The University of Southampton
University of Southampton Institutional Repository

Application of invariant moments for crowd analysis

Application of invariant moments for crowd analysis
Application of invariant moments for crowd analysis
The advancement in technology such as the use of CCTV has improved the effects of monitoring crowds. However, the drawback of using CCTV is that the observer might miss some information because monitoring crowds through CCTV system is very laborious and cannot be performed for all the cameras simultaneously. Hence, integrating the image processing techniques into the CCTV surveillance system could give numerous key advantages, and is in fact the only way to deploy effective and affordable intelligent video security systems. Meanwhile, in monitoring crowds, this approach may provide an automated crowd analysis which may also help to improve the prevention of incidents and accelerate action triggering. One of the image processing techniques which might be appropriate is moment invariants. The moments for an individual object have been used widely and successfully in lots of application such as pattern recognition, object identification or image reconstruction. However, until now, moments have not been widely used for a group of objects, such as crowds. A new method Translation Invariant Orthonormal Chebyshev Moments has been proposed. It has been used to estimate crowd density, and compared with two other methods, the Grey Level Dependency Matrix and Minkowski Fractal Dimension. The extracted features are classified into a range of density by using a Self Organizing Map. A comparison of the classification results is done to determine which method gives the best performance for measuring crowd density by vision. The Grey Level Dependency Matrix gives slightly better performance than the Translation Invariant Orthonormal Chebyshev Moments. However, the latter requires less computational resources.
Rahmalan, Hidayah
e15bf66e-517d-4b63-b717-ea05c956d2e9
Rahmalan, Hidayah
e15bf66e-517d-4b63-b717-ea05c956d2e9
Nixon, Mark
2b5b9804-5a81-462a-82e6-92ee5fa74e12
Carter, John
e05be2f9-991d-4476-bb50-ae91606389da

Rahmalan, Hidayah (2010) Application of invariant moments for crowd analysis. University of Southampton, School of Electronics and Computer Science, Masters Thesis, 74pp.

Record type: Thesis (Masters)

Abstract

The advancement in technology such as the use of CCTV has improved the effects of monitoring crowds. However, the drawback of using CCTV is that the observer might miss some information because monitoring crowds through CCTV system is very laborious and cannot be performed for all the cameras simultaneously. Hence, integrating the image processing techniques into the CCTV surveillance system could give numerous key advantages, and is in fact the only way to deploy effective and affordable intelligent video security systems. Meanwhile, in monitoring crowds, this approach may provide an automated crowd analysis which may also help to improve the prevention of incidents and accelerate action triggering. One of the image processing techniques which might be appropriate is moment invariants. The moments for an individual object have been used widely and successfully in lots of application such as pattern recognition, object identification or image reconstruction. However, until now, moments have not been widely used for a group of objects, such as crowds. A new method Translation Invariant Orthonormal Chebyshev Moments has been proposed. It has been used to estimate crowd density, and compared with two other methods, the Grey Level Dependency Matrix and Minkowski Fractal Dimension. The extracted features are classified into a range of density by using a Self Organizing Map. A comparison of the classification results is done to determine which method gives the best performance for measuring crowd density by vision. The Grey Level Dependency Matrix gives slightly better performance than the Translation Invariant Orthonormal Chebyshev Moments. However, the latter requires less computational resources.

Text
Rahmalan_Hidayah.pdf - Other
Download (4MB)

More information

Published date: January 2010
Organisations: University of Southampton

Identifiers

Local EPrints ID: 156895
URI: http://eprints.soton.ac.uk/id/eprint/156895
PURE UUID: 3972779f-6029-40b5-ad4f-61b611051c0e
ORCID for Mark Nixon: ORCID iD orcid.org/0000-0002-9174-5934

Catalogue record

Date deposited: 11 Jun 2010 13:36
Last modified: 14 Mar 2024 02:32

Export record

Contributors

Author: Hidayah Rahmalan
Thesis advisor: Mark Nixon ORCID iD
Thesis advisor: John Carter

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×