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The static compression between two smooth plates of an axisymmetric capsule or vesicle

is investigated by means of asymptotic analysis. The governing equations of the vesicle

are derived from thin-shell theory and involve a bending stiffness B, a shear modulus H ,

the unstressed vesicle radius a and a constant surface-area constraint. The sixth-order free-

boundary problem obtained by a balance-of-forces approach is addressed in the limit when

the dimensionless parameter C = Ha2/B is large and the plate displacements are small.

When the plate displacement is of order aC−1/2, the vesicle undergoes a sub-critical buckling

instability which is captured by leading-order asymptotics. Asymptotic linear and quadratic

force–displacement relations for the pre- and post-buckled solutions are determined. The

leading-order post-buckled solution is described by a simple fourth-order problem, exhibiting

stress-focusing with stretching and bending confined to a narrow boundary layer. In contrast,

in the pre-buckled state, stretching occurs over a larger length scale than bending. The results

are in good qualitative agreement with numerical simulations for finite values of C .

1 Introduction

The mechanics of thin elastic shells under contact forces, a well-known topic in civil

and mechanical engineering, has received considerable attention in recent years from

the biotechnology community. Man-made micro- or nanocapsules have found a wide

range of industrial applications (Kumar, 2000; Schrooyen et al., 2001; Monllor et al.,

2007). Capsules and vesicles are also ubiquitous in living organisms, e.g. as biological

cells, viruses or organelles and their mechanical properties mediate numerous biological

processes. Understanding their behaviour under strain is crucial in analysing problems

such as neutrophils or red blood cells squeezing through capillaries (Huang et al., 2001)

or leukocyte rolling close to adhesive surfaces (Komura et al., 2005; Schwarz, 2007).

The static buckling and instability of a vesicle was described by Canham (1970) using

an energy-minimising variational approach and by Zarda et al. (1977) and Pamplona &

Calladine (1993) using a balance-of-forces approach derived from thin-shell theory. Some

discrepancies between the two approaches have been pointed out by Blyth & Pozrikidis

(2004) and it is still not clear how both views can be reconciled in a consistent manner.

The most commonly used constitutive models for membranes with negligible bending

stiffness are discussed by, e.g. Risso & Carin (2004) and Wan et al. (2003); the difficulties
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in providing experimental validations for each of them are underlined in Smith et al.

(1998).

Recently, Preston et al. (2008) formulated a sixth-order free-boundary problem to

describe an axisymmetric permeable vesicle under compression between smooth parallel

plates, using constitutive relations from Evans & Skalak (1980), Pamplona & Calladine

(1993) and Parker & Winlove (1999). As in most two-dimensional models derived from

elastic thin-shell theory (Pamplona et al., 2005), the mechanical properties of the vesicle are

found to depend on a single dimensionless parameter C = Ha2/B, where H is the two-

dimensional in-plane shear modulus, B the bending stiffness and a the radius of the

undeformed vesicle. Here, C has been termed the Föppl–von Kármán (FvK) number in

the context of viral capsids (Lidmar et al., 2003) and crumpling sheets (Lobkovsky &

Witten, 1997). In the context of a homogeneous linear elastic shell of radius a, thickness hs
and Poisson ratio ν (with Love’s first approximation; Landau & Lifshitz, 1986; Pozrikidis,

2003), the FvK number can also be written as C = 12(1 − ν2)a2/h2
s . Note that C does

not depend on Young’s modulus in this particular approximation. In applications where

isotropic linear elasticity may not be appropriate, such as the lipid bilayer of a vesicle, it

is more natural to characterise the shell by H and B directly.

Both Preston et al. (2008) and Pamplona et al. (2005) assume in-plane area incom-

pressibility of the shell, a hypothesis particularly applicable to lipid bilayers. With this

restriction, the stretching stiffness of the vesicle modelled as a two-dimensional surface

is proportional to its resistance to shear (Evans & Skalak, 1980). Vesicles or capsules

with large values of C are therefore highly stretch-resistant, in which case most bending

and stretching can be expected to occur only in narrow regions, a phenomenon termed

stress-focusing (Witten, 2007). Stretching and bending are typically confined to boundary

layers of length scale (ahs)
1/2 (Landau & Lifshitz, 1986; Helfer et al., 2001), or, equival-

ently, aC−1/4 (Lidmar et al., 2003). Pogoroelov (1986) pioneered a geometric theory for the

buckling of shells assuming that deformations were isometric outside such thin singular

regions.

Since the FvK number tends to infinity for very thin shells, it is not uncommon to

encounter large values of C: for example, 100 < C < 2000 for spherical viruses prone to

buckling (Lidmar et al., 2003); C ≈ 103 for 15 μm diameter vesicles made of self-assembled

actin-coated membranes (Helfer et al., 2001) and C ≈ 100 for red blood cells (Noguchi &

Gompper, 2005). This motivates the study of the asymptotic limit C → ∞. In the context

of buckling spherical shells under uniform or distributed loading, stretching and bending

boundary layers were identified by Kriegsmann & Lange (1980), Wan (1980), Parker &

Wan (1984), Graff et al. (1985), Scheidl & Troger (1987) and Evkin & Kalamkarov (2001)

using Reissner’s formulation, which involves a fourth-order description of an elastic shell.

However, none of these studies used the constitutive assumptions adopted by Preston

et al. (2008), nor did they account for the contact forces at the internal free boundary due

to compression by a plate.

In the present paper, we examine the asymptotic behaviour for large C of the free-

boundary problem derived by Preston et al. (2008) for the compression of a vesicle

between two plates as the inter-plate distance h varies. Depending on the magnitude of

the displacement relative to aC−1/2, we show how the sixth-order system reduces to either

a fifth- or a fourth-order system, enabling us to gain significant insight into the physical
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Figure 1. Schematic of an axisymmetric vesicle buckled between two plates.

behaviour, revealing the scaling properties of the underlying bifurcation structure, and

providing predictions of force–displacement relations that can be tested experimentally.

In Section 2 we outline the derivation of the model used by Preston et al. (2008) for

the vesicle’s mechanics, discuss the constitutive assumptions and present some numerical

results. In Section 3 we investigate the asymptotic behaviour of the vesicle as the inter-plate

distance h varies when C is large. For mathematical convenience, we use the arc-length

between the revolution axis and the contact point s̃c (see Figure 1) as the control parameter

(instead of h). We identify four different asymptotic regions in the (C, s̃c)-parameter space

(see Figure 7 below) and use matched asymptotic analysis to derive, to leading order, the

shape of the vesicle, the stress resultants, the inter-plate distance and the force exerted by

the plates on the vesicle. The buckling instability is addressed in Section 3.4. Our findings

are summarised and their physical significance is discussed in Section 4.

2 Model formulation

We consider an axisymmetric vesicle under compression between two parallel plates a

distance h apart (see Figure 1). The model formulation follows closely that in Preston

et al. (2008). Friction between the vesicle and the plates is neglected.

A point on the vesicle is identified by the azimuthal angle θ and the arc-length s along

a meridian, measured from the lower pole (see Figure 2). For an axisymmetric vesicle, the

shape is entirely determined by the two functions r(s) and z(s) that describe the distance

to the axis of rotation and the lower plate, respectively. Let κθ and κφ be the principal

curvatures in the azimuthal and meridional directions respectively and φ be the angle

made by the normal to the vesicle with the vertical axis. The variables r, z, κθ , κφ and φ

are coupled through the geometrical relations

κθ = sinφ/r, φs = κφ, rs = cosφ, zs = sinφ, (2.1)

where the subscript s denotes a derivative with respect to s.
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Figure 2. Infinitesimal vesicle element.

Figure 2 shows an infinitesimal vesicle element, acted upon by in-plane tensile stress

resultants Nθ and Nφ, an out-of-plane stress resultant Q, in-plane bending stress resultants

Mθ and Mφ, and a transmural pressure p (defined as the pressure difference between the

interior and the exterior of the vesicle). The force- and moment-balance equations on the

vesicle element are

(Nφr)s − Nθ cosφ − Qκφr = 0, (2.2a)

Nφκφ + Nθκθ +
1

r
(Qr)s = p, (2.2b)

(Mφr)s − Mθ cosφ + Qr = 0. (2.2c)

Equations (2.1) and (2.2) yield seven equations for the ten unknowns Nφ, Nθ , Mφ, Mθ ,

Q, κφ, κθ , r, z and φ. The problem is closed by specifying three constitutive equations.

2.1 Constitutive relations

Defining the reference shape of the undeformed vesicle by θ̃, r̃(̃s) and z̃(̃s), where θ̃

and s̃ are the azimuthal angle and the arc-length around a meridian in the reference

configuration respectively, the principal stretches λφ and λθ (along the meridians and

the parallels, respectively) can be written as λφ = ds̃/ds and λθ = rdθ/r̃dθ̃. We assume

that the local surface area of the vesicle is constant (a usual assumption for lipid-bilayer

membranes), so that the principal stretches satisfy

λφ =
1

λθ
≡ 1

λ
. (2.3)
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For an axisymmetric deformation (whereby dθ/dθ̃ = 1) in which the undeformed vesicle

is a sphere of radius a (so that in dimensionless terms r̃ = sin s̃) we therefore have that

λ =
ds̃

ds
=

r

sin s̃
, (2.4)

which provides two extra equations for the two additional variables λ and s̃.

Following Pamplona & Calladine (1993), we assume that the principal tensions and

stretches are related by

Nφ − Nθ = H
(
λ−1 − λ

)
, (2.5)

where the shear modulus H measures the resistance to changes in shape in the plane

of the vesicle. It is convenient to introduce the isotropic stress resultant T , so that (2.5)

becomes

Nφ = T + H/λ and Nθ = T + Hλ. (2.6)

Following Evans & Skalak (1980), the bending moments are assumed to be isotropic

and proportional to the mean curvature of the surface, which is assumed stress-free in its

flat state:

Mφ = Mθ = B(κφ + κθ), (2.7)

where B is the vesicle’s resistance to bending.

The present constitutive model separates bending (2.7) and stretching (2.6) effects,

which is a reasonable approximation for a flat element. In contrast, Pamplona et al.

(2005) propose a model that includes terms that couple principal tensions and bending

moments, accounting also for non-zero spontaneous curvature of the vesicle. To allow for

a direct comparison with Preston et al. (2008), these terms have not been included in the

present model; indeed, in the parameter regimes of most interest here, involving relatively

shallow (but still non-linear) deformations of the vesicle, these terms appear at orders

beyond those retained in our analysis, as explained in Appendix A.

2.2 Non-dimensionalisation

We non-dimensionalise lengths on the typical length scale of the undeformed vesicle (its

radius a) and forces on B/a, changing the variables according to

(r, z, s) → (r, z, s)a, (2.8a)

(κφ, κθ) → (κφ, κθ)/a, (2.8b)

(Nφ,Nθ, T ) → (Nφ,Nθ, T )H, (2.8c)

Q → QB/a2, (2.8d )

(Mφ,Mθ) → (Mφ,Mθ)B/a, (2.8e)

p → pB/a3, (2.8f )

λ → λ. (2.8g)
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After non-dimensionalisation, the material properties of the vesicle are fully encapsulated

by the single dimensionless parameter

C = Ha2/B, (2.9)

that measures the ratio of the vesicle’s resistance to in-plane shearing compared to its

resistance to bending. The only geometric parameter is the plate spacing h → ha.

The non-dimensional equations in Preston et al. (2008) can be obtained from our

formulation by replacing our variables (Nφ,Nθ, T ) by (Nφ,Nθ, T )/C .

2.3 Governing equations

Equations (2.1), (2.2), (2.5), (2.6) and (2.7) can be written, in dimensionless form, as the

system of ordinary differential equations (ODEs):

rs = cosφ, (2.10a)

zs = sinφ, (2.10b)

φs = κ, (2.10c)

κs = −Q + sinφ cosφ/r2 − κ cosφ/r, (2.10d )

Qs = p − C(T + 1/λ)κ − C(T + λ) sinφ/r − Q cosφ/r, (2.10e)

CTs = −C(1/λ)s + C(λ − 1/λ) cosφ/r + κQ, (2.10f )

with κ ≡ κφ and replacing κθ by sinφ/r as in (2.1). Using (2.4), (2.10) can be written

in Lagrangian coordinates (in terms of the independent variable s̃) as a system of seven

equations for seven unknowns:

rs̃ = cosφ/λ, (2.11a)

zs̃ = sinφ/λ, (2.11b)

φs̃ = κ/λ, (2.11c)

κs̃ = [−Q + sinφ cosφ/r2 − κ cosφ/r]/λ, (2.11d )

Qs̃ = [p − C(T + 1/λ)κ − C(T + λ) sinφ/r − Q cosφ/r]/λ, (2.11e)

CTs̃ = [Cλs̃/λ + C(λ − 1/λ) cosφ/r + κQ]/λ, (2.11f )

λ = r/ sin s̃. (2.11g)

The value of the pressure p depends on the model chosen for the vesicle. If the vesicle

is assumed to be impermeable and the fluid encapsulated inside incompressible, p must

be determined through a volume constraint. In contrast, if the vesicle is porous, then the

pressure difference p between the interior and the exterior of the vesicle is zero. Here we

assume that the normal stress exerted on the vesicle is zero everywhere except where the

vesicle is in contact with the plates.

In any plane for which θ = Constant, the contact between the vesicle and the bottom

plate (say) occurs either along a flat portion of the meridian defined by 0 � s̃ � s̃c, or at

one point on the meridian (when the vesicle buckles) located at s̃ = s̃c. In both cases, it
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has been shown that the pressure is non-zero only at the free boundary s̃ = s̃c (Preston

et al., 2008) (or equivalently r ≡ rc), so that we can write

p = −F
δ (̃s − s̃c)

2πrc
, (2.12)

where F is an undetermined constant representing the force exerted by the plates (see

Figure 1) and distributed around the circle of radius rc. The corresponding dimensional

force is BF/a. We wish to compute F and the vesicle shape as a function of the material

and geometric parameters C and h.

2.4 Boundary conditions

Since (2.11e) is undefined at s̃ = s̃c, it is necessary to solve (2.11) in two sub-domains

(Figure 1), D− (0 < s̃ < s̃c) and D+ (̃sc < s̃ � π/2), with continuity conditions at s̃ = s̃c.

Dependent variables defined in D− or D+ are labelled with a superscript (−) or (+),

respectively. Equations with no superscripts are valid both in D− and D+.

At s̃ = 0, (2.11) is singular so the boundary conditions are enforced via the asymptotic

expansion

r− ∼ s̃, κ− ∼ A1, φ− ∼ A1s̃,

Q− ∼ A2s̃, T− ∼ −A2/CA1 − 1

}
for s̃ � 1, (2.13a)

where A1 and A2 are undetermined constants. Note that these conditions are not appro-

priate when a point-force is applied at the poles, a case we are not considering here.

The other boundary conditions for (2.11) are

φ+ = φ− = 0, z+ = z− = 0

(r+, κ+, T+) = (r−, κ+, T−), Q+ − Q− = −F/2πr

}
at the contact point s̃ = s̃c, (2.13b)

φ+ = π/2, Q+ = 0, z+ = h/2
}

at the equator s̃ = π/2. (2.13c)

Thus (2.13a) and (2.13c) represent eight boundary conditions with two unknown paramet-

ers (A1 and A2) and one prescribed parameter (h), as might be expected for the sixth-order

system (2.11), while (2.13b) represents eight jump conditions with two additional unknown

parameters F and s̃c, again as might be expected for a sixth-order system of equations.

The boundary conditions (2.13a–c), a detailed derivation of which is given in Preston

et al. (2008), are valid whether or not the vesicle is buckled; in the unbuckled case, all

the dependent variables but the tension T− are zero inside the contact disk at the poles,

leading to A1 = A2 = 0 in (2.13a).

2.5 Numerical solutions

Figures 3, 4 and 5 show solutions of the full system (2.11) for large values of C , as

obtained numerically following Preston et al. (2008) (the figures also contain the results

from our asymptotic analysis, which will be discussed in Section 3). The method employed

consists in solving the sixth-order system (2.11) separately in D+ and D−, with boundary
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Figure 3. Shape of the buckled vesicle for s̃c = 0.3 and C = 107. The numerical solution of the full

system (2.11)–(2.13) (solid) and the composite solution z̃comp (3.33) from leading-order asymptotics

in the outer and in the inner regions (dashed) are shown for (a) the whole vesicle (the two curves

are graphically indistinguishable); (b) the inner region near one of the contact points.

conditions at each end as described by (2.13), using MATLAB’s boundary-value-problem

solver bvp4c. The problem is well posed provided F or h is prescribed, but the solution is

not always unique as regimes of bistability have been identified whereby the vesicle can

be buckled or unbuckled (Murray & Wright, 1961; Preston et al., 2008).

For C 	 1, the general shape of the buckled vesicle can be described approximately by

sectors of spheres (Figure 3), with large variations of the slope φ occurring only in the

vicinity of the contact point. This region is also where most of the stresses are confined,

as shown by the different scalings used between Figures 4 (showing how variables evolve

over the domain 0 � s̃ � π/2) and 5 (showing variables in the neighbourhood of the

contact point). As expected for a vesicle compressed between two plates, the meridional

stress component Nφ is predominantly negative, implying compression (Figures 4(c) and

5(c)). The azimuthal stress component Nθ changes sign at the contact point, so that the

vesicle is under azimuthal compression on the inside of the contact line (̃s < s̃c) and is

predominantly under extension (Nθ > 0) elsewhere (Figure 5(d)).

With appropriate scalings in powers of C1/4, all dependent variables in (2.11) are found

to collapse as C → ∞ within an inner region of width O(C−1/4) around the free boundary

s̃ = s̃c (see Figure 5). With different scalings, the dependent variables also collapse outside

the inner region as C → ∞ (see Figure 4). This motivates an asymptotic analysis for

C 	 1, considering two outer regions D−
out and D+

out, connected by the inner region Din

near s̃ = s̃c.

Figure 6 shows the force–displacement relationship F versus h computed numerically

following Preston et al. (2008). The figure illustrates the sub-critical bifurcation (using

the plate separation h as the control parameter) between unbuckled and buckled con-

figurations. In the asymptotic analysis that follows (Section 3), we explore in detail the

proposed scaling behaviour of the force for post-buckled solutions, F ∝ C1/4(1 − h/2)1/2
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Figure 4. Numerical solutions of the full system (2.11)–(2.13) (solid) for s̃c = 0.3 and C =

[105, 106, 107] and leading-order outer asymptotic solution (3.6), (3.12) and (3.14) (dashed), both

re-scaled to be O(1) in the outer regions. (a) φ; (b) κ; (c) NφC
3/4; (d) NθC

3/4; (e) (r − sin s̃)C3/4;

(f) C3/4(λ − 1) versus s̃. The vertical sections of curves in (b)–(f) are resolved under inner-region

scalings shown in Figure 5.

as C → ∞, as identified in Komura et al. (2005) and Preston et al. (2008), and the onset of

the buckling instability for (1 − h/2) = O(C−1/2). We summarise in Section 4 the findings

of the asymptotic analysis, to which readers who are less interested in technical details

may turn directly.
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Figure 5. Numerical solutions of the full system (2.11)–(2.13) (solid) plotted in inner coordinates

for s̃c = 0.3 and C = [105, 106, 107] and the leading-order asymptotic solution (3.29–3.30) (dashed).

(a) φ; (b) κ/C1/4; (c) NφC
1/2; (d) NθC

1/4; (e) Q/C1/2; (f) C1/4(λ− 1) versus ŝ = C1/4(̃s− s̃c). Squares

show the contact point.

3 Asymptotic solution for C 	 1

It is convenient to parametrise solutions using s̃c instead of h, so we assume that s̃c is

fixed and expand h as follows:

h = h0 + C−1/4h1 + C−1/2h2 . . . . (3.1)
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Figure 6. Solid lines show the scaled force F , versus inter-plate distance for C = [103, 104, 105, 106].

The dashed line corresponds to the leading-order asymptotic prediction for region II (3.44), which

is valid for h close to 2, in the post-buckled state.

Because the problem has two independent parameters (now s̃c and C), we must be

careful in identifying precisely the limiting cases that arise for C 	 1. Various regimes

are considered, depending on the distance of the contact ring from the axis. As illustrated

in Figure 7, we will consider the following regimes that arise under different forcings and

plate spacings: I, C−1/4 � s̃c ∼ 1 (where ‘∼ 1’ means s̃c = O(1)); II, C−1/4 � s̃c � 1; III,

C−1/4 ∼ s̃c � 1; and IV, C−1/2 � s̃c � C−1/4 � 1. As detailed below, the distinguished

limits I and III represent a buckled vesicle with O(1) deformations and a weakly deformed

vesicle near the buckling instability respectively. The behaviour of the unbuckled solution

for asymptotically small deformations is addressed in case IV. We focus initially on case II,

which concerns a vesicle that is strongly buckled over a small region, since it is physically

relevant and, in the context of this study, analytically tractable. Here an approximate

solution of the system (2.11) with (2.13) is constructed by asymptotic expansions in both

D−
out and D+

out with matching conditions through a boundary layer Din.

We present the outer solution in Section 3.1; we discuss the inner problem in case I in

Section 3.2 and show how it simplifies in case II in Section 3.3; in Section 3.4 we show

how to recover the bifurcation structure in case III; and in Section 3.5 we address case IV.

3.1 Outer region

In the outer regions we write:

r = r0 + C−3/4r1 + · · · , T = T 0 + C−3/4T 1 + · · · , λ = λ0 + C−3/4λ1 + · · · , (3.2a)

φ = φ0 + C−3/4φ1 + · · · , κ = κ0 + C−3/4κ1 + · · · , Q = Q0 + C−3/4Q1 + · · · , (3.2b)

z = z0 + C−1/4z1 + C−1/2z2 + C−3/4z3 + · · · , (3.2c)
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Figure 7. (a)–(d) Sketches representing the asymptotic solution structure in regions I–IV, respect-

ively. (e) Parameter space showing regions I, II, III and IV. The dashed line (with slope −1/4)

represents the buckling instability, as predicted by the leading-order analysis (3.59). The asterisks

are data points for the onset of the buckling instability for C = [500, 103, 104, 105] as computed

numerically by Preston et al. (2008) (the transcritical and saddle-node bifurcation points are here

graphically indistinguishable). In the hashed area, the shell theory assumptions are not likely to be

satisfied as s̃c will not be larger than the shell thickness.
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where bars denote functions of s̃. Recall that expressions written without superscripts are

valid in both D−
out and D+

out.

3.1.1 Leading order

To leading order for C 	 1, (2.11a–g) becomes the fifth-order system

r0s̃ = cosφ0/λ0, (3.3a)

z0s̃ = sinφ0/λ0, (3.3b)

φ0s̃ = κ0/λ0, (3.3c)

κ0s̃ = [−Q0 + sinφ0 cosφ0/r
2
0 − κ0 cosφ0/r0]/λ0, (3.3d )

0 = −(T 0 + 1/λ0)κ0 − (T 0 + λ0) sinφ0/r0, (3.3e)

λ0T 0s̃ = λ0s̃/λ0 + (λ0 − 1/λ0) cosφ0/r0, (3.3f )

λ0 = r0/ sin s̃, (3.3g)

in both D+
out and D−

out. The boundary conditions satisfied by the solution in D−
out and D+

out

are respectively

r−
0 ∼ s̃, κ−

0 ∼ A1,

φ
−
0 ∼ A1s̃, and Q

−
0 ∼ A2s̃

}
for s̃ � 1, (3.4a)

and

φ
+

0 = π/2, Q
+
0 = 0, and z+

0 = h0/2 at s̃ = π/2, (3.4b)

where A1, A2 and h0 are undetermined parameters which depend on s̃c. In addition, we

will show, by considering an inner region about the contact point, that the following

conditions hold:

(r+0 , T
+
0 ) = (r−

0 , T
−
0 ), and z+

0 = z−
0 = 0, as s̃ → s̃c ± . (3.4c)

Equations (3.4a–b) give seven boundary conditions at s̃ = 0, π/2 with two unknown

parameters; (3.4c) gives four conditions at the contact point s̃c that are derived from

matching conditions with the inner region (see below). In particular, we find below that

the outer limit of z in the inner region is O(C−1/4) or smaller (depending on the size of

s̃c), leading to the zero boundary condition (3.4c) imposed on z0 as s̃ → s̃c.

Equations (3.3e–f ) are satisfied by

λ0 = 1, and T 0 = −1, (3.5)

so that Nφ = 0 and Nθ = 0 to this order. Hence (3.3g) implies r0 = sin s̃ and (3.3a–b)
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yield

z±
0 = ±

{
cos s̃c − cos s̃, if s̃c = O (1) ,

1 − cos s̃, if s̃c = O
(
C−1/4

)
,

(3.6a)

φ
±
0 = ±s̃. (3.6b)

As expected, the vesicle lies along sectors of spheres, with the buckling point at r0 = sin s̃c,

z0 = 0 and a region of reversed curvature (as compared to the initial configuration) in

D−
out (see Figure 3(a)). The distance between the plates is, to leading order,

h0 = 2z0(π/2) =

{
2 cos s̃c if s̃c = O (1) ,

2 if s̃c = O(C−1/4).
(3.7)

Solving for κ and Q, to leading order, using (3.3c–d ) yields

Q
±
0 = 0, and κ±

0 = ±1. (3.8)

The outer problem does not capture the jump in the out-of-plane stress component

(Figure 5e): the jump condition (2.13b) is satisfied within a boundary layer near the

contact point, as could be anticipated from the fact that the derivative Qs̃ does not appear

in the leading-order outer problem (3.3).

To leading order, the outer variables r, λ and T are continuous across s̃ = s̃c, but φ, zs̃
and κ are not. We expect these quantities to be regularised within the inner region.

The next two orders in the expansion of (2.11) and (2.13) are trivial and yield z1s =

z2s = 0. Therefore, z1 and z2 are constants in D+
out and D−

out. They are determined below

through matching to the inner region Din. However, to formulate well-posed matching

conditions between D±
out and Din , we need to proceed one step further in the expansion

of (2.11) and (2.13).

3.1.2 Next order

To next order in the large-C expansion, (3.2) is given by the system

r1s = −φ1 sinφ0 − λ1 cosφ0, (3.9a)

z3s = φ1 cosφ0 − λ1 sinφ0, (3.9b)

φ1s = κ1 − λ1κ0, (3.9c)

κ1s = −Q1 +
cosφ0

r0
(−λ1 + φ1 cot s̃ − κ1), (3.9d )

0 = −(T 1 − λ1)κ0 − (T 1 + λ1)
sinφ0

r0
, (3.9e)

T 1s = λ1s + 2λ1
cosφ0

r0
, (3.9f )

λ1 = r1/ sin s̃. (3.9g)
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Equation (3.9e) yields T
±
1 = 0 (since κ0 = sinφ0/r0), so that (3.9f ) becomes

0 = λ
±
1s/λ

±
1 + 2 cot s̃. (3.10)

Hence λ
−
1 = B−/ sin2 s̃, for some O(1) constant B−. Since λ

−
1 must remain bounded as

s̃ → 0, B− = 0 necessarily and we have

T
−
1 = 0, λ

−
1 = 0. (3.11)

Substituting λ
−
1 = 0 into (3.9g) gives r−

1 = 0, which in turn yields

φ
−
1 = κ−

1 = Q
−
1 = 0, (3.12)

using (3.9a–d ) respectively.

Likewise, in D+
out we have

T
+
1 = 0, λ

+

1 = B+/sin2 s̃, (3.13)

for some O(1) constant B+ (to be determined by matching with the solution in the inner

region). Substituting (3.13b) in (3.9g) and using (3.9a–d ) gives

r+1 = B+/sin s̃, φ
+

1 = 0, κ+
1 = B+/sin2 s̃, and Q

+
1 = 0. (3.14)

The scalings in O(C−3/4) of r+1 and λ
+

1 are confirmed in Figure 4(e–f ) respectively.

The solutions obtained in D±
out will be used below as matching conditions to determine

the solution in the inner region Din and B+ will be determined by a solvability condition

in Section 3.3.1 below. A physical interpretation of B+ is as the leading-order perturbation

of the radius of the vesicle at the equator: r|̃s=π/2 = 1 + B+C−3/4. In the case presented

in Figure 4 (̃sc = 0.3), a fit from the data for λ
+

1 and r+1 yields B+ ≈ −1.2, which agrees

with the predicted value from our analysis below ((3.36), (3.44a)).

Expanding the outer solution as s̃ → s̃c with s̃ − s̃c = O(C−1/4) (the scale of the inner

variable) to the first few orders, we may express the inner limit of the outer problem as

r = sin s̃c + O(C−1/4),

T = −1 + O(C−3/2),

λ = 1 + C−3/4B±/ sin2 s̃c + O(B±C−1)

φ = ±s̃c ± (̃s − s̃c) + O(C−3/2),

κ = ±1 + C−3/4B±/ sin2 s̃c + O(B±C−1),

Q = O(C−3/2),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

as

{
s̃ → s̃c±, with

s̃ − s̃c = O(C−1/4),
(3.15)

where B− = 0 and B+ will be determined in the inner region. The asymptotic behaviour

(3.15) and the ordering of the different terms hold regardless of the size of s̃c (at least in

the range of interest s̃c 	 C−1/2, as discussed below). Since the leading-order term for z

depends on s̃c (3.6), one has to distinguish the case s̃c 	 O(C−1/4), whereby

z =
[
sin s̃c(̃s − s̃c) + z1C

−1/4
]
+

[
1
2
cos s̃c(̃s − s̃c)

2 + z2C
−1/2

]
+ O(C−3/4), (3.16)
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and s̃c = O(C−1/4), for which

z = z1C
−1/4 +

[
1
2
s̃2c + s̃c(̃s − s̃c) + 1

2
(̃s − s̃c)

2 + z2C
−1/2

]
+ O(C−3/4), (3.17)

when s̃ → s̃±
c with s̃− s̃c = O(C−1/4). The constants (z1, z2) will be determined in the inner

region, separately for cases II and III.

Proceeding this far in the expansion of the outer problem provides the matching

conditions (3.15–3.17) necessary to solve the inner problem (formulated in the next

section for four different cases) and derive the leading-order asymptotic behaviour of the

vesicle.

3.2 Inner region, case I (i.e. C−1/4 � s̃c ∼ 1)

We first consider a strongly buckled vesicle, for which the size of the inner region near

the contact line is small compared to the radius sin s̃c of the contact line (see Figure 7).

Writing (2.11) in term of the inner variable ŝ, defined by

s̃ = s̃c + C−1/4ŝ,

and using the dimensionless version of (2.6) yields the re-scaled equations

rŝ = C−1/4 cosφ/λ, (3.18a)

zŝ = C−1/4 sinφ/λ, (3.18b)

φŝ = C−1/4κ/λ, (3.18c)

κŝ = C−1/4[−Q + sinφ cosφ/r2 − κ cosφ/r]/λ, (3.18d )

Qŝ =
[
C−1/4p − C3/4Nφκ − C3/4(Nφ + λ − 1/λ) sinφ/r − C−1/4Q cosφ/r

]
/λ, (3.18e)

Nφŝ =
[
C−1/4(λ − 1/λ) cosφ/r + C−5/4κQ

]
/λ, (3.18f )

λ = r/ sin
(
s̃c + C−1/4ŝ

)
. (3.18g)

Motivated by numerical simulations (see Figure (5)), we thus write

s̃ = s̃c + C−1/4ŝ, F = F0C
1/4 + · · · , (3.19a)

r = sin s̃c + C−1/4r̂1 + C−1/2r̂2 + · · · , κ = C1/4κ̂1 + κ̂2 + · · · , (3.19b)

z = C−1/4ẑ1 + C−1/2ẑ2 + · · · , Q = C1/2Q̂1 + C1/4Q̂2 + · · · , (3.19c)

φ = φ̂1 + C−1/4φ̂2 + · · · , T = −1 + T̂0C
−1/4 + T̂1C

−1/2 + T̂2C
−3/4 + · · · ,

(3.19d )

p = p0δ (ŝ)C1/2 + · · · , λ = 1 + λ̂0C
−1/4 + λ̂1C

−1/2 + λ̂2C
−3/4 + · · · ,

(3.19e)

where hats denote functions of ŝ. We also define N̂1 = T̂1 − λ̂1 + λ̂2
0 , such that the
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expansion for the stress Nφ along the meridians becomes

Nφ = (T̂0 − λ̂0)C
−1/4 + N̂1C

−1/2 + · · · . (3.20)

After substitution of (3.19) in (3.18), only the second term in the right-hand side of (3.18e)

is O(C), which gives T̂0 = λ̂0.

Proceeding to O(C3/4) in (3.18), we have

r̂1ŝ = cos φ̂1, κ̂1s = −Q̂1, (3.21a)

ẑ1ŝ = sin φ̂1, Q̂1ŝ = −N̂1κ̂1 − 2λ̂0 sin φ̂1/ sin s̃c, (3.21b)

φ̂1ŝ = κ̂1, N̂1ŝ = 2λ̂0 cos φ̂1/ sin s̃c + κ̂1Q̂1, (3.21c)

λ̂0 = (r̂1 − ŝ cos s̃c) / sin s̃c. (3.21d )

The r̂1 and ẑ1 equations decouple from the fifth-order system for (λ̂0, φ̂1, κ̂1, N̂1, Q̂1), which

we address first. κ̂1, r̂1 and Q̂1 can be eliminated from this system through substitution,

to yield the equations

φ̂1ŝŝŝ = N̂1φ̂1ŝ + 2λ̂0 sin φ̂1/ sin s̃c, (3.22a)

N̂1ŝ = 2λ̂0 cos φ̂1/ sin s̃c − φ̂1ŝφ̂1ŝŝ, (3.22b)

λ̂0ŝ = (cos φ̂1 − cos s̃c)/sin s̃c, (3.22c)

together with the six boundary conditions, obtained from matching to (3.15),

φ̂1 → ±s̃c, as ŝ → ±∞, N̂1 → 0 and λ̂0 → 0 as ŝ → ±∞. (3.23)

We note that the non-linear equations (3.22a–c) are symmetric under ŝ → −ŝ, φ̂1 → −φ̂1,

λ̂0 → −λ̂0 and N̂1 → N̂1 and that the conditions at the contact point φ̂1(0) = φ̂1ŝ(0) = 0

are automatically satisfied.

The inner region allows the slope φ to change sign smoothly across the contact point,

thereby regularising the jump in this quantity in the outer solution (such as in zs̃ and κ)

between regions D−
out and D+

out.

The system (3.22) can be linearised about the far-field limits. Let φ̂1 = ±s̃c + φ̃. We

then have φ̃ssss ∼ −2φ̃ as ŝ → ±∞, where φ̃ and its derivatives tend to zero as ŝ → ±∞,

leading to

φ̃ = A±
1 exp

[
∓(ŝ − A±

2 )
1 ± i

21/4

]
+ c.c. as ŝ → ±∞, (3.24)

with A±
1 and A±

2 undetermined constants; c.c. denotes complex conjugate.

Suppressing the two growing far-field eigenmodes yields solutions with two degrees of

freedom (one of which is equivalent to translational invariance) of the form

φ̃ = exp
[

∓ 2−1/4ŝ
](

α cos

(
ŝ

21/4

)
+ β sin

(
ŝ

21/4

))
as ŝ → +∞, (3.25)

for constants α and β, with the appropriately symmetric solution as ŝ → −∞. Such

decaying oscillatory overshoot is evident in Figure 5(a).
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Rather than proceed to solve (3.22) numerically, we now look at the simpler special case

for which s̃c is small, so that the trigonometric functions in (3.22) can be approximated

to leading order by polynomials.

3.3 Inner region, case II (i.e. C−1/4 � s̃c � 1)

Here we consider a buckled vesicle in the case of small deformations (which does not

exclude large variations of slopes and stresses within the inner region). Motivated by

numerical simulations (see Figure 5), and considering the limiting form of (3.21)–(3.22)

for s̃c � 1, we write

s̃ = s̃c + C−1/4ŝ, F = F0C
1/4 + F1 + · · · , (3.26a)

r = sin s̃c + C−1/4
(
ŝ + s̃2cr1

)
+ C−1/2s̃cr2 + · · · , κ = C1/4s̃cκ1 + κ2 + · · · , (3.26b)

z = C−1/4s̃cz1 + C−1/2z2 + · · · , Q = C1/2s̃cQ1 + C1/4Q2 + · · · , (3.26c)

φ = s̃cφ1 + C−1/4φ2 + · · · , T = −1 + s̃cC
−1/4T0 + C−1/2T1

(3.26d )

+ C−3/4T2/s̃c + · · · ,

p = p0δ (ŝ)C1/2 + · · · , λ = 1 + s̃cC
−1/4λ0 + C−1/2λ1 (3.26e)

+ C−3/4λ2/s̃c + · · · ,

with N1 = T1 − λ1 and N2 = T2 − λ2.

After substitution of (3.26) in (3.18) and Taylor-expansion with respect to the small

parameters C−1/4 and s̃c, different terms appear with coefficients of the form Cn/4s̃mc
(where (n, m) ∈ �2). Ordering the terms for C−1/4 � s̃c, the two largest contributions

are unambiguously O(Cs̃2c) and O(C3/4s̃c) respectively, whereas the third largest con-

tribution cannot be determined without making some further assumption on the size

of s̃c.

Only the second term in the right-hand side of (3.18e) is O(Cs̃2c), hence T̂0 = λ̂0

straightforwardly. Proceeding to O(C3/4s̃c) in (3.18), we have

r1ŝ = − 1
2
φ2

1, κ1s = −Q1, (3.27a)

z1ŝ = φ1, Q1ŝ = −N1κ1 − 2λ0φ1, (3.27b)

φ1ŝ = κ1, N1ŝ = 2λ0, (3.27c)

λ0 = r1 + 1
2
ŝ. (3.27d )

Once again, the equations for r1 and z1 decouple from the fifth-order system for

(λ0, φ1, κ1, N1, Q1), which we solve first. The equation for Q1 can be integrated, with

the conditions Q1 → 0 and N1 → 0 as ŝ → ∞ yielding Q1 = −N1φ1. Eliminating κ1, r1
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and Q1, (3.27) is reduced to the fourth-order system

φ1ŝŝ = N1φ1, (3.28a)

N1ŝ = 2λ0, (3.28b)

2λ0ŝ = 1 − φ2
1, (3.28c)

which can also be written in the compact form

(
φ1ŝŝ

φ1

)
ŝŝ

= 1 − φ2
1. (3.29)

The four boundary conditions

φ1(0) = N1ŝ (0) = 0, and φ1 → ±1 as ŝ → ±∞, (3.30)

consistent with (3.23), enforce the symmetry conditions about ŝ = 0 (as pointed out above,

φ1 and N1 are respectively odd and even functions of ŝ) and the matching conditions with

the outer regions. We note that an equivalent inner-region ODE emerges from Reissner’s

formulation for a buckled shell (Parker & Wan, 1984).

The symmetry conditions imply that Q is odd and hence that Q1(0
+) = Q1(0

−) = 0.

Surprisingly, the jump in Q (which is proportional to the vertical force exerted by the

plates on the vesicle, according to (2.13b)) therefore appears only at higher order in C in

this case.

We obtain a numerical solution of (3.29)–(3.30) by shooting backwards from the

linearised solution (3.25) of the system (3.22) in the far field and adjusting the two

parameters α and β so that the solution satisfies φ1(0) = N1s(0) = 0.

Figure 5 compares the numerical solution obtained by solving the full system (2.11),

for large values of C , to the leading-order asymptotic solution of (3.29–3.30). Figure 5(a)

shows how the slope of the vesicle goes from negative values to positive ones as it

crosses s̃c, thus regularising the discontinuous solution (3.6b) in the outer region and

enforcing the boundary condition φ = 0 at the contact point. The variables φ and κ/C1/4

(Figure 5(b)) converge quickly towards the leading-order asymptotic solutions s̃cφ1 and

s̃cκ1, respectively, in the neighbourhood of s̃c (for ŝ � 2). For |ŝ| � 2 the contribution of

the leading-order term κ1 becomes smaller than higher order terms and the convergence

is much slower, both for κ and φ. The convergence towards the leading-order asymptotics

is slower for the meridional stress component Nφ (Figure 5(c)) than for the azimuthal

stress component Nθ (Figure 5(d)), arguably because the former (of order C−1/2) is more

sensitive to the O(C−3/4) forcing of the outer solution in D+
out (3.15) than the latter (of

order s̃cC
−1/4). To leading order, the out-of-plane stress resultant Q is an odd function

of ŝ, with negative (resp. positive) values in the neighbourhood ŝ < 0 (resp. ŝ > 0) of the

contact point, as shown in Figure 5(e). The s̃cQ1, which denotes the O(C−1/2) term in the

expansion for Q in the inner region, sums to zero when integrated over the whole inner

region, consistent with a jump in Q of O(C−3/4) between both outer regions (see (3.2b)

and (3.8)). To leading order, Q acts like an effective bending dipole at the contact point

contributing zero net force on the vesicle.
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Integrating the equation for z1 in (3.27) yields the shape of the vesicle to leading order

in the inner region. Subtracting the expression for the leading-order outer solution z0

(3.6a), with |̃s − s̃c| = O(C−1/4) (i.e. (3.16)), from the limits of z1 as ŝ → ±∞ yields the

first-order correction to z in the outer region, as defined in (3.2c),

z±
1 = ±s̃c

∞∫
0

(φ1 (ŝ) − 1) dŝ ≈ ∓0.1769s̃c. (3.31)

Using (2.13c), the second term in the expansion of h (3.1) is then

h1 = 2z+
1 ≈ −0.3538s̃c. (3.32)

We construct a composite solution

z̃comp(̃s) = z±
0 (̃s) + C−1/4(z±

1 + s̃cz1) − s̃c (̃s − s̃c) , r̃comp (̃s) = sin s̃, (3.33)

valid in the whole domain. It agrees very well with the numerical solution obtained by

solving the full system (2.11)–(2.13) for C = 107 (Figure 3), indicating that the shape of

the buckled vesicle can be described well by the leading-order asymptotics. However, the

force acting on the vesicle is still unknown at this stage, and can be determined only by

looking at higher-order contributions. A similar difficulty was reported by Kriegsmann &

Lange (1980), Graff et al. (1985) and Evkin & Kalamkarov (2001), and we expect it also

in case I.

3.3.1 A solvability condition for the force F0 on the vesicle, case IIb

As described above, much insight can be obtained by considering O(Cs̃2c) and O(C3/4s̃c)

contributions in (2.11), but higher-order terms prove to be necessary to derive the force–

displacement relationship F versus h. The next contributions in (2.11) are O(C3/4s̃3c)

and O(C1/2) (there are no terms of O(C3/4s̃2c)). Restricting our analysis to the case

C−1/4 � s̃c � C−1/12 (henceforth referred to as case IIb) allows us to neglect the

O(C3/4s̃3c) contribution (essentially, non-linearities arising from trigonometric terms in

(2.11)) while accounting for the rest of the physics. In this case, to O(C1/2) in (2.11), we

have

r2ŝ = −φ1φ2 − λ0, (3.34a)

z2ŝ = φ2, (3.34b)

φ2ŝ = κ2, (3.34c)

κ2ŝ = −Q2 − κ1, (3.34d )

Q2ŝ = p0δ (ŝ) − N1κ2 − N2κ1 − (N1 + 2λ1)φ1 + 2λ0ŝφ1 − Q1 − 2λ0φ2, (3.34e)

N2ŝ = 2r2 − 4ŝr1 − ŝ2. (3.34f )

The equation for Q2 can be integrated to give

Q2 = p0H(ŝ) − (N1φ2 + N2φ1) + Constant, (3.35)
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where H(ŝ) is the Heaviside function. As ŝ → −∞, Q2 → 0, N1 → 0 and N2 → 0 (see

below), so the constant of integration is zero. Furthermore, as ŝ → 0−, φ1 → 0 and φ2 → 0

(by definition, all terms in the expansion for φ vanish at the contact point ŝ = 0), so that

Q2(0
−) = 0. Thus the first two terms in the expansion for Q (3.26c) are zero as ŝ → 0−.

The matching conditions to D−
out, as derived in (3.15), lead to φ2 → 0 and N2 → 0 as

ŝ → −∞.

The matching conditions to D+
out are φ2 → 0, N2 → −B+/s̃c (since λ2/s̃c ∼ λ1, T2 → 0,

N2 = T2 − λ2 and λ1(̃s) ∼ B+/s̃2c as s̃ → s̃c) and Q2 → 0 (since Q0 = 0) for ŝ → ∞. Note

that the forcing on the inner region comes only from D+
out, at this order.

Taking the limit ŝ → ∞ in (3.35) using (3.30) allows us to determine B+:

B+ = −s̃cp0. (3.36)

The second-order problem (3.34) thus reduces to a fourth-order system of the form

LX = W, (3.37)

where

L =

⎛
⎜⎜⎝

∂ŝ −1 0 0

0 ∂ŝ 2φ1 0

0 0 ∂ŝ −1

−φ1 0 −N1 ∂ŝ

⎞
⎟⎟⎠ , X =

⎛
⎜⎜⎝

N2

N2ŝ

φ2

φ2ŝ

⎞
⎟⎟⎠ and W =

⎛
⎜⎜⎝

0

2ŝφ2
1 − 6r1 − 3ŝ

0

−p0H(ŝ) − φ1ŝ

⎞
⎟⎟⎠ ,

(3.38)

and X satisfies the boundary conditions (Xi denotes the ith component of X)

X1 → 0 and X3 → 0 for ŝ → −∞, (3.39a)

X1 → p0 and X3 → 0 for ŝ → +∞, (3.39b)

in order to ensure the matching of the solution to D−
out and D+

out (for s̃c � 1).

Rather than solve (3.37) directly, we formulate an adjoint problem and a solvability

condition that allow us to derive the forcing term p0 and the jump in Q. We define the

linear operator

L† =

⎛
⎜⎜⎝

−∂ŝ 0 0 −φ1

−1 −∂ŝ 0 0

0 2φ1 −∂ŝ −N1

0 0 −1 −∂ŝ

⎞
⎟⎟⎠ , (3.40)

with the property that, for any column vector of functions Y ,

4∑
i=1

Yi (LX)i − Xi

(
L†Y

)
i
=

d

ds

(
4∑

i=1

XiYi

)
. (3.41)

In addition, we define the column vector Y ∗ = (−N1ŝŝ,−N1ŝ, 2φ1ŝŝ, 2φ1ŝ)
T constructed
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from the solution of the first-order problem (3.28), the components of which satisfy

Y2 → 0 and Y4 → 0 for ŝ → ±∞, (3.42a)

Y1 → 0 for ŝ → +∞. (3.42b)

It is then straightforward to verify that L†Y ∗ = 0. Taking the inner product between

Y ∗ and LX in (3.37), integrating by parts following (3.41) and noting that the boundary

conditions vanish due to (3.39) and (3.42), we obtain a solvability condition of the form∑4
i=1

∫ ∞
−∞ WiY

∗
i dŝ = 0, i.e.

∞∫
−∞

[
−N1ŝ

(
2ŝφ2

1 − 6r1 − 3ŝ
)

+ 2φ1ŝ (−p0H(ŝ) − φ1ŝ)
]
dŝ = 0. (3.43)

All the functions at first order being known, (3.43) uniquely determines the scalar p0. Now

(2.12) leads to F0 = −2πs̃cp0 (using s̃c � 1 and the identity δ(̃s − s̃c) = C1/4δ(ŝ)), so that

using (3.7) to eliminate s̃c and evaluating (3.43) numerically, we have

p0 ≈ −3.966 and F0 = −2πp0

√
2 − h0. (3.44)

Figure 6 shows that the leading-order force–displacement relationship (3.44b) agrees

well with the full numerical solution of buckled solutions of Preston et al. (2008)

as C → ∞ within region II. In the context of our analysis (i.e. case IIb), (3.44) holds

when the displacement of the plates from their initial position (i.e. h = 2) satisfies

C−1/2 � 2 − h � C−1/6. For C = 103 (resp. C = 106), this range corresponds to changes

of the vesicle height within 1.5%–15% (resp. 0.05%–5%) of its undeformed diameter.

Following (2.13b) and (3.44), the leading-order jump in Q at the contact point, with

value C1/4p0, is independent of s̃c within the whole range of validity of case IIb.

Having examined the post-buckled behaviour of the vesicle under compression, we now

proceed to the case of smaller deformations where both buckled and unbuckled solutions

exist.

3.4 Inner region, case III (i.e. C−1/4 ∼ s̃c � 1)

When s̃c becomes small, the inner region around the buckling ring encompasses the pole

(Figure 7(c)) and deformations are weaker than those captured in the expansion (3.26).

Since φ = O(̃sc) in the inner region, we choose, for s̃c ≡ C−1/4šc, šc = O(1),

s̃ = C−1/4š, (3.45a)

r = C−1/4r̂1 + C−1/2r̂2 + · · · , κ = κ̂1 + C−1/4κ̂2 + · · · , (3.45b)

z = C−1/2ẑ1 + C−3/4ẑ2 + · · · , Q = C1/4Q̂1 + Q̂2 + · · · , (3.45c)

φ = C−1/4φ̂1 + C−1/2φ̂2 + · · · , T = −1 + T̂0C
−1/4 + T̂1C

−1/2 + T̂2C
−3/4 + · · · ,

(3.45d )

p = p̌0δ (š − šc)C
1/2 + · · · , λ = 1 + λ̂0C

−1/4 + λ̂1C
−1/2 + λ̂2C

−3/4 + · · · , (3.45e)
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where hats denote functions of š. In contrast to (3.19)–(3.26), the amplitude of the leading-

order pressure term p̌0 is found to depend on šc (see below), hence the different notation.

With the scaling (3.45a), note that the re-scaled inner equations are identical to (3.18),

with the exception of (3.18g).

As shown in (3.26), for C−1/4 � s̃c � 1, the scaling for the out-of-plane stress resultant

is Q(̃s) ∝ C1/2s̃c and for the pressure (forcing term) p(̃s) ∝ C1/4δ(̃s − s̃c), so that p does

not contribute to leading order. However, when s̃c = O(C−1/4) then Q(̃s) and p(̃s) are of

the same order. We therefore expect the jump in Q to appear at leading order, unlike in

cases I and II where the leading-order inner solution is continuous. The force (2.12) is

now O(1), so we expect F0 = 0 in (3.26a).

3.4.1 Leading order

Substituting the expansion (3.45) into (2.11g) yields

r̂1 = š, r̂2 = šλ̂0 and r̂3 = šλ̂1 − š3/6. (3.46)

Eliminating r between (2.11a) and (2.11g) leads to 2λ̂0 + šλ̂0š = 0, for which the only

non-diverging solution as š → 0 is λ̂0 = 0. To leading order, (2.11f ) reduces to T̂0s = 0

and therefore T̂0 = 0 (in order to satisfy the matching conditions with the outer region).

The leading-order equations are thus

ẑ1š = φ̂1, (3.47a)

φ̂1š = κ̂1, (3.47b)

1

š
(šκ̂1)š = +

φ̂1

š2
− Q̂1, (3.47c)

1

š
(šQ̂1)š = p̌0δ(š − šc) − (T̂1 − λ̂1)κ̂1 − T̂1 + λ̂1

š
φ̂1, (3.47d )

T̂1š = − φ̂2
1

2š
+

š

2
, (3.47e)

λ̂1š = − φ̂2
1

2š
+

š

2
− 2λ̂1

š
. (3.47f )

Boundary conditions are obtained by (a) expanding (3.47) near the origin for small š

(using the axisymmetry assumption), imposing that the slope and height vanish at the

contact point and by (b) matching the slope and the curvature with the outer solution for

š → ∞:

φ̂1 ∼ K0š, κ̂1 ∼ K0, λ̂1 = O
(
š2

)
, Q̂1 ∼ O (š) as š → 0+, (3.48a)

φ̂1 = ẑ1 = 0, for š = šc, (3.48b)

φ̂1 ∼ š and κ̂1 ∼ 1 as š → ∞, (3.48c)

where K0 is some undetermined constant. By imposing (3.48a) for small š, we suppress two

growing modes that diverge like 1/š2. The boundary conditions (3.48) are valid whether

or not the vesicle buckles (with K0 = 0 for an unbuckled vesicle).
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As in (3.34), the equation for Q̂1 can be integrated to give

Q̂1 = p̌0H(š − šc)šc/š − (T̂1 − λ̂1)φ̂1 + Constant. (3.49)

Since Q̂1(0
+) = φ̂1(0

+) = 0, the constant of integration is zero. The equation for ẑ1

decouples, so that the system is actually fourth order and reduces to

φ̂1š = κ̂1, (3.50a)

κ̂1š = (T̂1 − λ̂1)φ̂1 − κ̂1

š
+

φ̂1

š2
− p̌0šcH (š − šc)

š
, (3.50b)

T̂1š = − φ̂2
1

2š
+

š

2
, (3.50c)

λ̂1š = − φ̂2
1

2š
+

š

2
− 2λ̂1

š
, (3.50d )

with the boundary conditions:

φ̂1 ∼ K0š, κ̂1 ∼ K0, λ̂1 = O(š2), (3.51a)

φ̂1 = 0, for š = šc, (3.51b)

φ̂1 ∼ š and κ̂1 ∼ 1 as š → ∞. (3.51c)

Applying the matching conditions φ̂1 ∼ š, T̂1 → 0, Q̂1 → 0 and λ̂1 ∼ −B+C1/4/š2 as š →
∞, (which are derived from (3.15) and (3.45)) to (3.49), yields B+ = −šcC

−1/4p̌0 = −s̃cp̌0

(consistent with (3.36) for the case IIb). B+ provides the correction to the spherical shape

in the outer region D+
out (3.13)–(3.14).

We have a total of three unknown parameters (K0, šc and p̌0) and six boundary

conditions for the fourth-order system (3.50). We thus expect this to be well posed if we

prescribe the value of one parameter. In what follows, we prescribe the contact point šc
(since it is actually imposed by the outer solution, to leading order). The most notable

differences between this and (3.22) and (3.28) are that the system is now non-autonomous

and that the forcing term p appears in the leading-order equations (through p̌0).

3.4.2 Numerical solution of the leading-order problem

We use Matlab’s boundary value solver (bvp4c) to solve (3.50)–(3.51) for fixed values of šc.

The initial guess is constructed from the composite solution (3.33) for large šc. We proceed

with a continuation method on šc and find two solution branches, corresponding to a

buckled and unbuckled vesicle respectively. The unknown parameter p̌0, corresponding

to the jump in Q̂1 at the contact point, is plotted against šc in Figure 8(a). As šc → ∞,

the buckled solution matches that of case II (result not shown) and p̌0 → p̃0 ≈ 3.966.

The singularity of p̌0 as šc → 0 is due to the contact ring shrinking to a point. The

behaviour of the vesicle in this limit is discussed in Section 3.5 below. The leading-order

force F ≈ F1 = −2πšcp̌0 (following (2.12) and (3.45)) is plotted in Figure 8(b). For all

values of šc, it is easier to compress a buckled vesicle than a non-buckled one.

Figure 9 shows a comparison of the unbuckled and buckled solutions (Figures 9(a)–(b)

and Figures (c)–(d) respectively) for šc = 3. In the unbuckled case the vesicle is flat in a
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Figure 8. Case III. Amplitude of the pressure p̌0 (or equivalently jump in Q) at the contact point

(a) and force exerted on the vesicle (b) plotted against šc to leading order in the distinguished

limit šc � C1/4 for both the buckled and the unbuckled solution. The solid lines are the numerical

solution of (3.50)–(3.51) and the symbols (crosses) refer to the asymptotic solution (3.69) derived

for šc � 1 (case IV), (2.12). The inset in (b) is a blow up of the region šc � 1.

finite region š < šc, in which the out-of-plane stress resultant Q is zero (φ̂1 = κ̂1 = Q̂1 = 0),

as expected from Preston et al. (2008). At š = šc, Q̂1 jumps to a finite negative value

(namely p̌0), while the other variables are continuous. For all š, λ̂1 > 0, implying that

λ > 1 and hence that the vesicle is stretched in the azimuthal direction and compressed in

the meridional direction. Physically, compression in the meridional direction is likely to

induce buckling to a non-axisymmetric state.

In the buckled case (Figures 9(c)–(d)), the vesicle has a dimple for 0 < š < šc and

a smaller jump in Q̂1 (≈ 4.1, in absolute value) than in the unbuckled case (≈ 6.4, in

absolute value, for the same value of šc) at š = šc. The azimuthal stretch λ < 1 for š � 2.5

and λ > 1 elsewhere.

For both the buckled and unbuckled cases, φ̂1, κ̂1, λ̂1, T̂1 and Q̂1 relax towards their

asymptotic values (corresponding to the undeformed spherical solution) for š > šc. Here

(šc = 3), most of the changes occur for šc < š < 2šc.

Integrating (3.47a) between 0 and š and matching the limit as š → ∞ with the inner

limit of the outer solution (3.17) yields

z±
1 = 0 and z±

2 =

±∞∫
0

(φ̂1 − t̂) dt̂ − 1

2
š2c . (3.52)

The terms in the expansion of h (3.1) are thus, using the boundary condition h = 2z(π/2)

in (2.13c),

h0 = 2, h1 = 0 and h2 = 2z+
2 = −š2c + 2

∞∫
0

(φ̂1 − t̂) dt̂. (3.53)
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Figure 9. Solution of the leading-order system (3.50) and (3.51) in case III for šc = 3. (a–b)

Unbuckled solution (presumably unstable); (c–d) Buckled solution.

We obtain O(C−1/2) corrections for z and h, in the case where s̃c = O(C−1/4), consistent

with case II ((3.31)–(3.32)) where the corresponding corrective terms are in O(̃scC
−1/4).

3.4.3 Buckling instability

Figure 10(a) shows the distance m(šc) = z(0) between the plate and the pole as the

(re-scaled) location of the contact point šc varies. The solutions are obtained by solving

(3.50, 3.51) numerically, as described above. For šc < šcritc ≈ 2.31, only one solution can

be found: m(šc) = 0, which corresponds to an unbuckled vesicle. For šc > šcritc , two

branches can be found: m(šc) = 0 and m(šc) > 0 (with m monotonically increasing with

šc), corresponding to the unbuckled and buckled states respectively. To leading order as

C 	 1, the buckling instability is therefore supercritical when using šc as the independent

parameter.

However, applying (3.1) and (3.53) to determine h as a function of šc and C , and

using h as the control parameter, the instability appears sub-critical (consistent with the
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Figure 10. Distance m between pole and plate plotted against the control parameters šc and h. (a)

Leading-order asymptotic solution of (3.50 and, (3.51); (b) corresponding bifurcation diagram for

C = [104, 105] using the relationship between šc and h (3.1) and (3.53) (dashed lines). The solid lines

correspond to the numerical solution of the full system (2.11)–(2.13).

Figure 11. (a) Value of the isotropic stress T̂1 at the pole τ(šc), obtained by solving (3.50) and (3.51)

numerically; (b) Values of the small-amplitude perturbation to the unbuckled solution of (3.50) and

(3.51) at the boundary š = šc. The only possible (buckled) solutions occur when φp(šc) = 0 (for

šc > 0).

numerical results from Preston et al. (2008)). An example is given in Figure 10(b) for two

values of C (104 and 105), showing the solution of the full system (2.11)–(2.13) and the

leading-order asymptotics.

The value of šcritc can be confirmed by a linear stability analysis of the unbuckled solution

of (3.50) and (3.51). For a given value of šc, the unbuckled solution (φ̂ub
1 , κ̂ub1 , Q̂ub

1 , T̂ ub
1 , λ̂ub1 )

can be computed analytically in the range 0 < š < šc:

φ̂ub
1 = κ̂ub1 = Q̂ub

1 = 0, T̂ ub
1 = τ (šc) + š2/4 and λ̂ub1 = š2/8, (3.54)

with τ(šc) an unknown function of the parameter šc. τ(šc) is determined by seeking the

unbuckled solution of the system (3.50) and (3.51) numerically for different values of šc
and recording the value of T̂ ub

1 at š = 0 (Figure 11(a)).
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Linearising about (3.54) by writing φ̂1 = φ̂ub
1 + φp, T̂1 = T̂ ub

1 + Tp and λ̂1 = λ̂ub1 + λp

and substituting in (3.50), we obtain a linear ODE for φp, valid for 0 < š < šc,

φ
p
šš +

φ
p
š

š
−

(
1

š2
+ τ (šc) +

š2

8

)
φp = 0, (3.55)

with the boundary conditions

φp (š) → 0 as š → 0 and φp (šc) = 0. (3.56)

The equations for the linearised perturbations to the isotropic stress Tp and the stretch

λp decouple and we have

T
p
š = 0 and λ

p
š = −2

λp

š
. (3.57)

The general solution of (3.55) is a linear combination of Whittaker functions, one of

which diverges as š → 0. Since the perturbation has to remain bounded, the solution is of

the form

φp (š) ≡ A

š
W− 1

2 τ(šc)
√

2, 12

(√
2

4
š2

)
, (3.58)

with only one non-zero constant of integration A. The remaining boundary condition,

φp (šc) = 0, provides a condition determining šc. The zeros of (3.58) depend on τ, which

itself depends non-trivially on šc (Figure 11(a)). Figure 11(b) shows φp(šc) plotted against

šc. The smallest value of šc > 0 for which φp(šc) = 0 determines the bifurcation point šcritc

beyond which the buckled solution exists (the following zeros corresponding to the higher

modes of the buckling instability). Numerically, we find

šcritc ≡ C1/4s̃critc ≈ 2.31, (3.59)

which agrees very well with the value obtained above by tracking both unbuckled and

buckled branches numerically (Figure 10(a)). The prediction for the onset of the buck-

ling instability obtained by the leading-order asymptotic analysis for C 	 1 (dashed

line, Figure 7(e)) is also in good agreement with the computations of Preston et al.

(2008) (as reported in Figure 7(e) for C = [500; 103; 104; 105] and in Figure 10(b) for

C = [104; 105]).

Having understood the behaviour of the vesicle in the regime where both bending and

stretching contribute to leading order in the balance of forces, we now proceed to case IV,

where stretching and bending operate on different length scales. The slow decay as š → ∞
of λ̂1 relative to other variables (such as Q̂1) is already visible in Figure 9(b) but is more

pronounced when šc gets smaller (result not shown).

3.5 Inner region, case IV (i.e. C−1/2 � s̃c � C−1/4 � 1)

When s̃cC
1/4 � 1, we find that the inner region can be sub-divided into two regions with

different length scales (Figure 7(d)): an O(̃sc) region near the contact point (R(i)) dominated

by bending, and an O(C−1/4) region (R(ii)) dominated by stretching. As C ∝ (a/hs)
2 (see
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introduction) for linearly elastic materials, the underlying assumptions of shell theory

require that C−1/2 � s̃c (thus ensuring that all the in-plane length scales of the deformation

are larger than the thickness of the vesicle).

3.5.1 Bending region R(i), with length scale O(̃sc)

The dependent variables in region R(i) scale as follows:

s̃ = s̃cs
∗, (3.60a)

r = s̃cs
∗ + s̃2cr

(i)
1 / ln(1/šc) + · · · , κ = κ

(i)
1 / ln(1/šc) + · · · , (3.60b)

z = s̃2cz
(i)
1 / ln(1/šc) + · · · , Q = Q

(i)
1 /(̃sc ln(1/šc)) + · · · , (3.60c)

φ = s̃cφ
(i)
1 / ln(1/šc) + · · · , T = −1 + T

(i)
1 / ln(1/šc) + · · · , (3.60d )

p = p
(i)
0 δ(s∗ − 1)/(̃s2c ln(1/šc)) + · · · , λ = 1 + s̃2cλ

(i)
1 + · · · . (3.60e)

Substituting the expansion (3.60) into (2.11) yields the leading-order equations:

z
(i)
1s∗ = φ

(i)
1 , (3.61a)

φ
(i)
1s∗ = κ

(i)
1 , (3.61b)

κ
(i)
1s∗ = −κ

(i)
1

s∗ +
φ

(i)
1

s∗2
− Q

(i)
1 , (3.61c)

Q
(i)
1s∗ = p

(i)
0 δ(s∗ − 1) − Q

(i)
1

s∗ , (3.61d )

T
(i)
1s∗ = 0, (3.61e)

λ
(i)
1s∗ = −2λ(i)

1

s∗ +
s∗

2
, (3.61f )

with the boundary conditions imposing that the slope and the height vanish at the contact

point:

φ
(i)
1 → 0, λ

(i)
1 = O(s∗2) as s∗ → 0+, (3.62a)

φ
(i)
1 = z

(i)
1 = 0, for s∗ = 1. (3.62b)

Note that, unlike (3.27) or (3.47), the dependent variables (z(i)
1 , φ

(i)
1 , κ

(i)
1 , Q

(i)
1 ) are governed

by a linear system (3.61a–d ) that does not involve any term in the expansion of T or λ.

Physically, neither the shape of the vesicle nor its out-of-plane stress resultant are coupled,

to leading order, with the stretch and in-plane strain.

Integrating (3.61a–d ) using (3.62a–b) yields straightforwardly

z
(i)
1 = − 1

4
p

(i)
0 H(s∗ − 1)[1 + (1 + s∗2) ln s∗ − s∗2], (3.63a)

φ
(i)
1 = − 1

4
p

(i)
0 H(s∗ − 1)[ 1

s∗ + s∗(2 ln s∗ − 1)], (3.63b)

Q
(i)
1 = p

(i)
0 H(s∗ − 1)/s∗, (3.63c)

λ
(i)
1 = s∗2/8. (3.63d )
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The growth of the leading-order variables φ(i)
1 , κ(i)

1 and, especially λ
(i)
1 , as s∗ → ∞ indicates

that the matching to the outer solution must be achieved through a second inner region,

R(ii), dominated by stretching. The solution in R(ii) below will provide the two additional

matching conditions which are required to determine p
(i)
0 and T

(i)
1 .

3.5.2 Stretching region R(ii), with length scale O(C−1/4)

We introduce a second inner region (R(ii)) defined by the variable š where s̃ = C−1/4š.

This is done by re-scaling the leading-order dependent variables of case III (3.45) as

ẑ1 = 1
2
š2 + z

(ii)
1 / ln(1/šc) + · · · ,

φ̂1 = š + φ
(ii)
1 / ln(1/šc) + · · · ,

κ̂1 = 1 + κ
(ii)
1 / ln(1/šc) + · · · ,

Q̂1 = Q
(ii)
1 / ln(1/šc) + · · · ,

T̂1 = T
(ii)
1 / ln(1/šc) + · · · ,

λ̂1 = λ
(ii)
1 / ln(1/šc) + · · · ,

and taking the limit šc → 0 in (3.47)–(3.48), which then becomes

z
(ii)
1š = φ

(ii)
1 , (3.65a)

φ
(ii)
1š = κ

(ii)
1 , (3.65b)

κ
(ii)
1š = −κ

(ii)
1

š
+

φ
(ii)
1

š2
− Q

(ii)
1 , (3.65c)

Q
(ii)
1š = −Q

(ii)
1

š
− 2T (ii)

1 , (3.65d )

T
(ii)
1š = −φ

(ii)
1 , (3.65e)

λ
(ii)
1š = −φ

(ii)
1 − 2

λII
1

š
, (3.65f )

with the boundary conditions

φ
(ii)
1 ∼ š log š, z

(ii)
1 ∼ 1

2
š2 log š, and λ

(ii)
1 → 0 as š → 0+, (3.66a)

φ
(ii)
1 → 0, and Q

(ii)
1 → 0 as š → ∞, (3.66b)

derived from the matching conditions with the inner region R(i) (3.63) as š → 0+ and

with the outer region D+
out as š → ∞. Note that the first condition in (3.66a) removes two

degrees of freedom and that the matching conditions with R(i) for κ(ii)
1 and Q

(ii)
1 , κ(ii)

1 ∼ log š
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Figure 12. Case IV. Re-scaled tensions and shape of the vesicle for s̃c � C−1/4. Analytical solution

(3.63)–(3.67) (solid lines) for case IV and numerical solution of (3.50)–(3.51) (dashed lines) for small

values of šc in case III (šc = [10−1; 10−2]). Arrows show decreasing values of šc. (a) Region R(i),

where bending dominates; (b) region R(ii), where stretching dominates.

and Q
(ii)
1 ∼ −2/š as š → 0, are automatically satisfied. The solution of (3.65)–(3.66) is

z
(ii)
1 (š) = −π

√
2

4
+

π
√

2

4

[
H

(1)
0

(
1 + i

21/4
š

)
+ c.c.

]
, (3.67a)

φ
(ii)
1 (š) = −a1J1

(
1 + i

21/4
š

)
+ a1Y1

(
1 + i

21/4
š

)
+ c.c., (3.67b)

κ
(ii)
1 (š) = −φ(ii) (š)

š
− π

2

[
iH

(1)
0

(
1 + i

21/4
š

)
+ c.c.

]
, (3.67c)

Q
(ii)
1 (š) =

√
2

[
−a1iJ1

(
1 + i

21/4
š

)
+ ia1Y1

(
1 + i

21/4
š

)
+ c.c.

]
, (3.67d )

T
(ii)
1 (š) = −π

√
2

4

[
H

(1)
0

(
1 + i

21/4
š

)
+ c.c.

]
, (3.67e)

λ
(ii)
1 (š) =

π
√

2

4

[
J2

(
1 + i

21/4
š

)
− I2

(
1 + i

21/4
š

)]

+
π

š2

[
G21

24

(
iš2

√
2

4

∣∣∣∣ 1 1
2

2 1 1
2

0

)
+ c.c.

]
, (3.67f )

where In, Jn and Yn are Bessel functions, H
(1)
0 is a Hankel function, Gmn

pq are Meijer

G-functions and a1 ≡ (1 + i)π2−7/4; c.c. denotes complex conjugate.

The solution (3.67) is plotted in Figure 12(b) and compared with the numerical solutions

of (3.50)–(3.51) for case III (re-scaled accordingly). There is good agreement as šc → 0.

Following (3.67b,e), the matching conditions between regions R(i) and R(ii) yield the

following conditions on φ
(i)
1 and T

(i)
1 :

φ
(i)
1 ∼ s∗ ln s∗ and T

(i)
1 ∼ −π

√
2/4 as s∗ → ∞, (3.68)

which imply T
(i)
1 (s∗) = −π

√
2/4 and p

(i)
0 = −2, i.e. p̌0 = −2/šc ln(1/šc) (see crosses in
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Figure 8). To leading order as s̃c � C−1/4 � 1, following (2.12), we thus have

p =
−2C1/2

šc ln(1/šc)
δ(š − šc) and F =

4π

ln(1/šc)
. (3.69)

The solutions (3.63) agree very well with those obtained by solving (3.47)–(3.48) numer-

ically for small values of šc (Figures 8(a) and (b) and Figure 12(a)).

Accounting for the correction brought by (3.67), the corrective terms for the shape of

the vesicle in the outer region D+
out are

z+
1 = 0 and z+

2 =
1

ln(1/šc)

∞∫
0

φ
(ii)
1 dt. (3.70)

Using (3.65e) and (3.67d ), we have
∫ ∞

0
φ

(ii)
1 dt̂ = limš→0 T

(ii)
1 (š) = −π

√
2/4. The terms in

the expansion of h (3.1) are then

h0 = 2, h1 = 0 and h2 = 2z+
2 =

−π
√

2

2 ln(1/šc)
, (3.71)

so that writing the expression for the force derived in (3.69) in terms of the plates’

displacement 2 − h = −C−1/2h2 yields

F = 4
√

2C1/2 (2 − h) . (3.72)

Thus while F is singular in s̃c (Figure 8(b)), it is linear in 2−h. Inverting (3.71), the radius

of the contact disk is then given in term of the plates’ displacement by

s̃c = C−1/4šc = C−1/4 exp

(
− π√

2C1/2 (2 − h)

)
. (3.73)

4 Discussion

In continuation to the work of Preston et al. (2008), we considered the static deformation

of an axisymmetric vesicle in compression between parallel plates. The vesicle is modelled

using thin-shell theory and constitutive laws proposed by Evans & Skalak (1980) and

Pamplona & Calladine (1993). In this framework, the mechanical properties of the vesicle

are described by a single parameter C that measures the ratio of the vesicle’s resistance

to shear to its resistance to bending.

In general, the problem to be solved is a sixth-order boundary-value problem (2.11)

with an internal free boundary s̃c (the position of the contact point, as defined in Figure 1)

and two independent parameters, h (the inter-plate distance) and C . We investigated the

asymptotic limit C 	 1 and, for mathematical convenience, we treated s̃c as a control

parameter and h as an unknown parameter. In this parameter space, two families of

solutions exist, corresponding to an unbuckled vesicle (which is flattened at its poles) and

a buckled vesicle (with reverse curvature at the poles, Figure 3). The existence and stability
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of each solution, as well as their mechanical behaviour, depend on both s̃c and C . Much

physical insight can be gained by exploring four different zones in the (C, s̃c)-parameter

space, labelled as cases I–IV in Figure 7.

Along any meridional cross-section, the vesicle exhibits different spatial regions, each

of which is characterised by a distinct balance of forces. As anticipated from prior studies

of buckled shells (Landau & Lifshitz, 1986; Pogoroelov, 1986), in an (inner) region of

width O(C−1/4) around the contact point, contact stresses are balanced by both resistance

to bending and resistance to shear (i.e. stretching) to leading order. Everywhere else (i.e.

in the outer regions), the statics of the vesicle are dominated by high resistance to shear,

resulting in solutions that locally resemble sectors of spheres (Figure 3). However, for very

small deformations (case IV), there exists an O(̃sc) region around the pole dominated by

resistance to bending where stretching is negligible.

In the distinguished limit C−1/4 � s̃c ∼ 1 (case I), (2.11) reduces to a fifth-order

local inner problem (3.22) for the stretching–bending boundary layer. The latter is only

marginally simpler than the original sixth-order problem and we did not seek to solve it

explicitly here. In this regime, constitutive terms coupling bending and stretching effects

(Pamplona et al., 2005) are expected to have a quantitative leading-order effect (Appen-

dix A).

A further simplification assuming that C−1/4 � s̃c � 1 (case II) yields a remarkably

simple autonomous fourth-order problem (3.29) (identified using a different constitutive

law, and under different loading conditions, by Parker & Wan (1984)) that applies across

a wide range of the parameter space. Equation (3.29) can be solved numerically, enabling

us to determine the shape and stresses of the post-buckled vesicle. The force–displacement

relation for the buckled solution can be captured only by going to higher order in the

expansion, a feature seen also in the analysis of e.g. Kriegsmann & Lange (1980). This

is achieved straightforwardly for C−1/4 � s̃c � C−1/12 (case IIb, which represents a

large subset of case II), where the quadratic force–displacement relation (3.44) is derived

as a solvability condition. We find that, for C−1/2 � 2 − h � C−1/6, the magnitude

of the delta-function representing the transmural pressure p ≈ −3.97C1/4δ(̃s −
√

2 − h)

does not depend on h, so that the contact force is proportional to the circumference of

the contact ring: F ≈ 24.9C1/4Ba−1
√

2 − h/a to leading order in dimensional variables

(Figure 6).

The second distinguished limit s̃c ∼ C−1/4 (case III) leads to a non-autonomous

fourth-order problem (3.50) that can be solved numerically, capturing both the onset of

the buckling instability (Figures 7(e) and 10) and the leading-order force–displacement

relation (Figure 13). In dimensional variables, we find F = Ba−1f, where f is an O(1)

function of C1/2(2 − h/a) which is plotted in Figure 13(a). These results are generic

and provide a universal description of the leading-order behaviour of a spherical vesicle

under compression with this set of constitutive relations (2.3)–(2.7). The scalings for the

asymptotic pre- and post-buckled force–displacement relations (case II above and IV

below) when f is quadratic and linear respectively, agree with those derived by Komura

et al. (2005) and Fery & Weinkamer (2007) using scaling arguments that balance bending

and stretching energies.

For C−1/2 � s̃c � C−1/4 (case IV), (2.11) reduces to a non-autonomous fourth-

order (3.61) and fifth-order problem (3.65), corresponding respectively to an O(̃sc) region
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Figure 13. Non-dimensional force F versus plate displacement 2 − h. (a) ‘Universal’ asymptotic

relationship obtained in case III from the solution of (3.47) and (3.53). The lower inset is a magnified

view of the sub-critical buckling instability. The upper inset shows the region C1/2(2 − h) � 1 and

the asymptote (3.72) (dot-dashed) found for case IV. (b) Leading-order asymptotic solutions from

case III (dashed lines) compared with numerical solutions of the full system (2.11)–(2.13) (solid)

for C = [103; 104; 105; 106]. The dotted line corresponds to asymptotic results for the post-buckled

state in case II (3.44).

dominated by bending and a larger O(C1/4) region dominated by stretching. An analytical

solution can be found that satisfies the matching conditions with the O(1) outer region,

thereby providing validation of the pre-buckled solution in the limit of small deformations

(see the insets in Figures 8(b) and 13(a)). In this case, the leading-order force–displacement

relation is linear and, in dimensional variables, we find F = 4
√

2C1/2Ba−1(2 − h/a). This

linear relationship masks a logarithmic dependence of F on s̃c (3.69). Although bending

and stretching here operate on different length scales, it is notable that the scaling for

F can still be obtained by balancing these two energies (Komura et al., 2005). Case IV

shows that stress-focusing may not always occur in the limit C 	 1.

As the dimensionless distance h between the plates is decreased from its initial value of

2 (the diameter of the vesicle in its initial spherical configuration), the contact between

the vesicle and the lower plate (say) changes from a point (for h = 2) to a disk (for

hTC � h � 2; see also (3.73)) and then to a ring of radius rc (for h < hTC) as the vesicle

buckles. The critical displacement hTC for which the buckling occurs (i.e. the transcritical

bifurcation point) is found to be hTC ≈ 2 − 10.56C−1/2. The buckling instability is found

to be sub-critical (in our analysis, this feature arises from the non-linear relation between

s̃c and h, at O(C−1/2)), with a saddle-node bifurcation point hSN ≈ 2 − 10.38C−1/2 (see

Figure 13(a)). This is again consistent with the values obtained numerically by Preston

et al. (2008).

Away from an inner region of O(C−1/4) around the contact point in the post-buckled

state, we find that, to leading order, the shape of the compressed vesicle is that of the

initial sphere except that the caps at the poles described by s̃ < s̃c now point inwards as in

Figure 1. The stresses to which the vesicle is subject are left unchanged to leading order.

The next order correction to the shape of the vesicle is O(C−3/2) in D−
out and O(C−3/4) in
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D+
out. For instance, at the equator, the radius of the vesicle varies like 1+3.97

√
2 − hC−3/4

for C−1/2 � 2 − h � C−1/6 (case IIb).

Most of the changes in the dependent variables occur within the inner region. To

leading order, and for C−1/2 � 2 − h � 1 (case II), the shape and tensions of the vesicle

are continuous across the whole domain and can be described by a self-similar structure

with the location of the contact point s̃c (or equivalently
√

2 − h, in this case) as a scaling

variable. The stresses in the vesicle (and its shape) are then determined only by the

distance between the plates. Moreover, the out-of-plane stress resultant Q is found to be

O(C1/2) and continuous across the contact point (to leading order). This result is not very

intuitive and implies that the contact forces acting on the vesicle, through the O(C1/4)

pressure term, do not contribute to leading order.

Interestingly, our results confirm analytically that Q → 0 at the left-hand side of the

discontinuity s̃ = s̃c (to first and second order for C 	 1). This is consistent with solutions

obtained by solving the full problem numerically, which exhibited Q → 0 as s̃ → s̃−
c to

within the accuracy of the numerical method (see Figure 5(e) and Preston et al. (2008)

for details). This feature is not imposed explicitly by the boundary conditions and was

left unexplained by Preston et al. (2008). This result can be recovered from physical

arguments by noting that the net vertical force acting on the inside region 0 � s̃ < s̃c,

which is proportional to lims̃→s̃−
c
Q (since the vanishing slope in this region implies that

the in-plane tension does not contribute to the vertical force balance) and excludes the

point of contact with the plate, must be zero.

Arguably, our asymptotic analysis, involving powers of C−1/4, requires large values of C

for convergence. However, the good quantitative agreement, for finite values of C within

the range 103 −106, between the asymptotics and the full numerical results (Figures 5 and

13) suggests that the physical insight gained from our analysis should be applicable to a

wide range of materials. This includes, for example, ping-pong or tennis balls (respectively

C ≈ 104 and C ≈ 103 using the mechanical description of capsules by Pozrikidis (2003)

and the parameters measured by Pauchard & Rica (1998)) or lipid bilayer membranes

(typical values for red blood cells are C ≈ 100 (Noguchi & Gompper, 2005)). Of course,

under sufficiently large loading, we can expect the axisymmetric dimpled states computed

here to undergo a secondary bifurcation to non-axisymmetric configurations (Pauchard &

Rica, 1998; Gupta et al., 2008; Vaziri & Mahadevan, 2008) which fall outside the present

modelling framework.

By using shell theory to describe the vesicle, we assume that its thickness is less than

any length scale identified in Figure 7. Writing the Föppl–von Kármán number (in the

framework of linear elasticity) as C = 12(1− ν2)a2/h2
s for a membrane of thickness hs and

Poisson ratio ν (Landau & Lifshitz, 1986), this assumption is straightforwardly satisfied

for cases I, II and III. In case IV, it requires hs ∝ C−1/2 � s̃c and thus, using (3.73), sets a

lower bound 2 − h 	 πC−1/2/
√

2 lnC1/4 on the plate displacement that we can consider

in this paper (as indicated in Figure 7). This limiting case is considered by Gregory et al.

(1998). The behaviour of the vesicle under different loading conditions, the effects of

friction and membrane permeability, as well as the transition to asymmetric buckling,

remain to be addressed. However, the approximations identified here provide a useful

foundation for such investigations.
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Appendix A Effects of the ‘Mκ’ term

Here we investigate the effects of an additional constitutive term coupling bending and

stretching effects, proposed by Pamplona et al. (2005), and show that for C 	 1 it is

significant only for strongly deformed vesicles.

In place of (2.5), we assume that the principal tensions and stretches are related by

Nφ − Nθ = H(λ−1 − λ) + Mφ(κθ − κφ). (A 1)

We also include the contribution of the spontaneous curvature κ0 into the second con-

stitutive equation (2.7):

Mφ = Mθ = B(κφ + κθ − 2κ0) ≡ M. (A 2)

We then decompose the principal in-plane stress resultants in terms of the isotropic stress

resultant T so that (A 1) becomes

Nφ = T + H/λ − Mκφ and Nθ = T + Hλ − Mκθ. (A 3)

After non-dimensionalisation (2.8), with κ ≡ κφ and κθ = sinφ/r, (A 2) and (A 3) become

Nφ = T +
1

λ
− M

C
κ, Nθ = T + λ − M

C

sinφ

r
, M = κ +

sinφ

r
− 2κ0. (A 4)

The 1/C pre-factors indicate the weak effects of the new terms in the large C-limit, as we

now explain in more detail.

A.1 Governing equations

With the new terms, the governing system of dimensionless ODEs (2.11) are replaced by

rs̃ = cosφ/λ, (A 5a)

zs̃ = sinφ/λ, (A 5b)

φs̃ = κ/λ, (A 5c)

κs̃ = [−Q + sinφ cosφ/r2 − κ cosφ/r]/λ, (A 5d )

Qs̃ = [p − C(T + 1/λ)κ − C(T + λ) sinφ/r − Q cosφ/r]/λ

+ (sinφ/r + κ − 2κ0)(sin
2 φ/r2 + κ2)/λ, (A 5e)

CTs̃ = [Cλs̃/λ + C(λ − 1/λ) cosφ/r + κQ]/λ

+ [κ(sinφ/r + κ − 2κ0)]s̃ + cosφ(sinφ/r + κ − 2κ0)(κ − sinφ/r)/rλ, (A 5f )

λ = r/ sin s̃, (A 5g)
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while the equation for Nφ becomes

Nφ = T +
1

λ
− κ

C

(
sinφ

r
+ κ − 2κ0

)
. (A 6)

Note that with the exception of the terms on the second lines of (A 5e) and (A 5f), which

arise from the Mκφ and Mκθ terms in (A 3), equations (A 5) are identical to (2.11). The

boundary conditions (2.13) are unchanged.

A.2 Asymptotics

A.2.1 Outer region

After substitution of (3.2) in (A 5), the new terms appear at O(C−1) in (A 5e) and

(A 5f), and thus do not affect the first two orders of the outer solution, namely (3.3) and

(3.9).

A.2.2 Inner region, case I (i.e. C−1/4 � s̃c ∼ 1)

We define N̂1 as in Section 3.2, i.e. N̂1 ≡ T̂1 − λ̂1 + λ̂2
0. Note that (3.20) becomes

Nφ = (T̂0 − λ̂0)C
−1/4 + [N̂1 − κ̂2

1]C
−1/2 + · · · .

Identifying terms of O(C) in (A 5) and using the expansion (3.19) yields T̂0 = λ̂0, as in

Section 3.2. Proceeding to O(C3/4) leads to amended versions of (3.21bii) and (3.21cii)

Q̂1ŝ = −N̂1κ̂1 − 2λ̂0 sin φ̂1/ sin s̃c + κ̂3
1,

N̂1ŝ = 2λ̂0 cos φ̂1/ sin s̃c + κ̂1Q̂1 + (κ̂2
1)ŝ,

where the new terms are in each case the final ones of the right-hand side. In turn, these

lead to an amended version of (3.22),

φ̂1ŝŝŝ = N̂1φ̂1ŝ + 2λ̂0 sin φ̂1/ sin s̃c − φ̂3
1ŝ, (A 7a)

N̂1ŝ = 2λ̂0 cos φ̂1/ sin s̃c + φ̂1ŝφ̂1ŝŝ, (A 7b)

λ̂0ŝ = (cos φ̂1 − cos s̃c)/ sin s̃c, (A 7c)

with boundary conditions unchanged from (3.23). Here the new terms are the final ones

of (A 7a) and (A 7b).

The new terms in (A 5) have thus introduced some additional non-linear terms in the

leading-order system (3.22), which would obviously affect the solution. The effects are

presumably limited to ŝ = O(1) since linearising (A 7) about the far-field limits leads to

solutions of the same form as (3.25) for ŝ → ±∞.

We do not solve (A 7) but show that the additional terms become higher order as

s̃c � 1.
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A.2.3 Inner region, case II (i.e. C−1/4 � s̃c � 1)

After substitution of the expansion (3.26) in (A 5), the non-linear Mκ terms are O(C3/4s̃3c)

and therefore vanish under the restriction s̃c � C−1/12 (see Section 3.3.1). They appear in

the solvability condition (3.43) (with other non-linearities) only when s̃c ∼ C−1/12 (a case

we do not consider explicitly).

A.2.4 Inner region, cases III and IV

For cases III and IV, the contributions of the Mκ terms are O(C1/2) smaller than the

leading-order terms, and we recover the leading-order equations (3.47), (3.61) and (3.65).
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