the variance of the total acceleration A
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is much smaller than the variances of both Al and Ac for z+ > 10, whilst figure
13c shows that the variances of Al and Ac have approximately the same magni-
tude for z+ > 10. However, from sections 4 and 5 we know that 〈Al〉 = 0 whereas
〈Ac〉 6= 0. Therefore our conclusion is that the local and convective accelerations Al

and Ac are not approximately the same in magnitude and anti-aligned, but that
the fluctuations around their mean values are. This conclusion is effectively the
same as that of [13] except that in HIT the mean values of the local and convective
accelerations are both zero. The correct generalisation of the result obtained by
[13] for HIT is therefore the statement that it is the fluctuations of the convective
and local accelerations around their means which approximately cancel each other
and not the convective and local accelerations themselves.

6.3. Quadratic mean profiles of a

We now turn our attention to the profiles of the variances of the acceleration a and
of its constituent components al ≡ ∂u′/∂t and ac ≡ u′ · ∇u′. Of these, only the
convective acceleration ac is Galilean invariant and so we calculate all quantities
in the frame where the walls of the channel are stationary.

On the basis of the conventional type of scaling arguments already used in this
work, we may expect the rms of ac to scale as follows in the intermediate log-like
layer:

ac ≡ u
′ · ∇u

′ ∼ urms
uη

η
(39)

∼ uτ
uτz

−1/4
+

δ
3/4
ν z

1/4
+

(40)

∼
u2

τ

δν
z
−1/2
+ (41)

where urms is a characteristic fluctuating velocity rms. Similarly we may expect
the rms of al to scale as

al ≡
∂u′

∂t
∼ U

uη

η
(42)

∼ uτ
uτz

−1/4
+

δ
3/4
ν z

1/4
+

(43)

∼
u2

τ

δν
z
−1/2
+ (44)

in the intermediate log-like layer.
These scalings are neither clearly consistent nor clearly inconsistent with the

results plotted in figures 14b and 14c. In particular Figure 14 shows that the rms
values of all three quantities normalised by u2

τ/δν are larger for our larger Reynolds
number at all distances from the wall. This is inconsistent with (41) and (44) but
may be due to our relatively low Reynolds numbers, an issue which cannot be
resolved in this paper. Also, there are no clear power-law dependencies on z+ at
distances z+ ≥ 30. In fact, if the figures are studied carefully the profiles in all
three directions appear different for all three terms and it is unclear at this stage
how these differences might change with Reynolds number. The one conclusion,
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Figure 14. Rms value of terms constituting the acceleration due to the fluctuating velocity. Circles indicate
streamwise, triangles spanwise and squares wall normal. Open and filled symbols are for Reτ = 360 and
720 respectively. (a) total acceleration arms, (b) local acceleration al,rms and (c) convective acceleration
ac,rms.
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Figure 15. Ratio of rms values of acceleration due to the fluctuating velocity terms. Circles indicate
streamwise, triangles spanwise and squares wall normal. (a) arms/al,rms, (b) arms/ac,rms. Reτ = 720.

however, which is clear from our results, as can be seen in figure 14 but much more
clearly in figure 15, is that |ac| ≪ |al| ∼ |a| in the region where z+ ≥ 20. This
conclusion is in agreement with (39) and (42) and the fact that urms ≪ U .
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7. Stagnation point velocity and acceleration statistics conditional on

stagnation points

In this last section we give a few preliminary results on the statistics of stagnation
point velocities V s in a turbulent channel flow. Our purpose is only to introduce
the topic and motivate future studies.

We use (6) to calculate 〈V s〉sp where the notation 〈. . .〉sp means an average over
stagnation points within a thin slice parallel to the channel walls. These slices are
of dimension Lx × Ly × δz where δz is the thickness of the slice. The number of
stagnation points in such slices as a function of the slice’s distance z from the
closest channel wall are given in figure 5. In figure 16 we plot the profiles of the
three components of 〈V s〉sp as functions of z+. It is clear that stagnation points
do not have a clear mean motion towards the walls or in the spanwise direction.
However, they do move on average along the streamwise direction with an average
speed which seems to equal the average fluid velocity at these points, i.e.

〈V s〉sp = 〈u〉sp. (45)

Hence, the average motion of stagnation points is as if they were fluid elements.
We now turn to the rms, or quadratic mean, profiles of the three components

of V s. In HIT, the Reynolds number scaling of the variance of V s is the ratio
of the Reynolds number scaling of the variance of the acceleration a (which, in
HIT, is the same as the variance of A) and of the Reynolds number scaling of the
variance of the fluid velocity gradients [7]. This follows from (6) as, in HIT, the
velocity gradients ∇u′ and V s are statistically uncorrelated and the acceleration
statistics conditional on stagnation points do not show relevant differences from
the acceleration statistics collected from the entire flow. In turbulent channel flows,
however, ∇u′ and V s are not uncorrelated. Equation (6) implies that 〈a〉sp =
−〈V s · ∇u′〉sp and we have numerically checked that 〈a〉sp does not vanish in the
streamwise direction, very much like 〈a〉. Hence, 〈V s · ∇u′〉sp is not zero and is
also not equal to 〈V s〉sp · 〈∇u′〉sp.

The lack of decorrelation between ∇u′ and V s in turbulent channel flows means
that a full study of these correlations will be needed to understand how the vari-
ances of the three components of V s scale with z+, the local Reynolds number of
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the turbulence. This study is too extensive and involved to fit in this present paper,
but we do nevertheless motivate it for the future by plotting in figures 17 and 18,
respectively, the z+-profiles of the rms of V s and of the rms of a conditional on
stagnation points. It is clear that the root mean squares of V s in all three directions
are commensurate with the skin friction velocity uτ around z+ ≈ 30 where they
peak, and it is also clear that they decrease with increasing distance from the wall
in the region where z+ > 30. This result is significant as it quantifies the fact that,
in the local frame of reference moving with the mean stagnation point velocity, the
flow topography is most unsteady in the region which might be identified with the
buffer layer. The second reason which makes this result significant is its suggestion
that, in the limit of very high Reynolds number Reτ and as one moves away from
the wall towards the centre of the channel, the root mean squares of V s diminish
and, presumably, eventually vanish. In this limit the local turbulence becomes ap-
proximately homogeneous isotropic and, as shown by [7], the variance of V s does
indeed tend to 0 as Reynolds number tends to infinity in HIT. Our results seem
therefore to be consistent with those of [7].
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Figure 18 shows that the variances of a conditional on stagnation points are
higher than the unconditional variances of a and that this holds in all three di-
rections. However, it is difficult to conclude much from this figure concerning the
differences and/or similarities between the z+-profiles of these two variances in the
intermediate log-like layer, and it is also impossible to explain figure 17 from figure
18 and the statistics of ∇u′. An explanation of figure 17 will require a study which
goes beyond the mean and rms profiles of this paper and considers correlations
between accelerations, velocity gradients and stagnation point velocities in some
detail. As this is beyond our present scope, we leave it for future study.

8. Conclusions

Our DNS provides an independent confirmation that in the range δν ≪ z . h/2,
the number density of stagnation points is inversely proportional to the distance
z from the closest channel wall. This is a property concerning toplogical statistics
and it is a deeper property than the actual mean flow profile. The log-law follows
from it in turbulent channel flows if the turbulent kinetic energy is independent
of z in this intermediate range. Different mean flow profile shapes follow from it
depending on the z-dependence that Townsend’s inactive motions impart on the
turbulent kinetic energy.

The stagnation points move and their motion is determined by the turbulent
velocity gradients and the rate with which the turbulent velocity changes at their
location. On average, stagnation points move as if they were fluid elements: the
average stagnation point velocity profile coincides with the average fluid velocity
profile averaged over the locations of stagnation points. The fluctuations around
this average stagnation point motion peak around z+ ≈ 30 where they are com-
mensurate with uτ ; they decrease with increasing distance from the wall in the
region z+ > 30, and they decrease with decreasing distance to the wall in the
region z+ < 30.

These results suggest a picture where the topology of the turbulence is just differ-
entially swept, on average, along the channel. This differential sweeping reflects to
a significant extent the mean flow profile but is nevertheless different from it. This
sweeping picture relates to the sweeping decorrelation hypothesis which was origi-
nally introduced by [19] for HIT and which we reformulate here for wall-bounded
turbulence following [13]’s explicit formulation in terms of the local and convective
parts of the acceleration field.

In turbulent channel flow we are forced to distinguish between the acceleration
A corresponding to the full fluid velocity u and the acceleration a corresponding
to the fluctuating velocity u′ ≡ u− 〈u〉 where 〈u〉 is the mean flow. The sweeping
decorrelation hypothesis can be adapted to wall turbulence in terms of A, if care
is taken to recognise that the mean acceleration A is not necessarily zero. This
adapted formulation states that the fluctuations of the convective and local parts
of A around their means approximately cancel each other in the intermediate log-
like layer. This is probably the main result of this paper and it is accompanied by
our observation that in this same intermediate layer, the fluctuations of a around
its mean come predominantly from the fluctuations of its local part, the convective
part being negligible by comparison. As the convective part of the acceleration a

is by definition zero at stagnation points, we might have expected the fluctuations
of a at stagnation points to be representative of the fluctuations of a throughout.
However this is not the case as the variance of a at stagnation points is significantly
larger than the unconditional variance of a, thus suggesting that the turbulent
velocities may be more unsteady around stagnation points than they are in general.
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