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Summary

We consider a steady flow driven by pushing a finger of gas into a highly shear-thinning
power-law fluid, with exponent n, in a Hele-Shaw channel. We formulate the problem in terms
of the streamfunction y, which satisfies the p-Laplacian equation V - (|Vz//|p_2Vz//) =0
(with p = (n + 1)/n), and investigate travelling wave solutions in the large-n (extreme
shear-thinning) limit. We take a Legendre transform of the free-boundary problem for y, which
reduces it to a linear problem on a fixed domain. The solution to this problem is found by using
matched asymptotic expansions and the resulting shape of the finger deduced (being, to leading
order, a semi-infinite strip). The nonlinear problem for the streamfunction is also treated using
matched asymptotic expansion in the physical plane. The finger-width selection problem is
briefly discussed in terms of our results.

1. Introduction

The Saffman-Taylor problem has been the subject of a great deal of interest for nearly fifty years.
It was initially posed in order to describe experiments by Saffman and Taylor (1). These involved
pushing a finger of air into a Hele-Shaw channel, filled with a Newtonian liquid, under the action
of a pressure difference. It was observed that the ratio 4 of the selected finger width to that of the
channel is one-half (except when the injection is very slow). In addition, Saffman and Taylor (1)
derived a family of zero surface tension solutions, parametrized by 7, describing the finger shape.
Finger-width selection remained unexplained until a numerical calculation of finger shape, in the
presence of surface tension, was performed by McLean and Saffman (2). Subsequently asymptotic
methods have been used to derive the celebrated result 4 = 1/2 in the limit of low surface tension
(or high finger velocity) (3 to 5), as well as in limiting cases of other regularizations such as kinetic
undercooling (6) (see also (7) for a review of the subject). We stress, however, that there are other
circumstances in which the selected finger does not have 1 = 1/2 (see (8), in particular), including
the near-Newtonian limit of power-law fluids (9, 10).

Hele-Shaw flows of power-law fluids (with general exponent n; see (4) below) have been inves-
tigated by Aronsson and Janfalk (11), who obtain similarity solutions describing (i) flow about a
corner (ii) doublet flows and (iii) spiral flows. The Hele-Shaw free-boundary problem, describing
the motion of an interface between air and fluid, was considered by King (12), who investigated a
local problem describing the flow in the vicinity of a corner in the free boundary. In particular, (12)
shows that under injection the corner persists for finite time if its angle is less than some critical
angle, whereas if it exceeds this angle the corner immediately smooths. Under suction the corner
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persists, if its angle is subcritical, until the solution ceases to exist. Saffman—Taylor type problems
for power-law fluids have been investigated by Alexandrou and Entov (13), who consider the zero
surface tension case, and Ben Amar and Corvera Poiré (9, 10) who investigate the near-Newtonian
limit (Jn — 1] « 1) and postulate that for shear-thinning fluids the selected finger width 1 decreases
towards zero as the surface tension ¢ tends to zero.

It is the aim of this work to find asymptotic solutions to the Saffman—Taylor problem in which
a symmetric finger of air is pushed into a Hele-Shaw channel, filled with a strongly shear-thinning
power-law fluid. Such extreme shear-thinning fluid flows give rise to highly-nonlinear elliptic partial
differential equations (PDESs) for both the stream function y and the pressure p, corresponding to
the limitn — oo in

Vy —
V(Wl—l/n> =0, V-(vp"'vp =0, 1)
respectively. In the context of such flows we note that considerable progress has been made, in this
limit, on injection problems (whereby fluid is injected into a Hele-Shaw cell at one or more points)
by Aronsson and co-workers; see, in particular, (14) which describes how, in the absence of surface
tension, the free boundary of the fluid follows the level sets of an interior distance function centred
on the injection points. At its most basic level this approach consists in noting that the ‘naive’ limit
of the streamfunction problem (1) is the degenerate one

v. (l\%l) o, 2

This limit problem for y is parabolic and the associated streamlines (lines on which v is con-
stant) are, necessarily in the two-dimensional case treated here, straight lines: equation (2) simply
states that the level sets of y have zero mean curvature. It is informative to compare this with the
corresponding limit problem for the pressure equation (1a), namely the eikonal equation

IVpl =1, @)

whose rays correspond to the level sets of . (The correspondence between these two equations has
previously been noted in (15, Appendix D). The degeneracy of the large n limit is reflected by the
fact that, as for the limit problem for the streamfunction (2), this (eikonal) equation is non-elliptic.
We remark that (2) thus belongs to the (exceptional) class of second-order parabolic equations that
can be mapped to first-order hyperbolic ones (whose characteristic projections coincide with the
repeated characteristics of the parabolic problem). In the context of the injection problem, the zero-
pressure condition on the free boundary, which can also be expressed as the normal derivative con-
dition dw/0N|sq = 0, implies that the streamlines meet the free boundary perpendicularly. Thus
an evolving free boundary consists of arcs of circles centred on each of the injection points (see
Fig. 1a). This of course ignores what happens on sections of the free boundary that do not initially
form such circular arcs. However, provided a point on the boundary is further from the injection
point than the smallest distance between injection point and boundary, its velocity is exponentially
small in n; thus such boundary points move exponentially slowly (see Fig. 1b). This type of ar-
gument has been rigorously formulated as a distance model by Aronsson (14). Piscotti et al. (16)
have favourably compared solutions to this model with their experiments in which polystyrene is
injected into an industrial mould. In particular, they find that the model accurately predicts the
weld lines, even when the polystyrene formulation has only moderately shear-thinning proper-
ties. Other applications of this model in such industrial contexts are described in (17). Squeeze
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(a) (b)

Fig. 1 Injection from (a) two points with no fluid initially present and (b) from a single point into an initially
rectangular domain. Here dashed lines show previous positions of the fluid domain, while the solid one shows
the present position. Lines with arrows show the asymptotic streamlines

film Hele-Shaw flows of extremely shear-thinning fluids (with applications to compression mould-
ing) have been investigated by Aronsson and Evans (18) and Bergwall (19). The extreme shear-
thinning limit of power-law fluid flows has also been considered, outside the Hele-Shaw context, by
Brewster et al. (20) and Chapman et al. (21), who observe that even simple flows, such as Jeffrey—
Hamel flows in a wedge, exhibit a rich asymptotic structure. The time-dependent version of the
large-n limit of (1b) has also been considered in the context of Bean model, which models the
motion of superconducting vortices in so-called “dirty’ superconductors; see, for example, (22).

Little, however, is known about the corresponding Hele-Shaw suction problem other than that it
is ill-posed (see, for example, (12)). A number of works consider the Saffman—Taylor problem for
power-law fluids in a channel. In (9, 10) a semi-numerical, semi-asymptotic method is used to study
the Saffman—Taylor finger selection problem in the limit of n — 1 (that is, for a nearly-Newtonian
fluid). For O(1) values of the dimensionless surface tension the finger width is little changed from
its Newtonian value, but for small surface tension there is a significant decrease in finger width as n
increases above unity. Alexandrou and Entov (13) construct symmetric Saffman—Taylor fingers for
arbitrary values of the power-law exponent n (and for Bingham fluids) but with zero surface tension
(ZST) on the free boundary. In order to do this they apply a linearizing hodograph transformation
to the problem, resulting in a linear elliptic PDE on a fixed domain in the hodograph plane that
is solved numerically. Although this approach cannot predict finger width, it does predict finger
shape and (13, Fig. 3) is suggestive of our results below that in the large-n limit this approaches a
semi-infinite strip. Experimental studies of viscous fingering (and of finger-width selection) in non-
Newtonian fluids have been conducted by Lindner et al. (23, 24), with the conclusion that narrow
fingers are selected in shear-thinning fluids.

2. Problem formulation

The velocity of the fluid wis given in terms of the pressure p by (working throughout in dimension-
less terms)

w=—|Vp"tvp. (4)
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Assuming incompressibility leads to

V. (|v pI"-1v p) —o.
Alternatively, the problem can be formulated in terms of the stream function y defined by
_ Oy oy

W= oy &~ S & ®)
This leads to following ‘Cauchy—Riemann’ relations between p and w:
op 1 oy op 1 oy
ax Iyl ey’ ay T Vy Pt ax
and hence to
Vv
v (fepricam) =0 ®

it is noteworthy that, though they are of different order, equations (2) and (3) can be mapped to each
other via

op 1 oy op 1 oy

x = TVplay' ay  Wplox
Without loss of generality we consider the finger to move with unit (dimensionless) velocity in the
x-direction. In the case of zero surface tension the boundary conditions on the free boundary 0Q ¢
(with outward normal N) are

Plaa; =0, N-Wlog; =ex-N, ()
the latter equation corresponding to the kinematic condition in this travelling wave case. We can
rewrite these in terms of  as

dy

oN

=6 -N, 8)

b

0Q¢ 65

where s is arc length along the boundary. In addition, boundary conditions on the edges of the Hele-
Shaw cell (namely the impermeable channel walls y = —1 and y = 1) must be imposed. Assuming
a finger of width 24, the flux of fluid through a cross-section of the cell is 24 and we may choose
the origin of  such that

ly=1 =4, wly=——1=—41. 9)

Imposing symmetry about the centreline x = 0, so that y|y—o = 0, integrating (8), and collating
the equations and boundary conditions for y gives the following closed problem, if 1 is specified,
which determines y up to an arbitrary translation in x:

Vy
V. (Wl_lm) —o0, (10)
oy
v =0, vl =Y (11)
GN an f
W~y as X— oo, (12)

wly=1 =24, wly=0=0, w—> 1 a x— —oo. (13)
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The main aim of this work to find an asymptotic solution to this problem in the highly-nonlinear
(strongly shear-thinning) limit n — oo.

3. The Legendretransform

In order to analyse (10) to (13) it is helpful first to reformulate them using a Legendre transform.
This has the benefit that the transformed variable satisfies a linear problem in a fixed domain. In this
context we note, first, that Atkinson and Champion (25), for example, have used this approach to
derive exact solutions to equation (1) (although they term this transformation a ‘hodograph trans-
form’) and, secondly, that Alexandrou and Entov (13) have instead used a hodograph transform
(that is, in the notation below, v is calculated as a function of a and b); although the latter approach
also linearizes the problem, it proves more difficult to invert the solution of the transformed problem
to obtain the physical variables. The Legendre transform is accomplished by introducing three new
variables

a=yx, b=yy, ¥Y=xyx+yyy—vy (14)
(henceforth such subscripts denote derivatives). Differentiating W with respect to x and y and using
the fact that ay = by gives rise, in the usual way, to the inversion formulae

The following expressions for the second derivatives of y can then be derived by using the chain
rule:

_ Pbb _ Wab _ Vaa

B YaaPhb — \Pazb ’ Yy =T Yaa¥Phh — ‘Pgb ’ Y= WaaPhb — \Pgb.

It is now a simple matter to transform (10), by making use of the above formulae and (14), to obtain
the linear problem

, b? 1 , @
a~ + F \I'Iaa + 21— ﬁ ablPab + b + F \Pbb =0. (16)

The conditions on the free boundary (11) can be expressed in the form

Wxx

Nia+ Nob =0, Nib— Noa= Ni, N12 + sz =1,

where N = (N1, Np) is the unit normal vector in the (a, b)-plane. We can therefore deduce that

b a

N = @2 + b2l Nz = — @ + b2l

and that the free boundary is represented, in the transformed plane, by the semicircle
1\? 1
b— = a>=>, a<O. 17
(b-3) +e2=3 a7)

On (17) the condition (11), can be expressed as

a¥, +b¥py — ¥ = ¥p. (18)
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By noting that (i) wx = 0 along the top (y = 1) and midlines (y = 0) of the Hele-Shaw cell, (ii)
0 < wy < Aonthetop, and (iii) A < wy < 1 on the midline, the conditions (13) can be transformed
to the boundary condition

¥Y=0 for 1>b> 21
on a=0, (19)

Y=b—-41 for O0<b<i
which closes the semicircular domain on which ¥ is to be calculated (see Fig. 2). The problem for
Y, comprising (16), (18) and (19), is linear and on a prescribed domain. Note, however, that ¥ is

determined only up to an arbitrary multiple of a, corresponding to the invariance of (10) to (13)
under translations of x.

3.1 Polar coordinates

In order to effect an asymptotic solution, it proves helpful to introduce the coordinates (p, 6) defined
(cf. (13)) by

a=—psinfd, b= pcoso.
In terms of these, the problem for ¥, comprised of (16), (18) and (19), transforms to

1 1
n‘Ppp + 7le + 7?,9,9 = O, (20)
p p
b
1 g
(b—1/2)*+a®>=1/4 !
' Corresponds
U =0 :_ toy=20
Correspond - A :]
to free |
boundary (a2 + b2/n) W 3
+2(1—1/n)ab¥y !
+(b2+a2/n)\lfbb:O :
. Corresponds
T toy=1
V=b—\,
a¥, + by, — U =1,
e
0 a

Fig. 2 The formulation in the Legendre plane
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p
o 1
: tan 0¥, = U
Corresponds : T=0
toy=20 4
I
I
I
! A
- Corresponds to
Corresponds : T=p— ) the free boundary
toy=1 4
I
|

l
o
S
Il
|
>

Fig. 3 The formulation in the Legendre plane (polar coordinates)

tand%¥9 —¥ =0 on p =cosé, (21)
¥Y=0 for 1<p<l1
on =0, (22)
Y=p—41 for O0<p<i

¥Y=—-1 for p=0, (23)

where the final condition is added at the singular point p = 0 in order to ensure a non-singular
solution to the problem; the problem comprised of (20) to (23) determines ¥ uniquely up to an
arbitrary multiple of p sind. The domain and boundary conditions are shown in Fig. 3

3.2 Logarithmic transform

Before determining an asymptotic solution to this system, we transform the equations a final time
by introducing variables

g=-logp, ¥ =2 %0s0—1)+ exp(—; <1 - :}) q) x(Q, 0). (24)

Here the first term in ¥ (which corresponds to (x,y) = (0, 4), w = 4 in physical variables)
is chosen in order to subtract off the O(1) term in the far-field solution (q — +o0) to reveal
important exponentially-small terms in . Under the above transformation (20) to (23) is taken to
an autonomous PDE (in effect the modified Helmholtz equation), namely

n 1\?
anq‘l‘XHH—Z 1—6 x =0, (25)
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: q = —log(cosf)
, q
=1,
Y J: x=(1—-Xexp(—34
x(14+3)) ’fLXw+X00—%”(1—%L)2X:0
|
‘:‘ —log A — tanfxg = x
y=01 X~A(exp(39)—exp(-=39))

Free boundary

0 /2 0

Fig. 4 The boundary-value problem after the logarithmic transform

with boundary conditions

tanfyp = x on g = —log(cosH), (26)
x =2 <exp<q <1— 1)) —exp(—q <1+ 1))) for 0 <q < Iog(1>
2 n 2 n A
1 on 6 =0,
— (1 — _9 1 l
x=@1 i)exp( 5 (1+ n)) forlog(i> <Qg <o
(@7)
x—0 as q— o (28)

The domain and boundary conditions are illustrated in Fig. 4; the problem comprised of (25) to (28)
determines y uniquely up to an arbitrary multiple of exp(—q(1 + 1/n)/2))siné.

Once the solution for y has been determined, the positions in physical space of points in the trans-
formed plane, and the corresponding streamfunction y, can be found from (15); indeed, working
backwards through the various transformations gives

x:exp(g (1+ i)) (sinﬁ (){q — % (l— r11> X) —cose;(g) , (29)
y=14 —exp<2 <1+ i)) (COSG(){Q —% (1— i) )() +Sin9)(g> , (30)
w:i—exp(—; (1—rl]>q) <Xq+}(<;+2]|:])>. (31)

4. Asymptotic solution for y in the Legendre plane
4.1 Regionl

4.1.1 Solution to the leading-order problem. In order to solve this problem asymptotically for
large n (that is, in the strongly shear-thinning limit) we rescale about & = 0 and expand y in powers
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of O(1/n) in the form

® I 1 g
= h2 X:Xo()(q,®)+ﬁxl()(q,®)+....

In terms of this new variable, the leading-order problem for y becomes the quarter-plane formula-
tion

0

| | |
N

20 _po 32
202 002 4 ’ (32)
){él) =21 sinh(g) for0 < q < Iog(j)
| q 1 on ® =0, (33)
Xé) =1-1 exp(—E) for log (/1) <q
;(é') -0 a gq— oo, (34)
U]
0
0L — " =0 on gq=0, (35)

which here serves a role analogous to that of an inner-diffraction problem in the theory of geomet-
rical optics and where the switch in boundary condition on ® = 0 corresponds to jumping from
the centreline of the Hele-Shaw cell (y = 0) to the top boundary %/ = 1) as q increases through
g = log(1/4). The problem (32) to (35) determines the solution Xé up to an arbitrary multiple of
e~9/20 (corresponding to an arbitrary translation in x in the physical plane). Integrating (35) gives

' =B® on q=0, (36)

where By is an arbitrary constant. Specifying By determines X§I) uniquely and hence determines
the x coordinate of the finger tip in the physical plane at O(n'/?) (the subsequent term is required
to determine its position up to O(1)). Henceforth we shall take By = 0 and replace the condition
(35) by

20" la=0 = 0. (37)
The problem comprised of (32) to (34) and (37) can be solved by use of a Fourier sine transform
= [ sinke)yy " 0de, V@ ey=2 [ sinke) Vg kdk (38

to give

—y (1 —1)e 92 2172
Xo =

— (K2 1204 _
K k(2 + 1/4)172 [exp(—(2 +1/4)2(q — log 1))

~exp(~(€ +1/4M2@+log )|, a > log(1/4),

W (92 — g=0/2) 2172
Xo =

— (K2 124 _
k T kK T 1/2)72 [oxp(— (k2 +1/9)2(q — log )

- exp((k2 +1/8Y2(q + log A))} . q<log(l/A).
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Here we obtain different forms for X(I) depending on whether g > log(1/4) or q < log(1/4), as a
result of the boundary condition switch in (33). Inversion is best accomplished by writing

a0 = 25 ([~ ewike) fa. kak)

and then deforming the contour of integration to make a quarter turn round the pole at k = 0 and
proceeding up the imaginary axis, so that

L — 2 [ —_
a0 = (Res(€4 Pk =0) + 2 [Tero D@iman). @9

Here 3(-) and R(-) signify the imaginary and real parts of the argument, respectively. We note that
the integrand in (39) is purely imaginary for 4 € [0, 1/2] and that the contribution from the pole
at k = 0 is zero. It follows that (39) can be rewritten in terms of a real integral (with exponential
decay):

(40)

a  22Y2 /00 e O sin ((u? — 1/4)Y/2q) sin ((u? — 1/9?log(1/1)) q
0= u(u? = 1/4)172

Leading-order approximations in the physical coordinates can be obtained from (29) to (31) and
are, in this region,

U] U} (M (M
~ —_nl/2 ay\ 9% ~ ) = d 9o _ %o X0 41
X n exp(2> R y exp(2> 2 > + 02— ) (41)
(M O}
Cexn(=9) [ %% | X~
v~ A exp( 2)( ot ) (42)

4.1.2 Thefinger shape determined by the solution inregionI.  On the line g = 0, corresponding
to the finger boundary, we have Xél) = 0; thus the expression (42) for X is zero. A refined approx-
imation of the free-boundary shape, obtained from (29), (30) and expansion of (40), and reflecting
the fact that the boundary conditions are actually prescribed on q small but non-zero, is given by

1 aX(l) aX(I) @2 azxél)
X~ —> |0 — , (43)
ni/2 oq 00 2 000q 0

axd

oq ; (44)

a=0

y~ A=

here we use the observation that y I)|q —o = 0. The value of Xl')|q —o can be determined (without
solving for X ) from boundary condition (26), which in terms of the current variables can be

written as
@\ ay® <]
nl/2 X7 _
tan( 1/2> e — X o a=- Iog(cos( 1/2>>



THE SAFFMAN-TAYLOR PROBLEM 11 of 40

Substituting y = ){é') + le/n + - -+ into the above and expanding up to the O(1) terms gives

| | | |
®9Xp__xm _ )1 gué>_cﬁax9 _ O
00 ! oo 2 oq 000q 3 00

the last term of which is zero since Xé')|q=0 = 0. Differentiating (45) with respect to ©, dividing

by ® and integrating with respect to ® gives the following expression for axl(')/6®|q:0:

|
o 99

where By is an arbitrary constant (corresponding to a translation in x) which we set equal to zero,
thus determining the O(1) term in the expansion of the x-coordinate of the finger tip. Substituting
(46) into (43), (44) and using the expression for Xé') in (40) gives the following parametrization for
the leading edge of the finger:

2,172 do 2,12 do
—5 | O==Q), y~i-— —,
zni/2 de de

; (45)

q=0

|
ox1"

00

2 2. ()
_ 9790

2 000

+ By, (46)
gq=0

q=0 q=0

X ~

(47)

where

00 a— 1O gj 2 _ 1/2
Q(@J):_/ e O sin ((u ﬂ12/4) Iog(l//l))dﬂ. 48)
12

Plots of the finger shape, found by evaluating these formulae numerically, are given in Fig. 7 for
various values of 4.

Large-©® asymptotic representations of (47) can be found by using Laplace’s method on the inte-
gral in (48) to obtain

_ 2i121og(1/4) exp(=© /2) i 2212 10g(1/1) exp(—© /2)

nl/2,1/2 oz 2172 932 as 6 — +oo.

This gives the matching behaviour for the finger shape to be determined, in section 4.3, by the
solution in region I1l. As can be seen from Fig. 6, this corresponds in the physical plane to where
the free boundary begins to ‘turn the corner’.

4.1.3 Far-field behaviour of Xél)- In order to determine the behaviour of y in regions in which
6 > n~Y2 and/or q > 1, it is first necessary to obtain the relevant matching conditions by analysis
of Xé') as either or both @ — oo and ® — oc.

4.1.4 Behaviour of Xél) as® — oo, q = O(1). Applying Laplace’s method to the integral in
(40) yields the large-® behaviour

2,42 10g(1/2)qe=©/2
Xél) - g +..- as O — 400, q=0(1), (49)

where the dominant contribution to (40) comes from the end point 4 = 1/2 of the integral.
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4.1.5 Behaviour of Xé') as® — 400, q = O(®). For the limit in which both ® and q simul-
taneously tend to oo the process is more involved but can be calculated by deforming the contour
of integration into the complex plane and integrating along the path of steepest descent. By making
the substitution 4 = s+ 1/2, the expression (40) can be rewritten as

1/2 00
2 = 24 exp <—®> 3 [/ exp(@(—=s+ih(s+ s%)?) f(s)ds|, (50)
T 2 0
where
. q _sin((s+59)%2log(1/2))
h=9 TO= (S+1/2)(s + s?)1/2 1)

We now consider the limit ® — +o00, h = O(1). The steepest-descent contour is
—s+ih(s+s)Y?=—1, teR, >0,

and its relevant branch (plotted in Fig. 8(a)) is given by

< (2t — h?) + (h* — 4h?(7 + 72))1/?

201 M) for —o0o<1<0

(note that 7 = 0 corresponds to s = 0). For0 < 7 < ((1+h?)/2—1)/2 we have that s € R and there
is no contribution to Xé') from the integral in (50), as the integrand is real. The major contribution
to Xé') (an end-point contribution) thus comes from  just greater than 7» = ((1 + h?)/2 — 1)/2;
in terms of Fig. 8(a) this is just after the steepest-descent contour leaves the negative real axis at
s = —(1 — (1 +h?~Y2)/2. This suggests the substitution

1+h?t2_1
T ="

t.
> +

For small t, we can approximate s in (50) by

S~ — +ih@+hH) 342 4o

2 2ax h2)1/2
and hence Xé') by

2/11/2 @(l + h2)l/2
X(gl) Y e (‘2

xR

0 1 1 h(1 4+ h?)=3%/4
/0 exp(—0t) f (—2 + 2(1+h2)1/2> 12 dt

Evaluating the integral and substituting for h from (51) gives, as g — +oo with ® = O(q),

W 42 ©%+g)M L ( qlog(1l/d) (0% + 0?2
X0 212 sin 2(02 + g2)1/2 N 2 ’

(52)
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q = —log(cosf)
, g = —log(cosb)

q/n'?

VII

Fig. 5 The asymptotic regions in the Legendre plane (after logarithmic transform) in the limit n — oo. In (a)
the solid arrows show the transmission of information along the rays of equation (56) from region | to regions
IV and V. The dotted arrows represent the rays reflected from the boundary but, because the governing PDE
(25) is the modified Helmholtz equation, the contributions of the reflected rays decay exponentially along their
paths and are thus of importance only in region IV. In (b) the vertical axis has been compressed in order to
show region VII

Fig. 6 A sketch of the asymptotic regions in the physical plane in the limit n — oo; compare with Fig. 5

wherein the preexponential factor corresponds (in analogy with canonical diffraction problems) to
the directivity associated with the expansion fan emanating from this region (cf. Fig. 5(a)).

416 Behaviour of x\" asq — 400, ® = O(qY/2). The above asymptotic formula for "

clearly does not hold all the way to the boundary ® = 0, on which Xél) = (1 - 2A)exp(—q/2), a
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0-9
0-8
0-7
06
0-5
0-4
0-3
0-2

01Ff

0 0-05 0-1 0-15 0-2

0-25 0-3 0-35 0-4

n2y

Fig. 7 The leading-order finger shape (in the physical plane), which is independent of n in the coordinates
shown, determined by the solution in region I; this corresponds to the leading edge of the finger. Here we have,
moving up the y-axis, A = 0-1,0-2, ..., 0-9. The x origin has been fixed by the choices By = By = 0, leading
here to the intersection of the finger with the x-axis varying non-monotonically with 1

different asymptotic behaviour arising where g — +oo0 with ® = O(q%/?). Here we again make

the substitution 4« = s+ 1/2 in (40) and rewrite Xé') in the form

n _ 2712 Oo ; 211/2 d
X0 —73 0 exp(iq(s +s%)~9)g(s)ds|,

where
1\ sin((s+s?)Y2log(1/4))
- ) -
g(s) exp( <s+ 2>> 11261 D2
The steepest-descent contour is now given by iq(s + s?)1/2 = —z, where 7 is real and positive and

is plotted in Fig. 8(b). It follows that

s (1 —412%/g%)1/?
- 2

(note that = 0 corresponds to s = 0). For 0 < © < /2, sis real and negative and the integrand is
real. It follows that there is no contribution to Xé') for 0 < t < q/2. However, a contribution (equal
to one-quarter of the residue) is picked up around the pole at s = —1/2, in addition to an end-point
contribution from the line running up R(s) = —1/2; thus
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(a) (b)
S(s) 3(s)
Pole
Branch cut x I _Pflfa ______
__________ <—
1 (1 (1+h%)V2))2 R(s) -1 -1/2 R(s)
Branch cut

Fig. 8 The steepest-descent contours used for calculating the asymptotic behaviour of Xél)- The dashed line is
a branch cut running between the branch pointsats =0and s = —1

211/2 i
20 = =5 [ﬂlees (exp(iq(s +5)Y2%)g(s), s = —1/2)

—1/2+ioco
4 / exp(iq(s + $HM?)g(s)ds| .
—1/2

Evaluating the residue and making the substitution s = —1/2 + i (t + t?)1/2 gives

2)1/2g=0/2 log(1/A
Xél) _ee [n sinh( og(2/ )>
T

_/°° sin(O (t + t2)/2) sinh((t + t2)1/2 Iog(l//l))e_qtdt
0 (t+12) '

The integral in the above expression may be approximated in the limit g — +o0, ® = O(q/?) by
writing ® = q%/2y , making the substitution t = z/q and expanding in powers of q; this gives

/ * sin(y g2t +t2)1?) sinh(t + 122 l0g(1/2) gt
0 (t+1?)
0 of 1/2
o (Iog(;/@) [ erar = sinn ('09(21/ ”) ert (1),

where erf(-) is the error function. It follows that the asymptotic behaviour of Xé') is

® ®
(D —q/2 ; _
10 ~ L= e (1 —erf <2q1/2>> as g — oo with g = o@1). (53)
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Note that this expression satisfies the boundary condition Xé') =@1-2)e%on®e =0and
matches to the behaviour (52) as ® /q1/2 — oo. The leading-order solution (53) is of ‘shadow-
boundary’ type, corresponding to the parabolic approximation to the modified Helmholtz equation.
The presence of the various sublayers we have described in the far field of Xé') is reflected in the
full asymptotic structure of the solutions in the limit n — oo (cf. Fig. 5). We now proceed to discuss
region 11, into which the expansion fan solution (52) matches.

4.2 Regionll

We look for a solution for y = yUV(g, #), in a region in which ¢ = O(n%/?) and # = O(1), by
introducing the new coordinate q = n'/2g. With this rescaling, equation (25) becomes

o2 g2,an 1\ 2

- (1-2) M=o 54
o T ez 4( n)x 64)

An asymptotic solution to this can be found by using a WKBJ ansatz

4/11/2n—l/4 B B 1 B
7 = = exp(n'?ho(@.0)) (Ho(q, 0)+ —75Hi(@.0) + - ) SN
To leading order this gives an Eikonal equation for hg,
1

Solving subject to initial conditions obtained by matching to (52) as § — 0 and & — 0 gives the
expansion fan solution

(qZ + 92) 1/2
—
Proceeding to next order in the expansion yields the amplitude equation

2 (0Ho,0 +GHog) + Ho =0

Ho = 61/2pP <q> :
0

where the “directivity” P(-) is a function which is determined by matching with (52) as § — 0 and
68 — 0, so that

ho = —

for Ho, with general solution

_ 4;12n=14 1 02 + 654 . /1 dlog(1/4)

Ho(@.0) = = 17 7 (G e
from which we deduce that the WKBJ ansatz (55) gives the following asymptotic formula for )
asn — oo:

ay L AR @ 4 @) L (L dlog/) (2
X 7172 9 2 (G2 + 62)172

=2 2172
X exp (—nl/z(q—i_zg)> . (58)
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Note that this solution does not satisfy the boundary condition (26) on 6 ~ z/2 — exp(—n'/2§)
(that is, on g = log(cosd)) and it will therefore be necessary to introduce a further region in the
vicinity of the boundary (namely region 1V).

Physical coordinates may be found by substituting the solution ansatz (55) into (29) to (31); this
gives

2/11/2n1/4 n1/2 ~ ~ ~
X~ =1z &P (‘ (@ + 65" — Q)> cos 0 Ho (4, 0),

0
2 (G2 + 6212

sin@Hp(q, 9), (59)

2,1/2p1/4 nl/2

0
(@ 40 -0)

21/2n-1/4 nl/2 . . | .
Wy~ A— T exp <_2((q2 + 92)1/2 + CD) <1 - W) Ho(qa 0):

where Hy is given by (57). Rewriting these in terms of the radial coordinatesr = (X2 + (y — 1)%)1/2
and ¢ = arctan((y — 1)/X) gives

2,1/2n1/4 nl/2 9 i
WHO(%Q), ¢ ~0,
_ng?
4log(1/r)

T P T

(G* + 03" - q))
log(Z — y) ~

4.3 Region 1l

4.3.1 Leading-order solution. We now look for an asymptotic solution to (25), (26) in the region
in which both g and 8 are O(1) by making the WKBJ ansatz

1/2 —3/4
X(un(q,e)fv‘% Ioi(ll/é’l)n exp(—nl/zg) (Go(q,é))+n‘1/261(q,9)+-~-)- (61)

Here the dominant behaviour log(y ") ~ —n%/29/2 is a consequence of matching » "V, in the
limit @ — oo, to y V. To next order this ansatz gives

the reason for this trivial balance being that the region is essentially a passive one, required simply
to moderate the ray solution in order to fit the boundary conditions (the boundary is perturbed from
g = 0 by an amount that is asymptotically much smaller than the g scaling corresponding to the
parabolic approximation). Here A(-) and B(-) are functions that are determined by matching to
region Il in the limit @ — oo and applying the boundary condition (26) on q = — log(cos())
(which gives A(0)q + B(@)|q=— log(cos)) = 0), so that

+ log(cos 9)
Go(@. 0) = = (62)
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Substitution of Gg back into (61) implies that

2,2 10g(1/2)n~/* /q + log(cos 9) 0
I ~1/2 1/2
M~ 71/ ( 932 +n /Gl(q,0)+~~)exp(—n/ 2). (63)

The correction term n~1/2G(q, 6) is included here because it appears in the calculation of the
finger shape and needs (for this purpose) to be evaluated on g = — log(cos#), but not elsewhere.
Proceeding to first order in the expansion of (26) gives

tan @ (Goe - Gz> Go on g = —log(cos®),

from which it follows that
2tané
G1lg=-log(cos(®)) = ~ 32 (64)
The physical quantities may be found by substituting the solution ansatz (61) into (29) to (31);
this gives

Y2 1og(1/1)n~1/4 nl/2
X ~ 9(t/2) exp| ———0 | Gge?? cos o,
rl/2 2

AY21og(1/1)n~1/4 nl/2 .
y~ i+ gn(l//z) exp| ———0 Goe"?sing, (65)

2212 10g(1/2)n=3/4 nl/2 Go
~ — —_ _q/2 -
W~ 2 172 exp 5 0)e (Go + > )
where Gg is given by equation (62). Again rewriting these in terms of the radial coordinates r =
X2+ (y = »)HY? and ¢ = arctan((y — 1)/x) gives

A2 1og(1/1)n~/4 nt/2
r~ gn1//2) pl——0 Goe™?, ¢~0,

(66)
nl/2
log(Z — y) ~ —T¢~

4.3.2 Finger shape determined by the solution in region I1l.  The leading edge of the finger (as
determined by the solution in region I) is almost flat, lying approximately parallel to the y-axis. The
shape of the finger as it rounds the ‘corner’, away from the vertical, is determined by expanding the
solution in region 111 in powers of n along q = — log(cos(#)), and substitution into equations (29),
(30). To the relevant orders this gives the following expressions for x(6) and y(0):

2412 1og(1/4)n=3/4 sind  cosd
il/é exp( /2= )(cose) 172 (293/2 5 Gl(q,e))

>

q=—log(cos(9))

2212 10g(1/4)n=3/4 secd sind
y~4i- ?Tl/é) xexp( n'/2- )(0059) 1/2(93/2 ——GC1(q 9))

=—log(cos()) '



THE SAFFMAN-TAYLOR PROBLEM 19 of 40

Substituting for G |q—— 1og(cos#), Using (64), gives the finger shape parametrized by 0

(67)

2,12 10g(1/2)n~3/4 ing 0
" og(1/2)n sin exp( —nt22) |
/2 03/2(cos 9)1/2 2

2212 10g(1/2)n=3/* (cos )1/? 0
y~4i- 7172 g3z P (—n1/22> . (68)

The finger shape is plotted, for A = 0-4 and n = 10 and n = 100, in Fig. 9.

n =10 n = 100

04

04
039

038
038

0%

y y

047

0341

0321 0361

039 0 00 0% 050 o

Zz T

Fig. 9 The free boundary approaching the corner (with 2 = 0-4) as determined by the solution in region IlI.
We note that the asymptotic expansion breaks down as & ~ /2, with (cos)~1/2 becoming comparable to
exp(n?/26). We remark that (67), (68) depend explicitly on n, one consequence of this being that y is not
single-valued as a function of x; we plot only the part of the curves which is asymptotically relevant. Note that
the lower sections of the curves plotted here match to the upper section of the curve (with 2 = 0-4) from region
I, as shown in Fig. 7. The upper sections of the curves here match the lower sections of those obtained from
region V (which we cannot easily calculate because the problem is elliptic)
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4.4 RegionlV

As already noted, the asymptotic solution for y in region Il (namely x ") does not satisfy the
boundary condition (26). In region 1V, shown schematically in Fig. 5, this manifests itself in a
different way from in region Ill and thus needs separate discussion. Thus we introduce a further

region in the vicinity of the boundary q = — log(cos @) defined by the variables
_r v _ 1/2x (V) a
0=5+-5 a=n""q, x=,"@v).

In terms of these new variables the boundary is approximated by v ~ —n%/2 exp(—n%/2g) and y V)
satisfies

02, 1 1\2 102,V
i _ = awy, -4  _ _nl/2 —_nt/25
Py 4(1 n) x +n a2 =0 forv <—n"“exp(—n’“q)+---, (69)
oy
X('V)+n1/2cot(L>X7:0 onv = —n'2exp(—n*2g) +--- . (70)
n/2) oy

An approximate solution to this system can be obtained by making the WKBJ ansatz

162Y/2n=1/4 s _ _ -
r ™) = e (Wo@ )+ 07 AWi@v) + - ) exp(-n"Puo@). (1)
Matching to region Il in the limit v — —oo gives wo(q) = —3 (G2 + x2/4)Y/2. Substituting

2™ into (69), (70) and taking the leading-order term gives the following equation and boundary
condition for Wp:

1 2
Wo,vv — 16 <(q2+ﬂ2/4)1/2> Wo=0, and Wp,lv—0 =0,
with solution
Wo = D(G) cosh | ————~ 72
b =D(q)cos 1A a2 ) (72)

Here D(.) is a directivity which is determined by matching to the solution in region Il in the limit
v — —oo. Proceeding with the matching (in order to determine D) and substituting the result,
together with the expression for wg (@), back into the ansatz for y V) gives the following asymptotic
formula for y ™) asn — oo:

16/11/2n_1/4 ~2+7Z'2 4 1/2 _
V) < e _12(@ 2/ 7 (@ 4 n2jay

. 1 q§log(1/4) TV
X smh(z(q2+n2/4)1/2) C05h<4(qZ+n2/4)1/2> . (73)

Here the final cosh factor in this expression has a decaying exponential, as v — —oo, which leads
to an exponentially small correction term to the solution in region Il. The free-boundary shape given
by (73) is simply y ~ /4 (up to the order of accuracy of this solution).
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Again physical coordinates may be found by substituting the solution ansatz (61) into (29) to
(31). In this case we find

1/2
16/11/2 n1/2 2
X ~ nYéexp| ——— | (g2 + 2 -

71-3/2 4
W } 1+ # W
X | VWo,p 2 (q2+77:2/4)1/2 0]

1/2
1611/2 nl/2 ~ 71.2 ~
ywi_WnlﬂeXp (_2 q2+7 —q Wo,v,
1/2 -
8/11/2 nl/Z 71'2 q
~ )= n~Y4exp| — 62 + — G 1-———— )W

where W is given by (72).

(74)

4.5 RegionV (the corner region)

This corresponds to a second inner diffraction problem and gives the most difficult leading-order
balance. However, because the rays that emerge from this region carry exponentially small contri-
butions to the solution elsewhere, this need not trouble us unduly (though see section 6 for some
pertinent remarks). Here we introduce the scaled variables
T v
(=7t

in terms of which equation (25) and boundary condition (26) can be rewritten as

1
q=7logn+s, = 1 M(s,v), (75)

2,V 52,V V) V) (V)
n( 24 LA Sl [T S S ) (76)
0s? ov2 4 2 4n
V)
W) 4 pb/2 L) o _ I
7 +n cot(nl/2 " =0 onv=—-€". 77
Matching to regions 11, 111 and 1V respectively gives far-field conditions on y \):
V) 2 (1 _ _
x ) ~Pn, L)e > logn+s as v—> —o0o S— +oo (s=0()), (78)

M ~Pm, e ?(log(—v)+s)  asv— —o0 s— —oo  (s= O(log(—v))), (79)

* M)~ P, 1) (2 cosh (%) (; logn + s)) ass— +oo (v =0()), (80)

where P is an exponentially small quantity defined by

172
P(n, 1) = (4‘@ log@/ ”) n=3/4 exp(—nl/Z%), 81)

2
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The expansion for y V) thus proceeds in the form

¥V =P, 2) (logngg” + 7+ ). (82)
The first two terms satisfy
\% \% \% \%
i (Y T —0 (83)
0s2 ov? 4 ’ v | s ’

x50 asv—o —o0, s —00 (5= O(log(—v))),

W) e—v/2
0o 5 asv —> —o00, S— 4oo (s=0()),

1) ~ cosh (%) ass—oo (v=0();

Y v v v
N A o1 _
- = 0, - 05
0s? ov? 4 ov -
v=—e"S
1)~ e 2(log(—v) +5)  asv— —o0, S— —oo (5= O(log(—))),
W\ ~se? asy o —00, S 400 (s=0()),
(V) v _
x 23005h<§) ass— +oo (v =0(1)). (84)

These two problems require the solution of a linear elliptic PDE on a non-separable domain; they
are unlikely to be amenable to standard analytical techniques. Note, however, that the problems for
;(év) and Xl(v) are canonical—that is, they do not depend upon either 1 or n.

The physical quantities in this regime are found by substituting the solution ansatz (75) and (82)
into (29) to (31), to give

V) (V) V)
ox X ox
x ~ P(n, )n** log ne¥/? 0 _ 20 0|,
(n, ) g 0s 2 v ov
o7
y ~ . —P(n, 2)n**log nes/zﬁ, (85)

1/4 s/2 5X(§V) Xév)

~ A =P, )n " logne” == 4+ =,

y (n, 4) g s T3

where P(n, 1) is given in (81). It is noteworthy that the curvature of the free boundary calculated
from the solution in region Il increases as @ increases towards z /2; on the other hand, the free-
boundary shape calculated from the solution in region 1V is, to leading order, flat. It follows that for
/4 = O(1) the curvature of the free boundary in the limit n — oo is maximal in the region presently
under discussion (which lies between 111 and 1V), being of O(exp(n*/2z /4)/[AY/? log(1/4) log n).
Thus the first part of the free boundary to be influenced when a small surface tension is introduced
to the problem would naively be thought to be that described by the solution in region V.
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4.6 Region VI

The differing asymptotic behaviours of Xé') as q — +oo with (i) ® = 0O(q) (see (52)),
and (i) with ® = O(q'/?) (see (53)) suggest that Xé') matches, as g — oo, to different asymp-
totic regions in which either (i) n¥/20 = 0(q), as in region 11, or (ii) n*/20 = O(q'/?). Here we
treat the latter case, the former being treated in section 4.2, by introducing the scaled coordinates

q=n%%q, 0=n"'49,

in terms of which the governing equation (25) and boundary condition (27), are

2
A PRV ALY R xV =0 (86)
8G2 862 4 n ’
v 1 YL 1
x "V o=0 ~ (L= A)exp| —n > 1+ - . (87)

Asf — +oo and as § — O two further conditions can be obtained by matching to region 11 and
region | (via (53)); these are, respectively

2 ~1/2 02 nl/2g ~
2~ - HL exp (— exp( - as 0 — oo,
A

i 44 2

) n'/2q 0 3 o iy
V)~ Q= exp| — 5 1—erf W as §— 0 with 6 =0(q"9).

Making the WKBJ ansatz

s 1 e nl/2~
2V = (fo<q,9>+ nl/zfl(q,0>+---) exp(— q)

2

and substituting into (86) to (88) leads to the following initial-value problem for fg (corresponding
to the parabolic approximation in diffraction theory):

folg=o = 0, folj_g = (1 — 1), fo—> 0 asd — oo,

0

(cf. a shadow boundary in diffraction theory) so that

1/2& il
X(V')~(1—/I)exp<—n2q> (1—erf<2q€1/2>> . (88)

with solution
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Physical quantities may be found by substituting the solution ansatz (61) into (29) to (31). In this
case we find

x=-n"*f 4+ 0M™), y=i+(fo—0fy 5 +0Mn, (89)

y ~ 4 —n~Y2exp(—n'2q)(foq + O~ Y2, (90)

and approximate streamlines have constant ¢ and are shown in Fig. 10. Substituting for fy in the
above we obtain

X (1= 2) exp(—7,?) 1 2 )
WA= g ge O y=1+ A=) e —erfn ).

log (022 = w)) = —n*2G + O(1),

where # = 6/(2§). It is apparent that, to leading order, y is a function of # only. Hence, if we
introduce a function H defined by

(1-2)?

2
H(yo(n)) = exp(=2"), Yo=1+(1—-7) (El/znexp(—nz) - erf(n)) :
where yo(7) is the leading term in the expansion of y, we obtain

H(y)
log(n*/2(4 — ) ~ —nl/z—é2 :
where & = x/n/4 Note that yo — AT as » — +oo and that yg = 1 at = 0. Furthermore,
although H does not tend to infinity as y — 17 its derivative dH /dy does. The fact that H remains
finite on y = 1 despite the exact boundary condition being y|y—1 = 0 is indicative of the existence
of an additional boundary layer (about y = 1) in the physical plane.

(91)

4.7 RegionVII
Finally, we consider an extension of region VI, that is influenced directly by the finger boundary
g = — log(cos 0), and the channel wall & = 0 by introducing the scaled coordinate
g =nQ.
In terms of Q the governing equation (25) and boundary conditions (27), (28) are
182,V 52,V p 1\ 2
- X + X R X(V”) =0, (92)
n oQ? 062 4 n
$ )y = (1 - 1) exp<_n‘2? - g) , ©3)
0, (VI
tan GXaT — VD=0  on 6 =arccos(e™"9). (94)

Matching to region Il as Q — 0 leads to the further condition

20—-2)7 [ QY2 62 nQ
VI _ _
x [ 1 } ( 9 exp( 20 exp( 5 ) as Q— 0,
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in view of which we make the WKBJ ansatz

£ = (0(@0)+ 1010+ ) exp( -5 ).

leading to the following initial-value problem for go (which is again a parabolic approximation):

90.Q = Go.00 + % (95)

lo—o = (1 — 1) ex _Q | =0 (96)
Jolo=0 = p 5 ) 90.0(g=r/2 = Y

Jolg=0 =0, g— 0 as Q — oo. (97)

We also require the inversion formula, (29) to (31), to give the variables X, y, v, these being ap-
proximated by

X~ — exp(?) (gosing +gopcosl), y~i-— exp(?) (go,0 Sin6 — gocosb) ,
(98)

~i—ntexp(—no+ 2 %
i ton( 02+ 2) (m0+ 2)

Solving (95) to (97) for go gives

A ~ Qe (03 ).

_ 2(17[_ “) exp(—Q,2) (2Q sing + (% - e) cos@)

Jo

+ 3" Amsin(@m + 1)0) exp (— ((2m +1)° = ;> Q> ’

m=0

1-— 1-— 1 1
A = — /1, Am=—( i)<+> for m> 1.

T T m+1 m

The finger boundary (corresponding to & ~ 7 /2) decays exponentially as x — —oo to the constant
value y = A. To leading order, the streamlines are given by the level sets of Q except (in view of
(98)3) close to the line & = 0, on which gg o + go/2 = 0. These streamlines are plotted in Fig. 10.

5. The physical plane

In this section a partial asymptotic solution to the Saffman—Taylor problem for the streamfunction
is presented in physical coordinates (10) to (13). In order to tie this together with the solution found
in section 4 for the same problem in the Legendre plane we use the same labels for the various
asymptotic regions; these are illustrated in Figs 5 and 6, which show the Legendre and physical
planes respectively.
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04 : . , : :
0 : 04 06 08 : 02 04 06

(V) & (where £ = n~Y4z)

Fig. 10 Approximate streamlines in the physical plane determined from regions VI and VII of the Legendre
plane. From the bottom right the streamlines in VII are § = 0-02,0-05,0-1,0-2,0-5,1,2,5 (where § ~
—log(nY/2(% — w))/n/2), while in (VII) they are Q = 0.05,0-1,0-2, ..., 0-9,1-0 (where Q ~ — log(4 —
w)/n). The finger corresponds under these scalings to the semi-infinite strip x < 0 (that is, ¢ < 0), —=0-4 <
y < 0-4. As § — +oo in region VI the solution matches into the solution in region VIl as Q — 0

¥ = A —exp(=np)/n
Ve 7
ﬁ;ﬁ—m - 2ﬂr?yﬂzy + ,ﬁgﬁyy

(/55+»35_)_‘2______,....-A-----'_"_‘;‘_",'_'-_ _________

[P e

F7 T D — 2etb ey + (2 + U2y = 0

Fig. 11 A schematic of the streamlines in the physical plane, together with the leading-order equations. In the
regions where the streamlines correspond to rays they are shown as solid lines. Divisions between regions are
shown in dotted lines

5.1 Remarks on the merits of solving in the Legendre plane versus those of solving in the
physical plane

Note that, whereas the leading-order solutions in regions VI and VIl are independent of the solu-
tions in other regions, those in regions II, I, 1V, V all depend, via matching conditions, on the
leading-order solution in region | (which cannot be solved for directly in the physical plane, that is,
without the use of either a Legendre or hodograph transform); the linearizing transformation is thus
invaluable in extracting matching conditions on the problems satisfied in regions 11, 111, 1V, V of the
physical plane.
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5.2 Sowly varying region in front of the advancing finger (region I)

In light of the scalings derived in section 4.1.2, that is (42), we rewrite (10) to (13) by rescaling x
according to

X = n¥/2&

and writing the free boundary in the form
1_
¢= ﬁu(y, n);

since = = O(1), this will allow us to linearize the free-boundary conditions onto & = 0 (we remark
that the scalings x = O(1) and x = O(n~1/2) might also be thought pertinent in approaching the
free boundary, but these regions turn out to be entirely passive, v being given by the inner limit of
the & = O(1) solution). Thus (10) to (13) give

1 1
<w§ + nzw?) pee =2 (1 - n) vewywey + (v + whwyy =0, (99)
(—5/(Y)!//y + l/’é’) E=E(y)/n,0<y<i — 0, V’l.f:E(y)/n,0<y</l =Y, (100)
wly=0 =0, Yly=1 =14, w— Ay asé — oo. (101)

Expanding y and = in powers of 1/n in the form

1
| | _ _
1//—_{//0()4_71//{)_{_, = =EFy+---,

and substituting into (99) to (101) leads to an elliptic boundary-value problem for y/é'), namely

U] m W M2 M2\ W
Vo y¥o e = 2V0 Vo yYo oy F (V’o y T V0 g) ¥o yy =0, (102)
(M _ 0 3 103
Yo le=0,0<y<i =Y, Yo le=0,i<y<1 =4, (103)
| | |
Wé)|y:0 =0, '//(g)|y:1 =1, t//é) — 1y as¢ — oo. (104)

Here (102) is the inverse Legendre transform of (32) and the condition (103), arises from matching
into region VI where 1 —  is exponentially small. Finally (100); gives rise to a condition which
determines the shape of the free boundary
(M
- Yo
200 = —5-

Yo y ¢=0,y</

Noteworthy features of the solution in this region are (i) that the finger shape, determined here, is
to leading order flat running parallel to the y-axis between y = —J and y = 4, and (ii) that the Aron-
sson ray approach does not apply in this outer region (slowly varying in x) despite a significant fluid
flow. We remark also that (102) has an interesting status as a limit problem of (1)1, notably in that it
is a ‘slender’ limit of an elliptic equation (whose most familiar limit form is parabolic) whereby the
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formulation remains elliptic—this may be contrasted with linear elliptic problems whose standard
slender approximations are parabolic; we observe that in divergence form it reads (on dropping the

suffices) as
B W) d 1y
+— —* =0.
ES ( oy ( WY T2

5.3 Reformulation in polar coordinates

At this stage it is useful to introduce polar coordinates about the finger ‘corner’ (we now choose the
origin of x to fix this at (x, y) = (0, 1) by setting By = By = 0 in (36) and (46))

— (x2 +(y— /1)2)1/2 , ¢ = arctan (y;i) , (105)

in terms of which (10) and (11) can be written as

vs  w? 1\ vrvgwrg
(3 >w~—z<1—n>rz

2
1 ¢ 1 Yrig
il I 2 — =0, 106
e N + ‘7’N¢ =0, ylog, =4+rsing, (107)
0Q¢
where the normal to the boundary is N = Ny & + Ngey
The physical domains corresponding to all of the regions I, 111 and 1V of the Legendre plane lie

close to (x, y) = (0, A). In order to determine the solution in these regions it is convenient to use
the formulation (106), (107). In addition, we need to introduce a stretched variable R, to describe
the free boundary in terms of R via

r =exp(-n'/’R),  Rlog = F(¢)
and to rewrite y in the WKBJ form
y =4 —exp(=n"?T(R, ¢));

thus r is exponentially close to zero and y to 4. In terms of these new variables (106), (107) give
1 1
2 (rr+72) + - (YR+2vAYE - TRYZ) + — (Th-TR)

1
= i (TRRT¢ —2YRYy TRy + Yo (TR + T¢>)

2 1
+ 3z TRTeTRs + 575 YTRYRR (108)
oY oY
nF’ (¢)* - =0, TYlr=r(p) = F(¢) = 37 log(=sin ). (109)
A )
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In addition we must impose the far-field condition
YT > +00 asR— 0t with¢ >0, (110)

which is equivalent to requiring that w ~ 4 forr = O(1) and ¢ > 0.

5.4 Regionsll and Il

The expansion for Y in regions Il and 111 proceeds as follows:

logn 1
T:To+7T1+W

7 ot

and gives, on substitution into (108),
oY 2 6T0+ 0Yo 2 _0
o oR o N
This factorization corresponds to two distinct regions, Il and I1I.
5.4.1 Regionll. Here the leading-order balance is

2
ax{" . org"\" 0
oR o 7

corresponding to equation (56) in the Legendre plane. Imposing the far-field condition (110) speci-
fies the solution uniquely as

oy _ 4
0 T 4R
In turn this implies that
2
log( — y My~ -n— "
o v 4log(1/r)
5.4.2 Region Ill. Here the solution satisfies the following leading-order balance and boundary
condition (derived from (109)):
(1 (1)
oY, oY,
=% =0, " =F@),
R=F($) =F(¢)

and consequently has solution

T = R= log(2 — ") ~ logr.
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55 RegionlV

In light of the scalings derived from region 1V of the Legendre plane (74) we look for a solution in
region IV of the physical plane of the form

W) _ ~V (R 3 _T., ¢
T =T""(R, ¢), where ¢_2+n1/2'

Going to leading order gives Té'\-’) = 0 so, in light of (74) we expect Té'v)(R) = 72/(16R);
however, this requires some tricky matching to region I1 to confirm this.
56 RegionV

In light of the scalings (85) in the Legendre plane, we look for a solution in region V of the physical
plane of the form

1/2 1/2
x=n_1/2Iognexp<—n4ﬂ>X, y:i—lognexp(—n‘l”)Y,

1/2
n .
W(V)zi—n_llognexp<— 4”) w,

and a free boundary shape described by

- A(X)
= .
Substituting the above into (10) to (13) gives the following problem for y:
N ~ ~ 1\ ~ ~ =~ N 1. ~
(z//\z( + w>2<> Yxx — 2 (1 - n) YXYYWUXY + (%2( + r12W$> wyy =0, (111)
A (X ‘ —0, ’ — A(X). 112
X yx + yy YoAGO ¥ly_aco/m (X) (112)

The expansion of y in region V proceeds as follows:

A N 1 .
‘//—‘//O‘f‘lognl//l‘i‘"‘,

and the equation satisfied by g corresponds to (83) in the Legendre plane, (111) being equivalent
to (102) but with the roles of x and y interchanged, and the free-boundary conditions similarly
linearize onto Y = 0, where

vo = ¥ x-
5.7 The problem about the top edge of the finger (region VII)

In light of the scalings for the physical variables (98) derived in section 4.7 we look for a solution
in the physical plane, along the top edge of the finger (see Fig. 6), of the form

1
w=Ai- ; exp(—np(x,y)). (113)
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Substituting this ansatz into (6) gives
1 1 1 2
(ﬁf/ + nﬁ;) Pxx — 2 (1 - n) BxPyPxy + (ﬁﬁ + nﬁ?/) Byy = (ﬁ?( + ﬁ)Z/) . (114)
On the upper boundary (13); gives

f— +o0 asy 2L (115)

The condition w|sq = Yy implies that the finger shape is given by

1
y=4—_exp(-ng),
while (11)1 gives
(By—1vBI2e™)| —o.

y=A—exp(-ng)/n
Linearizing on to y = A gives the approximate boundary condition

Pyly=i =0. (116)
To close the problem for  we match to the main flow (corresponding to region | of the Legendre
plane); this gives

1 1 .
ﬁ~o<n> as X — 400, ﬁ~0(n> as y—> 4 with x> 0. (117)

Whilst it is not possible to solve the full problem comprised of (114) to (117), without recourse
to Legendre or Hodograph transforms, we can solve this problem in the limit x — —oo. This
subproblem is invariant under translations of x and £, which suggests looking for a solution of the
form

po = —kx + G(y).
This gives rise to the following problem for G and k:

ey L9 ) ae_ @4 (96 ) (118)
n \ dy dyz dy ’

dc

dy

=0, (119)
y=/l

Go oo a y—1, (120)

which, on introduction of the variable z = dG/dy, can be analysed by use of a phase plane. The
naive asymptotic expansion G = Gg + O(1/n) gives rise to a leading-order equation for Gg which
is incompatible with the boundary condition (120). In order to overcome this difficulty we introduce
an outer region in which 1 — y = O(1), and on which the boundary condition

dG/dy > 00 as y— 1 (121)

is imposed, and match to an inner region where 1 — y = O(n=%/2),
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5.7.1 Outer region VII. Expanding z and k as follows:

G°=Gg+o(1>, f:Z&+O(1>,Icﬂm+O(l),
n n n

and substituting into (118), (119) and (121) gives the leading-order outer problem
dz2 1
85 _ SKE+2% By =0, Z—> 4o as y— L
dy  Kk§

This has solution

T

Y

0 (0]
ngZrOng + %arctan (E’;) =2(y— 1), ko

Although z§ is infinite on y = 1, having the behaviour

) 1/3
B~ ga—g ) @-»77°
48(1— 1) ’

Gg is not and so does not satisfy (120). This requires the introduction of an inner region about y = 1.
The streamlines given by this outer solution (corresponding to a contour plot of 3 = —kx-+Gg(y))
are shown in Fig. 12.

09

0-8

y 07

0-6

0-5

0-4

Fig. 12 The streamlines in region VII calculated from the leading-order outer solution for B, namely g ~
—kx + Gg(y), in the case 2 = 0-4
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5.7.2 Inner region VII. Introducing inner variables

—3/2 i i

n 2 R

substituting into (118) and (120) and matching to the outer region gives the following leading-order
problem for z:

y=1-n — nl/24, 4 n1/2

i i n? e 1/3
as 0 ~| - as
Zy — +00 n—0, 2z 81— ) n n — 400,

with solution
2
1
L?3 T
32° %
Note that this solution satisfies the required far-field behaviour and that
: 1 ; 1
zZ~=- a n—>0=G wconst.—ﬁlogn as n— 0,
n

which implies that it also satisfies (120).

5.8 The flow between the finger corner and the top boundary of the cell (region VI)

Here we look for a solution in the physical plane (for 4 <y < 1, x > 0) corresponding to region
VI of the Legendre plane (see Fig. 6). In light of the scalings for the physical variables (90) derived
in section 4.7 we adopt the following ansatz:

1
v=1-—5 exp(—n*?a(é,y)), x=n'4¢

Substituting into (10) and (13)1, matching to the central region of the flow and to that along the top
edge gives

1 1 !
2 2 - +(af+ ;
(ay + n3/2“5> oz =2 (1 n) detytey <a5 nl/20‘y> o

1 1
_ 4 2 2 4
_OCy+2WOC§OCy+ ﬁaé, (122)
a— +oo asy— 1, a—>0 asy— 4, (123)
a—>0 as & — oo, o— +oo as & — 0. (124)

In the discussion in section 4.6 (which treats region VI in the Legendre plane) we noted that this

region subdivides into two regions in the physical plane. We now go on to consider these.
Performing a hodograph transformation on the leading-order problem from (122) by introducing

an artificial time variable t and setting t = ag, y = ¢ (&, t), yields the singular parabolic equation

oc 02 -
< () s
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which is, as is well known, linearized by a Legendre transformation; the required solution to (125)
is of the self-similar form ¢ = ¢ (¢tY/?).

5.8.1 Outer region VI. To leading order this problem is invariant under ¢ — &/k, a — K?a
which suggests looking for a solution of the form

H
Substituting into (122), (123) and taking the leading-order term gives
d’H dH\? [/dH\*
27 _— e -_ — =
4H ay? 2H (dy) (dy) 0, (126)
H() =0, Ho>oo asy—1, (127)

which corresponds to equation (88) in the Legendre plane. It is possible to integrate (126) exactly,
however, it is not possible to satisfy the boundary condition (127), and, in light of the comments
made at the end of section 4.6, we look for a solution which satisfies

dH - asy—1
—_— o .
dy y

This gives, in conjunction with (126) and (127)

H 12 /12 12 1 H 1/2
y — 1= (2Hp)Y? ((Iog <HO>) (Ho> - <%) erf (2 (Iog <H0>> )) )
where
1 2
Ho=—(1- 1)~
T

The behaviour of H as y approaches 1 is thus

3(1 — 2/3
H ~ Hp (1— <(2(H0)132> ) as y 1

A contour plot of aj = H (y)/&? (showing typical streamlines) is given in Fig. 13.

5.8.2 Inner region VI. In order to satisfy the boundary condition (123); we introduce an inner
region by making the following rescaling and ansatz:

a¢,Y)

y=1+n"%, o = 1O+ =75

to obtain
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Fig. 13 The streamlines calculated from the leading-order outer solution «° in region V1, namely H(y)/&2,
in the case A = 0-4. Here the streamlines are plotted at values of ® = 0-05, 0-1, ..., 0-5, 1, 5and 20

Making the assumption that & > O(f) (which is justified a posteriori) gives the leading-order
balance

(a3 + £2@) avy ~ a3. (128)

This is a first-order autonomous ODE for ay (in which & appears only as a parameter). Matching to
the outer region (at leading order) determines f as

Ho
f&) = 2

Proceeding with the matching to next order and applying the condition (123); gives boundary data
on (128)

1 3HoY
a— +oo asY 20, &~—<—
¢\ V2

aHg (0a\T  (ea\Th_
3¢6 \ gy oY '

2/3
> asyY — —oo. (129)

Integrating (128) once gives
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The solution to the above exhibits the behaviour (129); as Y — —oo and, as Y — 0, has the
following behaviour:

al ~log(=Y) asY 20,
thus satisfying the boundary condition (129);.

6. Discussion

In this work we have used the Legendre transform to investigate the structure of the symmetric
Saffman-Taylor finger for a power-law fluid in the limit of extreme shear-thinning, as the exponent
n approaches + oo, and with zero surface tension. To leading order the finger is a semi-infinite strip
(see Fig. 6) with arbitrary width 24, its leading edge being described by the equation

1 _
X = Wd(y),

where Z(-) isan O(1) function. Directly in front of the leading edge of the finger there is a region of
plug flow (labelled region 1) which slowly adjusts itself to the width of the channel over an O(n'/2)
(dimensionless) distance, in the x-direction. This is separated from regions in which the flow is
exponentially small (unyielded in the limit n — +o00) by shear layers (shadow boundaries in the
Legendre plane). The asymptotic structure around the “corners’ of the finger is rather complicated,
consisting of four further regions.

A noteworthy feature of analysis is that it is far easier to conduct in the Legendre plane than in
the physical plane. This is for two reasons: first the solutions in a number of the asymptotic regions
depend (either directly or indirectly) via matching conditions on the solution found in region | and
the latter can only be found analytically via a Legendre transform and, secondly, several of the
regions in the physical plane are described in terms of logarithmic radial coordinates which makes
application of the free boundary conditions and matching to other regions problematic.

In contrast to the extreme shear-thinning power-law injection problem none of the asymptotic
regions corresponds to the ‘naive’ limit problem (as n — +o0)

Vi .
V.-l =—1]=0 (orequivalently |[Vp|=1).
IVl

Consequently the simple arguments used by Aronsson (11, 14, 17 to 19) to explain the features of
the injection problem (and formalized in terms of rigorous asymptotics) do not carry over to the
Saffman-Taylor problem.

We have, in the treatment of this problem, tacitly assumed that the finger width A1 is O(1) (our
analysis also covers the case where the finger is algebraically small in inverse powers of n). Ex-
trapolating from the results presented by Ben Amar and Corvera Poiré (10) (for a nearly Newtonian
fluid) we might expect that the selected finger width 4, in the limit of small surface tension and large
shear-thinning exponent n to be small. This motivates us, in the Appendix, to briefly consider the
limit problem for a narrow finger (in the limit 4 — 0 with 2 = o(exp(—kn)), where k is a positive
O(1) constant).
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APPENDIX
The Ivantsov problem for power-law fluids

The analysis we pursue here applies for more general constitutive assumptions than those above (see (26) for
a derivation of how Q(|V/|) below is determined by the constitutive properties of the fluid). We accordingly
consider

V-(Q(VyDVy) =0

for rather general Q(-), subject to the boundary conditions (11) to (13). Transforming to the Legendre plane
yields

PQ(p)(Yaa + Pob) + Q' (p)(@*¥pb — 28bW¥ap + b* ¥aa) = 0
subject to (18), (19) and hence to

L (. p20p) 1, )
Tt (” QG ) (T/’ " 5%9) =0 A

subject to (21) to (23), an important feature of (A1) being that ¥ is separable in p and 6.
Next we formally set 1 = 0 in the boundary conditions to give (21) together with

Y=0 for 0<p<l on =0 (A2)
and observe that both (21) and (A2) can automatically be satisfied by adopting the ansatz
Y = F(p)siné. (A3)
It follows from (A1) that F (p) is given by the linear ordinary differential equation
() ()
it is worth emphasizing that this reduction is somewhat remarkable. One solution of (A4) is givenby F = Mp,

corresponding to translations of x and accordingly being (as already noted) irrelevant. The second solution can
be obtained by reduction of order in the form

F=N /OO L dp’ (A5)

=Np 2
p Q0"

the mechanism which specifies its amplitude N, via its singularity, is described below. The free boundary

p = cos @ is then given in physical coordinates (parametrically in terms of p = cos ) from the more general
expressions

1.1
X=—=F —=(pF' — F)sin?0,
PP

1
y==(pF’ — F)sinfcosd,
p

wherein it follows from (A5) that
pF —F = N ;
PL(p)
we remark that

_ 124
cosé

holds everywhere.
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n=02

n=1 n =04

n =06
n=2 Y n=o0s
n=3 n=1
n=>5 2
n =10
n = 100
_10 ) % 4 2 30 25 20 oI5 10 5 0
(2) X (b) X

Fig. A The Ivantsov finger with C = 1 and for (a) shear thinning fluids n = 100, 10, 5, 3,2, 1 and (b) for
shear thickening ones, n = 0-2,0-4, 0-6,0-8, 1

In the case of a power-law fluid we have Q(p) = p_(n_l)/” and (A5) becomes
F=—Cp~ /N,
where C = —nA//(n + 1). It then follows that

X _ ,~(4/n (1 N+l 9) ,
C n
(A6)
y _ N+l —minyng
== siné cosd,
C n P
and the free boundary p = cos# is shown for various values of n in Fig. A. In particular in the Newtonian case

n = 1 we have

2
(L) -1= %,
2C C
giving the usual Ivantsov parabola. The large-x behaviour of the finger shape given by (A6) is
_ 1/(n+1)
y~C(n:1) (w) as X — —oo.

This is to be compared with the approach of (10), which records power-law behaviour
1/(n+1)

y ~ const. (—X)

over a suitable intermediate regime for slender (needle) Saffman—Taylor fingers.

The above expressions give an exact solution for our class of non-Newtonian Hele-Shaw problem. To de-
scribe its relevance to the Saffman—Taylor problem, we now record that it represents, in the limit 2 — 0, the
outer solution in the Legendre plane and the inner solution at the tip of the finger in the physical plane. The
outer solution in the physical plane replaces the free-boundary conditions by yy = 0ony = 0, x < 0 (say,
given the invariance of the formulation under translations in x). The associated inner problem in the Legendre
plane has scalings

a=2a b=ib, ¥=19,
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producing at leading order a quarter-plane problem in & < 0, b > 0, with

on b=0 ‘?6:0 for a<o,
. Y=b-1 for 0<b<1,
on a=04¢ . N
Y =0 for b>1,

hence in terms of polar coordinates the boundary conditions read

on p=0 ¥=-1 for 0<9<%7r,

P=p—1fr 0<p<l,
on =0<¢ ,

¥Y=0 for p>1,
on 0=3x ¥, =0,

and this boundary-value problem has been solved in a different context in (25). The inner boundary-value
problem determines ¥ uniquely, in contrast to the outer one in which W is determined only up to an arbitrary
multiplicative constant ; once the inner solution is known, A/ is easily determined by matching its far field
p — 400 with (A5) with p — 0. Thus we have from (25) that

. an? g

~—_— sing as p — +oo,
zin+ 12’ P

so that
an

N T(n+1)



