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Abstract

This work investigates the limits of Continuum Theory when describ-

ing the normal modes of vibration of free single-walled carbon nanotubes

(CNTs). Quantitative and qualitative differences are systematically studied

between molecular dynamics (MD) simulation results and their correspond-

ing calculations using continuum theory on a set of free CNTs. A compar-

ison of the frequencies calculated using classical continuum theories such

as Euler-Bernoulli, Timoshenko beams or Thin Shell Theory shows good

agreement for long waves and progressive failure of the continuum theories

as the effective wavelength becomes of the order of the interatomic distance.

The physical basis of the differences in frequency between the models are

brought out with novel methods. A scaling expression of the deviation is

inferred from the comparative analysis. It is found that the assumption

underlying in the Euler-Bernoulli model that normals to the neutral axis

remain normal is the main cause for the frequency deviation. For the Timo-

shenko and Thin Shell models, the cause is attributed to the shape mismatch

between the quantisized MD-modelled CNTs and their corresponding con-

tinuum counterparts. From the novel MD data, it has also been shown that

the temperature at which the specific heat capacity changes from cubic to

linear is lower than the transition temperature suggested by other authors.

Finally, the wall thickness of a CNT is calculated from its fundamental MD

frequency.
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Chapter 1

Introduction

1.1 Motivation

One of the most versatile elements, carbon is present in nature as a whole

range of substances. Polymers, diamond, graphite and, most important, all

life forms are based on carbon. From energy generation to plastic fabrication,

industry has always taken advantage of the benefits of carbon.

New types of carbon have been discovered since 1985, when Smalley and

his coworkers found a new form of carbon [1], C60, which was named Buck-

minster Fullerene because of its resemblance to the architectural designs of

Fuller [2]. It is a macromolecule of carbon atoms arranged at the vertices of

hexagonal and pentagonal faces.

Carbon nanotubes were first observed in 1952 by Radushkevich and

Lukyanovich [3]. In 1991, Iijima and his coworkers discovered multi-walled

carbon nanotubes (MWNT) [4]. In 1993, Iijima and Bethune discovered

single-walled carbon nanotubes (SWNT) [5, 6]. An individual SWNT can

be visualized as a single graphite sheet rolled into a tube and capped by two

hemispheric fullerenes.
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Later research on the properties of CNTs has shown that carbon nan-

otubes (CNTs) possess unprecedented levels of strength and strain [7, 8, 9,

10, 11, 12, 13]. Since CNTs are essentially double covalent bonded macro-

molecules of carbon, the Young’s Modulus of SWNT is around 1 TPa,

whereas the modulus for steel is significantly lower (200 GPa). CNTs have

also a very low density (∼1.4 g/cm3 [14]). Carbon nanotubes can easily

be grouped in ropes (through Van der Waals forces), which have also high

strength (∼60 GPa)[15]. CNTs have an exceptional aspect ratio. Diameters

on SWCNTs range from 0.6 to 1 nm, while there is no limit for their length.

Nanotubes as long as 20 cm have been created [16].

Carbon nanotubes have also exceptional electrical properties. Depending

on their chirality, they can behave as metals or semiconductors [17]. They

are also a good candidate for room-temperature superconductors [18]. Their

electrical current capacity is much higher than copper [19]. They also possess

outstanding thermal properties: thermal stability up to 2800◦K, significantly

higher than diamond. Therefore, SWNTs are regarded as one of the most

promising multifunctional materials.

The physical properties of CNTs are intimately related to their vibra-

tion characteristics. Their stiffness, which is characterised by the Young’s

modulus, can be estimated by measuring their thermal vibration amplitude

[20, 21]. The specific heat capacity of a CNT can also be obtained from

the density of the vibrational modes [22, 23]. Moreover, there is currently a

debate on the vibrational origins of CNT superconductivity [24, 25, 26, 27].

It is, therefore, important to understand the modes of vibration of a carbon

nanotube in great detail.
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1.2 Technical Challenges

Due to their nanoscopic size, obtaining all the modes of vibration experi-

mentally is very hard to achieve at the present time: only the three first

bending modes of a CNT have been clearly observed with the aid of trans-

mission electron microscopy and electrostatic excitations [28]. Raman spec-

troscopy does give limited information of some radial and in-plane vibrations

[29, 30]. Also, because high energy sub-nanoscopic resolution techniques

such as X-ray diffraction or electron-beam tomography may significantly al-

ter the vibrational information of the molecule in study, modelling becomes

a necessity if we are to understand the vibration modes of a CNT.

There are many ways to model the modes of a CNT, but most of them fall

in one of these categories: Continuum Mechanics (CM), Molecular Dynamics

(MD) and ab initio. On the CM side, authors treat CNTs as a beam or

shell of homogeneous and isotropic material, ignoring its atomistic nature.

Foe example, CNTs can be modeled as one dimensional Euler-Bernoulli

beams [31, 32, 33]. More refined CM solutions, specially at high frequencies,

are obtained via the Timoshenko theory [34, 35], which includes shear and

rotatory inertia of the beam. A CNT can also be modelled as a thin shell

hollow cylinder [36]. The classical equations are based on Love’s theory of

thin shells [37].

In contrast to these analytical methods from classical mechanics, so-

called ‘Molecular Dynamics’ computer simulations can be used to simulate

the motion of the atoms individually [38, 39, 40]. The results are far more

accurate than those obtained with CM, although these MD methods usually

require significant amounts of computational effort and cannot yet be applied

to macroscopic systems [41]. Only partial results on ultrashort nanotubes

have been published [42]. The most fundamental type of CNT modeling,
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ab initio, relies on basic laws of physics (approximations of the Schrödinger

equation) and are the most computer-intensive of all, making this method

viable only when studying well-targeted modes of vibration in systems with

very few atoms [43].

1.3 Research Objectives

Although studies have been performed for graphite layers and other molecular-

based materials [44], a detailed description of the natural vibration frequen-

cies of a carbon nanotube has not been found in present literature. Only

partial results [45] have been published. Obtaining rough approximations of

the natural frequencies of CNTs using continuum equations is still a common

procedure, even at high harmonics [36, 35]. It is thus desirable to produce

more precise estimations of the vibration shapes and frequencies of CNTs.

For this purpose, we investigate in this thesis the appropriateness of

continuum theory when applied to carbon nanotubes. A literature review is

presented in Chapter 2. Chapter 3 is an introduction to the continuum and

molecular theories that we have used throughout this work; and we describe

the procedure to obtain the normal modes from the continuum theories in

Chapter 3. In Chapter 4 we present a novel approach: the natural frequen-

cies and the mode shapes from simulations of CNTs. Further, the natural

frequencies are calculated using continuum models and confirmed with the

MD simulations. For comparing normal modes (eigenvectors) we use the

mode assurance criterion (MAC), which is based on a scalar measure of the

closeness of two vectors. We systematically compare the bending, twisting

and stretching frequencies and study the reason for the frequency diver-

gence amongst the models, giving a scaling explanation for the deviation.

We present a novel CM-MD hybrid model, useful for investigating the cause
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for the divergence of the results obtained with CM and MD methods. This

method enables us to simulate large CNTs with a computational economy

but marginally compromised accuracy. We also corroborate our data with

a spectral analysis of a CNT in a thermal bath. We then calculate the wall

thickness. The specific heat capacity of a CNT from the eigenfrequencies

is calculated, and a summary of our work is given in Chapter 5, as well as

proposals for future work.
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Chapter 2

Literature Review

The following review summarizes findings from relevant articles in the area

of carbon nanotubes, focusing on the mechanical properties of single walled

carbon nanotubes (SWCNTs).

2.1 Fabrication of carbon nanotubes

Since carbon nanotubes were reported [4], many techniques have been de-

veloped in order to produce carbon nanotubes. The most common ones are

arc discharge, carbon vapor deposition and laser ablation.

In the arc discharge method, first developed by Iijima [4] and later im-

proved by Ebbensen [46], two graphite rods are connected to a power supply

and placed a few millimeters apart. When the switch is turned on, a 100

A electrical current vaporizes the carbon. CNTs can be found inside the

debris produced after the discharge. The electrodes of Ijima’s experiment

were immersed in argon at 100 Torr pressure, in contrast to the 500 Torr

flow helium or argon of the Ebbbensen setup.

The chemical vapor deposition process [47] consists of placing a substrate
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in an oven, heating it up to 600oC, and slowly adding a carbon-containing

gas such as methane. As the gas decomposes, it frees up carbon atoms,

which recombine in the form of nanotubes, often with the aid of catalysts.

According to atomic force microscope (AFM) measurements on the tip of

the CNT [48], it is believed that, during CNT growth, the catalyst is located

at the tip of the nanotube,

With this process, also known as catalytic chemical vapor deposition

(CCVD), it is possible to produce single-walled and multi-walled carbon

nanotubes. The catalyst used may vary, being iron particles [49] [50], cobalt

or iron on silicon dioxe [51] [52], iron or cobalt and zeolite [49] [53] and iron

on a substrate made of aluminum oxide [54].

The CCVD method is widely used today since it requires much lower

temperatures for the synthesis, making cheaper the nanotube production

[54]. It also allows the production of aligned SWCNTs and MWCNTs, and

the control of the length, diameter and thickness of the nanotubes.

A variation of the CCVD method, introduced by Kyotani, produced

aligned MWCNTs on alumina porous films using a non-catalytic chemical

vapor deposition [55].

The third class of CNT production methods is laser ablation, in which

the carbon is vaporized with intense laser pulses in an oven with Co and Ni

as catalysts. Itproduced the largest yields (70-90 %) of nanotubes so far by

tuning the boundary conditions [56]. Ultra-long (up to 4 cm) single-walled

nanotubes have been produced [57] by catalytic chemical vapor deposition,

and the authors suggest that it is possible to synthesize SWCNTs without

any length limitation. They also show that the nanotubes grow from their

tips (the catalytic Fe particles moved with the growing SWNT tips) and

that whenever the CNT becomes wavy, the growth stops.
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When nanotubes grow, they usually arrange in a somehow disordered

fashion and are poorly stacked (30% CNT/void ratio). In order to produce

CNT sheets with higher densities (95%), SWCNT have been grown by ap-

plying a strong magnetic field, normal to the deposition surface [58]. This

way, CNTs grow in a straight direction and they can be thus packed more

easily.

New ways of producing CNTs are being discovered continually. It has

been recently claimed the fabrication of CNTs by rapidly heating grass to

around 600◦C. When the grass burns, and with the appropriate amount of

oxygen, its vascular bundles shrink to form MWCNTs [59].

One of the biggest challenges in nanotube science is to get a detailed

picture of how they form. In this direction, simulations of the carbon de-

position and nanotube growth mechanisms [60] have been performed using

Brenner’s potential [61], which can emulate the bond formation and break-

ing among carbon atoms. The authors show, in a series of snapshots, how

the catalyst plays an important role in the growth of nanotubes.

2.2 Mechanical properties of carbon nanotubes

CNTs behave as carbon fibres that can be stiff and flexible at the same time.

They have very high Young’s modulus and shear moduli, which are the most

important parameters that define the mechanical stiffness of a material. The

first measurement of the Young’s modulus of MWNTs came from [20]. TEM

was used to measure the mean-square vibration amplitudes of arc-grown

MWNTs over a temperature range from room temperature to 800oC. The

average value of the Young’s modulus derived from this technique for 11

tubes was 1.8 TPa; 0.40 TPa being the lowest and 4.15 TPa the highest.

The authors suggest a trend for higher moduli with smaller tube diameters.
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In [62] it is shown how the Young’s modulus can be estimated within a

lattice-dynamical model of the nanotubes, which consists of a basic cell of

two carbon atoms and two basic screw operations and comparing them with

other modeling methods such as molecular dynamics. The article is also one

of the first to present the phonon dispersion curves of a SWCNT.

Another way to obtain the mechanical properties of a CNT is to ana-

lyze the nanotube response to an alternating applied electric potential [28].

When a static potential Vs is applied, the amplitude of the nanotube deflec-

tion is directly proportional to Vs. If the applied potential is sinusoidal, the

Young modulus Eb is obtained using Euler-Bernouilli analysis of cantilever

systems. As an alternative to electric fields, magnetic fields can be used [63].

Important mechanical features can also be obtained by plotting the force-

deflection ratio. An atomic force microscope (AFM) has been used to check

the ability of MWCNTs to bend the tubes [64]. Discontinuities in the force-

deflection are explained by a buckling mechanism.

The recent development of many-body interatomic potentials by Tersoff

and Brenner has enabled molecular dynamics simulations on a large num-

ber of atoms at high temperature. This provides interesting results on the

mechanism of strain release under tension. This way, Nardelli et al. [65] ob-

served spontaneous formation of double pentagon-heptagon pairs in strained

nanotubes at high temperature.

2.3 Continuum models

In an attempt to exploit continuum models, which can be dealt analytically

or are computationally less demanding than MD, elastic shell models have

been employed [66]. Multi walled carbon nanotubes (MWCNTs) can be

treated as a cylindrical shells of thickness equal to the difference of the out-
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ermost and innermost radius. In addition, using classical formulae for the

bending stiffness, it is noted that the actual bending stiffness is much higher

than those obtained by experimental results, this is, that the continuum

theory is not longer valid. The discrepancy is attributed to the atomistic

hexagonal cell-type structure of CNTs. Finally, it is proposed that the ef-

fective bending stiffness of single-walled nanotubes should be regarded as an

independent material parameter not related to the representative thickness

by the classic bending stiffness formula.

Continuum methods have proved to be an efficient way to save compu-

tational resources. The vibration of CNTs have been used as a way to prove

this [67] by showing that the vibration frequencies obtained via Timoshenko

continuum theory [34], for longitudinal stretching, are very close than those

obtained from fully atomistic simulations for low frequency vibrations.

Similarly, it has been shown how discrete molecular structures may be

substituted by a representative volume element, in which each degree of

freedom (DOF) related to bond and angle stretching is completely described

by a finite element model for small deformations [68]. Authors obtain an

effective thickness of the SWCNT that was slightly smaller than the inter

atomic spacing between graphene sheets in graphite. The authors give, in

this paper, the force constants for carbon-carbon interactions in a CNT. In

order to clarify the problems risen with the Young’s modulus consistency

(due to the discrepancies in the effective wall thickness), the response to

external hydrostatic pressure was modeled with the ring theory of continuum

mechanics [69], in which the radial and axial displacements are modeled

with trigonometric functions. The effective wall thickness is found to be

h = 0.617Å for this model.

In [70], the authors were able to model multi-million systems by means
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of the exponential Cauchy-Born rule, also known as the method of the ho-

mogeneous deformations, which links a flat graphene surface to a cylindrical

surface through a transformation map. A relation was built between a rep-

resentative cell of the lattice and an equivalent volume of the continuum,

which depends only on the interatomic interactions. In [71], the same au-

thors obtain explicit expressions for (i) the Young’s modulus, (ii) Poisson’s

ratio, (iii) shear modulus and (iv) bending modulus and verify their va-

lidity by comparison with results from atomistic models [61], obtaining a

good match for the former two but a poor match for the latter two, mainly

attributed to a misbehavior in the Brenner code dealing with bond lengths.

The stiffness of a SWCNT can be estimated by measuring its vibration

amplitudes at room temperature. This was done with electron micrograph

images when the nanotube is clamped as a cantilever [72]. Young’s modulus

is obtained using a well known fourth-order wave equation.

Continuum models can be field models described by partial differential

equations or their discretised counterparts, described by ordinary differential

equations. In discretised continuum models, the stiffness of a CNT is fully

described by its stiffness matrix, which relates applied forces to nodal dis-

placements. In [73], and continuing the work of [74], the authors construct

the stiffness matrix of a CNT by making a composite of four submatrices

for a simple beam element in a space frame. Specific values for the elements

in each submatrix are built by (i) assuming that the covalent bond acts as

a load-bearing beam and (ii) setting up a linkage between sectional stiffness

parameters and constants of molecular dynamics force fields.

Refinements in the theories lead to the uniform Timoshenko beam theory

[34]. It improves the Euler-Bernoulli theory by incorporating cross-sectional

shear and rotational inertia effects. Following the theory, the formula for lon-
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gitudinal stretching, circumferential breathing, torsional twisting and lateral

flexing vibration frequencies was obtained [75]. In [76], a condition necessary

and sufficient for the appearance of double eigenvalues is presented.

2.4 Atomistic models of carbon nanotubes

Three main methods are commonly used to model the behavior of the atoms

of a carbon nanotube: the harmonic approximation, the Brenner model and

density functional theory (DFT).

Ab initio calculations are performed when it is required to obtain a

detailed description of the electronic behaviour. In [77] authors use DFT

to show how the electron density affects the optical spectra of SWCNTs

by modeling the electron-hole interactions. In this work we will study the

mechanical properties of CNTs and not the electronics, so we will focus on

the harmonic approximation.

The Brenner potential [40] has its basis on the Tersoff potential for sili-

con [78], which is Morse-type, with some modifications: the potential does

not only depend on the distance between atoms, but also on their relative

positions. Brenner’s achievement was to build an analogous model for hy-

drocarbons that also simulates the bond formation and breakage. It is short

ranged so the simulations are relatively fast. The same author improved the

model [61] by including better analytic functions and an extended database.

It is one of the most accurate models to date and it can simulate the bond

formation and breakage between carbon atoms [79], although it has two

major drawbacks. First, it outputs the wrong bond lengths when the ap-

propriate bond energy is calculated and vice versa.

The harmonic approximation method, used in computer codes such as

GROMACS [39], is the fastest of all. It makes the assumption that, for low

15



amplitude oscillations, the atoms behave as if they oscillate over a quadratic

well. In other words, only the quadratic term in the Taylor expansion of the

potential that defines the covalent bond is used. This is also known as the

spring model, and will be further explained in the next chapter.

In order to take both the advantages of continuum (fast but rough) and

atomistic (more accurate but slower) simulations, a hybrid method called

Multiscale Modeling [80] was developed. This method enables the simulation

of a complete carbon vapor deposition chamber. The continuum model is

applied where details of atomic motion were unimportant, and atomistic

modeling is performed in the teeth of the CNT tip.

2.5 Polymer-Nanotube Composites

Because of their high aspect ratio and their exceptional mechanical and

thermal properties, CNTs are being used as filler composites. One of the

advantage of CNTs over other standard fillers is their high aspect ratio,

which permits large interfacial adhesion.

The mechanical properties of polymer composites are thus enhanced by

adding CNTs to the polymer. Introducing small amounts of CNTs in epoxy

[81], PVA [82] [83] significantly improved the strength of the polymers. The

orientation of the CNTs within the fibers can be chosen during the fabrica-

tion process by applying external magnetic fields [84]. Dispersing function-

alised nanotubes over electrospun fibers of polystyrene and polyurethane

increased the tensile strength [85].

The intefacial adhesion between MWCNT and the bulk polymer has

been meassured [86]. It was found that nanotubes bridge voids in the film

and that only a minor fraction of the CNT length was embedded within the
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epoxy. With the aid of an atomic force microscope (AFM), the interfacial

adhesion strength was measured, being orders of magnitude higher than

standard engineering composites.

The force required to pull out a single CNT from a polymer was measured

by Barber and coworkers [87] by attaching a single CNT to the tip of an AFM

and inmersing the CNT into a liquid polymer. After the polymer solidifies,

the nanotube is pulled away from the polymer, and the AFM records the

force required for the interfacial failure. A high interfacial adhesion was

measured.

All the mentioned techniques rely on the Van der Waals attraction prin-

ciple for the strength reinforcement. An alternative technique consisting

in the in-situ radical polymerization of nanotube composites has produced

composites with covalent bonds between the polymer and the CNTs [88].

Covalent bonds were also formed by altering the nanotube surface before

immersing it into the polymer [89]. The effect of inducing strong chemical

bonding has also been investigated by modification of the carbon nanotube

surfaces prior to individual carbon nanotube pull-out experiments [90].

2.6 Applications

Carbon nanotubes are being used for a wide range of applications. Their

enormous versatility has made them being coined as ‘a solution looking for

a problems’ [91], in clear reference to the discovery of the laser in the 60’s

[92].

They have extraordinary electrical conductivity, with current densities

greater than 4×109 A/cm2, more than 1,000 times greater than metals such

as copper [93]. The most advanced electron field-emmiters are made with

carbon nanotubes as their key component. This is thanks to the excellent
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combination of high conductivity and the sharp tip of capped CNTs, because

the electric field concentrates at the tip and this results in field emission. The

low voltages required for field emission makes them the perfect candidate

for microwave emission in satellites.

LED devices can also be made of CNTs [94]. Also, electrodes for batteries

[95], capacitors [96], flat panel displays [97] (where each pixel is excited by

one mini-electron gun) and portable x-ray devices.

Thanks to the rich chemistry of carbon, they can be functionalised in

order to modify their solubility or their structure. Nano-mechanical devices

such as nanobearings [98], nanooscillators [98] have also been studied.

Their pristine geometry and high conductivity make CNTs ideal for the

connections in molecular electronics. They can act as switches or bistable

memory units.

Nanotubes may be part of micro-scale devices, such as transistors [99]

[100] [101], microscope probe tips [102] and nanomechanical resonators [103].

Due to their large surface area (∼1000 m2/g), CNTs are also used for

hydrogen storage [104], protein support [105] and nano-membranes [106].

Probably the most seductive applications are being made in the field of

composites, acting as a reinforcement filler. Such CNT-polymer composites

are currently used for electomagnetic shielding [107]. Insulating materials

such as plastic can also be turned into conductors with the addition of CNTs.

Astronomical applications such as the space elevator [108] with the use of

carbon nanotubes are being explored.

18



Chapter 3

Background and

Methodology

3.1 Continuum Mechanics

The models present in this section assume their elasticity continuously dis-

tributed. Although atoms are arranged in a discrete fashion, the bulk be-

haviour may be adequately described by such models in the long wave-

length limit. The material is treated as homogeneous, isotropic and obeying

Hooke’s law within the elastic limit. A piece of continuum possesses an in-

finite number of points, and thus an infinite number of degrees of freedom.

The full elasticity equations are too complicated to be solved, except for

simple geometries, and simplifications are often made in order to obtain an

approximate solution. The Euler-Bernoulli theory of beams is the simplest

and most widely used for flexural motion. More complex theories include

the Timoshenko beam theory and the elastic shell theory.
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3.1.1 The Euler-Bernoulli Beam

In its most simple form, a CNT can be modeled as an Euler-Bernoulli (EB)

beam. This approximation is good only for slender beams. It assumes that

the plane cross-sections normal to the neutral axis (which coincides with

the axis of the CNT) remain plane and normal during motion in addition to

the usual kinematic linearity (strain-displacement) and constitutive linearity

(stress-strain). The EB equation for free lateral deflection is fourth order in

space and second order in time [31].

EIw′′′′ + ρAẅ = 0, 0 ≤ x ≤ L (3.1)

where L and A are the length and cross-sectional area of the beam, w(x, t)

is the transverse displacement of the beam from an equilibrium state, x is

the position variable, t the time, ρ is the mass density per unit length, E

is the Young’s modulus and I is the second moment of the cross-sectional

area. The prime and the dot symbols denote differentiation with respect to

x and t respectively.

The Euler-Bernoulli equation of motion of a vibrating beam makes use

of (a) kinematics of deformation, (b) constitutive law (material law relating

stresses and strain) and (c) law of classical mechanics [109].

1. Kinematics

The kinematics of the beam’s deflections are shown in (Fig. 3.1). An

undeformed beam is shown at the bottom of the figure, and the de-

flected beam is shown on the top. Here x is the distance from one

end of the beam, u is the displacement in the axial direction x, χ the

cross-section rotation, Θ the neutral axis rotation, and w the trans-
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verse displacement to the neutral axis. It is usually accompanied by a

rotation of the beam’s cross section.

x

Deformed
state

state
Undeformed

w

χ

χu =   y

−θ

tangent to the center line
of the beam

y

Figure 3.1: The Euler-Bernoulli beam.

The displacement in the x-direction at a cross-section at x and distance

y away from the neutral axis are given by u(x, y). The direct strain

εx(x, y) is given by the strain-displacement relations

εx(x, y) =
∂u

∂x
.

For the Euler beam, the assumptions were given by Kirchoff and dic-

tate how the normals (to the beam’s neutral face) behave. Kirchoff’s

assumptions are:

• Normals to the neutral axis remain straight (they do not bend).

• Normals remain unstretched.
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• Normals remain normal.

With the normals straight and unstretched, we can assume that there

is negligible strain in the y direction. Because normals remain normal

to the neutral axis, the x and y dependence in u(x, y) becomes explicit

u(x, y) = χ(x)y.

With explicit x dependence in u, the direct strain throughout the beam

is given by

εx(x, y) =
∂χ(x)

∂x
y.

Finally, with normals always normal, we can tie the cross section ro-

tation to the neutral axis rotation, and eventually to the beam’s dis-

placement w,

χ(x) = −Θ(x) = −
∂w

∂x
,

which is the slope of the central line of the beam.

2. Constitutive Law

The constitutive equation relates the stresses and the strains in an

elastic medium. The generalised Hooke’s law relates the six stress

components and the six strain components via two independent elastic

constants for isotropic materials. Because there is only one non-zero

stress component σx for beam bending, the constitutive for this one-

dimensional case simplifies to

σx(x, y) = Eεx(x, y) (3.2)
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where E is the modulus of elasticity. Note that the stress and strain

are functions of the entire beam cross section (i.e. they can vary with

y).

3. Resultants

If we were to cut a beam at a point x, we would find a distribution of

direct stresses σx(y) and shear stresses σxy(y),

(x,y)σ

y

z

y

y y
x xy

Shear Stress

Direct Stress

σx(x,y)

Figure 3.2: Shear Stress.

Each small portion of direct stress acting on the cross section creates a

moment about the neutral axis (y = 0). The moment stress resultant

M is the moment of distribution of the stress σx acting on the cut-face

of the beam, integrated over the cross-sectional area,

M(x) =

∫∫
yσxy(x, y) dy dz. (3.3)

where z is the coordinate pointing in the direction of the beam width

(out of the plane of the paper). The integration is over the cross-

sectional area. Similarly, the shear stresses on the cross-section gives

the shear resultant V (x),

V (x) =

∫∫
σxy(x, y) dy dz. (3.4)

There is one more force resultant that we can define for completeness.
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The sum of all direct stresses acting on the cross-section is known as

N ,

N(x) =

∫∫
σxy(x, y) dy dz. (3.5)

N(x) is the direct force integrated over the cross-section of the beam

at a cross-section at x, yet it does not play a role in beam theory since

it does not cause a displacement w and the contribution to the total

strain energy are often insignificant. However, it plays a role in the

axial vibration of rods.

4. Force equilibrium

Consider a slice of the beam of length dx in the x direction as shown

in figure 3.3. The equilibrium equations describe how the beam carries

external transverse loads with its internal stresses. Rather than deal

with these stresses themselves, we choose to work with the resultants

since they are functions of x only (and not of y).

To enforce equilibrium, consider the balance of forces and moments

acting on a small section of beam.

Equilibrium in the y-direction gives the equation for the shear resultant

V ,

dV

dx
= −p (3.6)

Moment equilibrium about a point on the right side of the beam gives

the equation for the moment resultant M ,

dM

dx
= V (3.7)
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p

M M+dMV V+dV

dx

Figure 3.3: Force equilibrium.

and thus

d2M

dx2
= −F (3.8)

where F is the external force applied per unit length. Substituting the

expression obtained for M we get the Euler-Bernoulli equation

d2

dx2

(
EI

d2w

dx2

)
= F. (3.9)

Under harmonic motion, the external pressure load is equal to the

inertia force,

Finertia = m
d(velocity)

dt
= mẅ = ρAẅ (3.10)

The double dot (̈ ) symbol denotes differentiation with respect time,

and m is the mass per unit length of the beam.

m = ρA (3.11)
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where A is the beam’s cross-section area and ρ is the density of the

material.

The Euler-Bernoulli equation for lateral deflection thus becomes [31]

EIw′′′′ + ρAẅ = 0, 0 ≤ x ≤ L (3.12)

where L is the length of the beam, w(x, t) is the transverse displace-

ment of the beam from an equilibrium state, x is the position variable,

t is time, E is the Young’s modulus and I is the second moment of the

cross-sectional area. The ( )′ and (̈ ) symbols denote differentiation

with respect to x and t respectively.

3.1.2 Torsional Vibrations

The torsional and the extensional motion are governed by the second order

wave equation -both in time and space [110]

u′′ + (1/a2)ü = 0 (3.13)

where u is the angular rotation and a = (G/ρ)1/2 is the torsional wave

speed. Extensional motion is described by a partial differential equation

(PDE) of the same form as equation 3.13 where u is the longitudinal dis-

placement of a point on the cross section at x and a = (E/ρ)1/2 is the

extensional wave speed.

3.1.3 Timoshenko beam bending model

Timoshenko’s theory of beam bending constitutes an improvement over the

Euler-Bernoulli theory as it incorporates shear effects. Timoshenko’s equa-

tions of motion are [34]

κGA(ψ + w′)′ = ρAẅ, 0 ≤ x ≤ L (3.14)
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κGA(ψ + w′) − EIψ′′ = ρIψ̈, 0 ≤ x ≤ L (3.15)

where w(x, t) represents the transverse displacement of the beam and

the new variable ψ(x, t) is the rotation of the cross-section of the beam with

respect to the vertical direction. Here, the quantities A, ρ, E and I are the

same as for the Euler-Bernoulli equation. G is the shear modulus and κ is

the Timoshenko shape factor, a constant that depends only on the geometry

of the cross-section of the beam.

Perpendicular to the face of beam element  a
c

b

d

γ

Q

M+  M dxδ
xδ

Q+    Q dx
δx

dx

xO

ω

δω
δx

M

δ

ψ

Tangent to the center line of the beam

Figure 3.4: The Timoshenko beam element.

Let’s consider the prismatic bar delimited by the points a,b,c and d. M

is the bending moment and Q is the shearing force. The configuration of

the beam is then determined by the displacement w of its center of gravity

and the rotation ψ. The angle of shear is denoted by γ and it is the dif-

ference between the angle of the tangent to the beam’s midline ∂ω/∂x and

the perpendicular to the right face of the beam element. Thus, for small

deflections of the beam, the following kinematic relationship represents the

approximation inherent in Timoshenko’s theory

∂w

∂x
= ψ + γ. (3.16)
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The bending moment is given by

M = −EI
∂ψ

∂x
(3.17)

and the shearing force by

Q = kGA

(
∂w

∂x
+ ψ

)
. (3.18)

The equations of motion for rotation and translation are now coupled

and we have a pair of simultaneous PDEs in two field variables w(x, t) and

ψ(x, t)

kGA

(
∂w

∂x
+ ψ

)
− EI

∂2ψ

∂x2
= −ρI

∂2ψ

∂t2
, 0 ≤ x ≤ L (3.19)

kGA

(
∂2w

∂x2
+
∂ψ

∂x

)
= ρA

∂2w

∂t2
, 0 ≤ x ≤ L. (3.20)

As before, w(x, t) represents the transverse displacement of the beam

and the new dependent variable ψ(x, t) is the angle of deflection of the

cross-section of the beam with respect to the vertical direction.

3.1.4 Thin Shell Theory

It is also possible to model a CNT using Thin Shell Theory. We will limit

our study to the well-established Love’s equations [37], which assumes the

following: (i) the thickness of a shell is small compared to the characteristic

dimensions on the directions normal to the thickness, (ii) the deflections of

the shell are small and (iii) normals to the mid surface of the shell remain

normal and the shell thickness remains unchanged. The corrections made by

Donell-Mushtari [111, 112] can be then applied, in which only the oscillations
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normal to the mid surface of the shell are studied. Stretching and twisting

modes are thus excluded in our shell model of the CNTs.

Consider the equilibrium of all forces along the x-axis according to Fig.

3.5. This leads to [113]

x

x

y

z

p

p
z

y

x

R

dϕ

p

xϕN  +    N    dxϕ

δϕ

ϕx ϕδ

δ

δϕ
M  +    M    d

xϕ

ϕ
δϕ

ϕ

ϕ δ
δϕ

ϕN  +    N  dϕ
δM  +    M  d ϕ

ϕ

M

N

ϕ

ϕ

ϕ

Mϕx

Nϕ x

Qϕ

x δ
x

M  +    M dx

xϕ

xϕN  +    N  dδ

δ

δ
δM  +    M d
δx

x

N

M

N

M

Q

ϕ

x
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x

xϕ

xϕ
x

x

Rd

ϕϕ δQ  +    Q  d
δϕ

ϕ

Q  +    Q  dx δ
δ

x
x

x

δx ϕx N  +    N   d
δx

Figure 3.5: Unit forces and moments acting upon the thin shell element.

(
Nx +

∂Nx

∂x
dx

)
Rdϕ−NxRdϕ+

(
Nϕx +

∂Nϕx

∂ϕ
dϕ

)
dx−Nϕxdx+pxRdϕdx = 0.

(3.21)

Re-arranging of the previous equation, and doing the same for the mo-

ments, we get the following relationships:

1. For force equilibrium in the x, y and z directions:

R
∂Nx

∂x
+
∂Nϕx

∂ϕ
+Rpx = 0 (3.22)

29



∂Nϕ

∂ϕ
+R

∂Nxϕ

∂x
−Qϕ +Rpy = 0 (3.23)

R
δQx

∂x
+
∂Qϕ

∂ϕ
+Nϕ +Rpx = 0 (3.24)

If there are no external forces upon the shell, the inertial forces under

harmonic oscillations are given by

px = −ρh
∂2u

∂t2
(3.25)

py = −ρh
∂2v

∂t2
(3.26)

pz = −ρh
∂2w

∂t2
. (3.27)

Here u(ϕ, x), v(ϕ, x) and w(ϕ, x) are the axial, tangential and radial

deformations of the shell

w x

ϕ
R

u
v

Figure 3.6: The three types of elementary displacements on a cylindrical

shell.
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Note that the variable w used in thin shell theory for radial displace-

ments does not correspond to the vertical displacement in beam the-

ories, also denoted by w.

2. Moment equilibrium around the x, y and z axis, after neglecting the

terms containing the second power of the elementary length dx:

R
∂Mx

∂x
+
∂Mϕx

∂ϕ
−RQx = 0 (3.28)

R
∂Mxϕ

∂x
+
∂Mϕ

∂ϕ
+RQϕ = 0 (3.29)

Nϕx = Nxϕ (3.30)

For cylindrical shells, the force and moment stress resultants are

Nx =

∫ h/2

−h/2
σx

(
1 −

z

R

)
dz, Ny =

∫ h/2

−h/2
σydz (3.31)

Nxϕ = Nϕx =

∫ h/2

−h/2
τxy

(
1 −

z

R

)
dz (3.32)

Mx =

∫ h/2

−h/2
σx

(
1 −

z

R

)
zdz, My =

∫ h/2

−h/2
σyzdz (3.33)

Mxy = −

∫ h/2

−h/2
τxy

(
1 −

z

R

)
zdz, Myx =

∫ h/2

−h/2
τyxzdz. (3.34)

They are forces and moments of the stress distribution over the thickness

for unit length along the edge of the shell. There are several theories for

thin shell deformations. Each differ on how and when the terms z/R and
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h/R are to be neglected. The stress-strain relationship (constitutive law),

for plane stress, is given by

σx =
E

1 − ν2
(εx + νεy) (3.35)

σy =
E

1 − ν2
(εy + νεx) (3.36)

τxy = Gγxy. (3.37)

When corrections are made by Donell-Mushtari [111] [112], the tangential

displacements u and v and their derivatives are neglected in expressing εx

and εy

εx = ε1 − zχ1, εy = ε2 − zχ2 (3.38)

γxy = γ12 − 2zγ12 (3.39)

ε1 =
∂u

∂x
, ε2 =

∂v

R∂ϕ
−
w

R
, γ12 =

∂u

R∂ϕ
−
∂v

∂x
(3.40)

Stretching and twisting modes are thus excluded in this shell model of

the SWCNTs. The reason for choosing the Donnell-Mushtari approxima-

tion are their accurate natural frequency predictions when compared with

experimental results [114] [115].

3.2 Molecular Dynamics

In contrast to the modelling of CNTs as continuous objects as in section

3.1, we now describe discrete modelling approaches that consider each atom
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individually. A carbon nanotube can be regarded as a large molecule con-

sisting of carbon atoms. The atomic nuclei can be approximated by pointlike

masses. The general expression of the total potential energy, omitting the

electrostatic and non bonded interactions, is a sum of energies

U =
1

2

∑

i

∑

j∈N1(i)

Ur(i, j)+
1

3

∑

i

∑

(j,k)∈N2(i)

Uθ(i, j, k)+
1

4

∑

i

∑

(j,k,l)∈N3(i)

Uφ(i, j, k, l)

(3.41)

where N1(i) is the set of nearest neighbour indices of atom i, N2(i) is the

set of pairs of nearest neighbour indices of atom i relevant for bond angle

bending and N3(i) is the set of triplets of indices of neighbour of atom i that

have to be considered for dihedral angle torsion nearest neighbour indices

of atom i. Ur(i, j) is the potential energy associated with bond stretching,

Uθ(i, j, k) that for bond angle bending, and Uφ(i, j, k, l) for dihedral angle

torsion. For low amplitude deviations of the atoms from their equilibrium

positions, the potential functions can be approximated by quadratic forms

Ur =
1

2
kr(∆r)

2, Uθ =
1

2
kθ(∆θ)

2, Uφ =
1

2
kφ(∆φ)2 (3.42)

where ∆r, ∆θ and ∆φ respectively are the deviations from the interatom

distance, interbond angle and out-of-plane angle at rest. kr is the bond

stretching force constant, kθ is the bond twisting angle stretching force

constant and kφ is the bond twisting stiffness, respectively. These empir-

ical constants were taken from literature [116] [117] and converted to S.I.

units: kr = 196316.45KJ · mol−1 · nm−2, kθ = 263.70866KJ · mol−1 · rad−2,

kφ = 83.717036KJ · mol−1 · rad−2. When weak forces (e.g. Van der Waals)

were included in the model, the effect on the normal mode frequencies was

not significant. Simulations were run with the CNT placed free in vacuum.
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3.3 Normal Mode Analysis using Continuum Me-

chanics

3.3.1 Euler-Bernoulli Frequency Equation

A general solution to the Euler-Bernoulli equation can be shown to be

w = Âcoshβx+ B̂sinhβx+ Ĉcosβx+ D̂sinβx (3.43)

The boundary conditions for a free-free beam (i.e. free at both ends) of

length L are

at x = 0, x = L:

M = 0 (or d2w
dx2 = 0) and V = 0 (or d3w

dx3 = 0)

which finally leads to the frequency equation

cosh(βL)cos(βL) − 1 = 0 (3.44)

where β4 = ρA
EIω

2, ω the angular frequency, ω = 2πf and f the fre-

quency of the natural mode of vibration. We solved this frequency, in its

non dimensionalised form, using the bisection method.

The solutions appear in the ratio 1:2.756:5.403:8.933:13.342:18.636, etc.

when we normalize to the first fundamental frequency. Note that these ra-

tios are independent of the material and dimensions of the beam.

3.3.2 Torsional and stretching natural frequencies

For torsional and stretching modes of a free beam, the solution to equation

(3.13) give rise to the following allowed frequencies:
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ωi
T = (iπ/L)(G/ρ)1/2 , ωi

S = (iπ/L)(Y/ρ)1/2 (3.45)

with i = 1,2,3..., where the subscripts refer to torsion and stretching

respectively. When normalised against the first torsional and stretching

frequencies respectively, the ratios appear as the natural numbers ωi
T /ω

1
T =

i, ωi
S/ω

1
S = i

3.3.3 Non-dimensionalisation of Timoshenko natural frequen-

cies

We use the Levinson and Cooke [118] frequency formula for Timoshenko

beams. After non-dimensionalisation [119] of length and time, and being

M the mass of the CNT per unit of length, x̂ = x/L, ẑ = z/L, t̂ =

t
(

ML4

EI

)
−1/2

, ŵ = w
(

ML4

EI

)
−1/2

, the frequencies will be given by the roots

ωi of the following equation

2 +
λ̂1α̂1

λ̂2α̂2

−
λ̂2α̂2

λ̂1α̂1

sinhλ̂1sinhλ̂2 − 2coshλ̂1coshλ̂2 = 0 (3.46)

where

α̂1,2 = π1π2 · ω̂
2 ± λ̂2

1,2

λ̂ 2
1,2 =

[
(
1

2
π1(1 + π2)ω̂

2)2 + (1 − π1
2π2ω̂

2)ω̂2]
1

2 ±

±
1

2
π1(1 + π2)ω̂

2 (3.47)

and the two nondimensional π-groups are π1 = R2/L2, π2 = E
κG ,

where R is the radius the beam were it circular and κ is the Timoshenko

shear coefficient. In theory, the roots ωi will depend on two nondimensional
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parameters, π1 and π2, in the Timoshenko frequency problem. In practice,

however, we will use as a variable only one of them, π1, since π2 depends

on material properties that do not dramatically change from one beam to

another. We choose π2 = 4.0 for our calculations, a typical value in beam

mechanics.

The Timoshenko frequencies depend on the slenderness of the beam, as it

is shown in Fig. 3.7. The code for finding the frequency roots can be found in

Appendix ??. As a check, note in Fig. 3.7 that the Timoshenko normalised

frequencies converge to the Euler-Bernoulli ratios (seen in subsection 3.3.1)

as rg/L→ 0.
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Figure 3.7: Timoshenko frequencies versus beam slenderness
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3.3.4 Thin shell hollow cylinder natural frequencies

Finally, for the Thin Shell case, the frequency formula for the radial vibra-

tions is given by Soedel [114]

ω2
mn =

Ehη4
m

R2L4

(
n2

R2
+

η2
m

L2

)2 +D
(

n2

R2 + η2
m

L2

)2

ρh
(3.48)

where n and m denote the number of radial and longitudinal antinodes

of the standing wave, h is the nanotube shell thickness, D = Eh3

12(1−µ2) is

the bending stiffness and ηm are the roots of the analogous free-free beam

equation

η1 = 4.730 η2 = 7.853 η3 = 10.996 η4 = 14.137

and for large m: ηm = (2m+ 1) π/2

The constants we have used are: E = 1.0 × 109N/mm2 (Young’s Mod-

ulus), µ = 0.33 (Poisson’s ratio), ρ = 2.21 × 10−6Ns2/mm4 (mass density),

h = 3.0 × 10−12mm (shell thickness). Since it is essentially impossible to

measure the actual width of an atom, the shell thickness h becomes an ad-

justable parameter that takes unrealistic small values once (i) the high value

of the Young’s modulus of a CNT is introduced in the formula (3.48) and

(ii) low frequencies are fitted to the E-B model for long beams.

The thin shell problem generates a set of frequency points depending

on the radial and longitudinal mode numbers n and m. As a check, we

calculated the frequencies for the original setup from [114] and they are

shown in Fig. 3.8. It can be seen that the lowest frequency must not

correspond to the first bending mode [113].
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Figure 3.8: Non-normalised Thin Shell frequencies, following [114]. Dia-

monds represent the first mode, squares the second, and so on.
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Chapter 4

Normal Mode Analysis using

Molecular Dynamics

4.1 Methodology

Normal modes of vibration are simple harmonic oscillations about a local

potential energy minimum. Any motion can be expressed as a sum of normal

modes for a harmonic potential. Near the minimum, the potential can be

approximated by a harmonic potential, and any small amplitude motion can

still be well approximated by a superposition of normal modes.

Each mode is defined by an eigenvector and its corresponding eigenfre-

quency, ω. The eigenvector (or mode shape) contains the amplitude and

direction of motion for each atom. All atoms oscillate at the same eigenfre-

quency, ωi.

The energy terms in equation (3.41) are quadratic forms in terms of

3N generalised co-ordinates of the problem (3 positional co-ordinates for

each atom). If qi is the ith generalised co-ordinate, then the harmonic

approximation of the potential energy is given by
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U = (1/2)qT Hq, (4.1)

where q(t) is the vector of generalised co-ordinates {q1(t), q2(t), ..., q3N (t)}

as a function of time t and H is the Hessian (also known as the stiffness ma-

trix in theoretical mechanics literature) of the potential energy:

H =




∂2U
∂q2

1

∂2U
∂q1∂q2

. . . ∂2U
∂q1∂qN

∂2U
∂q2∂q1

∂2U
∂q2

2

. . . ∂2U
∂q2∂qN

...
...

. . .
...

∂2U
∂qN∂q1

∂2U
∂qN∂q2

. . . ∂2U
∂q2

N




(4.2)

The Hessian matrix is the square matrix of second-order partial deriva-

tives of the potential function. It describes the local curvature of the poten-

tial function.

The total kinetic energy of the system is given by a sum of the kinetic

energies of all the atoms and it takes the form T = (1/2)q̇T Mq̇, where a

dot represents differentiation with respect to time. The classical Lagrangian

is given by L = T − U and using Hamilton’s principle (or equivalently

using Lagrange’s equations), the well-known governing equations of motion

Mq̈+Hq = 0 are obtained. Here M is the mass (or inertia) matrix. Looking

for non-trivial synchronous motion of the form q(t) = eiωtu in a normal mode

leads to the eigenvalue problem

Hu = λMu, (4.3)

where λi = ω2
i is the ith eigenvalue that represents the square of the natural

frequency ωi, and ui is the corresponding eigenvector, for i =1,2,. . . 3N.

The Hessian matrix is positive semi-definite, and the eigenvalues ex-

tracted from it are all positive since they are associated with a positive

semi-definite matrix of the vibrational frequencies (except for the first six
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eigenvalues which are zero as they correspond to translational and rotational

rigid body motions). However, because of the complexity of the potential

energy landscape U(q) in the space spanned by the general co-ordinates and

limited numerical accuracy, it is very difficult to reach the global potential

energy minimum while obtaining the equilibrium configuration of a group of

atoms. This leads to computed Hessians that are not positive semi-definite.

The eigenvalues obtained do not satisfy the requirement of being equal or

greater than zero.

This problem has been reported before [120] and can be overcome using

a technique called ‘time averaged Hessian’ [120], which was used here to

address this. It basically consists in minimizing the potential energy as much

as possible and subsequently performing a MD simulation of a thermal bath

at very low temperatures. A Hessian Hk is calculated periodically while the

MD trajectory is completed (resulting in a total number of K Hessians).

The time averaged Hessian (H̄) is obtained by calculating the mean of every

matrix component (one of such components is shown in Fig 4.2) among the

K Hessians ( H̄ = 1

K

∑
K

k=1 Hk ). Summarising, the steps taken in order to

obtain the normal modes of a CNT using MD are:

1. Create nanotube geometry.

2. Minimise nanotube internal energy.

3. Run a 100 ps time-dependant simulation at 0.1◦K and save positions

every 1 ps.

4. Calculate Hessian Hk for all saved configurations.

5. Time-average the Hessians Hk created in step 4 to obtain H̄.

6. Extract all the eigenvalues and eigenvectors of the averaged Hessian
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H̄ using equation (4.3).

7. Visualization of mode shapes (eigenvectors) associated with each nor-

mal mode.

For step 1, atom positions and bonds were created using Tubegen [121].

In step 2, a L-BFGS energy minimization algorithm [122] (an algorithm

for quasi-Newton optimization) was used with GROMACS [39] in order to

minimize the energy.

The input data required minor changes in the GROMACS force field

file (addition of bare carbons). The time step for time integration was

0.001 ps, with a maximum number of steps to integrate of 100000. At this

point, a typical value for the maximum force upon an atom in a nanotube

is Fmax = 5.557 × 10−5kJmol−1nm−1 (1.6605 × 10−12N).

For step 3 a Berendensen thermostat [123] is used. A number of 100

Hessians are computed in step 4. The final time averaged Hessian H̄ is

obtained in step 5, and the eigenvalue problem was solved using Numeric

Python [124] in step 6. The magnitude of the first six eigenvalues has been

found to be below 10−2 · λ7, where λ7 is the smallest non-zero eigenvalue

associated with oscillatory modes, i.e, the first six eigenvalues are effectively

zero. Visualization of the mode shapes (step 7), given by the eigenvectors,

was performed using Visual Python [125].

Gromacs parameter files are shown in Appendix B.

4.2 Results

We simulated a family of defect-free single walled CNTs of different length

(L) to radius (R) ratios, ranging from long and narrow to the short and
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Figure 4.1: Simulation flowchart
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Figure 4.2: Temporal evolution of a typical diagonal entry of the Hessian

matrix.
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wide. This set of CNTs is displayed in Table 4.1.

4.3 Vibrational normal modes and the elastic prop-

erties of Carbon nanotubes

For each configuration shown in Table 4.1 we obtain a list of eigenvalues

(squared frequencies) and eigenvectors (mode shapes), following the steps

given in section 4.1. We sort the modes in order of increasing frequency.

The calculated normal mode frequencies are presented in Fig. 4.3 for the

CNT on row 1 and column D (denoted D1 in the future). Visualization

of the eigenvectors, which correspond to the eigenmodes or normal modes

obtained using Molecular Dynamics (MD), allow us to identify bending,

twisting, stretching, breathing and radial modes, as well as thin shell modes,

ring modes and other in-plane modes. They are shown for D1 in Fig. 4.4

The first six modes have a frequency of practically zero associated with rigid

body motion. The ratio of the of the 7th to the 6th eigenvalue is over 600.

This indicates that the small non-zero values of the first 6 eigenvalues are

due to numerical reasons rather than physical. The six data correspond to 3

translations and 3 rotations of the overall CNT and would have a frequency

of zero if it wasn’t for numerical inaccuracies.

Modes 7 and 8 are the first bending mode (B1 in fig 4.4). The two

frequencies are almost equal because they correspond to the same bending

shape along two orthogonal planes parallel to the axis of the CNT.

Modes 9 and 10 are the second bending mode, mode 11 a twisting mode,

mode 12 a stretching mode, and so on. As thin shell theory predicts, shell

modes (including bending modes) come in doublets in our MD simulation.

The frequencies in these doublets are slightly different due to the lack of
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Table 4.1: The family of CNTs simulated. The nanotube configurations,

labelled A-D for the columns and 1-5 for the rows. Within each column, the

L/R ratio is approximately constant. Different rows correspond to different

L/R ratios and columns represent number of atoms. Displayed in each box

are numbers that define each CNT: the chiral vector (Ch), or ”twist” of the

nanotube [126], the length to radius ratio (L/R) and the number of atoms

(N) in each pristine CNT. Note that the L/R ratio and the number of atoms

depend on the chirality and cell counts.

A B C D

Ch=(3,3) Ch=(3,3) Ch=(3,3)

1 L/R=1,208 L/R=3.632 L/R=23.006

N=24 N=48 N=240

Ch=(5,5) Ch=(5,5)

2 L/R=1.45 L/R=25.126

N=60 N=720

Ch=(7,7) Ch=(7,7) Ch=(7,7)

3 L/R=1.556 L/R=4.144 L/R= 26.69

N=112 N=252 N=1456

Ch=(10,10) Ch=(10,10) Ch=(10,10)

4 L/R=0.362 L/R=1.45 L/R=3.986

N=80 N=200 N=480

Ch=(50,50)

5 L/R=0.508

N=1600
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cylindrical symmetry (the CNT is composed of a finite number of atom and

thus cannot have continuous symmetry) and to the asymmetry introduced

by computation. The frequency deviation between degenerated modes has

an almost linear dependence on the mode number, as shown in Fig. 4.5.

Many MD modes were easily identifiable, but some others are particularly

challenging, such as those shown in Fig. 4.6, where a shear mode has the

appearance of a bending mode. Because of this, we used a technique com-

monly used in Structural Dynamics called Modal Assurance Criterion [127]

(MAC). It gives a quantitative estimate of the correlation between the shape

of the simple beam Continuum Mechanics (CM) modes and the correspond-

ing MD mode shape. For CM mode qi and MD mode qj, the correlation is

given by the formula [127]
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Figure 4.3: The complete set of eigenfrequencies of CNT D1, calculated with

Molecular Dynamics as shown in Section 4.1
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Figure 4.4: Zoom to the first 29 MD modes of CNT D1. Some bending

(B), torsional (T) and stretching (S) eigenvectors are plotted (tube shapes).

Rigid (R) modes have zero frequency of vibration.

Cij =
(|qT

i qj|)
2

(||qi||)2(||qj ||)2
(4.4)

The correlation for CNT D1 is displayed as a graymap as shown in Fig-

ure 4.7. We note that the correlation is good for the first modes, although

it drops progressively with the mode number. Direct visual inspection has

shown us shell-twisting, shell-stretching and breathing-stretching mode cou-

plings at the points where the MAC correlations vanishes, after the ninth

bending mode.

Soedel’s formula [114] for thin shells is optimised for bending modes

through the use of beam functions. Because of this, we chose the bending

modes as our main tool to demonstrate the accuracy of the different contin-
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Figure 4.5: Normalised frequency deviation of the degenerate bending modes

(Dd) versus normalised frequency (f̃) for CNTs D1 and D3, where Dg =

f̃b(i)− f̃a(i), f̃ = f/f0, i is the bending mode number and f0 is the first non

normalised bending frequency.

uum theories described, although stretching and torsional modes (uncovered

by thin shell models) are also studied. The nanotubes selected for the study

are CNTs D1-D3 (slim) and CNTs C1-C3 (stubby) because both pairs have

CNTs with similar geometries although substantially different number of

atoms.

A comparison of frequencies of the long-wave eigenmodes computed using

MD simulations, and three analytical models (E-B, Timoshenko and Thin

Shell) of different complexities was made for CNTs D3 and D1. Frequencies

for CNT D3 are plotted in Fig. 4.8 while CNT D1 is shown in Fig. 4.9. We
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Figure 4.6: Left: mode produced by shear of the cross-section of CNT C3, at

f = 2694.11 GHz. Right: second bending mode of CNT C3, at f = 3080.05

GHz.

can clearly see in this figure that the best fit for the molecular data is given

by the thin shell case, followed by Timoshenko and Euler-Bernoulli. In all

cases, the deviation increases with the frequency. The frequency mismatches

shown are much higher than those appearing in classical beam and shell

experimental setups [115]. This points out that the main source for the

frequency error is the lack of discreteness in the continuum models.

It is interesting that the Timoshenko and thin shell frequencies seem

to be lower than the MD frequencies. This seems to be in contradiction

with Rayleigh’s theorem, which states that increasing the degrees of freedom

always decreases the frequencies. The reason we can guess for this behaviour

is that we have modeled Timoshenko and Thin shell shapes that MD cannot

imitate at a low energy cost, such as the perfect ends of a cylinder or the
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Figure 4.7: MAC color map showing the correlation between MD and CM

bending (B), twisting (T) and stretching (S) eigenvectors for the first 28

modes of CNT D1.

constant cross-sectional area. This reasoning is specially applicable to the

thin shell case, since an energy minimization approach is used [128] (the

Galerkin method) when obtaining Soedel’s frequencies (eq. 3.48).

A specially useful output is the first bending eigenfrequency of a given

nanotube, as we can calculate from this eigenvalue the CNT wall thickness.

The procedure for its calculation is shown in the next section. From it, the

wall thickness h = 0.13185 nm of CNT D3 is obtained, in agreement with

previous studies [129].

In order to see how the different CM theories hold up at other L/R

ratios, a comparison of frequencies of the long-wave eigenmodes using MD

simulations and three analytical models(EB, Timoshemko, Thin Shell) for
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Figure 4.8: Euler-Bernoulli (EB), Timoshenko (Tim), Thin Shell(Shell) and

Molecular Dynamics (MD) normalised bending frequencies (f̃ = f/f0) for

nanotube D3. Top left: side view of MD bending modes number 1, 2, 3 and

9.

nanotubes C3 and B3 instead of nanotubes D1 and D3, is shown in Fig.

4.14. The same behaviour is observed, although EB frequency deviation is

more significant because shear effects are not negligible in beams that are

stubby, and the E-B theory does not account for such shear deformation.

We have also compared data from CM formulas for stretching and twist-

ing modes with our MD data. The order in which extensional and torsional

modes appear (as singlets) depends on the aspect ratio (L/R) of the nan-

otube. Their frequency ratios also start to depart from the ratios predicted

by simple beam theory. This ratios from simple beam theory are the nat-

ural numbers, and the deviation is shown in Fig. 4.10 for CNT D1 and in
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Figure 4.9: Same as FIG. 4.8, for nanotube D1. Top left: Side view of MD

bending modes 1, 2, 3, 4, 5 and 9.

Fig. 4.11 for nanotubes D3. The frequency deviation for extensional and

torsional modes is significantly smaller than the frequency deviation corre-

sponding to bending modes.

As it is shown in Figs. 4.8-4.11, continuum models fail to predict mode

ratios at high frequencies for the CNT system studied here. The values of

the allowed modes diverge substantially as the characteristic length in the

(i) axial and (ii) radial direction progressively shortens, thus violating the

assumptions of the continuum theories used. A substantial amount of the

frequency divergence of the CM modes is due to the assumptions made by

these models.

The frequency deviation percentage of the different continuum theories

53



1 2 3 4 5 6 7
Stretching mode number

1

2

3

4

5

6

7

8

N
or

m
al

is
ed

 f
re

qu
en

cy

MD CNT D3
CM
MD CNT D1

.

Figure 4.10: Stretching modes normalised frequencies. Top left: stretching

shapes of modes 3, 5, 7 and 9, CNT D3. Lower right: stretching modes 3,

5, 7 and 9, CNT D3.

from the MD data has been obtained for each of the CM models used, and are

plotted in Fig. 4.12, for nanotubes D1 and D3. Using elementary calculus

(quadratic curves fitted to the deviation midpoints), an approximate scaling

expression of the deviation ε for the ith bending modes is obtained. For

CNT D1,

εEB ≃ 1.72i2 (4.5)

εTIM ≃ −0.47i2 (4.6)

εSHELL ≃ −0.29i2. (4.7)

For CNT D3,
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Figure 4.11: Twisting modes normalised frequencies. Top left: twisting

shapes of modes 1, 5 and 14, CNT D3. Bottom right: twisting modes 1, 2,

6 and 9, CNT D1

εEB ≃ 1.52i2 (4.8)

εTIM ≃ −0.28i2 (4.9)

εSHELL ≃ −0.16i2. (4.10)

Note that the different frequency deviations between CNT D1 and CNT

D3 among the same MD model can only be due to the different number of

atoms. It is an explicit manifestation of their different discreteness. The thin

shell model has the lowest deviations, and is less influenced by the number

of atoms. In this sense, the thin shell model is the most robust.
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Figure 4.12: Deviation (D) of the EB, TIM and Shell normalised frequen-

cies from MD normalised frequencies. For EB, D = (f̃EB − f̃MD)/f̃MD.

Analogous for Timoshenko and Shell deviations.

4.4 Calculation of SWCNT wall thickness h

There is currently a debate about the value of the wall thickness of CNTs.

From a CM point of view, the wall thickness is an important value for the

CNT frequency calculations. This is a difficult thing to attempt since there

is no ‘wall’, but wavefunctions that decay exponentially away from the CNT

and never reach zero value. In order to calculate the wall thickness h of

CNT D3 using our results we follow the procedure below:

1. Extract the value of EI from the equality ωEB
1 = ωMD

1 , being I the

second area moment of inertia of a tube.

2. Get from the literature a value for the Young’s modulus Elit to get I
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Figure 4.13: Bending normalised freqs, nanotube B3.

using the previous step. Extract h and compare it with literature

For step 1, since we have the eigenvalues of a non mass-weighted Hessian

matrix in GROMACS units (refer to manual [39]), and converting to S.I.

units:

ωMD
1 =

√
λMD

1 =

√
5.94902

12.01

[
a.m.u · rad2 · ps−2

a.m.u

]
= 112.01GHz (4.11)

On the other hand, ωEB
1 = ωEB∗

1 · ((EI)1/2ML3)−1/2, where L is the

length of nanotube D3, L = 12.92 nm, and M the mass mass of nanotube

D3, M = NC12 ·MC12/NA = 2.903713 · 10−23Kg, being NA the Avogadro’s

number, NC12 the number of atoms in nanotube D3 and MC12 the mass

of a carbon atom in atomic units. ωEB∗

1 = 22.37502486 is the first non-

dimensionalised, non-normalised Euler-Bernoulli frequency: ωEB∗

1 = ζ2, be-
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Figure 4.14: Bending normalised freqs, nanotube C3

ing ζ the first solution of the non-normalised Euler-Bernoulli equation. We

can therefore extract EI = 6.196074036 · 10−26Kg · m3s−2.

For step 2, we refer to [129], where a list of reported values for E and h is

given. Setting, for example, Eliterature = 1.238TPa = 1.238·1012Kg ·m−1s−2,

then I = EI
Eliterature

= 5.00490633 · 10−38m4.

The cross-section of a tube is a ring, so I = π
4 (r42 − r41), where r1 is the

inner radius and r2 is the outer radius of the single walled nanotube. If

we call r the mean radius of the tube (known), r = 4.915 · 10−10m, then

r1 = r− h/2 and r2 = r− h/2. For simplicity, we name a = h/2 so that we

obtain the equation

(r + a)4 − (r − a)4 = 4I/π (4.12)
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Using the bisection method we arrive at the solution a = 6.5925043·10−11

m and therefore the nanotube wall thickness is h = 2a = 0.13185 nm, which

is on the range of the thicknesses presented in the cited paper [129].

4.5 The combination of Rayleigh’s method with

molecular dynamics

The computationally expensive part of the procedure of extracting the eigen-

modes of a vibrating CNT is the solution of the eigenvalue problem. How-

ever, since we know that the low frequency mode resemble the continuum

modes, this information can be incorporated profitably to reduce the compu-

tational time while using the detailed molecular dynamics generated Hessian

and still avoiding the complete eigensolution.

In order to have a quantitative estimate for the reasons as to why the

EB frequency differ from MD calculations deviations, we built models of

nanotubes by placing their atoms the way the EB theory predicts (we called

it the EBMD model).

This could be achieved by employing Rayleigh’s method of the assumed

modes. The method has the basis that the eigenvalues calculated from the

Rayleigh’s quotient are an order more accurate that the accuracy of the

assumed eigenvectors.

By comparing the EB, EBMD and MD frequency curves, we are able to

have a quantitative estimate of the amount of deviation caused by (i) the

EB assumption of normals remaining normal after deflection and (ii) the

rest of the assumptions. The effect of lack of homogeneity will be measured

by comparison of the curves of nanotubes with different atom density for a

given R/L ratio (CNTs D1 and D3).

The procedure is in the spirit of the Rayleigh variational principle applied
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to the detailed Lagrangian of MD in conjunction with assumed continuum

modes.

The Rayleigh-Ritz method states that any constrained shape will always

give a value of the potential energy that is equal or greater than the ground-

energy. The Rayleigh’s quotient of the constrained shapes are given by

(
qT

constHqconst

qT
constMqconst

)1/2

(4.13)

In order to build the normalised frequency curves for the EBMD nan-

otube, we proceeded through the following steps:

1. Get the energy-minimised nanotube from GROMACS.

2. Build the shape of the constrained CNT by imposing the Euler-Bernoulli

constraints (’normals remain normal’ after deflection) through the

transformation formula [130]. If z is the principal axis of the CNT,

then the displacement of an atom of the E-B deformed nanotube is

given by

qx = 0 (4.14)

qy = wEB
i (z) (4.15)

qz = −y
∂wi(z)

∂z
(4.16)

(4.17)

and the new generalised coordinates for each atom are

qi = (qix, qiy, qiz), i = 1..N (4.18)

Note that wEB
i (z) is the deflection of the center line of a free-free

Euler-Bernoulli beam, for mode number i [131]:
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wEB
i (z) = A

(
coshβiz −

sinhβiL+ sinβiL

coshβiL− cosβiL
(sinhβiz + sinβiz)

)
(4.19)

where

β2
i = (m/EI)1/2 · ωEB

i (4.20)

and A ia an arbitrary amplitude constant.

3. Calculate the new normalised eigenfrequency associated to the trans-

formation, for each bending mode number, using Rayleigh’s method

ωEBMD =

(
qT

constHqconst

qT
constMqconst

)1/2

(4.21)

A similar approach was taken in order to build continuum mechanics-

molecular dynamics models for torsional and stretching modes, and they

are used on the MAC. The atoms of CNTs D1 and D3 were placed on the

positions that the CM theory predicts, and these mode shapes were used

for the twisting and stretching CM shapes used on the MAC plot in the

previous chapter.

Prior to the analysis of the EBMD curves, we note that two cases are

possible:

• If the EBMD frequency curve is close to the E-B curve, that would

mean that the frequency difference between the E-B and MD curves is

due to the condition of normals remaining normal during deflection.

• If the EBMD frequency curve is close to the MD, that would mean

that the frequency difference between the E-B and MD curves is not

due to the condition of normals remaining normal during deflection,

but to any other reason.
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On the EBMD hybrid graph of CNT D1 and D3 for bending modes

(Figs. 4.15 and 4.16) we observe that the EBMD frequency curve lies ap-

proximately between the MD and E-B curves. We get the conclusion that,

although the condition of normals remaining normal after deflection signif-

icantly contributes to the frequency deviation, other factors are also im-

portant (loss of homogeneity, shear effects, irregularities in nanotube ends,

etc).

We also observe that the EBMD curve on Fig. 4.16 (CNT D3) is closer

to the E-B curve than of Fig. 4.15 (CNT D1). This means that, given a

length to diameter ratio, the fewer atoms a CNT has, the more important

the E-B constrains are on the frequency deviation from the MD data. Again,

this is a manifestation of the contribution of the number of atoms to the

frequency deviation of the continuum models.

4.6 Time domain simulation of vibration of CNTs

For data corroboration, we used a novel approach by comparing the CM

normal mode frequencies with the spectra of the nanotube, calculated with

molecular dynamics. The Fourier signal analysis represents a powerful tool

for obtaining the characteristic frequencies of vibration of a CNT, taking

the atom position on a CNT as it fluctuates with time as the signal for the

analysis.

We run a MD simulation in which the trajectories of selected atoms were

recorded during a Berendensen thermal bath [123]. The bath acts as a source

of thermal energy, adding or removing heat from the system introducing the

possibility to change atomic velocities at each step. The rate of change of

temperature is proportional to the difference in temperature between the

bath and the system.
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Figure 4.15: CNT D1 normalised frequencies for the Euler-Bernoulli (E-

B),model, the Molecular Dynamics (MD) model and those obtained by

imposing the Euler-Bernoulli condition to the molecular dynamics model

(EBMD).

The position of the x coordinate of atom 0 (located at one end of CNT

D1) was recorded every 0.0005 ps. With a sampling frequency of fs = 2000

THz we captured even the highest natural vibrations, corresponding to mode

number 720, f720 = 194.2 THz.

We recorded 131072 samples, giving a total sampling time of Ts = 65.536

ps, several times higher than the vibration period of the lowest frequency

mode (f−1
1 = (7.03803·1011/(2π))−1 = 8.927 ps), and a frequency resolution

of ∆f = 1/Ts = 15.2588 GHz. The temperature coupling of the thermal

bath was set to τ = 0.1.

Fig. 4.17 clearly shows peaks at the normal mode frequencies: ratios
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Figure 4.16: Left: CNT D3 normalised frequencies for the Euler-Bernoulli

(E-B) model, the Molecular Dynamics (MD) model and those obtained by

imposing the Euler-Bernoulli condition to the molecular dynamics model

(EBMD).

between the FFT’s peaks are similar to E-B ratios and even closer to Timo-

shenko’s, thin shell or the MD frequencies obtained via the eigenvalue prob-

lem of the time averaged hessian matrix. The same procedure was taken to

find matches between stretching frequencies, by calculating the PSD of the

z component of the same atom (Fig. 4.17). The match between different

models is even higher that in the bending case. Table 4.2 shows the absolute

bending and stretching frequencies for CNT D1.

We also checked the stability of the resonant frequencies for different

temperatures. We used the above procedure for a range of temperatures

(T = 0.001, 4, 20, 40, 500◦K). It can be seen in Fig. 4.19 that these eigenfre-
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m EB Tim. Shell MD PSD CM MD PSD

1 355.3 355.3 355.3 355.3 366.2 1581.75 1581.75 1602

2 979.34 932.37 914.25 909.38 930.8 3136.5 3153.42 3159

3 1919.78 1725.54 1629.20 1629.18 1633 4745.25 4703.21 4715

4 4740.48 2676.64 2401.36 2441.88 2457 6327 6217.63 6241

5 6621.41 3741.20 3159.62 3302.84 3311 7908.75 7662.87 7675

6 8815.87 4885.02 3860.74 4183.33 4196 9490.5 9041.96 9064

Table 4.2: Left: absolute Euler-Bernoulli (EB), Timoshenko (Tim.), Thin

Shell (Shell), Molecular Dynamics normal mode (MD) and Power Spectrum

Density (PSD) bending frequencies (MD) for CNT D1. Right: absolute Con-

tinuum Mechanics (CM), MD and PSD stretching mode frequencies (GHz)

for the same nanotube. m denotes the bending and stretching mode number.

quencies do not vary throughout the temperatures.

4.7 Thermal properties of carbon nanotubes

Similar to electronic properties, thermal properties of carbon nanotubes

(CNTs) become more important in theoretical research and applications re-

cently. It is found that thermal properties of CNTs not only show unique

and significative low dimensional features but also play critical roles in con-

trolling the performance and stability of CNT based devices because of the

key problem of energy dissipation and thermal transport [132].

Specific heat capacity, also known simply as specific heat, is the measure

of the heat energy required to increase the temperature of a unit quantity

of a substance by a certain temperature interval.

We extend the molecular structural mechanics approach to the study
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Figure 4.17: Power density spectrum of the lowest frequencies at T = 40◦K,

for CNT D1. Note the resemblance to EB (dotted vertical lines) and TAH-

MD (straight vertical lines) eigenfrequencies.

of the specific heat of carbon nanotubes by introducing our frequency data

into equation 4.19. The vibrational modes of the nanotube are quantized

according to the theory of quantum mechanics. The specific heat of a single-

walled carbon nanotube is calculated and the temperature dependence of the

specific heat is demonstrated.

The heat capacity at constant volume is defined as Cv =
(

∂U
∂T

)

V
where

U is the energy and T the temperature. The contribution of the phonons

to the heat capacity of a crystal is called the lattice heat capacity and is

denoted by Clat

The total energy of the phonons at a temperature τ(= kBT ) in a crystal

may be written as the sum of the energies over all phonon modes:
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Figure 4.18: Power density spectrum for movement of atom 0 along the axis

of CNT D1, T = 20◦K. Again, peaks appear near the CM and even closer

to the time averaged hessian predicted eigenfrequencies.

U =
∑

K

< nK > h̄ωK (4.22)

where < nK > is the thermal equilibrium occupancy of phonons of

wavevector K, and is given by Plank’s black body distribution

< n >=
1

exp(h̄ω/τ) − 1
(4.23)

The lattice vibrational energy can then be expressed as [133]:

U =
∑

K

h̄ωK

exp(h̄ωK/τ) − 1
(4.24)

The specific heat is found by differentiating the internal energy with
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Figure 4.19: : Power density spectrum for atom 0 during a 4.1943 ns, T =

0.001, 4, 20, 40, 500◦K as a color map.

respect to the temperature:

CV = kB

3n∑

j=1

(h̄ωj/kBT )2exp(h̄ωj/kBT ))

(exp(h̄ωj/kBT ) − 1)2
(4.25)

We extend the molecular structural mechanics approach to the study

of the specific heat of carbon nanotubes. The temperature dependence of

the specific heat is shown in Fig. 4.20, where specific heat approaches the

Dulong and Petit’s value of N ·3kB [134] as the temperature increases. Also,

the curve is cubic for low temperatures and linear for mid temperatures, in

agreement with previous experiments [135] and calculations [136, 137].
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Figure 4.20: Specific Heat of CNT D1 as a function of temperature.
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Chapter 5

Conclusions and future work

Summarising, we have obtained the complete set of Molecular Dynamics

normal modes of thousand-atom carbon nanotubes. A systematic compar-

ison with some of the most important and continuum theories has proven

that continuum methods fail significantly as the mode number increases and

as the number of atoms decreases.

We have inferred an expression law for the frequency deviation of con-

tinuum mechanics modes from molecular dynamics modes, a correction that

can be applied to recently published papers ([36], [138]). We have elabo-

rated a frequency correction formula for the Euler-Bernoulli, Timoshenko

and Thin Shell frequency formulas.

Our calculation of the nanotube wall thickness h from our novel MD

frequencies shreds light into the current debate about the thickness value,

and the wall thickness we obtained (h = 0.617Å) is in agreement with other

studies.

We developed a new model from the combination of the Euler-Bernoulli

beam theory with Molecular Dynamics. It has let us identify that the causes

for the deviation between the Euler-Bernoulli and Molecular dynamics fre-
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quencies. It has shown that the condition of ‘normals remaining normal

after deflection’ significantly contributes to the divergence, but it has also

been proved that other factors such as the number of atoms are important.

Also, the MAC technique has been used for the first time on the nanoscale.

It effectively shows at a glance the correlation between continuum mechanics

mode shapes (eigenvectors) and their Molecular Dynamics counterpart.

We double-checked our results with the frequency peaks on the power

density spectrum arising from the Fourier transform of the atom displace-

ments during thermal baths across a range of temperatures. A power spec-

tral density (PSD) analysis was used to corroborate the normal mode fre-

quencies (E-B, Timoshenko, Thin Shell and Molecular Dynamics), showing

the same divergences that those previously shown. Also, the resonant fre-

quency peaks in the PSD results show excellent stability across a range of

temperatures.

Finally, the specific heat capacity was calculated for the first time using

all the MD eigenfrequencies, showing agreement with previous observations.

For future work, it would be desirable to build an algorithm for calcu-

lating the eigenmodes and eigenfrequencies analytically, because it would

improve the time to compute the modes by a factor of 100 (as it would be

necessary to calculate 100 Hessians and then average them). The procedure

for building this algorithm is presented in Appendix A.

It would also be interesting to extend our study to other carbon nanos-

tructures such as nanotube Y-junctions and carbon supernanotubes, a struc-

ture of welded nanotubes that resembles itself to another nanotube.

The normal modes of vibration seem to play an important role on the

superconductivity on carbon nanotubes. Calculating the conductivity of a

CNT at different frequencies of vibration may contribute to understand this
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physical phenomenon.
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Appendix A

Visualization of a selected

group of normal modes

Bending mode 1, CNT D3,
absolute mode 6.

Bending mode 2, CNT D3,
absolute mode 8.

Bending mode 3, CNT D3,
absolute mode 10.

Bending mode 9, CNT D3,
absolute mode 55.

Figure A.1: A sample of bending modes for CNT D3.
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Bending mode 1, CNT D1,
absolute mode 7.

Bending mode 2, CNT D1,

Bending mode 3, CNT D1,

Bending mode 4, CNT D1,

Bending mode 5, CNT D1,

Bending mode 9, CNT D1,
absolute mode 32.

absolute mode 19.

absolute mode 15.

absolute mode 12.

absolute mode 9.

Figure A.2: A sample of bending modes for CNT D1.
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Twisting mode 1, CNTD3

Twisting mode 5, CNTD3

Twisting mode 14, CNTD3
absolute mode 219.

absolute mode 49.

absolute mode 10.

Figure A.3: A sample of twisting modes, CNT D3.

Twisting mode 1, CNT D1,
absolute mode 10.

Twisting mode 2, CNT D1,

Twisting mode 6, CNT D1,

Twisting mode 7, CNT D1,

absolute mode 14.

absolute mode 31.

absolute mode 74.

Figure A.4: A sample of twisting modes, CNT D1.
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Stretching mode 3, CNT D3,

Stretching mode 3, CNT D3,

Stretching mode 3, CNT D3,

Stretching mode 3, CNT D3,

absolute mode 46.

absolute mode 71.

absolute mode 124.

absolute mode 160.

Figure A.5: A sample of stretching modes, CNT D3.

Stretching mode 3, CNT D1,
absolute mode 24.

Stretching mode 5, CNT D1,
absolute mode 70.

Stretching mode 7, CNT D1,
absolute mode 85.

Stretching mode 9, CNT D1,
absolute mode 103.

Figure A.6: A sample of stretching modes, CNT D1.
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Figure A.7: A: Third bending mode of nanotube D1, B: Thirteen bending

number of nanotube D1, C: Second twisting mode of nanotube D1, D: Sev-

enth twisting mode of nanotube D1, E: Third stretching mode of nanotube

D1, F: Eighth stretching mode of nanotube D1, G: Third breathing mode

of nanotube D1, H: Seventh breathing mode of nanotube D1, I: Side view of

shell mode n=2, m=3, nanotube C4, J: Top view of shell mode n=2, m=3,

nanotube C4, K: Side view of shell mode n=3, m=2, nanotube C4, L: Top

view of shell mode n=3, m=2, nanotube C4, M: Side view of shell mode

n=4, m=1, nanotube C4, N: Top view of shell mode n=4, m=1, nanotube

C4, O: Bending mode 2, nanotube C3, P: Another bending mode 2, nan-

otube C3, Q: New visualised mode, nanotube C3, R: Fourth bending mode

of nanotube B3
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Appendix B

Python-programmed codes

and adjustments to

GROMACS parameter files

All Python-proggramed codes are included in a CD-ROM included in this

thesis.

B.1 Energy minimization parameter file - em.mdp

cpp = /lib/cpp

define = -DFLEX_SPC

constraints = none

integrator = l-bfgs

nsteps = 300000

nstlist = 0

pbc = no

emtol = 0.0000001
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emstep = 0.01

epsilon_r = 0.000001

nstcomm = - 1

ns_type = simple

rlist = 0.0

rcoulomb = 0.0

rvdw = 0.0

coulombtype = cut-off

Tcoupl = no

Pcoupl = no

gen_vel = no
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B.2 Molecular dynamics parameter file - md.mdp

cpp = /lib/cpp

include = -I../top

define =

integrator = md

dt = 0.001

nsteps = 100000

nstxout = 200

nstvout = 200

nstlog = 200

nstenergy = 200

nstxtcout = 200

nstlist = 200

pbc = no

nstcomm = -1

ns_type = Simple

rlist = 0.0

rcoulomb = 0.0

rvdw = 0.0

coulombtype = cut-off

Tcoupl = berendsen

tc-grps = System

tau-t = 0.1

ref_t = 0.1

Pcoupl = no

gen_vel = no

97



B.3 Normal mode analysis parameter file - nm.mdp

cpp = /lib/cpp

include = -I../top

integrator = nm

pbc = no

nstcomm = -1

ns_type = simple

rlist = 0.0

rcoulomb = 0.0

rvdw = 0.0

coulombtype = cut-off

Tcoupl = no

Pcoupl = no

gen_vel = no
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