Maps admitting trialities but not dualities

Gareth A. Jones
School of Mathematics
University of Southampton
Southampton SO17 1BJ, U.K.
G.A.Jones@maths.soton.ac.uk

Andrew Poulton
School of Mathematics
University of Southampton
Southampton SO17 1BJ, U.K.
awdp106@soton.ac.uk

Abstract

We use group theory to construct infinite families of maps on surfaces which are invariant under Wilson's map operations of order 3 but not under the operations of order 2, such as duality and Petrie duality.

MSC classification: Primary 05C25, secondary 05C10, 20 B 25.
Keywords: Map, operation, duality, triality.

Running head: Maps admitting trialities.

Corresponding author:
Prof. G. A. Jones
School of Mathematics
University of Southampton
Southampton SO17 1BJ
U.K.
G.A.Jones@maths.soton.ac.uk

1 Introduction

In [14], Wilson introduced a group Σ of six operations on regular maps, isomorphic to the symmetric group S_{3}. In addition to the identity operation, Σ contains the duality operation D, transposing vertices and faces, and the Petrie duality P, transposing faces and Petrie polygons (closed zig-zag paths); these two operations have order 2 , and they generate the group Σ. The remaining elements of Σ are the 'opposite' operation $D P D=P D P$, which is a duality transposing vertices and Petrie polygons, and two mutually inverse operations $D P$ and $P D$ of order 3, called trialities, each permuting vertices, faces and Petrie polygons in a cycle of length 3 .

The images of a map under these six operations are called its direct derivates, and Wilson divided regular maps into classes I - IV as they have $6,3,2$ or 1 of these, up to isomorphism (the only possibilities). Maps \mathcal{M} in class III are invariant under the triality operations $D P$ and $P D$, but not under the duality operations D, P and $D P D$; thus

$$
\mathcal{M} \cong D P(\mathcal{M}) \cong P D(\mathcal{M}) \quad \text { and } \quad D(\mathcal{M}) \cong P(\mathcal{M}) \cong D P D(\mathcal{M})
$$

but $\mathcal{M} \not \neq D(\mathcal{M})$. Wilson pointed out in [14] that such maps seem to be very rare, and indeed at one stage he had suspected that they did not exist. The single example given in [14] is a dual pair \mathcal{W} and $D(\mathcal{W})$ of non-orientable maps of type $\{9,9\}_{9}$ and characteristic -70 , with the simple group $L_{2}(8)$ of order 504 as their common automorphism group. These appear to be the only examples currently in the literature, although after Wilson raised the question of their existence at the SIGMAC 06 conference in Aveiro, Conder [3] found several further examples by using a computer program.

In [11], Jones and Thornton showed that regular maps correspond to normal subgroups of a certain group Γ, the free product $V_{4} * C_{2}$ of a Klein four-group V_{4} and a cyclic group C_{2} of order 2 , and that the operations in Σ are induced by the outer automorphism group Out $\Gamma \cong$ Aut $V_{4} \cong S_{3}$ acting on such subgroups. Our aim here is to use this algebraic approach to reinterpret Wilson's example, and to give several constructions which yield infinite series of regular maps in class III. Although we have considered a very specific problem here, we hope that our techniques may allow the construction of other combinatorial and geometric objects, such as hypermaps and polytopes, with specified properties under operations.

The paper is organised as follows. In Section 2 we summarise the algebraic theory of maps. In Section 3 we construct infinitely many examples of class III maps based on the groups $L_{2}\left(2^{e}\right)$, generalising Wilson's example for $e=3$. In Sections 4 and 5 we construct further examples, firstly as coverings of smaller class III maps, and secondly by using Wilson's concept of a parallel product [15]. Finally in Section 6 we consider examples of comparitively small genus, comparing our results with computational results obtained by Conder [2, 3, 4]. Throughout the paper we use ATLAS notation [5] for finite groups.

We thank Marston Conder and Steve Wilson for some valuable comments, and the Nuffield Foundation for supporting the second author with a Nuffield Science Bursary.

2 Maps

Here we outline the algebraic theory of maps. For simplicity of exposition we will restrict attention to maps without boundary and without free edges, since it is easy to show that there are no regular maps in class III possessing these features. For a more comprehensive account, see [1].

If \mathcal{M} is a map then let Ω be the set of blades associated with \mathcal{M} : these are local flags $\alpha=(v, e, f)$ where v is a vertex, e is an edge, and f is a face, all mutually incident. We define three permutations r_{0}, r_{1} and r_{2} of Ω as follows: r_{i} sends each flag α to an adjacent flag αr_{i} by preserving its j-dimensional components for each $j \neq i$, while changing (in the only possible way) its i-dimensional component. These permutations are illustrated in Figure 1, where the small triangles represent blades.

Figure 1: the permutations r_{0}, r_{1} and r_{2}.
By connectivity these permutations generate a transitive subgroup G of the symmetric group $\operatorname{Sym} \Omega$ on Ω, known as the monodromy group $\operatorname{Mon} \mathcal{M}$ of \mathcal{M}. They satisfy

$$
r_{0}^{2}=r_{1}^{2}=r_{2}^{2}=\left(r_{0} r_{2}\right)^{2}=1
$$

so that if we define an abstract group Γ by means of the presentation

$$
\Gamma=\left\langle R_{0}, R_{1}, R_{2} \mid R_{0}^{2}=R_{1}^{2}=R_{2}^{2}=\left(R_{0} R_{2}\right)^{2}=1\right\rangle
$$

then there is an epimorphism $\theta: \Gamma \rightarrow G$ given by $R_{i} \mapsto r_{i}$. (The generators R_{i} of Γ were denoted by l, r and t in [11], but here we follow the notation of Coxeter and Moser [6].) The subgroups $M=\theta^{-1}\left(G_{\alpha}\right)$ of Γ fixing a blade $\alpha \in \Omega$, known as the map subgroups, form a conjugacy class of subgroups of index $|\Omega|$ in Γ. One can reverse this process: any transitive permutation representation of Γ gives rise to a map in which the vertices, edges and faces correspond to the orbits of the dihedral subgroups $\left\langle R_{1}, R_{2}\right\rangle,\left\langle R_{0}, R_{2}\right\rangle$ and $\left\langle R_{0}, R_{1}\right\rangle$, with incidence given by non-empty intersection. A map \mathcal{M} is compact if and only if Ω is finite, or equivalently M has finite index in Γ; it is without boundary and free edges if and only if M is torsion-free (i.e. contains no conjugate of any R_{i} or of $R_{0} R_{2}$), in which case \mathcal{M} is orientable if and only if M is contained in the even subgroup Γ^{+}of Γ, the subgroup of index 2 consisting of all words of even length in the generators R_{i}.

The automorphism group $A=$ Aut \mathcal{M} of \mathcal{M} is the set of permutations of Ω commuting with each r_{i}; equivalently, A is the centraliser of G in $\operatorname{Sym} \Omega$. It acts freely on Ω, since an automorphism fixing a blade must fix all of them, and it is isomorphic to $N_{\Gamma}(M) / M$. We say that \mathcal{M} is regular if A acts transitively (and hence regularly) on Ω, or equivalently M is normal in Γ, in which case

$$
A \cong G \cong \Gamma / M
$$

and we can regard A and G as the left and right regular representations of the same group. Coverings $\mathcal{M}_{1} \rightarrow \mathcal{M}_{2}$ of maps correspond to inclusions $M_{1} \leq M_{2}$ of the corresponding map subgroups, with the index $\left|M_{2}: M_{1}\right|$ equal to the number of sheets. Normal inclusions correspond to regular coverings, induced by M_{2} / M_{1} acting as a group of automorphisms of \mathcal{M}_{1}.

The Petrie polygons of a map \mathcal{M} are its closed zig-zag paths, turning alternately first right and first left at successive vertices; these can be identified with the orbits of the dihedral subgroup $\left\langle R_{0} R_{2}, R_{1}\right\rangle$ on Ω. Following Coxeter and Moser [6, Ch. 8], we say that a map \mathcal{M} has type $\{p, q\}_{r}$, or simply $\{p, q\}$, if p, q and r are the orders of the permutations $r_{0} r_{1}, r_{1} r_{2}$ and $r_{0} r_{1} r_{2}$, or equivalently the least common multiples of the valencies of the faces, the vertices and the Petrie polygons of \mathcal{M}. In a regular map these all have the same valencies p, q and r respectively.

In [14], Wilson described a group $\Sigma \cong S_{3}$ of operations on regular maps. It is generated by the classical duality D, which transposes the vertices and faces of a map, while preserving the underlying surface, and the Petrie duality P, which preserves the embedded graph while transposing the faces and the Petrie polygons, so that the surface may change both its orientability and its characteristic. These operations have order 2 . Apart from the identity operation, the remaining elements of Σ are the 'opposite' operation $D P D=P D P$, also of order 2, which transposes vertices and Petrie polygons by rejoining adjacent faces across common edges with reversed identifications, and two operations $D P$ and $P D$ of order 3 called trialities.

In [11] it is shown that Σ can be identified with the outer automorphism group

$$
\text { Out } \Gamma=\operatorname{Aut} \Gamma / \operatorname{Inn} \Gamma \cong S_{3}
$$

of Γ, acting on the normal subgroups M of Γ corresponding to regular maps \mathcal{M}. This is because Γ is the free product $V * C$ of a Klein four-group $V=\left\langle R_{0}, R_{2}\right\rangle \cong V_{4}$ and a cyclic group $C=\left\langle R_{1}\right\rangle \cong C_{2}$ of order 2 , and Aut Γ is a semidirect product of the inner automorphism group Inn $\Gamma \cong \Gamma$ by Aut $V \cong S_{3}$, the latter permuting the three involutions R_{0}, R_{2} and $R_{0} R_{2}$ of V. Since the faces, vertices and Petrie polygons of a map \mathcal{M} can be identified with the orbits of the dihedral subgroups $\left\langle R_{0}, R_{1}\right\rangle,\left\langle R_{2}, R_{1}\right\rangle$ and $\left\langle R_{0} R_{2}, R_{1}\right\rangle$ of Γ on Ω, one can identify the action of Σ on maps with that of Aut V, and hence of Out Γ, on normal subgroups M of Γ.

The direct derivates of a regular map \mathcal{M} are its images under Σ. The only transitive actions of Σ are its regular action of degree 6 , its natural action of degree 3, its action of degree 2 as the quotient $S_{3} / A_{3} \cong S_{2}$, and its trivial action of degree 1, so Wilson divided regular maps into classes I - IV respectively, as they have $6,3,2$ or 1 derivates, admitting
one of these four actions. The aim of this paper is to give constructions for the apparently rare maps in class III: these are the regular maps with just two direct derivates, so that they are invariant under the subgroup $\Sigma^{+} \cong C_{3}$ of Σ generated by the triality $D P$ (or by its inverse $P D$), but not under Σ.

If M is a normal subgroup of Γ, corresponding to a regular map \mathcal{M}, then let

$$
M_{\Sigma}=\bigcap_{\sigma \in \Sigma} \sigma(M) \quad \text { and } \quad M_{\Sigma^{+}}=\bigcap_{\sigma \in \Sigma^{+}} \sigma(M),
$$

the largest Σ-invariant (i.e. characteristic) and Σ^{+}-invariant normal subgroups of Γ contained in M. Let \mathcal{M}_{Σ} and $\mathcal{M}_{\Sigma^{+}}$be the corresponding maps, the smallest Σ - and Σ^{+}invariant regular maps covering \mathcal{M}. Then \mathcal{M} is in class IV if and only if $\mathcal{M}=\mathcal{M}_{\Sigma}$. or equivalently $M=M_{\Sigma}$, and \mathcal{M} is in class III if and only if $\mathcal{M}=\mathcal{M}_{\Sigma^{+}} \neq \mathcal{M}_{\Sigma}$, or equivalently $M=M_{\Sigma^{+}}>M_{\Sigma}$.

In order to consider the orientability of class III maps, we need to understand the action of Σ on the subgroups Δ of index 2 in Γ. There are seven of these, each containing the commutator subgroup Γ^{\prime}, which has quotient $\Gamma / \Gamma^{\prime} \cong V_{8}$. Each such subgroup Δ is determined by which proper subset of the generators R_{0}, R_{1} and R_{2} it contains: we write $\Delta=\Gamma_{\emptyset}, \Gamma_{i}$ or $\Gamma_{i j}$ if it contains none of them, just R_{i}, or just R_{i} and R_{j} with $i<j$. Thus Γ_{\emptyset} is the even subgroup Γ^{+}, consisting of those elements of Γ which are words of even length in the generators R_{i}. Both Σ and Σ^{+}leave Γ_{02} invariant, and have orbits $\left\{\Gamma_{\emptyset}, \Gamma_{0}, \Gamma_{2}\right\}$ and $\left\{\Gamma_{1}, \Gamma_{01}, \Gamma_{12}\right\}$ on the remaining six subgroups. The groups Δ in the first of these two orbits satisfy $\Delta_{\Sigma}=\Delta_{\Sigma^{+}}=\Gamma^{\prime}$, and those in the second satisfy $\Delta_{\Sigma}=\Delta_{\Sigma^{+}}=\Gamma^{*}:=\left\langle\Gamma^{\prime}, R_{1}\right\rangle$, subgroups of index 8 and 4 in Γ respectively.

Lemma 2.1 Each Σ^{+}-invariant regular map \mathcal{M} has type $\{n, n\}_{n}$ for some n. If \mathcal{M} is also orientable and without boundary, then n is even

Proof. If \mathcal{M} is Σ^{+}-invariant, then since Σ^{+}transforms the vertices of \mathcal{M} into its faces and Petrie polygons, these all have the same valency n, and thus \mathcal{M} has type $\{n, n\}_{n}$. If \mathcal{M} is also orientable and without boundary, then the corresponding map subgroup M is contained in Γ^{+}. Being Σ^{+}-invariant, M is contained $\Gamma_{\Sigma^{+}}^{+}=\Gamma^{\prime}$. Now $R_{0} R_{1}, R_{1} R_{2}$ and $R_{0} R_{1} R_{2}$ have images of order 2 in Γ / Γ^{\prime}, and hence the order n of their images in $\Gamma / M \cong \operatorname{Aut} \mathcal{M}$ is even.

If a regular map \mathcal{M} has type $\{n, n\}_{n}$ and automorphism group G, then it has $|G| / 2 n$ vertices, $|G| / 4$ edges and $|G| / 2 n$ faces, so it has Euler characteristic

$$
\begin{equation*}
\chi=|G|\left(\frac{1}{2 n}-\frac{1}{4}+\frac{1}{2 n}\right)=|G| \frac{4-n}{4 n} . \tag{1}
\end{equation*}
$$

In particular, this applies if \mathcal{M} is regular and Σ^{+}-invariant, in which case all direct derivates of \mathcal{M} are on homeomorphic surfaces. These have genus $1-\frac{1}{2} \chi$ or $2-\chi$ as they are orientable or non-orientable.

3 Generalising Wilson's example

Wilson's example in [14] is a dual pair \mathcal{W} and $D(\mathcal{W})$ of maps of type $\{9,9\}_{9}$ in class III with automorphism group $L_{2}(8)$. Here we will show that there are similar examples based on the group $L_{2}\left(2^{e}\right)$ whenever e is divisible by 3 . Our constructions use properties of finite fields; see [12] for background.

Let K be the field F_{q} of order $q=2^{e}$, and let F be the subfield F_{r} where $r=2^{f}$ and $e=3 f$. Then Gal K / F is a cyclic group of order 3 , generated by the automorphism $\alpha: x \mapsto x^{r}$. Let us call an element $x \in K$ a useful generator if it generates the field K and satisfies $x+x^{r}+x^{r^{2}}=0$

Lemma 3.1 There exists a useful generator $x \in K$.
Proof. The trace map $\operatorname{Tr}_{K / F}: x \mapsto x+x^{r}+x^{r^{2}}$ is a homomorphism $K \rightarrow F$ of additive groups, so its kernel has order at least $|K| /|F|=2^{2 e / 3}$. (In fact we have equality here, since the polynomial $\operatorname{Tr}_{K / F}(x)$ has at most $r^{2}=2^{2 e / 3}$ roots in K, but we do not need this.) The elements which do not generate K as a field are those contained in maximal subfields of K, and there is one of these, of order $2^{e / p}$, for each prime p dividing e. If there are k such primes (including 3) then $e \geq 3.2^{k-1}$ and so $k \leq 1+\log _{2}(e / 3)$. Each subfield has order at most $2^{e / 2}$, so the number of such non-generators is at most $2^{e / 2}\left(1+\log _{2}(e / 3)\right)$. The result is therefore proved if $2^{2 e / 3}>2^{e / 2}\left(1+\log _{2}(e / 3)\right)$, that is, $2^{e / 6}>1+\log _{2}(e / 3)$, and this is true for all $e>6$. The cases $e=3$ and 6 are easily dealt with by more careful counting arguments (alternatively, see Example 3A).

The above method of proof has the disadvantages of not being constructive, and of not dealing with small values of e. The following constructive proof deals with all cases where e is divisible by 3 but not by 9 .

Example 3A. Suppose that $e=3 f$ where f is not divisible by 3. There exists $t \in E=$ $F_{8} \leq K$ such that $t^{3}+t+1=0$. Now $t^{7}=1$, so $t^{2^{i}}=t, t^{2}$ or t^{4} as $i \equiv 0,1$ or $2 \bmod (3)$. Since $r=2^{f}$ with $f \not \equiv 0 \bmod (3)$ we have $\operatorname{Tr}_{K / F}(t)=t+t^{r}+t^{r^{2}}=t+t^{2}+t^{4}=0$. Now let $x=t u$ where u generates the field F. Then $\operatorname{Tr}_{K / F}(x)=x+x^{r}+x^{r^{2}}=t u+(t u)^{r}+(t u)^{r^{2}}=$ $\left(t+t^{r}+t^{r^{2}}\right) u=0$ since $u^{r^{2}}=u^{r}=u$. The multiplicative order of u divides $2^{f}-1$, and is therefore coprime to 7 , whereas t has order 7 , so t and u are powers of x. Since t and u generate the fields E and F, and these subfields generate K, it follows that x generates K.

Theorem 3.2 For each positive integer e divisible by 3 there is a regular map in class III with automorphism group $L_{2}\left(2^{e}\right)$.

Proof. Let $q=2^{e}$ and let x be a useful generator of $K=F_{q}$. We map the generators R_{i} of Γ into $G=L_{2}(q)=S L_{2}(K)$ by

$$
R_{0} \mapsto r_{0}=\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right), \quad R_{1} \mapsto r_{1}=\left(\begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right) \quad \text { and } \quad R_{2} \mapsto r_{2}=\left(\begin{array}{cc}
1 & x^{r} \\
0 & 1
\end{array}\right)
$$

Since r_{0}, r_{1}, r_{2} and

$$
r_{0} r_{2}=\left(\begin{array}{cc}
1 & x+x^{r} \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
1 & x^{r^{2}} \\
0 & 1
\end{array}\right)
$$

all have order 2 , this mapping extends to a homomorphism $\theta: \Gamma \rightarrow G$. In order to show that θ is an epimorphism we need to show that no maximal subgroup of G contains r_{0}, r_{1} and r_{2}. In [7, Ch. XII], Dickson classified the subgroups of the groups $L_{2}(q)$ for all prime powers q, and in our case we see that the maximal subgroups of G are the following:

1. normalisers of Sylow 2-subgroups, isomorphic to the general affine group $A G L_{1}(q)$;
2. dihedral groups of order $2(q \pm 1)$;
3. subgroups conjugate to $S L_{2}\left(q^{\prime}\right)$ where $q^{\prime}=2^{e / p}$ for primes p dividing e.

Maximal subgroups of the first type are eliminated because their elements of order 2 all commute, whereas r_{0} and r_{1} do not. A dihedral group of order $2 n$, for odd n, does not contain a Klein four-group such as $\left\langle r_{0}, r_{2}\right\rangle$, so maximal subgroups of the second type are also eliminated. Since

$$
r_{0} r_{1}=\left(\begin{array}{cc}
x+1 & x \\
1 & 1
\end{array}\right)
$$

has trace x generating K, groups of the third type are eliminated. Thus r_{0}, r_{1} and r_{2} generate G, so θ is an epimorphism. The subgroup $M=\operatorname{ker} \theta$ of Γ is therefore the map subgroup corresponding to a regular map $\mathcal{M}=\mathcal{M}(x)$ with Aut $\mathcal{M} \cong G$.

The automorphism α of order 3 of K induces an automorphism of G fixing r_{1} and permuting r_{0}, r_{2} and $r_{0} r_{2}$ in a 3 -cycle $\left(r_{0}, r_{2}, r_{0} r_{2}\right)$, so \mathcal{M} is invariant under Σ^{+}. If \mathcal{M} were invariant under Σ then there would be an automorphism of G fixing r_{1} and transposing r_{0} and r_{2}. Now Aut $G \cong \Sigma L_{2}(K)$, an extension of G by Gal $K \cong C_{e}$, and the traces x, x^{r} and $x^{r^{2}}$ of $r_{0} r_{1}, r_{2} r_{1}$ and $r_{0} r_{2} r_{1}$ each generate the field K, so no automorphism of G can transpose $r_{0} r_{1}$ and $r_{2} r_{1}$ while fixing $r_{0} r_{2} r_{1}$. It follows that \mathcal{M} is not invariant under Σ, so it is in class III.

The map $\mathcal{M}(x)$ constructed here has type $\{n, n\}_{n}$, where n is the order of the element $r_{0} r_{1}$ in $G=L_{2}(K)$. This can be determined from the trace x of this element. If K is any field of characteristic 2 , then each non-identity element of $L_{2}(K)$ is conjugate to a matrix

$$
A=\left(\begin{array}{ll}
0 & 1 \\
1 & x
\end{array}\right)
$$

where x is its trace. If we write

$$
A^{n}=\left(\begin{array}{ll}
a_{n} & b_{n} \\
c_{n} & d_{n}
\end{array}\right)
$$

then the equation $A^{n}=A^{n-1} A$ gives

$$
a_{n}=b_{n-1}, \quad b_{n}=a_{n-1}+x b_{n-1}, \quad c_{n}=d_{n-1}, \quad d_{n}=c_{n-1}+x d_{n-1}
$$

These, and the initial condition $A^{0}=I$, imply that the sequence $\left(d_{n}\right)$ is the solution of the recurrence relation

$$
\begin{equation*}
f_{n}=f_{n-2}+x f_{n-1} \tag{2}
\end{equation*}
$$

satisfying the initial conditions $f_{0}=1$ and $f_{1}=x$, and that

$$
b_{n}=c_{n}=d_{n-1} \quad \text { and } \quad a_{n}=d_{n-2}
$$

The sequence defined by $t_{n}:=\operatorname{Tr} A^{n}=a_{n}+d_{n}$ is therefore the solution of the recurrence relation (2) with initial conditions $f_{0}=0$ and $f_{1}=x$. This enables the successive powers of A, and in particular their traces, to be computed efficiently, so that one can determine the order of $r_{0} r_{1}$ and hence the type of \mathcal{M}.
Example 3B. Let $e=3$. Then $F=F_{2}$ and we can define $K=F_{8}$ as $F_{2}[t] /\left(t^{3}+t+1\right)$, so $\operatorname{Tr}_{K / F}(t)=t+t^{2}+t^{4}=0$ and the kernel of $\operatorname{Tr}_{K / F}$ is $\left\{0, t, t^{2}, t^{4}\right\}$. Taking $x=t$ as a useful generator for K, the proof of Theorem 3.2 gives

$$
r_{0} r_{1}=\left(\begin{array}{cc}
t+1 & t \\
1 & 1
\end{array}\right)
$$

Applying the recurrence relation (1) we find that $\left(r_{0} r_{1}\right)^{3}$ has trace $t_{3}=1$, so it has order 3 and hence $r_{0} r_{1}$ has order 9 . Thus the corresponding map $\mathcal{M}=\mathcal{M}(x)$ and its dual $D(\mathcal{M})$ have type $\{9,9\}_{9}$, so by equation (1) they have characteristic $\chi=-70$.

As we will now show, this map \mathcal{M} is isomorphic to the class III map \mathcal{W} described by Wilson in [14]. His construction is completely different from ours, and it does not seem to generalise so easily to give other class III maps. He starts with the non-orientable regular $\operatorname{map} \mathcal{N}$ denoted in $[6]$ by $\{3,7\}_{9}$, since it is the largest regular map of this type. The opposite map $D P D(\mathcal{N})$ is the non-orientable regular map $\{3,9\}_{7}$ of this corresponding type. Having defined an operation H_{2}, applicable to maps of odd vertex valency, which preserves the embedded graph but replaces the rotation $r_{1} r_{2}$ of edges around each vertex with its square, he notes that the regular map $\mathcal{W}=H_{2}(D P D(\mathcal{N}))$ has type $\{9,9\}_{9}$. He then shows that Aut \mathcal{W} has generators R, S and T (corresponding to our $r_{0} r_{1}, r_{2} r_{1}$ and $r_{0} r_{2} r_{1}$), with defining relations

$$
\begin{equation*}
R^{9}=S^{9}=T^{9}=\left(R S^{3}\right)^{3}=\left(S T^{3}\right)^{3}=\left(T R^{3}\right)^{3}=\left(S R^{3}\right)^{7}=\left(T S^{3}\right)^{7}=\left(R T^{3}\right)^{7}=1 \tag{3}
\end{equation*}
$$

The 3-cycle (R, S, T) clearly induces an automorphism of Aut \mathcal{W} whereas the transposition (R, S) does not, so \mathcal{W} is in class III. Wilson does not specifically identify aut \mathcal{W}, but since D, P and H_{2} preserve automorphism groups we have $\operatorname{Aut} \mathcal{W}=\operatorname{Aut} \mathcal{N}$, and the latter is identified by Coxeter and Moser in [6, Table 8] as $L F\left(2,2^{3}\right)$, Dickson's notation for $L_{2}(8)$. It is straightforward to check that the generators r_{i} in Example 3B satisfy the relations corresponding to (3), so $\mathcal{M} \cong \mathcal{W}$.

Alternatively, one can identify the maps in Example 3B with Wilson's pair by using the character table and list of maximal subgroups of $L_{2}(8)$ in [5], together with formula (7.3) of [13], to show that the triangle group

$$
\Delta=\left\langle X, Y, Z \mid X^{9}=Y^{2}=Z^{9}=X Y Z=1\right\rangle
$$

has only two normal subgroups with quotient group $L_{2}(8)$. These lift back, through the epimorphism $R_{1} R_{2} \mapsto X, R_{2} R_{0} \mapsto Y, R_{0} R_{1} \mapsto Z$, to two normal subgroups of Γ^{+}(which are, in fact, normal in Γ) corresponding to the canonical double covers of two regular maps of type $\{9,9\}$ with automorphism group $L_{2}(8)$. Any such map must arise in this way, so there are only two of them, namely \mathcal{W} and its dual.

One can also verify this identification by using Conder's lists of regular maps [2]. He used a computer to find all the orientable and non-orientable regular maps of characteristic $\chi=-1, \ldots,-200$ (those with $\chi \geq 0$ are well-known, see [6, Ch. 8] for instance, and there are none in class III). In his notation, an entry $\mathrm{R} g . i$ or $\mathrm{N} g . i$ denotes the i-th orientable or non-orientable regular map (or dual pair of maps) of genus g, lexicographically ordered by their type $\{p, q\}$ with $p \leq q$. There is only one entry corresponding to regular maps of characteristic -70 and type $\{9,9\}$, namely the dual pair N72.9 of type $\{9,9\}_{9}$; their canonical double covers are the pair R71.15 of type $\{9,9\}_{18}$. The map $\mathcal{N}=\{3,7\}_{9}$ used by Wilson is Conder's N8.1, while $\operatorname{DPD}(\mathcal{N})$ is N 16.1 .

Theorem 3.3 (a) The only regular maps in class III with automorphism group $L_{2}(q)$ for $q=2^{e} \geq 4$ are the maps $\mathcal{M}(x)$ constructed in Theorem 3.2, together with their dual maps $D(\mathcal{M}(x))$, where e is divisible by 3 and x is a useful generator for the field $K=F_{q}$.
(b) Two such maps $\mathcal{M}\left(x_{1}\right)$ and $\mathcal{M}\left(x_{2}\right)$ are isomorphic if and only if x_{1} and x_{2} are conjugate under Gal K.
(c) There are no isomorphisms between maps $\mathcal{M}\left(x_{1}\right)$ and dual maps $D\left(\mathcal{M}\left(x_{2}\right)\right)$.

Proof. (a) Let \mathcal{M} be a regular map in class III with Aut $\mathcal{M} \cong G=L_{2}(q)$, corresponding to an epimorphism $\Gamma \rightarrow G, R_{i} \mapsto r_{i}$. Since G is neither dihedral nor cyclic, each r_{i} is an involution. All involutions in G are conjugate, so by composing θ with an inner automorphism of G we may assume that

$$
r_{1}=\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)
$$

Now r_{0} and r_{2} are commuting involutions. The centraliser of any involution in G is the unique Sylow 2-subgroup containing it, so r_{0} and r_{2} lie in a Sylow 2-subgroup S, which must be distinct from the Sylow 2-subgroup $T=C_{G}\left(r_{1}\right)$ containing r_{1}. Each Sylow 2subgroup acts regularly by conjugation on the q others in G, so by further conjugating with a unique element of T we may also assume that

$$
r_{0}=\left(\begin{array}{ll}
1 & x \\
0 & 1
\end{array}\right) \quad \text { and } \quad r_{2}=\left(\begin{array}{ll}
1 & y \\
0 & 1
\end{array}\right), \quad \text { giving } \quad r_{0} r_{2}=\left(\begin{array}{cc}
1 & x+y \\
0 & 1
\end{array}\right)
$$

for some $x, y \in K$. Indeed, this argument shows that there is a unique inner automorphism of G taking the original generators r_{0}, r_{1} and r_{2} to this form.

Since \mathcal{M} is in class III there is an automorphism α of G fixing r_{1} and permuting r_{0}, r_{2} and $r_{0} r_{2}$ in a 3 -cycle. Now Aut $G=\Sigma L_{2}(q)$, a semidirect product of G by Gal K. The automorphisms fixing r_{1} form the semidirect product of T by Gal K, and the above
uniqueness result shows that such an automorphism preserves S if and only if it is in Gal K. Since α has order 3 it follows that $e=3 f$ for some f, and α acts on K by $t \mapsto t^{r}$ or $t \mapsto t^{r^{2}}$, where $r=2^{f}$. Suppose first that $\alpha: t \mapsto t^{r}$. Then $y=x^{r}$ and $x+y=x^{r^{2}}$, so $x+x^{r}+x^{r^{2}}=0$. If K_{0} is the subfield of K generated by x then $y \in \alpha\left(K_{0}\right)=K_{0}$, so $r_{0}, r_{1}, r_{2} \in L_{2}\left(K_{0}\right)$; however, these elements generate G, so $K_{0}=K$. Thus x is a useful generator of K, and $\mathcal{M} \cong \mathcal{M}(x)$. We obtain a similar conclusion if $\alpha: t \mapsto t^{r^{2}}$, except that now $y=x^{r^{2}}$ and $x+y=x^{r}$; this differs from the preceding case by inverting α, or equivalently by transposing r_{0} and r_{2}, so in this case $\mathcal{M} \cong D(\mathcal{M}(x))$.
(b) This condition is sufficient, since an automorphism of K taking x_{1} to x_{2} will give an automorphism of G inducing an isomorphism from $\mathcal{M}\left(x_{1}\right)$ to $\mathcal{M}\left(x_{2}\right)$. The uniqueness result in the proof of (a) also shows that this condition is necessary.
(c) The set of maps $\mathcal{M}(x)$ is distinguished from the set of their dual maps by the fact that the field automorphism inducing the triality sending r_{0} to r_{2} is respectively given by $t \mapsto t^{r}$ or its inverse, so there can be no isomorphisms between these two sets of maps.

Since Gal K has order e, and acts without fixed points on the set of useful generators of K, we immediately have the following corollary:

Corollary 3.4 If $q=2^{e}$ with e divisible by 3 , and N_{e} is the number of useful generators of $K=F_{q}$, then there are, up to isomorphism, $2 N_{e} / e$ regular maps in class III with automorphism group $L_{2}(q)$, forming N_{e} / e dual pairs.

Example 3C. Let $e=6$, so that $G=L_{2}$ (64). The field $K=F_{64}$ has two maximal subfields $E=F_{8}=F_{2}[t] /\left(t^{3}+t+1\right)$ and $F=F_{4}=F_{2}[u] /\left(u^{2}+u+1\right)$. There are $2^{2 e / 3}=16$ elements x in the kernel Z of the homomorphism $\operatorname{Tr}_{K / F}: x \mapsto x+x^{4}+x^{16}$. If $x \in F$ then $x=x^{4}=x^{16}$, so only $x=0$ is in Z. If $x \in E$ then $x^{8}=x$ so $x^{16}=x^{2}$ and hence $\operatorname{Tr}_{K / F}(x)=x+x^{2}+x^{4}=\operatorname{Tr}_{E / F_{2}}(x)$, giving $2^{2}=4$ elements of Z (namely $0, t, t^{2}$ and $t+t^{2}$). Thus there are $N_{6}=16-4=12$ useful generators x for K, giving $N_{6} / 6=2$ dual pairs of class III maps with automorphism group G.

In order to construct such a map we can take $x=t u$ as a useful generator for K, as in Example 3A. Applying the recurrence relation (2), and using $t^{3}=t+1$ and $u^{2}=u+1$, we eventually find that $\left(r_{0} r_{1}\right)^{13}$ has trace $t_{13}=u+1$, so it is conjugate to an element of order 5 in $L_{2}(F)$; since $t_{5}=t^{2}+u+t^{2} u \neq 0$ we have $\left(r_{0} r_{1}\right)^{5} \neq I$, so it follows that $r_{0} r_{1}$ has order 65 . Thus the resulting dual pair of class III maps have type $\{65,65\}_{65}$, and since they have automorphism group G of order 63.64.65, they have characteristic $\chi=-61488$ by equation (1). Alternatively, since $\operatorname{Tr}_{K / F}\left(t^{2}\right)=\operatorname{Tr}_{K / F}(t u)=0$ we can take $x=t^{2}+t u$ as a useful generator. In this case $t_{7}=t^{2}+t$, which is the trace of an element of order 9 in $L_{2}(E)$, so $r_{0} r_{1}$ has order 63 . This gives the second dual pair of class III maps, of type $\{63,63\}_{63}$ and characteristic -61360 .

We can generalise the counting argument in Example 3C, as follows. Let Z be the kernel of $\operatorname{Tr}_{K / F}$, the set of zeros of $x+x^{r}+x^{r^{2}}$, so $|Z|=2^{2 e / 3}$. An element $x \in K$ is a useful generator for K if it is in Z but not in any proper subfield L of K. The automorphism $\alpha: x \mapsto x^{r}$ of K has fixed field F, so $\operatorname{Tr}_{K / F}(x)=x$ for all $x \in F$; thus if L is a subfield
of F then $L \cap Z=\{0\}$. If L is not a subfield of F, then α induces an automorphism of order 3 of L with fixed field $M=L \cap F$, so $\operatorname{Tr}_{K / F}(x)=\operatorname{Tr}_{L / M}(x)$ for all $x \in L$, giving $|L \cap Z|=|L| /|M|=|L|^{2 / 3}$. Now K has one subfield L, of order 2^{d}, for each d dividing e, and L is a subfield of F if and only if d divides f. Möbius inversion over the lattice of subfields of K, partitioned into those contained or not contained in F, gives

$$
N_{e}=\sum_{d \mid e} \mu\left(\frac{e}{d}\right)|L \cap Z|=\sum_{d \mid e, d \nmid f} \mu\left(\frac{e}{d}\right) 2^{2 d / 3}+\sum_{d \mid f} \mu\left(\frac{e}{d}\right)
$$

where μ is the Möbius function $[9, \S \S 16.3-4]$. Putting $c=e / d$ we can write this as

$$
N_{e}=\sum_{c \mid e^{\prime}} \mu(c) 2^{2 e / 3 c}+\sum_{3|c| e} \mu(c)
$$

where $e=3^{i} e^{\prime}$ with $\left(e^{\prime}, 3\right)=1$. Putting $c=3 b$ in the second sum gives

$$
\sum_{3|c| e} \mu(c)=\sum_{b \mid f} \mu(3 b)=-\sum_{3 \nmid b \mid f} \mu(b)=-\sum_{b \mid e^{\prime}} \mu(b),
$$

and this is -1 or 0 as $e^{\prime}=1$ or $e^{\prime}>1$, that is, as e is or is not a power of 3 . We have therefore proved:

Proposition 3.5 Let $e=3^{i} e^{\prime}$ with e^{\prime} coprime to 3. Then

$$
N_{e}=\sum_{c \mid e^{\prime}} \mu(c) 2^{2 e / 3 c}-\nu_{e}
$$

where μ is the Möbius function and $\nu_{e}=1$ or 0 as $e^{\prime}=1$ or $e^{\prime}>1$.
Example 3D. Together with Corollary 3.4, this shows that if $e=3,6,9,12$ or 15 then the number of dual pairs of class III maps with automorphism group $L_{2}\left(2^{e}\right)$ is respectively $1,2,7,20$ or 68 . If $e=3^{i}>3$ we have $N_{e}=2^{2 e / 3}-1$, giving $\left(2^{2 e / 3}-1\right) / e$ such pairs.

The argument used to prove Lemma 3.1 shows that the formula in Proposition 3.5 is dominated by the term with $c=1$. Thus $N_{e} \sim 2^{2 e / 3}=q^{2 / 3}$ as $e \rightarrow \infty$, so the number N_{e} / e of dual pairs in Corollary 3.4 is asymptotic to $q^{2 / 3} / e$, which grows quite rapidly. This shows that one can find arbitrarily many class III pairs with the same automorphism group $G=L_{2}\left(2^{e}\right)$ by taking e sufficiently large. These maps have type $\{p, p\}_{p}$ where p is the order of $r_{0} r_{1}$; now the orders of the elements of G are 2 and the divisors of $q \pm 1$, so the number of distinct orders is $d(q-1)+d(q+1)$ where $d(n)$ is the number of divisors of an integer n. As $n \rightarrow \infty$ this function grows more slowly than any positive power of n (see $[9$, Theorem 315], for instance), so by taking e sufficiently large one can find arbitrarily many class III pairs with automorphism group G, and with mutually distinct types.

4 Maps in class III as coverings

Another method of finding maps in class III is to construct them as coverings of known maps in class III: for instance, several of the examples found by Conder in [3] are coverings of Wilson's maps \mathcal{W} and $D(\mathcal{W})$. We start with a normal subgroup N of Γ, corresponding to a regular map \mathcal{N} in class III, and we try to find subgroups M of N, corresponding to maps \mathcal{M} which cover \mathcal{N}, such that \mathcal{M} is also in class III.
Lemma 4.1 Let N be the map subgroup of Γ corresponding to a map in class III, and let M be a characteristic subgroup of N such that N / M is a characteristic subgroup of Γ / M. Then the map \mathcal{M} corresponding to M is in class III.

Proof. Since M is a characteristic subgroup of N, and N is a Σ^{+}-invariant normal subgroup of Γ, it follows that M is a Σ^{+}-invariant normal subgroup of Γ. The corresponding map \mathcal{M} is therefore regular and invariant under Σ^{+}. If Σ leaves M invariant, it induces a group of automorphisms of Γ / M which must leave the characteristic subgroup N / M invariant. Thus Σ must leave N invariant, which is false, so M is not Σ-invariant and the corresponding $\operatorname{map} \mathcal{M}$ is in class III.

Now N is the fundamental group of a punctured surface, namely the underlying surface of \mathcal{N}, with punctures at the vertices and face centres, so it is a free group of finite rank r (equal to $V+F+2 g-1$ if \mathcal{N} is orientable, of genus g, and $V+F+g-1$ if it is nonorientable of genus g). For any integer $n \geq 2$, the subgroup $M=N^{\prime} N^{n}$ of N generated by its commutators and nth powers is a characteristic subgroup of index n^{r} in N. In most cases, and certainly if n is coprime to $|\Gamma: N|, N / M$ is a characteristic subgroup of Γ / M, so Lemma 4.1 gives a class III map \mathcal{M} corresponding to M. In cases where Aut \mathcal{N} is a non-abelian simple group (as when \mathcal{N} is Wilson's map \mathcal{W}, for instance), this is true for all n, since N / M is the only normal subgroup of Γ / M with a non-abelian simple quotient group.

If we replace Γ with the appropriate extended triangle group by adding the relations $\left(R_{0} R_{1}\right)^{p}=\left(R_{1} R_{2}\right)^{q}=1$, where \mathcal{N} has type $\{p, q\}$, then N becomes a surface group, of rank $r=2 g$ or g as \mathcal{N} is orientable or not, and a similar construction can be used.

Choosing different values of n gives infinitely many class III maps \mathcal{M} as coverings of \mathcal{N}. Alternatively one could iterate this process, finding a suitable characteristic subgroup of M, and so on. Taking M to be a subgroup of infinite index, such as N^{\prime}, gives infinite maps in class III by the same argument.

Another way of constructing class III maps as coverings is to start with the map subgroup N corresponding to a class III map \mathcal{N}, and to take its intersection $M=N \cap K$ with a Σ^{+}-invariant normal subgroup K of Γ such that N / M is a characteristic subgroup of Γ / M. Since N and K are normal and Σ^{+}-invariant, so is M. If M were Σ-invariant then Σ would induce a group of automorphisms of Γ / M preserving N / M, so N would be Σ-invariant, which is false; thus M is not Σ-invariant, so it corresponds to a map \mathcal{M} in class III. For example, if $K=\Gamma_{02}, \Gamma^{*}$ or Γ^{\prime}, of index 2,4 or 8 , so that $N / M \cong N K / K$ is an elementary abelian 2-group, and if Aut \mathcal{N} has no non-trivial normal 2-subgroups, then N / M is a characteristic subgroup of Γ / M, as required.

Example 4A. By taking $\mathcal{N}=\mathcal{W}$ or $D(\mathcal{W})$ and $K=\Gamma_{02}$ we obtain a pair of maps \mathcal{M} in class III which are non-orientable double covers of Wilson's maps; these are the dual pair N198.6 of type $\{18,18\}_{18}$ and characteristic -196 in [2], with automorphism group $L_{2}(8) \times C_{2}$. If, instead, we take $K=\Gamma^{*}$ we obtain a dual pair of non-orientable maps of type $\{18,18\}_{18}$ and characteristic -392 with automorphism group $L_{2}(8) \times V_{4}$, whereas taking $K=\Gamma^{\prime}$ gives a dual pair of orientable maps of type $\{18,18\}_{18}$ and characteristic -784 with automorphism group $L_{2}(8) \times V_{8}$.

On the other hand, Γ^{+}is not Σ^{+}-invariant, so the canonical double cover of a nonorientable class III map, corresponding to $M=N \cap \Gamma^{+}$, need not be in class III. Again, Wilson's maps \mathcal{W} and $D(\mathcal{W})$ illustrate this, having canonical double covers in class I, namely the dual pair R71.15 in [2].

5 Maps in class III as parallel products

Let \mathcal{N} be a regular map in class I, corresponding to a normal subgroup N of Γ. Since \mathcal{N} has six direct derivates, N is one of an orbit $\left\{N_{1}, \ldots, N_{6}\right\}$ of six normal subgroups of Γ under the action of Σ, all with quotient group $\Gamma / N_{i} \cong G=$ Aut \mathcal{N}. We can choose the numbering so that $N_{1}=N$, and N_{2} and N_{3} are the remaining images of N under Σ^{+}. The subgroup $M=N_{\Sigma^{+}}=N_{1} \cap N_{2} \cap N_{3}$ is then normal in Γ, and has finite index in Γ provided N has finite index, so it corresponds to a regular map $\mathcal{M}=\mathcal{N}_{\Sigma^{+}}$with Aut $\mathcal{M} \cong \Gamma / M$. In Wilson's terminology [15], \mathcal{M} is the parallel product of the maps $\mathcal{N}, D P(\mathcal{N})$ and $P D(\mathcal{N}) ;$ if \mathcal{N} has type $\{p, q\}_{r}$ then \mathcal{M} has type $\{n, n\}_{n}$ where $n=\operatorname{lcm}\{p, q, r\}$. Clearly M is $\Sigma^{+}{ }_{-}$ invariant, and it is Σ-invariant if and only if it coincides with $N_{\Sigma}=N_{1} \cap \cdots \cap N_{6}$, so \mathcal{M} is in class III or IV as $M>N_{\Sigma}$ or $M=N_{\Sigma}$ respectively. There are many cases where the former happens, and the following simple (and presumably well-known) lemma provides a sufficient condition for this.

Lemma 5.1 Let H be a group with distinct normal subgroups K_{1}, \ldots, K_{k} such that each H / K_{i} is isomorphic to a non-abelian simple group G_{i}. Then the normal subgroup $K=$ $K_{1} \cap \cdots \cap K_{k}$ of H has quotient $H / K \cong G_{1} \times \cdots \times G_{k}$.

Proof. We use induction on k. There is nothing to prove if $k=1$, so assume that $k>1$ and that the result has been proved for $k-1$ normal subgroups. Let $L=K_{1} \cap \cdots \cap K_{k-1}$. We first need to show that $L \not \leq K_{k}$, so suppose that $L \leq K_{k}$. Then K_{k} / L is a maximal normal subgroup of H / L; however, $H / L \cong G_{1} \times \cdots \times G_{k-1}$ by the induction hypothesis, and since the groups G_{i} are non-abelian and simple the maximal normal subgroups of $G_{1} \times \cdots \times G_{k-1}$ are just the $k-1$ products of all but one of the direct factors [10, I.9.12(b)], corresponding to the subgroups K_{i} / L of H / L for $i=1, \ldots, k-1$; thus $K_{k} / L=K_{i} / L$ and hence $K_{k}=K_{i}$ for some $i<k$, against the hypotheses. Thus $L \not \leq K_{k}$, so $H=K_{k} L$ since K_{k} is a maximal normal subgroup of H; since $K=L \cap K_{k}$ we therefore have

$$
H / K=K_{k} / K \times L / K \cong H / L \times H / K_{k} \cong\left(G_{1} \times \cdots \times G_{k-1}\right) \times G_{k}
$$

as required.
This result cannot be extended to arbitrary quotient groups G_{i} : for instance, if p is prime and $e>1$ then an elementary abelian group $H=C_{p} \times \cdots \times C_{p}$ of order p^{e} has $k=\left(p^{e}-1\right) /(p-1)>e$ normal subgroups K_{i} with quotient $H / K_{i} \cong C_{p}$ and intersection $K=1$. In general, all one can conclude is that the projections $H / K \rightarrow H / K_{i}$ induce an embedding of H / K in $G_{1} \times \cdots \times G_{k}$.

A group A is almost simple if it has a non-abelian simple normal subgroup S such that $C_{A}(S)=1$, so that A is embedded in Aut S. Then S is the unique minimal normal subgroup of A, since any other would centralise S. If A is finite then A / S is solvable by the Schreier Conjecture, which asserts that if S is any non-abelian finite simple group then Out S is solvable; the general proof depends on the classification of finite simple groups (see [8, Theorem 1.46], for instance), though in any specific case it can be verified directly.

Theorem 5.2 If \mathcal{N} is a regular map in class I such that Aut \mathcal{N} is almost simple then the map $\mathcal{M}=\mathcal{N}_{\Sigma^{+}}$is in class III.

Proof. Let \mathcal{N} correspond to an epimorphism $\theta: \Gamma \rightarrow A=\operatorname{Aut} \mathcal{N}$ with kernel N, and let $M=N_{\Sigma^{+}}$. It is sufficient to show that $M \neq N_{\Sigma}$, so suppose for a contradiction that $M=N_{\Sigma}$. Let $T=\theta^{-1}(S)$, where S is the unique non-abelian simple normal subgroup of A, and let N_{i} and T_{i}, for $i=1, \ldots, 6$, be the images of N and T under Σ, numbered as above. Thus T_{i} is a normal subgroup of Γ containing N_{i}, with $\Gamma / T_{i} \cong A / S$ solvable and $T_{i} / N_{i} \cong S$ non-abelian and simple. Now $T_{\Sigma^{+}}$and T_{Σ} are the smallest normal subgroups of Γ, respectively containing $N_{\Sigma^{+}}$and N_{Σ}, with solvable quotient groups, so they are equal since $N_{\Sigma^{+}}=N_{\Sigma}$. Let $H=T_{\Sigma^{+}}=T_{\Sigma}$. The six normal subgroups $K_{i}=H \cap N_{i}$ of H are all distinct, since if $K_{i}=K_{j}$ with $i \neq j$ then $N_{i} N_{j} / N_{i}$ is a non-trivial solvable normal subgroup of the almost simple group Γ / N_{i}, which is impossible. Now M is the intersection of both three and six of these groups K_{i}, and they have non-abelian simple quotient groups $H / K_{i} \cong H N_{i} / N_{i}=T_{i} / N_{i} \cong S$, so Lemma 5.1 gives $S^{3} \cong H / M \cong S^{6}$, which is impossible. Thus $M \neq N_{\Sigma}$, so the corresponding map $\mathcal{M}=\mathcal{N}_{\Sigma^{+}}$is in class III.

If \mathcal{N} is orientable then \mathcal{M}, which covers \mathcal{N}, is also orientable. If $A=S$, that is, Aut \mathcal{N} is simple, then $H=\Gamma$ and the above proof shows that Aut $\mathcal{M}=S^{3}$. However, if $A>S$ then all one can conclude is that $S^{3} \unlhd \operatorname{Aut} \mathcal{M} \leq A^{3}$, and in general more work is required to identify Aut \mathcal{M} precisely (see Examples 5A and 5C).

There are many instances of maps \mathcal{N} satisfying the hypotheses of Theorem 5.2, and here we give a few straightforward examples.
Example 5A. The smallest orientable map \mathcal{N} satisfying the hypotheses of Theorem 5.2 is the map R3.1 in [2], of type $\{3,7\}_{8}$ and characteristic -4 ; it has automorphism group $A=P G L_{2}(7)$ with $S=L_{2}(7)$, the simple group of order 168 . (The underlying surface of \mathcal{N} can be identified with Klein's quartic curve of genus 3, the Riemann surface of least genus attaining Hurwitz's upper bound of $84(g-1)$ automorphisms for surfaces of genus $g \geq 2$.) Theorem 5.2 then gives an orientable class III map \mathcal{M} of type $\{168,168\}_{168}$. Each r_{i} is in $A \backslash S$, so $T=\theta^{-1}(S)$ is the group $\Gamma^{+}=\Gamma_{\emptyset}$ and hence $H=T_{\Sigma^{+}}=\Gamma^{\prime}$ (see $\S 2$). The
proof of Theorem 5.2 then shows that Aut $\mathcal{M}=A^{3}=P G L_{2}(7)^{3}$. Since $\left|P G L_{2}(7)\right|=336$, equation (1) shows that \mathcal{M} has characteristic -9257472 . For the smallest non-orientable $\operatorname{map} \mathcal{N}$ satisfying the hypotheses of Theorem 5.2, see the case $n=5$ of Example 5C.
Example 5B. Let A be the simple group $L_{2}(p)=S L_{2}(p) /\{ \pm 1\}$ for a prime $p \equiv 1 \bmod (4)$. Since $-1=i^{2}$ for some $i \in F_{p}$ we can define a homomorphism $\theta: \Gamma \rightarrow A$ by

$$
R_{0} \mapsto r_{0}= \pm\left(\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right), \quad R_{1} \mapsto r_{1}= \pm\left(\begin{array}{cc}
i & i \\
0 & -i
\end{array}\right) \quad \text { and } \quad R_{2} \mapsto r_{2}= \pm\left(\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right)
$$

Thus $\left\langle r_{0}, r_{2}\right\rangle$ is a Klein four-group, and

$$
r_{1} r_{2}= \pm\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right)
$$

has order p. The maximal subgroups of A are isomorphic to the unique subgroup of order $p(p-1) / 2$ in $A G L_{1}(p)$, to dihedral groups of order $p \pm 1$, and (depending on p) to A_{4}, S_{4} or A_{5}. If we take $p>5$ then only the first of these contain elements of order p, and these do not contain any Klein four-groups, so r_{0}, r_{1} and r_{2} generate A. Thus θ is an epimorphism, so its kernel N corresponds to a regular map \mathcal{N} with $\operatorname{Aut} \mathcal{N} \cong A$. Now

$$
r_{0} r_{1}= \pm\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right) \quad \text { and } \quad r_{0} r_{2} r_{1}= \pm\left(\begin{array}{cc}
0 & i \\
i & i
\end{array}\right)
$$

with $i \neq \pm 1$ or ± 2 for $p>5$, so these and $r_{1} r_{2}$ all have distinct traces. Since Aut $A=$ $P G L_{2}(p)$ preserves traces, it follows that \mathcal{N} is in class I. We therefore obtain a nonorientable regular map \mathcal{M} in class III with Aut $\mathcal{M} \cong L_{2}(p)^{3}$ for each prime $p>5$ satisfying $p \equiv 1 \bmod (4)$. Since $r_{0} r_{1}$ and $r_{1} r_{2}$ have orders 3 and p, \mathcal{N} has type $\{3, p\}_{r}$ where r is the order of $r_{0} r_{1} r_{2}$. It follows that \mathcal{M} has type $\{n, n\}_{n}$ where n is $p r$ or $3 p r$ as 3 does or does not divide r. In the smallest example, arising for $p=13$, we find that $r=7$, so \mathcal{M} has type $\{273,273\}_{273}$ and characteristic -320772816; the map \mathcal{N} is N51.1 in [2].
(The canonical double covers of the maps \mathcal{N} used here are the regular triangular maps associated with the principal congruence subgroups of level p in the modular group $P S L_{2}(\mathbf{Z})$; these orientable maps have automorphism group $L_{2}(p) \times C_{2}$ for $p \equiv 1 \bmod (4)$.)

Example 5C. Let us define a homomorphism $\theta: \Gamma \rightarrow S_{n}$ for $n \geq 5$ by

$$
R_{0} \mapsto r_{0}=(1, n)(2, n-1)(3, n-2) \ldots, \quad R_{1} \mapsto r_{1}=(2, n)(3, n-1)(4, n-2) \ldots
$$

and

$$
R_{2} \mapsto r_{2}=(1, n) .
$$

Here r_{0} and r_{1} are induced by two reflections of a regular n-gon with vertices $1,2, \ldots, n$, while r_{2} is chosen to commute with r_{0}. Then

$$
r_{0} r_{1}=(1,2,3, \ldots, n), \quad r_{1} r_{2}=(1, n, 2)(3, n-1)(4, n-2) \ldots
$$

and

$$
r_{0} r_{1} r_{2}=(1,2,3, \ldots, n-1),
$$

these permutations having orders $n, 6$ and $n-1$. The n-cycle $r_{0} r_{1}$ and the transposition r_{2} generate S_{n}, so θ is an epimorphism. The subgroup $N=\operatorname{ker} \theta$ of Γ therefore corresponds to a regular map \mathcal{N} of type $\{n, 6\}_{n-1}$ with Aut $\mathcal{N} \cong S_{n}$. If $n \neq 6$ then all automorphisms of S_{n} are inner; now r_{0}, r_{2} and $r_{0} r_{2}$ have different cycle-structures if $n \geq 7$, so they are mutually inequivalent under automorphisms of S_{n}, and hence \mathcal{N} is in class I. The same applies for $n=5$ since then \mathcal{N} has type $\{5,6\}_{4}$. If $n=6$, however, \mathcal{N} is the map N 62.3 of type $\{6,6\}_{5}$ in [2], and the outer automorphism of S_{6}, interchanging transpositions with products of three transpositions, induces a self-duality. Since S_{n} is almost simple for $n \geq 5$ we therefore obtain a regular map $\mathcal{M}=\mathcal{N}_{\Sigma^{+}}$in class III for $n=5$ and for each $n \geq 7$.

Note that r_{0} is even if and only if $n \equiv 0$ or $1 \bmod (4)$, that r_{1} is even if and only if $n \equiv 1$ or $2 \bmod (4)$, and that r_{2} is always odd. Thus the subgroup $T=\theta^{-1}\left(A_{n}\right)$ is Γ_{0}, Γ_{01}, Γ_{1} or Γ_{\emptyset} as $n \equiv 0,1,2$ or $3 \bmod (4)$. It follows from $\S 2$ that the subgroup $H=T_{\Sigma^{+}}$is Γ^{\prime} if $n \equiv 0$ or $3 \bmod (4)$, and it is $\Gamma^{*}=\left\langle\Gamma^{\prime}, R_{1}\right\rangle$ if $n \equiv 1$ or $2 \bmod (4)$. In the first case \mathcal{M} is orientable, with Aut $\mathcal{M}=S_{n}^{3}$, whereas in the second case it is non-orientable, with Aut \mathcal{M} a subgroup of index 2 in S_{n}^{3}. The smallest example, for $n=5$, is a non-orientable map of type $\{60,60\}_{60}$ and characteristic -201600 ; in this case \mathcal{N} is a direct derivate of the map N5.1 of type $\{4,5\}_{6}$, an antipodal quotient of the map R4.2 of this type on Bring's curve of genus 4. (In fact \mathcal{N} and its direct derivates are the smallest non-orientable maps satisfying the hypotheses of Theorem 5.2.)

Example 5D. In Example 5C let $n \equiv 1 \bmod (4)$, so that r_{0} and r_{1} are even. There are several choices of even permutations r_{2} giving rise to class I maps \mathcal{N} with Aut $\mathcal{N}=A_{n}$, and hence to class III maps \mathcal{M} with Aut $\mathcal{M}=A_{n}^{3}$. For example, if $n>5$ and

$$
r_{2}=(1, n)(3, n-2)
$$

then $r_{1} r_{2}=(1, n, 2)(3, n-1, n-2,4)(5, n-3) \ldots$, so the elements $\left(r_{1} r_{2}\right)^{4}=(1, n, 2)$ and $r_{0} r_{1}=(1,2, \ldots, n)$ generate A_{n}. Since $r_{1} r_{2}$ and $r_{0} r_{1} r_{2}=(1,2, n-2, n-1)(3,4, \ldots, n-3)$ have orders 12 and $n-5, \mathcal{N}$ has type $\{n, 12\}_{n-5}$. Thus \mathcal{N} is in class I for $n \neq 17$, and if $n=17$ this follows from the fact that r_{0}, r_{2} and $r_{0} r_{2}$ have different cycle structures. Since A_{n} is simple for $n \geq 5$, Theorem 5.2 gives a non-orientable class III map \mathcal{M} with Aut $\mathcal{M}=A_{n}^{3}$. The smallest example, with $n=9$, has type $\{36,36\}_{36}$ and characteristic -1327353495552000.

As an alternative, if we take $r_{2}=(1,2)(n-1, n)$ with $n>5$ then \mathcal{N} has type $\{n, 10\}_{n-2}$ and is therefore in class I, with Aut $\mathcal{N}=A_{n}$. If $n=9$, for instance, the resulting class III map \mathcal{M} has type $\{630,630\}_{630}$ and characteristic -1483791586099200 .

6 Maps of small genus in class III

Each of the class III maps constructed in the preceding section has rather large genus, whereas it interesting to know the lowest genera which can arise. Conder's lists of regular
maps [2] give the type $\{p, q\}_{r}$ of each map, for characteristic $\chi=-1, \ldots,-200$. A map in class III must have $p=q=r$, so one can search through these lists for maps of such types and try to determine whether or not they are in class III. In the case of non-orientable maps, this leads to the following result:

Theorem 6.1 The only non-orientable class III regular maps of characteristic $\chi \geq-200$ are Wilson's dual pair \mathcal{W} and $D(\mathcal{W})$ with $\chi=-70$, and their double covers with $\chi=-196$ constructed in Example 4 A .

Proof. In Conder's list of non-orientable regular maps there are 21 entries of type $\{p, p\}_{p}$, each representing a self-dual map or a dual pair. The information provided includes the multiplicities $m V$ and $m F$ of edges connecting adjacent pairs of vertices and adjacent pairs of faces. In a class III map these must be equal, since the map is invariant under an operation sending vertices to faces. One can therefore exclude any of these 21 entries with $m V \neq m F$, namely N22.3, N86.15, N170.15, N182.10 and N200.22. Conder's list also tells us whether or not an entry with $p=q$ represents a self-dual map: such a map cannot be in class III, and this further criterion excludes the entries N12.3, N35.3, N44.6, N50.8, N119.6, N119.7, N146.8, N162.9, N200.23 and N200.26. Each entry gives defining relations for the automorphism group $G=\operatorname{Aut} \mathcal{M}$, in terms of generators $R=r_{0} r_{1}, S=r_{1} r_{2}$ and $T=r_{1}$. Adding the relations $[R, S]=[R, T]=[S, T]=1$ gives a presentation for the abelianisation $G^{\mathrm{ab}}=G / G^{\prime}$, and hence a set of normal generators for $\theta^{-1}\left(G^{\prime}\right)$ where $\theta: \Gamma \rightarrow G$ is the epimorphism $R_{i} \mapsto r_{i}$ corresponding to \mathcal{M}. Since G^{\prime} is a characteristic subgroup of G, if \mathcal{M} is in class III then $\theta^{-1}\left(G^{\prime}\right)$ must be a Σ^{+}-invariant subgroup of Γ, containing Γ^{\prime}. As shown in $\S 2$, the only such subgroups are $\Gamma, \Gamma_{02}, \Gamma^{*}$ and Γ^{\prime}, so if $\theta^{-1}\left(G^{\prime}\right)$ is not one of these then this entry can be excluded. This eliminates N62.4, N166.14 and N170.16. The remaining three entries are N72.9 of type $\{9,9\}_{9}$ corresponding to Wilson's class III maps \mathcal{W} and $D(\mathcal{W})$, N198.6 of type $\{18,18\}_{18}$ corresponding to their class III double covers described in Example 4A, and N119.5 of type $\{7,7\}_{7}$ and characteristic -117, with automorphism group $L_{2}(13)$. This last dual pair are in fact in class II, having the self-dual map N119.6 as their third direct derivate; there is also another map N119.7 of type $\{7,7\}_{7}$ with automorphism group $L_{2}(13)$, but this is in class IV.

To verify the assertions in this last sentence one needs to construct the epimorphisms $\Gamma \rightarrow G=L_{2}(13)$ corresponding to regular maps of type $\{7,7\}_{7}$. By applying a suitable automorphism of G one may assume that

$$
r_{0}= \pm\left(\begin{array}{cc}
5 & 0 \\
0 & -5
\end{array}\right) \quad \text { and } \quad r_{2}= \pm\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right), \quad \text { while } \quad r_{1}= \pm\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right)
$$

for some $a, b, c \in F_{13}$ with $a^{2}+b c=-1$. There are three conjugacy classes of elements of order 7 in G, all self-inverse, consisting of the elements with traces $\pm 3, \pm 5$ and ± 6. By applying this condition to the traces $\pm 3 a, \pm(b-c)$ and $\pm 5(b+c)$ of the elements $r_{0} r_{1}$, $r_{1} r_{2}$ and $r_{0} r_{1} r_{2}$, and solving the resulting equations, one finds just the following solutions (unique up to multiplication by -1 and conjugation by an element of the Klein four-group $\left.\left\langle r_{0}, r_{2}\right\rangle\right)$:

1. $a=6, b=4, c=-6$, with $r_{0} r_{1}, r_{1} r_{2}$ and $r_{0} r_{1} r_{2}$ having traces $\pm 5, \pm 3$ and ± 3;
2. $a=1, b=5, c=-3$, with $r_{0} r_{1}, r_{1} r_{2}$ and $r_{0} r_{1} r_{2}$ having traces $\pm 3, \pm 5$ and ± 3;
3. $a=1, b=1, c=-2$, with $r_{0} r_{1}, r_{1} r_{2}$ and $r_{0} r_{1} r_{2}$ having traces $\pm 3, \pm 3$ and ± 5;
4. $a=2, b=1, c=-5$, with $r_{0} r_{1}, r_{1} r_{2}$ and $r_{0} r_{1} r_{2}$ all having trace ± 6.

The dihedral group $\left\langle r_{0}, r_{1}\right\rangle$ of order 14 is maximal in G, and it does not contain a Klein four-group, so in each case the elements r_{i} generate G. It follows that there are exactly four regular maps $\mathcal{M}_{1}, \ldots, \mathcal{M}_{4}$ of type $\{7,7\}_{7}$ with automorphism group G, corresponding to these four solutions. They are non-orientable since G has no subgroups of index 2 . Since Aut $G=P G L_{2}(13)$ preserves traces, \mathcal{M}_{1} and \mathcal{M}_{2} form a dual pair, which must correspond to Conder's entry N119.5, while \mathcal{M}_{3} and \mathcal{M}_{4} are self-dual; similarly, $\mathcal{M}_{3}=P\left(\mathcal{M}_{1}\right)$, so \mathcal{M}_{1}, \mathcal{M}_{2} and \mathcal{M}_{3} form a class II orbit of Σ, while \mathcal{M}_{4} is in class IV. This completes the proof, but one can go on to show that \mathcal{M}_{3} is the map N119.6, so that \mathcal{M}_{4} is N119.7, by verifying that in case 3 the generators satisfy the relation $\left(r_{0} r_{1}\left(r_{2} r_{1}\right)^{2} r_{0} r_{1}\right)^{2}=\left(R S^{-2} R\right)^{2}=1$ given in [2] for N119.6, whereas in case 4 they do not.

By contrast, the list of orientable regular maps in [2] has 112 entries with $p=q=r$, rather than the 21 found above. Lemma 2.1 and its proof show that an orientable class III map must have type $\{p, p\}_{p}$ with p even, and that it must satisfy $G^{\mathrm{ab}} \cong V_{8}$; these and the preceding criteria eliminate all but R17.26, R33.45, R49.34, R61.13, R65.81, R73.85, R82.21, R97.108, R97.121 and R97.126 as possibilities for class III maps. It would be possible, but very tedious, to deal with these cases by hand, as in the proof of Theorem 6.1. However, a computer search by Conder [4] has eliminated them all, by showing that the least genus of any orientable class III map is 193, attained by a dual pair of type $\{16,16\}_{16}$ with an automorphism group of order 2048. His search (which also confirms Theorem 6.1) shows that this is the smallest possible automorphism group of such a map, and that the second smallest is the group $L_{2}(8) \times V_{8}$ of order 4032 corresponding to the dual pair of maps of type $\{18,18\}_{18}$ and genus 392 constructed in Example 4A.

It is interesting that in Conder's example the automorphism group is solvable (in fact nilpotent, having order 2^{11}), whereas the examples constructed in this paper all have non-solvable automorphism groups. The methods of $\S 4$ yield further class III maps with solvable groups, as coverings of Conder's, but it would be interesting to find infinite families of such maps which do not arise as coverings of other class III maps. In particular one would like to see further examples with nilpotent groups (which are necessarily 2-groups).

References

[1] R. P. Bryant and D. Singerman, Foundations of the theory of maps on surfaces with boundary, Quarterly J. Math. Oxford (2) 36 (1985), 17-41. MR 86f:57008
[2] M. D. E. Conder, Regular maps and hypermaps of Euler characteristic -1 to -200 , J. Combinatorial Theory Ser. B 99 (2009), 455-459,
with associated lists of computational data available at the website http://www.math.auckland.ac.nz/~conder/hypermaps.html.
[3] M. D. E. Conder, private communication, 21 July 2006.
[4] M. D. E. Conder, private communication, 8 September 2009.
[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Clarendon Press, Oxford, 1985. MR 88g: 20025.
[6] H. S. M. Coxeter and W. O. J. Moser, Generators and Relations for Discrete Groups, (4th ed.), Springer-Verlag, Berlin - Heidelberg - New York, 1980. MR 50, 2313.
[7] L. E. Dickson, Finite Groups, Dover, New York, 1958.
[8] D. Gorenstein, Finite Simple Groups, Plenum Press, New York and London, 1981.
[9] G. H. Hardy and E. M. Wright, Introduction to the Theory of Numbers (5th ed.) Oxford University Press, Oxford, 1979.
[10] B. Huppert, Endliche Gruppen I, Springer-Verlag, 1967. MR 37, 302.
[11] G. A. Jones and J. S. Thornton, Operations on maps, and outer automorphisms, J. Combin. Theory Ser. B 35 (1983), 93-103. MR 85m: 05036.
[12] R. Lidl and H. Niederreiter, Introduction to Finite Fields and their Applications (revised ed.), Cambridge University Press, Cambridge, 1994.
[13] J-P. Serre, Topics in Galois Theory, Jones and Bartlett, Boston, 1992. MR 94d: 12006.
[14] S. E. Wilson, Operators over regular maps, Pacific J. Math. 81 (1979), 559-568. MR 81a: 57004.
[15] S. E. Wilson, Parallel products in groups and maps, J. Algebra 167 (1994), 539-546. MR 95d: 20067.

