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Motivated by the technology of magnetically targeted drug and gene delivery, in which a

magnetic field is used to direct magnetic carrier particles from the circulation to a target site,

we develop a continuum model for the motion of particles (magnetic carriers) subject to an

external body force (magnetic field) in a flow of a concentrated suspension of a species of

neutrally buoyant particles (blood). An advection–diffusion equation describes the evolution

of the carrier particles as they advect in the flow under the action of an external body

force, and diffuse as a result of random interactions with the suspension of neutrally buoyant

particles (shear-induced diffusion). The model is analysed for the case in which there is steady

Poiseuille flow in a cylindrical vessel, the diffusive effects are weak and there is weak carrier

uptake along the walls of the vessel. The method of matched asymptotic expansions is used

to show that carriers are concentrated in a boundary layer along the vessel wall and, further,

that there is a carrier flux along this layer which results in a sub-layer, along one side of

the vessel, in which carriers are even more highly concentrated. Three distinguished limits

are identified: they correspond to cases for which (i) the force is sufficiently weak that most

particles move through the vessel without entering the boundary layers along the walls of

the vessel and (ii) and (iii) to a force which is sufficiently strong that a significant fraction of

the particles enter the boundary layers and, depending upon the carrier absorption from the

vessel walls, there is insignificant/significant axial carrier flux in these layers.

1 Introduction

There are many physical processes in which particles suspended in a fluid flow are

subject to an external body force leading to their sedimentation; these include magnetic

separation (e.g. [9]), magnetically targeted drug and gene delivery (e.g. [2, 3, 6, 12, 18,

19, 20, 21]), as well as separation under gravity (e.g. [5]). In this work we are concerned

with the sedimentation of a dilute suspension of particles through a flowing, concentrated

suspension of neutrally buoyant particles. This has, in particular, application to the

technique of magnetically targeted drug delivery whereby a dilute suspension of magnetic

particles are suffused into the blood (a concentrated suspension of neutrally buoyant red

blood cells (RBCs)) and then drawn out of suspension, by applying a magnetic field,

at a target site within the body. The approach adopted by most authors in treating
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Figure 1. A schematic of the set-up under consideration.

problems of this type is to completely neglect the effects of the suspension of neutrally

buoyant particles on the sedimenting particles. Since the particle Reynolds numbers

we are interested in are small this approximation corresponds to tracking individual

particles assuming that the (linear) Stokes drag on each particle balances the applied

force responsible for sedimentation (e.g. [8]). However, given that a sedimenting particle

will on average have a large number of fluid dynamic interactions with other particles it is

sensible to ask what effect this will have on the process. One option would to be simulate

the detailed fluid flows around all the particles in the flow and use this to deduce the

motion of each individual particle in both suspensions. This is extremely computationally

expensive and is unlikely to be justified, in the case of targeted drug and gene delivery,

since the information about both the blood vessel geometry and the flow within the

vessels lacks detail. The average effect of these interactions can, however, be modelled by

a diffusion term proportional to the local shear rate and the resulting effect is commonly

termed shear-induced diffusion (see e.g. [7, 11, 16, 32]). Thus the motion of sedimenting

particles can be described by an advection–diffusion equation. Here the advection term

accounts for the particle velocity arising from the drag exerted by the macroscopic flow

and the external force applied to the sedimenting particle; the diffusion term describes the

effect of the microscopic hydrodynamic interactions of the particle with the concentrated

suspension of buoyant particles.

In this work we shall consider an approach based on this advection–diffusion model for

the sedimenting particle concentration. In particular we shall be interested in sedimentation

(or trapping) onto the absorbing walls of a cylindrical vessel as flow passes through the

vessel (see Figure 1) in the limit of large Peclet number (strong sedimentation/weak

diffusion). This leads to a regime under which diffusion is negligible in the centre of the

vessel while boundary layers form near the vessel wall where there is a balance between

diffusion and advection.

There have been a number of works which consider diffusive boundary layers in the

large Peclet limit of the advection–diffusion equation. These include: [25] in which internal

boundary layers on the separating streamlines between adjacent rolls of a Rayleigh–

Bernard convection cell are considered; [1, 15] in which the boundary layer on the edge of

a curved two-dimensional obstacle, suspended in an infinite stagnant fluid, is considered

and [31] which treats advection–diffusion in a parabolic channel flow. Our analysis bears

some similarities to [1, 31]. In particular we find regions of the boundary layer in which
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particles tend to become trapped (cf. [1]) and we consider advection of particles in a

flow (cf. [31]). There are, however, marked differences in the boundary layer structure we

observe from both [1] and [31]. In the former case particles become trapped in re-entrant

parts of the boundary that face into the advective velocity where their concentration

builds up until the diffusive flux around the boundary layer, out of the re-entrant cup, is

sufficient to balance the flux of incoming particles from the bulk of the fluid. In contrast,

in our problem, although particles accumulate at the bottom of the cylindrical vessel,

these are either advected away by the fluid, along the bottom of the pipe, or absorbed by

the walls. In the latter case [31], the boundary is entirely flat and the advective velocity is

solely due to the fluid and therefore has no component normal to the boundary.

Before proceeding with the analysis we describe a potentially important application

of this analysis, magnetically targeted drug and gene delivery. In conventional systemic

drug and gene delivery, the drug (or gene) is administered into the bloodstream and is

transported through the circulation around the body and, eventually, to the target site. For

relatively small targets (such as a tumour) systemic delivery is extremely inefficient, with

a large proportion of the active compound not reaching the target. Various methods have

therefore been proposed to enhance uptake at the target site. These include techniques that

rely on magnetic targeting using, for example, magnetic microparticles (recently reviewed

by Dobson [6] and by Pankhurst et al. [21]) and magnetically tagged macrophages

(Muthana et al. [20]) as the transport vehicle. In the context of the former, and older

technology, there have been two Phase I/II clinical trials [18, 28] in addition to numerous

in vivo studies (e.g. [2, 3, 19]). While the latter, newer technology has only been subject to

a single combined in vitro and in vivo trial [20], it shows great promise. The mathematical

modelling of magnetically targeted delivery has been discussed previously by Grief &

Richardson [14], by Voltairas et al. [27] and Forbes et al. [8]. In [8] and [14] magnetic

carriers are modelled as a dilute suspension of non-interacting particles while in [27]

they are modelled as a ferrofluid (in which magnetic interactions between particles are

significant). One reason to suppose that the carrier population is relatively dilute is that,

although it may be injected as a concentrated suspension, the effects of Taylor dispersion

[24] mean that it disperses widely throughout the cardiovascular system. It thus seems to

us that the ferrofluid approach may be overly complicated.

One of our aims is to identify and investigate the dominant mechanisms involved in

the targeting process. We remark that the ability of the vessel wall to absorb the targeting

particles is key to the success of the process. If, for example, the vessel wall is strongly

absorbing then the particles will be trapped in a relatively short distance from their

injection site, even in the absence of a body force, since shear induced diffusion sets up

a flux of particles directed towards the vessel wall. The question that naturally arises is:

what advantage does the magnetic force confer? It is clear, for example, that if the vessel

wall is strongly absorbing then the body force is largely irrelevant in smaller vessels.

However, where the vessel wall absorbs weakly the body force concentrates particles in

the vicinity of the wall and thereby significantly aids absorption.

The outline of this work is follows. In Section 2 we formulate a model for the transport

of sedimenting particles in a vessel resulting from advection by a body force and shear-

induced diffusion. In Sections 3 and 4 we investigate this model using asymptotic methods

in the limits of weak diffusion and absorption, finding that the sedimenting particles
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concentrate in a boundary layer around the walls of the vessel. In Section 4, in which we

consider a scenario in which the flow through the vessel is relatively strong with respect

to the trapping force, we find a regular hyperbolic partial differential equation for the

particle concentration within this layer, that describes both azimuthal and axial transport

of material. In Section 3, where the advective effects from the flow are weaker, there is

a singularity in the corresponding transport equation at which charactersitics intersect.

Physically this is associated with a sub-layer, which lies to one side of the vessel, into

which particles are advected from the adjacent boundary layers. In this layer particle

concentration is even higher than in the adjacent boundary layers. Depending upon the

level of particle absorption at the vessel walls particles are either absorbed close to where

they first enter the boundary layer (high absorption) or they are advected along the vessel

for a significant distance (low absorption). In the latter case we derive a simple hyperbolic

particle conservation equation for particle concentration in the sub-layer. Finally, in

Section 5, we summarise our results and present our conclusions.

2 Problem formulation

We consider a dilute suspension of sedimenting particles, subject to an external body force,

and suspended in a flow of a concentrated suspension of a second, neutrally buoyant

particulate species. These are subject to an external force which is used to pull them out of

circulation at a target site. The sedimenting particles are not only advected in response to

the external force and the fluid flow in the pipe but also experience an effective diffusive

component to their motion due to their interactions with the suspension of neutrally

buoyant particles, that is they undergo shear-induced diffusion [32]. The across-streamline

coefficient of diffusion D(r) induced by this effect is well established and takes the form

[11, 32]

D(r) = Ksh(R)2γ̇ where γ̇ = (2eijeij)
1/2. (2.1)

Here r is radial distance measured from the centre of the vessel, R is the radius of the

neutrally buoyant particles, Ksh is a dimensionless constant, γ̇ the shear rate and eij the

rate of strain tensor.

In the absence of diffusion U = Uex + V ey + W ez , the velocity of the sedimenting

particles, relative to that of the fluid is given by balancing Stokes drag with the external

force F (x) applied to them, by

U =
F (x)

6πμa
,

where μ is the effective viscosity of the fluid suspension and a the radius of the particles.

Henceforth we suppose that the trapping occurs in a cylindrical pipe, of circular cross-

section, with radius �v and axis parallel to the z-axis. Furthermore we assume a steady

Poiseuille flow in the vessel with velocity v = U0(1 − r2/�v
2)ez . Here U0 is the maximum

velocity of the flow and (r, θ, z) are cylindrical polar coordinates defined in terms of

cartesian coordinates, in the usual fashion, by x = r cos θ, y = r sin θ and z = z. The

assumption of this flow form relies on (I) approximating blood as a Newtonian fluid
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(a standard assumption) and (II) neglecting the body force term, in the (fluid) momentum

equation, arising from the drag of the sedimenting particles on the fluid – a term retained,

for example, in (13) of [9]. For sufficiently dilute suspensions of sedimenting particles the

drag force exerted on the fluid is insignificant in comparison to the pressure gradients

driving the flow and, in the particular case of magnetically targeted drug delivery, this

assumption is appropriate.

In terms of the coordinates defined above and the particle concentration, c, the particle

flux, is defined by J = Jrer + Jθeθ + Jzez = −D∇c+ c(U + v), where

Jr = −D(r)
∂c

∂r
+ c(U(x) cos θ + V (x) sin θ),

Jθ = −D(r)

r

∂c

∂θ
+ c(V (x) cos θ −U(x) sin θ),

Jz =
cU0

�v2
(�v

2 − r2) + cW (x).

(2.2)

The corresponding conservation equation for the particle concentration is

∂c

∂t
+

1

r

∂

∂r
(rJr) +

1

r

∂Jθ
∂θ

+
∂Jz
∂z

= 0. (2.3)

The diffusion coefficient D(r) appearing in (2.2) is derived from (2.1) and for Poiseuille

flow we have D(r) = 2KshR2U0r/�v
2. On the edge of the vessel we expect particle flux

(out through the vessel walls) to be proportional to the particle concentration there;

thus

Jr|r=�v = κ̃(z)c|r=�v , (2.4)

where the non-negative function κ̃(z) embodies the permeability of the vessel walls to

the sedimenting particles. For generality we allow κ̃ to vary with axial distance along

the vessel and this might, for example, be used to model the differing permeabilities of a

vessel in healthy and diseased (or cancerous) tissue. We also impose the initial and inlet

conditions

c|t=0 = c0C̄(r, θ, z), c|z=−Lz0 = c0C(r, θ, t). (2.5)

where c0 is a typical concentration. Equations (2.2)–(2.5) define a closed system which can

be used to determine c(r, θ, z, t) and, hence, the three components of the flux Jr , Jθ and Jz .

Non-dimensionalisation.

We non-dimensionalise (2.2)–(2.5) as follows:

x = lx̃∗, r = �vr
∗, z = lz∗, c = c0c

∗,

t =
l

U0
t∗, U =

F0

6πμa
U ∗, F = F0F ∗,

Jr =
c0�vU0

l
J∗
r , Jθ =

c0�vU0

l
J∗
θ , Jz = c0U0J

∗
z .
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Here �v is the vessel radius, U0 the maximum flow speed down the vessel, F0 is a typical

value for the force exerted on a particle and l is a typical axial length scale (e.g. the length

of the vessel).

We remark that by scaling x with l we are implicitly assuming that variations in the

particle body force F (x) occur over the typical axial length scale. Later, we shall exploit

the disparity in scales between the radius and axial length of the vessel, assuming that

�v � l (see Sections 3 and 4). On defining new variables Ω(·) and α(·) by

U∗(x̃∗) = Ω(x̃∗) sin(α(x̃∗)), V ∗(x̃∗) = −Ω(x̃∗) cos(α(x̃∗)),

(so that Ω2 = U∗2 + V ∗2 and tan α = U∗/V ∗) and non-dimensionalising we obtain

∂c∗

∂t∗
+

1

r∗
∂

∂r∗ (r∗J∗
r ) +

1

r∗
∂J∗

θ

∂θ
+

∂J∗
z

∂z∗ = 0,

J∗
z = c∗(δλW ∗(x̃∗) + (1 − r∗2

)),

J∗
r = −ελr∗ ∂c∗

∂r∗ − λc∗Ω(x̃∗) sin(θ − α(x̃∗)),

J∗
θ = −ελ∂c∗

∂θ
− c∗λΩ(x̃∗) cos(θ − α(x̃∗)),

(2.6)

subject to

J∗
r |r=1 = κ(z∗)c|r=1, c∗|z∗=−z0 = C(r∗, θ, t∗), c∗|t∗=0 = C̄(r∗, θ, z∗), (2.7)

where F ∗ = U ∗ = Ω sin αex − Ω cos αey +W ∗ez and

x = zez + δr(cos θex + sin θey). (2.8)

In (2.6)–(2.8) the dimensionless parameters are defined by

ε =
12πμaKshR2U0

F0�v2
, δ =

�v

l
, κ(z) =

lκ̃(z)

�vU0
, λ =

l

L
.

Here ε is an inverse Peclet number (relating the rates of transverse particle diffusion and

advection), δ represents the aspect ratio of the pipe and κ(z) the dimensionless vessel

permeability. The characteristic length L is the typical axial distance that a particle is

advected downstream before the transverse body force pulls it close to the vessel wall and

is defined by

L =
6πμaU0�v

F0
. (2.9)

The parameter λ is thus a crude representation of the trapping efficiency of the particle

force, with larger λ corresponding to greater efficiency).
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We note that ε can be more succinctly expressed by using (2.9) to eliminate F0 in favour

of L to give

ε =
2KshR2L

�v3
. (2.10)

Henceforth we drop the *s.

Parameter estimates pertaining to magnetically targeted drug delivery.

Consider a targeting process in which particles containing magnetite experience a force

from a magnetic field. The force F on a magnetic particle in a field of strength B takes

the form (see e.g. [14])

F =
msatL(|B|)

|B| (B · ∇)B, where L(|B|) = coth

(
msat|B|
kT

)
− kT

msat|B| ,

where the function L(·) is a nonlinear saturating function and can thus be approximated

in both (i) the limit msat|B|/kT � 1 (in which it is linear in |B|) and (ii) the limit

msat|B|/kT � 1 (in which it tends to 1). Here msat is the saturation magnetisation of the

particle, k is Boltzmann’s constant and T is absolute temperature. The former limit (i)

is termed the superparamagnetic limit and gives rise to an approximate formula for the

force of the form

F =
m2
sat

6kT
∇|B|2

while the latter limit (ii) is termed the blocked limit and gives rise to a formula for the

force of the form

F =

(
msatB

|B| · ∇
)

B.

Since the particle’s saturation magnetisation msat is proportional to its volume, the former

formula is appropriate for small particles (and weak magnetic fields) while the latter is

appropriate for large particles (and strong fields).

Henceforth we consider only blocked magnetite particles with permanent moment and

denote by ρ the density of magnetite, M its magnetisation per unit unit mass, BG the

typical magnetic field gradient and Υ the percentage of the particle composed of magnetite

(recall such particles usually have a biocompatible coat) so that F0 = (4/3)πa3ρMΥBG.

It follows that L, the typical axial distance that a particle is advected downstream before

the transverse body force pulls it onto the vessel walls, and ε�v , the width of the diffusive

boundary layer on the vessel wall, are given by

L =
9

2

μU0�v

MρBGΥa2
ε�v =

(
9μKshR2

MρΥ

)
U0

BGa2�v
. (2.11)

In what follows we will consider a series of cases in which particles of various

sizes with a magnetite volume fraction Υ = 0.1 are transported in blood of viscosity
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Table 1. Parameter estimates for different sized magnetic particles in various vessels

Vessel l (m) �v (m) U0 (m s−1) a (m) L (m) ε�v (m)

Artery 10−1 1.5 × 10−3 10−1 5 × 10−6 0.4 3 × 10−7

10−6 10 8 × 10−6

10−7 103 8 × 10−4

Arteriole 7 × 10−4 1.5 × 10−5 10−2 5 × 10−6 4 × 10−4 3 × 10−6

10−6 10−2 8 × 10−5

10−7 1 8 × 10−3

Venule 8 × 10−4 2 × 10−5 4 × 10−3 5 × 10−6 2 × 10−4 2 × 10−6

10−6 5 × 10−3 4 × 10−5

10−7 0.5 4 × 10−3

Vein 10−1 2.5 × 10−3 10−1 5 × 10−6 0.7 2 × 10−7

10−6 20 5 × 10−6

10−7 2 × 103 5 × 10−4

μ = 4 × 10−4 kg m−1 s−1, composed of RBCs of radius R = 4 × 10−6 m and with shear-

induced diffusion parameter Ksh = 5 × 10−2 [32]. Furthermore we take the magnetisation

and density of the magnetite to be M = 50 Amp m2 kg−1 and ρ = 5 × 103 kg m−3,

respectively [6] and assume a magnetic field gradient BG = 10 T m−1. Using these data,

taking typical sizes for small arteries, arterioles and small veins, and substituting into

(2.11) we obtain the estimates of L and ε�v presented below in Table 1 wherein l is the

typical vessel length.

We remark that l, the typical length of the vessel, is only comparable to L for the largest

size of particles (a = 5 × 10−6 m), these being close in size to the upper limit tolerated by

the body without causing embolisms [6]. However, even if a significant fraction of carrier

particles are not trapped in a single pass through the vessel, this may not significantly

undermine the therapy since each vessel is part of a network of vessels of disparate

sizes and, furthermore, the carrier particles may recirculate through the targeted region

a number of times before being absorbed by the liver. Thus L � O(l) is not a necessary

condition for significant trapping to occur.

We note that the width of the boundary layer around the wall of the vessel (in which

diffusive effects balance advective effects) is of size ε�v . Thus the asymptotic analysis may

not be valid for sedimenting particle size a � ε�v . Nevertheless we expect it to provide

results which are at least qualitatively, if not quantitatively, correct when a = O(ε�v). We

remark also that the width of the boundary layer depends inversely on the magnetic field

gradient and so increases as the field strength decreases. Thus this analysis maybe more

relevant to certain areas of the target site than to others depending on the local strength

of the magnetic field gradient.

Expansions of Ω(x̃), W (x̃) and α(x̃) for δ � 1.

In line with the estimates presented in Table 1 we consider the case for which the vessel

radius �v is much smaller than the axial length scale l so that the aspect ratio δ � 1.

Furthermore we assume that the forces acting on the particles also vary over an O(l) length

scale (or bigger) so that they are approximately constant across a pipe cross-section. It
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Figure 2. The cross-section of the vessel for a particular value of z showing the position

of the curve C .

follows that when we expand Ω(x̃), W (x̃) and α(x̃) as power series in δ the leading-order

terms of α(x), W (x) and Ω(x) (i.e. α̂, Ŵ , Ω̂, respectively) are simply functions of z alone.

Rather than define α̂(z), Ŵ (z) and Ω̂(z) to be the values of α, W and Ω along the

centreline of the vessel it proves expedient to define them along the curve C lying on the

outer edge of the vessel, to which the force is directed (see Figure 2). In turn this curve is

associated with a nested boundary layer (region II) in which particles tend to accumulate.

The equation for the curve C is x = qc(z) = (δ sin α̂(z),−δ cos α̂(z), z). It follows that α̂(z)

and Ω̂(z) are defined by

α̂(z) = α(qc(z)), Ŵ (z) = W (qc(z)), Ω̂(z) = Ω(qc(z)). (2.12)

Taylor expanding throughout the bulk of the vessel (which has width O(δ)) in powers of

δ gives

α(x) = α̂(z) + O(δ), W (x) = Ŵ (z) + O(δ), Ω(x) = Ω̂(z) + O(δ), (2.13)

whilst in the nested boundary layer (region II), which has width O(δε1/2),

α(x) = α̂(z) + δε1/2a1(z)η + O(δε), W (x) = Ŵ (z) + O(δε1/2),

Ω(x) = Ω̂(z) + O(δε1/2).
(2.14)

where a1(z) = ∇α · (ex cos α̂+ ey sin α̂) and ε1/2η = θ + π/2 − α̂(z).

3 Matched asymptotic solution in the case of small inverse Peclet number (ε � 1) and

significant trapping efficiency (λ = O(1))

Below we consider two distinguished limits of the ε � 1, λ = O(1) regime corresponding

to different vessel permeabilities (we consider the case for which λ is small in Section 4).
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Figure 3. A schematic illustrating the asymptotic regions associated with the problem.

Dimensions are measured in terms of the typical axial distance down the vessel.

For the two distinguished limits of interest we show that the transport of material

in the central section of the pipe (sufficiently far from the walls) is identical to leading

order, being dominated by advection (the diffusive terms being negligible). Additionally,

in each limit, a diffusive boundary layer develops in a region an O(ε) distance from those

parts of the vessel wall to which the advective velocity transports material (region I in

Figure 3). In this boundary layer the radial advective flux balances the radial component

of the diffusive flux. There is however significant transport of material in the azimuthal

(θ) direction towards a point on the boundary corresponding to the curve C in Figure

2. In a neighbourhood of this curve there is a further boundary layer in which there

is a balance between diffusive and advective fluxes in the θ direction (region II in

Figure 3).

The main difference between the two limits that we consider is that in the first (Section

3.2, κ = O(ε)) material passes through the walls so quickly that no significant flux develops

along the pipe (in the z direction). By contrast the axial flux that develops in the second

limit (Section 3.3, κ = O(ε2)) transports significant amounts of material away in a thin

‘rivulet’ running along the curve C . The analysis performed in Section 3.3 leads to a partial

differential equation (PDE) describing the evolution of the concentration of material in

this rivulet. This enables us to determine material deposition as a function of distance

along the vessel.

From a mathematical point of view it is convenient to assume δ = O(ε) as this is the

limit in which the axial particle velocity (in the rivulet) arising from advection by the

fluid is of the same order of magnitude as that arising from the particle body force. The

choice κ = O(ε2) corresponds to a limit for which particle deposition onto the walls of

the vessel depletes particle concentration over an O(1) (dimensionless) length scale, i.e.

the same length scale over which significant numbers of particles are removed from the

main flow and into the boundary layers on the edge of the vessel. Needless to say, this

distinguished limit (δ = O(ε), κ = O(ε2)) has a considerably wider range of applicability
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than its strict mathematical definition suggests and we will discuss its domain of validity

in the conclusions (Section 5). We remark further that in the first distinguished limit

κ = O(ε) we also choose δ = O(ε) in order to be consistent with the second distinguished

limit (its choice is largely irrelevant, provided it is small).

We begin our analysis in Section 3.1 by considering the outer region (away from the

vessel walls) which is identical, at leading order, for all values of the vessel permittivity

κ. We then analyse the distinguished limits δ = O(ε), κ = O(ε) in §3.2 and δ = O(ε),

κ = O(ε2) in Section 3.3.

3.1 Solution structure in the outer region

In this region it is not necessary to rescale variables. We simply consider an asymptotic

expansion for c = c(o) of the form

c(o) = c
(o)
0 + εc

(o)
1 + · · · . (3.1)

Substituting from (3.1) into (2.6) and transforming to cartesian coordinates (x = r cos θ,

y = r sin θ) gives the following problem for c(o)0 , at leading order,

∂c(o)0

∂t
+ λÛ(z)

∂c(o)0

∂x
+ λV̂ (z)

∂c(o)0

∂y
+ (1 − x2 − y2)

∂c(o)0

∂z
= 0,

where Û(z) = Ω̂(z) sin α̂(z) and V̂ (z) = Ω̂(z) cos α̂(z). This first-order linear PDE can be

solved by using the method of characteristics in conjunction with the following boundary

and initial conditions

c
(o)
0 |t=0 = C̄(r, θ, z), c

(o)
0 |z=−z0 = C(r, θ, t), c

(o)
0 |r=1 = 0 where (Ûex + V̂ ey) · er < 0,

which are derived from (2.7a)–(2.7c). Henceforth, for simplicity, we fix C = 1 and C̄ = 0.

In this case the domain of solution divides into a region in which c
(o)
0 = 1 and another

where c(o)0 = 0 and, for sufficiently long times, the solution is time independent. The steady

solution to this problem, for a uniform (gravitational) force (Û = 0, V̂ = −g) was derived

by Pich [22]. Since this problem is first order in the spatial derivatives, in contrast to

the original problem which was second order, we expect to introduce boundary layers, in

which effects from the higher order diffusive terms are significant, in order to satisfy the

boundary data on the edge of the vessel.

The eventual position of particles deposited onto the vessel wall is crucially dependent on

the parameter κ in (2.7a), larger values being associated with rapid deposition. The solution

in the outer region is consistent with particles being withdrawn from the suspension into

the vicinity of the vessel wall. For relatively small values of κ (small wall permeability) a

high concentration of particles may be established in the immediate vicinity of the wall,

in a narrow boundary layer region wherein the advective flux (onto the wall) balances the

diffusive flux (away from it).
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3.2 The distinguished limit δ = O(ε), κ = O(ε) and λ = O(1)

3.2.1 Region I: the diffusive boundary layer on the outflow boundary (−π + α̂ < θ < α̂)

In order to balance the advective flux onto the wall with the diffusive flux away from the

wall we introduce the scaled radial coordinate R defined by

r = 1 − εR (3.2)

and rescale κ and δ by introducing the O(1) parameters κ1 and Δ

κ = εκ1, δ = Δε.

In terms of the above, rescaling (2.6)–(2.7) can be written as

(1 − εR)
∂c(I)

∂t
− 1

ε

∂

∂R

(
(1 − εR)J(I)

r

)
+

∂J(I)
θ

∂θ
+ (1 − εR)

∂J(I)
z

∂z
= 0, (3.3)

where J(I)
r = λ

∂c(I)

∂R
+ λΩ̂(z) sin(α̂(z) − θ)c(I) + O(εc(I)), (3.4)

J
(I)
θ = −λΩ̂(z) cos(α̂(z) − θ)c(I) + O(εc(I)), (3.5)

J(I)
z = εc(I)

(
λΔŴ (z) + 2R

)
+ O(εc(I)), (3.6)

subject to J(I)
r |R=0 = κ1εc

(I), (3.7)

and c(I) → c
(o)
0 (1, θ, z, t) as R → +∞, (3.8)

where we denote variables in this region by the superscript (I). Condition (3.8) is obtained

by matching to the leading-order outer solution and using the expansions of α(x), W (x)

and Ω(x) provided in (2.13). In (3.3) we retain J(I)
r , J(I)

θ and J(I)
z , despite being able to

express these quantities in terms of c(I); we do this in order to simplify the analysis and

to highlight the physical nature of the problem.

Motivated by the fact that the flux of material entering from the outer region is of

O(1) and the thickness of region I is of O(ε) we look for an asymptotic solution in which

c(I) = O(1/ε) by expanding inner variables as follows:

c(I) =
c
(I)
0

ε
+ c

(I)
1 + · · · , J(I)

r =
J

(I)
r,0

ε
+ J

(I)
r,1 + · · · , J(I)

θ =
J

(I)
θ,0

ε
+ · · · , J(I)

z = J
(I)
z,0 + · · · . (3.9)

Substituting from (3.9) into (3.3) and (3.7) gives, to leading order,

∂J(I)
r,0

∂R
= 0, J

(I)
r,0 |R=0 = 0 =⇒ J

(I)
r,0 = 0.

This result, together with the leading-order expansion of (3.4), implies a balance between

diffusive and advective fluxes in the radial direction (at leading order)

∂c(I)0

∂R
+ Ω̂(z) sin(α̂(z) − θ)c(I)0 = 0
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so that c(I)0 takes the form

c
(I)
0 = A(θ, z, t) exp(−Ω̂(z) sin(α̂(z) − θ)R), (3.10)

where the amplitude A remains to be determined. We remark that if −π + α̂ < θ < α̂ (the

range of interest) then sin(α̂(z) − θ) > 0 so that c(I)0 decays exponentially as R → +∞.

We seek to determine the amplitude A by continuing to O(ε) in (3.3)–(3.4) and (3.7)–(3.8)

where we obtain the following system for J(I)
r,1 :

∂J(I)
r,1

∂R
=

∂c(I)0

∂t
+

∂J(I)
θ,0

∂θ
,

J
(I)
r,1 |R=0 = κ1c

(I)
0 |R=0, J

(I)
r,1 → λΩ̂(z) sin(α̂(z) − θ)c(o)0 (1, θ, z, t) as R → +∞.

(3.11)

An expression for J(I)
θ,0, in terms of A, can be found by substituting (3.10) into the leading

term of (3.5)

J
(I)
θ,0 = −λΩ̂(z)A(θ, z, t) cos(α̂(z) − θ) exp(−Ω̂(z) sin(α̂(z) − θ)R). (3.12)

Integrating (3.11a) between R = 0 and R = ∞ and applying boundary conditions (3.11b)

and (3.11c) yields a solvability condition which takes the form of a hyperbolic PDE for

the amplitude A and in which z appears solely as a parameter:

∂A

∂t
− λΩ̂(z) sin(α̂(z) − θ)

∂

∂θ

(
A cos(α̂(z) − θ)

sin(α̂(z) − θ)

)
= −κ1AΩ̂(z) sin(α̂(z) − θ) + λΩ̂2(z) sin2(α̂(z) − θ)c(o)0 (1, θ, z, t). (3.13)

The characteristics of this PDE are of the form t = t0 − log(| sec(θ − α̂(z)) + tan(θ −
α̂(z))|)/(λΩ̂(z)) where t0 is a constant selecting a particular characteristic. Information is

thus propagated in the positive θ direction for −π + α̂(z) < θ < −π/2 + α̂(z) and in the

negative θ direction for −π/2 + α̂(z) < θ < α̂(z). There is consequently a singularity on

θ = −π/2 + α̂(z) where the characteristics converge.

In what follows it will be informative to rewrite (3.13) in terms of the integrated flux

within the boundary layer:

∂

∂t

(∫ ∞

0

c
(I)
0 dR

)
+

∂

∂θ

(∫ ∞

0

J
(I)
θ,0dR

)
= −κ1c

(I)
0 |R=0 + λΩ̂(z) sin(α̂(z) − θ)c(o)0 . (3.14)

The steady solution to the amplitude equation (3.13).

We now construct a steady solution to (3.13) for the situation outlined above in which,

depending upon position within the pipe, c(o)0 (r, θ, z, t) takes either the value 0 or 1, with

a sharp interface (i.e. a free boundary) separating the regions in which the solution takes

these two values (this scenario is illustrated in Figure 3). We suppose that the intersection

of this free boundary with the wall of the vessel occurs along the curves θ = α̂(z) − γ+(z)
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and θ = −π + α̂(z) + γ−(z) so that

c
(o)
0 |r=1 =

⎧⎨
⎩

0 for θ > α̂(z) − γ+(z),

1 for −π + α̂(z) + γ−(z) < θ < α̂(z) − γ+(z),

0 for θ < −π + α̂(z) + γ−(z).

(3.15)

By writing ψ = θ− α̂(z) and A = A(ψ, z) it is possible to show that the steady solution to

(3.13) is, in this case,

A(ψ, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for 0 > ψ > −γ+,

Ω̂(z) sin(−ψ)

1 − κ1/λ

((
cos γ+(z)

cos(−ψ)

)1−κ1/λ

− 1

)
for −π

2
< ψ < −γ+,

Ω̂(z) sin(−ψ)

1 − κ1/λ

((
cos γ−(z)

− cos(−ψ)

)1−κ1/λ

− 1

)
for −π

2
> ψ > −π + γ−,

0 for −π < ψ < −π + γ−.

(3.16)

Here we apply the boundary conditions A|θ=α̂(z) = 0 and A|θ=−π+α̂(z) = 0 to guarantee zero

particle flux at θ = −π + α̂(z) and θ = α̂(z). We remark that it is consistent to apply these

two conditions to the steady version of (3.13) (a first-order DE) since its characteristics are

directed into the domain of solution from the points θ = −π+ α̂(z) and θ = α̂(z). However

this leads to a singularity in the solution on θ = α̂(z) − π/2 (i.e. on the curve C) where the

two sets of characteristics intersect and at which (3.13) has a singularity. In addition the

integrated flux
∫ ∞

0
c
(I)
0 dR changes sign here. In order to regularise the singularity in the

amplitude in a neighbourhood of θ = −π/2 + α̂(z) we must introduce a further boundary

layer about this point. However since the amplitude is finite at θ = −π/2 + α̂(z) for

κ1/λ > 1 we do not investigate this case further here, concentrating instead on the case

κ1/λ < 1 for which A becomes infinite. Examples of the solution (3.16) are plotted in

Figure 4. Finally, we write down the corresponding behaviour for c(I), that is

c(I)∼

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 0 > ψ > −γ+,

Ω̂(z) sin(−ψ)

ε(1 − κ1/λ)

((
cos γ+(z)

cos(−ψ)

)1−κ1/λ

− 1

)
exp(−Ω̂(z) sin(−ψ)R) −π

2
< ψ < −γ+,

Ω̂(z) sin(−ψ)

ε(1 − κ1/λ)

((
cos γ−(z)

− cos(−ψ)

)1−κ1/λ

− 1

)
exp(−Ω̂(z) sin(−ψ)R) −π

2
>ψ>−π + γ−,

0 −π<ψ<−π + γ−,

(3.17)

where ψ = θ − α̂(z).

Limits and validity of (3.16).

The analysis presented above is asymptotically valid for δ = o(1), κ/λ = o(1) and λ � O(1).

In particular if κ = o(ε) and λ = O(1) then (3.16) gives the correct amplitude for the

leading-order concentration c(I)0 when κ1 is set to zero. Furthermore where λ = O(1) and
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Figure 4. The amplitude A of the leading-order solution c(I)0 in region I for

γ+ = π/16, γ− = π/4, Ω̂ = 1, α = 0 and for κ1/λ = 0.4, 0.8, 1.2, 1.6, 2.0.

ε � κ � 1, so that we can write κ = εμκμ with 0 < μ < 1, the concentration in region I

satisfies

c(I) ∼ Â(θ − α̂(z), z)

εμ
exp(−Ω̂(z) sin(α̂(z) − θ)R),

where

Â(ψ, z) =

⎧⎨
⎩

0 for 0 > ψ > −γ+,

λΩ̂(z) sin(−ψ)/κμ for −π + γ− < ψ < −γ+,

0 for −π < ψ < −π + γ−.

This corresponds to a solution in which the azimuthal flux around the edge of the tube is

negligible, with most material being absorbed, from the boundary layer, directly onto the

adjacent section of vessel wall before it can be advected a significant distance azimuthally.

This result may be obtained directly from (3.16) by substituting κ1 = εμ−1κμ, taking the

leading term in ε and substituting the result back into (3.10).

3.2.2 Region II: the inner layer about the curve C

In the case κ1/λ < 1, in which the solution for c(I) becomes infinite along θ = −π/2+ α̂(z)

(see (3.16) and (3.10)) we consider a further layer about θ = −π/2 + α̂(z) by introducing

the rescaled variable η defined by

θ = −π

2
+ α̂(z) + ε1/2η. (3.18)

In this region a balance exists between advection and diffusion in the θ direction (note

that in region I diffusion is negligible). In terms of η and the long-time variable τ = εt,
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(2.7) can be rewritten as

ε2 (1 − εR)
∂c(II)

∂τ
− ∂

∂R

(
(1 − εR)J(II)

r

)
+ ε1/2

∂J(II)
θ

∂η
− ε1/2

dα̂

dz
(1 − εR)

∂J(II)
z

∂η
+ ε(1 − εR)

∂J(II)
z

∂z
= 0, (3.19)

J(II)
r

λ
= (1 − εR)

∂c(II)

∂R
+ Ω̂(z)

(
1 − 1

2
εη2

)
c(II) + O(ε3/2c(II)), (3.20)

J
(II)
θ

λ
= −ε1/2

(
∂c(II)

∂η
+ Ω̂(z)ηc(II)

)
+ ε3/2Ω̂(z)

(
η3

6
+ Δa1(z)η

)
c(II) + O(ε2c(II)), (3.21)

J(II)
z = εc(II)

(
λΔ(Ŵ (z) + O(ε3/2)) + (2R − εR2)

)
, (3.22)

where we recall that δ = Δε, r = 1 − εR and κ = εκ1. In (3.19)–(3.22) we have used (2.14)

to expand α(x), W (x) and Ω(x). The system is closed by imposing the following boundary

and matching conditions:

J(II)
r |R=0 = κ1εc

(II), (3.23)

J(II)
r → −λΩ̂(z)c(o)0 (1, θ, z, t) sin(−π/2 + ε1/2η)

c(II) → c
(o)
0 (1,−π/2 + α̂(z) + ε1/2η, z, t)

⎫⎬
⎭ as R → +∞, (3.24)

c(II) ∼ ε−1−(1−κ1/λ)/2
Ω̂(z)

1 − κ1/λ

(
cos γ±

|η|

)1−κ1/λ

exp(−Ω̂(z)R) as η → ±∞. (3.25)

Conditions (3.24) are derived by matching to the outer region (o) and conditions (3.25)

by matching to the inner region (I).

Boundary conditions (3.25) give rise to a term in the expansion of c(II) of O(ε−1−(1−κ1/λ)/2)

(the leading term in the expansion) while the conditions (3.24) give a term of O(1) in c(II)

(the fourth-order term in the expansion) and the penultimate term in (3.19) leads to an

O(ε1−(1−κ1/λ)/2) term in J(II)
r (the fifth-order term in the expansion). Motivated by these

facts and the expectation that the solution in this region is driven by the behaviour in

region I , we seek an asymptotic solution of the form

c(II) = ε−(1+(1−κ1/λ)/2)
(
c
(II)
0 + ε(1−κ1/λ)/2c

(II)
1 + ε1/2c

(II)
2

+ εc
(II)
3 + ε1+(1−κ1/λ)/2c

(II)
4 + ε3/2c

(II)
5 + · · ·

)
,

J(II)
r = ε−(1+(1−κ1/λ)/2)

(
J

(II)
r,0 + ε(1−κ1/λ)/2J

(II)
r,1 + ε1/2J

(II)
r,2 + εJ

(II)
r,3

+ ε1+(1−κ1/λ)/2J
(II)
r,4 + ε3/2J

(II)
r,5 + · · ·

)
,

J
(II)
θ = ε−(1+(1−κ1/λ)/2)

(
ε1/2J

(II)
θ,0 + ε1/2+(1−κ1/λ)/2J

(II)
θ,1 + εJ

(II)
θ,2 + · · ·

)
,

J(II)
z = ε−(1+(1−κ1/λ)/2)

(
εJ

(II)
z,0 + · · ·

)
,

In (3.26) terms denoted by the subscripts 1 and 2 are linked to those denoted by 4

and 5 (discussed above) which excite eigenmodes at higher order. Since we are primarily

concerned with the leading-order term we can ignore those denoted by subscripts 1,2,4

and 5. However, since c(II)0 satisfies an eigenvalue problem we need to proceed to the third
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order (denoted by subscript 3) in order to obtain a solvability condition which will allow

us to specify c(II)0 fully.

Substituting from (3.26) into (3.19) and (3.23)–(3.24a) leads, at leading order, to the

result J(II)
r,0 = 0 while (3.20) and (3.24b) once again supply a balance between advective

and diffusive flux in the radial direction (at leading order)

∂c(II)0

∂R
+ Ω̂(z)c(II)0 = 0, with c

(II)
0 → 0 as R → ∞,

with eigensolution

c
(II)
0 = B(η, z, τ) exp(−Ω̂(z)R), (3.26)

where the amplitude function B(η, z, τ) remains to be found. It turns out, as we shall see,

that B is determined by the azimuthal flux of material and the rate of its absorbtion at

the vessel wall. Proceeding with the expansions of (3.19) and (3.23)–(3.24a) to third order

gives the following problem for J(II)
r,3

∂J(II)
r,3

∂R
=

∂J(II)
θ,0

∂η
, J

(II)
r,3 |R=0 = κ1c

(II)
0 |R=0, J

(II)
r,3 → 0 as R → ∞. (3.27)

Here J(II)
θ,0 is obtained by substituting for c(II)0 in the leading term of (3.21) and is

J
(II)
θ,0 = −λ(Bη + Ω̂(z)ηB) exp(−Ω̂(z)R).

We obtain a solvability condition on B by integrating (3.27a) between R = 0 and R = ∞
and applying the boundary conditions (3.27b)–(3.27c); this yields the following second-

order DE for B:

1

Ω̂(z)
Bηη + ηBη + B(1 − κ1/λ) = 0,

with solution

B = exp(−Ω̂(z)η2/2)

(
α(z, τ)H−κ1/λ

((
Ω̂(z)/2

)1/2

η

)
+ β(z, τ)KM

(
κ1

2λ
,
1

2
,
Ω̂(z)

2
η2

))
,

(3.28)

where Hν(·) is the Hermite function of degree ν and KM(·, ·, ·) is the hypergeometric

Kummer function of the first kind. The functions α and β can be determined from the

matching conditions (3.24)–(3.25) which give the following far-field conditions on B:

B ∼ Ω̂(cos γ−)1−κ1/λ

(1 − κ1/λ)(−η)1−κ1/λ
as η → −∞, B ∼ Ω̂(cos γ+)1−κ1/λ

(1 − κ1/λ)η1−κ1/λ
as η → ∞. (3.29)

The asymptotic behaviours of the Hermite function (of degree −κ1) and the Kummer
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Figure 5. Sketch of the amplitude function B inside region II for fixed values of z and τ. Key:

B(η) for Ω = 1, γ+ = Π/16, γ− = π/4 and κ1/λ = 0.2 (solid line); the asymptotic behaviour as

η → ±∞ (dashed line).

function [30] at infinity are

H−κ1/λ

((
Ω̂/2

)1/2

η

)
∼ Γ (1 − κ1/λ)

(−η)κ1/λ−1

√
π

× sin(κ1π/λ) exp

(
Ω̂

2
η2

)(
Ω̂

2

)(κ1/λ−1)/2

as η → −∞,

H−κ1/λ

((
Ω̂/2

)1/2

η

)
∼ 2−κ1/λ

(
Ω̂

2

)−κ1/λ

η−κ1/λ as η → ∞,

KM

(
κ1

2λ
,
1

2
,
Ω̂

2
η2

)
∼

√
π

Γ (κ1/(2λ))

(
2

Ω̂

)(1−κ1/λ)/2

exp

(
Ω̂

2
η2

)
|η|κ1/λ−1 as η → ±∞.

It follows that, in order to satisfy the far-field conditions (3.29), α(z, τ) and β(z, τ) in (3.28)

must be chosen as follows:

α(z, τ) =

√
πΩ̂(z)

(1 − κ1/λ)Γ (1 − κ1/λ) sin(κ1π/λ)

(
Ω̂(z)

2

)(1−κ1/λ)/2

×
(
(cos γ−(z, τ))1−κ1/λ − (cos γ+(z, τ))1−κ1/λ

)
, (3.30)

β(z, τ) =
Γ (κ1/(2λ))Ω̂(z)

(1 − κ1/λ)
√

π

(
Ω̂(z)

2

)(1−κ1/λ)/2

(cos γ+(z, τ))1−κ1/λ. (3.31)

In summary the leading-order concentration c
(II)
0 is given by (3.26) in which the

amplitude B(η, z, τ) is defined by (3.28) and (3.30)–(3.31). A plot of B (solid line) is

presented in Figure 5, together with its asymptotic behaviours as η → ±∞ (dotted lines),

these being derived from the amplitude function A in region I.
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3.2.3 Summary and physical interpretation of results in §3.2

We have considered the distinguished limit in which the vessel aspect ratio and the

dimensionless permeability of the vessel wall are both small and of similar magnitude

to the inverse Peclet numberε (δ = O(ε), κ = O(ε)). We find that there is a boundary

layer (region I) of dimensionless width O(ε) around the edge of the vessel in which the

concentration is O(1/ε) greater than that in the bulk of the vessel (region o). In this

boundary layer there is a balance between diffusion which acts to return particles to the

centre of the vessel (where concentrations are lower) and advection which pulls particles

to the wall. The relatively high concentrations in the boundary layer lead, in this case,

to a significant O(1) flux of particles through the vessel wall. Additionally there is an

axial flux of particles along the boundary layer, around the edge of the vessel, towards

θ = −π/2 + α̂(z) and this results in a further region (region II) of width ε in the radial

direction and of width ε1/2 in the azimuthal direction. Here the particle concentration

is of O(ε−(1+(1−κ1/λ)/2)) and the resulting flux through the vessel wall of O(ε−(1−κ1/λ)/2).

The integrated flux of particles leaving through the vessel wall, per unit length in the z

direction, in region II , which we denote by J(II)
w , is thus of O(εκ1/(2λ)) which is negligible

in comparison to the integrated flux of particles through the vessel wall, per unit length in

the z direction, occurring in region I , which we denote by J(I)
w , and which is O(1). Indeed

an expression for the latter is given by

J(I)
w = κ1

∫ α̂

−π+α̂

J(I)
r |R=0dψ ∼

∫ α̂

−π+α̂

c
(I)
0 |R=0dψ = κ1

∫ α̂

−π+α̂

A(ψ, z)dψ.

After performing the integration this expression may be rewritten in the form

J(I)
w ∼ λΩ̂(z)(cos γ−(z) + cos γ+(z)).

We can interpret this as a statement that the flux of particles leaving through the wall

(per unit length in the z direction) is asymptotic to the flux entering the boundary layers

from the outer region. It can thus be seen that the processes occurring in region I are of

much greater practical interest than those occurring in region II . It is notable that, in this

regime, no significant flux of particles occurs down the vessel, in the z direction, in either

boundary layer region I or II . Given that the problem is quasi-steady in the outer region

and in region I over the O(1/ε) timescale being investigated, it is thus not surprising that

the flux out of the outer is equal to that being absorbed on the wall.

Breakdown of the expansion as κ1/λ → 0.

The solution in region II breaks down in the limit κ1/λ → 0, because the coefficients α

and β defined in (3.30)–(3.31) blow up, giving the small κ1/λ behaviour

B ∼ exp(−Ω̂η2/2)
λΩ̂3/2

(2π)1/2κ1

(cos γ− + cos γ+),
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corresponding to

c(II) ∼ ε−3/2 exp(−Ω̂(R + η2/2))
λΩ̂3/2

(2π)1/2κ1

(cos γ− + cos γ+), (3.32)

where we used the facts that KM(0, 1/2, x) = H0(x) = 1. This motivates us to consider a

second distinguished limit for which κ = O(ε2) in Section 3.3.

3.3 The distinguished limit δ = O(ε), κ = O(ε2) and λ = O(1)

Here we proceed as before but write κ = ε2κ2. Once again the solution in the outer region

(o) is unaffected by the boundary condition (2.7e) and may be described by the analysis

in Section 3.1.

3.3.1 Region I: the diffusive boundary layer on the outflow boundary −π + α̂ < θ < α̂

The analysis in region I is identical to that in Section 3.2 except with κ1 = 0. The

concentration thus has the asymptotic expansion c(I) = c
(I)
0 /ε + · · ·. Where the outer

solution has the form described in (3.15) the steady solution for c(I)0 takes the form

c
(I)
0 = A(θ, z) exp(−Ω̂(z) sin(α̂(z) − θ)R) and A(θ, z) is given by (3.16) with κ1 = 0.

3.3.2 Region II: the inner boundary layer about the curve C on θ = −π/2 + α̂(z)

We use the stretched variables R and η defined in (3.2) and (3.18) in terms of which the

governing equations (2.7) take the form (3.19)–(3.21). However the system is now closed

by the boundary conditions

J(II)
r |R=0 = κ2ε

2c(II), (3.33)

J(II)
r → −λΩ̂(z)c(o)0 (1, θ, z, t) sin(−π/2 + ε1/2η)

c(II) → c
(o)
0 (1,−π/2 + α̂(z) + ε1/2η, z, t)

⎫⎬
⎭ as R → +∞, (3.34)

c(II) ∼ ε−3/2Ω̂(z)

(
cos γ−

−η

)
exp(−Ω̂(z)R) as η → −∞, (3.35)

c(II) ∼ ε−3/2Ω̂(z)

(
cos γ+

η

)
exp(−Ω̂(z)R) as η → ∞. (3.36)

These are identical to (3.23)–(3.25) with κ1 replaced by εκ2.

In light of the matching conditions (3.35)–(3.36) we might naively expect that the

leading term in c(II) is of O(ε−3/2). However, as we have seen in §3.2.2, this scaling breaks

down for κ = o(ε) and the appropriate scaling in the distinguished limit κ = O(ε2) is

c(II) = O(ε−5/2). The calculation initially proceeds along similar lines to that in Section

3.2.2 with the dependence of c(II)0 (the leading term in c(II)) on R obtained at leading order

(i.e. at O(ε−5/2)) giving c(II)0 = F(η, z, τ) exp(−Ω̂(z)R). The η-dependence of the amplitude

F(η, z, τ) is derived from a solvability condition at O(ε−3/2) while, in contrast to Section

3.2.2, the dependence of F on z and τ is found by proceeding to O(ε−1/2) and obtaining

a further solvability condition. However since, in general, the direction of the force on
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the particles changes with z (corresponding to a non-zero derivative of α̂(z)) we must

also consider terms in c(II) at orders ε−2, ε−1, etc. Furthermore these terms appear in the

equations used to derive the second solvability condition on F(η, z, τ), although they do

not affect the final result for F(η, z, τ). The essence of this calculation can therefore be

best obtained by ignoring the terms in c(II) at integer powers of ε (corresponding to the

assumption that α̂′(z) = 0) and concentrating solely on those terms at half-integer powers

of ε.

Motivated by the above discussion we look for an expansion of the form

c(II) = ε−5/2c
(II)
0 + ε−2c

(II)
1 + ε−3/2c

(II)
2 + ε−1c

(II)
3 + ε−1/2c

(II)
4 + · · · ,

J(II)
r = ε−5/2J

(II)
r,0 + ε−2J

(II)
r,1 + ε−3/2J

(II)
r,2 + ε−1J

(II)
r,3 + ε−1/2J

(II)
r,4 + · · · ,

J
(II)
θ = ε−2J

(II)
θ,0 + ε−3/2J

(II)
θ,1 + ε−1J

(II)
θ,2 + · · · ,

J(II)
z = ε−3/2J

(II)
z,0 + ε−1J

(II)
z,1 + ε−1/2J

(II)
z,2 + · · · .

(3.37)

At the two leading orders the governing equations (3.19)–(3.20) and boundary conditions

(3.33)–(3.34) are identical to those in Section 3.2.2. In particular,

J
(II)
r,0 = J

(II)
r,1 = 0, c

(II)
0 = F(η, z, τ) exp(−Ω̂(z)R), c

(II)
1 = G(η, z, τ) exp(−Ω̂(z)R), (3.38)

where the amplitude functions F and G remain to be determined. At O(ε−3/2) and O(ε−1)

in (3.19) we obtain

∂J(II)
r,2

∂R
=

∂J(II)
θ,0

∂η
,

∂J(II)
r,3

∂R
=

∂J(II)
θ,1

∂η
− dα̂

dz

∂J(II)
z,0

∂η
, (3.39)

where (J(II)
θ,0 , J

(II)
θ,1 , J

(II)
z,0 ) are determined from the solutions for c(II)0 and c(II)1 by expanding

(3.21) and (3.22) to the appropriate order

J
(II)
θ,0 = −λ

(
Ω̂(z)c(II)0 η +

∂c(II)0

∂η

)
, J

(II)
z,0 = c

(II)
0 (λΔŴ (z) + 2R), (3.40)

J
(II)
θ,1 = −λ

(
Ω̂(z)c(II)1 η +

∂c(II)1

∂η

)
, J

(II)
z,1 = c

(II)
1 (λΔŴ (z) + 2R). (3.41)

Boundary conditions on J(II)
r,2 and J(II)

r,3 are derived from the O(ε−5/2) and O(ε−3/2) terms

that appear in (3.33)–(3.34)

J
(II)
r,2 |R=0 = 0

J
(II)
r,2 → 0 as R → ∞

⎫⎬
⎭ ,

J
(II)
r,3 |R=0 = 0

J
(II)
r,3 → 0 as R → ∞

⎫⎬
⎭ . (3.42)

Substituting from (3.40)–(3.41) for (J(II)
θ,0 , J

(II)
θ,1 , J

(II)
z,0 ) in (3.39), integrating with respect to

R, and applying boundary conditions (3.42) gives the following solvability conditions for

F and G:

∂

∂η

(
Fη + Ω̂(z)ηF

)
= 0,

∂

∂η

(
Gη + Ω̂(z)ηG

)
= −dα̂

dz

(
ΔW +

2

λΩ

)
Fη. (3.43)
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Boundary conditions on (3.43) can be obtained from the matching conditions (3.35)–(3.36)

and are

F → 0 and G → 0 as η → ±∞.

Integrating (3.43a) subject to the above boundary conditions yields

F(η, z, τ) = f(z, τ) exp(−Ω̂(z)η2/2) =⇒ c
(II)
0 = f(z, τ) exp(−Ω̂(z)(R + η2/2)), (3.44)

where the amplitude function f(z, τ) is determined below. Similarly integration of (3.43b)

subject to the above boundary conditions on G gives (on substituting for F using (3.44))

G = −dα̂

dz

(
ΔŴ (z) +

2

λΩ̂(z)

)
f(z, τ)η exp(−Ω̂(z)η2/2).

These results lead to the following expressions for the fluxes in the azimuthal and axial

directions:

J
(II)
θ,0 = 0 J

(II)
z,0 = f(z, τ)(λΔŴ (z) + 2R) exp(−Ω̂(z)(R + η2/2)),

J
(II)
θ,1 = λ

dα̂

dz

(
ΔŴ +

2

λΩ̂

)
f(z, τ) exp(−Ω̂(z)(R + η2/2)),

J
(I)
z,1 = −dα̂

dz
(λΔŴ (z) + 2R)(λΔŴ (z) + 2/Ω̂)ηf(z, τ) exp(−Ω̂(z)(R + η2/2))

(3.45)

and furthermore that the solution to (3.39a) with (3.42a) is J(II)
r,2 = 0.

In order to determine f we must first calculate J(II)
θ,2 by proceeding to O(ε−1) in (3.21),

where we find

J
(II)
θ,2 = −λ

((
∂

∂η
+ Ω̂(z)η

)
c
(II)
2 − Ω̂(z)

(
η3

6
+ Δa1(z)η

)
c
(II)
0

)
. (3.46)

By proceeding to O(ε−3/2) in (3.20) and recalling that J(II)
r,2 = 0 we obtain the following

equation for c(II)2 :

∂c(II)2

∂R
+ Ω̂(z)c(II)2 = R

∂c(II)0

∂R
+
Ω̂(z)η2

2
c
(II)
0 = f(z, τ)Ω̂(z)

(
η2

2
−R

)
exp(−Ω̂(z)(R+ Ω̂(z)η2/2))

with solution

c
(II)
2 =

Ω̂(z)f(z, τ)

2
(η2R − R2) exp(−Ω̂(z)(R + η2/2)) + g(η, z, τ) exp(−Ω̂(z)R), (3.47)

where g is an, as yet undetermined, function of integration. Substitution from (3.47) into

(3.46), gives the desired expression for J(II)
θ,2

J
(II)
θ,2 = −λΩ̂(z)f(z, τ) exp

(
−Ω̂(z)

(
R +

η2

2

))(
Rη − η3

6
− Δa1(z)η

)
− λ(gη + Ω̂(z)ηg) exp(−Ω̂(z)R). (3.48)
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We derive a solvability condition on f(z, τ) by proceeding to O(ε−1/2) in (3.19) and

(3.33)–(3.34). In this way we recover the following problem for J(II)
r,4 :

∂c(II)0

∂τ
−

∂J(II)
r,4

∂R
+

∂J(II)
θ,2

∂η
− dα̂

dz

∂J(II)
z,1

∂η
+

∂J(II)
z,0

∂z
+

∂

∂R
(RJ(II)

r,2 ) = 0, (3.49)

J
(II)
r,4 |R=0 = κ2f(z, τ) exp(−Ω̂(z)η2), J

(II)
r,4 → 0 as R → ∞. (3.50)

Integrating (3.49) with respect to R gives

∫ ∞

0

∂c(II)0

∂τ
+

∂J(II)
θ,2

∂η
− dα̂

dz

∂J(II)
z,1

∂η
+

∂J(II)
z,0

∂z
dR =

[
J

(II)
r,4 − RJ

(II)
r,2

]∞

0
,

while application of boundary conditions (3.42a) and (3.50) and substitution for c(II)0 , J(II)
z,1 ,

J
(II)
z,0 and J(II)

θ,2 from (3.44), (3.45) and (3.48) yields

exp(−Ω̂η2/2)fτ + λ
∂

∂η

(
f exp(−Ω̂η2/2)

{(
Ω̂
η3

6
+ Ω̂Δa1η − η

)

+

(
dα̂

dz

)2 (
ΔŴ +

2

λΩ̂

)2

η

})
+ λΩ̂

∂

∂z

(
f exp(−Ω̂η2/2)

λΩ̂

(
ΔŴ +

2

λΩ̂

))

+ κ2Ω̂f exp(−Ω̂η2/2) = λ
∂

∂η
(gη + Ω̂ηg). (3.51)

In order to complete the calculation, and derive a PDE for f(z, τ), we use (3.35)–(3.36) to

specify the matching conditions on c(II)2

c
(II)
2 ∼ Ω̂(z) cos(γ+(z))

η
exp(−Ω̂(z)R) as η → ∞,

c
(II)
2 ∼ Ω̂(z) cos(γ+(z))

(−η) exp(−Ω̂(z)R) as η → −∞.

These matching conditions imply that

g ∼ Ω̂(z) cos(γ+(z))

η
and gη + Ω̂(z)ηg ∼ Ω̂2(z)cos(γ+(z)) as η → ∞,

g ∼ Ω̂(z) cos(γ−(z))

(−η) and gη + Ω̂(z)ηg ∼ −Ω̂2(z)cos(γ−(z)) as η → −∞.

By integrating (3.51) with respect to η ∈ (−∞,∞) and applying the above conditions on

g we obtain the following PDE for f

∂f

∂τ
+ Ω̂3/2 ∂

∂z

(
f

Ω̂3/2

(
λΔW +

2

Ω̂

))
=

λΩ̂5/2

(2π)1/2
(cos γ+ + cos γ−) − κ2Ω̂f, (3.52)

where f is related to the concentration in region II by

c(II) ∼ ε−5/2f(z, τ) exp(Ω̂(z)(R + η2/2)).
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Remarks The conservation equation for material, with concentration f, that is being

transported along a channel of area A(z) with average velocity v̄ is

fτ +
1

A
∂

∂z
(v̄Af) =

S

A (3.53)

where S is the source of the material per unit length (of channel). Comparing (3.53) to

(3.52) we can identify A with Ω̂−3/2, the average velocity v̄ with λΔW + 2/Ω̂ and S with

λΩ̂(2π)−1/2(cos γ+ + cos γ−) − κ2Ω̂
−1/2. It is intuitively obvious why A should scale with

Ω̂−3/2 since the leading-order solution c
(II)
0 decays with length scale Ω̂−1 in the radial

direction and with length scale Ω̂−1/2 in the azimuthal direction. The two terms, λΔW

and 2/Ω̂, in the average velocity v̄ represent the contributions to the axial particle velocity

from the action of the body force and from the fluid flow, respectively. The second of

these terms scales with Ω̂−1 because the radial thickness of region II scales with Ω̂−1

while the fluid velocity is proportional to distance from the vessel wall. The first term in

S represents the flux of material transported into region II from region I. This scales with

λΩ̂ since the advective velocity of material onto the vessel wall also scale s with λΩ̂ while

it scales with (cos γ+ +cos γ−) since this is the width, measured perpendicular to the body

force, of that part of the outer region in which the concentration is non-zero. The final

term in S represents the material transported out through the walls of the vessel and this

scales with Ω̂−1/2 since the width of region II in the azimuthal direction, and hence the

length of boundary on which particle deposition takes place, is proportional to Ω̂−1/2 .

In this distinguished limit the flux of particles J(I)
w leaving through the wall in region

I (per unit length in the z direction) is of O(ε log(1/ε)) whereas that leaving through the

wall in region II, J(II)
w , is of O(1). An expression for the latter is given by

J(II)
w = ε1/2

∫ ∞

−∞
J(II)
r |R=0dη = ε5/2

∫ ∞

−∞
κ2c

(II)|R=0dη ∼ κ2

∫ ∞

−∞
c
(II)
0 |R=0dη.

Substituting for c(II)0 from (3.44) and performing the integration we obtain the result that

J(II)
w ∼ κ2

(2π)1/2

Ω̂1/2
f(z, τ),

where f(z, τ) is the amplitude function for c(II)0 . Notably the flux of particles leaving

through the walls, per unit length in the z direction, is not the same as that entering the

boundary layers from the outer region λΩ̂(z)(cos γ−(z) + cos γ+(z)). This is a consequence

of a significant flux of particles flowing in the axial direction in region II. Another notable

and counterintuitive point is that the particle flux through the walls of the vessel is

inversely proportional to the square root of the strength of the particle body force onto

the vessel wall Ω̂1/2. As alluded to earlier, this is because the length of wall (per unit

length in the z direction) in contact with region II scales like Ω̂−1/2 (strong particle body

forces lead to a small contact regions). However it should be emphasised that the flux of

particles leaving the outer region is proportional to the strength of the particle body force

λΩ̂.
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Figure 6. Sketches illustrating the asymptotic validity of the asymptotic formulae derived in this

paper. The crosses mark the positions of the two distinguished limits considered.

3.3.3 Limits and validity of (3.52)

We note first that the large κ2 limit of (3.52) gives

c(II) ∼ ε−5/2

κ2

Ω̂3/2

(2π)1/2
(cos γ+ + cos γ−) exp(−Ω̂(z)(R + η2/2)),

which, giventhat κ1 = εκ2, matches to the small κ1 limit of the equivalent result in the

distinguished limit δ = O(ε) and κ = O(ε) (see (3.32)).

The results obtained in Section 3.3 have considerably wider applicability than the limit

κ = O(ε2) and δ = O(ε). Thus, for example, where κ = εα+1κα+1 and δ = Δαε
α, with

0 < α < 1, (3.52) is valid in the large Δ limit. That is,

c(II) ∼ ε−3/2−α exp(−Ω̂(z)(R + η2/2))fα(z, T ),

where t = ε−αT and

∂fα
∂T

+ λΩ̂3/2Δα
∂

∂z

(
fαW

Ω̂3/2

)
=

λΩ̂5/2

(2π)1/2
(cos γ+ + cos γ−) − κα+1Ω̂fα.

This can be seen by substituting

f = ε1−αfα, κ2 = εα−1κα+1, Δ = εα−1Δα and τ = ε1−αT

(with 0 < α < 1) and taking the leading terms in ε.

We also remark that (3.52) remains valid, if either (or both) of κ2 or Δ are small or

if λ � 1. Thus the analysis in Section 3.3 can also be seen to describe the limits (a)

κ = o(ε2), δ = O(ε), λ = O(1), (b) κ = O(ε2), δ = o(ε), λ = O(1) and (c) κ = o(ε2), δ =

o(ε), λ = O(1). We will investigate the small λ limit in the following section. The domains

of validity are plotted in figure 6.
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3.3.4 Steady solution to (3.52)

There is an analytic solution to the first-order ODE which results from setting the

time-derivative to zero in (3.52). This is

f(z) =
Ω̂5/2(z)

Ω̂(z)λΔŴ (z) + 2
exp

(
−

∫ z

0

κ2(ζ)Ω̂
2(ζ)

Ω̂(ζ)λΔŴ (ζ) + 2
dζ

)

×
(
A0 +

∫ z

0

{
λΩ̂(ζ)

(2π)1/2
(cos γ+(ζ) + cos γ−(ζ)) exp

(
−

∫ ζ

0

κ2(ξ)Ω̂
2(ξ)

Ω̂(ξ)λΔŴ (ξ) + 2
dξ

)}
dζ

)
,

where A0 is a constant of integration. We note that this solution exhibits singularities if

(Ω̂(z)λΔŴ (z) + 2) changes sign.

4 Matched asymptotic solution for small inverse Peclet number (ε � 1)

and small trapping efficiency within the vessel (λ = O(ε))

Here we consider distinguished limits in which both the inverse Peclet number and λ are

small and of O(ε). The analysis is similar in form to that presented in Section 3. Once again

there is an outer region which occupies the bulk of the pipe in which advection dominates.

There is also a region an O(ε) distance from the wall of the pipe in which advection and

diffusion balance (region I). As in the previous limits, material is transported around the

boundary layer towards the curve C (as illustrated in Figure 2) where there is a further

layer (region II). However, in the λ = O(ε), regime transport takes place in both the θ and

z directions.

4.1 Solution structure in the outer region

As in Section 3 the outer expansion takes the form c(o) = c
(o)
0 +εc(o)1 +· · · , J(o)

r = εJ
(o)
r,0 +· · · .

However, since λ � 1, the leading-order governing equations now take the form

∂c(o)0

∂t
+ (1 − x2 − y2)

∂c(o)0

∂z
= 0, J

(o)
r,0 = −ΛΩ̂(z) sin(θ − α̂(z))c(o)0

and in the long-time limit admit solutions of the form c
(o)
0 = c

(o)
0 (x, y). Thus, to leading

order, the concentration profile that enters the vessel is unchanged throughout the length

of the vessel.

4.2 The distinguished limit κ = O(ε) and δ = O(ε)

Here we write δ = Δε, κ = εκ1 and λ = εΛ.

Region I.

Here we expect the azimuthal (and radial) fluxes to be of size O(ε) relative to those in

the λ = O(1) regime; this motivates us to rescale time with ε by writing t = τ/ε. The
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governing equations and boundary conditions then take the form

ε(1 − εR)
∂c(I)

∂τ
− 1

ε

∂

∂R

(
(1 − εR)J(I)

r

)
+

∂J(I)
θ

∂θ
+ (1 − εR)

∂J(I)
z

∂z
= 0, where (4.1)

J(I)
r = Λε

(
∂c(I)

∂R
+ Ω̂(z) sin(α̂(z) − θ)c(I)

)
+ O(ε2c(I)), (4.2)

J
(I)
θ = −ΛεΩ̂(z) cos(α̂(z) − θ)c(I) + O(ε2c(I)), (4.3)

J(I)
z = 2εRc(I) + O(ε2c(I)), (4.4)

subject to J(I)
r |R=0 = κ1εc

(I), (4.5)

and c(I) → c
(o)
0 (1, θ, z, t) as R → +∞. (4.6)

In the limit ε → 0 the expansion of variables proceeds as follows:

c(I) =
c
(I)
0

ε
+ c

(I)
1 + · · · , J(I)

r = J
(I)
r,0 + εJ

(I)
r,1 + · · · , J

(I)
θ = J

(I)
θ,0 + · · · , J(I)

z = J
(I)
z,0 + · · · .

Here the scaling of c(I) is motivated by the facts that the flux from the outer region is of

O(ε), the width of the inner region is of O(ε) and we operate over the O(1/ε) timescale

defined by τ. To leading order the calculation proceeds along lines similar to those in

Section 3.2.1 with the result that

J
(I)
r,0 = 0, c

(I)
0 = A(θ, z, τ) exp(−Ω̂(z) sin(α̂(z) − θ)R) (4.7)

At next order we recover the following system for J(I)
r,1 :

∂J(I)
r,1

∂R
=

∂c(I)0

∂τ
+

∂J(I)
θ,0

∂θ
+

∂J(I)
z,0

∂z
,

J
(I)
r,1 |R=0 = κ1c

(I)
0 |R=0,

J
(I)
r,1 → −ΛΩ̂(z) sin(θ − α̂(z))c(o)0 (1, θ, z, t) as R → +∞.

(4.8)

By noting that the leading-order azimuthal and axial fluxes are given by

J
(I)
θ,0 = −ΛΩ̂(z) cos(α̂(z) − θ)c(I)0 , J

(I)
z,0 = 2Rc(I)0 ,

integrating (4.8a) between R = 0 and +∞ and applying the boundary conditions on J(I)
r,1

we obtain the following equation for the amplitude function A(θ, z, τ):

1

Ω̂(z) sin(α̂(z) − θ)

∂A

∂τ
− Λ

∂

∂θ

(
cos(α̂(z) − θ)

sin(α̂(z) − θ)
A

)
+

∂

∂z

(
2A

Ω̂2(z) sin2(α̂(z) − θ)

)

= (ΛΩ̂(z)c(o)0 |r=1 sin(α̂(z) − θ) − κ1(z)A). (4.9)

The time-independent version of (4.9) has characteristic projections of the form

z = z0 +
2

ΛΩ̂2(z)
log | cot(2α̂(z) − 2θ) − cosec(2α̂(z) − 2θ)|.
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Figure 7. The characteristic projections of the steady amplitude equations with λ = O(ε) and

where both α̂ and Ω̂ are independent of z.

where α̂ and Ω̂ are independent of z; these are plotted in Figure 7. In this case we note

that the amplitude equation in region I is regular. There is therefore no need to introduce

a second layer in the neighbourhood of θ = α̂(z) − π/2, thus obviating the need for

region II.

5 Conclusions

We have developed and analysed a mathematical model describing the transport of a

dilute suspension of particles that are subject to a body force and mixed with a second

(concentrated) suspension of neutrally buoyant particles that flows through a cylindrical

vessel. This problem is relevant to magnetically targeted drug and gene delivery whereby

therapeutic drugs and/or genes are attached to biocompatible magnetic nanoparticles, or

magnetically loaded macrophages and injected into the blood (a concentrated suspension

of red blood cells). A magnetic force is then applied with the aim of guiding the magnetic

particles/macrophages to a target site [12, 18, 19, 20, 21]. The body force exerted on the

particles leads to them being transported with velocities significantly different to that of

the flow and, in particular, to a trans-stream component of velocity that can enhance

their deposition on the vessel wall. The presence of the second particulate species (RBCs

in our application) introduces a diffusive component to the motion of the first species;

such shear induced diffusion is a result of interparticle interactions that occur in sheared

flows of concentrated suspensions).

We formulated an advection–diffusion equation to model the transport of the first

species. The key dimensionless parameter in the governing transport equations is the

inverse Peclet number ε which gives the ratio of diffusive effects to advective effects.

Guided by dimensional analysis in the case of magnetic targeting we assumed this

parameter to be small, which corresponds to a body force that is sufficiently strong to pull

the particles into a highly concentrated state in a boundary layer (region I) lying along



Particle trapping by an external body force 105

the edge of the vessel. Despite the apparent simplicity of the model this regime displays

a rich asymptotic structure. In the limit of small particle trapping efficiency λ = O(ε) (see

Section 4) particles are transported around this boundary layer by the body force, moving

in both azimuthal and axial directions, towards the ‘bottom’ of the vessel (as defined by

the particle force). For significant particle trapping efficiency λ = O(1) (see Section 3)

particle transport within the boundary layer is directed, in a purely azimuthal direction,

towards the ‘bottom’ of the vessel. Here there is a further boundary layer (region II)

in which the particle concentration is even greater than in region I. Depending on the

relation between ε and the permeability κ̃ of the vessel wall there may be significant axial

transport of particles in this layer along the ‘bottom’ of the vessel. In the case where this

transport is significant (low permeability κ̃) we used asymptotic methods to systematically

derive an advection equation for the particle concentration within the boundary layer

which is represented in dimensionless form in (3.52). This equation can be used to track

the flux of particles in the rivulet lying along the ‘bottom’ of the vessel.

There are several obvious extensions to this work. For example we have only considered

a single vessel and, if we are to apply this approach to targeting in the cardiovascular

circulation, it would be more realistic to consider a branching network of vessels; this is

feasible but the solution to the outer problem is computationally intensive (Grief personal

communication [13]). However, once this is accomplished, the numerical solution to the

inner problem(s) throughout the network is fairly straightforward. In this context we

mention that, except in the limit of weak targeting, particle distributions within networks

can be highly heterogeneous [14] even within the targeted region. In addition we have not

modelled the effects of lift on the red blood cells away from the vessel wall. This creates

a RBC-depleted marginal layer lying at the edge of a vessel (typical width 2–4 μm [17])

in which shear-induced diffusion is (presumably) reduced and which will also lead to an

additional outwardly directed radial force on the targeted particles in opposition to the

lift on RBCs away from the vessel wall (this force is observed on platelets and other small

blood borne particles [26]). Furthermore, we have omitted from our discussion the effect

of the vessel wall on the particle motion which becomes significant when the particle is a

distance of the order of its radius from the vessel wall; these are treated in considerable

detail for a spherical particle in [10]. Finally, we have not accounted either for the pulsatile

nature of blood flow in arteries [29] or for the orderly single file flow of RBCs which

occurs in the smallest capillaries.

We conclude with some observations on magnetic targeting in the cardiovascular circula-

tion. The most important, and perhaps rather obvious comment, concerns the permeability

κ̃ of the vessel wall to targeted particles. It is apparent from the analysis presented in

this paper that this parameter is extremely important for determining where particles are

likely to extravasate. If the particles are being targeted at a site of inflammation the vessel

permeability there may be considerably elevated above that in the healthy vasculature

where it is known to be very low [17]. It is well attested, for example, that the vascular

beds in a tumour are leaky and allow particles of diameter 100 nm to permeate from

the vasculature into the tissue. Another way to increase the delivery of non-biological

particles to the target is to functionalise the carriers by attaching appropriate ligands to

them. In this scenario the magnetic force acts to enhance the concentration of particles

in the immediate vicinity of the vessel wall, thereby increasing the number which attach,
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via a ligand, and ultimately extravasate. Targeting with magnetic macrophages has the

advantage that these already have active sites on their surface which can attach to the

vessel wall as well as, perhaps more importantly, having the ability to actively extravasate

in response to various chemical stimuli.
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