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Abstract. This paper presents numerical approximation schemes for a two stage stochastic program-
ming problem where the second stage problem has a general nonlinear complementarity constraint: first,
the complementarity constraint is approximated by a parameterized system of inequalities with a well-
known regularization approach [44] in deterministic mathematical programs with equilibrium constraints;
the distribution of the random variables of the regularized two stage stochastic program is then approxi-
mated by a sequence of probability measures. By treating the approximation problems as a perturbation
of the original (true) problem, we carry out a detailed stability analysis of the approximated problems
including continuity and local Lipschitz continuity of optimal value functions, and outer semicontinuity
and continuity of the set of optimal solutions and stationary points. A particular focus is given to the
case when the probability distribution is approximated by the empirical probability measure which is
known as sample average approximation.
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1 Introduction

Consider the following two stage stochastic mathematical program with complementarity constraints
(SMPCC):

min
x, y(·)

E[f(x, y(ω), ξ(ω))]

subject to x ∈ X and for almost every ω ∈ Ω :
g(x, y(ω), ξ(ω)) ≤ 0,

h(x, y(ω), ξ(ω)) = 0, (1.1)
0 ≤ G(x, y(ω), ξ(ω)) ⊥ H(x, y(ω), ξ(ω)) ≥ 0,

where X is a nonempty closed convex subset of IRn, f : IRn× IRm× IRq → IR, g : IRn× IRm× IRq → IRs,
h : IRn × IRm × IRq → IRr, G : IRn × IRm × IRq → IRm and H : IRn × IRm × IRq → IRm are continuously
differentiable, ξ : Ω → Ξ is a vector of random variables defined on probability (Ω,F , P ) with support
set Ξ ⊂ IRq, and E[·] denotes the expected value with respect to the distribution of ξ and ‘⊥’ denotes the
perpendicularity of two vectors.

1The work of this author is carried out while he is visiting the second author in the School of Mathematics, University
of Southampton sponsored by China Scholarship Council.

2The work of the first and third authors was supported in part by NSFC Grant #10771025 and a Royal Society
international travel grant 2009.
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The SMPCC model differs from the classical two stage stochastic program in that it contains a
stochastic complementarity constraint. It also extends deterministic mathematical programs with com-
plementarity constraints (MPCC) by including a random vector ξ. The extension is driven by the practical
need as well as theoretical interest. For instance, in an investment model for a firm, one may use a random
vector to represent uncertainties arising from future market and a complementarity problem to describe
competition from its competitors, see [12, 46]. Similar SMPCC models can also be found in engineering
design, see for instance [9].

Patriksson and Wynter [32] first proposed a two stage stochastic mathematical programs with equilib-
rium constraints (SMPEC) model where the equilibrium constraint is represented by a general stochastic
variational inequality. They investigated a number of fundamental issues including existence and unique-
ness of optimal solutions, differentiability of upper stage objective function and numerical method for
solving the problem. Over the past few years since the first SMPEC paper, there have been increasing
discussions on the SMPECs, most of which focus on numerical methods. Shapiro [42] first applied the
well-known Monte Carlo method to a general two stage SMPECs where the expected of random func-
tions are approximated by their sample averages and investigated asymptotic convergence of optimal
solutions and optimal values as sample size increases. Shapiro and Xu [43] presented a detailed analysis
of SMPEC structure and demonstrated the exponential rate of convergence of sharp local minimizers of
sample average approximate problems. Lin, Chen and Fukushima [23] first investigated SMPCCs and
propose an implicit smoothing method for solving a discrete SMPCC with P0-linear complementarity
constraint. Xu and Meng [48] reformulated the SMPCC as a two stage stochastic minimization problem
with nonsmooth equality constraints and applied the sample average approximation method to solve
it. They obtained exponential rate of convergence of global optimal solutions obtained from solving the
sample average approximation problem. Moreover, they used a uniform law of large numbers for ran-
dom set-valued mappings to analyze almost sure convergence of generalized KKT points of the sample
average approximated SMPCC when the complementarity constraint is strongly monotone. Along this
direction, Meng and Xu [27] investigate convergence of stationary points obtained from solving sample
average approximated SMPECs where the complementarity constraints are not necessarily monotone.
More recently, Xu and Ye [49] derived first order optimality conditions for a two stage SMPEC in terms
of limiting subdifferentials. For more details about the development of SMPECs, see a survey paper [24]
and references therein.

In this paper, we are concerned with numerical approximation of the two stage SMPCC (1.1). We ask
ourselves two fundamental questions: (a) can we approximate SMPCC (1.1) by an ordinary two stage
stochastic program with equality and/or inequality constraints? (b) can we approximate the stochastic
program by a deterministic nonlinear programming problem (NLP)? The answer to question (a) has
been partially answered. For example, one can use NCP functions such as min-function or Fischer-
Burmeister function to reformulate a complementarity problem as a nonsmooth system of equations
and consequently SMPCC (1.1) as a two stage stochastic program with nonsmooth equality constraints,
see [48, 27]. Question (b) is classical in stochastic programming. A simple answer is to use the well-
known Monte Carlo sampling method. In the literature of MPECs, however, the reformulation through
NCP functions are not most popular. Similarly, in the literature of stochastic programming, there
exist discretization/approximation schemes other than Monte Carlo sampling to deal with the random
variables.

In this paper, we apply a well-known regularization method ([44, 41, 15]) to tackle the complementarity
constraint and then consider a sequence of probability measures to approximate the distribution of ξ with a
particular focus on the empirical probability measure (which is known as sample average approximation).
The basic idea of the regularization method is to approximate the complementarity constraint 0 ≤ x ⊥
y ≥ 0 by a system of parameterized nonlinear inequalities x ≥ 0, y ≥ 0, where the components of x
and y satisfy xiyi ≤ t for some small positive parameter t. The regularization method has now been
widely applied to solve deterministic MPCCs. The main advantage of the method is that the regularized
MPCC is an NLP which can be solved by existing NLP solvers. Moreover, the regularized NLP satisfies
Mangasarian-Fromowitz Constraint Qualification (MFCQ) under so-called MPEC-MFCQ of the original
problem. It is well-known that MFCQ is closely related to the numerical stability of the problem.
In the context of SMPCC, the regularization approach allows one to approximate SMPCC (1.1) by a
parameterized ordinary two stage stochastic program which paves the way for the numerical solution of
the problem. However, there are a number of theoretical issues to be resolved in order to justify such
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approximation and this is indeed one of the motivations of this paper.

We include a brief literature review of the NLP-regularization approach for two stage SMPCCs.
Shapiro and Xu [43] seemed first to apply the approach to a two stage SMPCC and then used the
sample average approximation method to solve it. They predicted the convergence of the regularized
SAA method for a class of SMPCCs with strong monotone complementarity constraint but did not give
details of the convergence analysis. In a conference paper, Ralph, Xu and Meng [34] carried out some
convergence analysis of the NLP-regularized SAA method for solving a class of SMPCCs with monotone
complementarity constraint with a particular focus on optimal values and Clarke stationary points.

Since the NLP-regularization is a very popular approach for solving deterministic MPECs, we revisit
the topic (the application of the approach to two stage SMPCCs) but from a different perspective and on
a wider class of problems: we consider a two stage SMPCC with a general complementarity constraint
which is not necessarily monotone; under some moderate conditions (MPEC-MFCQ), we present a de-
tailed analysis on the approximation of optimal values, optimal solutions and stationary points as the
regularization parameter tends to zero. Our analysis is carried out from stability point of view, that
is, treating the regularized problem as a perturbation of the true SMPCC (1.1). Under some standard
conditions in MPECs and sensitivity analysis of parametric MPECs, we demonstrate that the SMPCC
problem (1.1) can be effectively approximated by its NLP-regularization which is an ordinary two stage
stochastic program. Moreover, we carry out stability analysis of the regularized two stage problem when
the probability distribution of ξ is approximated by a sequence of probability measures including the
sample average approximation as a special case (empirical probability measure). This broadens the scope
in approximating the expected values of the random functions.

2 Preliminaries

In this section, we present some preliminary results in deterministic MPECs, set-valued analysis and
random set-valued mapping.

Throughout this paper, we use the following notation. xT y denotes the scalar product of vectors x and
y, ‖·‖ denotes the Euclidean norm of a vector and a compact set of vectors. d(x,D) represents the distance
from point x to set D, that is, d(x,D) := infx′∈D ‖x−x′‖. For two compact sets D1 and D2, D(D1, D2) :=
supx∈D1

d(x, D2) denotes the deviation of D1 from D2 and H(D1, D2) := max (D(D1, D2),D(D2, D1))
denotes the Hausdorff distance between D1 and D2; D1 + D2 to denote the Minkowski addition of D1

and D2, that is, D1 + D2 = {x + y : x ∈ D1, y ∈ D2}. For a set C, we use conv C, cl C to denote the
convex hull and closure of set C respectively. For a real-valued function f(x), we use ∇f(x) to denote the
gradient of f at x which is a column vector. When f is a vector valued function, ∇f(x) represents the
Jacobian of f at x where the gradient of the j-th component of f forms the j-th column of the Jacobian.
Finally, for a set {(x, y) = z : z ∈ Z}, ΠxZ = {x : ∃ y such that (x, y) ∈ Z}.

2.1 Some basics in deterministic MPECs

Consider the following mathematical program with complementary constraints (MPCC for short)

min
z

f(z)

subject to g(z) ≤ 0,
h(z) = 0,
0 ≤ G(z)⊥H(z) ≥ 0,

(2.2)

where f : IRn → IR, g : IRn → IRs, h : IRn → IRr, G : IRn → IRm and H : IRn → IRm are continuously
differentiable. For a feasible point z∗, we define the following index sets:

Ig(z∗) := {i |gi(z∗) = 0, i = 1, · · · , s},
IG(z∗) := {i |Gi(z∗) = 0, i = 1, · · · ,m},
IH(z∗) := {i |Hi(z∗) = 0, i = 1, · · · ,m}.
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Moreover, we define a family of nonempty index sets J ⊆ {1, · · · ,m},

J (z∗) := {J : J ⊆ IG(z∗), Jc ⊆ IH(z∗)}, (2.3)

where Jc := {1, · · · ,m}\J . We consider the following nonlinear program corresponding to index set J

NLPJ : min
z

f(z)

subject to g(z) ≤ 0,
h(z) = 0,
Gi(z) = 0, Hi(z) ≥ 0, i ∈ J,
Gi(z) ≥ 0, Hi(z) = 0, i ∈ Jc.

(2.4)

In the literature of MPECs, each of the nonlinear programs correspording to index set J is called an NLP
branch of (2.2) and its feasible set is called a branch of the feasible set of MPEC. It is obvious that the
branches over J ∈ J (z∗) form a neighborhood of z∗ in the feasible set of (2.2), see [18].

Definition 2.1 MPCC (2.2) is said to satisfy MPEC-Mangasarian-Fromowitz Constraint Qualification
(MPEC-MFCQ for short) at a feasible point z∗ if the gradient vectors

{∇hi(z) : i = 1, · · · , r; ∇Gi(z∗), i ∈ IG(z∗); ∇Hi(z∗) : i ∈ IH(z∗)}

are linearly independent and there exists a vector d ∈ Rn perpendicular to the vectors such that

∇gi(z∗)T d < 0, ∀i ∈ Ig(z∗).

It is said to satisfy MPEC Linear Independent Constraint Qualification (MPEC-LICQ for short) at z∗ if
the gradient vectors

{∇gi : i ∈ Ig(z∗); ∇hi(z) : i = 1, · · · , r;∇Gi(z∗), i ∈ IG(z∗); ∇Hi(z∗) : i ∈ IH(z∗)}

are linearly independent.

Definition 2.2 [41] A point z∗ is said to be a weak stationary point of (2.2) if there exist vectors α∗ ∈ IRs,
β∗ ∈ IRr, and u∗, v∗ ∈ IRm such that

0 = ∇f(z∗) +∇g(z∗)α∗ +∇h(z∗)β∗ −∇G(z∗)u∗ −∇H(z∗)v∗,
0 ≤ α∗ ⊥ g(z∗) ≤ 0,

0 = u∗i , i /∈ IG(z∗),
0 = v∗i , i /∈ IH(z∗).

Here α∗, β∗, u∗ and v∗ are known as the corresponding Lagrange multipliers. Moreover,

• z∗ is called C-stationary to (2.2) if u∗i v
∗
i ≥ 0 holds for each i ∈ IG(z∗) ∩ IH(z∗).

• z∗ is called M-stationary to (2.2) if min(u∗i , v
∗
i ) > 0 or u∗i v

∗
i = 0 holds for each i ∈ IG(z∗)∩IH(z∗).

• z∗ is called S-stationary to (2.2) if u∗i ≥ 0 and v∗i ≥ 0 hold for each i ∈ IG(z∗) ∩ IH(z∗).

2.2 Set-valued mapping and subdifferentials

Let X be a closed subset of IRn. A set-valued mapping F : X → 2IRm

is said to be closed at x ∈ X if
F (x) is a closed set. The Painlevé-Kuratowski upper limit of F at x̄ is defined as

lim
x→x̄

F (x) := {v ∈ Rm : ∃ seqences xk → x̄, vk → v with vk ∈ F (xk)}.

F is said to be outer semicontinuous (osc for brevity) at x̄ ∈ X relative to X ⊂ IRn if limx→x̄ F (x) ⊆
F (x̄) or equivalently limx→x̄D(F (x), F (x̄)) = 0. F is said to be locally bounded at x̄ if there exists a
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neighborhood U of x̄ such that
⋃

x∈U F (x) is bounded. If F is locally bounded at x̄, then the outer
semicontinuity of F at x̄ is equivalent to that F (x̄) is closed and for every open set O ⊃ F (x̄), there is a
neighborhood U of x̄ such that

⋃
x∈U F (x) ⊂ O, see [38].

Consider now a random set-valued mapping F (·, ξ(·)) : X × Ω → 2IRn

(we are slightly abusing the
notation F ) where X is a closed subset of IRn and ξ is a random vector defined on probability space
(Ω,F , P ). Let x ∈ X be fixed and consider the measurability of set-valued mapping F (x, ξ(·)) : Ω → 2IRn

.
Let B denote the space of nonempty, closed subsets of IRn. Then F (x, ξ(·)) can be viewed as a single
valued mapping from Ω to B. Using [38, Theorem 14.4], we know that F (x, ξ(·)) is measurable if and
only if for every B ∈ B, F (x, ξ(·))−1B is F-measurable.

Recall that a(x, ξ(ω)) ∈ F (x, ξ(ω)) is said to be a measurable selection of the random set F (x, ξ(ω)),
if a(x, ξ(ω)) is measurable. The expectation of F (x, ξ(ω)), denoted by E[F (x, ξ(ω))], is defined as the
collection of E[a(x, ξ(ω))], where a(x, ξ(ω)) is an integrable measurable selection. The expected value is
also known as Aumann’s integral [3].

Definition 2.3 Let f : IRn → IR be a lower semicontinuous function and finite at x ∈ IRn. The proximal
subdifferential ([38, Definition 8.45]) of f at x is defined as

∂πf(x) :=
{
ζ ∈ IRn : ∃σ > 0, δ > 0 such that f(y) ≥ f(x) + 〈ζ, y − x〉 − σ‖y − x‖2, ∀y ∈ B(x, δ)

}
,

the limiting subdifferential (Mordukhovich or basic [28]) of f at x is defined as

∂Mf(x) := lim
x′

f→ x

∂πf(x′),

and singular limiting subdifferential

∂∞f(x) := {v ∈ IRn : v = lim
k→∞

akvk with vk ∈ ∂πf(xk) and ak ↓ 0, xk f→ x},

where x′
f→ x signifies that x′ and f(x′) converge to x and f(x) respectively.

It is well-known that a function f : IRn → IR is locally Lipschitz continuous near x̄ if and only if
∂∞f(x̄) = {0}, see for example [25, Proposition 2.4].

Let f : IRn → IRm be a locally Lipschitz continuous function. The Clarke subdifferential (also known
as generalized gradient) of f at x ∈ IRn is defined as

∂f(x) := conv
{

lim
y∈D, y→x

∇f(y)
}

,

where D denotes the set of points at which f is Fréchet differentiable, ∇f(y) denotes the usual gradient
of f . It is well-known that the Clarke generalized gradient ∂f(x) is a convex compact set and it is upper
semi-continuous, see [10, Proposition 2.1.2 and 2.1.5]. When f is locally Lipschitz continuous near x, the
Clarke subdifferential of f at x coincides with the convex hull of the limiting subdifferential, that is,

∂f(x) = conv ∂Mf(x),

see [38, Theorem 9.61].

2.3 Sensitivity of generalized equations

Consider the following generalized equations

0 ∈ Γ(x) + K, (2.5)

where Γ(·) : IRn → 2IRm

is a closed set-valued mapping and K ⊆ IRm is a closed set. Let Γ̄(x) be a
perturbation of Γ(x) and consider the perturbed generalized equations

0 ∈ Γ̄(x) + K. (2.6)

The following lemma states that when D(Γ̄(x), Γ(x)) is sufficiently small uniformly with respect to x, the
solution set of (2.6) is close to the solution set of (2.5).

5



Lemma 2.1 Let X be a compact subset of IRn. Let X∗ denote the set of solutions to (2.5) within set X
and Y ∗ the set of solutions to (2.6) within X. Assume that both X∗ and Y ∗ are nonempty. Then

(i) if Γ is outer semicontinuous in X, then for any ε > 0, there exists a δ > 0 such that D(Y ∗, X∗) < ε,
for supx∈X D(Γ̄(x), Γ(x)) < δ;

(ii) if, in addition, Γ̄(x) is also outer semicontinuous in X, then for any ε > 0, there exists a δ > 0
such that H(Y ∗, X∗) < ε, for supx∈X H(Γ̄(x), Γ(x)) < δ.

This lemma is similar to [47, Lemma 4.2]. The only difference is that here we consider a general set
K rather than a normal cone but this does not affect the conclusion.

Definition 2.4 [21] A set-valued mapping F : X ⊆ IRn → 2IRm

is said to be Pseudo-Lipschitzian at
(z∗, x∗), where x∗ ∈ X and z∗ ∈ F (x∗), if there exist neighborhoods U of z∗, V of x∗, and a positive real
number σ such that

F (x′) ∩ U ⊂ F (x′′) + σ‖x′ − x′′‖B, ∀x′, x′′ ∈ V,

where B is closed unit ball in IRm.

The Pseudo-Lipschitz property is equivalent to F−1 having a linear rate of openness as well as to F−1

being metrically regular, that is, there exists a positive constant C such that

d(x, F−1(z)) ≤ Cd(z, F (x)), for all (x, z) close to (x∗, z∗),

see [13].

3 NLP-regularization and stability analysis

In this section, we apply the NLP-regularization scheme [44] to SMPCC (1.1) and analyze the stability of
the regularized SMPCC in the sense of continuity and local Lipschitz continuity of optimal value functions
together with outer semicontinuity and continuity of set mappings of optimal solutions and stationary
points. While our analysis follows general steps in the stability analysis of parametric programming
[20, 21, 6], we need to tackle a number of new challenges and complications arising from: (a) a mix of
parameters with entirely different roles including the first stage decision variable, the random vector and
the regularization parameter in the second stage problem, and (b) the subtle relationship between the
constraint qualification of the true problems and that of the regularized problems.

3.1 NLP-regularization

In order to apply the NLP-regularization scheme, we first need to reformulate the SMPCC (1.1). Under
some moderate conditions, problem (1.1) can be written as

Pϑ : min
x

ϑ(x) = E[v(x, ξ(ω))] (3.7)

subject to x ∈ X,

where v(x, ξ) denotes the optimal value function of the following second stage problem:

MPCC(x, ξ) : min
y

f(x, y, ξ)

subject to g(x, y, ξ) ≤ 0,

h(x, y, ξ) = 0, (3.8)
0 ≤ G(x, y, ξ) ⊥ H(x, y, ξ) ≥ 0.
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The reformulation is well-known, see for example a discussion in [43, Section 2]. We apply the NLP-
regularization scheme ([44, 41, 15]) to the second stage problem MPCC(x, ξ) by replacing the comple-
mentarity constraint with a parameterized system of inequalities, that is,

G(x, y, ξ) ≥ 0, H(x, y, ξ) ≥ 0, G(x, y, ξ) ◦H(x, y, ξ) ≤ te,

where t ≥ 0 is a nonnegative parameter, e ∈ IRm is a vector with components 1 and “◦” denotes the
Hadamard product. Consequently we consider the following regularized second stage problem:

REG(x, ξ, t) : min
y

f(x, y, ξ)

subject to g(x, y, ξ) ≤ 0,
h(x, y, ξ) = 0,
G(x, y, ξ) ≥ 0,
H(x, y, ξ) ≥ 0,
G(x, y, ξ) ◦H(x, y, ξ) ≤ te.

(3.9)

Following the terminology in deterministic MPECs, we call (3.9) a regularized NLP approximation of the
second stage problem (3.8). Let v̂(x, ξ, t) denote the optimal value of the regularized problem. Then the
corresponding first stage problem can be written as

Pϑ̂ : min
x

ϑ̂(x, t) = E[v̂(x, ξ(ω), t)]

subject to x ∈ X.
(3.10)

Observe that when t = 0, REG(x, ξ, t) coincides with MPCC(x, ξ) and Pϑ̂ coincides with Pϑ. The
underlying reason for us to consider the regularization scheme here is that the regularized problem is an
ordinary stochastic NLP to which existing numerical methods in the literature of stochastic programming
may be applied. From numerical perspective, t often takes a small positive value because REG(x, ξ, t)
never satisfies MFCQ (which is equivalent to numerical stability) at t = 0. Our focus in this and the
following section is to provide a theoretical justification of the NLP-regularization approximation as
t → 0. Specifically, we analyze continuity of optimal value functions and set of optimal solutions for
both the first and the second stage problems particularly when t tends to 0. Note that this kind of
stability analysis can be found to some extent in [44, 41, 15] where the NLP-regularization is applied to
deterministic MPCCs with nonmonotonic complementarity constraints. Here the SMPCC involves two
stages and at the second stage the first stage decision vector x, the random variable ξ are both treated
as parameters together with the regularization parameter t. However the three parameters have to be
treated in a different way, which means that we cannot directly apply the stability results established in
[44, 41, 15] where t is the only parameter.

Some notation are in place. We use F(x, ξ) and F̂(x, ξ, t) to denote respectively the feasible set of the
second stage problem (3.8) and (3.9); Ysol(x, ξ) and Ŷsol(x, ξ, t) the set of global optimal solutions; Xsol

and X̂sol(t) the optimal solution set of the first stage problem (3.7) and (3.10). We use φ(t) to denote
the optimal value of Pϑ̂. Observe that F̂(x, ξ, 0) = F(x, ξ), Ŷsol(x, ξ, 0) = Ysol(x, ξ) and X̂sol(0) = Xsol.

3.2 Continuity of optimal value functions and solution mappings

3.2.1 The second stage problem

We start by investigating the continuity of optimal value function v̂(x, ξ, t) and solution set mapping
Ŷsol(x, ξ, t) of the second stage regularized problem REG(x, ξ, t) with respect to x, ξ and t. We need the
following inf-compactness condition.

Assumption 3.1 (Inf-compactness) Let x∗ ∈ X. There exist constants δ, t∗ > 0, a compact set
Y ⊂ IRm and a neighborhood U of x∗ such that

∅ 6= {y : f(x, y, ξ) ≤ δ and y ∈ F(x, ξ, t)} ⊂ Y,

for all (x, ξ, t) ∈ U × Ξ× [0, t∗].
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We make a few comments on the inf-compactness assumption.

1. Inf-compactness conditions are widely used in the stability analysis of parametric programming.
The conditions here are slightly different from those in [6, Proposition 4.4] in that the parameters
x, ξ and t are not treated equally. Specifically, x is the decision vector of the first stage problem
and we need to discuss various topological properties of optimal values and solution mappings
with respect to it, therefore we consider it in a neighborhood U of a considered point x∗; t is a
regularization parameter and we are only interested in the case when it is close to 0, the fundamental
reason that we are interested in a nonzero value of t is that the regularized problem satisfies MFCQ
under the standard MPEC-MFCQ of the true problem when t > 0; finally ξ is a realization of the
random vector ξ(ω), instead of requiring differentiability of optimal values of solution set mapping,
we need measurability of these quantities with respect to ξ.

2. Both constants δ and t∗ depend on x∗. The inf-compactness condition implies that the optimal
solution set Ŷsol(x, ξ, t) is nonempty and bounded by compact set Y for all (x, ξ, t) ∈ U ×Ξ× [0, t∗].

3. The inf-compactness condition holds when f(x, ·, ξ) is uniformly coercive or strongly convex. More-
over, in the case when G(x, y, ξ) = y, the condition is implied by the monotonicity of H(x, ·, ξ). For
instance, if Ξ is bounded and H(x, ·, ξ) is a R0 function for every (x, ξ) ∈ X × Ξ, that is, if for any
sequence {yk} with lim

k→∞
‖yk‖ = +∞, lim inf

k→∞
(min{yk

1 , · · · , yk
m})/‖yk‖ ≥ 0 and

lim inf
k→∞

min{H1(x, yk, ξ), · · · ,Hm(x, yk, ξ)}/‖yk‖ ≥ 0,

there exists an index j such that {yk
j } → +∞ and {Hj(x, yk, ξ)} → +∞. In such a case, the feasible

set of problem (3.9) is uniformly bounded for t ∈ [0, +∞), see [8, Lemma 2.2] for more details.

Our first technical result is that under Assumption 3.1 the feasible set F̂(x, ξ, t) of the second stage
regularized problem is continuous with respect to (x, ξ, t) when it is restricted to set Y .

Proposition 3.1 Let Assumption 3.1 hold at point x∗ ∈ X and FY (x, ξ, t) = Y ∩ F̂(x, ξ, t). Then there
exist a neighborhood U of x∗ and a scalar t∗ > 0 such that FY (x, ξ, t) is continuous on U × Ξ× [0, t∗].

Proof. Let U and t∗ be given as in Assumption 3.1 and

R(x, y, ξ, t) =




h(x, y, ξ)
g(x, y, ξ)
−G(x, y, ξ)
−H(x, y, ξ)

G(x, y, ξ) ◦H(x, y, ξ)− te




.

Then FY (x, ξ, t) is the set of solutions to the following generalized equations restricted to set Y :

0 ∈ R(x, y, ξ, t) +Q,

where Q = 0r× IRs+m+m+m
+ . Under Assumption 3.1, FY (x, ξ, t) is nonempty for (x, ξ, t) ∈ U×Ξ× [0, t∗].

Moreover, R(x, y, ξ, t) is single valued and continuous. By Lemma 2.1, FY (x, ξ, t) is Hausdorff continuous
on U × Ξ× [0, t∗]. The proof is complete.

Using Proposition 3.1, we can establish the outer semicontinuity of the optimal solution set mapping
and continuity of the optimal value function of the second stage regularized problem REG(x, ξ, t).

Theorem 3.1 (Stability of REG(x, ξ, t)) Let Assumption 3.1 hold at point x∗ ∈ X. Then there exist
a neighborhood U of x∗ and a scalar t∗ > 0 such that

(i) the optimal solution set Ŷsol(x, ξ, t) of the second stage problem REG(x, ξ, t) is outer semi-continuous
on U × Ξ× [0, t∗];
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(ii) the optimal value function v̂(x, ξ, t) of the second stage problem REG(x, ξ, t) is continuous on U ×
Ξ× [0, t∗];

(iii) for any x ∈ U and t ∈ (0, t∗], v(x, ·) and v̂(x, ·, t) are continuous on Ξ.

Proof. Let U and t∗ be given as in Assumption 3.1. Observe first that v̂(x, ξ, t) is well-defined for
all (x, ξ, t) ∈ U × Ξ × [0, t∗], that is, v̂(x, ξ, t) takes a finite value. Moreover the optimal solution set
Ŷsol(x, ξ, t) ⊂ Y .

Part (i). Let {(xk, ξk, tk)} be any sequence in U ×Ξ× [0, t∗] such that (xk, ξk, tk) → (x, ξ, t). Let ŷk ∈
Ŷsol(xk, ξk, tk) and ŷ be an accumulation point of sequence {ŷk}. It suffices to show that ŷ ∈ Ŷsol(x, ξ, t).
Assume for a contradiction that ŷ 6∈ Ŷsol(x, ξ, t), that is, v̂(x, ξ, t) < f(x, ŷ, ξ). Let y∗ ∈ Ŷsol(x, ξ, t). Then

v̂(x, ξ, t) = f(x, y∗, ξ) < f(x, ŷ, ξ).

For the given y∗, it follows by Proposition 3.1, there exists a sequence {yk} such that yk ∈ FY (xk, ξk, tk)
and yk → y∗ as k → ∞. Since f is continuous, there exists k0 such that for k ≥ k0, f(xk, yk, ξk) <
f(xk, ŷk, ξk), which contradicts the fact that ŷk ∈ Ŷsol(xk, ξk, tk).

Part (ii). Given the outer semi-continuity of Ŷsol(x, ξ, t) and the continuity of f , we can easily use [6,
Proposition 4.4] to obtain the continuity of v̂(x, ξ, t) on U × Ξ× [0, t∗]. We omit the details.

Part (iii). The continuity of v(x, ·) and v̂(x, ·, t) follows from Part (ii).

Recall that a set-valued mapping Γ : Ω×X → 2IRm

is said to be Carathédory if for every x, Γ(·, x) is
measurable and for every ω, Γ(ω, ·) is continuous, see [3]. By Theorem 3.1, we have the following.

Corollary 3.1 Assume the settings and conditions of Proposition 3.1 and Theorem 3.1. Then FY (·, ξ(·), ·) :
U ×Ω× [0, t∗] → 2IRm

is a Carathédory mapping and v̂(·, ξ(·), ·) : U ×Ω× [0, t∗] → IR is a Carathéodory
function.

3.2.2 First stage problem

Next, we consider the first stage regularized problem Pϑ̂. Under some moderate conditions, we establish
the outer semi-continuity of the optimal solution set mapping and continuity of the optimal value function
of the problem.

Theorem 3.2 (Stability of Pϑ̂) Let X̄ ⊆ X be a compact set and Assumption 3.1 hold for every x ∈ X̄.
Suppose that there exists a positive constant t̄ such that for all t ∈ [0, t̄], X̂sol(t) ∩ X̄ 6= ∅. Then there
exists a positive constant t∗ < t̄ such that

(i) the optimal solution set mapping X̂sol(·) ∩ X̄ is outer semi-continuous on [0, t∗];

(ii) the optimal value function φ(t) of problem Pϑ̂ is continuous on [0, t∗].

Proof. Let x ∈ X̄. Since Assumption 3.1 holds at x, by Theorem 3.1, there exist a neighborhood Ux

of x and a scalar tx > 0 (depending on x) such that v̂(x, ξ, t) is continuous on Ux × Ξ × [0, tx]. What
we need to prove here is to find a positive scalar t∗ independent of x such that v̂(x, ξ, t) is continuous on
Ux × Ξ× [0, t∗] for all x ∈ X̄. Our idea is to use the finite covering theorem: given the fact that we can
find a neighborhood Ux for every point x and a positive number tx such that v̂ is continuous, we can find
a finite number of such neighborhoods Uxi and positive numbers txi , i = 1, · · · , î such that the union of
the neighborhood U =

⋃î
i=1 Uxi covers the compact set X̄, and v̂(·, ·, ·) is continuous on U ∩X̄×Ξ× [0, t∗]

where t∗ = minî
i=1 txi .

Part (ii). Under Assumption 3.1, v̂(x, ξ, t) ≤ δx for some positive constant δx and from Part (i), v̂(·, ·, ·)
is continuous on Ux × Ξ × [0, tx]. By [40, Proposition 1, Chapter 2], ϑ(x, t) = E[v̂(x, ξ, t)] is continuous
on Ux × [0, tx]. Using the covering theorem as in the proof of Part (i), we can find δ = maxî

i=1 δxi such
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that v̂(x, ξ, t) is bounded by δ and ϑ(x, t) = E[v̂(x, ξ, t)] is continuous on X̄ × [0, t∗], where t∗ is given as
in the proof of Part (i). Obviously the level set {x ∈ X : v(x, t) ≤ δ} is nonempty and its interception
with X̄ is also nonempty. By applying [6, Proposition 4.4], we conclude that the optimal value function
φ(t) of Pϑ̂ is continuous on [0, t∗]. The proof is complete.

3.3 Lipschitz continuity of optimal value functions

We use the classical quantitative stability results in parametric programming to investigate the local Lips-
chitz continuity of the optimal value function v̂(x, ξ, t) of the second stage regularized problem REG(x, ξ, t)
with respect to x, t and value function v(x, ξ) of MPCC(x, ξ) with respect to x. A sufficient condition
is the Pseudo-Lipschitz property of the feasible solution set mapping which is implied by the MFCQ of
the problem, see a discussion by Klatte at page 3 in [20]. To this end, we discuss the MFCQ of the
regularized problem REG(x, ξ, t) in Proposition 3.2 under the MPEC-MFCQ of MPCC(x, ξ).

Proposition 3.2 Let x∗ ∈ X, ξ∗ ∈ Ξ be fixed and y∗ ∈ F(x∗, ξ∗). Assume that problem MPCC(x∗, ξ∗)
satisfies MPEC-MFCQ at y∗. Then there exist neighborhoods of y∗ and (x∗, ξ∗), denoted by Uy∗ and
U(x∗,ξ∗) respectively, and a scalar t∗ > 0 such that for all (x, ξ, t) ∈ U(x∗,ξ∗) × (0, t∗], the regularized
second stage problem REG(x, ξ, t) satisfies the MFCQ at any point y ∈ Uy∗ ∩ F̂(x, ξ, t).

Proof. For the simplicity of notation, let z = (x, y, ξ) and z∗ = (x∗, y∗, ξ∗) and throughout the proof,
“∇” denote the gradient with respect to y. By the definition of MFCQ, it suffices to show that there
exist a neighborhood U of z∗ and a scalar t∗ > 0 such that for any t ∈ (0, t∗], (x, ξ) ∈ X ×Ξ and feasible
point y of REG(x, ξ, t) with (x, y, ξ) = z ∈ U , the gradient vectors

∇hi(z) : i = 1, · · · , r,

are linearly independent and there exists a vector d(z) (depending on z) such that




0 = ∇hi(z)T d(z), i = 1, · · · , r.
0 > ∇gi(z)T d(z), i ∈ Ig(z),
0 > −∇Gi(z)T d(z), i ∈ IG(z),
0 > −∇Hi(z)T d(z), i ∈ IH(z),
0 > (Hi(z)∇Gi(z) + Gi(z)∇Hi(z))T d(z), i ∈ IG◦H(z),

(3.11)

where IG◦H(z) := {i | Gi(z)Hi(z) = t, i = 1, · · · ,m}. In what follows, we construct such a vector d(z).

First, by assumption MPEC-MFCQ holds at y∗ for problem MPCC(x∗, ξ∗). By the definition of
MPEC-MFCQ, the gradient vectors

{∇hi(z∗), i = 1, · · · r; ∇Gi(z∗), i ∈ IG(z∗); ∇Hi(z∗), i ∈ IH(z∗)}
are linearly independent and there exists a vector d̄ ∈ IRn which is perpendicular to these gradient vectors
and

∇gi(z∗)T d̄ < 0 for i ∈ Ig(z∗). (3.12)

Second, it is not difficult to show that there exist a neighborhood U1 of z∗ and t∗ > 0 such that for
any z ∈ U1 and t ∈ (0, t∗], the following relations hold:





Ig(z) ⊆ Ig(z∗),
IG(z) ⊆ IG(z∗),
IH(z) ⊆ IH(z∗),
IG(z) ∩ IG◦H(z) = ∅,
IH(z) ∩ IG◦H(z) = ∅,

and the gradient vectors

∇hi(z), i = 1, · · · , r; ∇Gi(z), i ∈ IG(z), ∇Hi(z), i ∈ IH(z); Hi(z)∇Gi(z) + Gi(z)∇Hi(z), i ∈ IG◦H(z)
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are linearly independent.

Third, the linear independence of the gradient vectors in the second step implies that, for each fixed
γ and any z ∈ U1, there exists a nonzero vector d̂(z, γ) with bounded norm such that

γ∇hi(z)T d̄ = ∇hi(z)T d̂(z, γ), i = 1, · · · , r,

1 = ∇Gi(z)T d̂(z, γ), i ∈ IG(z),

1 = ∇Hi(z)T d̂(z, γ), i ∈ IH(z),

−1 = (Hi(z)∇Gi(z) + Gi(z)∇Hi(z))T d̂(z, γ), i ∈ IG◦H(z).

Indeed, if we use A(z)T to denote the coefficient matrix and b(z, γ) the left hand side of the linear system
of equations above, then we may choose

d̂(z, γ) = A(z)[A(z)T A(z)]−1b(z, γ).

Denote A#(z) := A(z)[A(z)T A(z)]−1. The continuous differentiability of h(z), G(z) and H(z) implies
that there exists a positive constant C such that ‖A#(z)‖ ≤ C for all z ∈ U1. Note that as z varies, the
number of equations in the above system may change but our conclusion on the boundedness of A#(z)
holds.

Fourth, let d(z, γ) = γd̄− d̂(z, γ). Then

∇hi(z)T d(z, γ) = ∇hi(z)T (γd̄− d̂(z, γ)) = 0, i = 1, · · · , r. (3.13)

Moreover, for any i ∈ Ig(z) and z ∈ U1

∇gi(z)T d(z, γ) = γ∇gi(z)T d̄−∇gi(z)T d̂(z, γ) (3.14)
= γ∇gi(z)T d̄−∇gi(z)T (A#(z)b(z, γ))

= γ[∇gi(z)T d̄−∇gi(z)T (A#
r (z)∇h(z)T d̄)]−∇gi(z)T (A#

r−(z)(1, 1,−1)T ),

where A#
r (z) denotes the matrix which takes the first r columns of A#(z) and A#

r−(z) denotes the
other part of A#(z). Note that ∇h(z)T d̄ tends to zero, ∇g(z)T d̄ → ∇g(z∗)T d̄ < 0 as z → z∗ and
∇gi(z)T (A#

r−(z)(1, 1,−1)T ) is independent of γ and bounded when z is close to z∗. Therefore there exist
a positive scalar γ sufficiently large and a neighborhood U2 ⊆ U1 of z∗ such that

∇gi(z)T d(z) < 0, ∀z ∈ U2.

Let γ be fixed. Since d̄ is perpendicular to ∇G(z∗) and ∇H(z∗), we can choose a smaller neighborhood
U3 ⊆ U2 of z∗ such that for any z ∈ U3

{ −∇Gi(z)T d(z, γ) = −γ∇Gi(z)T d̄− 1 < 0, i ∈ IG(z),
−∇Hi(z)T d(z, γ) = −γ∇Hi(z)T d̄− 1 < 0, i ∈ IH(z), (3.15)

and

(Hi(z)∇Gi(z) + Gi(z)∇Hi(z))T d(z, γ) = Hi(z)(−γ∇Gi(z)T d̄− 1) + Gi(z)(−γ∇Hi(z)T d̄− 1)
< 0, i ∈ IG◦H(z). (3.16)

Letting U = U3, Uy∗ = ΠyU , U(x∗,ξ∗) = Π(x,ξ)U and combining (3.13)–(3.16), we obtain d(z) = d(z, γ)
satisfying (3.11) as desired and hence the conclusion.

Corollary 3.2 Assume the conditions of Proposition 3.2. Then there exist a neighborhood U(x∗,ξ∗) of
(x∗, ξ∗) and a neighborhood Uy∗ of y∗ such that for all (x, ξ) ∈ U(x∗,ξ∗), problem MPCC(x, ξ) satisfies the
MPEC-MFCQ at every feasible point y ∈ Uy∗ .

Proof. Let z = (x, y, ξ) and z∗ = (x∗, y∗, ξ∗) and throughout the proof “∇” denote the gradient with
respect to y. It is obvious that there exists a neighborhood U1 of z∗ such that

Ig(z) ⊆ Ig(z∗), IG(z) ⊆ IG(z∗), IH(z) ⊆ IH(z∗),
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and the matrix A(z) with columns

∇hi(z), i = 1, · · · r; ∇Gi(z), i ∈ IG(z); ∇Hi(z), i ∈ IH(z),

has full column rank. Let d̄ be a given vector which satisfies the MPEC-MFCQ at point y∗ and let

d(z) = [I −A(z)(A(z)T A(z))−1A(z)T ]d̄.

Since d(z) → d̄ as z → z∗, there exists a neighborhood U ⊆ U1 of z∗ such that

∇g(z)T d(z) < 0, A(z)T d(z) = 0.

The claim holds for Uy∗ = ΠyU and U(x∗,ξ∗) = Π(x,ξ)U .

In what follows, we establish the local Lipschitz continuity of v̂(x, ξ, t) and v(x, ξ) with respect to x
and t for all ξ ∈ Ξ. We do so by exploiting the well-known stability results due to Klatte [20] and [21] for
v̂(x, ξ, t) and a stability result on parametric MPEC by Hu and Ralph [18] for v(x, ξ). The key argument
we want to use from Klatte’s stability results is that the local Lipschitz continuity of our objective function
f(x, y, ξ) and the Psudo-Lipschitzian of the feasible set F̂(x, ξ, t) imply the local Lipschitz continuity of
the optimal value function v̂(x, ξ, t). As for v(x, ξ), Hu and Ralph observed that under the MPEC-LICQ,
the quantitative stability of the optimal value function is essentially the same as that in the parametric
nonlinear programming.

Theorem 3.3 Let x∗ ∈ X and Assumption 3.1 hold at point x∗. Let ξ ∈ Ξ be fixed and problem
MPCC(x∗, ξ) satisfy MPEC-MFCQ at every point in the optimal solution set Ysol(x∗, ξ). Then

(i) there exist a neighborhood U of x∗ and a scalar t∗ > 0 such that v̂(·, ξ, ·) is locally Lipschitz contin-
uous on U × (0, t∗];

(ii) there exists a neighborhood U of x∗ such that v(·, ξ) is locally Lipschitz continuous on U .

Proof. Part (i). Let U1 and t1 > 0 be given as in Assumption 3.1. We first claim that there exist
a neighborhood U ⊆ U1 of x∗ and a scalar 0 < t∗ ≤ t1 such that REG(x, ξ, t) satisfies MFCQ at every
point in the optimal solution set Ŷsol(x, ξ, t) for x ∈ U and t ∈ (0, t∗].

Assume for a contradiction that there exist sequences {xk} → x∗, {tk} → 0 and yk ∈ Ŷsol(xk, ξ, tk)
such that REG(xk, ξ, tk) fails to satisfy MFCQ at point yk. Under Assumption 3.1, the optimal solution
set Ŷsol(x, ξ, t) is bounded for all x ∈ U and t ∈ (0, t∗]. Moreover, it follows from Theorem 3.1 that the
optimal solution set-mapping Ŷsol(·, ·, ·) is outer semi-continuous on U × Ξ × [0, t∗] and contained in Y .
Therefore the sequence {yk} must have an accumulation point ȳ and any accumulation point must be
in Ysol(x∗, ξ). Applying Proposition 3.2 at ȳ, there exist neighborhoods of Ux∗ of x∗, Uȳ of ȳ and t̄ > 0
such that for (x, t) ∈ Ux∗ × (0, t̄], problem REG(x, ξ, t) satisfies MFCQ at every feasible point y ∈ Uȳ,
this means that when xk, tk and yk enter the neighborhood, the MFCQ holds at yk, a contradiction!

Since functions g, h, G and H are continuously differentiable and MFCQ holds at every point in
Ŷsol(x, ξ, t) for (x, t) ∈ U × (0, t∗], by [20, Proposition 3], we have F̂(x, ξ, t) is pseudo-Lipschitzian at
(y; x, t) where (x, t) ∈ U × (0, t∗] and y ∈ Ŷsol(x, ξ, t). By [21, Theorem 1], v̂(x, ξ, t) is locally Lipschitz
continuous at (x, t) ∈ U × (0, t∗].

Part (ii). Following Corollary 3.2 and a similar analysis of Part (i), there exists a neighborhood of U
of x∗ such that MPEC-MFCQ holds for every optimal solution of problem MPCC(x, ξ), where x ∈ U .
From [18, formula (8)], we have that for x near x∗,

v(x, ξ) = min
J∈J (x∗,ξ)

vJ(x, ξ), (3.17)

where J (x∗, ξ) := {J | J ∈ J (y), y ∈ Ysol(x∗, ξ)} and J (y) is defined by (2.3) with z∗ = (x∗, y, ξ). Denote
the optimal solution set mapping of problem NLPJ(x, ξ) (see (2.4)) by YJ (x, ξ). For any J ∈ J (x∗, ξ),
YJ(x∗, ξ) ∩ Ysol(x∗, ξ) is nonempty and thus YJ (x∗, ξ) ⊆ Ysol(x∗, ξ). The MPEC-MFCQ assumption
therefore gives the MFCQ for NLPJ(x, ξ) at each y ∈ YJ(x, ξ). By the proof of Part (i), vJ(·, ξ) is locally
Lipschitz continuous and so is v(·, ξ) through (3.17).
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It is important to note that we are short of claiming the locally Lipschitz continuity of v̂(x, ξ, t) at
point t = 0 in Theorem 3.3. This is because the MFCQ established in Proposition 3.2 is satisfied only
for t > 0. We will show the local Lipschitz continuity in Theorem 4.2 where we can use some estimates
of Clarke subdifferentials of the optimal value function v̂ for the proof.

4 Stability analysis of stationary points

In this section, we investigate the stability of stationary points of the regularized first stage problem Pϑ̂
with respect to parameter t. This complements our discussion on the stability analysis of the optimal
values and optimal solution set mappings in the preceding subsection and the topic is particularly relevant
given the nonconvex nature of the regularized problem. We start our discussion with the second stage
problem REG(x, ξ, t), namely the outer semicontinuity of the set of the stationary points as x, ξ and t
vary.

4.1 Second stage problems

Define the Lagrangian function of the second stage problem MPCC(x, ξ):

L(x, y, ξ;α, β, u, v) := f(x, y, ξ) + g(x, y, ξ)T α + h(x, y, ξ)T β −G(x, y, ξ)T u−H(x, y, ξ)T v.

We consider the following KKT conditions of MPCC(x, ξ):




0 = ∇yL(x, y, ξ;α, β, u, v),
y ∈ F(x, ξ),
0 ≤ α ⊥ −g(x, y, ξ) ≥ 0,
0 = ui, i /∈ IG(x, y, ξ),
0 = vi, i /∈ IH(x, y, ξ),
0 ≤ uivi, i ∈ IG(x, y, ξ) ∩ IH(x, y, ξ).

(4.18)

Let W(x, ξ) denote the set of KKT pairs (y;α, β, u, v) satisfying the above conditions and S(x, ξ) the
corresponding set of stationary points, that is, S(x, ξ) = ΠyW(x, ξ). For each (y; α, β, u, v), y is a C
stationary point of problem MPCC(x, ξ) and (α, β, u, v) the corresponding Lagrange multipliers. When
the stationary points are restricted to global minimizers, we denote the set of KKT pairs by W∗(x, ξ),
i.e., W∗(x, ξ) = {(y; α, β, u, v) ∈ W(x, ξ), y ∈ Ysol(x, ξ)}.

Analogously, we can define the Lagrangian function of REG(x, ξ, t):

L̂(x, y, ξ, t;α, β, γ, θ, λ) := f(x, y, ξ) + g(x, y, ξ)T α + h(x, y, ξ)T β −G(x, y, ξ)T γ −H(x, y, ξ)T θ

+(G(x, y, ξ) ◦H(x, y, ξ)− te)T λ.

The KKT conditions of REG(x, ξ, t) can be written as:




0 = ∇yL̂(x, y, ξ, t; α, β, γ, θ, λ),
0 ≤ −g(x, y, ξ) ⊥ α ≥ 0,
0 = h(x, y, ξ),
0 ≤ G(x, y, ξ) ⊥ γ ≥ 0,
0 ≤ H(x, y, ξ) ⊥ θ ≥ 0,
0 ≤ te−G(x, y, ξ) ◦H(x, y, ξ) ⊥ λ ≥ 0.

(4.19)

Let Ŵ(x, ξ, t) denote the set of KKT pairs (y; α, β, γ, θ, λ) satisfying the above conditions and Ŝ(x, ξ, t)
the corresponding set of stationary points, that is, Ŝ(x, ξ) = ΠyŴ(x, ξ, t). When the stationary points
are restricted to global minimizers, we denote the set of KKT pairs by Ŵ∗(x, ξ, t).

Remark 4.1 Under Assumption 3.1 and MPEC-MFCQ, both W∗(x, ξ) and Ŵ∗(x, ξ, t) are nonempty
and bounded.
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Assumption 4.1 Let x∗ ∈ X. There exist constants δ, t∗ > 0, a compact set Y ⊂ IRm and a neighbor-
hood U of x∗ such that

∅ 6= F̂(x, ξ, t) ⊂ Y,

for all (x, ξ, t) ∈ U × Ξ× [0, t∗].

Assumption 4.1 implies the inf-compactness condition (Assumption 3.1) in that the latter only ensures
the boundedness of global optimal solutions to REG(x, ξ, t). In the stability analysis of the stationary
points, we need the former which ensures the set of stationary points to be bounded. Under Assump-
tion 4.1, we have the following proposition which describes a relationship between S(x, ξ) and Ŝ(x, ξ, t).

Proposition 4.1 Let {(xk, ξk, tk)} ⊂ X × Ξ × (0, +∞) be a sequence such that xk → x∗, ξk → ξ and
tk ↓ 0. Consider the regularized second stage problem REG(xk, ξk, tk). Let yk ∈ Ŝ(xk, ξk, tk) and y∗ be
an accumulation point of sequence {yk}.

(i) If problem MPCC(x∗, ξ) satisfies MPEC-MFCQ at y∗, then y∗ is a C-stationary point of MPCC(x∗, ξ).

(ii) If, in addition, Assumption 4.1 holds at point x∗ and MPEC-MFCQ holds at every y ∈ F(x∗, ξ),
then

lim
xk→x∗,ξk→ξ,tk↓0

D(Ŝ(xk, ξk, tk), S(x∗, ξ)) = 0.

Proof. Part (i). For the simplicity of notation, we write Ig(xk, yk, ξk) and Ig(x∗, y∗, ξ) as Ik
g and I∗g .

Similar simplification applies to IG, IH and IG◦H where

Ik
G◦H = {i : Gi(xk, yk, ξk)Hi(xk, yk, ξk) = tk, i = 1, · · · ,m}.

Since yk is a stationary point of REG(xk, ξk, tk), there exist multipliers αk ∈ IRs, βk ∈ IRr, γk ∈ IRm, θk ∈
IRm, λk ∈ IRm such that

0 = ∇yf(xk, yk, ξk) +
∑

i∈Ik
g

αk
i∇ygi(xk, yk, ξk) +

r∑

i=1

βk
i ∇yhi(xk, yk, ξk)−

∑

i∈Ik
G

γk
i ∇yGi(xk, yk, ξk)

−
∑

i∈Ik
H

θk
i ∇yHi(xk, yk, ξk) +

∑

i∈Ik
G◦H

λk
i∇y[Hi(xk, yk, ξk)Gi(xk, yk, ξk)], (4.20)





0 ≤ −g(xk, yk, ξk) ⊥ αk ≥ 0,
0 = h(xk, yk, ξk),
0 ≤ G(xk, yk, ξk) ⊥ γk ≥ 0,
0 ≤ H(xk, yk, ξk) ⊥ θk ≥ 0,
0 ≤ tke−G(xk, yk, ξk) ◦H(xk, yk, ξk) ⊥ λk ≥ 0.

(4.21)

Let

ᾱk
i :=

{
αk

i , i ∈ I∗g ∩ Ik
g ,

0, otherwise,

uk
i :=





γk
i , i ∈ I∗G ∩ Ik

G,
−λk

i Hi(xk, yk, ξk), i ∈ I∗G ∩ Ik
G◦H ,

0, otherwise,

vk
i :=





θk
i , i ∈ I∗H ∩ Ik

H ,
−λk

i Gi(xk, yk, ξk), i ∈ I∗H ∩ Ik
G◦H ,

0, otherwise.

Note that for k sufficiently large, we have Ik
g ⊆ I∗g , Ik

G ⊆ I∗G, Ik
H ⊆ I∗H , Ik

G∩Ik
G◦H = ∅ and Ik

H∩Ik
G◦H = ∅.

Then (4.20) can be rewritten as

0 = ∇yf(xk, yk, ξk) +∇yg(xk, yk, ξk)ᾱk

+ ∇yh(xk, yk, ξk)βk −∇yG(xk, yk, ξk)uk −∇yH(xk, yk, ξk)vk + Rk(xk, yk, ξk), (4.22)
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where

Rk(xk, yk, ξk) =
∑

i∈Ik
G◦H∩(I∗G)c

λk
i Hi(xk, yk, ξk)∇yGi(xk, yk, ξk)

+
∑

i∈Ik
G◦H∩(I∗H)c

λk
i Gi(xk, yk, ξk)∇yHi(xk, yk, ξk).

Since MPEC-MFCQ holds at y∗, by Proposition 3.2 there exists k0 sufficiently large such that MFCQ
holds at point yk for k ≥ k0. Moreover, the MFCQ implies that αk, βk, γk, θk and λk are uniformly
bounded (see the proof of [16, Theorem 3.4 ]). Taking a further subsequence if necessary, we may assume
that the limits

α∗i = lim
k→∞

ᾱk
i , β∗i = lim

k→∞
βk

i , u∗i = lim
k→∞

uk
i , v∗i = lim

k→∞
vk

i

exist. Moreover, (I∗G)c ⊆ I∗H and (I∗H)c ⊆ I∗G. Consequently, the limit on (4.22) implies

∇yf(x∗, y∗, ξ) +∇yg(x∗, y∗, ξ)α∗ +∇yh(x∗, y∗, ξ)β∗ −∇yG(x∗, y∗, ξ)u∗ −∇yH(x∗, y∗, ξ)v∗ = 0.

By the definitions of u∗ and v∗, for i ∈ I∗G ∩ I∗H , if i ∈ Ik
G◦H

u∗i v
∗
i = lim

k→∞
(− λk

i Hi(xk, yk, ξk)
)(− λk

i Gi(xk, yk, ξk)
) ≥ 0,

and if i 6∈ Ik
G◦H ,

u∗i v
∗
i = lim

k→∞
(γk

i or 0)(θk
i or 0) ≥ 0,

which indicates that y∗ is a C-stationary point of problem MPCC(x∗, ξ).

Part (ii). Under the additional condition, the set of stationary points S(x, ξ̂) and Ŝ(x, ξ̂, t) are bounded
for (x, ξ̂) close to (x∗, ξ) and t sufficiently small. By Proposition 3.1, F̂(x, ξ, t) is continuous on U × Ξ×
[0, t∗]. Since MPEC-MFCQ holds at every y ∈ F(x∗, ξ), we obtain part (ii) from part (i). The proof is
complete.

Note that Proposition 4.1 deals with the Clarke stationary points. Under some moderate conditions,
the stationary points of REG(x, ξ, t) may converge to an M-stationary point or a S-stationary point of
MPCC(x, ξ). For more details of these conditions, see [22] and [41]. In what follows, we investigate the
stability of the optimal value functions v(x, ξ) and/or v̂(x, ξ, t) in terms of Clarke subdifferentials. The
result is crucial for establishing our main result Theorem 4.1 and it is also of independent interest.

Proposition 4.2 Suppose that Assumption 3.1 holds at point x∗ and problem MPCC(x∗, ξ) satisfies
MPEC-MFCQ at every point y in set Ysol(x∗, ξ). Then there exist a neighborhood U of x∗ and a scalar
t∗ > 0 such that

(i) for any x ∈ U and ξ ∈ Ξ,

∂xv(x, ξ) ⊆ Φ(x, ξ), (4.23)

where

Φ(x, ξ) = conv
{ ⋃

(y;α,β,u,v)∈W∗(x,ξ)

∇xL(x, y, ξ; α, β, u, v)
}

; (4.24)

(ii) for any x ∈ U , ξ ∈ Ξ and t ∈ (0, t∗],

∂xv̂(x, ξ, t) ⊆ Φ̂(x, ξ, t), ∂tv̂(x, ξ, t) ⊆ Λ(x, ξ, t), (4.25)

where

Φ̂(x, ξ, t) = conv
{ ⋃

(y;α,β,γ,θ,λ)∈Ŵ∗(x,ξ,t)

∇xL̂(x, y, ξ, t; α, β, γ, θ, λ)
}

(4.26)

and Λ(x, ξ, t) = ΠλŴ∗(x, ξ, t), equality in (4.25) holds if the MPEC-MFCQ is replaced by the
MPEC-LICQ;
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(iii) Φ(·, ·) is outer semi-continuous on U × Ξ and Φ̂(·, ·, ·) is outer semi-continuous on U × Ξ× (0, t∗];

(iv) for every (x, ξ) ∈ U × Ξ,

lim
xk→x,ξk→ξ,tk↓0

D(Φ̂(xk, ξk, tk),Φ(x, ξ)) = 0.

Proof. By a similar analysis of the proof of Theorem 3.3, there exist a neighborhood U of x∗ and a
scalar t∗ > 0 such that for x ∈ U , ξ ∈ Ξ and t ∈ (0, t∗], REG(x, ξ, t) satisfies MFCQ at every point in the
optimal solution set Ŷsol(x, ξ, t) and MPCC(x, ξ) satisfies MPEC-MFCQ at every point in the optimal
solution set Ysol(x, ξ).

Part (i). Following a similar argument in the proof of [25, Theorem 4.8], we can show that, for any
x ∈ U and ξ ∈ Ξ

∂M
x v(x, ξ) ⊆

{ ⋃

(y;α,β,u,v)∈W∗(x,ξ)

∇xL(x, y, ξ; α, β, u, v)
}

. (4.27)

Taking the convex hull on both sides of the above inclusion and using the fact that v is locally Lipschitz
continuous with respect to x and

conv ∂M
x v(x, ξ) = ∂xv(x, ξ),

we obtain (4.23).

Part (ii) follows from [16, Theorem 5.3 and Corollary 5.4].

Part (iii). We only prove the outer semicontinuity of Φ̂ as the proof for Φ is similar.

We first prove the outer semicontinuity of Ŵ∗(·, ·, ·). Let (xk, ξk, tk) be an arbitrary sequence in
U × Ξ× (0, t∗] such that (xk, ξk, tk) → (x, ξ, t), where t > 0 and (yk; αk, βk, γk, θk, λk) ∈ Ŵ∗(xk, ξk, tk).
Since that MFCQ holds at every point of optimal solution set Ŷsol(xk, ξk, tk) for k sufficiently large, by
the proof of [16, Theorem 3.4], (yk; αk, βk, γk, θk, λk) ∈ Ŵ(xk, ξk, tk) are bounded. Taking a subsequence
if necessary, we may assume for the simplicity of notation that

(yk; αk, βk, γk, θk, λk) → (y;α, β, γ, θ, λ).

Then (y; α, β, γ, θ, λ) ∈ Ŵ(x, ξ, t) as the underlying functions defining the KKT system are continuous.
Moreover, considering a smaller neighborhood U of x∗ and a smaller number t∗ if necessary, we have,
through Theorem 3.1 (i), that Ŷsol(·, ·, ·) is outer semicontinuous on U × Ξ × [0, t∗], which implies y ∈
Ŷsol(x, ξ, t) and hence (y; α, β, γ, θ, λ) ∈ Ŵ∗(x, ξ, t), the outer semicontinuity of Ŵ∗(·, ·, ·).

The outer semicontinuity of Φ̂ follows from the fact that it is essentially a composite mapping of ∇xL̂
and Ŵ∗ while ∇xL̂ is continuous.

Part (iv). The proof is similar to that of Part (iii) except t = 0. Mimicking the proof of Proposition 4.1
(replacing Ŝ(xk, ξk, tk) with Ŷsol(xk, ξk, tk)), we can prove that

∇xL̂(xk, yk, ξk, tk;αk, βk, γk, θk, λk) k→∞−−−−→ ∇xL(x, y∗, ξ;α, β, u, v),

where (yk; αk, βk, γk, θk, λk) ∈ Ŵ∗(xk, ξk, tk) and (y∗;α, β, u, v) ∈ W∗(x, ξ). The conclusion follows.

It might be helpful to note that the equality in (4.25) under MPEC-LICQ implies that the outer
bound of the Clarke subdifferentials cannot be improved. Indeed, this is a key result for establishing
the subdifferential consistency in Theorem 4.1. In the literature of MPECs, Lucent and Ye established a
number of estimates for the limiting subdifferentials of optimal value functions of parametric mathemat-
ical programs with variational inequality constraints without MFCQ. When the variational inequality
constraint reduces to a system of equalities, their results recover Gauvin and Dubeau’s result [16, The-
orem 5.3] under MFCQ. However, it seems an open question as to whether the upper estimates of the
limiting subdifferentials of the optimal value functions can be improved. In our context, it is unclear
under which conditions equality in (4.27) holds.
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Remark 4.2 In the definition of Φ and Φ̂, we use the KKT pairs at the global optimal solutions of the
second stage problems. It is possible to all KKT pairs in the definitions, that is, replace W∗ and Ŵ∗ with
W and Ŵ. Consequently we may obtain larger outer bounds Ψ and Ψ̂ defined as follows for the Clarke
subdifferentials of the optimal value functions:

Ψ(x, ξ) := conv
{ ⋃

(y;α,β,u,v)∈W(x,ξ)

∇xL(x, y, ξ; α, β, u, v)
}

(4.28)

and

Ψ̂(x, ξ, t) := conv
{ ⋃

(y;α,β,γ,θ,λ)∈Ŵ(x,ξ,t)

∇xL̂(x, y, ξ, t; α, β, γ, θ, λ)
}

. (4.29)

4.2 First stage problems

We now move on to investigate stability of stationary points of the regularized first stage problem Pϑ̂ at
t = 0. Our focus is on the Clarke stationary points. There are two underlying reasons: (a) the optimal
value function v̂(x, ξ, t) is locally Lipschitz continuous in x and t for all t > 0 and under mild conditions
E[v̂(x, ξ, t)] is also locally Lipschitz continuous which means that the Clarke generalized gradient of both
functions are well-defined; (b) we need some consistency property of the subdifferentials of v̂(x, ξ, t) (see
equation (4.33) in Theorem 4.1) and it turns out that the Clarke subdifferentials can fulfil this under
MPEC-LICQ through Proposition 4.2 (ii) while it is an open question as to whether or not the limiting
subdifferential can do the job.

Let us start with the KKT conditions of problem Pϑ:

0 ∈ ∂E[v(x, ξ)] +NX(x),

where ∂E[v(x, ξ)] denotes the Clarke generalized gradient of E[v(x, ξ)] and NX(x) is the normal cone to
X at point x. In Theorem 3.3, v(x, ξ) is proved to be locally Lipschitz continuous under MPEC-MFCQ.
If the Lipschitz modulus is integrably bounded, then E[v(x, ξ)] is also globally Lipschitz continuous and
hence ∂E[v(x, ξ)] is well-defined.

From computational point of view, it might be easier to calculate the subdifferential ∂xv(x, ξ) and its
expectation. Consequently we may consider the following KKT conditions:

0 ∈ E[∂xv(x, ξ)] +NX(x). (4.30)

It is well-known that ∂E[v(x, ξ)] ⊆ E[∂xv(x, ξ)], see for instance [45]. We call (4.30) the weak KKT
condition of the first stage problem (3.7). Likewise, we may consider weak KKT conditions of Pϑ̂:

0 ∈ E[∂xv̂(x, ξ, t)] +NX(x). (4.31)

Let Xsta and X̂sta(t) denote respectively the set of stationary points satisfying (4.30) and (4.31). In what
follows, we establish a relationship between the two sets as t → 0.

Theorem 4.1 Let Assumption 3.1 hold at point x∗ and ξ ∈ Ξ.

(i) If problem MPCC(x∗, ξ) satisfies MPEC-MFCQ at every point in Ysol(x∗, ξ), then

lim
x→x∗,t↓0

D(Φ̂(x, ξ, t), Φ(x∗, ξ)) = 0. (4.32)

(ii) If the MPEC-MFCQ is replaced by the MPEC-LICQ, then

lim
x→x∗,t↓0

D(∂xv̂(x, ξ, t), ∂xv(x∗, ξ)) = 0, (4.33)
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moreover if: (a) X is a compact set, (b) Assumption 3.1 holds at every point x in X and MPEC-
LICQ holds at any point in Ysol(x, ξ) for every x ∈ X and ξ ∈ Ξ, and (c) ∂xv̂(x, ξ, t) is integrably
bounded3, i.e., there exists κ(ξ) such that ‖∂xv̂(x, ξ, t)‖ ≤ κ(ξ), then

lim
t↓0
D(X̂sta(t), Xsta) = 0. (4.34)

Proof. Part (i). By Theorem 3.3, there exist a neighborhood U of x∗ and a positive scalar t∗ such
that v̂(·, ξ, ·) is locally Lipschitz continuous on U × (0, t∗] and v(·, ξ) is locally Lipschitz continuous on U .
By Theorem 3.1, any accumulation point y∗ of {yk} with yk ∈ Ŷsol(xk, ξ, tk) is contained in Ysol(x∗, ξ).
Mimicking the proof of Proposition 4.1 (replacing Ŝ(xk, ξ, tk) with Ŷsol(xk, ξ, tk)), we can prove that

∇xL̂(xk, yk, ξ, tk; αk, βk, γk, θk, λk) k→∞−−−−→ ∇xL(x∗, y∗, ξ;α∗, β∗, u∗, v∗),

where (yk; αk, βk, γk, θk, λk) ∈ W∗(xk, ξ, tk) and (y∗;α∗, β∗, u∗, v∗) ∈ W∗(x∗, ξ).

Part (ii). Let us first prove the subdifferential consistency (4.33). Under MPEC-LICQ, the application
of [16, Corollary 5.4] to the regularized second stage problem MPEC(x∗, ξ, t) gives

∂xv̂(x∗, ξ, t) = Φ̂(x∗, ξ, t). (4.35)

On the other hand, it follows from (4.23) that ∂xv(x∗, ξ) ⊆ Φ(x∗, ξ). In what follows, we show

∂xv(x∗, ξ) ⊇ Φ(x∗, ξ) =
⋃

(y;α,β,u,v)∈W∗(x∗,ξ)

{
∇xL(x∗, y, ξ; α, β, u, v)

}
. (4.36)

Under the assumption that MPEC-LICQ holds at every point in optimal solution set Ysol(x∗, ξ), it
follows by virtue of [18, Theorem 2, formula (7)] that

v′(x∗, ξ; q) = min
(y;α,β,u,v)∈W∗(x∗,ξ)

{
∇xL(x∗, y, ξ; α, β, u, v)T q

}
,

where the directional derivative “v′ ” is with respect to x. Therefore

(−v)′(x∗, ξ; q) = max
(y;α,β,u,v)∈W∗(x∗,ξ)

{
−∇xL(x∗, y, ξ;α, β, u, v)T q

}
.

Let

η ∈
⋃

(y;α,β,u,v)∈W∗(x∗,ξ)

{
−∇xL(x∗, y, ξ; α, β, u, v)

}
.

Then there exists a KKT pair (y;α, β, u, v) ∈ W∗(x∗, ξ) such that η = −∇xL(x∗, y, ξ; α, β, u, v) and for
any q ∈ IRn

ηT q = −∇xL(x∗, y, ξ; α, β, u, v)T q ≤ (−v)′(x∗, ξ; q) ≤ (−v)o(x∗, ξ; q),

where (−v)o(x∗, ξ; q) denotes Clarke generalized derivative ([10]) of −v in x. By the definition of Clarke
generalized gradient [10, page 27], η ∈ ∂x(−v)(x∗, ξ) and by [10, Proposition 2.3.1], ∂x(−v)(x∗, ξ) =
−∂xv(x∗, ξ). This shows η ∈ −∂xv(x∗, ξ) and hence

⋃

(y;α,β,u,v)∈W∗(x∗,ξ)

{
−∇xL(x∗, y, ξ;α, β, u, v)

}
⊆ ∂x(−v)(x∗, ξ) = −∂xv(x∗, ξ),

which implies (4.36). This shows ∂xv(x∗, ξ) = Φ(x∗, ξ), and through (4.32) and (4.35), the subdifferential
consistency (4.33).

Let us now prove (4.34). Since Assumption 3.1 holds at every point x in X and MPEC-LICQ holds
at any point in Ysol(x, ξ) for every x ∈ X and ξ ∈ Ξ, we have from the subdifferential consistency (4.33)
that

lim
x′→x,t↓0

D(∂xv̂(x′, ξ, t), ∂xv(x, ξ)) = 0 (4.37)

3The condition is satisfied under Assumption 4.2.
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for every (x, ξ) ∈ X × Ξ. Let x(t) ∈ X̂sta(t), that is,

0 ∈ E[∂xv̂(x(t), ξ, t)] +NX(x(t)). (4.38)

The compactness of X implies the boundedness of X̂sta(t). Therefore we may assume without loss of
generality that x(t) → x̂, where x̂ ∈ X. From (4.38), we have

0 ∈ lim
t→0

(E[∂xv̂(x(t), ξ, t)] +NX(x(t)))

⊆ E[lim
t→0

∂xv̂(x(t), ξ, t)] +NX(x̂)

⊆ E[∂xv(x̂, ξ)] +NX(x̂),

where the first inclusion follows from [4, Proposition 4.1] under the integrable boundedness of ∂xv̂(x(t), ξ, t)
and the outer semicontinuity of the normal cone N (·), and the second inclusion follows from (4.37). This
implies that x̂ is a weak KKT point satisfying (4.30). The proof is complete.

The first order optimality conditions (4.30)–(4.31) require the derivative information of the optimal
value function v(x, ξ) which may be difficult to calculate. Motivated by the outer bounds of ∂xv(x, ξ) and
∂xv̂(x, ξ, t) established in Proposition 4.2, we may consider optimality conditions by replacing ∂xv(x, ξ)
with Φ(x, ξ) in the weak KKT conditions (4.30) and ∂xv̂(x, ξ, t) with Φ̂(x, ξ, t) in the weak KKT conditions
(4.31). This kind of optimality conditions are considered by Outrata and Römisch [29, Theorem 3.5] and
more recently by Ralph and Xu [35] for classical two stage stochastic programs. We will not go to
details in this direction as this is not the main interest of this paper. Likewise, we can consider the
KKT condition by replacing the subgradients with Ψ and Ψ̂ as defined in Remark 4.2. We give a formal
definition for the latter as we need them in Section 6.

Definition 4.1 We call the following stochastic generalized equations

0 ∈ E[Ψ(x, ξ)] +NX(x) (4.39)

the relaxed KKT conditions of the first stage true problem (3.7), and

0 ∈ E[Ψ̂(x, ξ, t)] +NX(x), (4.40)

the relaxed KKT conditions of the first stage regularized problem (3.10). A point x∗ ∈ X satisfying
the equation (4.39) is called a relaxed stationary point of the true problem if for almost every ξ ∈ Ξ,
MPEC-MFCQ holds at any point in the set of stationary points S(x∗, ξ). A point x∗ ∈ X satisfying
equation (4.40) is called a relaxed stationary point of the regularized problem if for almost every ξ ∈ Ξ,
MFCQ holds at any point in the set of stationary points Ŝ(x∗, ξ, t).

Note that the MPEC-MFCQ and MFCQ are needed in Definition 4.1 in order to guarantee that the
generalized equations are relevant to the first order optimality conditions in that under the constraint
qualifications and Assumption 3.1, the two optimal value functions v and v̂ are locally Lipschitz con-
tinuous with respect to x on a neighborhood of x∗ and the estimates for the Clarke subdifferentials in
Proposition 4.2 are valid.

Note also that in the literature stochastic programming, this type of relaxed KKT conditions were
considered by Ralph and Xu [35] for an ordinary two stage stochastic program with equality and inequality
constraints and by Xu and Ye in deriving first order optimality conditions for a two stage SMPEC with
variational inequality constraints [49].

Assumption 4.2 For every x ∈ X, there exist an integrable function κ(ξ), a neighborhood Ū of x and
a scalar t̄ > 0 such that E[κ(ξ)3] < ∞ and

max
{
‖∇xf(x, y, ξ)‖, ‖∇xg(x, y, ξ)‖, ‖∇xh(x, y, ξ)‖, ‖G(x, y, ξ)‖, ‖H(x, y, ξ)‖, ‖∇xG(x, y, ξ)‖,

‖∇xH(x, y, ξ)‖, ‖Π(α,β,u,v)W(x, ξ)‖, ‖Π(α,β,γ,θ,λ)Ŵ(x, ξ, t)‖
}
≤ κ(ξ),

for all x ∈ Ū , ξ ∈ Ξ, t ∈ [0, t̄] and y ∈ Ŝ(x, ξ, t).
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Note that Assumption 4.2 holds when the support set Ξ of ξ(ω) is bounded. The boundedness of
‖G(x, y, ξ)‖ and ‖H(x, y, ξ)‖ can be weakened to the boundedness of the two quantities at a fixed point
x0 ∈ U because the latter together with the boundedness of ‖∇xG(x, y, ξ)‖ and ‖∇xH(x, y, ξ)‖ imply
the former. Moreover, under Assumption 4.2, we can easily verify that ∇xL and ∇xL̂ are bounded
respectively by κ(ξ)2 and κ(ξ)3 for all x ∈ Ū , ξ ∈ Ξ, t ∈ [0, t̄] and y ∈ Ŝ(x, ξ, t).

Proposition 4.3 Suppose that Assumption 4.1 holds at point x and MPEC-MFCQ holds for MPCC(x, ξ)
at every y ∈ F(x, ξ) and ξ ∈ Ξ. Then there exist a neighborhood of U of x and a scalar t∗ > 0 such that

(i) Both Ŵ(x, ξ, t) and W(x, t) are nonempty for (x, ξ, t) ∈ U × Ξ× (0, t∗], Ŵ(·, ·, ·) is outer semicon-
tinuous on U × Ξ× (0, t] and W(·, ·) is outer semicontinuous on U × Ξ;

(ii) for every (x∗, ξ∗) ∈ U × Ξ,

lim
(x,ξ,t)→(x∗,ξ∗,0)

D(Ψ̂(x, ξ, t), Ψ(x∗, ξ∗)) = 0; (4.41)

(iii) under Assumption 4.2, E[Ψ̂(x, ξ, t)] and E[Ψ(x, ξ)] are well-defined for any x ∈ U and t ∈ (0, t∗]
and

lim
x→x∗,t↓0

D(E[Ψ̂(x, ξ, t)],E[Ψ(x∗, ξ)]) = 0 ∀x ∈ U. (4.42)

Proof. Part (i). By Assumption 4.1, there exist a neighborhood U of x and a scalar t∗ > 0 such
that the feasible set F(x, ξ) and F̂(x, ξ, t) are bounded for x ∈ U and t ∈ (0, t∗]. Then the sets of
stationary points of both MPCC(x, ξ) and REG(x, ξ, t) are nonempty. Following a similar proof to that
in Proposition 4.2 (iii), we can show that Ŵ(·, ·, ·) is outer semicontinuous on U × Ξ× (0, t∗] and W(·, ·)
is outer semicontinuous on U × Ξ.

Part (ii). The proof is similar to that of Proposition 4.2 (iv). We omit the details.

Part (iii). Viewing Ψ̂ as a composition of ∇L̂ and Ŵ, we claim that Ψ̂ is outer semicontinuous and
through [38, Theorem 14.13] the measurability. The well-definedness then follows from the boundedness
of Ψ̂ under Assumption 4.2 and the definition of Aumann’s integral. Finally, we prove equation (4.42).
Notice that Ψ̂ is a closed set-valued mapping on U × Ξ × (0, t∗] and it is integrable bounded under
Assumption 4.2. Note that the above analysis also holds for Ψ. The conclusion follows via application of
[14, Theorems 2.5] ( or [14, Theorem 2.8] and the following remark). The proof is complete.

Note that Proposition 4.3 (iii) implies that any stationary point satisfying (4.40) converges to the set
of stationary points satisfying (4.39). We will use this in Section 6.

4.3 Lipschitz continuity at t = 0

In this subsection, we study the Lipschitz continuity of v̂(x, ξ, t) at t = 0. We are unable to do this in
Theorem 4.2 as it requires some complex arguments related to singular subdifferentials, limiting subdif-
ferentials, Clarke subdifferentials of v̂(x, ξ, t) and their approximations.

Theorem 4.2 Suppose that Assumption 3.1 holds at point x∗ and problem MPCC(x∗, ξ) satisfies MPEC-
MFCQ at every point in the optimal solution set Ysol(x∗, ξ) for every ξ ∈ Ξ. Then

(i) there exist a neighborhood U of x∗ and a scalar t∗ > 0 such that v̂(·, ξ, ·) is locally Lipschitz contin-
uous on U × [0, t∗] for each fixed ξ ∈ Ξ;

(ii) if Assumption 4.2 holds at point x∗, then there exist a neighborhood U of x∗ and a scalar t∗ such
that E[v̂(·, ξ, ·)] is locally Lipschitz continuous on U × [0, t∗];

(iii) if, in addition, the conditions of Theorem 3.2 are satisfied and Assumption 4.2 holds for all x ∈ X̄
(X̄ is given in Theorem 3.2), then there exists a scalar t∗ > 0 such that φ(t) is globally Lipschitz
continuous on [0, t∗].
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Proof. Part (i). By Theorem 3.3, there exist a close neighborhood U of x∗ and a scalar t∗ > 0 such
that v̂(·, ξ, ·) is locally Lipschitz continuous on U × (0, t∗] and v(·, ξ) is locally Lipschitz continuous on
U . To complete the proof, we only need to show that v̂(x, ξ, t) is Lipschitz continuous at point (x, 0) for
every x ∈ U . By [25, Proposition 2.4], it suffices to show that ∂∞(x,t)v(x, ξ, 0) = {0}. From Proposition
4.2 (see (4.25)) and [10, Proposition 2.3.15], we have

∂(x,t)v̂(x, ξ, t) ⊆ Φ̂(x, ξ, t)×ΠλŴ∗(x, ξ, t).

If we can show the boundedness of Φ̂(x, ξ, t) and ΠλŴ∗(x, ξ, t) for all x ∈ U and t ∈ (0, t∗), then
∂(x,t)v̂(x, ξ, t) is bounded and so is ∂π

(x,t)v̂(x, ξ, t), subsequently we have ∂∞(x,t)v̂(x, ξ, 0) = {0} (see the

definition of the singular subdifferential). Note that the boundedness of Φ̂(x, ξ, t) and ΠλŴ∗(x, ξ, t) is
implied by the boundedness of Ŵ∗(x, ξ, t). Under Assumption 3.1, Ŷsol(x, ξ, t) is bounded. Since MPEC-
MFCQ holds at every point in the optimal solution set Ysol(x∗, ξ), by the proof of Theorem 3.3, there
exist a neighborhood U of x∗ and a scalar t∗ > 0 such that for x ∈ U and t ∈ (0, t∗], REG(x, ξ, t) satisfies
MFCQ at every point in the optimal solution set Ŷsol(x, ξ, t) . Under the MFCQ, the boundedness of
Ŵ∗(x, ξ, t) follows from the proof of [16, Theorem 3.4].

Part (ii). The Lipschitz modulus of v̂(·, ξ, ·) at point (x, t) is bounded by ‖∂(x,t)v̂(x, ξ, t)‖. By
Propositions 4.2 and Assumption 4.2, the Lipschitz modulus is bounded by integrable function κ(ξ)3

for x ∈ U1 ∩ U2 and t ∈ [0, min{t1, t2}], where U1, t1 are given as in Part (i) and U2, t2 are given as in
Assumption 4.2. From Proposition 2 of [40, Chaper 2] and v̂(x, ·, t) is continuous on Ξ, E[v̂(x, ξ, t)] is
locally Lipschitz continuous on U × [0, t∗], where U = U1 ∩ U2 and t∗ = min{t1, t2}.

Part (iii). Applying the conclusion in part (i) to every point x in X̄, we can show through the finite
covering theorem (due to the compactness of X̄) that there exists a scalar t1 such that v̂(x, ξ, t) is locally
Lipschitz continuous on X̄× [0, t1]. Moreover, since Assumption 4.2 holds for every x ∈ X̄, then v̂(x, ξ, t)
is integrably bounded and ϑ̂(x, t) = E[v̂(x, ξ, t)] is globally Lipschitz continuous on X̄ × [0, t1]. On the
other hand, there exists a scalar t2 > 0 such that for all t ∈ [0, t2], Xsol(t) ∩ X̄ 6= ∅. Let t∗ = min{t1, t2}
and t′, t′′ ∈ [0, t∗] with t′ < t′′. It is easy to verify that

|φ(t′)− φ(t′′)| ≤ sup
x∈X̄

|ϑ̂(x, t′)− ϑ̂(x, t′′)|.

By Lebourg’s mean value theorem [10, Theorem 2.3.7] and Proposition 4.2 (ii),

|ϑ̂(x, t′)− ϑ̂(x, t′′)| ≤ sup
t∈[t′t′′]

‖∂tϑ̂(x, t)‖|t′ − t′′|

≤ sup
t∈[t′,t′′]

E[‖∂tv̂(x, ξ, t)‖]|t′ − t′′|

≤ sup
t∈[t′,t′′]

E[‖ΠλŴ(x, ξ, t)‖]|t′ − t′′|

≤ E[κ(ξ)]|t′ − t′′|.
The last inequality is due to Assumption 4.2. The conclusion follows.

Note that Theorem 4.2 plays an essential role in the proof of Theorem 6.1.

5 Stability analysis with respect to the probability measure

The regularization scheme discussed in the preceding section is proposed to deal with complementarity
constraints. In this section, we discuss another main challenge in SMPCC (1.1), that is, the mathemat-
ical expectation operation in the objective. If we can obtain a closed form of the expected values of
E[v(x, ξ(ω))] and E[v̂(x, ξ(ω), t)], then the resulting first stage problems are deterministic minimization
problems. However, in many practical instances, it is often difficult to obtain an explicit expression
of the optimal value function of the second stage problems and hence its mathematical expectation.
Consequently, we need some kind of approximation of the expected value.

In this section, we discuss a general probability approximation scheme. Specifically, we write E[v̂(x, ξ, t)]
as

∫
Ξ

v̂(x, ξ, t)dP (ξ) and then consider a sequence of probability measures {Pν} approximating P . Here
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Pν is assumed to be numerically more tractable than P . A specific example of such probability ap-
proximation is the empirical probability measure. To simplify the discussion, we fix the regularization
parameter t throughout this section.

Consider the first stage regularized problem (3.10). Let Ξ be the support set of ξ(ω) and P be a Borel
probability measure on Ξ. Problem (3.10) can be equivalently written as

min
x

ϑ̂P (x, t) =
∫

Ξ

v̂(x, ξ, t)dP (ξ) (5.43)

subject to x ∈ X.

Let Pν be a sequence of probability measures {Pν} approximating P in distribution as ν →∞. Instead
of solving (5.43) directly, we solve the following approximation problem:

min
x

ϑ̂Pν (x, t) =
∫

Ξ

v̂(x, ξ, t)dPν(ξ) (5.44)

subject to x ∈ X.

We study the perturbation of the optimal value, and the set of optimal solutions and stationary points
of (5.44) as Pν → P . In the literature of stochastic programming, this kind of perturbation analysis is
known as stability and/or sensitivity analysis, see a comprehensive review by Römisch [39] and references
therein.

Let φP (t), φPν (t), X∗
P (t) and X∗

Pν
(t) denote the optimal values and solutions of (5.43) and (5.44)

respectively.

Theorem 5.1 Let X̄ be a compact subset of X and Assumption 3.1 hold at every x ∈ X̄. Suppose that
there exist a positive constant t̄ and a positive integer ν̄ such that X∗

P (t)∩ X̄ 6= ∅ and X∗
Pν

(t)∩ X̄ 6= ∅ for
any t ∈ [0, t̄] and ν ≥ ν̄. Then there exists a positive scalar t̂ < t̄ such that for every fixed t ∈ [0, t̂]

(i) lim
ν→∞

D(X∗
Pν

(t) ∩ X̄, X∗
P (t) ∩ X̄) = 0,

(ii) lim
ν→∞

φPν (t) = φP (t).

Proof. By the covering theorem and Theorem 3.1, there exist positive constants t̂ < t̄ and δ̂ such that
v̂(x, ξ, t) is continuous on X̄ ×Ξ× [0, t̂] and v̂(x, ξ, t) ≤ δ̂. By [40, Chapter 2, Proposition 1], ϑ̂P (x, t) and
ϑ̂Pν (x, t), ν = 1, 2, · · · , are continuous on X̄ × [0, t̂] and hence they are bounded on the set. Since Pν(ξ)
converges to P (ξ) in distribution by assumption, then

lim
ν→∞

sup
(x,t)∈X̄×[0,t̂]

(ϑ̂Pν (x, t)− ϑ̂P (x, t)) = lim
ν→∞

sup
(x,t)∈X̄×[0,t̂]

∫

Ξ

v̂(x, ξ, t)d(Pν(ξ)− P (ξ)) = 0

It is well known that the uniform convergence of ϑ̂Pν (·, t) to ϑ̂(·, t) over compact set X̄ implies the
convergence of its optimal value and optimal solutions, see for instance [47, Lemma 4.1].

In what follows, we investigate the stability of the set of stationary points. It is easy to verify that if
v̂(x, ξ, t) is Lipschitz continuous w.r.t x for almost every ξ and t and its Lipschitz constant is integrably
bounded under the probability measure P and Pν , then ϑ̂P (x, t) and ϑ̂Pν (x, t) are Lipschitz continuous
with respect to x. The KKT conditions of (5.43) and (5.44) can be written respectively as

0 ∈ ∂xϑ̂P (x, t) +NX(x) (5.45)

and

0 ∈ ∂xϑ̂Pν (x, t) +NX(x), (5.46)

where ∂ denotes the Clarke subdifferential. Let S∗P (t) and S∗Pν
(t) denote the set of stationary points

satisfying (5.45) and (5.46) respectively. Following a similar argument to that in section 3.2, we may
consider weaker KKT conditions of (5.43) and (5.44) defined respectively as

0 ∈
∫

Ξ

∂xv̂(x, ξ, t)dP (ξ) +NX(x) (5.47)
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and

0 ∈
∫

Ξ

∂xv̂(x, ξ, t)dPν(ξ) +NX(x), (5.48)

where ∂xϑ̂(x, t) ⊂ ∫
Ξ

∂xv̂(x, ξ, t)dP (ξ) and ∂xϑ̂Pν
(x, t) ⊂ ∫

Ξ
∂xv̂(x, ξ, t)dPν(ξ). Let Sw

P (t) and Sw
Pν

(t)
denote the set of stationary points satisfying (5.47) and (5.48) respectively. We investigate the approxi-
mation of Sw

P (t) and S∗P (t) by Sw
Pν

(t) and S∗Pν
(t) respectively as ν → ∞. To this end, we need to show,

under some moderate conditions, that ∂xϑ̂Pν
(x, t) approximates ∂xϑ̂P (x, t) and

∫
Ξ

∂xv̂(x, ξ, t)dPν(ξ) ap-
proximates

∫
Ξ

∂xv̂(x, ξ, t)dP (ξ) uniformly as ν →∞.

Lemma 5.1 (Approximation of subdifferentials) Let F (x, ξ) : IRn × Ξ → IRm be a continuous
function, {Pν} be a sequence of probability measures and X be a compact subset. Assume: (a) F (x, ξ) is
locally Lipschitz continuous with respect to x for almost every ξ with modulus L(x, ξ) which is bounded
by a positive constant C; (b) {Pν} converges to P in distribution. Then

(i) for every fixed x, ∂EPν
[F (x, ξ)] and ∂EP [F (x, ξ)] are well-defined and

lim
ν→∞

sup
x∈X

H(∂EPν
[F (x, ξ)], ∂EP [F (x, ξ)]) = 0; (5.49)

(ii) if ∂xF (x, ξ) is osc in ξ, then

lim
ν→∞

sup
x∈X

D(EPν [∂xF (x, ξ)],EP [∂xF (x, ξ)]) = 0; (5.50)

if, in addition, ∂xF (x, ξ) is Hausdorff continuous in ξ, then

lim
ν→∞

sup
x∈X

H(EPν [∂xF (x, ξ)],EP [∂xF (x, ξ)]) = 0. (5.51)

Proof. Part (i). For the simplicity of notation, let fPν (x) = EPν [F (x, ξ)] and fP (x) = EP [F (x, ξ)].
Under condition (a), both fPν (x) and fP (x) are globally Lipschitz continuous, therefore Clarke’s gener-
alized derivatives of fPν (x) and fP (x), denoted by fo

Pν
(x; h) and fo

P (x; h) respectively, are well-defined
for any fixed nonzero vector h ∈ IRn, where

fo
Pν

(x;h) = lim sup
x′→x,τ↓0

1
τ

(fPν (x′ + τh)− fPν (x′))

and
fo

P (x; h) = lim sup
x′→x,τ↓0

1
τ

(fP (x′ + τh)− fP (x′)).

Our idea is to study the Hausdorff distance H(∂fPν (x), ∂fP (x)) through certain “distance” of the Clarke
generalized derivatives fo

Pν
(x;h) and fo

P (x; h). Let D1, D2 be two convex and compact subsets of IRm.
Let σ(D1, u) and σ(D2, u) denote the support functions of D1 and D2 respectively. Then

D(D1, D2) = max
‖u‖≤1

(σ(D1, u)− σ(D2, u))

and
H(D1, D2) = max

‖u‖≤1
|σ(D1, u)− σ(D2, u)|.

The above relationships are known as Hömander’s formulae, see [7, Theorem II-18]. Applying the second
formula to our setting, we have

H(∂fPν (x), ∂fP (x)) = sup
‖h‖≤1

∣∣σ(∂fPν (x), h)− σ(∂fPν (x), h)
∣∣.

Using the relationship between Clarke’s subdifferential and Clarke’s generalized derivative, we have that
fo

Pν
(x;h) = σ(∂fPν (x), h) and fo

P (x; h) = σ(∂fP (x), h). Consequently,

H(∂fPν (x), ∂fP (x)) = sup
‖h‖≤1

∣∣fo
P (x;h)− fo

Pν
(x; h)

∣∣

= sup
‖h‖≤1

∣∣∣∣ lim sup
x′→x,τ↓0

1
τ

(fP (x′ + τh)− fP (x′))− lim sup
x′→x,τ↓0

1
τ

(fPν (x′ + τh)− fPν (x′))
∣∣∣∣.

23



Note that for any bounded sequence {ak} and {bk}, we have

| lim sup
k→∞

ak − lim sup
k→∞

bk| ≤ lim sup
k→∞

|ak − bk|. (5.52)

To see this, let {akj
} be a subsequence such that lim supk→∞ ak = limkj→∞ akj

. Then

lim sup
k→∞

|ak − bk| ≥ lim sup
kj→∞

|akj
− bkj

|

≥ lim sup
kj→∞

(akj − bkj )

= lim sup
k→∞

ak + lim sup
kj→∞

(−bkj )

≥ lim sup
k→∞

ak + lim inf
kj→∞

(−bkj
)

≥ lim sup
k→∞

ak + lim inf
k→∞

(−bk)

= lim sup
k→∞

ak − lim sup
k→∞

bk.

Since ak and bk are in a symmetric position, we have that

lim sup
k→∞

|ak − bk| ≥ lim sup
k→∞

bk − lim sup
k→∞

ak.

This verifies (5.52). Using (5.52), we have

H(∂fPν (x), ∂fP (x)) ≤ sup
‖h‖≤1

lim sup
x′→x,τ↓0

∣∣∣∣
1
τ

(fP (x′ + τh)− fP (x′))− 1
τ

(fPν (x′ + τh)− fPν (x′))
∣∣∣∣

= sup
‖h‖≤1

lim sup
x′→x,τ↓0

∣∣∣∣
∫

Ξ

1
τ

(F (x′ + τh, ξ)− F (x′, ξ))d(P − Pν)(ξ)
∣∣∣∣.

Since Pν converges to P in distribution, and the integrand 1
τ (F (x′+ τh, ξ)−F (x′, ξ)) is continuous w.r.t

ξ and it is bounded by L, then

lim
ν→∞

sup
x∈X

sup
‖h‖≤1

lim sup
x′→x,τ↓0

∣∣∣∣
∫

Ξ

1
τ

(F (x′ + τh, ξ)− F (x′, ξ))d(P − Pν)(ξ)
∣∣∣∣ = 0.

Part (ii). We first show that EPν [∂xF (x, ξ)] and EP [∂xF (x, ξ)] are well-defined. The continuity of
F (x, ξ) in ξ implies the measurability of F (x, ξ(·)) and F o(x, ξ(·); h) by virtue of [3, Theorem 8.2.5]. Since
F o(x, ξ;h) is the support function of ∂xF (x, ξ), by [3, Theorem 8.2.14], ∂xF (x, ξ(·)) is also measurable.
Moreover, the Clarke subdifferential ∂xF (x, ξ) is compact set-valued and bounded by C (under condition
(a)), which implies that EP [∂xF (x, ξ)] is nonempty, compact set-valued, and EP [‖∂xF (x, ξ)‖] ≤ C.
By [1], EP [∂xF (x, ξ)] is well-defined. Using the same argument, we can show the well definedness of
EPν [∂xF (x, ξ)]. Note that ∂xF (x, ξ) is convex set-valued, we obtain (5.50) through [2, Theorem 4.2], and
(5.51) by virtue of [2, Theorem 3.1]. The proof is complete.

We make a few comments about Lemma 5.1 because it is not only prepared for establishing our
main result, Theorem 5.2, but also of general interest. First, Birge and Qi [5] investigated pointwise
approximation of ∂EPν [F (x, ξ)] to ∂EP [F (x, ξ)] (i.e. for fixed x) under the condition that Pν is a particular
class of continuous probability measures whose distribution function has a piecewise continuous density
function, see [5, Theorem 4.1] for details. Our result (5.49) is stronger than the convergence result
in [5, equation (4.1)] in the sense that the convergence here is unform and there is no restriction on
the distribution of Pν . Second, Artstein and Wets [2] established a number of convergence results for
the integral of random set-valued mappings when the probability measures Pν converges weakly to P .
Lemma 5.1 (ii) is a direct application of their results to Clarke subdifferentials. Third, consider a popular
special case that Pν is an empirical probability measure. That is,

Pν :=
1
ν

ν∑

k=1

1ξk(ω)
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where ξ1, · · · , ξν is an independent and identically distributed sampling of ξ and

1ξk(ω) :=
{

1, if ξ(ω) = ξk,
0, if ξ(ω) 6= ξk.

In this case

∂EPν [F (x, ξ)] = ∂

(
1
ν

ν∑

k=1

F (x, ξk)

)

and

EPν [∂xF (x, ξ)] =
1
ν

ν∑

k=1

∂xF (x, ξk).

From the calculus of Clarke subdifferential, we know that

∂EPν
[F (x, ξ)] ⊆ EPν

[∂xF (x, ξ)]

and equality holds when F (·, ξk), k = 1, · · · , ν, is Clarke regular at x. Moreover, Lemma 5.1 indicates
that

lim
ν→∞

sup
x∈X

H

(
∂

(
1
ν

ν∑

k=1

F (x, ξk)

)
, ∂EP [∂x(x, ξ)]

)
= 0

and

lim
ν→∞

sup
x∈X

D

(
1
ν

ν∑

k=1

∂xF (x, ξk),EP [∂xF (x, ξ)]

)
= 0.

If, in addition, ∂xF (x, ξ) is Hausdorff continuous in ξ, then

lim
ν→∞

sup
x∈X

H

(
1
ν

ν∑

k=1

∂xF (x, ξk),EP [∂xF (x, ξ)]

)
= 0.

It seems open whether these results hold when ∂xF (x, ξ) is integrably bounded and/or ∂xF (x, ξ) is merely
outer semicontinuous in ξ.

Theorem 5.2 [Stability of stationary points] Let X be a compact set and Assumptions 3.1 and 4.2 hold
for all x ∈ X. Let {Pν} be a sequence of probability measures converging to P in distribution. Then there
exists a constant t∗ > 0 such that

(i) v̂(x, ξ, t) is continuous on X × Ξ × [0, t∗] and for any fixed ξ ∈ Ξ, v̂(·, ξ, ·) is Lipschitz continuous
on X × [0, t∗];

(ii) if the Lipschitz modulus of v̂(x, ξ, t), denoted by L̂(x, ξ, t), is bounded by a constant C for any
(x, ξ, t) ∈ X × Ξ× [0, t∗], then

lim
ν→∞

H(S∗Pν
(t), S∗P (t)) = 0

and
lim

ν→∞
D(Sw

Pν
(t), Sw

P (t)) = 0.

Proof. Part (i) follows from Theorem 3.1 and Theorem 4.2. Part (ii) follows from [47, Lemma 4.2] and
Lemma 5.1.

6 Sample average approximation

In this section, we discuss sample average approximation of the regularized two stage problem. This is a
combination of the stability analysis in sections 3-5 but has an independent interest: we investigate the
behavior of optimal solutions and stationary points when the regularization parameter t is driven to 0 and
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the probability measure P is approximated by the empirical probability measure (sample average). By
focusing on sample average approximation, we are able to obtain some stronger results which we cannot
do under general probability measures in Section 5.

We start by writing the regularized two stage problem (3.9) and (3.10) in a compact form:

min
x,y(·)

E[f(x, y(ω), ξ(ω))]

subject to x ∈ X, and for a.e. ω ∈ Ω :
g(x, y(ω), ξ(ω)) ≤ 0,
h(x, y(ω), ξ(ω)) = 0,
−G(x, y(ω), ξ(ω)) ≤ 0,
−H(x, y(ω), ξ(ω)) ≤ 0,
G(x, y(ω), ξ(ω)) ◦H(x, y(ω), ξ(ω)) ≤ te.

(6.53)

The equivalence between (6.53) and (3.9)–(3.10) is well documented in the stochastic programming liter-
ature (e.g. [40, Chapter 1, section 2.4]). Let ξ1, · · · , ξN be an independent identically distributed (i.i.d.
for short) sample. We consider the following sample average approximation of the regularized problem
(6.53):

min
x;y1,··· ,yN

1
N

∑N
i=1 f(x, yi, ξi)

subject to x ∈ X, and for i = 1, · · · , N :
g(x, yi, ξi) ≤ 0,
h(x, yi, ξi) = 0,
−G(x, yi, ξi) ≤ 0,
−H(x, yi, ξi) ≤ 0,
G(x, yi, ξi) ◦H(x, yi, ξi) ≤ tNe,

(6.54)

where tN ↓ 0 as N → ∞. Note that the dependence of the regularization parameter on sample size is
numerically important as it allows one to change the parameter value as the sampling changes.

If we use v̂(x, ξi, t), i = 1, · · · , N , to denote the optimal value of the regularized second stage problem
(3.9) with ξ = ξi and assume that (x; y1, · · · , yN ) is a global optimal solution, then problem (6.54) can
be written in an implicit form, that is,

min
x

1
N

∑N
i=1 v̂(x, ξi, tN )

subject to x ∈ X,
(6.55)

which is the sample average approximation of the first stage (3.10). Here “implicit” is in the sense the
(6.55) does not explicitly involve the underlying functions of the second stage problem. The terminology
is used by Ralph and Xu in [35] where SAA is applied to a classical two stage stochastic program.

Sample average approximation is a very popular method in stochastic programming, it is known under
various names such as Monte Carlo sampling, sample path optimization and stochastic counterpart, see
[33, 36, 40] for SAA in general stochastic programming and [42, 48, 27] for recent application of the
method to SMPECs.

The regularized SAA scheme for a two stage SMPEC problem was first considered in [43] and with
some detailed convergence analysis in a conference paper [34] where G(x, y, ξ) = y and H(x, y, ξ) is
uniformly strongly monotone with respect to y. In this section, we carry out convergence analysis under
weaker conditions, that is, the second stage problem MPEC(x, ξ) satisfies MPEC-MFCQ.

We start with a convergence analysis of first stage optimal solutions. Specifically, by assuming that
{xN ; y1, · · · , yN} is a global optimal solution to SAA problem (6.54), we investigate an accumulation
point of {xN} as the sample size N increases. From numerical perspective, if we obtain an approximate
global optimal solution from solving (6.54) and observe a tendency of convergence of xN as N increases,
then we want to know how the convergent sequence is related to the optimal solution of true problem
(1.1).
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Theorem 6.1 Let {(xN ; y1, · · · , yN )} be a sequence of global optimal solutions of problem (6.54) and
x̂ be an accumulation point of {xN}. Let X̄ be a closed subset of X such that w.p.1. xN ∈ X̄ for
N sufficiently large and X̄ contains a global optimal solution x∗ of the true first stage problem (3.7).
Suppose: (a) Assumptions 3.1 and 4.2 are satisfied at every point x in X̄, (b) problem MPCC(x, ξ)
satisfies MPEC-MFCQ at every point in the optimal solution set Ysol(x, ξ) for (x, ξ) ∈ X̄ × Ξ. Then

(i) w.p.1 x̂ is an optimal solution to the true problem (3.7).

(ii) Suppose, in addition, that: (c) there exists a positive constant t̂ such that for every x ∈ X̄ and
t ∈ [0, t̂], the moment generating function E[e(v̂(x,ξ,t)−E[v̂(x,ξ,t)])τ ] of the random variable v̂(x, ξ, t)−
E[v̂(x, ξ, t)] is finite valued for τ close to 0; (d) the moment generating function E[eκ(ξ)2τ ] of the
random variable κ(ξ)2 is finite valued for τ close to 0, where κ(ξ) is defined in Assumption 4.2.
Then {xN} converges to x̂ with probability approaching one exponentially fast with the increase of
sample size N , that is, for every ε > 0, there exist positive constants C(ε) and β(ε) such that

Prob(d(xN , Xsol) ≥ ε) ≤ C(ε)e−β(ε)N (6.56)

for N sufficiently large.

Proof. Part (i). It suffices to show that 1
N

∑N
i=1 v̂(x, ξi, tN ) converges uniformly to E[v(x, ξ)] over the

compact set X̄, that is,

lim
N→∞

sup
x∈X̄

∣∣∣∣
1
N

N∑

i=1

v̂(x, ξi, tN )− E[v(x, ξ)]
∣∣∣∣ = 0 w.p.1. (6.57)

Indeed, if (6.57) holds, then we can claim, by virtue of [47, Lemma 4.1] or [38, Theorem 7.33] (as uniform
convergence implies epi-convergence), that the set of global minimizers of the sample average function
1
N

∑N
i=1 v̂(x, ξi, tN ) within X̄ converges to that of E[v(x, ξ)] within X̄ w.p.1. This implies that w.p.1 x̂ is

a global minimizer of E[v(x, ξ)] in X̄ and hence E[v(x̂, ξ)] = E[v(x∗, ξ)]. In what follows, we prove (6.57).

Since Assumption 3.1 holds at every point x ∈ X̄, it follows from Theorem 3.3 (ii) that v(·, ·) is
continuous on X̄ ×Ξ and v(·, ξ) is locally Lipschitz continuous on X̄ for every fixed ξ ∈ Ξ. Moreover, by
Proposition 4.2 (i),

‖∂xv(x, ξ)‖ ≤ ‖Φ(x, ξ)‖.
Under Assumption 4.2,

‖Φ(x, ξ)‖ ≤ κ(ξ)2,∀(x, ξ) ∈ X̄ × Ξ,

where κ(ξ) is given in Assumption 4.2 and E[κ(ξ)2] < ∞. Further, the condition x∗ ∈ X̄ implies
E[v(x∗, ξ)] < ∞. Therefore for every x ∈ X̄,

|v(x, ξ)| ≤ |v(x∗, ξ)|+ κ(ξ)2‖x− x∗‖

and hence E[v(x, ξ)] is well-defined and

E[v(x, ξ)] ≤ E[|v(x∗, ξ)|] + E[κ(ξ)2]‖x− x∗‖ < ∞.

This implies, through the classical uniform law of large numbers [40, Lemma A1], that

lim
N→∞

sup
x∈X̄

∣∣∣∣
1
N

N∑

i=1

v(x, ξi)− E[v(x, ξ)]
∣∣∣∣ = 0 w.p.1. (6.58)

On the other hand, under Assumption 3.1, we know through Theorem 4.2 that v̂(·, ξ, ·) is locally Lipschitz
continuous at (x, 0) for x ∈ X̄. Moreover, by Proposition 4.2 (ii) and Assumption 4.2

‖∂tv̂(x, ξ, t)‖ ≤ ‖ΠλŴ(x, ξ, t)‖ ≤ κ(ξ), for all (x, ξ) ∈ X̄ × Ξ,

27



where κ(ξ) is given in Assumption 4.2. Consequently, we have

∣∣∣∣
1
N

N∑

i=1

v̂(x, ξi, tN )− E[v(x, ξ)]
∣∣∣∣ ≤ 1

N

N∑

i=1

|v̂(x, ξi, tN )− v(x, ξi)|+
∣∣∣∣
1
N

N∑

i=1

v(x, ξi)− E[v(x, ξ)]
∣∣∣∣

≤ 1
N

N∑

i=1

κ(ξi)tN +
∣∣∣∣
1
N

N∑

i=1

v(x, ξi)− E[v(x, ξ)]
∣∣∣∣. (6.59)

Combining (6.58) and (6.59) together with the fact that

lim
N→∞

1
N

N∑

i=1

κ(ξi) = E[κ(ξ)],

we obtain (6.57).

Part (ii). Let ε > 0 be given. By [11, Lemma 3.2] (or [47, Lemma 4.1]), there exists a δ(ε) > 0 such
that if

lim
N→∞

sup
x∈X̄

∣∣∣∣
1
N

N∑

i=1

v̂(x, ξi, tN )− E[v(x, ξ)]
∣∣∣∣ ≤ δ(ε),

then d(xN , Xsol) ≤ ‖xN − x̂‖ ≤ ε. Under condition (d), there exist positive constants C1(ε), β1(ε) and
N0 sufficiently large such that for N ≥ N0

Prob

(
1
N

N∑

i=1

κ(ξi)tN ≥ 1
2
δ(ε)

)
≤ C1(ε)e−β1(ε)N .

On the other hand, by virtue of the Lipschitz continuity of v(·, ξ) together with conditions (c) and (d) of
this theorem, we can apply [43, Theorem 5.1] to the sample average 1

N

∑N
i=1 v(x, ξi), that is, for given

δ(ε) > 0, there exist positive constants C2(ε), β2(ε) and N1 ≥ N0 such that for N ≥ N1

Prob

(
sup
x∈X̄

1
N

∣∣∣∣
N∑

i=1

v(x, ξi)− E[v(x, ξ)]
∣∣∣∣ ≥

1
2
δ(ε)

)
≤ C2(ε)e−β2(ε)N .

Combining the above two inequalities with (6.59), we have

Prob

(
lim

N→∞
sup
x∈X̄

∣∣∣∣
1
N

N∑

i=1

v̂(x, ξi, tN )− E[v(x, ξ)]
∣∣∣∣ ≥ δ(ε)

)
≤ C1(ε)e−β1(ε)N + C2(ε)e−β2(ε)N .

The conclusion follows by setting C(ε) = C1(ε) + C2(ε) and β(ε) = min(β1(ε), β2(ε)).

We now move on to discuss the case when a solution {xN ; y1, · · · , yN} obtained from solving the
SAA problem (6.54) is a stationary point but not a global optimal solution. This happens in numerical
solution in that MPECs are generically nonconvex and so are their counterparts via NLP-regularization.
This motivates us a separate discussion on the convergence of xN .

Consider the KKT conditions of the regularized SAA program (6.54):

0 ∈ 1
N

N∑

i=1

∇xL̂(x, yi, ξi, t; αi, βi, γi, θi, λi) +NX(x) (6.60)

and for i = 1, · · · , N





0 = ∇yL̂(x, yi, ξi, t; αi, βi, γi, θi, λi),
0 ≤ −g(x, yi, ξi) ⊥ αi ≥ 0,
0 = h(x, yi, ξi),
0 ≤ G(x, yi, ξi) ⊥ γi ≥ 0,
0 ≤ H(x, yi, ξi) ⊥ θi ≥ 0,
0 ≤ tNe−G(x, yi, ξi) ◦H(x, yi, ξi) ⊥ λi ≥ 0.

. (6.61)
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We note that (y1;α1, β1, γ1, θ1, λ1), · · · (yN ; αN , βN , γN , θN , λN ) change as N changes. So it would be
more accurate to denote each yi by yi,N and similarly with the other vectors. To keep the notation simple
we will take this point as understood.

The KKT conditions (6.61) imply that (yi; αi, βi, γi, θi, λi) is a KKT pair of REG(x, ξi, tN ), i.e.,
(yi; αi, βi, γi, θi, λi) ∈ Ŵ(x, ξi, tN ). By the definition of Ψ̂(x, ξ, t) (see (4.28)),

∇xL̂(x, yi, ξi, t; αi, βi, γi, θi, λi) ∈ Ψ̂(x, ξi, t).

Combining this with (6.60), we arrive at

0 ∈ 1
N

N∑

i=1

Ψ̂(x, ξi, tN ) +NX(x), (6.62)

which implies that (6.62) is a sample average approximation of the relaxed KKT condition (4.40).

Theorem 6.2 Let {xN ; y1, · · · , yN} be a stationary point of problem (6.54) and x̂ be an accumulation
point of {xN}. Suppose that Assumptions 4.1 and 4.2 hold at x̂, and problem MPCC(x, ξ) satisfies MPEC-
MFCQ at every point in the feasible set F(x̂, ξ) for every ξ ∈ Ξ. Then w.p.1 x̂ is relaxed stationary point
of true problem (3.7), that is, x̂ satisfies (4.39).

Proof. Let

A(x, ξ, t) :=
{

Ψ̂(x, ξ, t), t 6= 0,
Ψ(x, ξ), t = 0.

By Proposition 4.3, there exist a neighborhood U of x̂ and a scalar t∗ > 0 such that A(·, ·, ·) is outer
semi-continuous on U×Ξ× [0, t∗]. Under Assumption 4.2, A(x, ξ(·), t) is measurable, integrably bounded.
The conclusion follows by application of [50, Theorem 4.3]. The proof is complete.
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