Chirality groups of maps and hypermaps

Breda d'Azevedo, Antonio, Jones, Gareth, Nedela, Roman and Skoviera, Martin (2009) Chirality groups of maps and hypermaps Journal of Algebraic Combinatorics, 29, (3), pp. 337-355. (doi:10.1007/s10801-008-0138-z).


[img] PDF ChiralityGroupJAC.pdf - Version of Record
Restricted to Repository staff only

Download (406kB)


Although the phenomenon of chirality appears in many investigations of maps and hypermaps, no detailed study of chirality seems to have been carried out. Chirality of maps and hypermaps is not merely a binary invariant but can be quantified by two new invariants—the chirality group and the chirality index, the latter being the size of the chirality group. A detailed investigation of the chirality groups of orientably regular maps and hypermaps will be the main objective of this paper. The most extreme type of chirality arises when the chirality group coincides with the monodromy group. Such hypermaps are called totally chiral. Examples of these are constructed by considering appropriate “asymmetric” pairs of generators of certain non-abelian simple groups. We also show that every finite abelian group is the chirality group of some hypermap, whereas many non-abelian groups, including symmetric and dihedral groups, cannot arise as chirality groups.

Item Type: Article
Digital Object Identifier (DOI): doi:10.1007/s10801-008-0138-z
ISSNs: 0925-9899 (print)
Subjects: Q Science > QA Mathematics
ePrint ID: 156833
Date :
Date Event
May 2009Published
Date Deposited: 02 Jun 2010 12:02
Last Modified: 18 Apr 2017 03:59
Further Information:Google Scholar

Actions (login required)

View Item View Item