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By Charalambos Tsatsaris

The main objective of this research is to develop new efficient and cost-
effective topology optimization methods for framework structures. The first part of
the thesis concentrates on the assessment of the effectiveness of the Evolutionary
Structural Optimization (ESO) method of designing frameworks. This method is
critically examined by studying the trajectory in which designs evolve during the ESO
process on the weight-maximum stress plane and later overlaying it with the Pareto
Front (PF) for the two-objective problem of simultaneously minimising weight and
the maximum stress within the structure. To study the Pareto-efficiency of the ESO
method, the designs obtained by ESO are compared with the designs obtained using
exhaustive search for combined performance on two counts: the maximum stress
within the structure and the overall weight. Whilst for complex problems an
exhaustive search is not practical, the approach adopted here is to encode the problem
formulation using a genetic algorithm (GA) and to allow the formulation to evolve in
the direction of improving Pareto optimal designs. Since GA is a stochastic method,
the robustness of the conclusions has been assessed by running GA with multiple
seeds. Numerical experiments show that ESO produces reasonable designs at little
expense; however, the procedure misses out on several efficient designs if one could
afford the computational expense. As far as topology and size optimization is
concerned, it is observed that ESO produces Parcto sub-optimal designs, but is
superior to GA if one could not afford a computationally demanding search. ESO is
computationally efficient but it fails to produce some designs with very good
structural performance. .

In the second part of the thesis two new strategies for topology optimization of
frameworks are developed by combining the Evolutionary Structural Optimization
(ESO) method and Genetic Algorithms (GA). This approach combines the quality of a
stochastic global search such as GA and the computational efficiency of ESO. The
first method proposed here is the ESO assisted GA method (ESOaGA) in which ESO
obtained designs are inserted in the GA population, helping the GA search to operate
in more promising directions. The second method is the GA assisted ESO method
(GAaESO), in which GA produced designs are used as starting points for a family of
ESO runs. The designs obtained by the proposed methods and the “unassisted” GA
are compared visually and quantitatively using three quality indicators: the
hypervolume, epsilon and R indicators. The statistical significance of the quality
indicators is also assessed. Again, two goals are used in this comparison: the
maximum stress within the structure and the overall weight. Both hybrid methods can
obtain better optimized designs in less computational time than the respective
«“unassisted” methods. Finally, an iterative application of GA and ESO is explored.



Contents

Abstract eeeessusesessesssessossesteseenttesteRtsRtoResEIENSIRSIRSIRSERSEELERLeRERIEREINeRtsNLatesseRteNsansateuessane i
LSt Of FAGUIES evueuiruisasensensssnosnsssssstisssssssssssssssssassassssssmssmassussmsstasssssmasssssasisissmssastusessessess vi
List of Tables......ccccce. reeseeseesnersertesssasssesatsanessennentsntsssestssnsssesasense Xvi
Declaration of AUthOTSHIP ccccveuiceiineenssssssecsiessssesssnsssnssssssssnssasasasasnsusastsssssssssnnsscces xxiii
Acknowledgements ............. retevesseessesaesssesssessesrtesatetssatssRsIsSaTaSERtesteRTssanans s ssstsne XXiv
INOTNEIICIATUTE 1evrecevencressencnssesssssssssssrssassssssssnsseassssassnssssssssssassassssnsnsassnsassssasasnsaces XXV
1. INtroduction ....ceceecsessesssessancssssansnsanssnnes vevesaesnnesatssssssnssnssansaserasessssarase 1
1.1. The importance of structural optimization evessssesarasssaseenstesasasRsE s sanE et A SRS eSO P R0t 1
1.2. Categories of structural OPtMIZAtION .....ccocrvvsiririiessimisrisssssis s 2
1.3. Definition and terms Of tOPOLOZY .....cvrmrirereremrrrreiiiniiimtsi e 4
1.4. Applications of Topology OPHIMIZATION.......cvvrvsevsserereessassssssssss s 6
1.5, OBJECLIVES .vvoevvereversrrsienssseesssssrsess s smm s 8
1.6. OULINE OF TRESIS .veerveeearereeseeeeereiieseses s s 10

il



CONTENTS iii

2. Structural optimization Methods .....cccueercercisscrsisnsusniniinsissnenes 12
D 1. TOETOAUCHION «reveveeeeeeeeeereveee st eses et see s s s st ch bbb e 12
2.2. Continuum optimization of the structural SYSteM.......ocvevciiiimiiminsenes 12
2.2.1. MiCTOStrUCtUIe-aPPIOACHES .....vviiviisicciciieni s 14
2.2.2. MacroStruCture-apPrOACHIES .....eevereeurariesiiisinies st 16
2.3. Optimization of discrete StruCtUral SYSTEIMS. ......cvuevesrumsmmmssmsssnrssresssmssrem e 17
2.3.1. Topology Optimization of FrameWOTKS ....vvivveeeeeeienrenreeiiieesreessesec st 21
2.3.2. Evolutionary Structural Optimization (ESO) .....ccooviurvenininiininsiieens 22
7 3.3. Influence of the member removal ratio (MRR), mesh size and member type.......26
2.4. Metamorphic Development: A new topology optimization method........c.ccocovvvnnnns 26
2.5. Multi-objective OptIMIZAtION ......veivcesiisiinissisesssist e 28
2.6. GeNetic ALGOTITIIMS. .....vuvevirieiierireisiesi s 29
D 7. COTCIUSIONS 1evvveeeeeeeeesseseseseeseeesesesseesessse s S 30
3. Evolution of maximum stress and weight during ESO: general trends ........cce.e.... 32
3.1 TEEOQUCHION . vevreevceesseeeesceeeses e ssnae s 32
3.2. Finite Element Modelling and Simulation of Frameworks .....cocceeveevmeieninenencnniennns 33
3.2.1. Finite Element MOAEIING ........coorurrremrinenemcisinimisisisssiississss st 34
3.2.2. Computer code ValIdatioN........cueuriiimsirisssrissenisssimssisssssssss s 37
3.3. Implementation of the ESO algorithm to framework topology design ..cocovvviirennnn 40
3 4. General trends of the trajectory of designs during the ESO process on the maximum
SETESS-WEIGHE PLATIE .vovovveevesrirrensseessss i s 51
3.5. The effect of member removal ratio in large scale Problems .....c.ovevrveicinnnninniniennne 64

3.6. The effect of scaling the cross-sectional size in framework topology optimization ..67
3.7. General shape of ESO trajectory for FrAMEWOTKS. oceveveieree e 72

3.8, CONCIUSIONS «.vrvrereiveeeeeesrasseseessesesseaessss s ss st LSS 73

iii



CONTENTS v

4. Pareto-comparison between the Evolutionary Structural Optimization,

Exhaustive Search and Genetic Algorithm applied to frameworks....eeeemscssssccssesanes 74
4.1, TOETOQUCHION +rvrveereeeeiveseseseesseeeessssisssss bbb 74
4.2. Pareto OPtmal FIONT .....coovruerirrreseisssinimsis st 75
4.3. Pareto Fronts by exhaustive design S€arch ... 76
4.4, Pareto-comparison of ESO with exhaustive search: results and discussions............. 79
4.5. Structural Topology Optimization using Genetic Alorithms ........ccoevveeiminiininenines 86
4.6. QUALTLY INAICALOTS ....ovoorivessrersscsssesen s 89
4.6.1. The Hypervolume INAICatOr. ....c..euuurrmmissmseriscssssiminisssssssni s 91
4.6.2. The Unary Epsilon INAICATOT ...c.cuuwrriiiisriierienissiimsis s 92
4.6.3. The Unary R INAICALOT ....ourveerrerericmnimimsssstiesssssiss st 93
4.7. Implementation of GA for 2-objective optimization problems using NSGA
ALEOTITIIL ..o vvveeesaecesssnsss s e 94
4.8. Pareto-comparison of ESO with GA: results and diSCUSSIONS...c.evivieriererereesinrinnens 96
4.9. Sizing optimization using ESO in framework STTUCLUTES ...cvivievrreeeremiintassenensnes 102

4.10. A bit-string representation for structural size optimization in discrete framework
structures using Genetic ALGOTIRMS ..o 103

511, CONCIUSIONS wvvrvrvrrerreeeesemssasemesss st ssb e sss s 106

5. Combining the Genetic Algorithm and Evolutionary Structural Optimization for

the topology design of FrATNIEWOEKS evverrersnererssnsssessansanssnsssssanssnnannssssssnssnsasnassssssses 108
5 1. TOEEOAUCTION 1everveverrsseesereeresesremss s ess s s e 108
5.2. Observations on Evolutionary Structural Optimization of frameworks and Genetic
Algorithms applied to framework QESIEIN vvvverveeieiieemen s 109
5.3. Performance assessment of multiobjective optimization methods using quality
TELGLCALOTS vovveevsseseeeeesseeesssseeseesessess eSS 112
5.4. A Genetic Algorithm assisted by ESO (ESOAGA) ...ovrrriememmesssinnmssissssenscsssinnes 114
5.4.1. ESO assisted GA, including ESO designs in initial population only................. 117
5.4.2. ESO assisted GA, including ESO designs in each population.................cocoewe. 134
5.5. The use of GA designs as starting points for ESO runs (GAaESO)....ccocvnnniininnns 149

iv



CONTENTS v

5.6. Comparisons between ESOaGA and GA2aESO Methods ...vvvvereeeceiiiiiiiiee 156
5.6.1. Comparison of the two proposed approaches for the 6-node structure .............. 156
5.6.2. Comparison of the two proposed approaches for the 12-node structure............. 158

5.7, KIUSKAL-WALLES tESE .. vvevvireeeeeereeieetestesmeeneiaie st ene sttt sttt 164

5.8. Conclusions .................................................................................................... 167

6. Conclusions and future work........ ceevensesstssnsessssassenssaseruesenssanase 169

6.1. CONCIUAING TEMATKS ....vvcevivieirriie et e 169

6.2 FULUTE WOTK ... eveeeeeeeeeeeenieeeeetsesetee et e enit et et e e st e et eb s s b s s s bbb s 172

PN 1S 1 1) R B 174

RETEICIICES . venereeeessrssessessesessessessastassesassssssssssssssnsstonsessssssssnsasensonsassassstosssssassssntsnsansssssss 178




List of Figures

1.1

1.2

1.3

1.4

1.5

Three categories of structural optimizatibn: (a) sizing optimization, (b) shape
optimization, (c) topology optimization. The initial problems are shown at the
left-hand side and the optimal solutions are shown at the right ’[1] .........................
Topological mapping/transformation [S]........cooerimiiiiniies
Topological properties of two-dimensional domains [5] coeereereererenieriee e
Examples of structural systems, subsystems, and components for the
automotive, aircraft and spacecraft industries [13] ...c.oooviiiii,

A car body as a frame structure consisting of beams and joints [11].ccorivieeinnnnnn

_Toc211866850_Toc211866854

2.1

22

2.3

3.1

3.2

33

3.4

3.5

Conceptual processes of topology optimization of continuous structures [5] ........
(a) The design domain and boundary conditions [45]. (b) The result from
topology OPHMIZAtION [45] ...vveiveerirrieieimsisinis s

Flow chart of the MD method developed in [82] ..c..cooverinininiiiiiiins

Fully connected framework with 55 n0AES.......coovimiiimiinciii e
Nodal displacements of a plane frame MEMDbET ..o
Deformed framework obtained in MATLAB ...

a) Framework presented in ABAQUS, b) Deformed framework presented in

vi



LIST OF FIGURES Vil

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15
3.16
3.17
3.18
3.19

3.20

Flow Chart of discrete ESO mMethod....oc.vvvieieiiieieeeieiiinin e

(i) Ground structure and first topology for the fully connected 6-node structure,
(ii)-(vi) Intermediate results, (vii) Optimal topology for the fully connected 6-
node framework obtained by the ESO process. Note that (iii) and (iv) are not

the same structures because the members removed from structure (iii) are

COLTINCAL . oo e oo e eeee et e e e et esu b e sateeeseeesaeesbeesbeesbaessse e e ba s e bs e et e s e et s et b sttt

(i) Ground structure and first topology for the 9-node structure with adjacent
connectivity (2 fixed supports), (ii)-(iii) Intermediate results, (iv) Optimal

topology for the 9-node structure with adjacent connectivity (2 fixed supports)

as obtained by the ESO Process.......cooiiurininnrieiiinmiis s

(i) Ground structure and first topology for the 9-node structure with adjacent
connectivity (3 fixed supports), (ii)-(iv) Intermediate results, (v) Optimal
topology for the 9-node structure with adjacent connectivity (3 fixed supports)
as obtained by the application of ESO. Note that (iii) and (iv) are not the

same structures because the members removed from structure (iit) are

COLIITICAT. . oveeeeeeeeeeeeeee et e e eeeeseesbeesb e esee e b e o s s e b s e b e e ke e bbbt et s s s e

(i) Ground structure and first topology for the 9-node structure with full

connectivity, (ii)-(ix) Intermediate results, (x) Optimal topology for the 9-node

structure with full connectivity obtained by the ESO process......................

(i) Ground structure and first topology for the 9-node structure with full

connectivity, (ii)-(viii) Intermediate results, (ix) Optimal topology for the 9-

node structure with fully connectivity obtained by the ESO method...........
3.12  Optimal solutions of the first two examples demonstrated in ABAQUS....
3.13 Optimal solutions of the next two examples demonstrated in ABAQUS ...
3.14 Fully connected MBB framework with 15 00d@S.......oourvirimneiiiiiiisiisinnnnn:
3.15 Discrete ESO trajectory for 15-node fully connected MBB framework .....

3.16 Drawing of the particular structure at step 75 critical Point............coocoeeeens

vii

44

46

49

.50



LIST OF FIGURES viil

3.21

3.22

3.19

3.20

3.21

3.22

3.23

3.24

3.25

3.26

3.27

3.28

3.29

3.30

3.31

3.32

3.33

3.34

3.35

3.36

3.37

3.17 MBB framework with 15 n0des ......c.cceceevieviiiiiiiniiiiiii, 54
3.18 Discrete ESO trajectory for 15-node MBB framework...........cccccooeeiiini 54
Drawing of the particular structure at step 19 critical point........ccccoceeeiiiiiiiinines 54

Comparison of the ESO trajectories of the fully connected 15-node MBB and

the 38-member, 15-10de MBB .......cciiiiiiiiieiieeieecce e 55
Fully connected MBB framework with 25 nodes and 2 BC nodes ........................ 56
Discrete ESO trajectory for 25-node fully connected framework.......................... 56

Drawing of the particular structure at step 218 of the ESO optimization

(CTILICAL POINILY 1.ttt a bbb 58
Drawing of the particular structure at step 250 ........ccoiiiiiiinniiiis 58
Fully connected framework with 25 N0des.........cocevveiiiinieiininieicce 59
Discrete ESO trajectory for 25-node fully connected framework ...............ccceevnn. 59
Micﬁell type framework with 55 n0des........ccccvoviiiiiiiiii 60
Discrete ESO trajectory for 55-node Mi‘chell type framework ..., 61

Design of the Michell type structure that corresponds to the critical point of

the Previous GIaph ..c.c.c.cveieciiiiiiiiiiii e 61
Fully connected MBB framework with 105 n0des.......cccooviviviiieiciiiiis 62
Discrete ESO trajectory for 105-node MBB framework.........ccccoovieiiriciiininnnnns 62
Fully connected framework with 121 nodes........ccocoiieiiiiiiiiniinicn 63
Discrete ESO trajectory for 121-node framework............coeviiininniiincin 63
Discrete ESO trajectory (step size 1) for 55-node Michell type framework .......... 65

Comparison between the ESO trajectories with step size 1 and step size 10

for 55-node Michell type framewWork...........coovviviiiiiiniiniiie s 66
Comparison between the ESO trajectories with step size 1 and step size 40

for 55-node Michell type framEWOIK.........c..ovveveeeiereeermereeenmecrsimsisisnessesiescnnees 66
Discrete ESO trajectory comparison between a fully connected MBB

structure and a similar MBB structure with fewer members.....cocccveveeeveeeeiicvveeanns 68

viii



LIST OF FIGURES ix

3.38
3.39

3.40

3.41

342

3.43

4.1

4.2a

4.2b

4.3

4.4a
4.4b
4.4c
4.5

4.6

4.7

79-member MBB framework with 15 nodes ... 68
Discrete ESO trajectory for 79-member, 15-node MBB framework .........cocceeninns 69
Discrete ESO trajectory comparison between a fully connected MBB

framework and a similar MBB structure with 79 members ........c..cccoevnineniiinnn 69
Size and topology optimization of the fully connected 15 -node MBB structure

(S€€ FIGUTE 3.14) .ottt 71
Comparison between the analytical and non-analytical approaches of thickness
sqaling on one of the ESO designs of the fully connected 15-node MBB

SETTLCEUTE oo eveeeeveeeeueeeeeeeeueeeusasseeenseesase e beeaba e s aae e ea b b e e b e s e b b e e eae e ba s e s e s st e st 71

General ESO trajectory for frameworks........cooeeiiiie 72

Flow Chart to calculate the PF for a prescribed number of members missing

from the fully connected deSign ... 78
Pareto Fronts for 1 to7 members removal cases of 6-node structure.................... 79
Pareto Front of the 6-node structure as obtained by the exhaustive search when

Up 10 7 MEMDETS Are TEMOVEQ...cvvvoerveimiemenssisssis s s 79

Comparison of the ESO method and PF of the exhaustive search for the

case of ONe MEMDET TEMOVAL......vioueerierieiiitiie e 80
Design D1 of the PF..........cooverrreereveeeenee e 81
Design D2 0f the PF ..o 81
Design D3 0f the PE ..ot 81
ESO design with one member TeMOVEQ ..........ovviiiiiiniismeiini e 81

Comparison of the ESO method and PF of the exhaustive search for the case
OF 2 TNEMDETS TEMOVAL ..o evierieeieeeeete sttt 82
Comparison of the ESO method and PF of the exhaustive search for the cases

OF 1 10 6 TNEMDETS TEMOVAL ....evviviereerieeeeiirieetesre et e 83

ix



LIST OF FIGURES X

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

Closer view of the comparison of the ESO method and PF of the exhaustive

search for the cases of 1 to 6 members removal........ccovvninniciinii 83
Graph of Number of Members removed against the corresponding Number of
Possible Designs, for a 6-node framework ...........ccooviviinininiiiiiine e, 84

Graph of Number of Members removed against the corresponding Number of

Possible Designs, for a 12-node framework.............cooiiiiiinniiniiii 85
Outline of a genetic algorithm ............cocoviiiiiiiiiiini 87
The need for quality indicators from [120] .......cocoiiiniiiiiiine 90

Illustration of the hypervolume indicator. In this example, design set B is

assigned the indicator value I, (B) =150. The objective vector (20, 20) is

taken as the TefErenCe POINT ......ocveuerveererieiieiiiiiie i 92
Fully connected framework with 6 NOAeSs..........coovvvrirriininnnnic 96
GA designs (20 generations and 20 designs in each population) .......................... 97

Comparison of the GA designs and the PF designs of the exhaustive search for

1-5 members removal cases (20 generations and 20 designs in each

POPULATION) ...ttt 98
GA results for different numbers of ENErations ..........coceveeviienininienieeiiincneenens 99
Comparison of the GA results and the ESO trajectory of the 6-node structure

(20 generations and 20 designs in each population)..........ccccoovuiiiniciiiniiinnns 100
Comparison of the GA results and the ESO trajectory of the 6-node structure

(40 generations and 40 designs in each population)........cceeccciiiiinininnns 100
Fully connected framework with 12 NOdES......coovevvviinieieiniciciiiiiiii, 101
Comparison of the GA results and the ESO trajectory of the 12-node structure
(200 generations and 200 designs in each population)........c.ccoecevniniiiinnis 101
ESO trajectory for 6-node structure with varying member thickness (ranging

from 0.005 to 0.025 m in steps 0 0.005) ..c.oovviiiiiiiiiiini 102



LIST OF FIGURES xi

4.23

4.24

4.25

4.26

5.1

52

5.3

54

5.5

5.6

5.7

ESO trajectory for 12-node structure with varying member thickness (ranging

from 0.005 to 0.025 m in steps 0f 0.005) ...ccooviiiimiiiiini 103
ESO & GA (50 generations & 20 designs in each population) comparison for
6-node structure with thickness as a variable ranging from 0.005 to 0.025 m in
SEEPS OF 0.005 ...cveeeeeieiiite et 104
ESO & GA (100 generations & 50 designs in each population) comparison for
6-node structure with thickness as a variable ranging from 0.005 to 0.025 m in
SEEPS OF 0.005 ..ottt 104
ESO & GA (100 generations & 100 designs in each population) comparison

for 12 node structure with thickness as a variable ranging from 0.005 to 0.025

M 10 SEEPS OF 0.005 ..ottt 105

Definition of the design bands—(i) and (ii): when corner points need to be

created to include all the designs within the band, (iii) and (iv): when joining

the ends of the best and the worst fronts is satisfactory ........c.ccocveeieiiininnnnn 111
Flow chart of ESO assisted GA (ESOaGA) method .......ccconeiiiiiiiniinn 116
Fully connected framework with 6 NOAeSs.......c.cooviiiimiiiiis 117
ESO trajectory of @ 6-10de SUCIUIE .......oveveveiiiicieieiiiiiimnts e 117

Comparison of ESOaGA method including all ESO designs in the initial
population and “unassisted” GA for a 6-node structure (20 generations and 20
designs in each population). The PF of the exhaustive search is also shown....... 118
Comparison among all possible ESOaGA bands overlaid when 1 ESO design

is included in the initial population each time for a 6-node structure (20
generations and 20 designs in each population). The PF of the exhaustive

search is overlaid. Each ESOaGA band is filled with the same light blue

COLOUT oo e et e e e e et e sttt e s st raassssaeeeeesenattrart e b arn it naens 120

xi



LIST OF FIGURES xil

5.8

59

5.10

5.11

5.12

5.13

5.10

5.11

5.12

5.13

5.12

5.13

5.14

Comparison among cases of ESOaGA including different pairs of ESO
designs in the initial population for a 6-node structure (20 generations and 20

designs in each population). The PF of the exhaustive search is also

Comparison among cases of ESOaGA including different sets of 3 ESO
designs in the initial population for a 6-node structure (20 generations and 20

designs in each population). The PF of the exhaustive search is also

Comparison of ESOaGA including 1 (3") ESO design in the initial population
and ESOaGA including all 9 ESO designs in the initial population for a 6-
node structure (20 generations and 20 designs in each population). The PF of
the exhaustive search is also SHOWIL ......ooiiiimneniniiiii 123
Comparison of ESOaGA including 1 (3), 2 (5™ 6™ and 3 (1%, 2", 3") ESO
designs in the initial population for a 6-node structure (20 generations and 20

designs in each population). The PF of the exhaustive search is also

Comparison of ESOaGA including 1 (3", 3 (5™ 6%, 7™ and 5 (4™, 5", 6", 7",
8™ ESO designs in the initial population for a 6-node structure (20
generations and 20 designs in each population). The PF of the exhaustive
SEArCh 1S A1SO SMOWIL ...vivviireiiieeieetiirieieie st 126
Comparison of ESOaGA including 3 (Sth, 6™, 7™ ESO designs in the initial
population and “unassisted” GA for a 6-node structure (20 generations and 20
designs in each population). The PF of the exhaustive search is also shown......128
Comparison between ESOaGA including 2 (Sth, 6“‘) ESO design in the initial
population and “unassisted” GA for a 6-node structure (40 generations and 20
designs in each population). The PF of the exhaustive search is also shown....... 129

Fully connected framework with 12 n0des.......cocueveiriimmiismsncnsssesnes 130

Xii



LIST OF FIGURES Xiil

5.15

5.16

5.17

5.18

5.19

5.20

5.21

5.22

5.23

5.24

5.25
5.26

5.27

Comparison between ESOaGA including 10 ™ 10™, 15™ 20", 25", 30,
35™ 40™ 45" 50™) ESO designs in the initial population and “unassisted”
GA for a 12-node structure (20 generations and 20 designs in each
POPULALION) ...ttt 131
ESOaGA including 1 25), 2 (25™, 35™), 5 (5™, 15", 25", 35", 45™) and 10
(5™ 10, 157, 20%, 25%, 30, 35, 40", 45", 50) ESO designs in the initial
population for a 12-node structure (20 generations and 20 designs in each
POPULALION) ..ottt 132
Comparison of ESOaGA including all ESO designs in each population and
«unassisted” GA for a 6-node structure (40 generations and 20 designs in each
population). The PF of the exhaustive search 15 alsO ShOWN ..c..eciiiiiiiiriiiieeine 135
Comparison of ESOaGA including 2 (Sth, 6™) and all ESO designs in each
population for a 6-node structure (40 generations and 20 designs in each
population). The PF of the exhaustive search is also shown...........c....... 136
Comparison of ESOaGA including 2 (Sth, 6™ ESO designs in each population
and “unassisted” GA for a 6-node structure (20 generations and 20 designs in
each population). The PF of the exhaustive search is also shown........... 137
Comparison of ESOaGA including 1 (25th) ESO design in each population
and“‘unassisted” GA for a 12-node structure (20 generations and 20 designs
in €aCh POPUIALION) ....urvuvrrrisrieiirerseiie it 141
Comparison of ESOaGA including 1 (25th) ESO design in each population
and “unassisted” GA for a 12-node structure (40 generations and 20 designs in
€aCH POPULALION) ..eovveerierierniiiresis e 142
522 Comparison of ESOaGA including 3 (5™ 6™ 7™ ESO designs in each

population and ESOaGA including 3 (5™, 6™, 7™ ESO designs in the
initial

Xiil



LIST OF FIGURES . X1V

5.28

5.29

5.23

5.24

5.25

5.26
5.26

5.27

5.28

5.29

5.30

5.31

population for a 6-node structure (20 generations and 20 designs in
each

population). The PF of the exhaustive search is also shown................... 144
Comparison of ESOaGA including 2 (5", 6™) ESO designs in each population
and ESOaGA including 2 (5™, 6™) ESO designs in the initial population for a
6 node structure (40 generations and 20 designs in each population). The PF of
the exhaustive search is also SHOWIL ..c..ciiiiriiiininiiiii 145
Comparison of ESOaGA including 1 (25th) ESO design in each population
and ESOaGA including 10 (5%, 10", 15", 20", 25", 30, 35", 40", 45" 50™)
ESO designs in the initial population for a 12-node structure (20 generations
and 20 designs in each pOPUIAION)......cvveiiiiiiiniinsisii e 146
Comparison of ESOaGA including 1 (25th) ESO design in each population
and ESOaGA including 10 (5%, 10%, 15, 20™, 25™, 30, 35", 40™ 45" 50™)
ESO designs in the initial population for a 12-node structure (40 generations

and 20 designs in each pOPUIAtioN)......cccovirinmiinirnmeicesninissneene 148
Flow chart of GA assisted ESO (GAaESO) method ..o 150
“Unassisted” GA designs (circled) functioned as starting points for ESO runs
(solid lines with stars) for the 6-N0AE SITUCTUTE ..vvrevveeererieiieeereeseesseeiieie s 151
Comparison of GAaESO designs and “unassisted” GA designs for a 6-node
structure (20 generations and 20 designs in each population). The PF of the
exhaustive search iS also SHOWI ..ccovieviiiiiieinrinei e 152
Comparison of GAaESO method (20 generations and 20 designs in each
population) and “unassisted” GA for a 6-node structure (40 generations and 20
designs in each population). The PF of the exhaustive search is also shown......153
“Unassisted” GA designs (circled) functioned as starting points for ESO runs
(solid lines with stars) for the 12-node étructu:re ................................................. 154

Comparison of GAaESO method (20 generations and 20 designs in each

Xiv



LIST OF FIGURES XV

5.32

5.33

5.34

5.35

5.36

5.37

5.38

population) and “unassisted” GA (20 & 40 generations and 20 designs in each

population) for @ 12-n0de SIIUCTUTE ......cueveiimiinimiiiiisi s 155

Comparison of ESOaGA including 3 (5", 6", 7™ ESO designs in each

population and GAaESO for a 6-node étructure (20 generations and 20 designs

in each population). The PF of the exhaustive search is also ShOWN....c.covvernnnn. 157
Comparison of ESOaGA including 2 (Sth, 6™ ESO designs in the initial
population and GAaESO for a 6-node structure (40 generations and 20 designs

in each population). The PF of the exhaustive search is also shown.......ccceennne. 158
Comparison of ESOaGA including 1 (25th) ESO design in each population and
GAaESO for a 12-node structure (20 generations and 20 designs in each
POPUIALION) ..t 159
Comparison of ESOaGA including 1 (25th) ESO design in each population and
GAaESO for a 12-node structure (40 generations and 20 designs in each
POPULATION) ..o eoeceesvrerssesss s 160
Comparison of ESOaGA for a 12-node structure (20, 40 & 80 generations and

20 designs in each population) .............. S OOPROR PO PRSPPI 161
Comparison of GAaESO for a 12-node structure (20, 40 & 80 generations and

20 designs in €ach POPUIALION) .....cvuevmcicumiunininisisssis e 162
Comparison of ESOaGA including 10 (5", 10", 15", 20%, 25™ 30™ 35 40",
45" 50™) ESO designs in each population, ESOaGAaESO and GAaESO for a
12-node structure (20 generations and 2.0 designs in each population). The

brown band represents the ESOaGA as the blue, red and yellow

BANAS A€ OVETIAIA ovve ettt ettt st 163

XV



List of Tables

2.1

31

3.2

4.1

4.2

5.1

52

53

Comparison of CPU time between exhaustive and GA search .......ccceeevniniininiiinnns 98

Comparison of CPU time for ESO and GA calculations......ccoveeeiiiieincnencninineen 106

Ranking colour scheme used in the following tables unless stated otherwise. Rank

1 refers 10 the Dest ABSIGN SEL.....ceuiiirriiiririeis s 119
Comparison between “unassisted” GA and ESOaGA including all ESO designs

in the initial pépulation for a 6-node structure (20 generations and 20 designs in

€ACH POPUIATIONY ...ocvvvrrresnrisssseessserssss s 119
Comparison among various cases of ESOaGA including 2 ESO designs in the

initial population for a 6-node structure (20 generations and 20 designs in each

POPULALION) ... vorevreisersersesisms s s 121

XVvi



LIST OF TABLES xvii

5.4  Comparison among various cases of ESOaGA including 3 ESO designs in the

initial population for a 6-node structure (20 generations and 20 designs in each

POPULALION) ...ttt s 122
5.5 Comparison of ESOaGA including 1 (3" and all ESO designs in the initial

population for a 6-node structure (20 generations and 20 designs in each

POPUIATION) .ttt ettt bbb 124
5.6 Comparison of ESOaGA including 1 (3'%), 2 (5, 6™) and 3 (1%, 2™, 3*) ESO

designs in the initial population for a 6-node structure (20 generations and 20

designs in €ach POPUIALION) ........vviviveiiiiieiriiir i 125
5.7 Comparison of ESOaGA including 1 (3, 3 (5™, 6®, 7") and 5 (4", 5", 6", 7%, 8"

ESO designs in the initial population for a 6-node structure (20 generations and 20

designs in each POPULALION) .....vurvrveiiiiiieiriieiee e 127
5.8 Comparison of ESOaGA including 1 (3'%), 2 (5", 6™), 3 (5", 6", 7hy, 5 (4™, 5%, 6™,

7% 8™) and all ESO designs in the initial population for a 6-node structure (20

generations and 20 designs in each population) ......c...ooooveviiiermienciniininis 127
5.9 Comparison of ESOaGA including 1 (3"%), 2 (5", 6™), 3 (5", 6", 7), 5 (4", st 6™,

7% 8™) and all ESO designs in the initial population for a 6-node structure (40

generations and 20 designs in each population) ... 127
5.10 Comparison between ESOaGA including 3 (5", 6%, 7*) ESO designs in the initial

population and “unassisted” GA for a 6-node structure (20 generations and 20

designs in each POPUIALION) .......ccviivririerneicici s 128
5.11 Comparison between ESOaGA including 2 (5", 6™) ESO designs in the initial

population and “unassisted” GA for a 6-node structure (40 generations and 20

designs in each POPULALION) .....vvuiveiurieiiiriieiiei s 129

Xvii



LIST OF TABLES Xviii

5.12

5.13

5.14

5.15

5.16

5.17

5.18

5.19

Comparison of ESOaGA including 5 (5", 15", 25", 35% 45™) 10 (5®, 10™ 15

20%, 25™, 30", 357, 40™, 45", 50™), 20 (1%, 5%, 7™, 10, 12™, 15 17% 20

22", 25%, 27", 30", 32", 35", 37" 40%, 42, 45™, 47" 50™) ESO designs in the
initial population and “unassisted” GA for a 12-node structure (20 generations and

20 designs in €ach POPUIAtION) .....vuvvevuveruieieieiceeeeeeee e e oo 131
Comparison of ESOaGA including 1 (25™), 2 (25™, 35™), 5 (5™, 15" 25 35t

45" and 10 (5™, 10, 15%, 20™ 25® 30", 35", 40", 45", 50™) ESO designs in the
initial population for a 12-node structure (20 generations and 20 designs in each
POPULALION) ...t ettt e, 133
Comparison of ESOaGA including 1 (25™), 2 (25®, 35™), 5 (5%, 15™, 25™ 350

45" and 10 (5®, 10™, 15®, 20™, 25™, 30™, 35" 40™, 45®, 50™) ESO designs in the
initial population for a 12-node structure (40 generations and 20 designs in each
POPULALION) ...ttt ettt e e ees e 133
Comparison of ESOaGA including ESO designs in the initial population and
“unassisted” GA for each initial seed case with respect to hypervolume indicator ... 134
Comparison of ESOaGA including ESO designs in the initial population and
“unassisted” GA for each initial seed casé with respect to epsilon indicator............. 134
Comparison of ESOaGA including ESO designs in the initial population and
“unassisted” GA for each initial seed case with respect to R indicator...................... 134
Comparison of ESOaGA including all ESO designs in each population and
“unassisted” GA for a 6-node structure (40 generations and 20 designs in each
POPULATION) ...ttt ettt es e, 135
Comparison of ESOaGA including 2 (5, 6™) and all ESO designs in each

population for a 6-node structure (40 generations and 20 designs in each

POPULALION) ..ottt 136

Xviii



LIST OF TABLES Xix

5.20

5.21

5.22a

5.22b

5.23

5.24

5.25

Comparison of ESOaGA including 2 (5™, 6) ESO designs in each population and
“unassisted” GA for a 6-node structure (20 generations and 20 designs in each
POPUIALION).....covvoiiiiii et e e oo eoeoeo 137
Comparison of ESOaGA including 2 (5", 6™), 3 (5", 6™, 7™), 5 (4™ 5% gt 7th

8™), all ESO designs in each population and “unassisted” GA for a 6-node

structure (20 generations and 20 designs in each population)...........cocoevevererierennn... 138
Comparison of ESOaGA including 1 (3'), 2 (5%, 6™), 3 (5™, 6™, 7), 5 (4™, 5™ 6,

7" 8"™) and all ESO designs in each population for a 6-node structure (40

generations and 20 designs in each population) e, 139
Comparison of ESOaGA including 2 (5", 6™) ESO designs in each population and
“unassisted” GA for a 6-node structure (40 generations and 20 designs in each
POPULALION) ..ot oo 139
Comparison of ESOaGA including 1 (25“1), 225", 35™), 5 (5%, 15, 25® 35t

45") and 10 (5", 10, 15™, 20", 25™, 30", 35% 40 45% 50™) ESO designs in

each population for a 12-node structure (20 generations and 20 designs in each
POPUIALION)). oooivviieieii e 140
Comparison of ESOaGA including 1 (25™) ESO design in each population and
“unassisted” GA for a 12-node structure (20 generations and 20 designs in each
POPUIALION) ...ttt e oeeoeoeeeeooee 141
Comparison of ESOaGA including 1 (25™), 2 (25™, 35th), 5 (5%, 15™, 25™ 35t

45™) and 10 (5™, 10", 15™, 20, 25™, 30™ 35% 40 450 50™) ESO designs in

each population for a 12-node structure (40 generations and 20 designs in each

POPUIALION) ..ottt oeeeooe 141

XiX



LIST OF TABLES XX

5.26

5.27

5.28

5.29

5.30

5.31

5.32

5.33

Comparison of ESOaGA including 1 (25th) ESO design in each population and
“unassisted” GA for a 12-node structure (40 generations and 20 designs in each
POPULAHION) ..o oeeoooooeeo 142
Comparison of ESOaGA including ESO designs in each population and

“unassisted” GA for each initial seed case with respect to hypervolume

IGCALOT et 143
Comparison of ESOaGA including ESO designs in each population and

“unassisted” GA for each initial seed case with respect to epsilon indicator............. 143
Comparison of ESOaGA including ESO designs in each population and

“unassisted” GA for each initial seed case with respect to R indicator-...................... 143
Comparison of ESOaGA including 3 (5™ 6", 7™ ESO designs in each population

and ESOaGA including 3 (5", 6", 7) ESO designs in the initial population for a
6-node structure (20 generations and 20 designs in each population)....................... 144
Comparison of ESOaGA including 2 (5™, 6™ ESO designs in each population and
ESOaGA including 2 (5, 6™) ESO designs in the initial population for a 6-node
structure (40 generations and 20 designs in each population)............c....ccvveeerrnnn.. 145
Comparison of ESOaGA including 1 (25™ ESO design in each population and
ESOaGA including 10 (5, 10", 15", 20, 25™, 30", 35™ 40" 45% 50" ESO

designs in the initial population for a 12-node structure (20 generations and 20
designs in each POPUIALION) ............vvveeevevvveeeeroeeeeeeeeeee oo 147
Comparison of ESOaGA including 1 (25th) ESO design in each population and
ESOaGA including 10 (5", 10", 15", 20, 25™ 30™, 35% 40t 45™ 50™ ESO

designs in the initial population for a 12-node structure (40 generations and 20

designs in each POPUIALION) .............cceewevveveoverreeerooeoeeseeeseeseeseseeeooeoooooooo 149

XX



LIST OF TABLES XX1

5.34

5.35

5.36

5.37

5.38

5.39

5.40

Comparison of GAaESO and “unassisted” GA for a 6-node structure (20

generations and 20 designs in each POPUIALION) .....ovvueiiicree e 152
Comparison of GAaESO (20 generations and 20 designs in each population) and
“unassisted” GA (40 generations and 40 designs in each population) for a 6-node
SUTUCTULE .-ttt eoeoseeeooeeo e 153
Comparison of GAaESO and “unassisted’; GA for a 12-node structure (20

generations and 20 designs in each POPULALion) .....c.veceveivereieeceeee e 155
Comparison of GAaESO (20 generations and 20 designs in each population) and
“unassisted” GA (40 generations and 20 designs in each population) for a 12-node
STTUCTUTE 1.ttt et 156
Comparison of ESOaGA including 3 (5%, 6™, 7") ESO designs in the initial
population and GAaESO for a 6-node structure (20 generations and 20 designs in

€aCh POPUIALION) ........v.eeeeereieii e 157
Comparison of ESOaGA including 2 (5™, 6™ ESO designs in the initial population
and GAaESO for a 6-node structure (40 generations and 20 designs in each
POPULALION) ...ttt 158
Comparison of ESOaGA including 1 (25™) ESO design in each population and

GAaESO for a 12-node structure (20 generations and 20 designs in each

‘ POPULALION) ...t 159

5.41

Comparison of ESOaGA including 1 (25™) ESO design in each population and
GAaESO for a 12-node structure (40 generations and 20 designs in each

POPUIAION) ...t 160

xXxi



LIST OF TABLES XXii

542

5.43

5.44

Comparison of ESO assisted GA (ESOaGA) including 10 (5, 10", 15%, 20t 25
30", 35™, 40", 45" 50™) ESO designs in each population, ESO-assisted-GA
assisted-ESO (ESOaGAaESO) and GA assisted ESO (GAaESO) for a 12-node
structure (20 generations and 20 designs in each population).........ccccceevvivreveuennn, 163
P-values for each of the comparisons among the quality indicators for the 6-node
problem. The table numbers refer to those previously discussed in this chapter....... 166
P-values for each of the comparisons among the quality indicators for the /2-node

problem. The table numbers refer to those previously discussed in this chapter ....... 166

xxii



Declaration of Authorship

I, Charalambos Tsatsaris, declare that the thesis entitled

“EVOLUTIONARY AND GENETIC STRATEGIES FOR TOPOLOGY
OPTIMIZATION OF FRAMEWORKS: PARETO-COMPARISONS AND HYBRID
METHODS”

and the work presented in it are my own. I confirm that:

e this work was done wholly while in candidature for a research degree at the
University;

e where I have consulted the published work of others, this is always clearly
attributed,;

e where I have quoted from the work of others, the source is always given.
With the exception of such quotations, this thesis is entirely my own work;

e Ihave acknowledged all main sources of help;

e Parts of this work will be published as:

- C. Tsatsaris, A. Bhaskar, A. J. Keane, “Comparison between Evolutionary
Structural Optimization and genetic algorithm methods for Framework
Design”, In preparation for submission.

- C. Tsatsaris, A. Bhaskar, A. J. Keane, “Evolutionary Structural Optimization
assisted GA methods for framework topology”, In preparation for submission.

XXiil



Acknowledgements

First of all, T would like to express my gratitude and appreciation to my
supervisor Dr. Atul Bhaskar, for his inspiring guidance, support and encouragement
through my academic years.

I wish to thank Professor Andy Keane for his very useful suggestions and
comments during my research.

I thank Dr. Ivan Voutchkov for his assistance with OptionsMatlab.

I would also like to thank my friends Maria Nestoridi, Emmanuel Fleris,
Andreas Prongidis, Praveen Thokala and Dr. Thanasis Makrodimopoulos for their
support and giving me a place to stay when I needed throughout this year.

I am forever indebted to my parents for their encouragement and support

through all these years.

XX1V



Nomenclature

MRR

e

C S,

[£]

(K]

(K]

Von Mises stress
Von Mises stress of the element

Normal stresses in x direction

Normal stresses in y direction

Maximum von Mises of the whole structure
Shear stress

Current rejection ratio

Initial rejection ratio

Evolutionary rate

Member removal ratio

Number of nodes

Local displacement of a plane frame element
Global displacement of a plane frame element
Transformation matrix

Modulus of elasticity

Moment of inertia

Cross-sectional area

Length of plane frame element

Element inclination angle

Constants

Stiffness matrix

Stiffness matrix for the i element in local coordinates
Stiffness matrix for the i element in global coordinates

Force vector for each element in global coordinates

XXV



NOMENCLATURE . XXvi

{7} Nodal vector for each element in global coordinates
{r} Force vector for each element in local coordinates
{q} Nodal vector for each element in local coordinates
F - Force matrix

Q giobar Matrix that includes all the global nodal displacements

n M Total number of members in a fully connected design

r Number of members removed from a fully connected design
ne No of designs with » members removed

Q Set of all approximation sets

B, C Approximation sets

1., Quality indicator

R Reference set

1, Hypervolume indicator

I, Hypervolume indicator according to reference set R
1, Epsilon indicator

1., Additive Epsilon indicator

€ Minimum factor

A Set of parameters

u Utility function

Uampao  Utility function according to set A of parameters
A Weight vector

u, Weighted sum of the objective vectors

u* Maximum value of u,

Z Set of objective vectors

z', z>  Objective vectors

Iz, .1,  Rindicators

Hy Null hypothesis

H, Alternative hypothesis

P Probability of test

a Statistical significance level

XXVvi



Chapter 1

Introduction

1.1. The importance of structural optimization

While developing new products, it is important to search for optimal designs
given the objectives and the constraints. Consideration to topology must be given at
an early stage of the design process. Over the last decade a lot of research has been
carried out on the development of efficient procedures for the solution of such
problems. This thesis builds on such work.

Structural mechanics is significant at all stages of design while developing a
mechanical component. The loading and support conditions of a particular design
problem are usually known in advance, but the designer cannot be sure of what the
actual structure is going to look like. Low weight is one of the main objectives for
load carrying structures. This is particularly true for airworthy structures. Therefore
weight reduction is frequently a main objective of the design task.

Research into the fields of material laws, advanced materials, contact
mechanics, damage mechanics, etc., have proven to be of particular importance for
solving various problems. This includes fast development in computer science and
technology, the programming and the availability of sophisticated systems for
analysing large scale, highly non-linear systems.

The development and construction of products, especially in industrial practice
frequently raises the question as to what measures must be taken to improve quality
without unnecessarily increasing the cost. Thus, a new area within the scope of
Computer Aided Engineering commonly known as Structural Optimization has

evolved.
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Topology optimization has become an important and well recognized sub-area
of structural optimization. Topology optimization aims at finding the topology of a
structure that optimizes certain objectives. The aim is often expressed as maximizing
the stiffness or strength of a body using a fixed amount of material. Topology
optimization schemes are categorized into two classes - those for discrete structures
and those for continuous structures. Extensive research and development has been
focused on structural optimization in the past three decades. Most of this work has
been related to the optimization of member cross-sections, while less effort has been

devoted to topology optimization.

1.2. Categories of structural optimization

Minimizing the weight of a structure while satisfying various requirements on
structural response, cost and manufacturing is a complicated task. ‘Experienced
engineers may be able to come up with solutions that fulfil some of these
requirements, but they will seldom be able to obtain the optimal structure. In order to
both optimize the structure and meet the given requirements, the engineers must make
use of the speed and efficiency afforded by computer programs. The development of
efficient computer algorithms for the optimization of structures is a very active area of
research.

Nowadays structural optimization involves all problems in which the geometry
is the subject of the optimization. Bearing in mind that a mechanical design has basic
elements: topology, shape and size, we distinguish the following three types of

structural optimization:

o Sizing optimization: a typical size of a structure is optimized (a thickness
distribution of a beam or a plate, orientation of fibres in composite material).
A simple sizing optimization problem is shown in Figure 1.1a.

o Shape optimization, when the shape of a structure is optimized, without
changing its topology (Figure 1.1b).

» Topology optimization: besides the shape also the topology of a structure is

optimized by creating holes, e.g. Figure 1.1c.



CHAPTER 1 3

The boundary between sizing and shape optimization is not very sharp.
Alterations in size optimization inevitably alter the shape of an object. In other words
sizing optimization and shape optimization go hand in hand, and they are closely
related. Both sizing optimization and shape optimization methods consider the
optimization of structures with fixed topologies. However, topology optimization
methods are based on the material connectivity of the structure. These methods find
the optimal number of holes or members in a structure as far as a continuum or

discrete structure is concerned (Figure 1.1c).

Figure 1.1: Three categories of structural optimization: (a) sizing optimization, (b)
shape optimization, (c) topology optimization. The initial problems are shown at the
left-hand side and the optimal solutions are shown at the right [1].

One of the important features of shape optimization is its interdisciplinary
character. On the one hand, the problem has to be well posed from the mechanical
point of view, requiring a good understanding of the physics. On the other hand, the
problem has to be mathematically formulated and after that numerically solved [2]. At
this stage no less than three mathematical disciplines interact: theory of partial
differential equations (PDE's), approximation of PDE's usually by finite element
methods and the theory of nonlinear mathematical programming.

The stiffness of a structure is one of the major requirements a designer has to
take into account to design structures such as buildings and bridges. Despite the

significant effort in the area of structural optimization over the past three decades,
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most techniques developed so far are restricted to sizing optimization or shape
optimization with fixed topology. Work on the effect of changes in topology and
shape is limited. A basic reason for this is due to the inability to describe shape and
topological changes via increments. The calculus of continuous variables is not easily
applicable now in order to obtain sensitivity information, which is useful for design

search and optimization.

1.3. Definition and terms of topology

The term topology is next discussed and defined mathematically. Topology as
a sub-field of geometry should be explained. Etymologically, the word is derived
from the Greek noun topos, which means location, place, space or domain.
Mathematically speaking, topology is concerned with objects that are deformable in a
so-called “rubber-like” manner. Topology optimization involves changing the
connectivity of material in structural geometries. The earliest results were, perhaps
Michell-type structures [3] regarding the optimal layout design of trusses. This work
was later developed into the optimal layout theory [4].

In the 1950s and 1960s important papers on topology were contributed. The
theories developed in that period were concerned with the topological domain. All
subsets including straight lines and sets of points are called topological domains.
From a mathematical point of view, all distortions are transformations or reversibly
unique mappings. Topological transformations or topological mappings can be
defined as those transformations of one topological domain into another that neither
destroy existing nor generate new neighbourhood relations. Two topological domains
are termed topologically equivalent if there exists a topological mapping of one of the
domains into the other one (Figure 1.2). Hence,‘ a topological property of a domain is

a characteristic maintained at all topological mappings, i.e., it is invariant.
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Figure 1.2: Topological mapping/transformation [5].

“Generally, topological transformations can be formulated as continuous
transformations whose reverse transformation is also continuous. The latter case is
also called homomorphism, i.e., the transformations are reversibly unique and
continuous” [5].

Based on the above definitions of topology, a connection should be established
between topology and optimization. The term “topology class” describes certain
objects that are topologically equivalent (Figure 1.3a). A topology class is defined by
the degree of connection of domains. A second topology class is defined by the degree
to which the domains are connected (Figure 1.3b). A topology class is termed n-fold
connected, if #-1 cuts from one boundary to another are required to transform a given,

multiply connected domain into a simply connected domain (Figure 1.3c).

{a) Topalogically equivalent domains

ottt

Figure 1.3: Topological properties of two-dimensional domains [5].
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1.4. Applications of Topology Optimization

Reducing cost and improving performance are two key objectives in structural
design. In the aerospace and automotive industries, this is particularly useful with
respect to design criteria such as strength, stiffness, mass, fatigue life, manufacturing
cost and maintenance cost [6]. Topology optimization is one method of reducing costs
and improving performance in structural systems.

Research in topology optimization is currently of great interest. Potentially a
large spectrum of industrial problems (see Figure 1.4) could benefit from such studies.
The main contributions of topology optimization could be weight reduction and
performance optimization of automobiles, aircraft, space vehicles and many other
structures (Figure 1.4). It can be used to obtain the best layout of vehicle structural
components to achieve prescribed performance goals. Recent optimization projects
have shown that topology optimization helps to develop unique concepts and drives
innovation. Good examples are several projects published by Airbus Industries and
EADS where the use of topology optimization led to radically new design concepts
that are superior to those developed using a classical design approach [7, 8]. Other
applications include the design of transducers for underwater sound detection, car
parts for crash-worthiness, medical implants and Micro-Electromechanical Systems
for use in hearing aids and micro robots [9].

One of the goals of the vehicles industry is to decrease vehicle weight in order
to reduce fuel consumption and increase transport efficiency. One way to achieve a
lighter vehicle is to reduce the structural weight by use of structural optimization
tools. Structural optimization includes several types of methods, e.g. size, shape, and
topology optimization, whereby size and shape optimization are mostly used for
improvements of existing structures while topology optimization is a more general
method used to find an optimal structural layout [10-12]. A vehicle body can be seen
as a frame structure with beams and joints, i.e. a space frame (see Figure 1.5). In the
conceptual design phase, topology optimization of the frame structure is of interest to
determine how beams should be arranged and how dimensions of beams and joints

should be chosen.
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System Automobile Aircraft Spacecraft

Subsystem | Body-in-white Wing structure | Bus structure

Component Floor pan Wing spar Bracket

Figure 1.4: Examples of structural systems, subsystems, and components for the
automotive, aircraft and spacecraft industries [13].

Joint

-Beam

Figure 1.5: A car body as a frame structure consisting of beams and joints [11].

A basic dilemma that an automotive engineer faces is how to combine the
desire for low fuel consumption and increased driving comfort at the same time. In

order to decrease the fuel consumption they must decrease the weight of the car. But,
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increased driving comfort requires a bigger (heavier) car. The same dilemma arises
for the engineers of the aeroplane. The weight of the aeroplane should be minimized
in order to save fuel and carry more passengers, but at the same time, the aeroplane
should be strong enough to withstand storms, turbulence and hard landings.
Minimizing the weight of a structure while at the same time satisfying various
requirements on structural response such as cost, aesthetics and manufacturing, is a
complicated task.

Topology optimization has been applied successfully in the automotive
industry [12] for a considerable time and is increasingly becoming a mainstream
technology for the design of aircraft components [8]. A reason for this is partly the
larger problem sizes and often quite complicated support and loading conditions for
aircraft components. However, compliance based topology optimization methods are
unable to cope with other design constraints such as buckling — often an important
design consideration in the aircraft industry. Typical components that have been
constructed for optimization are wing leading 'edge ribs, main wing box ribs, different
types of wing trailing edge brackets as well as fuselage doorstops, fuselage door
intercostals and aeroplane floor supports.

Framework structures are widely employed in the mechanical, civil and
aeronautical domains. They appear as bridges, towers, pylons, roof supports, building
exoskeletons or high technology light space structures (e.g. small satellites).
Specifically, the development of topology optimization of framework structures on
aeronautical and space related projects such as satellites and spacecrafts would be
crucial. Topology optimization methods can help aeronautical and space industry by
providing them optimal designs, combining less cost, less weight and more strength at

the same time.

1.5. Objectives

A commonly used method of shape and topology optimization is the so-called
Evolutionary Structural Optimization (ESO) [14-28]. There is the intuitive appeal that
the ESO process attempts to render the stress distribution over the entire structure

uniform so that when the structure is loaded all the material points exceed the
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allowable stress simultaneously. Therefore, it is only reasonable to hypothesize that
removal of relatively under-utilised members will lead to a reduction in weight
without much penalty on the increase in maximum stress. In this thesis, we propose to
test this hypothesis by observing the trajectory of designs during the ESO process on
the weight-maximum stress plane and later overlaying it with the Pareto Front (PF)
for the two-objective problem of simultaneously minimizing weight and the
maximum stress within the structure. As a plane frame affords an ideal setting to
study topology optimization [29-3 1] —we have therefore kept the scope of the present
work limited to planar frame topology optimization.

The effectiveness of the Evolutionary Structural Optimization (ESO) method
of designing frameworks is studied further. The designs obtained by ESO are
compared with the designs obtained using exhaustive search for combined
performance on two counts: the maximum stress within the structure and the overall
weight. Numerical experiments were conducted to examine the quality of framework
designs produced by ESO. To study the Pareto-efficiency of ESO for various
problems, exhaustive search and genetic algorithms (GA) are used as metrics. Further,
sizing optimization using the ESO method for framework structures is studied. Cross-
sectional areas of members are considered as design variables and the coordinates of
the nodes and connectivity among various members are considered to be fixed.

New topology optimization approaches have been developed, so that
improvement in both efficiency and computational time can be obtained. In topology
optimization, usually there are many local optimal solutions but only one global
optimum exists to a given problem. Most of the methods such as ESO cannot perform
a global search and thus do not necessarily converge to the global optimal solution for
the given objective functions and constraints. Instead of searching for a local
optimum, one may want to find the globally best solution in the feasible region. It is
known that GAs, which are based on the Darwinian survival-of-the-fittest principle to
mimic natural biological evolution, are a stochastic global optimization method.
However, GAs are usually computationally expensive, as a very large number of
function evaluations is normally required to attain an optimal solution. An
improvement in the computational efficiency of the GAs is achieved by finding ways

to combine GA and ESO methods.
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1.6. Outline of Thesis

The first part of this work, presented in Chapter 2, looks into the literature
related to the structural optimization methods. The most important approaches in
structural optimization are reviewed. Various families of structural topology
optimization methods that have been extensively developed in the last three decades
are presented.

The work presented in the next chapters is focused on the topology
optimization of frameworks. A plane frame member is considered which combines
the characteristics of a truss and a beam because it has axial as well as transverse
degrees of freedom. In Chapter 3, the optimal designs of frameworks are obtained by
a FEA code written in MATLAB using the idea of the ESO. Various examples are
given, leading to reasonable optimal structural designs. Moreover, the effect of
scaling the cross-sectional size in framework topology optimization is examined.
Simultaneous sizing and topology optimization based on the ESO idea is achieved.
In this chapter, general trends that ESO possesses for discrete frameworks are studied
in the weight-maximum stress space.

In Chapter 4, the trajectory of designs as obtained by the Evolutionary
Structural Optimization are compared with the Pareto-optimal designs for various test
problems. The approach adopted is to encode the problem formulation in a genetic
algorithm and to allow the formulation to evolve in the direction of improving Pareto
optimal designs. A variety of examples are given in order to demonstrate this
approach and its usefulness in improving Pareto efficient designs. The designs
produced by the Evolutionary Structural Optimization method are compared with the
Pareto-optimal designs. The difficulty of dealing with a large number of candidate
designs while using exhaustive search is resolved, using a Genetic Algorithm and
OptionsMatlab, as GA detects good solutions and eliminates bad solutions in a
population.

Chapter 5 presents two strategies for topology optimization of frameworks by
combining the Evolutionary Structural Optimization (ESO) method and the Genetic
Algorithins (GA). Numerical experiments carried out as a part of Chapter 4 suggest
that ESO, when applied to frameworks, is computationally cheap but it misses out the

structurally most efficient designs. On the other hand, GA obtains structurally more
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efficient designs but is expensive. Two new strategies are proposed and implemented
in this work in order to combine the quality of structural design obtained by GA and
the computational efficiency of ESO. In the first method called the ESO assisted GA
method (ESOaGA), ESO obtained designs are inserted in the GA population, helping
GA in the process to converge faster. The second method presented here is a GA
assisted ESO method (GAaESO), in which GA produced designs are used as starting
points for a family of ESO runs. The designs obtained by the two proposed methods,
are compared with the designs obtained using the “unassisted” GA for combined
performance on two counts: the maximum stress within the structure and the overall
weight. Finally, a comparison between the ESOaGA method and the GAaESO
method is made and the multiple use of ESO and GA for further performance
improvement is explored. Comparisons of the proposed methods and the “unassisted”
GA are carried out visually and quantitatively using quality indicators. The quality
indicator results of the methods under comparison are then examined for statistical
significance by applying the Kruskal-Wallis test.

Concluding remarks and suggestions for future areas of investigation are

presented in Chapter 6.
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Chapter 2

Structural optimization methods

2.1. Introduction

Structural topology optimization methods have been discussed in a large
number of publications [5, 32, 33] and a review of the relevant literature is presented
in this chapter. They can be categorized into discrete element approaches and
continuum approaches. F irst, a general review of the continuum optimization will be
given. The continuum approach is classified into two methods, The first approach, the
assumed microstructure approach, attempts to find the microstructure parameters
(e.g., size and orientation of holes) of each designed element in a finite element
model. The second approach assumes no microstructure, but rather heuristically
designs the material properties (e.g., Young’s modulus and density) of each finite
element directly to find optimal material distributions. A more analytic view of these
two main optimization approaches will be presented in this chapter. Following this,
discrete structural topology optimization will be introduced which is the main subject

of this thesis.

2.2. Continuum optimization of the structural system

In continuum methods of analysis, the structure is modelled as a homogeneous
piece of matter. Continuum structural optimization differs significantly from discrete
structural optimization. The structure is modelled as a solid continuum rather than a
finite system of frame members, Discrete techniques deal with a finite number of

framework elements each having well-defined length and cross-sectional
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characteristics, but on the other hand, continuum techniques deal with spatial
arrangements of material that might be difficult to interpret as a system of discrete
structural elements. For some large-scale structural problems, the structure must
actually be considered as a system of discrete structural elements that are joined
together.

While optimizing the spatial thickness distributions of plate structures, regions
of “zero thickness” were essentially recognised as “holes” in the plate structure [34].
“It was realised that optimization techniques using spatial distributions of design
variables are able to change and even optimize the topology of material distributions
in a structure” [35]. Structural topology optimization via distributed parameter
optimization techniques was first proposed in [36] and first demonstrated in [37]
using a homogenization method. Continuous design variable methods such as the
homogenization method, involve complex calculus operations and mathematical
programming. The two main approaches of continuum methods that are described
next are the microstructure (left hand column of Figure 2.1) and macrostructure

approaches (right hand column of F igure 2.1).

Microstructure- Macrostructyre-
Approaches Approaches
(Material} {Geometry)

.

;

Topology domain Topology domain

o

Topology dcsig;z "f’(:pétagy design

Figure 2.1: Conceptual processes of topology optimization of continuous structures

[5].
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2.2.1. Microstructure-approaches

The objective of this class of approaches is to find the structural topology,

which provides a given design objective an optimum value subject to a given amount
of structural material. It is assumed that in solid form the amount of structural material
is less than the amount that would be needed to cover fhe entire admissible domain for
the continuum. Hence, for the initial design it is normally chosen to distribute the
material evenly in some porous, micro-structural form over the admissible design
domain (see left-hand column of Figure 2.1). In the microstructure-approach to
topology optimization, one uses a fixed finite element mesh to describe the geometry
and the mechanical response fields within the entire allowable design domain. The
mesh is considered to be a uniform, rectangular partition of space. The design
variables are assumed to achieve constant values within each finite element. For the
analysis, the finite element method is applied with constitutive properties that reflect
relationships between stiffness components and material density. The optimization
consists of determining whether each volume element in the continuum should
contain material or not. To this end, the density of material within each finite element
is used as a design variable defined between limits 1 (solid material, shown in black in
the left-hand column of Figure 2.1) and 0 (void or very weak material indicated by
white). Two typical microstructure approaches are the homogenization and material
distribution methods discussed next.
i) Homogenization method: The most common microstructure-approach is the
homogenization method. The term homogenization means that an mhomogeneous
structural element, containing discontinuities in material or geometrical properties, is
replaced by a homogeneous but generally anisotropic element, whose stiffness
depends on direction but not location within an element [4].

A general method capable of performing simultaneous shape and topology
optimization was proposed in [37-40]. The method known as the homogenization
method uses representation of a structure with micro-voids and the objective is to seek
the optimal porosity of the medium using an optimality criterion. This approach has
been applied to optimize structures subject to a single static load [39] and multiple
loads [35].

Models for topology design have been viewed as material distribution

problems in a fixed domain [41, 42]. It is central to this concept that computations
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work with a fixed FEM mesh. This implies that low-density areas are also included in
the analysis for each feasible design. For stress constraints this leads to the difficulty
of the so-called stress singularity phenomenon, where low density regions may have
high stress but are structurally insignificant for the final design, rendering
computations difficult.

Additionally, there are other methods using the continuous approaches. These
include the cellular automation generation [43] and the soft kill option (SKO) [44]. A
“birth-and-death rule” is used to remove members of very low elasticity modulus so
that a final design only displays black and white areas.

In the topology optimization of continuum structures, the shape of the external
as well as the internal boundaries and the number of inner holes are optimized
simultaneously with respect to a predefined design objective. It is assumed that the
loading is prescribed and that a given amount of structural material ig specified within
a given 2D or 3D design domain with given bdundary conditions.

The topology of a design is in most cases chosen either intuitively or inspired

by already existing designs. However, there is an interest in improving the quality of
the products by finding their best possible topology at a very early stage of the design
process. One can distinguish between two classes of approaches, the so-called
Material or Micro-approaches and the geometrical or Macro-approaches.
ii) Material distribution method: Another approach is the material distribution
method, in which the material density of each member is selected as the design
variable. During the optimization process, intermediate density is penalised to force
the design variables to approach 0 or 1. If the material density of a member is close to
0 at the end of topology optimization, the member does not exist in the optimal
topology.

Figure 2.2 shows the optimal topology using the material distribution method
obtained in [45]. As shown in the figure, the result from topology optimization is
often a non-smooth, skeleton type of structure, which may not be practical. Further
post-processing, either by human interpretation using certain smoothing algorithms

[46], or integrating with shape optimization algorithms is required [47].
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Design
Domain

(@) The design domain and boundary conditions [45].

e |
3 [N
N 1

(b) The result from topology optimization [45].

Figure 2.2

In both homogenization and the material distribution method, the objective
functions are usually chosen to minimize compliance of the structure, or to maximize
stiffness of the structure. Maximizing the lowest natural frequency of the structure is
also used as the objective function in some practical situations. In almost all the
examples, the only constraint is that the amount of material that can be used in the
design domain is limited. Stress constraints are usually not included in topology
optimization, though stress constraints were considered using global stress functions

to approximate local stresses in [48].

2.2.2. Macrostructure-approaches

In this category of approaches, solid isotropic material is considered as
opposed to the porous, micro-structured one, and the topology optimization is
performed in conjunction with a shape optimization (right hand column of Figure
2.1). The finite element mesh cannot be fixed, but must change with the changes of
the boundaries of the design. Within the macrostructure-approach, the topology of a
solid body can be changed by growing or degenerating material or by inserting holes.

The first method recognises that an optimal design is simply a subset of the
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admissible design domain and that it can be obtained by adding or removing material
from the admissible design domain.

The second method consists of an iterative positioning of new holes
(“bubbles”) at specific points in the topology domain. In each iteration, the holes and
the existing variable boundaries of the continuous body are simultaneously subjected

to a shape optimization procedure [5].

2.3. Optimization of discrete structural systems

For discrete structures, the optimum topology involves determining the
optimum number and connectivity of the structural members. The optimization of
structural systems for maximum stiffness and least weight has been studied
extensively, see [30, 39, 41, 49-55]. The first optimum topology (layout) solutions for
loads of design dependent locations were the so-called “Prager structures”. Prager
structures are stress-constrained least-weight trusses where the sign of the member
stresses must be the same in all elements and the loads are allowed to move along
their lines of action [4]. By saying that the external loads are allowed to move along
their lines of action, it is meant that we have a set of loads to be supported by the
structure but we do not specify the exact location of the points of application of the
loads. In fact what we are seeking is not only the optimal topology for a set of loads
and supports but also the optimal point of application of the loads.

The historical development of shape and topology optimization of discrete

structural systems such as frames and trusses can be classified into three periods:

(1) In the initial period, pioneering studies have been made in the field [3, 56].
Although the study by Michell is important in view of theoretical background [3], the

techniques apply only to limited types of discrete structures and constraints.

(2) During the 1960s and the 1970s, interest in structural optimization grew due to the
development of high-speed computers. During this period many important theoretical
results for general optimization methods and their numerical implementations were

first presented. Difficulties in structural topology optimization were given felatively
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more attention. Methods for discrete shape/topology optimization were implemented
on very small test problems due to computing limitations.

Early work on topology optimization of trusses was carried out in [57]. All
nodal points represented a possible connection for a member truss. A ground structure
was defined by connecting all nodal points with truss members. In this work the
member forces were assumed to be variables, which led to a linear programming
problem. The number of variables in this problem is equal to twice the number of
members. The constraints are the equations of equilibrium in all joints of the structure.
The solution to this linear programming problem gives the member forces. Cross-
sectional areas are then obtained by dividing the absolute value of the member force
by the maximum stress. This means that the optimal topology is statically determinate
and fully stressed. The members corresponding to non-basic variables are zero, and
therefore deleted from the structure. Members corresponding to basic variables are
also deleted.

This method was extended to solve statically indeterminate structures subject
to multiple loading conditions [58]. Member cross-sectional areas were considered as
design variables. The objective function is linear, but the constraints become non-
linear functions of the design variables. Members with cross-sectional areas which
approach zero were removed from the structure. No proof that these members should

not re-enter the optimization process was given [59].

(3) The 1980s and the 1990s are characterised by extremely large growth in
computing technologies. Numerical techniques were further developed, and applied to
larger-scale, more realistic structures [60]. During this period, while advances in
discrete topology optimization continued, continuum structural topology optimization
methods were also introduced.

The initial design of discrete structures such as trusses can be broken down
into a set of nodal locations, and design of the connectivity of structural elements. The
former process is called geometry optimization or configuration optimization and the
latter is called topology optimization. Simultaneous optimization of topology and
geometry may be referred to as layout optimization or simply configuration
optimization [61]. Theoretical works such as explicit optimality criteria approaches
and the method based on so-called grillages are summarised in [30] and monographs

such as [4, 52, 62-66]. Moreover, unnecessary members are removed from a highly
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connected ground structure while the nodal locations are fixed [30, 67, 68]. Many
methods have been presented based on this ground structure approach [69].

In paper [14], a simple evolutionary procedure capable of performing
simultaneous shape and topology optimization is presented. It is based on finite
element analysis to minimize the weight of structures while satisfying stiffness
requirements. At the end of each finite element analysis, a sensitivity number,
indicating the change in the stiffness due to removal of each member is calculated;
members which make the least change in stiffness of a structure are then removed
from the structure. Also, a wide range of problems including multiple displacement
constraints, multiple load cases and moving loads are considered in this paper [14].
Evolutionary Structural Optimization (ESO) takes advantage of powerful computing
technology and thereby has a much simpler formulation. In most implementations of
ESO, unnecessary material is gradually eliminated from a structure under one or
several specified evolutionary criteria. Clearly, this criterion for material elimination
or addition plays an important role in this method.

Another discrete design variable method, which uses binary decision-making
algorithms to remove the unnecessary material, is the Simulated Annealing (SA)
method [70]. Simulated Annealing has been developed from statistical
thermodynamics to simulate the behaviour of the atomic arrangements in liquid or
solid material during the annealing process. Lowering the temperature of the melted
material, the material reaches to the lowest energy level (global stable condition).
Using this concept, simulated annealing has 1t.)e:en successfully applied to large scale
combinatorial optimization problems in various fields.

The shape annealing method, which uses shape grammar rules with the
simuléted annealing algorithm to perform shape optimization of trusses, is presented
in [71, 72]. Starting with a random initial structure, topology exploration occurs by
applying topology modification rules that transform configurations in the current
design; metrics for design performance determine the search direction in the simulated
annealing algorithm. The shape annealing method is a technique that combines a
generative grammar with directed stochastic search using simulated annealing to
produce optimally directed designs. A shape grammar is a way of representing the
relation between form and function in structural design through the specification of
design transformations that define a language of structures. Since the number of

structures in this language is quite large, directed stochastic search is used to drive the
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generation of efficient designs that satisfy the desirable set of objectives and
constraints. The shape annealing is applied in order to obtain simultaneously various
design goals such as efficiency, economy, utility and elegance. Shape annealing as a
structural design tool has been applied to provide new possibilities for structural
forms that may enhance both creativity and insight [72]. Designs that satisfy both the
architect’s preference for visual impact and the engineer’s preference for functional
efficiency were obtained. The primary scope of engineers is to focus on the
functionality efficiency and construction cost of a structure. On the other hand,
architects’ approach maybe more aesthetic. A computational method that supports
these varying preferences was achieved using shape grammar and shape annealing
methods [72].

Having analysed the discrete and continuum optimization methods, a
comparison of these two kinds of optimization methods is presented in Table 2.1
below. Generally the discrete methods seem more naturally suited to civil structures
using beam/truss type structural members. However, there are difficulties while
solving large 3D structural design problems with both methods. The analysis cost
produced by the continuum method and thé excessive design possibilities by the
discrete method for optimization of 3D structures are problems that can not be

avoided.

Discrete Optimization ' Continuum Optimization

1. Single analysis cost trivial, but many | 1. Computational expense: single analysis

analyses required cost significant, but few designs iterations
required

2. Design space (structural 2. Design space (structural possibilities):

possibilities): discrete does not allow continuum clearly allows many more

many arrangements of members arrangements of members

3. Allows modelling of cross-sections | 3. Continuum designs tend to be
"unrealistically heavy" due to continuum
modelling

Table 2.1: Comparison between 2D Discrete and Continuum Optimization.
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2.3.1. Topology Optimization of Frameworks

The aim of framework optimization is to best utilize the material often
requiring the lightest structure particularly for aeronautical applications while
satisfying all the design and manufacturing constraints. The objective of framework
topology optimization is to find, for a given weight, the stiffest or the strongest
structure, defined as a subset of an initially chosen set of bars called the ground
structure. Alternatively, given the strength or the stiffness the topology that produces
the lightest structure may be sought. Topology optimization consists of determining
the nature and connectivity of the constitutive members of a structure for which only
the boundary conditions and the spatial domain are specified.

Attempts to apply optimization procedures to the design of mechanical
structures like frameworks, which are widely used in civil engineering and in space
engineering, have been made for a long time. Previous studies on optimal topologies
are concerned mostly with frame structures. This may be attributed to the fact that the
frame by its nature is most suitable for optimization of the topology. It possesses
several nodes and members that can be deleted or retained without affecting the
functional requirements. The plane frame is a relatively simple structure. It is
therefore an ideal system for the investigation of topology and the search for the
optimal [30].

Different possibilities to optimize frames exist. For topology optimization,
starting from an arbitrarily initial structure, an improved structure will evolve by
changing the member joint connectivities of the structure. Continuous changes in the
design parameters are possible in shape optimization, while this is not true in topology
optimization. This makes the problem of topology optimization particularly different.
Each change of the topology of a framework is a severe operation. Some authors
identify topology optimization as the most challenging of the structural optimization
tasks [30, 68].

Another approach to topology design is the homogenization method. Here the
optimal material distribution in a continuous design domain is interpreted as a discrete
plane frame. The mathematical formulation of these methods is based on the
minimization of the compliance (maximization of the stiffness) or minimization of the
mass. Common to all the methods is that they are restricted to particular objective

functions and cannot be used for more general optimization problems. Stochastic
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algorithms such as the evolutionary algorithms or the random cost method are more
universal optimization methods [73]. They offer the possibility to deal with arbitrary

objective functions.
2.3.2. Evolutionary Structural Optimization (ESO)

In recent years the finite element method has become a widely used analysis
tool for engineers in many disciplines. Since the early 1990s, scientists have carried
out studies on simple approaches to optimal structural design. Structural optimization,
however, has not achieved a similar level of popularity in industrial practice despite
the progress of optimization theory over the past 40 years. This situation is caused
mainly by the mathematical complexities of the existing optimization methods.

ESO is based on the concept of gradually removing redundant members to
achieve an optimal design [21]. The Evolutionary Structural Optimization method has
been studied for the last ten years and it was found to be efficient for the full-range of
structural situations such as topology and size optimization with stress, stiffness,
- frequency, stability constraints in 2D and 3D with single or multiple loads conditions.
Although the idea of member removal has been tried by other researchers [74], these
studies have not resulted in a generalized method. The original idea of ESO is that the
optimal shape and layout of a structure can be obtained by systematically removing
members having low stress values from the structure [75]. Some examples of ESO
applied to problems with stress consideration can be found in [21, 28]. This idea has
been extended to frequency optimization problems [18], where a sensitivity number
for member removal has been introduced and calculated for each member based on
information available from the solution of the eigenproblem. By removing members
with special values of sensitivity numbers, the specified frequency of a structure can
be shifted toward a desired value. Compared with other existing methods, the ESO
method [76] is much more straightforward. In fact, it can be easily implemented into
any general purpose finite element analysis program. ESO involves no mathematical
programming techniques in the optimization process.

A new type of sensitivity number, which indicates the change in the overall
stiffness due to removal of a member, is formulated in [18] using results from a finite
element analysis. Then a number of members with the lowest sensitivity numbers will

be eliminated from the structure. The optimal design of the structure is then obtained
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by repeating the cycle of finite element analysis, calculation of sensitivity numbers
and member elimination until the overall stiffness reaches its prescribed limit.

The optimal design of structures with frequency constraints [77] is extremely
important in the aeronautical industry. For most structures, it is desirable to avoid
excessive vibration due to resonance. This can be achieved by manipulating the
natural frequencies of the structure so that they are out of the frequency band of the
dynamic excitation.

A comprehensive review on the development and applications of structural
optimization with frequency constraints was provided in [78]. It is noted that studies
of frequency optimization have been restricted in the past to changing the size or
thickness of frames, plates, etc. Extensions of these works to the simultaneous shape
and topology design of structures with frequency constraints prove to be a tremendous
challenge. Little progress has been made, although it is worth noting the contribution
of applying the homogenization method to frequency constraints as presented in [39].

An important feature of the ESO method is that it is easy to understand and
learn while at the same time producing reasonable results. In addition, with ESO,
shape optimization and topology optimization are achieved simultaneously. The
optimality constraints can be stress based, stiffness/displacement based, frequency
based, bucking load based, with single or multiple environments and the ESO method
can be applied to all of them [23].

Size optimization is the earliest form of structural optimization whereby
aspects of the cross-sectional size of discrete structural elements are adjusted to give
better structural performance. A combination of size and topology optimization is
proposed in [16]. If the size of the members is allowed to g0 to zero then they are
removed.

A common cause of structural failure of engineering components is excessive
stress or strain. Therefore low stress or strain indicates inefficient use of material.
Ideally the stress in every part of a structure is at the same level of factor of safety.
This fully stressed design concept leads to rejection criterion based on local stress
level, where lowly stressed material is assumed to be under-utilised and will be
removed. By gradually removing material with lower stress, the stress level in the new
design will become more and more uniform.

First a piece of material, which is large enough to cover the area of the final

design, is divided into a fine mesh of finite elements. Loads and boundary conditions
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are applied and stress analysis is performed using a finite element program. More
often than not, it is found that a part of the material is under-stressed compared to the
rest of the structure. Using a prescribed criterion, called a rejection criterion, such
inefficiently used material may be eliminated.

Since the structure has been divided into many small elements, the removal of
material from structure can be represented by deleting elements from the finite
element model.

The stress level at each point can be measured by a representative stress value.
For this purpose the von Mises stress has been one of the most frequently used criteria
for isotropic materials. For plane stress problems the von Mises stress o™ is defined

as:

o™ = \/O-zx +0’y-0,0,+3c7y (2.1)

where o and o are normal stresses in the x and y directions, respectively and 7, is

the shear stress. A justification for the use of the von Mises stress (or any of the
similar failure criterion) for the representative value of stress is that it is invariant of
the choice of co-ordinate axes.

The stress level of each element is determined by comparing the von Mises
stress of the element o,™ to the maximum von Mises of the whole structure o

At the end of each finite element analysis, all the elements that satisfy the

following condition are deleted from the model:

© _<RR, 2.2)

where RR; is the current rejection ratio.

The cycle of finite element analysis and element removal is repeated using the
same value of RR; until a steady state is reached, which means that there are no more
elements to be deleted at the current iteration. At this stage an evolutionary rate (ER)

is introduced and added to the rejection ratio,

RRiv;=RR; +ER, i=0, 1, 2, 3... (2.3)
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With this increased rejection ratio the cycle of finite element analysis and
element removal takes place until a new steady state is reached. Such an evolutionary
process continues until a desired optimum is reached. Ideally the final structure
becomes a fully stressed design where the material at each point of the structure is
stressed to its full strength. However, only in a few special cases can a fully stressed
structure be possible.

The evolutionary procedure requires two parameters to be described. The first
is the initial rejection ratio RR, and the second is the evolutionary rate ER. Typical
values of RR,=1% and ER=1% have been used for many test examples. But for some
problems much lower values need to be used. For example, if too much material has
been removed from the structure within one iteration or one steady state, it indicates
that smaller values should be used for RR, or ER.

Whilst ESO uses only element rejections, its modified version BESO
(Bidirectional ESO, [79]) can also admit new efficient elements. ESO is an iterative
method and several runs of finite element analysis and elements removal may be
required before the optimum is reached. For this reason, the size of the finite element
model becomes an important factor which can affect the solution time. To ensure that
there are adequate clements left after repetitive iterations, an oversized initial FE
model is needed in ESO and it is divided by a finite element mesh. For large
structures, the computational cost of ESO can be very high. Also, considering the fact
that elements removed in previous iterations cannot be recovered later in ESO,
elements can be deleted prematurely and the evolution may be misled. An attempt to
make ESO algorithm more reliable led to a new technique called BESO [79, 80] in
which material is allowed to be added during iterations. The final optimum is evolved
by removing the low-stressed elements and at the same time adding elements around
those of high stress. BESO has been applied to continua problems of stress, stiffness
displacement and frequency constraints [79, 80].

Furthermore, another approach to member removal is proposed [15], since
member and node removal is awkward, as there are many possible alternatives to
remove a member or node. The use of an imaginary bar to replace the removed
member is one such example. An imaginary bar will have a cross-sectional area,
which reaches zero. A tiny value is assigned to this bar to keep the mesh dimension of

the FE model. As the cross-sectional area has a very small value, the difference in the
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structural stiffness and mass matrices before and after removing the imaginary bar is

very small and can be ignored.

2.3.3. Influence of the member removal ratio (MRR), mesh size and member type

Apart from the rejection ratio (RR) and evolutionary rate (ER), another
parameter of the ESO process is the member removal ratio (MRR). The ratio of the
number of members removed in each iteration during the ESO procedure to the total
number of members is called the member removal ratio. In [81], a new member
removal ratio was developed for ESO. The member removal ratio of ESO is fixed
throughout topology optimization at 1 or 2%. A new MRR for ESO was developed in
order to improve the convergence rate.

The smaller the value of the member removal ratio, the better is the quality of
the final design [81]. The use of a larger member removal ratio will reduce the
number of members of the resulting design more rapidly, so the time for each
subsequent iteration will decrease. When the member removal ratio varies from 1% to
4%, it has little effect on the weight and the outer shape of the optimal design. The
member removal ratio does affect the details of the inner parts; however, the main
pattern and orientation of these inner parts are similar. It is suggested in [81] that one
could use a member removal ratio as high as 4% to obtain optimal shape and topology
with sufficient accuracy and significant computational time saving.

The mesh size has little effect on the weight of the evolved designs, even
though it affects the details of the final design. Even a coarse mesh can provide a
rough idea of the shape and topology of the optimal design.

The type of members with similar sizes has almost no effect on the weight;

however, it has minor influence on the shape and topology of the optimal design.

2.4. Metamorphic Development: A new topology optimization
method

Another recently proposed method in the field of topology optimization is
Metamorphic Development (MD) [82]. This optimization method starts from the

simplest possible geometry rather than from a complex ground mesh. The structure is
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then developed using rectangular and triangular members that can be of any specified
size. |

This method can overcome some of the disadvantages that ESO and the
homogenization method have. ESO has usually no mechanism for re-introducing a
member once removed. Although some researchers have started to introduce a
member-adding capability by reinstating the property values of some members in a
ground grid, the method is still based on a large dense FE mesh [82]. On the other
hand, the homogenization method introduces composites with perforated
microstructures of continuously varying density and orientation as admissible
materials for the structural design. These density function methods can only produce a
blurred, grey-scaled structure. The most noteworthy disadvantage of both the
evolutionary method and the homogenization method is that the resulting design can
only be formed by degenerating a dense ground mesh. These methods can also
produce a structural layout with non-smooth boundaries, which may lead to notch
stresses and incorrect optimization results. Moreover, these methods can be
computationally very expensive, particularly if most of the original ground structure
has to be removed during optimization.

The MD method [82] can be used for both trusses and continuum structures
and also for combined truss/continuum structures. In this method, the metamorphic
development of a continuum structure starts from a very basic description of the
structure: just the specification of a minimal number of nodes and members
connecting the applied loads and support points. A dense FE mesh is not required.
The method produces not only the lightest structure but also a clear and simple
~structure with maximum integral stiffness‘ or minimum elastic compliance at
equilibrium. During the optimization procedure, members that do not effectively
contribute strength and stiffness to the structure are removed, and new members are
added to the structure in the positions they are most needed. Since both rectangular
and triangular rnem‘bers are used to build a structure, the interior and exterior
boundaries of the optimized structure are quite smooth. In addition to the usual
requirements of structural strength and stiffness, the development of the structure

satisfies kinematic stability requirements (Figure 2.3).
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= Structural analysis =

Satisfy

structural responsé _| Reduce compliance/stress
. Constraints ? (positive growth factor)

Examine and ensure that the structure

| Reduce structural mass | 4 | is not kinematically mobile and is
{negative growth Factor) £¢W_m built in the given design domain

Figure 2.3: Flow chart of the MD method developed in [82].

2.5. Multi-objective Optimization

Most real engineering problems have several objectives to be simultaneously
optimized. For example, the design of a structure may include objectives related to
material cost, manufacturing cost, failure cost, etc. A multi-objective optimization
problem is a problem of finding a set of design variables, which satisfy the specified
constraints and optimize multiple objective functions [83-87]. These functions form a
mathematical description of performance criteria that are usually in conflict with each
other. Hence, the term “optimize” means finding a solution which would give values
of all the objective functions acceptable to the decision maker.

The notion of optimum in multi-objective optimization was clarified in the
original context of economics [88]. Such designs are now called “Pareto-optimal”.
Pareto optimality can be seen as the basic multicriteria optimization concept in
virtually all of the previous literature. A general multi-objective optimization problem
is to find the vector of design variables X=(x;, x; ..., xy)” that minimizes a vector

objective function F(X) over the feasible design space X. Pareto optimality can be
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stated as follows: “A design is Pareto-optimal if there exists no feasible design which
would improve one of the objectives without causing a simultaneous worsening in at
least one other objective” [5]. A trade off between competing objectives is then
required. This concept almost never provides a single solution, but rather a set of

solutions called the Pareto-optimal set.

2.6. Genetic Algorithms

Multi-objective optimization problems can be solved by a heuristic technique
inspired by the mechanics of natural selection known as genetic algorithms. Current
research is focused on developing new and effective/robust evolutionary algorithms to
solve discrete optimization and combinatorial optimization problems because many
complex optimization problems (such as structural topology design optimization) are
discrete in nature. Evolutionary techniques such as genetic algorithms are favourable
because they can handle discrete and combinatorial problems, and at the same time
provide multiple solutions with a good chance of achieving the global optimum [89].
As the handling of constraints is still a difficult issue in discrete problems [90], new
techniques are being developed in conjunction with the treatment of multi-objective
problems. In addition, stochastic optimization methods such as simulated annealing
are also applied as these methods can treat discrete problems, sometimes with lesser
computational effort than evolutionary techniques (but obtaining only single
solutions). Genetic algorithms have been applied to various areas, such as:

(1) Design  synthesis of compliant  mechanisms, micro-
sensors/actuators and micro-machines by structural topology/shape
design optimization.

(i1) Structural design optimization (especially topology, shape and
sizing optimization) of aerospace, civil and mechanical structures
for minimum weight, stress, compliance and/or optimum
frequency, stiffness, heat transfer, etc.

(1ii) Aerodynamic shape design optimization.

@1v) Design optimization of manufacturing processes such as injection

moulding, metal forming, etc.
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Genetic algorithms are a part of evolutionary computing, which is a rapidly
growing area of research. They are inspired by Darwin's theory of evolution. Simply
said, problems are solved by an evolutionary process resulting in a best (fittest)
solution (survivor) - in other words, the solution is evolved. Evolutionary computing
[91] was introduced in the 1960s. The idea was then developed by other researchers.
Genetic Algorithms (GA) were invented in 1975 and developed in [92]. In 1992 a new
method called "genetic programming" (GP) was developed in which genetic
algorithms were used to evolve programs to perform certain tasks [93]. The genetic
programming paradigm provides a way to genetically breed a computer program to
solve a wide variety of problems. Genetic programming starts with a population of
randomly created computer programs and iteratively applies the Darwinian
reproduction operation and the genetic crossover (sexual recombination) operation in
order to breed better individual programs. LISP programs were used, because
programs in this language can be expressed in the form of a "parse tree", which is the
object the GA works on. With GA the best solution among a number of possible

solutions is obtained.

2.7. Conclusions

Structural topology optimization is a powerful tool which can help the
designer select suitable initial structural topologies and, more importantly, it is
identified as economically the most rewarding task in structural design. Structural
topology optimization as a generalized shape optimization problem has received
considerable attention recently.

Summing up, various families of structural topology optimization methods
have been extensively developed. One of the most established families of methods is
the one based on the homogenization approach. As an important approach within this
family, the power-law approach, which is also called the SIMP (Solid Isotropic
Micro-structure with Penalization) method, has gained a fairly general acceptance in
recent years. It adopts the member relative density as the design variable and assumes

that the material properties within each member are uniform, which are modeled as
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the relative material density raised to some power times the material properties of
solid material. |

This chapter has also described the ESO and its modified version of BESO. A
well-developed family of structural optimization methods is the one based on the
Evolutionary Structural Optimization (ESO) approach, in which the material in a
design domain which is not structurally active is considered as inefficiently used and
can thus be removed by using some member rejection criteria. This method was
further developed by allowing material to be added as well as removed leading to a
new approach called Bidirectional ESO (BESO).

Both the homogenization method and the ESO have been further developed by
a number of researchers, leading to the extensive exposition and exploration of these
two families of methods. Although computationally effective, neither can perform a
global search and thus do not necessarily converge to the global optimal solution for
the given objective function and constraints.

Another emerging family of structural topology optimization methods is the
one using Genetic Algorithms (GAs), which are based on the Darwinian survival-of-
the-fittest principle to mimic natural biological evolution. GAs have been gradually
recognized as a kind of powerful and robust stochastic global search method. More
recently, GAs have been increasingly employed in the structural topology
optimization field in order to perform a global search in the design domain. This
dissertation provides a systematic study of ESO and GA, a quantitative critique of
ESO and further presents two new methods of combining the strengths of ESO and
GA.
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Evolution of maximum stress and
weight during ESO: general trends

3.1. Introduction

Compared with other existing methods of structural optimization, the
implementation of the ESO method is fairly straightforward around any general
purpose finite element analysis program. It is reasonable to expect that removal of
relatively under-utilised members will lead to a reduction in weight without much
penalty on the increase in maximum stress.

In this chapter, we propose to test this hypothesis by observing the trajectory
of designs during the ESO process on the weight-maximum stress plane. Initially, a

program developed in MATLAB is developed in order to simulate a 2-D framework
fully connected and its deformed shape under any boundary conditions and applied
loads. Further ESO is implemented using this finite element code. Various examples
are given, leading to reasonable optimal structural designs. The graph of the current
structure’s weight against the current maximum stress of the structure for the whole
optimization procedure is plotted for each example so that a general trend that ESO
possesses can be obtained. The purpose of this is to examine the trajectory in which
designs evolve during the ESO process so that later these can be overlaid with the
Pareto Front for the two-objective problem of simultaneously minimizing weight and
the maximum stress within the structure (see Chapter 4) and hence the efficiency of
ESO can be assessed. Furthermore, a simultaneous sizing and topology optimization
is obtained, while scaling the cross-sectional size of the structure during the ESO

process.
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3.2. Finite Element Modelling and Simulation of Frameworks

In order to study the general trends of the quality of designs produced by the
ESO process, weight-wise and maximum stress-wise, an ESO algorithm was
implemented in the MATLAB environment. But before we proceeded to the
implementation of the ESO algorithm, a Finite Element Analysis code was initially
developed to simulate a 2-D framework that can have any number of nodes, boundary
and loading conditions and obtain all the necessary stress, strain and nodal
displacements calculations. An example of a framework structure considered during

the finite element modelling and the ESO method can be seen in Figure 3.1.

Figure 3.1: Fully connected framework with 55 nodes.

Application of the stiffness method of structural analysis requires subdividing
the structure into a set of finite members, where the endpoints are called nodes. For
the case of plane frames, we will consider each member as a finite element, and each
joint becomes a node. We will determine strain energy and the external work done for
each member separately, and then combine each individual contribution to the whole
structure which results in a global structural stiffness matrix after applying the
principle of minimum total potential energy. This procedure of summing up energy is
known as assembly. The stiffness of each member is transformed from the local level
into the global coordinate system. We now have the contribution of a single member.

For a structure with multiple members, we assemble the stiffness matrix [K] for each
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member, and then place the entries appropriately into a global structural stiffness
matrix that covers every degree of freedom in the entire framework. The global
stiffness matrix will be a square matrix with as many rows as columns as there are

total degrees of freedom.

3.2.1. Finite Element Modelling

The finite element modelling of the framework is described next. First, we
look at a single member in a local coordinate system, and define its stiffness. A plane
frame member will be considered in this work. This member combines the
characteristics of a truss and a beam. It is clear that a beam member has four degrees
of freedom, a transverse displacement and a rotation at each node. On the other hand,
a plane truss member has four degrees of freedom as well, one horizontal and one
vertical displacement at each node. The plane frame member has six degrees of
freedom, three at each node (two displacements and a rotation). Consequently for a
structure with N nodes, the global stiffness matrix will be of size 3Nx 3N. Considering
the member in Figure 3.2, the local displacements at the first node are labelled ¢;, ¢>
and ¢;, and at the second node ¢y, ¢s, g¢ correspondingly. There is no need to further
discretize the structure when applying FEM to a frame problem if the prescribed loads
are applied at the nodes. This is because the exact elastic response is obtained for such
problems with two noded pin-joined truss members. Therefore, each member is a
finite element and the joints are the nodes. Forces are applied only at the nodes.
Framework members are subjected to either axial tension or compression and at the
same time carry bending moments. The plane frame member is a two-dimensional
finite element with both local and global coordinates. Each member has modulus of
elasticity E, second moment of cross-sectional area I, cross-sectional area 4, and
length L. In addition, each member has two nodes and is inclined with an angle & as

can be seen in Figure 3.2.
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q2 qs '

q3 ds

Figure 3.2: Nodal displacements of a plane frame member.

Since a structure consists of many members in many orientations, we will
transform all local displacements into a single uniform global coordinate system. If

the local displacements of a plane frame member are ¢,, q,, ¢,, ¢,, ¢; and ¢, then
the corresponding global coordinates g,, ¢,, 4,, 4, , g; and g, can be found by the

following relationships:

q, =q,cos0+q,sinl

g, =—q,sinf@ +q, cosb
q;=¢,

g, =q,cos0+q,sind

qs =—q,sin 6+ g, cosf

ds =945
The global displacements are defined by the relationship {Ej } =[T ]{q}, where T

is the transformation matrix. This can consequently be organised in a matrix form as

follows:
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q, c s 0 0 0 0ffq
q, -s ¢ 0 0 0 0l]qg,
_q'} - 0 01 0 0 0}lg, g a1
q, 0 00 ¢ s Ollg,
gs 0 0 0 —-s ¢ 0]|gs
) L0 0 0 0 0 1]|g,

where ¢ =cos@ ands =sind .

If the nodal displacement for the i member is: G =I1 (0)){g} then the

stiffness matrix for the i member is:

[K1=[TO)KIT®))], (3.2)

where [K,] and [K;] are the stiffness matrices for the i member in global and local

coordinates correspondingly.
The local stiffness matrices for axial and bending degrees of freedom are
given by
12 6L -12 6L

E4] 1 -1 EI| 6L AL’ -6L 2I?
[K]axial ZT‘:_l 1:' and [K]Bending'=‘L_3 -12 —6L 12 —-6L |

6L 2I' -6L 4I°

Combining both matrices, the local stiffness matrix for a member with 3

degrees of freedom per node is given by

12 6L 0 -12 6L

EIl 0 6L 4> 0 6L 212

[ ]Localz_—:; (33)
D-a 0 0 « 0 0

0 -12 -6L 0 12 -6L

0

0 6L 2r —-6L 4L

2
where o = % .

The equilibrium equation in the global coordinates is given by: { 72 }= [K ]{q },
~where [K] is the stiffness matrix for each member in global coordinates, { f } is the

corresponding force vector and {c?} is the corresponding nodal vector.
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The same equation in the local coordinates is given by: { f }: [K ]{q}, where
[K] is the stiffness matrix for each member in local coordinates, {r} is the
corresponding force vector and {q} is the corresponding nodal vector. If we use the

transformation matrix to relate local vector quantities to the corresponding global

quantities we have:

{7l=1riir}
@}=171a},
where [T] is the transformation matrix.
Then substituting, {f{=[T1{f} = [K1{7} =[BT Yq}
U= KT g} = [TV KT} = (K I{g} leading to the global stiffness matrix:

[K1=[TTKIIT]. G4

3.2.2. Computer code validation

An initial configuration is generated by connecting all the N nodal points to
each other to construct the ground structure. In the ground structure, we start from a
dense mesh of N nodal points in 2-D and each of these nodes can be connected by a
bar. Thus we work with N nodes with up to Nx(N ~1)/2 potential bars. After
completing the structural connectivity the computer code written in MATLAB

performs the following steps:

Step 1: Creation of local stiffness matrix, transformation to global co-ordinates using
equation (3.4), followed by assembly of members. This requires taking care of the

local node numbering and the corresponding global node numbering.

Step 2: Apply boundary conditions to the global stiffness matrix, leading to the
reduced global stiffness matrix X .
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Step 3: All the global nodal displacements are then calculated by solving the equation

Qv =K o F, where F is the force matrix of the structure and O, 18 the

matrix that includes all the global nodal displacements. In practice, the stiffness

matrix is not explicitly inverted but a simultaneous solution is sought.

Step 4: The global nodal displacement is added to the corresponding coordinate of
cach node, obtaining the new coordinate of each node, thus obtaining the deformed
shape of the structure.

An example is provided next in which the number of nodes being used is
N=55. This means that each node is connected to the remaining 54 nodes, having in
total 1485 frame members. This fully connected structure is presented in Figure 3.1.
Even the frames crossing the internal nodes and those connecting the clamped nodes
are generated. The particular framework is constructed of steel tubular members with
diameter of 0.02 m and it supports a load of 10 kN at the middle of the right edge.
Applying the corresponding FEA code a plot of the deformed structure of Figure 3.1
is obtained and illustrated in Figure 3.3. The new nodal coordinates were attained by
summing the initial nodal coordinates with the new nodal displacements scaled by

10,000.

-3 1 1 I 1 1

Figure 3.3: Deformed framework obtained in MATLAB.
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The results from the finite element program written in MATLAB are
compared with the results taken from the commercial FEA software ABAQUS for
code validation. The figures of the framework and its deformed shape, obtained by
MATLAB (Figures 3.1 & 3.3) match with the corresponding figures obtained by
ABAQUS (Figure 3.4). Apart from that, the ABAQUS results also match numerically
with the MATLAB output. A smaller framework is considered in order to view the
similarity in the results produced by ABAQUS and MATLAB. The particular
structure has 9 nodes and each node connected to each other (36 members in total).
The values of the nodal displacements for each node of this deformed framework
found from MATLAB are compared with the corresponding values taken from
ABAQUS and found to be the same (see Tables 3.1 & 3.2). The values are close to
within 2%. Some small non-zero values in Table 3.2 are of the order of machine-
epsilon. The validation proved that the MATLAB based FEA implementation is
working successfully. A reason for developing our own finite element code and not
relying on the commercial software such as ABAQUS is a greater access to the
variables in the FE calculations which commercial codes often do not afford or allow
only in a complicated way. Further, combining features of ESO with GA proved to be
much easier than it would have been with a commercial code. Having illustrated that a

newly developed procedure works in principle, commercial implementation can be

taken up at a later stage.

Two dimensional beam/truss strusture imansicnal bean/truss structuce
oDB: odb RBAQUS, .3-1 Thu Jul 29 15 oDsy sstructure.odb ABRQUS/Standard 6.3-1 ‘Thu Jul 29 15:41:2%:

Seep: Step-1, 10kN at middle of the sdge
Increment 1: Step Time =  2.22008-16

(2) (b)

Figure 3.4: a) Framework presented in ABAQUS, b) Deformed framework presented
in ABAQUS.
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Number .
of Nodes Nodal Displacements-ABAQUS results
q1 q2 q3

1 0 0 0
2 0 0 0
3 0 0 0
4 -4.8471E-05 -6.6585E-05 -6.9386E-05
5 0. -5.6925E-05 -6.8601E-05
6 4.8471E-05 -6.6585E-05 -6.9386E-05
7 -5.5958E-05 -1.4247E-04 -6.9369E-05
8 0. -1.7944E-04 -9.4703E-05
9 5.5958E-05 -1.4247E-04 -6.9369E-05

Table 3.1: Nodal displacements of a fully connected 9-node structure obtained by

ABAQUS.

Number
of Nodes

Nodal Displacements-MATLAB results

d1

92

q3

© 0O~NO VP WN -

0

0

0
-4.8471E-05
-4.6228E-21
4.8471E-05
-5.5957E-05
-5.0138E-21
5.5957E-05

0

0

0
-6.6590E-05
-5.6928E-05
-6.6590E-05
-1.4247E-04
-1.7944E-04
-1.4247E-04

0

0

0
-6.8193E-05
-6.7657E-05
-6.8193E-05
-6.8993E-05
-9.2156E-05
-6.8993E-05

Table 3.2: Nodal displacements of a fully connected 9-node structure obtained by
MATLAB.

3.3. Implementation of the ESO algorithm to framework topology
design

We start from a plane frame in which each key point is connected to every
other key point by an elastic member. Members are discarded from this over-specified
frame in the spirit of ESO. This procedure can be thought of as the ‘discrete’ version
of ESO. Instead of discarding members from the continuum, the suggestion is to
discard complete structural members during the process. The nodes that are not

connected to any members during ESO cycles are totally removed from the structure.
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The objective of our optimization is to select from this network the most profitable set
of nodes and bars able to carry given load under any boundary conditions.
The computer code that was developed to implement the ESO procedure is

summarized next:

Step 1 to Step 4: The same procedure is followed as in Section 3.2.2.

Step 5: The axial and bending stress for each of the two faces (top and bottom) on
either side of the neutral axis of the member is calculated. Because the stresses in a
framework are due to axial tension-compression as well as bending effects, the strains
due to these two are superposed and the worst case will always appear on one side of
the neutral axis at fibres farthest away. The maximum absolute value of the combined
stress (due to bending and tension/compression) is recorded for each member. This
process is carried out for all the members of the structure. A prescribed fraction of the

current number of members that have minimum stress is removed from the structure.

Step 6: The nodes that have no members connected to them are removed from the
structure. Following this, the nodes and members of the remaining structure have to
be renumbered for a new FE analysis. As the ground structure for topology
optimization is very redundant, generally speaking, there are many possible nodal
layouts and for a specific nodal layout there are many candidate frameworks. To
ensure that the structures being generated during the ESO process possess the support
and loading conditions imposed by the original design problem, care must be taken
while removing members. In the ground structure, some nodes can be removed, but
others cannot be, such as those associated with supports, external loads, etc. (Figure
3.5). Consequently, the boundary condition nodes are maintained during the
optimization process.

To trace the changes in structural topology and to avoid singularities in the
stiffness matrix due to removal of members, updating of the FE model is needed. This
is a serious problem when truss models are to be used because it amounts to detecting
mechanisms—fortunately we escape this by using frame members that are not pin-
jointed at the ends. At every iteration step the FE model is automatically altered. In
this part of the process, an examination must take place to check if there is a node,

which is only connected to one member. A node with no external loads and boundary
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conditions, which is only comnected to one member, is considered useless in the
topology and it is removed (Figure 3.5).

The appearance of hanging members could cause problems in the framework
optimization examples that have been already produced. These hanging members are

stress-free, therefore, the ESO algorithm detects and eliminates them.

Step 7: Step 1 to Step 6 are repeated until the structure has 30% of the initial
number of members. This fraction is somewhat arbitrary and is based on tria] and

error and is chosen on the basis of similar work in the area.

Needless Members

Unstable Structure
Figure 3.5: Undesirable structures.
Next we study this ESO algorithm by considering several examples based on

the MATLAB code that is developed upon the ESO idea. The flow chart of the ESO

approach used here is shown in F igure 3.6.
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Nodes connectivity,
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<
<
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) 4
FE code

!

Save design’s maximum
stress & mass

A

Find the minimum
stressed member

Delete this member
from connectivity

Nodal removal

4

Plot of current
design

Figure 3.6: Flow Chart of discrete ESO method.

Numerical Examples

(a) Fully connected 6-node cantilever framework

Figure 3.7(i) shows the initial ground structure of the fully connected 6-node

cantilever framework. The three vertical nodes at the left edge are considered fixed.
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An external load is applied at the middle node of the right edge. By removing at each
step a number of members that have the lowest stress values and using the previously
mentioned strategy, an optimal design for the current structure is obtained (Figure
3.7(vii)). As for all demonstrated structural examples the BC nodes are kept

unchanged during optimization.

v
»
? () (i) (iif)

@1v) W) (vi) (vii)

Figure 3.7: (i) Ground structure and first topology for the fully connected 6-node
structure, (ii)-(vi) Intermediate results, (vii) Optimal topology for the fully connected
6-node framework obtained by the ESO process. Note that (iii) and (iv) are not the
same structures because the members removed from structure (iii) are collinear.

(b) Squared 9-node cantilever framework with adjacent connectivity and 2 fixed
Supports

Figure 3.8(i) shows the ground structure of the 9-node cantilever framework
with adjacent connectivity. The two vertical nodes at the top and bottom of the left

edge are considered fixed. An external load is applied at the middle node of the right
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edge as shown. By removing at each step a number of members that have the lowest
stress values and using the strategy as described before, an optimal design for the

current structure is obtained (Figure 3.8(iv)).

(M) | (ii)

(iii) (iv)

Figure 3.8: (i) Ground structure and first topology for the 9-node structure with
adjacent connectivity (2 fixed supports), (ii)-(iii) Intermediate results, (iv) Optimal
topology for the 9-node structure with adjacent connectivity (2 fixed supports) as
obtained by the ESO process.

(c) Squared 9-node cantilever framework with adjacent connectivity and 3 fixed
SUpports

Figure 3.9(i) shows the initial ground structure of the 9-node cantilever
framework with adjacent connectivity. The three vertical nodes at the left edge are
considered fixed. An external load is applied at the middle node of the right edge. By
removing at each step a number of members that have the lowest stress values and
using the strategy as described before, ESO generated designs are produced and are

displayed in Figures 3.9(ii) through to 3.9(v).
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® (i1) (iii)

(iv) v)

Figure 3.9: (i) Ground structure and first topology for the 9-node structure with
adjacent connectivity (3 fixed supports), (ii)-(iv) Intermediate results, (v) Optimal
topology for the 9-node structure with adjacent connectivity (3 fixed supports) as
obtained by the application of ESO. Note that (iii) and (iv) are not the same structures
because the members removed from structure (iii) are collinear.

Since ESO works by eliminating members from an existing structure, we
study what effect the initial structure may have on the final design that is obtained.
The optimal topology obtained by an adjacently connected structure can be compared
with the optimal topology that can be gained by a corresponding fully connected |

structure.

(d) Squared 9-node cantilever framework with full connectivity and 3 fixed supports

Figure 3.10(i) shows the initial ground structure of the 9-node cantilever
framework with full connectivity. The BC’s and the force are applied at the same
nodes as in the previous example, but all the nodes are connected with each other. The

same procedure is applied.

46




CHAPTER 3 47

N
0 (ii) (iii)
(iv) v) (vi)
(vii) (viii) (ix)

x)

Figure 3.10: (i) Ground structure and first topology for the 9-node structure with full
connectivity, (ii)-(ix) Intermediate results, (x) Optimal topology for the 9-node
structure with full connectivity obtained by the ESO process.

It can be observed that the final design of the last two examples (c) and (d) is
the same. These two examples have the same number of nodes but different numbers
of members. Although the initial designs were different, both structures ended up to
the same optimal design. There are some intermediate designs in Figure 3.10 (e.g.
Figure 3.10(viii) and Figure 3.10(ix)) that may be efficient compared to the

intermediate designs in Figure 3.9.
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(e) Squared 9-node cantilever framework with full connectivity, 3 fixed supports and
different loading

Figure 3.11(i) shows the initial ground structure of the 9-node cantilever
framework with fully connectivity. The three nodes located at the left edge are
considered fixed. An external load is applied at the node of the bottom right edge. By
removing at each step a number of members that have the lowest stress values and
using the previously mentioned strategy, an optimal design for the current structure is
obtained. Note the lack of symmetry in the final design when a different loading

condition from the previous example is applied (Figure 3.11(ix)).

% R (i) (i)

0 <X
2

(iv) (vi)
(vii) (viii) (ix)

Figure 3.11: (i) Ground structure and first topology for the 9-node structure with full
connectivity, (ii)-(viii) Intermediate results, (ix) Optimal topology for the 9-node
structure with fully connectivity obtained by the ESO method.

The corresponding ABAQUS optimal designs for some of the previous
examples are shown next (Figures 3.12 & 3.13). The ESO concept of the lowly
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stressed member removal was adopted using ABAQUS. A fully connected structure is
initially modelled in ABAQUS and the most lowly stressed member of the structure is
detected. After eliminating this member, the new structure is modelled again and the
same procedure is repeated manually. The results of ABAQUS software and
MATLAB code are the same, proving that the implementation of the ESO based

computer code is done correctly.

stfucture
B: mustructurexd ] RBAQUS/ Standard 6,4-1 ep 15 22:53:00 BST 2004

tep-l, 10k
t :

e

tandard 6.4-1  Thu Sep 16 11131:56 BST 2004

Figure 3.12: Optimal solutions of the first two examples demonstrated in ABAQUS.
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3.4. General trends of the trajectory of designs during the ESO
process on the maximum stress-weight plane

ESO reduces the weight of a design at every step of the iteration because it
works by eliminating the least efficient members successively. However, this
reduction in weight may be accompanied by an increase in the maximum stress within
the structure. Often, in practice, the maximum allowable stress is specified and one
looks for designs that reduce the overall weight. But, when comparisons of different
designs or design concepts need to be made, a rational approach will be to account for
the two measures of structural performance together and view the comparison
problem as a multi-objective optimization problem with the weight and the maximum
stress to be minimized simultaneously. This is convenient for design comparisons;
however, for practical problem solving the conventional approach of treating the
overall weight as an objective and the maximum allowable stress as a constraint may
still be used. Furthermore, design objectives may additionally include maximizing the
overall stiffness—hence the approach of design comparisons in a multi-objective
optimization framework is presented here. From now on, we restrict ourselves to the
two objectives mentioned earlier—the overall weight and the maximum stress over all
the members.

The optimization of simple structural designs has been obtained so far using
the MATLAB code developed and described previously. The trajectory of the current
structure’s weight against the current structure’s maximum stress for the whole
optimization procedure is then plotted for thé purpose of design comparison during
the ESO process. Evolution of designs on the weight-maximum stress plane with
different starting points takes place. Different starting points are considered for the
structures and the corresponding graphs of weight vs. maximum stress are compared.
The trajectory of the current structure’s weight against the corresponding maximum
stress for the whole optimization procedure is then an indicator of the quality of
designs being generated during the course of the ESO process.

Framework design examples in the shape of cantilever beams and MBB beams
(bridge-like structures with the two ends supported) under fixed supports and load
conditions have been considered (assuming no self weight of the structures). An
assessment of the evolution of ESO generated designs as well as design comparisons

are presented next via examples.
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Example 1: MBB Framework

(a) 15-Node framework
(i) Fully connected initial design

An MBB framework with 15 nodes is shown in Figure 3.14. All the nodes are
fully connected and the total number of members is 105. Boundary conditions are
applied at the bottom corners of the structure as shown. An external load is applied at
the middle of the top of the structure. Also, the number of members that have the

lowest maximum stress and that are removed from the structure for each iteration is

setto 1.
Figure 3.14: Fully connected MBB framework with 15 nodes.
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Figure 3.15: Discrete ESO trajectory for 15 -node fully connected MBB framework.
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The trajectory in the weight-maximum stress plane shows a complex
behaviour (Figure 3.15). The units are arbitrary since a linear analysis has been
carried out for an arbitrary load: stress values can be proportionately scaled for a
different value of external loading. The highest weight point represents the over
connected initial design. It is evident from the figure that the steps taken by the ESO
strategy are not always Pareto efficient. Initially, an improvement takes place in both
maximum stress as well as weight until the critical point at step 75 (the corresponding
design is shown in Figure 3.16). Beyond this step, a reduction in weight is generally
accompanied by an increase in maximum stress except for few steps where
improvement on both counts of stress and weight is observed. This trend is quite
revealing as to how ESO works. We have observed this general character in several

examples. A detailed discussion of this behaviour is postponed until section 3.7.

Figure 3.16: Drawing of the particular structure at step 75 critical point.

(ii) ESO starting point with adjacent connectivity only

We next study what difference it makes to the evolution of designs on the
weight-maximum stress plane when different starting points are considered. Different
initial designs are considered for a 15-node structure and the corresponding
trajectories of weight vs. maximum stress are compared. An example of a MBB
framework with 15 nodes but with a smaller number of members than in the previous
example is shown in Figure 3.17. In this case, the total number of members is 38. The
two bottom corners of the structure are fixed as shown. An external load is applied at
the middle of the top of the structure. The number of members that have the lowest

maximum stress and that are removed from the structure for each iteration is again set
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to 1. The trajectory on the stress-weight plane is shown in Figure 3.18. The structure

that corresponds to the critical point (labelled step 19) is shown in Figure 3.19.

P

|
P

Figure 3.17: MBB framework with 15 nodes.
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Figure 3.18: Discrete ESO traj ectory for 15-node MBB framework.

Figure 3.19: Drawing of the particular structure at step 19 critical point.
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The ESO trajectories of the fully connected 15-node MBB structure (Figure
3.15) and the corresponding 38-member structure (Figure 3.18) are plotted on the
same graph in Figure 3.20. It can be seen that the 105-member structure is initially
very poor weight-wise but very good stress-wise. As ESO runs, the weight reduces
and the quality overtakes those produced by the 38-member initial design based ESO
" run on both counts of stress and weight. The explanation is that the initial fully
connected structure offers a much larger choice of designs to work from and the ESO
process has an opportunity to exploit this extra choice. Clearly, ESO is very sensitive
as far as the selection of an initial structure is concerned. Choosing an initial structure
that is not fully connected may tend to cause ESO to give sub-optimal results.

The initial structure with 38 members is completely excluded out of the ESO
trajectory based on the fully connected initial design. This indicates that this particular
38-member structure is not a good starting design, and that optimization based on this
initial design is likely to give designs that are not satisfactory. The design options
afforded by the 38-member structure can be viewed as a subset of the design options
afforded by the design with 105 members as the starting point. Note that the member

cross-sections for all the members in the two starting designs have the same

geometrical properties.
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Figure 3.20: Comparison of the ESO trajectories of the fully connected 15-node
MBB and the 38-member, 15-node MBB.
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(b) 25-Node MBB Framework

An example of a MBB framework with 25 nodes is shown in Figure 3.21. All
the nodes are fully connected and the total number of members is 300. Boundary
conditions are applied at the bottom corners of the structure while an external load is
applied at the middle of the top of the structure. The number of members that have the
lowest maximum stress and that are removed from the structure for each iteration is

set to 1 again.
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Figure 3.22: Discrete ESO trajectory for 25-node fully connected framework.
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The trajectory on the weight-maximum stress plane (see Figure 3.22) is more
complex now. There is again an initial phase of improvement on both counts of
weight and maximum stress. Beyond step 218 (Figure 3.22), this trend changes and a
reduction in weight is nearly always accompanied by an increase in the maximum
stress. After a few steps, improvement on both counts of stress and weight is observed
occasionally.

The trajectories presented so far have some common features. It seems that the
moves made by the ESO strategy are Pareto-efficient in some parts (particularly
initially) whereas, at a later stage, reduction in weight has a stress penalty. This
general observation may have an interesting implication. The point on the weight-
stress plane where the designs stop producing Pareto-efficient designs with each ESO
step may suggest a point to stop the ESO process. So far, this is often carried out in an
ad hoc manner. The point at step 218 dominates all the points above it, as it has the
lowest maximum stress value and the lowest mass value at the same time. The
structure that comes out at this point (Figure 3.23) is the optimum structure among the
structures created from the initial step 1 to the step 218. From the step 218 and on, the
ESO trajectory follows a similar Pareto shaped curve to that observed in the previous
25-node framework example.

Beyond step 218 the ESO trajectory is not monotonic. First, the weight of the
structure is decreased and the maximum Stress increases and no decision can be made
about the optimality of the structure. However, some good designs can be chosen
along this Pareto path according to the desirable values for the maximum stress and
weight of the structure. Indeed, a very good design is found at step 250, as can be seen
from Figure 3.22. The value of the maximum stress for this design is very close to the
corresponding value of the optimum structure at step 218. Furthermore, the value of
its weight is less (almost half) than the corresponding weight of the previous optimum
one. The design of the structure that belongs at step 250 is shown in Figure 3.24. This
shows the usefulness of the trajectories on the stress-weight plane in design selection

in conjunction with the ESO strategy.
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Figure 3.23: Drawing of the particular structure at step 218 of the ESO optimization
(critical point).

Figure 3.24: Drawing of the particular structure at step 250.

Example 2: 25-Node Cantilever Framework

An example of a framework with 25 nodes is illustrated in Figure 3.25. All the
nodes are fully connected and the total number of members is 300. Boundary
conditions are applied at all nodes, which are located in the left hand side of the
structure on the vertical line. An external load is applied at the middle of the right free
edge of the structure. Also, the number of members that have the lowest maximum

stress and that are removed from the structure for each iteration is again set to 1.
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Figure 3.26: Discrete ESO trajectory for 25-node fully connected framework.

The trajectory obtained during the ESO process is presented in Figure 3.26.
Notice an initial improvement in both maximum stress as well as weight: Beyond a
certain point, this trend changes and a reduction in weight is nearly always
accompanied by an increase in the maximum stress. It can be noticed that the
structure at step 218 dominates all the structures above it, as it has the lowest value for
maximum stress. From that point, a ‘Pareto Front shaped curve’ is created. This may

not be the actual Pareto Front for the design options available; however in general
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trend it suggests a decrease in weight at the expense of an increase in the maximum
stress. The structure of step 218 is considered as the optimum design among the
designs between steps 1 and 218. From that point and on, an optimum design can be

decided according to the preferred objectives.

Example 3: Large Scale Problems

(a) 55-Node Michell type Framework

An example of a Michell type structure with 55 nodes is illustrated in Figure
3.27. All the nodes are fully connected and the total number of members is 1485.
Boundary conditions are applied at nodes, which are located at the bottom corners of
the structure. An external load is applied in the middle of the bottom of the structure.
Also, the number of members that have the lowest maximum stress and that are
removed from the structure for each iteration is set this time to 10. In Figures 328 &
3.29, we present the ESO trajectory for the particular structure and the design found at
the critical point correspondingly. It is worth mentioning that the asymmetry
appearing in the structure belonging to the critical point (Figure 3.29) is due to the
fact that the algorithm tends to remove a fixed percentage of members each time and

not only members of equal stress.

Figure 3.27: Michell type framework with 55 nodes.
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Figure 3.28: Discrete ESO trajectory for 55-node Michell type framework.
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Figure 3.29: Design of the Michell type structure that corresponds to the critical point
of the previous graph.

(b) 105-Node MBB F ramework

An example of a MBB framework with 105 nodes is also considered (Figure
3.30). Each node is linked to all the others and the number of members is 5460.
Boundary conditions are applied at nodes, which are located at the bottom corners of
the structure. An external load is applied at the middle of the top of the structure.
Also, the number of members that have thé lowest maximum stress and that are
removed from the structure for each iteration is set to 1. Step 489 is found to be the

critical point in the following graph (Figure 3.31).
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Figure 3.30: Fully connected MBB framework with 105 nodes.

Mass of Design
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Figure 3.31: Discrete ESO trajectory for 105-node MBB framework.

The trajectory on the weight-maximum stress plane for the 105-node MBB
framework can be seen in Figure 3.31. There is again an initial phase of improvement
on both counts of weight and maximum stress. Beyond step 489 (Figure 3.31), this
trend changes and a reduction in weight is nearly always accompanied by an increase
in the maximum stress. After the critical point at step 489, improvement on both

counts of stress and weight is observed occasionally.
(c) 121-Node Cantilever F. ramework

An example of a framework with 121 nodes is next studied (Figure 3.32).

Each node is connected to all the others and the number of members is 7260.
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Boundary conditions are applied at nodes, which are located in the left hand side of
the structure. An external load is applied at the middle of the right free edge of the
structure. Also, the number of members that have the lowest maximum stress and that

are removed from the structure for each iteration is set to 1. The ESO trajectory for

this case is presented in Figure 3.33.

Mass of Design

Maximum Stress of Design

Figure 3.33: Discrete ESO trajectory for 121-node framework.
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The trajectory on the weight-maximum stress plane as can be seen clearly in
Figure 3.33 becomes quite complex. There is an initial phase of improvement on both
counts of weight and maximum stress until the mass of the design reaches roughly the
value of 10000. Between mass values of approximately 2000 and 10000,
improvement on both counts of stress and weight is observed continuously. Beyond
the critical point, this trend changes and a reduction in weight is nearly always
accompanied by an increase in the maximum stress. None of the designs during the
optimization have higher stress than the initial because of the chosen early termination

condition for this problem.

3.5. The effect of member removal ratio in large scale problems

The effect of the ‘step size’ on design evolution will be studied next for two
examples. Changing the number of steps during the ESO process, we will be able to
notice the change in the Pareto efficiency (a state in which there is no more Pareto

improvement).

Example: 55-Node Michell type Framework

For the same Michell type structure illustrated in Figure 3.27, the number of
members that have the lowest maximum stress and that are removed from the
structure for each iteration is set now to 1. In Figure 3.35, we compare Figure 3.34
(step size 1) with Figure 3.28 (step size 10). We can conclude that a larger number of
calculation steps (small step size) in the optimization increases the possibility of
finding the optimum design. In other words, keeping the number of members removal
during ESO as small as possible, improves the optimization procedure. Obviously,
having a large number of minimum stressed members being removed from structure,
some important members may be removed and, as a result of that, the design tends to
commit to certain features very early. Figures 3.35 & 3.36 indicate that when we
remove only one member during the process, it actually finds better designs after the
supposed optimum design that we get when the number of removed members is

increased to 10 and 40 respectively. In particular, the maximum stress value and
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weight of the critical point found during ESO for step size 1 (Figure 3.34) is
23968 -10° and 859 respectively. Instead, the corresponding values that we get for the
critical point during ESO for step size 10 (Figure 3.28) are 3.1412-10° and 1645.
Comparing the maximum stress and weight values for these two critical points, it is
obvious that the critical point found for step size 1 dominates the critical point for step
size 10. This means that the design of the critical point obtained for step size 1 1s
better than the one for step size 10. This does however require ten times as many FEA

solutions.
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Figure 3.34: Discrete ESO trajectory (step size 1) for 55-node Michell type
framework.
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Figure 3.35: Comparison between the ESO trajectories with step size 1 and step size

10 for 55-node Michell type framework.
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Figure 3.36: Comparison between the ESO trajectories with step

40 for 55-node Michell type framework.
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3.6. The effect of scaling the cross-sectional size in framework
topology optimization

The observation that the designs produced by the application of ESO to a
highly connected initial design are superior to the designs produced by a lesser
connected starting point that offers only a subset of the original design options does
not necessarily lead to the conclusion that a highly connected initial design will
always produce the most efficient designs. The obvious extra design variable is the
cross-section of the members. Suppose we keep the cross-sectional property in all the
members fixed within a design but make this a variable between two different ESO
runs, then simpler initial designs may lead to better overall designs after ESO runs.

To illustrate this, we fix the initial cross-sections in the 38-member initial
design (Figure 3.17) and the 105-member initial design (Figure 3.14) in such a way
that the total mass of the initial design for both two cases is the same (hence treating
the thickness as a variable across two different ESO runs, but constant over all the
members for a given run).

The ESO trajectory of the same MBB structure that has 38 members but the
same weight as the fully connected one appears in Figure 3.37. Increasing the
thickness of the members and hence the member area, the weight of the structure with
fewer members will be equal to the weight of the fully connected structure. The plots
of the maximum absolute member stress of the structure against the weight of the
structure for the fully connected MBB framework (Figure 3.14) and the MBB
structure with 38 members but same total wéight (Figure 3.17) are presented in the
same graph (Figure 3.37), so that comparisons can be made.

The plot at the left of the same figure is the ESO trajectory of the same MBB
structure that has 38 members. The plot at the right of Figure 3.37 is the ESO
trajectory of the fully connected MBB structure consisted of 15 nodes and in total 105
members. It can be observed that the plot line of the structure with fewer members
seems to have lower maximum member stress during the whole optimization
procedure than one obtained from the fully connected structure as the initial design.
Notice that the 38-member structure gives better design solutions than those obtained

from the fully connected starting design.
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Figure 3.37: Discrete ESO trajectory comparison between a fully connected MBB
structure and a similar MBB structure with fewer members.

The initial design of the next example is the structure that has been evolved in
26" step of the fully connected 15-node MBB structure (Figure 3.38). It has 79
members but the same weight as the initial fully connected structure of Figure 3.14.
Boundary conditions are applied at nodes, which are located at the bottom corners of
the structure. An external load is applied at the middle of the top of the structure. The
number of members that appear to have the lower maximum stress and that are

removed from the structure in each iteration is set to 1 as before.

A

Figure 3.38: 79-member MBB framework with 15 nodes.

The ESO trajectory for the 79-member, 15-node MBB framework is presented
in Figure 3.39. It can be seen that the trajectory of designs with fewer initial members

seems to have lower maximum member stress during the whole optimization
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procedure than the fully connected structure (Figure 3.40). This means that if the
cross-section is allowed as a variable of the problem, then a simpler starting point
with thicker cross-section may be a better starting point. This also suggests that
simultaneous alterations in the cross-section and topology may be the most desirable

ESO strategy.
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Figure 3.39: Discrete ESO trajectory for 79-member, 15-node MBB framework.
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Figure 3.40: Discrete ESO trajectory comparison between a fully connected MBB
framework and a similar MBB structure with 79 members.

69




CHAPTER 3 70

Since here we are carrying out linear static analysis, it will be clear that any
design can be moved along a hyperbola in the mass/stress plane simply by factoring
up or down the thickness of the frame members in this way. This has no effect when
comparing two alternative topologies from a Pareto, since if a design dominates
another for a given thickness of structure, it will do so however the structures are
scaled. It does mean, however, that designs in the Pareto set can be subtly moved
along the Pareto Front by suitable scaling.

Size and topology optimization is simultaneously obtained by scaling the
thickness (cross-sectional area) of every design that comes up during the ESO
procedure. While member removal occurs during ESO, changing the topology of the
structure, a hyperbola containing all possible designs with the same topology and
maximum  stress/mass ratio but with different thickness is provided for each ESO

design. This is because stress o is inversely proportional to the cross-sectional area

A: o~ Forcex A and weight W is proportional to the cross-sectional area A4:

Wapxixd (p = density, / = length of element), so that their product

O XW = const ; a rectangular hyperbola on the o - plane (see Figure 3.41).

Bending stress of a truss-frame member has a very small effect compared to
the axial stress hence it is neglected through the stress analysis. When an ESO design
is obtained, the member with the maximum stress value is detected. After finding the
force applied to the particular member, the equation that relates the maximum stress
and the mass of the design is obtained and plotted. We can observe from Figure 3.41
that if an ESO design dominates another design for fixed thickness, it will keep
dominating it even when the thickness of both designs is scaled. For fixed Cross-
sectional design search, the designs at the tail end of the ESO trajectory are not
necessarily superior to the previously obtained designs. However, Figure 3.41 shows
that given the freedom to alter cross-sectional area, the design at the end of the ESO
run is superior to the previous designs. We will not pursue this further here because
the main objective of this work is not to explore shape/size optimization.

In Figure 3.42, the plots of the analytical and non-analytical approach of
thickness scaling on one of the ESO designs of the fully connected 15-node MBR
structure are compared. The very small difference that can be noticed between these
two approaches, confirms that bending stress is negligible in stressed frameworks,

The non-analytical approach was obtained by simply finding the topology of the ESO
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design and then making various runs with different thicknesses including both axial
and bending stress in order to find the corresponding maximum stress and mass
design values. While in the analytical approach, the hyperbola represented by the

thickness scaling occurs on the ESO design with no bending stress consideration.
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Figure 3.41: Size and topology optimization of the fully connected 15-node MBB
structure (see Figure 3.14).

T T T T
thickness scaling on ESO design - analytical approach
® © __thickness scaling on ESO design - non-analytical approach

Mass of Design

5 6 7 8 9 10
Maximum Stress of Design x 10°

Figure 3.42: Comparison between the analytical and non-analytical approaches of
thickness scaling on one of the ESO designs of the fully connected 15-node MBB
structure.
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3.7. General shape of ESO trajectory for frameworks

The trajectory of weight against maximum stress of the structure during ESO
has been plotted for various example cases all of which have the following generic
features. The initial portion shows a reduction in weight as well as the overall
maximum stress. Clearly these ESO steps are Pareto-efficient in that they improve
designs on both counts. The trajectory then reaches a turning point beyond which
weight is reduced only at the expense of increased maximum stress. The very shallow
slope of the traj ectory in this portion indicates that the gain in weight reduction is only
marginal whereas the increase in the maximum stress of the structure is very
substantial. This suggests the possible use of the turning point as an indicator for
stopping the ESO iterations in g natural way without recourse to introducing an
arbitrary stopping criterion.

Figure 3.43 shows a schematic sketch of the general shape of the trajectories
observed in our numerical experiments. The initial steps seem to produce designs that
are lighter as well as less stressed. Beyond a critical point we cannot claim that ESO
improves designs because for (small) gains in weight, there is a (usually large) penalty

on the maximum stress.

t
Weight

_-¥ Ciritical point

R
—>

Stress

Figure 3.43: General ESO trajectory for frameworks.
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The critical point is the last design in the trajectory that dominates all previous
designs. Beyond this, the trajectory sometimes shows a complex behaviour with
“multiple turning points”. The general trend, however, is a reduction in weight with
an increase in maximum stress during the latter stages of the ESO process.

Since beyond the critical point, the weight of the structure decreases but the
maximum stress simultaneously increases, no decision can be made about the
optimality of the structure. However, some good designs can be chosen along this
portion of the trajectory according to a trade off between values for the maximum
stress and weight of the structure—should other design specifications provide such

information.

3.8. Conclusions

We have found by now that the Evolutionary Structural Optimization strategy
reduces the weight of a design at every step of the iteration, after a critical point it
increases the maximum stress within the structure. Evolution of designs on the
weight-stress plane with different starting points have been considered. Different
starting points were considered for some of the structures and the corresponding
graphs of weight vs. maximum stress were compared. According to the plots obtained,
it seems that all the designs with different starting points move towards the same
Pareto Front. However, all the structural design examples that have been considered
verify the general shape of the ESO trajectory. Observations on the ESO trajectory
can provide us with a significant outcome on selecting the stopping criterion for the
ESO iterations and the best optimized design according to the preferred constraints.
Besides that, scaling of the cross-sectional size of the structure was implemented at
each iteration of the ESO process. Simultaneous alterations in the cross-section and

topology of a structure can be proposed as the most desirable ESO strategy.
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Pareto-comparison between the
Evolutionary Structural
Optimization, Exhaustive Search and
Genetic Algorithm applied to
frameworks |

4.1. Introduction

In this chapter, the effectiveness of the Evolutionary Structural Optimization
(ESO) method of designing frameworks is studied. The designs obtained by ESO are
Just compared with those obtained using exhaustive search for combined performance
on two counts: the maximum stress within the structure and the overall weight.
Numerical experiments suggest that ESO produces reasonable designs at little
expense; however, the procedure misses out on many efficient designs if one could
afford the computational expense of an exhaustive search. To study the Pareto-
efficiency of the ESO method for complex problems, an exhaustive search is not
practical. Therefore, for computationally demanding problems Pareto Fronts (PF) are
constructed by the use of a Genetic Algorithm (GA) and comparisons are made with
multiple runs of GA generated Pareto Fronts. The approach adopted is to encode the
problem formulation using a genetic algorithm and to allow the formulation to evolve
in the direction of improving Pareto optimal designs [83, 94, 95]. Again, a general
observation is that ESO produces Pareto sub-optimal designs, but is superior to GA if
one could not afford a computationally demanding search. Finally, the cross-sectional
area of each member is considered as a design variable and the coordinates of the

nodes and connectivity among various members are considered to be fixed. The
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trajectory of designs on the weight-maximum stress plane obtained by the ESO
method with member thickness as a variable is found to be similar to that of the ESO
trajectory when structurally inefficient members were eliminated from the design
during evolution. The results of these numerical experiments demonstrate that while
ESO is computationally efﬁcient it fails to produce some designs with very good

structural performance.

4.2. Pareto Optimal Front

To begin with the terms Pareto dominance and Pareto optimality are further
clarified. Mathematically, the concept of Pareto dominance can be defined as follows:

A vector u =(u1,...,up) is said to dominate v = (vl,...,vp) if, and only if, u is partially
less than v, ie., VYie {1,...,p}, u, <v,Andje {1,...,p}:uj <v, . In the context of

optimization, p is the number of objectives.
Similarly, the concept of Pareto optimality can be defined as follows: 4

solution x, e U is said to be Pareto-optimal if, and only if, there is no x, eV for
which v=f(xv)=(v1,...,vp) dominates u =f(xu)=(ul,...,up). This set of solutions

that are non-dominated regarding the entire search space is the so-called Pareto-
optimal set.

The Pareto Front (PF) can be defined as the function space representation of
all the solutions in the Pareto-optimal set. Generally, when there are two objectives as
in our case, the Pareto Front is a curve. The Pareto-optimal designs are the best
designs that can be produced for a given problem formulation for a given set of
criteria [96]. If the goal is to improve the performance in those criteria then it is
possible to manipulate the problem formulation to achieve an improvement.

The ESO strategy reduces the weight of a design at each step of the iteration.
However, this does not mean that every ESO step is a sensible step because the
reduction in weight may be accompanied by an increase in the maximum stress within
the structure. Often, in practice, the maximum allowable stress is specified and one
looks for designs that reduce the overall weight. When comparisons of different

designs or design concepts need to be made, a rational approach will be to account for
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the two factors together and view the comparison problem as a multi-objective
optimization problem with the weight and maximum stress to be minimized
simultaneously. This is convenient for design comparisons; however, for practical
problem solving, the conventional approach of treating the overall weight as an

objective and the maximum allowable stress as a constraint may still be used.

4.3. Pareto Fronts by exhaustive design search

The ESO algorithm evolves by shedding portions of the current design during
design search in favour of highly stressed regions in the design. A difficulty with this
approach is that while the evolution occurs, there is very little scope for
reconsideration of design features that have been removed by a previous stage. In
other words, the design tends to commit to certain features too early, approaching a
gradient descent approach. A study of the evolution traj ectory during the ESO process
should be able to examine these issues.

In order to assess the quality of designs produced by the ESO process, all the
possible designs of a structure will be considered for a prescribed given number of
members eliminated from the original ground structure. Then the PF of all the
possible designs for a given number of removed members is obtained and it is
compared with the corresponding design that ESO obtains for the same number of
members eliminated from the original design. A computer code (written in
MATLAB) was developed as part of this study to find all the possible designs with
only one member removed. Then the code plots the corresponding maximum stress
and current weight of each of the possible designs in the same graph and finally finds
out the PF. A set of good designs with one member removed are produced and in this
way non-competitive (dominated) designs are eliminated from consideration. A
design is dominated if another design has been found that is better in both objectives.
After that the PF of all the possible designs when one member is eliminated can be
compared with the design that ESO finds when one member is removed. Similarly,
the procedure is continued for the possible designs that have 2 members removed
from the ground structure, then those that have 3 members removed from the ground

structure, and so on.
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Suppose the total number of members in the fully connected design is n. We
can produce new designs by systematically eliminating » members at a time. The tota]
number of design options can be calculated as follows:

If R, - No of designs with no members removed,
ne, - No of designs with 1 member removed,

e, : No of designs with 2 members removed,

ne, : No of designs with r members removed,

r
then ch_ =total number of designs, with r or less number of members removed
i=0 '

from the original completely connected design.

This method of calculating all the possible designs that can exist, for a
structure having N number of nodes and 1 to » number of members removed, can be
applied only in discrete structures. Therefore, discrete structural problems such as
trusses and frameworks provide an ideal setting to study design options exhaustively.
The number of the total possible different connectivities in a discrete structure can be
large but finite in comparison with the topology in continuum structures where it is
considered as infinite and dependent on the parameterization.

As already noted, in a framework desi gn, certain nodes are important and must
exist in any feasible design. Moreover certain nodes are added for load sharing and
are optional. The important nodes are usually the ones that carry a load or which
support the framework. This information can be specified by the designer and must be
kept in mind in the design process of a structure. On the other hand, the optional
nodes are sometimes used in a frame to help distribute the stresses better to individual
members. This constraint is checked first in the program. If any one of these
important nodes is absent in the design, a large penalty is assigned to the solution and
no further calculation of objective function or constraint is done. This approach is
introduced to enhance the creation of satisfactory structures and also to save
computations by not performing expensive FEM analysis for unsatisfactory designs.

In our case, we assume a ground structure, which is a complete framework
with all possible member connections among all nodes in the structure. Thus, in a

framework having N nodes, there are a total of M = N x (V- 1)/2 different members
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and 2" total number of possible designs (this includes the trivial cases of fully
connected design and infeasible designs such as all members removed).

In a feasible framework, all members must have stresses within the allowable
strength of the material. Since usually a framework is subjected to a number of
different loading conditions applied separately, these constraints must be used for
cach loading condition. Since several design options need to be evaluated, a computer
model to calculate stress and weight is required. Thus, we have used a finite element
method (FEM) to calculate the stresses in a framework. Furthermore, a suitable
automatic node re-numbering scheme is developed. Since the design options have
different topology, the members and nodes of the framework need to be automatically
numbered before calling the FE code. A flow chart of the scheme implemented to
obtain the PF of designs with a specified number of members missing from the

ground structure is shown in F igure 4.1.

Data

" A

Nodes connectivity, Nodal
coordinates, Force & BC Matrices

Missing nodes are not BC
and Force nodes

Detect nodes that do not appear in
structural connectivity

v

FE code
B2

an ;

No
Yes

y

Save design’s maximum
stress & mass

— A

PF calculations

Figure 4.1: Flow Chart to calculate the PF for a prescribed number of members
missing from the fully connected design.
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4.4. Pareto-comparison of ESO with exhaustive search: results and
discussions

Although the complete PF of the 6-node structure has been obtained, the PF
for 1 to 7 members removal cases are presented here in Figure 4.2a. The lines with
numbers marked on them correspond to the PF of designs obtained by exhaustive
search for those many number of members removed from the ground structure. The
complete PF of the 6-node structure for up to 7 members is then obtained and
presented in Figure 4.2b. This PF wil] be used for comparisons of the methods

developed for the 6-node problem in the next chapter.

Mass of Design

18 19 20 21 22
log(Maximum Stress of Design)

Figure 4.2a: Pareto Fronts for 1 to7 members removal cases of 6-node structure.
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Figure 4.2b: Pareto Front of the 6-node structure as obtained by the exhaustive search
when up to 7 members are remove .
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The PF calculations performed on a 6-node framework having 15 members
when one member is removed are presented in Figure 4.3. The three designs on the PF
are presented in Figure 4.4a, Figure 4.4b and Figure 4.4c. Then, running ESO for the
same structure with 15 members, the design that we get when one member is removed
is dominated by the designs that are on the PF as can be seen in Figure 4.3. As in all
design problems considered in the current work, the load applied to the structure is
equal to 10 kN. This ESO design is shown in Figure 4.5. Design D1 on the PF has the
same weight as the ESO design, but slightly lower maximum stress value and for this
reason D1 dominates the design obtained by ESO. Design D1 obtained by the
exhaustive search has member 4-6 removed from the structure (this cannot be seen
clearly in Figure 4.4a as collinear members exist in the structure). As we can see from
Figure 4.4b and Figure 4.4c, in D2 design the member 4-5 is removed and in D3

design the member 1-6 is removed.

Mass of Design

ESO design with 2 m_émbers reméved

I
17.35

46

| ]
17.3 17.4 17.45 17.5

17.2 17.25

log(Maximum Stress of Design)

Figure 4.3: Comparison of the ESO method and PF of the exhaustive search for the
case of one member removal.
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Figure 4.4a: Design D1 of the PF. Figure 4.4b: Design D2 of the PF.

1

Figure 4.4¢: Design D3 of the PF.

Figure 4.5 shows that the first member that the ESO removes is 1-2. As this
member connects the two fixed nodes that support the structure, it has zero stress and
therefore ESO decides to remove it first. On the other hand, D1 on the PF has the
same weight as the ESO design with 1 member removed (because one member of the
same weight is removed in both cases), but the structure’s maximum stress for D1 is
less than that of the corresponding ESO design. Removing a member that is stressed
instead of a member that has zero stress, the stress in the structure is distributed to the
rest of the members of the structure, decreasing that way the maximum stress of the
structure. Removing the member 1-2 leads only to the decrease of weight, as the

maximum stress of the structure over all members is kept the same.

3 5

Figure 4.5: ESO desi gn with one member removed.
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In Figure 4.6, the ESO trajectory applied to this structure and the PF for each
case of member removal are compared for the case of 2 members removed. It can be
seen again that the design found by the ESO for 2 members removed is dominated be
the corresponding PF designs.

The ESO trajectory and the PF for a specified number of members removed (1
through to 6) are presented in Figure 4.7. The lines with numbers marked on them

correspond to the PF of designs obtained by exhaustive search for those numbers of

members removed from the ground structure.
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—©- ESO Designs
* Possible Designs with 2 members removed
—— PF Designs with 2 members removed
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A8 Design with 2

Mass of Design

Design with'3 members
removed : : : :
42 ........... . .......... .............. .......... e L ............

i L 1
16.8 17 17.2 17.4 17.6 17.8 18 18.2

log(Maximum Stress of Design)

Figure 4.6: Comparison of the ESO method and PF of the exhaustive search for the
case of 2 members removal.

It can be observed in F igure 4.7 and F i>gure 4.8 that the ESO design for 1,2,3
and 6 members removed is dominated by the PF of all the possible designs with the
same number of members removed from the initial structure. Interestingly, the designs
when 4 and 5 members are to be eliminated fall on the corresponding PFs showing
that the ESO trajectory does hit the front for these two instances; following this it goes

in the region of sub-optimal designs in the next cycles of member removal.
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Figure 4.7: Comparison of the ESO method and PF of the exhaustive search for the
cases of 1 to 6 members removal. ’
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Figure 4.8: Closer view of the comparison of the ESO method and PF of the
exhaustive search for the cases of 1 to 6 members removal.
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A general conclusion that arises out of this numerical experiment is that ESO
is sub-optimal and it does not always find the best design that could exist when a
specified number of members are removed from the original fully connected structure.
In other words, removing the least stressed members from a design may not always be
the best design search strategy.

All the possible designs of a 6-node structure could be computed exhaustively
and compared with the corresponding ESO designs for any member removal case., It
is not possible to test if the same general conclusions hold for more complex design
problems by using exhaustive search because the number of design options increases
dramatically with increased number of members in the ground structure.

For various numbers of designs N and numbers of members removed, the
computational effort is estimated. For a simple case of a 6-node framework, we can
see from the following graph (Figure 4.9) that we can get a large number of possible

designs. In particular the number of possible designs for this structure is equal to

6x(6-1)

2 2 =2"=32768 designs.
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Figure 4.9: Graph of Number of Members removed against the corresponding
Number of Possible Designs, for a 6-node framework.
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Even greater is the number of the possible designs, when larger structures are
considered, making the solution time enormous. For example, in the case of a 12-node
framework with 66 members in total, the number of all the candidate designs is equal
to 2% , which is approximately 7.38x10" designs. The variation of the possible
designs according to the number of the removed members is plotted in Figure 4.10.
As we can notice from this figure, the direct evaluation of a finite element model such
as a simple 12-node framework can take a lot of time as it is almost impossible to try

several billions of designs.

Number of Possible Designs
N
T

0 ; ' . ;
0 10 20 30 40 50 60 66

Number of Members removed

Figure 4.10: Graph of Number of Members removed against the corresponding
Number of Possible Designs, for a 12-node framework.

To overcome the problem of large number of candidate designs in a structure,
Genetic Algorithms will be used to search for Pareto-efficient designs next. If the
number of possible design options is large, exhaustive search may be computationally
prohibitive. A genetic algorithm may then be a natural choice for searching for a
Pareto set. Genetic algorithms begin with a starting generation of designs and proceed
from generation to generation. Here the goal is that the final generation approaches
the Pareto set for the universe of possible designs for the case of two competing

objectives—maximum stress and weight.
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4.5. Structural Topology Optimization using Genetic Algorithms

A GA is a search and optimization procedure that is motivated by the
principles of natural genetics and natural selection. Some fundamental ideas of
genetics are borrowed and used to construct search algorithms that are robust. The
main difference between the GA and most of the traditional optimization methods is
that the GA works with a population of solutions instead of a single solution [97-100].
There is more than one string (representing a design) that is processed at the same
time and used to update any one string in the population. For this reason, the expected
GA solutions may be a global solution. Moreover, since a population is updated at
every generation, a set of solutions (such as in Multi-objective Pareto Optimization)
can be obtained simultaneously.

A simple GA proceeds by first randomly generating a population of solution
strings. A pseudo random number generator is used to generate the initial population.
Based on the statistics of this population, the next generation is reproduced according
to probabilities assigned to the members. This means that poor designs will be
assigned low probabilities and good designs will be assigned high probabilities of
surviving in the next generation.

The population is a set of configurations called chromosomes. Chromosomes
are encoded data and the chromosome values (genotypes) are uniquely mapped onto
the decision variable (phenotypic) domain. The basic GA operators are listed as
following (Figure 4.1 1):

(i) Selection: is the process of detérmining the number of times that a
particular individual is chosen for reproduction and the number of offspring that an
individual will produce. The selection operator is intended to improve the average
quality of the population by giving individuals of higher fitness a higher probability to
be copied to the next generation.

(ii) Crossover (recombination): is the basic operator for producing new
chromosomes in the GA. It produces new individuals that have some parts of both
parents’ genetic material. The crossover operator is intended to combine the genetic
data of the existing population in generating offspring. Pairs of chromosomes are

recombined on a random basis to form two new individuals.
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(iii) Mutation: is randomly applied with low probability to modify values in
the chromosomes. The mutation operator plays a secondary role, as it allows new
genetic patterns to be formed, thus improving the search method. Occasionally, it
protects some useful genetic material against loss.

(iv) Elitist strategy: in a standard GA the best possible solution is not
preserved, thereby increasing the chance of losing the obtainable best possible
solution. The elitist strategy overcomes this problem by copying the best member of

each generation into the next one.

INITIAL POPULATION

FITNESS
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SELECTION

A

CROSSOVER
MUTATION
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GEN > MAX GEN STOP
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< GEN =GEN + 1

Figure 4.11: Outline of a genetic algorithm.

At each generation, a new set of approximations is created by the process of
selecting individuals according to their level of fitness in the problem domain and
breeding them together using crossover and mutation operators — ideas borrowed from
natural genetics. This process leads to the evolution of populations of individuals that

are better suited to their environment than the individuals that they were created from.
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Another important characteristic of GA is that it uses probabilistic rules to
guide the search. A common problem with most of the traditional search methods is
that there are fixed rules to move from one solution to another [98]. Because of that,
these methods can only be applied to a special class of problems. They are not
considered robust and cannot be applied to a wide variety of problems. In trying to
solve any other problem, if a wrong move is made early on, it is very hard to recover
from this. On the other hand, GA uses probabilistic rules and an initial random
population [101-105]. Thus, early on, the search may proceed in any direction and no
major decision is made in the beginning. Later on, when the population has converged
in some locations the search direction narrows and a near-optimal solution is found.
The nature of narrowing the search space as generations progress is adaptive and is a
unique feature of the GA. This characteristic gives to GA robustness, which is very
useful in optimization problems.

The first contribution to optimal design of structures using GA is presented in
[106]. They discussed the optimal design of a 10-bar truss structure using continuous
variables. Also, with regard to the optimization of truss structures cross-section sizing
optimizations of discrete-member trusses were investigated [104, 107-109].
Moreover, modified versions of bit-string coded GA have been proposed [110-112],
considering discrete variables. The shape optimization of structural members has been
studied in [102, 103].

GA-based topology optimization of discrete truss structures was investigated
mainly in [107, 109, 113]. A two-stage optimization process was used in [107, 109]:
(1) in the first stage, kinematic stability requirements were used to identify stable
topological configurations and (2) in the second stage member adding/removal and re-
sizing were considered. The sizing, shape and topology of frame structures were
addressed in [113], which was one of the first papers to examine the design of framed
structures using GAs.

The bit-array representation method [89] is similar to the binary-string method
[114] in which they described a binary material/void design representation that is
encoded in GA chromosome data structureé. This representation was intended to
approximate a material continuum as opposed to discrete truss structures.

Size/topology optimization of trusses has been performed using some concepts

of the force method, graph theory and genetic algorithm [105]. The design variables
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consist of cross-sections of members and topological Boolean bits corresponding to
presence or absence of members.

Furthermore, a bit-array representation for structural topology optimization of
continuous structures using GA was implemented in [115]. A bit array is mapped into
the two-dimensional design domain discretized by a fixed regular mesh, where each
of the small, square elements contains either material or void and is thus treated as a

binary design variable.

4.6. Quality indicators

Since interest in applying randomized search algorithms in order to obtain
Pareto-optimal solutions is constantly growing, the issue for comparing the
performance of different algorithms has become more and more important. In
multiobjective evolutionary algorithms, the outcome is an approximation of the
Pareto-optimal set, which will be called as the approximation set [116]. The main
issue now is to evaluate the performance of approximation sets. However, in this
thesis we will use the term “design sets” instead of “approximation sets”. Two basic
approaches of evaluating the performance assessment of multiobjective algorithms are
the attainment function approach, which models the outcome of a multiobjective
optimization algorithm as a probability function in the objective space [117] and the
indicator approach, which summarizes the outcome of a run on the basis of
quantitative performance measures [118]. In this work the indicator approach is
followed in order to compare the output of the new evolutionary methods that are
developed.

When visual comparisons of multiobjective optimization methods are not
feasible, quantitative methods of comparing and evaluating the performance of
different optimization methods are needed. In order to assess the performance of two
multiobjective optimization methods and find which outperforms the other, two
measures of quality are considered here. The performance measures used in this work
are termed as quality indicators since are focused on the quality aspect while

comparing several design sets [119].
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Quality indicators represent means to express and measure quality differences
between design sets (see Figure 4.12). The most popular quality measures are the so
called unary quality indicators, which are functions that map each design set to a real
number as a single figure of merit and the algorithms are assigned samples of
corresponding indicator values. On the basis of statistical testing procedures, it 1s then
possible to check whether an algorithm provides significantly better solutions than
another optimization method with respect to the preferences represented by the

considered indicator.

niin
W
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independent of
user preferences
dependent on
user preferences [

ideally: quality indicators aliow to-make both type of statements

Figure 4.12: The need for quality indicators from [120].

According to [119], unary indicator J;,q is defined as a mapping from the set of

all approximation sets Q to the set of real numbers:
I,,:Q—R.

Given a pair of approximation sets, B and C, the difference between their
corresponding indicator values I, (B) and I,,,(C) should reveal a difference in the
quality of the two sets even when the two sets are considered as incomparable. For
example, if the indicator values are assumed to be maximized, B is preferable to C if

I.,(B>1,,(C). So, the outcomes of two multiobjective optimizers can be compared

by simply comparing their corresponding indicator values.
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In the following work, three common unary quality indicators are used for the
purpose of comparing the quality performance of pair of sets when visual evaluation
becomes difficult. Each of these indicators is considered to measure the performance
of each design set in a slightly different way. These three unary quality indicators are

presented next.

4.6.1. The Hypervolume Indicator

The hypervolume indicator, proposed in [83], measures the hypervolume of
the portion of the objective space that is dominated by a design set B, and is to be
maximized. In order to measure this quality, the objective space must be bounded,
otherwise a bounding reference point that is dominated by all points should be used
(Figure 4.13).

Also, the hypervolume of the objective space can be calculated according to a
reference set R, giving the indicator referred as/, . “Given an approximation set 4, the

indicator value is defined as
I;I(A)le(R)—IH(A) (4.1)

where smaller values correspond to higher quality, in contrast to the original
hypervolume 7, ” [119]. Given a pair of design sets, B and C, the difference between
their corresponding indicator values /,,,(B) and I, (C) should reveal a difference in

the quality of the two sets. In particular, for a minimization problem, if the reference
set is considered to dominate the sets B and C, then B is better than C if the
hypervolume value of B 1,, (B) is smaller than the hypervolume of C I, (C).
Accordingly, if a reference set is chosen to be dominated by both design sets, then B
is better than C, only if the hypervolume of B is larger than the hypervolume of C,

considering the objective space is to be minimized.
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Figure 4.13: Tllustration of the hypervolume indicator. In this example, design set B is
assigned the indicator value 7, (B) =150. The objective vector (20, 20) is taken as the

reference point.
4.6.2. The Unary Epsilon Indicator

The epsilon indicator family has been proposed in [116]. Multiplicative and
additive versions exist in both unary and binary forms. The binary multiplicative
epsilon indicator /, (B,C), gives the minimum factor &, by which each point in C can
be multiplied such that the resulting transformed set is dominated by B. The epsilon

indicator 7, can be defined as:

[(B,C)=inf{vz? e CA' e B:Vieln 2 Se-22f,  (42)

ceR

for a minimization problem of any two design sets B, C € Q, corresponding objective
vectors z', z* and assuming that all points are positive in all objectives [116].

Similarly, the unary multiplicative epsilon indicator J !(B) for a set B is

I,(B)=1,(B,R), (4.3)

where R is any reference set of points. An equivalent unary additive epsilon indicator
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I',(B) is defined in a similar way, but it is based on additive & -dominance

I(B,R)=inf{vz* e R3:' € B:Viel.n 2l S +22}. (4.4)

geR

For the unary epsilon indicators, whenever B is better than C, then
[/(B)< I'(C) respectively I%,(B)<I..(C) . On the other hand, if 1N(B)> I)(C)

respectively I, (B)> I, (C), we can deduce that B is not better than C [116].

4.6.3. The Unary R Indicator

The R indicators proposed in [121] can be used to assess and compare design
sets on the basis of a set of utility functions. “A utility function u is defined as a
mapping from the set Z of n-dimensional objective vectors to the set of real numbers:
u:Z—R.
In this sense, it represents the counterpart to a quality indicator with the difference
that the domain is Z and not Q” [119]. |

Supposing that the decision maker’s preferences are given in terms of a

parameterized utility function u,,,, and a corresponding set A of parameters,
u,, could represent a weighted sum of the objective values, where A = (1,,...4, Je Ais

a particular weight vector. Several ways to transform such a family of utility functions

into a quality indicator were proposed in [121]. The binary /,, and I ,, indicators are

defined as:
B ZkAu *(A,B)—u*(4,C)

IRz(BaC) = A* ) (4.5)

> alu*(4,0)—u* (A,B))/u*(4,0)
A '

I,,(B.C)= (4.6)

where u* is the maximum value that the utility function u, can reach with weight

vector Aon a design set B, i.c., u*(4,B)=max,_, u,(z) [119].

93



CHAPTER 4 94

As in the case of the epsilon indicators, the unary R indicators are defined on

the basis of the binary versions by replacing C by an arbitrary, but fixed, reference set:
I',(B)=I,(R,B)and I}B(B) = I;,(B,R) . The R indicators can guarantee that, in the

case of minimization, the indicator value for a design set B is less than or equal to the

indicator value associated with C, whenever B is better than C.

4.7. Implementation of GA for 2-objective optimization problems
using NSGA algorithm

A basic part of the GA procedure is to enhance good solutions and eliminate
poor solutions in a population, while keeping the population size constant. Therefore,
although the complete design space is not explored, the chances of sampling the most
promising designs are greatly enhanced given the computational constraints.

The fact that a simple framework can have an extremely large number of
possible designs when a number of members are removed makes it very difficult to
investigate all the designs and detect which of these appear on the Pareto Font. In
addition, it takes a lot of time to run all the cases, as for a normal case of a relatively
small number of members in a structure; the possible designs can easily reach a
number of the order of billions. The use of Genetic Algorithms will reduce the overall
computation time substantially. In this way, the designs that are not promising will be
ignored during the GA runs.

The aim is to produce a well spread 6ut set of optimal designs, with as few
function evaluations as possible. The former is to ensure a good and even resolution
of the Pareto Front. There are number of methods published in order to satisfy this.
Generally the most preferred in the literature seems to be NSGA2 (Non-dominated
Sorting in Genetic Algorithms, see [122]).

The algorithm presented in [122] has been implemented to generate the PF in
this work. In order to find a number of Pareto-optimal solutions in a multi-objective
optimization problem using GA, the concept of non-dominated sorting of population
members is used [122, 123]. In a population, the non-dominated solutions are defined
as those solutions which are better in at least one objective than any other solution in

the population. The procedure that is adopted in order to implement this non-
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dominated sorting concept follows. The population is sorted to find the non-
dominated set of solutions. Then all the individuals in this sub-population are
assigned a large artificial fitness value. The fitness of each solution string is-a measure
of performance of the design variables defined by the objective function.

Since the objective is to find a number of Pareto-optimal solutions, a sharing
procedure is performed among these non-dominated solutions and a new shared
fitness is calculated for each of these solutions. These solutions are temporarily
counted out of the population and the next non-dominated set is found. These
solutions are assigned an artificial fitness value smaller than the least shared fitness
value in the previous non-dominated set. This is done to impose a higher preference
for solutions in the previous set than for the current set. Sharing is performed again
among the new non-dominated set and this process continues till all population
members are ranked in descending order of the non-dominated sets. Then the so-
called reproduction operation takes place, in which the good solutions are kept and the
poor solutions are eliminated.

Typically, a GA works with coding of variables instead of the variables
themselves as in the traditional optimization methods [98, 109]. Here coding the
decision variables in a binary string is used to achieve a pseudo-chromosomal
representation of a solution. In our case, an M-bit-string is a representation of the
designs generated from an M-member fully connected structure.

Considering the case of a framework that has M number of members, the
connectivity of the structure can be coded in a binary string of length 1x A, consisting
of ones and zeros. When a member is removed, we associate it as a binary number “0”
and if it remains, we associate it as a binary number “1”. So, initially the search will
begin from a design (initial seed) that has all the nodes connected to each other, which
means that the string will include only 1’s. If we call this string bitstring, then,

bitstring =[1 1 1 o 11 1]

Now that a string representation of a design solution has been achieved, some
genetic operations previously described are applied to such strings to hopefully find
better populations of solutions. However, since GA has multiple offspring, it can
explore the solution space in multiple directions at once. If one path turns out to be a

dead end, it can easily eliminate it and continue work on more promising areas, giving
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it a greater chance of finding the optimal solution. In order to avoid the appearance of
infeasible designs, penalty features are also introduced in the algorithm.

The bitstring encoding of the connectivity is used as an input to the software
OptionsMatlab [124]. In order to produce a well spread out set of optimal designs,
with as few function evaluations as possible, the NSGA2 method [122] is adopted
within OptionsMatlab (see Appendix). Using an improved NSGA?2 algorithm and the
OptionsMatlab interface, the number of function evaluations is reduced, and a high
quality Pareto optimal front is achieved. This idea is implemented on a 6-node and 12-
node ground structures. The ESO trajectory for each of these examples will be

compared with the corresponding GA designs that will be obtained.

4.8. Pareto-comparison of ESO with GA: results and discussions

A small framework that has 6 nodes is considered first. This is a well-known
test case in structural topology optimization of frameworks. It consists of 6 joints, two
fixed supports and a load acting simultaneously. The ground structure is shown in
Figure 4.14. We take this example because exhaustive search is feasible and it would

give us confidence in the efficiency of GA while comparing with ESO.

Figure 4.14: Fully connected framework with 6 nodes.

In this work, GA is run for 30 different randomly generated seeds in order to
test the robustness of the conclusions derived. The final output of the multiple runs of
GA contains the PF designs obtained from each GA run. For the problem of the 6-
node structure, the designs obtained from GA for each different initial seed are

presented on the same plot (Figure 4.15). The points denoted as circles and diamonds
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represent the most efficient designs and the least efficient designs of the multiple GA

search respectively.
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Figure 4.15: GA designs (20 generations and 20 designs in each population).

The results of the exhaustive search for 1 through to 5 member removal cases
are compared with the designs obtained by GA for 20 generations & 20 designs per
population in Figure 4.16. We observe that the GA finds designs obtained from the
exhaustive search for 1-5 member removal cases. In addition, GA obtains superior
results than the exhaustive search of the 5 member removal case in less computational
time. GA obtains better designs than the exhaustive PF of 5 member removal case
consuming time between the computational time of the 4 and 5 member removal cases

as expected (Table 4.1).
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Figure 4.16: Comparison of the GA designs and the PF designs of the exhaustive
search for 1-5 members removal cases (20 generations and 20 designs in each
population).

CPU Time (s)
Exhaustive search - PF of 1 member removal 3
Exhaustive search - PF of 2 members removal | 5
Exhaustive search - PF of 3 members removal 30
Exhaustive search - PF of 4 members remoyal 257
Exhaustive search - PF of 5 members removal 1374
GA (20 generations & 20 designs in each population) 547

Table 4.1: Comparison of CPU time between exhaustive and GA search.
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As the generation size increases from 20 to 80 and with the same applied set of
30 randomly generated seeds (but different from those for Figures 4.15 & 4.16), GA
finds even better designs indicating convergence (Figure 4.17). Consequently, only
GA will be used for computationally demanding problems where exhaustive search is

impossible to carry out in future.
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Figure 4.17: GA results for different numbers of generations.

The ESO trajectory of design evolution is presented overlaid on the designs
explored using GA for 20 designs per population and 20 generations in Figure 4.18
and 40 designs per population evolved for 40 generations in Figure 4.19. As the
number of populations and generations increases, GA can find more designs that
dominate the designs in the ESO trajectory. We observe again that ESO captures
some good designs (and in fact obtains the same three designs when 1, 2, 4, 10, and
11 members are eliminated from the ground structure) but for all other cases, the

designs obtained by the use of GA outperform designs obtained by the use of ESO.
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Figure 4.18: Comparison of the GA results and the ESO tr
structure (20 generations and 20 designs in each population).

ajectory of the 6-node
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Figure 4.19: Comparison of the GA results and the ESO trajectory of the 6-node

structure (40 generations and 40 designs in each population).

A larger structure that consists of 12 nodes and 66 members is considered next

(see the ground structure in Figure 4.20). Exhaustive search is computationally

prohibitive for this size of problem. The PF of this framew

100

ork is found using the
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NSGA?2 algorithm and OptionsMatlab for 200 designs in each population and 200
generations (for 30 different randomly generated seeds) as can be seen in Figure 4.21.
The figure indicates that GA finds some designs that are better than the designs
obtained by ESO. This further supports the observation that the discrete ESO misses
out good designs during its procedure, and hence it can be considered as a Pareto sub-
optimum method. However, in this case the GA results do not dominate entirely the
results of ESO. As the problem size is increased a larger number of generations and
populations are required for GA to improve. Note that the differences on the x-axis are
much greater than they appear because of the logarithmic scale chosen for the

maximum stress within the structure.

Figure 4.20: Fully connected framework with 12 nodes.

350 T T T T T 1 T

. . . .| —— PF of GA designs
—eo— |east efficient GA designs
-5~ ESO designs

300 ,,,,,,,,,,, e R ,,,,,,,,,,, L \ ..... -
teof IR
250 B : E :
140t : - :
c » Q0L O AR SR
5 200 120, : ‘
j3 . . .
a g : :
k] 100 : H T
s g : : : :
$150 W ......... . - o -
s ‘ : : 8oL ) —
: : 601 : : :
100 L. R ........ : . : 5 -
50 . eeean Ce e __..__—._—- —.—-—.—__7_.__....\ ...... ..... -
: . . N 0— & —@e- <e-0 vy _=
: — o
0 1 { | | . i \ I
16 17 18 19 20 21 22 23 24

log(Maximum Stress of Design)

Figure 4.21: Comparison of the GA results and the ESO trajectory of the 12-node
structure (200 generations and 200 designs in each population).
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4.9. Sizing optimization using ESO in framework structures

In the problem of framework sizing optimization, cross-sectional areas of
members are considered as design variables and the coordinates of the nodes and
connectivity among various members are considered to be fixed. Here the discrete
ESO method has been modified so that instead of completely removing low stressed
members from the structure during the process, the thickness of the low stressed
members of the structure is made smaller each time, reaching a smallest threshold
value. Therefore the thickness of each member in the structure can vary in a range.
The members that are less significant in the structure are assigned the smallest
thickness value. This method simplifies the original ESO method with member
removal, as no member is removed—thus reducing the computational time and effort.
The two structures considered for numerical experiments are shown in Figures 4.14 &
4.20. The trajectory obtained by this ESO size optimization method with member
thickness as a variable shows a similar trajectory to the original ESO method as can

be seen in Figures 4.22 & 4.23.
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Figure 4.22: ESO trajectory for 6-node structure with varying member thickness
(ranging from 0.005 to 0.025 m in steps of 0.005).
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Figure 4.23: ESO trajectory for 12-node structure with varying member thickness
(ranging from 0.005 to 0.025 m in steps of 0.005).

4.10. A bit-string representation for structural size optimization in
discrete framework structures using Genetic Algorithms

In order to compare the results obtained by the ESO method with thickness as
a variable, a bit-string representation method in GA is used again. This time, the bit-
string represents the thickness of the each member of the structure, which varies
within a defined range. Thus, OptionsMatlab works out structures with different
values for the thickness of each structural member, obtained after a number of
generations to produce the PF designs. The designs produced by the GA are compared
with those obtained using ESO in Figures 4.24, 4.25 & 4.26. The ESO trajectory of
the 6-node structure (see Figure 4.22) is overlaid with the GA results for 50 and 100
generations with 20 and 50 designs in each population correspondingly in Figures
4.24 & 4.25. Similarly, the ESO trajectory of the 12-node structure (see Figure 4.23)
is overlaid with the GA results for 100 generations and 100 designs in each population

in Figure 4.26.
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Figure 4.24: ESO & GA (50 generations & 20 designs in each population)
comparison for 6 node structure with thickness as a variable ranging from 0.005 to
0.025 m in steps of 0.003.
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Figure 4.25: ESO & GA (100 generations & 50 designs in each population)
comparison for 6 node structure with thickness as a variable ranging from 0.005 to
0.025 m in steps of 0.005.
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Figure 4.26: ESO & GA (100 generations & 100 designs in each population)
comparison for 12 node structure with thickness as a variable ranging from 0.005 to
0.025 m 1in steps of 0.005.

The results illustrate again that the GA produces more efficient designs than
ESO, although at a higher cost. On the other hand, ESO produces some remarkable
designs if computational resources are limited. ,

The comparison of CPU time required for various examples presented in this
thesis for ESO calculations and for GA calculations are given in Table 4.2 (the second
column refers to the corresponding figure number). Comparisons with exhaustive
search are meaningless — hence not made here — because it is always the most
expensive search. However, when GA computation time is considered, it is clear that
ESO designs require fewer calculations by several orders of magnitude. The gap in
computational time increases with the increased complexity of the original fully-

connected structure.
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Example No. Figure No. CPU Time for ESO (s)  CPU Time for GA (s)

1 (4.18) 0.7 645
2 (4.19) 0.7 1975
3 4.21) 1.34 95422
4 (4.24) 0.55 2864
5 (4.25) 0.55 16071
6 (4.26) 6.15 24118

Table 4.2: Comparison of CPU time for ESO and GA calculations.

4.11. Conclusions

The quality of framework designs obtained by the use of the Evolutionary
Structural Optimization (ESO) was critically examined. It is often claimed that the
method produces optimal structures because at each stage of evolution one discards
the structurally most inefficient portions in a design. The consideration of weight
alone does not provide an ideal metric for comparisons unless we fix the maximum
stress in all the designs that are being compared to a prescribed value. We have,
therefore, explored the two-objective problem of minimizing the weight and the
maximum stress in a structure where comparisons can be readily made between the
PF of various sets of designs.

The ESO designs were found, in many cases, to be dominated by those
computed by an exhaustive search or a Genetic Algorithm (GA). Comparisons with
the Pareto-optimal sets obtained from exhaustive search show that ESO does not
always provide optimal solutions. However, it does produce some very good designs
at a small computational expense. Discrete structures such as frames and trusses
afford the opportunity to explore all possible designs—unlike a continuum model
where such comparisons are not possible because of infinity of possible design
options and because the conclusions are dependent on a specific parameterisation.

For complex topologies having a large number of joints, the number of design
options cannot be exhaustively searched. Therefore, for such cases, multiple runs of
GA has been used to produce Pareto-optimal design sets and compared with the

designs produced by ESO. The conclusions from our numerical experiments remain
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the same—ESO does not often produce Pareto-optimal designs; however, if one can
afford only limited computational resources, then it produces some very good designs
at relatively small cost.

Finally, the topology optimization problem was reformulated as one of
gradually reducing the thickness in a range—so that a structural member is not
altogether removed in one step, but is reduced only when the thickness approaches
zero (or a prescribed lower threshold). The general observations for this case are
consistent with the other numerical experiments presented in this chapter—ESO does
not often produce Pareto-optimal solutions, however, it affords some very good

designs inexpensively.
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Combining the Genetic Algorithm
and Evolutionary Structural
Optimization for the topology design
of frameworks

5.1. Introduction

This chapter presents two new strategies for topology optimization of
frameworks by combining the Evolutionary Structural Optimization (ESO) method
and Genetic Algorithms (GA). Numerical experiments in the previous chapter
suggested that ESO, when applied to frameworks, is computationally cheap but it
misses out some of the structurally most efficient designs. On the other hand, the GA
obtains structurally high quality designs but is expensive to run. Guided by these
observations, two new strategies are proposed and implemented in this chapter in
order to combine the quality of GA and the computational efficiency of ESO. In the
first method called the ESO assisted GA method (ESOaGA), ESO obtained designs
are inserted in the GA population, helping the GA search. The second method
presented here is the GA assisted ESO method (GAaESO), in which GA produced
designs are used as starting points for a family of ESO runs. The designs obtained by
the two proposed methods, are compared with the designs obtained using the
“unassisted” GA. Suggestions for multiple uses of ESO and GA are considered in
order to accomplish more efficient results. Accordingly, the ESO-assisted-GA-
assisted-ESO (ESOaGAaESO) method is further explored that combines ESOaGA
and GAaESO concepts. Apart from the visual comparisons among the proposed
methods, quantitative comparisons of the performances of the different methods using

quality indicators are presented. Finally, a Kruskal-Wallis test is applied for each
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comparison. Two design goals are used for this comparison: the maximum stress

within the structure and the overall weight.

5.2. Observations on Evolutionary Structural Optimization of
frameworks and Genetic Algorithms applied to framework design

It is often claimed that ESO tends to produce optimal structures because at
each stage of evolution one discards the structurally most inefficient portions in a
design. However, the consideration of weight alone does not provide an ideal metric
for comparisons unless we fix the maximum stress in all the designs that are being
compared to a prescribed value. Here, therefore, we have explored the two-objective
problem of minimizing the weight and the maximum stress in a structure where
comparisons can be readily made between the Pareto Fronts of various sets of desi ens.
The ESO designs were found, in many cases, to be dominated by those computed by a
Genetic Algorithm (GA). Comparisons with the Pareto-optimal sets obtained from the
GA show that ESO does not always provide optimal solutions. However, it does
produce some very good designs at a relatively small computational expense.

The possibility of combining the best features of the two algorithms is next
explored to enhance the combined computational performance (or alternatively
enhance the structural performance of designs given fixed computational resources).
We propose two methods that combine the ability of the GA to search widely over the
design space with the computational economy inherent in ESO.

The essential ingredient of the first method is to replace a part of the
population of a GA by some promising designs obtained from ESO. In this way, the
GA will look at more promising areas close to the ESO trajectory and below it, where
the most optimum designs can be found. Overdoing this may not be a good idea
because it may kill the production of novel designs from regions unexplored by ESO.
By replacing some of the inefficient desi gns that the GA finds in the initial population
or each of the populations one would expect to assist the GA in finding efficient
designs economically.

The second method developed here is a GA assisted ESO method. In this
approach, the GA produced designs for a given number of generations are selected

and taken as starting points for a family of ESO runs. The GA is run as a two-
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objective optimization problem. The set of designs on the PF as obtained by such a
GA run are taken as starting points for a family of further ESO runs. The final
solutions depend on the given initial design and thus different solutions to the same
problem with the same discretization and optimization method can be obtained by
using different starting designs. Applying ESO to each of the final GA designs
obtained for a number of generations and populations expands the search for the
globally best design. Note that the additional computational cost of running ESO
several times is very marginal.

Both approaches are examined and compared with the “unassisted” GA
method. The results of these comparisons show that these two new methods are able
to produce efficient designs in a relatively smaller computer run time than the
“unassisted” GA.

As the selection of the initial seed of GA can have an effect on the GA
performance, every GA based method is run multiple times with different initial seeds
so that a more representative output is obtained. All “assisted” and “unassisted” GA
cases presented in this chapter are computed for 30 different randomly generated
initial seeds. In order to compare 2 or more GA based methods, the same randomly
generated set of initial seeds are considered for the corresponding GA based methods.
The final output of a GA based method consists of the PF designs obtained from each
of the 30 different initial seed cases. Instead of presenting only the PF and the least
efficient GA designs for a GA search result, the area covered by the PF designs and
least efficient designs produced by GA is presented and filled with colour (see shaded
bands in Figures 5.1(ii) & 5.1(iv)). In this way, the solution space of GA based
methods can be easily visualized especially when comparisons between various
methods need to be done.

The designs obtained from all GA based optimization methods for the 6-node
structural problem presented in this chapter are structures with 7 or less members
removed from the ground structure. Designs with more than 7 members removed are
discarded from the final outcome of the optimization method. We treat the maximum
number of members that can be removed from the ground structure as a design
constraint because otherwise the process is dominated by one or two trivial designs
with only a few members in them (e.g. a simple beam), or their close variants.

The best designs, given two objectives, appear on the Pareto Front. Similarly,

the worst designs produce another curve. The band between these two extremes
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indicates the coverége of the designs explored. If we Joined the left-most and right-
most ends of the PF and the front of the worst of the explored designs, some of the
existing designs may fall out of this band. To ensure that all the designs explored fall
within the band, a top left corner and a bottom right corner are created. The top left
corner is given by (min(x), max(y)) over the data and the bottom right corner is given
by (max(x), min(y)) of the data (Figures 5 -1(1) & 5.1(ii)). However, this definition of
the band is not satisfactory when max(y) on PF is greater that max(y) on the worst
design front, or max(x) on PF is greater that max(x) on the worst design front because
the use of the strategy in Figures 5.1(iii) & 5.1(iv) will not produce corner points. We
detect these situations and Join the ends of the fronts directly (as shown in Figures
5.1(iii) & 5.1(iv)) to create the band.
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Figure 5.1: Definition of the design bands—(i) and (i1): when corner points need to
be created to include all the designs within the band, (iii) and (iv): when Jjoining the
ends of the best and the worst fronts is satisfactory.

111



CHAPTER 5 112

5.3. Performance assessment of multiobjective optimization methods
using quality indicators

Visual comparisons of more than one two-objective optimization methods
presented are often not reliable. An alternative approach is to compare and evaluate
the performance of different optimization methods by the use of quality indicators. In
order to compare the results among various cases of the same or different optimization
methods, the unary quality indicators are used as discussed in the previous chapter.
The design sets associated with each developed optimization method are first
transformed into the representation format of the indicator values before a statistical
testing method is applied. Three unary quality indicators: hypervolume, epsilon and R
indicator are commonly used for the purpose of comparing the performance of
methods. Each of these indicators measures the performance quantitatively with a
slightly different approach.

Generally, many studies in the literature evaluate algorithms with respect to
several different quality indicators. A combination of Pareto compliant indicators can
yield interpretations that are more powerful than can be made by a single indicator.
For example, if two Pareto compliant indicators contradict one another on the
preference ordering of two design sets, then this implies that the two sets are
incomparable. It is possible to make quantitative statements about the differences in
quality even for incomparable design sets as unary quality indicators represent
specific preference information. However, if several quality indicators are used,
slightly different preferences are assessed by each of the indicators and this helps to
build up a better picture of overall set quality of different sets of designs.

In the current work, for the comparison of the new developed hybrid
optimization methods the quality indicators provided from the Platform and
programming language independent Interface for Search Algorithms (PISA) [125] are
used. PISA is a text-based interface for search algorithms used to test and compare
new multi-objective optimization algorithms. It contains various packages of
optimization algorithms and test and benchmark problems that can be used to assess
the performance of different optimizers. However, in the current work, the
performance assessment package of PISA was only used for the comparison and

analysis of the developed optimization methods,
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PISA initially runs all the combinations of optimization methods and test
problems that are considered in the tool environment. After all the runs have been
finished, a set of files is created, each one containing the design sets for all runs that
have been generated by a particular optimizer-test problem pair after the same
number of generations. Then, the hypervolume, epsilon and R indicators are applied to
the resulting outcomes, obtaining the indicator values for the corresponding design
sets of each optimizer-test problem pair. In our case, where we want to test the
performance of new developed methods, only the comparing feature (quality
indicators) of this software is used.

The design sets obtained from the developed methods under comparison are
included in the same file of the directory in which the output of all the optimizer-test
problem pairs is normally stored. During the execution of the program to compute the
indicator values, PISA calculates the bounds that are needed for the tools to obtain the
indicator values. The lower and upper bounds of the objective vectors are calculated.
Initially, PISA calculates the worst value for each objective called “nadir point” (or
upper bound) and correspondingly the best value of each objective called “ideal
point” (or lower bound). Then, the nadir and utopia bounds for all the design sets that

need comparison are calculated by the following relationships:

Nadir bound = nadir point + 0.1 x (nadir point — ideal poiny), (5.1)

Utopia bound = ideal point — 0.1 x (nadir point — ideal poin). (5.2)

Based on the bounds determined above, PISA normalizes all data of the design
sets transforming all objective values to the interval between 1 and 2, replacing the
minimum value of the first objective for all sets as 1 and the maximum value of the
second objective for all sets as 2. When using quality indicators, normalization can be
necessary in order to allow the different objectives to contribute approximately
equally to indicator values.

Moreover, PISA obtains the non-dominated set from all the normalized data,
and uses this as a reference set according to which the indicator values are calculated.
For example, if the non-dominated set of the normalized data is identical to one of the
normalized design sets, then all indicator values for the corresponding design set are

equal to zero.
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In order to compare the performances of the GA-based optimization methods
that are presented next, visual comparisons are accompanied with the corresponding
tables of quantitative quality indicators. The data of a GA based method used to
determine the corresponding values of the qﬁality indicators, consists of all the PF
designs obtained from each of the 30 individual runs (each with different random
initial seed).

The complete PF of the exhaustive search, when up to 7 members are removed
(see Figure 4.2b), is considered as a Jixed reference set for the estimation of the
quality indicators of all GA based methods for the 6-node example. Usually, the PF
for a multiobjective problem is unknown and cannot be computed in a reasonable
time. However, in our case the PF of the 6-node framework for up to 7 members
removal has been exhaustively computed. The data sets of each method are compared
separately with the exhaustive PF (reference set) providing fixed indicator values that
are used when further comparisons are carried out among different cases or methods.

The exhaustive search PF for the 12-node example is not available. Therefore,
when obtaining quality indicators for the 12-node example, we have used the overall
non-dominated data as the reference. Because of the unavailability of a reference set
(e.g. the exhaustive search PF), the values of the quality indicators are not fixed when
the same data are compared with two (or more) different data sets for the 12-node

case.

5.4. A Genetic Algorithm assisted by ESO (ESOaGA)

A method that combines the efficiency of GA and the small computational
time of ESO by including ESO produced designs in the GA population is presented
first. Enrichment of the population by cheaply obtained designs using ESO gives the
GA a chance to incorporate good features in future generations. However, since we
know that ESO does not produce optimum designs globally, we need to keep the
genetic diversity in the population alive and, therefore, not be tempted to dominate the
population with ESO designs. If we use too many ESO designs, the result would be
the GA returning designs that perform very similarly to those obtained from ESO.

Using a judicious balance, it is hoped to combine the good features of the two
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algorithms — (i) ESO being computationally cheap, and (ii) GA being able to find
novel designs by means of genetic operations that ESO cannot ‘reach’. The results
from the “unassisted” GA and the ESO assisted GA will be compared in order to
examine the performance of this new method. The flow chart for this approach is
shown in Figure 5.2.

First, a sequence of designs is generated by the ESO process. The
connectivities of these designs are then transformed to the bit-string representation of
the topology. The members that have been removed in the connectivities obtained by
ESO are coded as “0” and the members that have remained are coded as ‘1°. When the
first generation of GA runs, a Pareto sorting program is used to find the current PF
created by the designs obtained by the first population of the GA. The designs that are
worse than the current PF are detected and replaced by ESO designs. The new
modified population is saved and the next generation is produced following the
normal procedures. The population of the following generation will thus be based on
the modified population.

Different variants of this method will be presented next. Examples are
restricted to framework structures having 6 or 12 key points. In the first instance, the
addition of ESO designs takes place only in the initial population. Then the ESO
designs replace a prescribed number of poor designs generated by the GA in each
generation. In addition, the ESO assisted GA method is tested for a variety of
population and generation numbers and‘ compared with the corresponding

“unassisted” GA method.
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Figure 5.2: Flow chart of ESO assisted GA (ESOaGA) method.
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5.4.1. ESO assisted GA, including ESO designs in initial population only

The 6-node structure

In this section we present an example of framework design that has six key
points as shown in Figure 5.3. Each key point is connected to every other key point.
When members are eliminated from this fully-connected configuration by the use of
an ESO algorithm, there are 9 possible designs in the search trajectory (Figure 5.4).
All nine ESO designs are then included in the initial population of the GA. The ESO
assisted GA is run for 20 generations with 20 members in each population. Nearly
half of the designs in the initial population are replaced by ESO designs. In Figure
5.5, the ESO assisted GA designs are compared with the designs produced by the
“unassisted” GA. As discussed before, the member removal process stops at a
maximum of 7 members removed—this is to exclude some trivial designs that

otherwise dominate the quality.

Figure 5.3: Fully connected framework with 6 nodes.
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Figure 5.4: ESO trajectory of a 6-node structure.
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The “unassisted” GA, ESOaGA and the complete PF of the exhaustive search
are compared in Figure 5.5. There is a general overlap. It is not visually obvious if one
of the two methods clearly produces designs closer to the PF. However, ESOaGA
does find some efficient designs in the low maximum stress end of the solution space.
It also appears to avoid a significant number of poor designs that the “unassisted” GA
obtains. On the other hand, the “unassisted” GA also has some superior designs
missed out by ESOaGA—hence the need for a quantitative comparison. Note that all
the ESO designs were included in assisting ESOaGA in this example. This has a
negative effect in the proper functioning of the GA because it reduces the diversity of
the population. It will be shown later that including only a few ESO designs in

assisting GA is most profitable.
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Figure 5.5: Comparison of ESOaGA method including all ESO designs in the initial
Ppopulation and “unassisted” GA for a 6-node structure (20 generations and 20 designs
in each population). The PF of the exhaustive search is also shown.

No robust conclusions can be made about which method outperforms the other
visually. Therefore, further comparison is achieved using the unary quality indicators
of PISA’s performance assessment tools, so that more clear decisions can be made on
the performance assessment of the two methods. The pair of the design sets coming

from the two methods is compared using the hypervolume, epsilon and R indicators.
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For each of these three indicators, each design set is assigned a single indicator value
and the one with the smaller value corresponds to a better design set.

For a better representation of the results of the quality indicators, the indicator
values of the corresponding design sets are assigned ranking numbers from 1 to 5,
with rank 1 to represent the best design set (lowest indicator value) and rank 5 the
worst design set (highest indicator value) respectively. Each ranking number is
assigned a different colour, with the blue colour becoming darker as the rank number
reduces from 5 to 1 (Table §. 1). This colour scheme is used in all tables presenting the
results of quality indicators (unless stated otherwise).

Accordingly, from Table 5.2, we can conclude that ESOaGA is better than
“unassisted” GA in two of the three quality indicators. When ESO designs are
included in the initial population, the performance of the designs on the two

objectives is better in more aspects than those produced by the “unassisted” GA.

Table 5.1: Ranking colour scheme used in the following tables unless stated
otherwise. Rank 1 refers to the best design set.

Hypervolume Epsilon R
Indicator Indicator Indicator

Unassisted GA
6.54E-02 7.73E-02 3.26E-02

ESOaGA - all ESO designs in .
initial population 6.38E-02 8.53E-02 2.43E-02

Table 5.2: Comparison between “unassisted” GA and ESOaGA including all ESO
designs in the initial population for a 6-node structure (20 generations and 20 designs
in each population).

In order to improve the efficiency of ESOaGA, fewer ESO designs inserted to
GA initial population is considered next. Consider inserting only one ESO design in
the initial population first. A question that arises next is which of the nine ESO
designs should be included in the population. All cases of including each time a

different ESO design are considered. The design sets of all possible cases of including
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ESO assisted GA method best. For example, when two ESO designs replace two poor
GA designs, we have to consider which ones to choose from the total of nine ESO
designs available. When ESO designs are included in the initial GA population, the
results vary according to the choice of ESO designs that has been made. In Figure 5.7,
we notice that different pairs of ESO designs lead to slightly different results. As can
be seen from the figure, the best pair of ESO designs to use is the fifth and sixth,
which are the ones that in the middle of the ESO trajectory (see Figure 5.4). As we
can see from Table 5.3, the pair of the fifth and sixth ESO designs obtains the highest

rankings in two of the three quality indicators.

55 T T T T T T T
BBl -S0aGA band - 2 (1st, 2nd) ESO designs
B £S0aGA band - 2 (5th, 6th) ESO designs
50+ 1 ESOaGA band - 2 (8th, 9th) ESO designs ||
X ESOaGA design - 2 (1st, 2nd) ESO designs
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Figure 5.7: Comparison among cases of ESOaGA including different pairs of ESO
designs in the initial population for a 6-node structure (20 generations and 20 designs
in each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 2 (1%, 2™) ESO designs
in initial population 3.18E-02  4.53E-02 1.28E-02
ESOaGA-2 (5", 6™) ESO designs '
in initial population 1.52E-02 5.06E-02
ESOaGA - 2 (8", 9") ESO designs
in initial population

Table 5.3: Comparison among various cases of ESOaGA including 2 ESO designs in
the initial population for a 6-node structure (20 generations and 20 designs in each
population).
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Another example that supports the fact that different sets of ESO designs can
give rather different results is presented. In Figure 5.8, it can be observed that
including the fifth, sixth and seventh ESO designs in the initial population of the GA,
gives the best results, compared with two other sets of designs. This particular set of
ESO designs obtains the highest rankings in two of the three quality indicators as
shown in Table 5.4.
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Figure 5.8: Comparison among cases of ESOaGA including different sets of 3 ESO
designs in the initial population for a 6-node structure (20 generations and 20 designs
in each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R

Indicator Indicator Indicator
ESOaGA - 3 (1%, 2™, 37) ESO designs
in initial population 958 -0 6 63E-0) ()
ESOaGA - 3 (1%, 5", 9™) ESO designs
in initial population 86E-0 0 0
ESOaGA-3 (5", 6", 7") ESO designs
in initial population 0 4.61E-0 4E-0

Table 5.4: Comparison among various cases of ESOaGA including 3 ESO designs in
the initial population for a 6-node structure (20 generations and 20 designs in each
population).

As a general rule, the very first few designs in the ESO run are likely to be
poor quality. On the other hand, the use of ESO designs which are at the middle of the
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ESO trajectory, tend to produce better results. Therefore, it is recommended that
designs excluding the first initial ones of the ESO run should be kept as part of the
initial GA population.

The performance of the ESOaGA does not only depend on the quality of
designs selected and the stochastic nature of the GA but on the number of ESO
generated designs added to the population. It is not simply the case that including the
highest quality of ESO generated designs will always improve the performance. It
depends also on the number of the ESO designs that need to be inserted.

To study this, just one design was included in the population and then all the
nine ESO designs were included in a GA population. The resulting designs obtained
by GA are shown in Figure 5.9. It can be observed that when only one ESO design is
included in the initial population, the resultant designs dominate most of the designs
produced by GA when all ESO designs are included in the initial population. The
quality indicator values presented in Table 5.5 validates that including one ESO
design in the initial population of GA yields better results than including all ESO

designs in the initial population.
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Figure 5.9: Comparison of ESOaGA including 1 (3™) ESO design in the initial
population and ESOaGA including all 9 ESO designs in the initial population for a 6-
node structure (20 generations and 20 designs in each population). The PF of the
exhaustive search is also shown. '
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Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (3") ESO design
in initial population 1.81E-02 5.25E-02 2.71E-03
ESOaGA - all ESO designs ‘
in initial population 6.38E-02 8.53E-02 2.43E-02

Table 5.5: Comparison of ESOaGA including 1 (3) and all ESO designs in the
initial population for a 6-node structure (20 generations and 20 designs in each
population).

Adding as many ESO designs in the initial population of GA as possible, does
not mean that this will help the topology optimization process. As we can see from
Figures 5.10 & 5.11, increasing the number of ESO designs in the initial population
does not improve the optimization process beyond a point, as it depends on the choice
of the sets of ESO designs included in the population. The number of inserted ESO
designs is not solely responsible for the enhancement of the quality of the results. The
quality of the selected designs matters as well. This is proved by comparing ESOaGA
cases with different sets of ESO designs (each set consists of a different ESO design
selection) inserted into the initial population. In Figure 5.10, it can be clearly seen that
the case of inserting two ESO designs is a better option than inserting one or three
ESO designs. The designs obtained by ESOaGA with two ESO designs in the initial
population covering the red area in Figure 5.10 dominate most of the designs obtained
by the other two cases.b

In Table 5.6, comparing the indicator values for the best case of including one
ESO design in the initial population and the best case of including two ESO designs
in the initial population, we observe that the cése of including two ESO designs in the
initial population is obtaining higher rankings than the case of including only one
ESO design. This means that the amount of ESO designs that can be included in the
population can affect the results of ESOaGA method. However, the case of including
three ESO designs in the initial population, does not obtain better results fhan the case
of inserting two ESO designs. Note that in this comparison we used the case of
including three (1%, 2™, 3™) ESO designs in the initial population (see Table 5.4), to
prove that increasing the number of inserted ESO designs does not necessarily lead to

better results.
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Figure 5.10: Comparison of ESOaGA including 1 (3%, 2 (5%, 6™) and 3 (1%, 2", 3"
ESO designs in the initial population for a 6-node structure (20 generations and 20
designs in each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (3") ESO design ,
in initial population 1.81E-02 5.25E-02 2.71E-03

ESOaGA-2 (5", 6") ESO designs
in initial population 1.52E-02 5.06E-02 6.15E-03

ESOaGA - 3 (1%, 2™, 3™) ESO designs
in initial population

Table 5.6: Comparison of ESOaGA including 1 (39), 2 (5, 6™ and 3 (1%, 2", 3
ESO designs in the initial population for a 6-node structure (20 generations and 20
designs in each population). ‘ ‘

When a particular set of 3 ESO designs is inciuded in the initial population, it
may produce better results than using 5 ESO designs in the population, although the
same three ESO designs are included in the set of five ESO designs (Figure 5.11).
From both visual comparison and quantitative comparison (Table 5.7), we conclude
that the case of including three particular ESO designs is better than the case of
including one ESO design and five particular ESO designs.

In Table 5.8, the cases of including one, two, three, five and all (nine) ESO
designs are compared for 20 generations and 20 designs in each population. Inserting

just three ESO designs leads to higher ranking than the rest of the cases after the
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interpretation of the quality values. Including the 5", 6™ and 7™ designs from the ESO
trajectory of Figure 5.4 turns out to be the most efficient strategy (including two extra
ESO generated designs in the GA run actually worsens the performance, Figure 5.1 1).

When we compare the same cases but for 40 generations and 20 designs in
each population (Table 5.9), we observe that including two ESO designs obtains the
highest rankings as far as the quality indicators are concerned. When running the
particular problem with 20 generations, it is more effective to include a few ESO
designs (three) instead of two, because the small number of generations does not
allow GA to search efficiently. When the number of generations is increased to 40,
fewer ESO designs need to be inserted as GA runs more efficiently and it has more
time to explore the solution space. Providing less assistance to GA is a better option
than providing more assistance (beyond a certain point) as the computational time
increases. Including many ESO designs reduces the diversity of the GA, as the

number of generations is increased.
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Figure 5.11: Comparison of ESOaGA including 1 (3, 3 (5", 6™, 7™ and 5 (4th, 50
6" 7" 8W) ESO designs in the initial population for a 6-node structure (20
generations and 20 designs in each population). The PF of the exhaustive search is
also shown.
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Hypervolume Epsilon R

Indicator indicator Indicator
ESOaGA - 1 (3™) ESO design
in initial population 81E-0 0 0
ESOaGA - 3 (5™, 6", 7™") ESO designs
in initial population 0 4.61E-0 4E-0
ESOaGA-5 (4™, 5", 6", 7", 8") ESO designs
in initial population A3E -0 6E-0 67E-1)

Table 5.7: Comparison of ESOaGA including 1 (3"), 3 (5%, 6, 7™ and 5 (4™, 5", 6™,
7", 8™) ESO designs in the initial population for a 6-node structure (20 generations
and 20 designs in each population).

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (3") ESO design

in initial population 2.71E-03
ESOaGA-2 (5", 8™) ESO designs

in initial population . 1.52E-02 5.06E-02 6.15E-03
ESOaGA-3 (5", 6", 7) ESO designs

in initial population 1.33E-02 4.61E-02
ESOaGA -5 (4™, 5™, 6", 7", 8") ESO designs
in initial population

ESOaGA - all ESO designs

in initial population

Table 5.8: Comparison of ESOaGA including 1 (3"), 2 (5™, 6™), 3 (5%, 6™, 7™), 5 (4",
5t 6™ 7% 8™ and all ESO designs in the initial population for a 6-node structure (20
generations and 20 designs in each population).

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (3") ESO design
in initial population 4.36E-02
ESOaGA-2 (5", 6") ESO designs
in initial population 1.17E-02 6.16E-03
ESOaGA-3 (5", 6", 7) ESO designs
in initial population 1.15E-02 6.21E-03
ESOaGA -5 (4™, 5™, 6™, 7™, 8™ ) ESO designs |
in initial population

ESOaGA - all ESO designs

in initial population

Table 5.9: Comparison of ESOaGA including 1 (3, 2 (5", 6™), 3 (5", 6", 7™, 5 (4",
5% 6 7% 8™ and all ESO designs in the initial population for a 6-node structure (40
generations and 20 designs in each population).

A visual comparison between ESOaGA and “unassisted” GA is easier in
Figure 5.12 where the ESOaGA case of including 3 (5™ 6", 7™ ESO designs (best set
selection of three ESO designs) is compared with the “unassisted” GA for 20

generations and 20 designs in each population. In contradiction with the comparison
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of the “unassisted” GA and ESOaGA with all ESO designs included in the population
(Figure 5.5), this time ESOaGA dominates entirely the objective space of the
“unassisted” GA. We can also observe that this ESOaGA case finds a lot more
complete PF designs than the ESOaGA case of including all ESO designs in the initial
population (Figure 5.5). A further comparison is provided from the quality indicators
results in Table 5.10. The ESOaGA has higher rankings in all three quality indicators
as expected. It is clear in this particular example that ESOaGA shows larger
improvement on the results when 3 ESO designs are inserted to GA rather than all
ESO designs (Table 5.2). The performance of ESOaGA is still efficient when a larger
number of generations is considered. ESOaGA still obtains better designs than

“unassisted” GA when the generation size of GA is doubled (Figure 5.13).
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Figure 5.12: Comparison of ESOaGA including 3 (5", 6™, 7™) ESO designs in the
initial population and “unassisted” GA for a 6-node structure (20 generations and 20
designs in each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R
Indicator Indicator Indicator

Unassisted GA ,
6.54E-02 7.73E-02 3.26E-02

ESOaGA -3 (5", 6", 7™) ESO designs
in initial population 1.33E-02 4.61E-02 1.14E-02

Table 5.10: Comparison between ESOaGA including 3 (5", 6", 7™) ESO designs in
the initial population and “unassisted” GA for a 6-node structure (20 generations and
20 designs in each population).
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In Figure 5.13, the best ESOaGA case obtained from Table 5.9 is compared
with the results of the “unassisted” GA for 40 generations and 20 designs in each
population. ESOaGA obtains a majority of the complete' PF designs and it is slightly
superior in most parts of the “unassisted” GA’s solution space. The output provided
by the quality indicators agrees with the above observation. ESOaGA obtains higher
rankings than “unassisted” GA in hypervolume and R indicators. As noticed in the
previous case, the ESOaGA finds less poor designs than the “unassisted” GA as most
of the least efficient designs of ESOaGA dominate the corresponding designs of plain
GA.

55 T T T T T T
‘ unassisted GA band
50t ESOaGA band - 2 (5th, 6th) ESO designs ||
in initial population
= unassisted GA design
¢ x  ESOaGA design

45+~ -—&— PF of exhaustive search M
&
S 40 L
@
a
‘G
&
G 35F
=

30r

25

20 ] 1 | 1 )

17 18 19 20 21 22 23
log(Maximum Stress of Design)

Figure 5.13: Comparison between ESOaGA including 2 (5%, 6) ESO designs in the
initial population and “unassisted” GA for a 6-node structure (40 generations and 20
designs in each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA -2 (5", 8") ESO designs }
in initial population 1.17E-02 4.45E-02 6.16E-03
Unassisted GA

4.36E-02 1.23E-02  7.69E-03

Table 5.11: Comparison between ESOaGA including 2 (5", 6") ESO designs in the
initial population and “unassisted” GA for a 6-node structure (40 generations and 20
designs in each population).
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The 12-node structure

A computationally more demanding problem is considered next (Figure 5.14).
The ground structure has 12 key-points now and the total number of designs on the
ESO trajectory is 52. Various ESO assisted GA runs for 20 generations with a
population of 20 produce clearly better resulté than the “unassisted” GA for the same
size of population and number of generations as shown in Table 5.12. In particular,
the indicator values of the ESOaGA cases of including 5, 10, and 20 ESO designs
correspondingly in the initial population have higher rankings than the “unassisted”
GA ones. This fact shows once more the positive effect ESO generated designs have
in enriching the population for GA runs. We also observe that when 10 ESO designs
out of the total 52 are included in the initial population, the results are better than
when five or twenty ESO designs are included every time (Table 5.12). The number
of ESO designs needed to be inserted to the GA population increases when the
structural problem increases. In the 6-node example, an effective approach was to
include 3 particular ESO designs in the initial population. However, in the 12-node
case, a larger number of ESO designs need to be inserted in order to obtain efficient
results. As the structural size is increased, the solution space for GA is also increased

and more assistance coming from the ESO designs is profitable.

NN\

\ <

NN

Figure 5.14: Fully connected framework with 12 nodes.
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Figure 5.15: Comparison between ESOaGA including 10 (5™, 10™, 15" 20™, 25™,
30th, 35th, 40th, 45th, SOth) ESO designs in the initial population and “unassisted” GA
for a 12-node structure (20 generations and 20 designs in each population).

Hypervolume Epsilon R

Indicator Indicator indicator
ESOaGA - 5 ESO designs
in initial population 65E-0 ’ 0 0
ESOaGA - 10 ESO designs
in initial population 48E-0 0 47E-0
ESOaGA - 20 ESO designs
in initial population v =+() 5 4 0/E-D
Unassisted GA

4 18E-0 8 440 4000

Table 5.12: Comparison of ESOaGA including 5 (5, 157, 25", 35", 45™), 10 (5",
gond osth o7l 3 3pnd 35t 37t goh 4ond 45 477 50™) ESO designs in the
initial population and “unassisted” GA for a 12-node structure (20 generations and 20
designs in each population).

ESOaGA cases with less than 10 ESO designs included in the initial
population are considered next in order to examine the effect of the number Qf the
inserted ESO designs in the initial population for the 12-node structure. The cases of
including 1, 2, 5 and 10 ESO designs in the initial population are presented in Figure

5.16. These four ESOaGA cases cannot easily be compared by visual inspection and,

therefore, the comparison is assessed using the quality indicators. Since visual
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comparisons become difficult when overlaying more than three bands in one figure,

only quantitative comparisons will be presented.

2ZG T T T T T T T
ESOaGA band - 1 ESO design
B £50aGA band - 2 ESO designs
200 BB = S0:GA band - 5 ESO designs

| ESOaGA band - 10 ESO designs

1 80 + ESOaGA design - 1 ESO design
*  ESOaGA design - 2 ESO designs
x  ESOaGA design - 5 ESO designs
160 ¢ ESOaGA design - 10 ESO designs
o
2
(73
X 140 B
k]
§
< 120 -

100
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16 17 18 19 20 21 22 23 24
log(Maximum Stress of Design)

Figure 5.16: ESOaGA including 1 (25™), 2 (25%, 35™), 5 (5", 15", 25", 35", 45™) and
10 (5™ 10™ 15® 20™, 25™, 30", 357, 40", 45", 50") ESO designs in the initial
population for a 12-node structure (20 generations and 20 designs in each population).

1 1

All the cases with less than 10 inserted ESO designs obtain lower indicator
values than the case of the 10 inserted ESO designs (Table 5.13). This continues to be
so even when the number of generations is increased from 20 to 40 (keeping the
population size to 20, see Table 5.14). In order to get the best results from the
ESOaGA method including ESO designs in the initial population, the right balance
between the inserted ESO designs and GA designs in the initial population needs to be
found. In this particular case, inserting 10 ESO designs in the initial population
provides very good results compared to other ESOaGA cases and most importantly to

the “unassisted” GA.
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Hypervolume Epsilon R
Indicator _Indicate i

ESOaGA - 1 ESO design
in initial population
ESOaGA - 2 ESO designs
in initial population
ESOaGA - 5 ESO designs .
in initial population 5.85E-02 2.88E-02
ESOaGA - 10 ESO designs
in initial population 2.34E-02 5.15E-02 0.00E+00

Table 5.13: Comparison of ESOaGA including 1 (25"™), 2 (25", 35"), 5 (5", 15™, 25",
35% 45™) and 10 (57, 10, 15%, 20, 25", 30", 35™, 40", 45, 50") ESO designs in
the initial population for a 12-node structure (20 generations and 20 designs in each
population).

Hypervolume Epsilon R
indicator Indicator Indicator

ESOaGA - 1 ESO design
in initial population
ESOaGA - 2 ESO designs
in initial population
ESOaGA - 5 ESO designs

in initial population 4.93E-02 . 7.95E-02
ESOaGA - 10 ESO designs
in initial population 6.41E-03 4.61E-02 0.00E+00

Table 5.14: Comparison of ESOaGA including 1 (25™), 2 (25", 35™), 5 (5", 15", 25",
350 45™ and 10 (5%, 10", 157, 20%, 25™, 30", 357, 40™, 45", 50") ESO designs in
the initial population for a 12-node structure (40 generations and 20 designs in each
population).

Tables 5.15-5.17 illustrate the quantitative comparisons between the ESOaGA
including 10 (5%, 10®, 15, 20", 25™, 30, 35", 40", 45", 50") ESO designs in the
initial population and “unassisted” GA (40 generations and 20 designs in each
population), for each case of 30 different initial seeds. In the following tables, the
darker blue colour corresponds to the method with the higher ranking (Rank 1) and
the lighter blue colour to the method of lower ranking (Rank2). We can observe that
ESOaGA obtains higher rankings than “unassisted” GA for the most of the different
seed cases. Particularly, ESOaGA achieves higher rankings in almost 2/3 of the total

seed cases. Occasionally, we find that GA is superior because of its stochastic nature.
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ESQaGA
GA

Table 5.15: Comparison of ESOaGA including ESO designs in the initial population
and “unassisted” GA for each initial seed case with respect to hypervolume indicator.

ESQaGA

g

Table 5.16: Comparison of ESOaGA including ESO designs in the initial population
and “unassisted” GA for each initial seed case with respect to epsilon indicator.

ESOaGA ‘
. » | 1
Table 5.17: Comparison of ESOaGA including ESO designs in the initial population
and “unassisted” GA for each initial seed case with respect to R indicator.

5.4.2. ESO assisted GA, including ESO designs in each population

The 6-node structure

ESO designs are included in each population of the GA next. In all the
following examples, the same ESO designs are selected and inserted into each GA
population. Initially, the ESOaGA method is applied to the 6-node structural example.
The “unassisted” GA has a very good performance for 40 generations and 20 designs
in each population as it reaches most of the exhaustive PF’s designs. However,
inserting all ESO designs in each population improves the performance of GA even
more but in a restricted region of GA’s solution space (Figure 5.17). Inserting ESO
designs in each population influences negatively the diversity of GA search. In this
case ESOaGA keeps GA focused in a particular region missing in this way a lot of
designs that the “unassisted” GA obtains. The results seen in Figure 5.17 show the
improvement in the efficiency of GA when ESO designs replace inefficient designs in
the population of GA only in a limited area. Despite the limited spread due to a lack
of diversity, ESOaGA does successfully exclude many poor designs.
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Figure 5.17: Comparison of ESOaGA including all ESO designs in each population
and “unassisted” GA for a 6-node structure (40 generations and 20 designs in each
population). The PF of the exhaustive search is also shown.

Table 5.18 shows that putting all the ESO designs in each pdpulation does not
provide overall better results than the “unassisted” GA. The hypervolume, epsilon and
R indicator values presented in Table 5.18, indicate that the “unassisted” GA
outperforms the ESOaGA.

As the 6-node framework is a relatively small structural problem, a large
number of generations increases the performance of “unassisted” GA, leaving no
space for much further improvement. The output designs of plain GA match with
most of the PF designs obtained from the exhaustive search. Inserting all ESO designs
in each GA population obtains some even better results in the regions only that

“unassisted” GA failed to obtain.

R
Indicator

Epsilon
Indicator

Hypervolume
Indicator

ESOaGA - all ESO designs ,‘ , -
in each population 6.61E-02 3.95E-02 2.04E-02

Unassisted GA

4.36E-02 1.23E-02 7.69E-03

Table 5.18: Comparison of ESOaGA including all ESO designs in each population
and “unassisted” GA for a 6-node structure (40 generations and 20 designs in each
population). :
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The case of including all ESO designs in each GA population is compared
with the case of including fewer ESO designs (5" & 6™ in Figure 5.18. From visual
comparison as well as quality indicators (Table 5.19), we observe an improvement in
ESOaGA’s performance when the number of ESO designs inserted in GA runs is
reduced. The measurements of all three quality indicators show that the case of
including these two particular ESO designs in each population is a better option than

including all.

50 T T T T T 1
: . 1 ESOaGA band - 2 (5th, 6th) ESO designs
each population
SOaGA band - all ESO designs
45 i in each population I
+ ESOaGA design - 2 (5th, 6th) ESO designs
in each population
40t ESOaGA design - all ESO designs 1
in each population
—&—- PF of exhaustive search
5
& 35¢ .
a
k]
v
72}
(1]
= 30 A
25+ |
]
20+ .
! 1 | 1 1 1 i
16 17 18 19 20 21 22 23 24
log(Maximum Stress of Design)
| ?

Figure 5.18: Comparison of ESOaGA including 2 (5", 6") and all ESO designs in
each population for a 6-node structure (40 generations and 20 designs in each
population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA -2 (5", 6™) ESO designs _
in each population 6.07E-02 7.92E-02 - 9.63E-03
ESOaGA - all ESO designs '
in each population 6.61E-02 3.95E-02 2.04E-02

Table 5.19: Comparison of ESOaGA including 2 (5™, 6™ and all ESO designs in
each population for a 6-node structure (40 generations and 20 designs in each
population).

The ESOaGA results are superior to the “unassisted” GA only in a limited area

on the left side of Figure 5.19 when just two ESO designs (5" & 6" are included in
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GA runs. However, ESOaGA still does not dominate entirely the solution space of
“unassisted” GA. The results taken from PISA’s quality indicators agree with this
observation (Table 5.20). All the quality indicators give higher ranking to
«ynassisted” GA. This is in contrast to the situations (a) when GA designs are inserted

in the initial population only, (b) when the structure is more complex (to be taken up

later).
50 T T T T T T
unassisted GA band
ESQaGA band - 2 (5th, 6th) ESO designs
45T n each population
+ unassisted GA design
x ESQaGA design - 2 (5th, 6th) ESO designs
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—&— PF of exhaustive search
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Figure 5.19: Comparison of ESOaGA including 2 (5, 6™) ESO designs in each
population and “unassisted” GA for a 6-node structure (20 generations and 20 designs
in each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R

ESOaGA-2 (5", 6™) ESO designs

in each population 2.31E-01 273E-01  9.71E-02

Unassisted GA

6.54E-02 7.73E-02 3.26E-02

Table 5.20: Comparison of ESOaGA including 2 (5", 6™ ESO designs in each
population and “unassisted” GA for a 6-node structure (20 generations and 20 designs
in each population).

Various cases of ESOaGA including ESO designs in each population are

considered next so that the effect of the number of ESO inserted designs can be

examined. The effect of the number of generations is examined by changing this
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number from 40 to 20. All the examined cases for 20 generations and 40 generations
are presented correspondingly in Tables 5.21 and 5.22. Because of the fact that visual
comparison among four (or more) cases becomes difficult (see Figure 5.16), in these
cases only the quantitative comparison using the quality indicators is assessed. The
previous case of two ESO designs in each population is compared with cases of
including more than two designs. As can be seen from Table 5.21, inserting three ESO
designs in each population is the best option compared to the cases of including two,
five and all ESO designs for 20 generations and 20 designs in each population but still
is not more efficient overall than “unassisted” GA. Comparing the same cases but
with an extra one of including one ESO design in each population and for 40
generations, the case of including two ESO designs in each population receives the
highest rankings in two out of the three quality indicators (Table 5.22a). The best case
of including two ESO designs is still though not as good as the “unassisted” GA as
shown from the results of the quality indicators in Table 5.22b.

From the results so far, we observe that the ESOaGA method for the 6-node
framework achieves superior performance when a small fraction of the GA designs
are replaced by ESO designs in the initial population. However, when ESO designs
are included in each GA population the performance of GA improves in a restricted
region of its solution space. In contrast to inserting designs in the initial GA
population, no entire domination is observed while inserting designs in each
population. The existence of ESO designs in each GA population assists partially the
GA search but at the same time influences negatively the diversity of GA when a

small structural problem such as the 6-node case is considered.

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA-2 (5", 6")ESO designs
in each population

ESOaGA -3 (5", 6", 7") ESO designs , ' ,
in each population 1.06E-01 1.30E-01 - 4.71E-02

ESOaGA-5 (4™, 5", 6™, 7", 8") ESO designs
in each population

ESOaGA - all ESO designs
in each population

Unassisted GA

6.54E-02 7.73E-02 3.26E-02

Table 5.21; Comparison of ESOaGA including 2 (5™, 6™, 3 (5™, 6™, 7™), 5 (4™, 5",
6, 7™ 8™, all ESO designs in each population and “unassisted” GA for a 6-node
structure (20 generations and 20 designs in each population).
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Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (3") ESO design
in each population

ESOaGA-2 (5", 6™) ESO designs
in each population

ESOaGA -3 (5™, 6", 7") ESO designs
in each population

ESOaGA-5 (4™, 5™, 6", 7", 8") ESO designs
in each population

ESOaGA - all ESO designs
in each population 6.61E-02 3.95E-02

Table 5.22a: Comparison of ESOaGA including 1 (3", 2 (5", 6™), 3 (5", 6", 7™, 5
(4™ 5% 6™ 7™ 8™) and all ESO designs in each population for a 6-node structure (40
generations and 20 designs in each population).

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA -2 (5", 6™) ESO designs
in each population 6.07E-02 7.92E-02 - 9.63E-03

Unassisted GA

4.36E-02 1.23E-02 7.69E-03

Table 5.22b: Comparison of ESOaGA including 2 (5%, 6™) ESO designs in each
population and “unassisted” GA for a 6-node structure (40 generations and 20 designs
in each population).

The 12-node structure

A computationally more demanding problem of the 12-node structure (Figure
5.14) is considered next. The cases of including one, two, five and ten designs
produced by ESO (out of 52) in each population are compared. From Table 5.23, we
can observe that the corresponding indicator values are reduced as the number of ESO
inserted designs is decreased, with the case of including one ESO design giving the
highest rankings from all quality indicators. Using only one ESO design in each
population of GA is a very efficient approach. As mentioned previously, the balance
between the ESO assistance and GA diversity plays an important role for the
performance of ESOaGA method. The case of one ESO inserted design is then

compared with the “unassisted” GA for the same generation and population size.
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Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (25™) ESO design
in each population 3.56E-02 5.77E-02

ESOaGA - 2 (257, 35™) ESO designs
in each population

ESOaGA -5 (5", 157, 25", 35", 45™) ESO designs
in each population 2.17E-02

ESOaGA - 10 (57, 10™, 15™, 20", 25™, 30", 35", 40",
45" 50" ESO designs in each population

Table 5.23: Comparison of ESOaGA including 1 (25™), 2 (25", 35"), 5 (5, 15", 25",
351 45™) and 10 (57, 10, 15%, 20, 25™, 30™, 35™, 40", 45", 50™) ESO designs in
each population for a 12-node structure (20 generations and 20 designs in each
population). '

The ESOaGA case of including one ESO design in each population for 20
generations with a population of 20, produces clearly better results than the
“unassisted” GA for the same size of population and number of generations as Table
5.24 indicates. While the visual comparison of the ESOaGA method and “unassisted”
GA is not easy using the Figure 5.20, the oufput coming from the quality indicators
measurements proves to be useful. In Figure 5.20, we see that replacing a GA design
in each population with one ESO design improves the efficiency of GA without any
computational cost in many directions of the design space. This shows the positive
effect ESO generated designs have in enriching the population for GA runs.

The same ESOaGA cases presented in Table 5.23 are also compared in Table
5.25, for a larger number of generations, to confirm the performance of ESOaGA
when the number of the inserted ESO designs is reduced. Again, the same results are
obtained from ESOaGA even with a higher number of generations. In contrast to the
6-node structural problem, inserting ESO designs in each GA population assists the
GA search. As the objective domain is much larger in the 12-node problem than in the
6-node, the inclusion of ESO designs in each GA population improves the
performance of GA without effecting negatively the required diversity of GA. As we
can observe the method of inserting ESO designs in each population is much more

useful when larger structural problems need to be considered.
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Figure 5.20: Comparison of ESOaGA including 1 (25™) ESO design in each
population and “unassisted” GA for a 12-node structure (20 generations and 20
designs in each population).

Hypervolume Epsilon R
Indicator Indicator . Indicator

ESOaGA - 1 (25™) ESO design
in each population 87E-0 0 0
Unassisted GA

9.94E-0 0 4.38E-0

Table 5.24: Comparison of ESOaGA including 1 (25“’) ESO design in each
population and “unassisted” GA for a 12-node structure (20 generations and 20

designs in each population).

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (25™) ESO design
in each population 2.52E-02 5.04E-02 6.57E-03

ESOaGA -2 (25", 35") ESO designs
in each population

ESOaGA-5 (5™, 157, 25™, 35", 45™) ESO designs
in each population

ESOaGA - 10 (57, 10™, 15™, 20™, 25™, 30™, 35", 40",
45" 50™ ESO designs in each population

Table 5.25: Comparison of ESOaGA including 1 (25™), 2 (25", 35th), 5 (5", 15",
25™ 35M 45™) and 10 (5™, 10™, 15", 20", 25", 30, 35%, 40", 45™, 50™) ESO designs
in each population for a 12-node structure (40 generations and 20 designs in each
population).

The ESOaGA case of one ESO inserted design is compared again with the

“unassisted” GA for validation reasons. Similar to Figure 5.20, ESOaGA explores the
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design space in regions that “unassisted” GA cannot reach under the same generation
and population size (Figure 5.21). The fact that ESOaGA improves in certain regions
but not in all, missing some good designs that “unassisted” GA obtains, means further
comparison is required using the assistance of quality indicators (Table 5.26). All
three quality indicators give higher rankings to ESOaGA method, verifying in this
way the superiority of ESOaGA against the “unassisted” GA approach for a larger

number of generations.
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Figug 5.21: Comparison of ESOaGA including 1 (25™) ESO design in each
population and “unassisted” GA for a 12-node structure (40 generations and 20
designs in each population).

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (25™) ESO design
in each population 1.99E-02 4.63E-02 0.00E+00

Unassisted GA

1.93E-01 2.62E-01 1.00E-01

Table 5.26: Comparison of ESOaGA including 1 (25") BSO design in each
population and “unassisted” GA for a 12-node structure (40 generations and 20
designs in each population).

Tables 5.27-5.29, illustrate the quantitative comparisons between the ESOaGA
including one (25™) ESO design in each population and “unassisted” GA (40
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generations and 20 designs in each population), for each of the 30 different initial seed
cases. As in Tables 5.15-5.17, here also the darker blue colour corresponds to the
method with the higher ranking (Rank 1) and the lighter blue colour to the method of
lower ranking (Rank2). We can observe that ESOGA obtains higher rankings than
“unassisted” GA for the most of the different seed cases. In particular, ESOaGA

achieves higher rankings in most of the total seed cases.

ES0a0A
GA

Table 5.27: Comparison of ESOaGA including ESO designs in each population and
“unassisted” GA for each initial seed case with respect to hypervolume indicator.

E30aGaA

o sEEs S . —

Table 5.29: Comparison of ESOaGA including ESO designs in each population and
“unassisted” GA for each initial seed case with respect to R indicator.

Comparisons between the method of replacing GA designs in the initial
population and replacing GA designs in each population are presented next. The
comparison between these two methods which share the same basic concept takes
place in order to find the most efficient approach.

To show that it is more profitable to include ESO designs in just the initial
population and not in each population, the results are presented in Figure 5.22. The
results from ESO designs being inserted just in the initial population are superior
visually as well as quantitatively. All the three quality indicators (see Table 5.30)

confirm this.
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Figure 5.22: Comparison of ESOaGA including 3 (5", 6™, 7™) ESO designs in each
population and ESOaGA including 3 (5", 6", 7™) ESO designs in the initial
population for a 6-node structure (20 generations and 20 designs in each population).
The PF of the exhaustive search is also shown.

Hypervolume Epsilon R
Indicator Indicator Indicator
ESOaGA - 3 (5", 6™, 7™) ESO designs
in each population 06E-0 0E-0 4 0
ESOaGA -3 (5", 6", 7") ESO designs
in initial population 0 4.61E-0 4E-0

Table 5.30: Comparison of ESOaGA including 3 (5™, 6", 71 ESO designs in each
population and ESOaGA including 3 (5", 6™, 7™) ESO designs in the initial
population for a 6-node structure (20 generations and 20 designs in each population).

The conclusions drawn from Figure 5.22 and Table 5.30 remain the same
when the number of generations is increased from 20 to 40. These results are
presented in Figure 5.23 and Table 5.31.

For small structural problems such as the 6-node framework, inserting ESO

designs only in the initial population provides a more significant improvement in the

144



CHAPTER 5 145

performance of GA than doing the same in each population. For larger problems, it

turns out that inserting ESO designs in each population is more advantageous.
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Figure 5.23: Comparison of ESOaGA including 2 (5%, 6™) ESO designs in each
population and ESOaGA including 2 (5™, 6™) ESO designs in the initial population
for a 6-node structure (40 generations and 20 designs in each population). The PF of
the exhaustive search is also shown.

Hypervolume Epsilon R
_Indicator | __Indicator

ESOaGA-2 (5", 68™) ESO designs
in initial population 1.17E-02 4.45E-02 6.16E-03
ESOaGA -2 (5", 6") ESO designs . .

in each population 6.07E-02 7.92E-02 9.63E-03

Table 5.31: Comparison of ESOaGA including 2 (5™, 6™) ESO designs in each
population and ESOaGA including 2 (5™, 6™ ESO designs in the initial population
for a 6-node structure (40 generations and 20 designs in each population).

The best cases found so far for the ESOaGA method of including ESO designs
in the initial and in each population for the 12-node structure are also compared.
Figure 5.24 demonstrates that the ESOaGA approach of including one ESO design in

each population finds more promising designs and in more directions than the
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ESOaGA approach of including ten ESO designs in the initial population only. As we
can see from Figure 5.24, a majority of the designs obtained by the approach of
inserting ESO designs in the initial population are concentrated in the same region of
the design space. Choosing to insert more designs in the initial population only
instead of inserting fewer designs but in each population, might not be a better

approach as the GA search is directed in a more limited region.
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Figure 5.24: Comparison of ESOaGA including 1 (25™) ESO desi§n in each
population and ESOaGA including 10 (5™, 10, 15™ 20™, 25™ 30™ 35 40™ 45™
50™) ESO designs in the initial population for a 12-node structure (20 generations and
20 designs in each population).

The results provided by the quality indicators (Table 5.32) agree with the
above observations. The indicator values for the case of one ESO inserted design in
each population have higher rankings (lower indicator values) than the case of

- inserting ten in the initial population.

146



CHAPTER 5 147

Hypervolume Epsilon R
Indicator Indicator Indicator
ESOaGA - 1 (25™) ESO design ‘
in each population 64E-0 AE-0 0
ESOaGA - 10 (5", 10", 15", 20", 257, 30™, 35", 40",
45", 50™) ESO designs in initial population 9.05E-0 6E-0 81E-0

Table 5.32: Comparison of ESOaGA including 1 (25™) ESO design in each
population and ESOaGA including 10 (5™, 10™, 15™, 20™ 25 30™ 35T 40" 45"
50™) ESO designs in the initial population for a 12-node structure (20 generations and
20 designs in each population).

The same comparison but for more generations is studied, so that the effect of
the generation size on the performance of the two ESOaGA approaches is assessed.
Figure 5.25 shows similar behaviours for the two ESOaGA approaches with the ones
obtained with less generations. For a computationally more demanding problem such
as the 12-node structure the method of including ESO designs in each population is
clearly more efficient than the method of inc‘luding designs in the initial population
(see Table 5.33). However, the performance of the ESOaGA when including ESO
generated designs in each population depends on the fraction of the ESO designs and
GA designs in each population.

Additionally, the quality of the ESO designs inserted to the GA search is a
significant factor on the ESOaGA performance. The selection of the ESO designs that
need to be inserted in GA population can influence the output of the optimization
process. Some ESO designs can be proved to be more helpful to the GA search than
others. From the studied examples, the quality of ESO designs has a significant
impact on the ESOaGA approach of including ESO designs in the initial population.
From the moment that ESO designs can be inserted only in the initial population, the
best selections should be made, in order for the GA to have the best possible start
without many generations to be considered. In spite of that, if poor quality ESO
designs are inserted to GA, this does not necessarily mean that ESOaGA will perform
poorly. The selection process of the ESO designs can be skipped if GA is planned to
run for a large number of generations. Further improvement on the performance of
ESOaGA method could be achieved by insérting different sets of ESO designs in each
population instead of inserting the same every time, especially when larger and more
complicated structural examples are considered. In this way, the selection process of
ESO designs could be skipped and GA search can be also enhanced in multiple

directions.
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Summing up, for small structural problems such as the 6-node framework the
ESOaGA method of inserting ESO designs in the initial GA population has proven to
be more efficient than inserting ESO designs in each population. The smaller the
structural problem, the smaller its solution space will be, and consequently including
designs in each population will affect the GA diversity negatively—thus preventing
GA to search sufficiently for a global solution. On the other hand, for larger structures
such as the 12-node framework, the most efficient approach of ESOaGA is to insert
ESO designs in each population provided that a balance between the ESO and GA
designs is maintained during the search process. As mentioned previously, including a
very large number of ESO designs in each population will influence the diversity of
the global search negatively, leaving no space for more new promising designs to
appear. Keeping in mind that the ESO and GA designs should be in a right balance at
every generation, enriching each GA population with ESO designs leads to more

efficient results for larger structural problems with larger solution spaces.
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Figure 5.25: Comparison of ESOaGA including 1 (25™) ESO design in each
population and ESOaGA including 10 (5™, 10™, 15™, 20™, 25", 30", 35", 40%, 45%
50™) ESO designs in the initial population for a 12-node structure (40 generations and
20 designs in each population).
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Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (25™) ESO design
in each population ’ 2.56E-02 5.26E-02 4.20E-03

ESOaGA - 10 (5", 10™, 157, 20", 25™, 30™, 35", 40™,
45", 50" ESO designs in initial population 1.48E-01 1.78E-01 6.53E-02

Table 5.33: Comparison of ESOaGA including 1 (25™) ESO design in each
population and ESOaGA including 10 (5", 10™, 15™ 20", 25 30™ 351 40" 45%
50™) ESO designs in the initial population for a 12-node structure (40 generations and
20 designs in each population).

5.5. The use of GA designs as starting points for ESO runs
(GAaESQ)

An alternative approach of blending the strengths of a GA with those of ESO
is presented next. Here, the designs that are obtained by the GA for 30 different
random initial seed cases are used as starting points for a family of ESO runs. The
efficiency is now achieved by running the GA only for a relatively small number of
generations and using the best designs thus obtained as the starting designs for a
number of subsequent ESO runs. Since each ESO run is computationally cheap, the
overall cost of the search is hoped to be substantially less than that of running the GA
for a large number of generations in order to achieve the same quality of designs.
Alternatively, given fixed computational resources the hybrid method is expected to
produce designs that are superior to “unassisted” GA or ESO. It is important to
economise on the number of generations used at each stage of running GA and ESO
successively—otherwise the benefits of combination will be minimal and the
algorithm will increasingly behave like “unassisted” GA.

A flow chart of the proposed GA assisted ESO method (GAaESO) is shown in
Figure 5.26. The GA generated designs are represented in a bit-string format and are
transformed into the appropriate ESO connectivities for the ESO method to start. The
procedure of running ESO for each design that was produced by the initial GA run is
followed one by one. Finally, all the designs generated at the end of each ESO run are
ranked for Pareto optimality.
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Figure 5.26: Flow chart of GA assisted ESO (GAaESO) method.

Example 1: 6-Node framework structure

The method proposed in this section is applied to the problem of topology
search for the 6-noded structure. The GA is run 30 times (with different initial seed
each time) for 20 generations and 20 designs in each population; the resulting designs
are shown using circles (Figure 5.27). Similar to the ESOaGA case, here the final
output designs of the GAaESO method must have at the most 7 members removed

from the ground structure. Therefore, the designs obtained from GA should be
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structures with 7 or less members removed. The best GA designs are taken as starting
points for further ESO runs. Finally, each ESO run stops when a total of 7 members
have been removed from the ground structure. If a GA design has already 7 members
removed from the ground structure, it is obviously not further considered for an initial
structure for ESO run. Each ESO trajectory is shown using a solid line with stars.
Since the ESO runs are computationally efficient, the method provides a cheap way of
improving a GA based topology search with the help of ESO. As shown in Figure
5.27, this method obtains better designs than the “unassisted” GA without significant
additional computational cost. The results of the GAaESO method are presented in the
same style as the ESOaGA method. The band coloured as yellow includes the design
space explored by GAaESO and represents the area created between the least efficient

designs and non-dominated designs of the proposed hybrid method.
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Figure 5.27: “Unassisted” GA designs (circled) functioned as starting points for ESO
runs (solid lines with stars) for the 6-node structure.

The designs obtained by the use of this hybrid method are superior to the
designs produced by plain GA for 20 generations and 20 designs in each population
(Figure 5.28). In Figure 5.28, GA designs are taken as starting points for ESO runs,
having in that case one ESO trajectory for each GA design. As we can see from

Figure 5.28, all the GAaESO designs dominate the designs obtained by “unassisted”
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GA. Moreover, GAaESO does not provide as many as poor designs as “unassisted”
GA under the same computational time. This observation agrees with the results

gained from quantitative measurements of quality indicators presented in Table 5.34.
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Figure 5.28: Comparison of GAaESO designs and “unassisted” GA designs for a 6-
node structure (20 generations and 20 designs in each population). The PF of the
exhaustive search is also shown.

Hypervolume Epsilon R
_Indicator | Indicator | Indicator
GAaESO 5.22E-02 - 8.53E-02 3.09E-02

Unassisted GA 6.54E-02 7.73E-02 3.26E-02

Table 5.34: Comparison of GAaESO and “unassisted” GA for a 6-node structure (20
generations and 20 designs in each population).

Some results obtained by GAaESO for 20 generations and 20 designs in each
population are found to be even better than the results of the “unassisted” GA for 40
generations and 20 designs in each population (Table 5.35). This is particularly
encouraging as GAaESO proves to be more efficient in some regions than
“unassisted” GA with even less computational cost. Figure 5.29, shows several
GAaESO designs to be in the non-dominated set of the entire regions explored by
both methods.

Although GAaESO is more effective than the “unassisted” GA, further

improvement in its efficiency can be observed when applied to larger structures. We
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can notice that taking the “unassisted” GA designs as starting points for a family of
ESO runs, does not evolve as much as expected in the regions of smaller stress values.
Applying ESO to the GA produced designs; in most of the cases the weight is reduced
at the expense of increased maximum stress. The reason for this behaviour of the ESO
trajectories is that the GA designs used as starting points for ESO runs are generally
structures with few remaining members. As the considered 6-node example is a
relatively small structure, it is logical to think that the designs produced by GA have
few members left connected to each other. Consequently, these small produced
designs do not allow ESO to evolve in more promising paths. The difference of the
results between the GAaESO and “unassisted” GA expands when a larger structural

example is considered.
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Figure 5.29: Comparison of GAaESO method (20 generations and 20 designs in each
population) and “unassisted” GA for a 6-node structure (40 generations and 20
designs in each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R

_Indicator Indicator | Indicator
GAaESO 5.22E-02 8.53E-02 3.09E-02
Unassisted GA 4.36E-02 1.23E-02 7.69E-03

Table 5.35: Comparison of GAaESO (20 generations and 20 designs in each
population) and “unassisted” GA (40 generations and 20 designs in each population)
for a 6-node structure.
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Example 2: 12-Node framework structure

To explore the efficiency of GAaESO for more complex design tasks, the 12-
node structure (Figure 5.14) was considered next for numerical experiments. Using
the GA designs for 20 generations and 20 designs per population as starting points for
ESO runs, significantly improved designs are obtained (Figure 5.30). As in the case of
the previous example, the band constructed of the least efficient and PF designs of the
GAaESO is used to represent the corresponding solution space. Here, the designs
obtained initially by GA can be considered as better starting points for ESO runs with
respect to the GA designs of the 6-node structure, because of the more dense
connectivities in their structures. Applying ESO to a highly connected structure
enhances the scope for improvement, as the possibilities of ESO to follow a more

successful trajectory rise.
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Figure 5.30: “Unassisted” GA designs (circled) functioned as starting points for ESO
runs (solid lines with stars) for the 12-node structure.

Next, the band produced by GAaESO for 20 generations and 20 designs in
each population is compared with the results of GA for the same and larger sizes of
generations and populations. It is shown in Figure 5.31 that the PF designs generated
by GAaESO dominate all the designs of “unassisted” GA with larger number of
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generations and populations. Considering that ESO takes relatively small
computational time, we can apply it repeatedly with already obtained GA designs as
starting points. We notice that applying ESO at GA designs obtained in 20
generations and 20 designs per population produces more efficient designs than
running “unassisted” GA for 40 generations and 20 designs per population (Figure
5.31). Instead of running GA for a large number of generations, we can save a lot of
computational time by simply running GA for a small number of generations followed
by ESO with the GA provided designs as the starting points. For clarity, the
intermediate ESO steps (shown as stars in Figure 5.30) have been omitted from Figure
5.30 and only the starting points provided by the “unassisted” GA and the designs
obtained from the ESO runs are included in the coloured blue band of GAaESO in
Figure 5.31. The superiority of GAaESO can be confirmed by the indicator values in
Tables 5.36 & 5.37.
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Figure 5.31: Comparison of GAaESO method (20 generations and 20 designs in
each population) and “unassisted” GA (20 & 40 generations and 20 designs in each
population) for a 12-node structure.

Hypervolume Epsilon R
Indicator Indicator Indicator
GAaESO 0.00E+00 0.00E+00 0.00E+00

Unassisted GA 2.50E-01 2.29E-01 8.36E-02

Table 5.36: Comparison of GAaESO and “unassisted” GA for a 12-node structure (20
generations and 20 designs in each population).
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Hypervolume Epsilon R
Indicator Indicator Indicator
GAaESO __0.00E+00  0.00E+00  0.00E+00
Unassisted GA 1.43E-01 1.78E-01 6.56E-02

Table 5.37: Comparison of GAaESO (20 generations and 20 designs in each
population) and “unassisted” GA (40 generations and 20 designs in each population)
for a 12-node structure.

5.6. Comparisons between ESOaGA and GAaESO methods

5.6.1. Comparison of the two proposed approaches for the 6-node structure

Initially, the ESO assisted GA method is applied to the 6-node structure (see
Figure 5.3). Three of the nine designs obtained by ESO using as the starting point the
ground structure of the 6-node structure, shown in Figure 5.3, replace the three most
inefficient designs (lowest ranking) in the initial GA population. The results of this
process are compared with the results of the GA assisted ESO method in which
designs of the “unassisted” GA are taken as starting points for ESO runs. Comparison
of both approaches is completed for 20 generations and the size of population kept as
20 (Figures 5.32).

Figure 5.32 shows that the designs obtained by the ESOaGA method dominate
most of the designs of the GAaESO method. Although, the GAaESO method obtains
better results than the “unassisted” GA, it cannot surpass the performance of ESOaGA
method. Most of the non-dominated designs of ESOaGA match with the non-
dominated designs of GAaESO. The best designs obtained from both methods are
quite close. GAaESO, however, does not produce as many poor designs as ESOaGA.
In contrast to ESOaGA, the majority of the GAaESO designs are concentrated close
to its non-dominated set. If GA needs to be used for the optimization of a framework
structure, the quality of the results can be easily enhanced by applying ESO separately
to the produced GA designs with no significant extra computational cost. However,
for this particular framework example the ESOaGA method achieves slightly superior
results (Table 5.38). This does not mean necessarily that ESOaGA is universally a
better method than GAaESO. In the 6-node framework, the superiority of ESOaGA is

due to the poor performance of GAaESO on small sized frameworks.
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Figure 5.32: Comparison of ESOaGA including 3 (5", 6", 7™) ESO designs in each
population and GAaESO for a 6-node structure (20 generations and 20 designs in
each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R
Indicator Indicator Indicator
ESOaGA-3 (5", 6", 7") ESO designs
in initial population 0 4.61E-0 4E-0
GAaESO
0 8 0 09E-0

Table 5.38: Comparison of ESOaGA including 3 (5™, 6™, 7™) ESO designs in the
initial population and GAaESO for a 6-node structure (20 generations and 20 designs
in each population).

Moreover, the ESOaGA case of including two ESO designs in the initial
population is compared with the GAaESO for 40 generations and 20 designs in each
‘population. In Figure 5.33, we notice again that the ESOaGA method is superior to
the GAaESO method for a larger number of generations. The increase of generations
does not influence the evolution significantly for the GAaESO. The range of possible
designs that can exist for a simple structure is limited compared to a complex one.
Therefore, whilst GA reaches a level where good designs are found for a small
computational time, running more generations will only obtain marginally better

designs. Considering this, applying ESO to the GA designs will only provide a slight
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improvement in the output. This comparison highlights the fact that GAaESO
provides poorer designs than the ESOaGA when applied to relatively small
framework structures. The corresponding indicator values support this conclusion and

are shown in Table 5.39.
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Figure 5.33: Comparison of ESOaGA including 2 (5", 6™) ESO designs in the initial
population and GAaESO for a 6-node structure (40 generations and 20 designs in
each population). The PF of the exhaustive search is also shown.

Hypervolume Epsilon R
Indicator Indicator Indicator
ESOaGA -2 (5", 6™) ESO designs
in initial population 1.147E-02 = 445E-02. 6.16E-03
GAaESO

1.10E-01 1.46E-01 5.29E-02

Table 5.39: Comparison of ESOaGA including 2 (Sth, 6“‘) ESO designs in the initial
population and GAaESO for a 6-node structure (40 generations and 20 designs in
each population). '

5.6.2. Comparison of the two proposed approaches for the 12-node structure
A comparison between the two methods now is made for the 12-node structure

(Figure 5.14). The results achieved by ESOaGA method in which one ESO design is
entered in each population of GA are compared with the results of GAaESO method
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for the same number of generations and same population size per generation. In
Figure 5.34, we see clearly that the GAaESO method obtains superior designs to the
ESOaGA method for 20 generations and 20 designs included in each population.
GAaESO designs dominate almost all the designs of ESOaGA for the same number of
generations and the same population size. The dominance of GAaESO against the
ESOaGA method is also supported by the quality indicators results in Table 5.40. In
contrast to the 6-node case, the GAaESO applied to larger structures such as the 12-
node framework, obtains better results than the ESOaGA method. The GA designs
obtained for the 12-node structure, as oppoéed to the 6-node structure, are good
starting points for ESO runs as they have mostly a large number of remaining
members. ESO generally becomes more efficient when it is applied to more highly

connected structures.
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Figure 5.34: Comparison of ESOaGA including 1 (25™) ESO design in each
population and GAaESO for a 12-node structure (20 generations and 20 designs in
each population).

Hypervolume Epsilon R
Indicator Indicator Indicator

ESOaGA - 1 (25™) ESO design
in each population 7.38E-02 6.24E-02 1.18E-02

GAaESO

0.00E+00 0.00E+00 0.00E+00
Table 5.40: Comparison of ESOaGA including 1 (25") ESO design in each
population and GAaESO for a 12-node structure (20 generations and 20 designs in
each population).
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The results produced by the application of the methods are presented for a
larger number of generations in order to verify this trend (Figure 5.35). This time, the
ESOaGA case of one ESO design inserted in each population is not superior to the
GAaESO method for 40 generations and 20 designs in each population (Table 5.41).
ESOaGA method seems to have been improved with respect to the corresponding
case of 20 generations. Although, GAaESO dominates a lot of non-dominated designs
of ESOaGA, as found from the results of the quality indicators GAaESO is not as
good as it was for smaller number of generations. Clearly, when the generation size is
increased ESOaGA method improves in a higher grade than GAaESO. The behaviour

of GAaESO concerning the generation size can be also seen in Figure 5.37.
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Figure 5.35: Comparison of ESOaGA inciuding 1 (25™ ESO design in each
population and GAaESO for a 12-node structure (40 generations and 20 designs in
each population).

Hypervolume Epsilon R
Indicator indicator Indicator

ESOaGA - 1 (25™) ESO design
in each population 1.99E-02 4.63E-02 0.00E+00

GAaESO

1.93E-01 2.62E-01 ~ 1.00E-01

Table 5.41: Comparison of ESOaGA including 1 (25th) ESO design in each
population and GAaESO for a 12-node structure (40 generations and 20 designs in
each population).
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The behaviour of each of the two new methods according to the increase of the
number of generations (increase of computational time) is considered next. The
designs attained by the ESO assisted GA method for 20, 40 and 80 generations
correspondingly are presented in Figure 5.36 to compare computational time and the
benefit to structural quality. It can be observed that improvements occur as the

number of generations is increased.
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Figure 5.36: Comparison of ESOaGA for a 12-node structure (20, 40 & 80
generations and 20 designs in each population).

The performance of the GA assisted ESO method is examined next when the
number of generations is increased. The designs attained by the GA assisted ESO
method for 20, 40 and 80 generations correspondingly are presented in Figure 5.37.
We notice that GAaESO does not converge as smoothly as ESOaGA when the
number of generations is increased. An improvement is observed as the number of
generations is increased. However, GAaESO designs obtained for more generations
do not dominate entirely the sets of designs of less generations. The final results of
GAaESO mainly depend on the performance of ESO applied to each of the generated
“unassisted” GA designs. While the number of generations is increased, “unassisted”

GA obtains even better designs which in most cases are designs with less dense
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connectivities in their structure. Additionally, the denser the connectivity of a

structure considered as ESO starting point is, the higher the efficiency of ESO will be.
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Figure 5.37: Comparison of GAaESO for a 12-node structure (20, 40 & 80
generations and 20 designs in each population).

Finally, by combining ESO and GA iteratively, it is hoped that the method
will improve further. One of the schemes presented here is the ESO-assisted-GA-
assisted-ESO (ESOaGAaESO), which combines the ideas of the two pre-mentioned
methods of ESOaGA and GAaESO. Here, we apply ESO following an ESOaGA run
aiming to improve the results over ESOaGA with minimal extra computational cost.
After running ESOaGA (for 30 different randomly generated initial seeds) in which
ten ESO designs are added to each generation of the GA, the results obtained are
taken as starting points for ESO runs. The results of the ESOaGAESO approach are
presented in Figure 5.38 and they are compared with the results that have been
obtained by ESOaGA and GAaESO for the same population and generation size.

As expected, the ESOaGAaESO designs dominate all the ESOaGA designs at
the same computational time; the cost of running an extra ESO is marginal. A large
improvement in the results can be obtained by taking ESOaGA designs as starting
points for ESO runs. Combining ESO and GA iteratively in this sequence can provide
an increase in the efficiency with almost no extra computational cost. Despite that,

GAaESO O still remains the most efficient optimization method as it dominates the
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results of the other two methods. Although, the results of ESOaGA method are better
than the results of the “unassisted” GA, applying ESO to both results does not mean
that the dominance relationship will be maintained. The efficiency of ESO method
does not depend on the quality of the design considered for a starting point but on the
connectivity of the structure. Generally, denser designs are more promising starting
points for ESO. For this reason, GAaESO is superior to ESOaGAaESO method for 20
generations and 20 designs in each population as seen in both Figure 5.38 and Table

5.42.
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Figure 5.38: Comparison of ESOaGA including 10 (5%, 10™, 15", 20®, 25™, 30,
35M 40" 45" 50™) ESO designs in each population, ESOaGAaESO and GAaESO
for a 12-node structure (20 generations and 20 designs in each population). The brown
band represents the ESOaGA as the blue, red and yellow bands are overlaid.

Hypervolume Epsilon
Indicat Indicator

ESOaGA-10 (5", 10™, 157, 20™, 25", 30", 35",

40", 45™, 50"™) ESO designs in each population 8.08E-02

GAaESO

~ 2.82E-02 6.11E-02 319E-02

ESOaGAaESO
9.46E-02 0.00E+00

Table 5.42: Comparison of ESO assisted GA (ESOaGA) including 10 (5™ 10™, 15™
20 25™ 30 35M 40™ 45 50™) ESO designs in each population, ESO-assisted-
GA-assisted-ESO (ESOaGAaESO) and GA assisted ESO (GAaESO) for a 12-node
structure (20 generations and 20 designs in each population).
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With respect to the results so far, GAaESO and ESOaGAaESO have the same
behaviour while the generations increase, as they share the same concept of applying
ESO to the final “unassisted” GA and ESOaGA designs correspondingly. It is worth
mentioning that ESOaGA method is a more reliable method with much more potential

compared to the others, especially when larger generations can be applied.

5.7. Kruskal-Wallis Test

The significance of the differences among the compared methods is now
examined by the rigorous Kruskal-Wallis statistical test [126]. On the basis of
statistical testing procedure, it is possible to check whether a method or case provides
significantly better solutions than another.

The Kruskal-Wallis test is a nonparametric statistical test used to compare
multiple samples. It is used to test the null hypothesis Hj that all populations have
identical distribution functions against the alternative hypothesis H, that at least two
of the samples differ only with respect to location.

Statistical significance test was carried out for all the comparisons of both 6-
node and 12-node frameworks. The statement being tested is called the null
hypothesis Hy. The test of significance is designed to assess the strength of the
evidence against the null hypothesis. Usually the null hypothesis is a statement of "no
difference". The probability, computed assuming that H is true, that the test statistic
would take a value as extreme or more extreme than that actually observed is called
the P-value of the test. The smaller the P-value, the stronger is the evidence against
the null hypothesis Hy provided by the data. The decisive value of P is called the
significance level. It is denoted by a and it ié usually chosen to be a=0.05 (5%). If
a=0.05 we are requiring that the data give evidence against H, so strong that it would
happen no more than 5% of the time when Hj is true. If the P-value is as small or
smaller than a, we say that the data are statistically significant at level a. Here, the
significance level chosen is ¢=0.05. In order for the null hypothesis Hj to be rejected
the P-value must be less than 0.05. We state that a pair of data has statistical
significance if P<0.05 and a non statistical significance when P>0.05.

The quality indicator values from each method or case are compared using the

Kruskal-Wallis test featured in Matlab in order to examine if there is statistical
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significance among the studied optimization methods. The P-values obtained for each
of the tables that compare the quality indicator results among different methods or
cases are presented in Tables 543 & 5.44 for the 6-node and 12-node problem
respectively.

When more than two algorithms are compared (as in Table 5.21 where there
are 5), a matrix-valued input matrix is used to calculated the P-values.' So, for
example, when the data in Table 5.21 are compared, a matrix-valued input of size 3x5
is created. When only two algorithms are compared, the size of this matrix is 3X2.

From the results presented in Table 5.43, we observe that the majority of P-
values for the comparisons associated with the 6-node problem are higher than the
significance level of 0.05. This means that, in almost all cases, the difference in the
results of the methods that are compared in the previous ranking tables do not have
statistical significance. The indicator values of the methods under comparison are
very close for the 6-node problem. This does not mean that there is no difference
among the output design sets of the developed methods applied to the 6-node
structure, but that there is not sufﬁcien‘g evidence to reject the null hypothesis which is
that the data sets are not different. However, there are few cases where the indicator
results of the methods under comparison have statistical significance. As can be
observed, the Tables 5.20, 5.21, 5.30 & 5.39 have P-values less than 0.05 (highlighted
with bold). Consequently, these statistical test results enhance the conclusions that the
method of ESOaGA of including ESO designs in each population performs poorly in
comparison with the “unassisted” GA for small structures such as the 6-node
framework. In addition, the Kruskal-Wallis test results suggest the superiority of the
ESOaGA inserting ESO designs in the initial population against the ESOaGA of
inserting ESO designs in each population and against the GAaESO method for the 6-
node problem.

The superiority of the developed methods of ESOaGA and GAaESO is highly
supported by the statistical test results for the larger example of the 12-node structure.
Unlike the 6-node problem, the GA based methods applied to the 12-node problem

are statistically significant. The P-values for most of the comparisons made for this

! The Matlab function ‘p=krushkalwallis(X)’ performs a Krushkal-Wallis test to compare samples from
two or more groups. Each column of the m-by-n matrix X represents an independent sample containing

m mutually independent observations.
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case emphasize the difference in the results among the methods. In particular, the P-
values (highlighted with bold) obtained using Kruskal-Wallis test (see Tables 5.24,
5.26, 5.33, 5.40 & 5.41) indicate that the ESOaGA method of including ESO designs
in each population is indeed more efficient than the “unassisted” GA, the ESOaGA of
inserting ESO designs in the initial population and the GAaESO method. Moreover,
the corresponding P-values (highlighted with bold) of Tables 5.36 & 5.37 show that
the GAaESO method is superior to the “unassisted” GA. The current statistical test
results support the fact that the developed hybrid methods perform more efficiently

for larger structural problems.

Table No. P-value
5.2 0.8273
5.3 0.3012
5.4 0.7326
5.5 0.1266
5.6 0.7326
5.7 0.0665
5.8 0.0729
59 0.0691

5.10 0.1266
5.11 0.8273
5.18 0.2752
5.19 0.8273
5.20 0.0495
5.21 0.0452
5.22a 0.1495
5.22b 0.2752
5.30 0.0495
5.31 0.2752
5.34 0.8273
5.35 0.1266
5.38 0.1266
5.39 0.0495

Table 5.43: P-values for each of the comparisons among the quality indicators for the
6-node problem. The table numbers refer to those previously discussed in this chapter.

Table No. P-value
5.12 0.2181
513 0.1916
5.14 0.1301
5.23 0.2815
5.24 0.0495
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5.25 0.0824
5.26 0.0495
5.32 0.2752
5.33 0.0495
5.36 0.0369
5.37 0.0369
5.40 0.0369
5.41 - 0.0495
5.42 0.4298

Table 5.44: P-values for each of the comparisons among the quality indicators for the
12-node problem. The table numbers refer to those previously discussed in this
chapter.

5.8. Conclusions

Two new methods have been developed and implemented in order to combine
the quality of designs afforded by a GA and the computational economy of ESO.
Visual comparisons and quantitative measures based on quality indicators have been
used for performance assessment of the proposed methods.

The first method is termed ESO assisted GA (ESOaGA) and decreases the
computational time of GA substantially. Including ESO generated designs in the GA
population leads the GA to look at more promising areas close to the ESO trajectory
and to access regions with superior designs.

Initially, poor GA generated designs were replaced by ESO designs in the
~ initial population only of GA. The ESO assisted GA designs were found to dominate
the designs of the “unassisted” GA. However, putting as many as possible ESO
designs in the population, we would normally expect the best results, as GA would
focus on the area of ESO trajectory much faster. Adding as many ESO designs in the
initial population of GA as possible, does not mean that it will help the topology
optimization process. The number of ESO designs needed to be inserted to the GA
population should increase when the structural problem increases. As the structural
size is increased, the solution space for GA is also increased and more assistance
coming from the ESO designs is required.

Another ESOaGA approach of replacing poor GA designs with ESO designs
in each GA population is studied. Various cases of inserting ESO designs in each
population were considered and found to be supefior to the “unassisted” GA only for

the large problem of 12-node framework. This type of approach can be useful only if
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large structures are considered as inserting ESO designs in each GA population has a
negative effect on the GA diversity for small structures such as the 6-node case.
Additionally, not all of the ESO designs are equally good to be added as the seed
designs for GA. The quality of ESO designs has a significant impact on the ESOaGA
approach of including ESO designs in the initial population. When ESO designs are
inserted only in the initial population, the best selections should be made, in order for
the GA to have the best possible start.

Including too many ESO designs influences the diversity of GA negatively.
From the results so far, we observe that the ESOaGA method achieves high
performance when a small fraction of the GA designs are replaced by ESO designs in
initial or in each population. In this way, the existence of ESO designs in the GA
populations, assists the GA search and at the same time does not influence the
diversity of GA.

For small structures such as the 6-node framework the most efficient approach
of ESOaGA is to insert ESO designs only in the initial GA population. On the other
hand, for large structures such as the 12-node framework the most efficient approach
of ESOaGA is to insert ESO designs in each population provided that a balance
between the ESO and GA designs is maintained during the optimization process.

The second method termed as GA assisted ESO (GAaESO) works using GA
for a limited number of generations followed by ESO runs for each GA design as the
starting point. Instead of running the GA for a large number of generations, we can
save substantial computational time by simply running an “unassisted” GA for a small
number of generations and then applying the ESO method to the resulting designs.

Finally, comparison between the two new methods was made. ESOaGA
method is superior to GAaESO for small structural problems. However, the GA
assisted ESO method provides better results than the ESO assisted GA method under
the same computational time when a large structural problem is considered. It loses its
efficiency though when the size of generations is increased. However, both methods
can obtain better optimized designs in less computational time than the “unassisted”
GA method. The efficiency of ESOaGA method can be further improved by applying
ESO to the results of ESOaGA. This approach (called ESOaGAaESO) can provide
even better results than ESOaGA at roughly the same computational time, as ESO

cost is minimal.
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Conclusions and future work

A summary of the conclusions given at the end of each chapter is presented
here. After reporting the main contributions of this thesis, a section referring to
several aspects of the framework topology optimization than would need further study

1s provided.

6.1. Concluding remarks

The quality of framework designs obtained by the use of the Evolutionary
Structural Optimization (ESO) has been critically examined. It is often claimed that
the method produces optimal structures because at each stage of evolution one
discards the structurally most inefficient portions in a design. The consideration of
weight alone does not provide an ideal metric for comparisons unless we fix the
maximum stress in all the designs that are being compared to a prescribed value. We
have, therefore, explored the two-objective problem of minimizing the weight and the
maximum stress in a structure where compaﬁsons can be readily made between the
Pareto Fronts of various sets of designs.

A general trend of the trajectory of designs during the ESO process on the
maximum stress-weight plane was obtained. In the initial phase of the optimization
procedure, we observed that a substantial decrease in weight of the design is
accompanied with a small decrease in the maximum stress of the design, reaching a
critical point. After this point, the maximum stress of design increases dramatically
while the weight of the design is marginally decreased. In order to reach this critical
point, we obtain a significant decrease in weight (large material removal) at the same

time as a reduction in the maximum stress value of the design. The continuation of the
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optimization from this point will lead to a large increase in maximum stress with very
small weight loss profit. Consequently, the design corresponding to this critical point
can be considered the best design that we can obtain from the optimization when
working with fixed cross sectional structures. Observations on the ESO trajectory can
provide us with vital suggestions on selecting the stopping criterion for the ESO
iterations and the most appropriate design according to the preferred constraints.
Apart from that, scaling of the cross-sectional size of the structure was implemented
at each iteration of the ESO process. Simultaneous sizing and topology framework
optimization based on ESO can offer much more desirable results compared to the
corresponding topology optimization.

Furthermore, the effectiveness of ESO on framework topology design was
studied. The ESO designs were found, in many cases, to be dominated by those
computed by an exhaustive search or a Genetic Algorithm (GA). Comparisons with
the Pareto-optimal sets obtained from exhaustive search show that ESO does not
always provide optimal solutions. However, it does produce some very good designs
at a small computational expense. Discrete structures such as frames and trusses
afford the opportunity to explore all possible designs—unlike a continuum model
where such comparisons are not possible because of infinity of possible design
options and because the conclusions depend on a specific parameterisation.

For complex topologies having a large number of joints, the number of design
options cannot be exhaustively searched. Therefore, for such cases, a multi-objective
GA has been used to produce Pareto-optimal sets and compared with the designs
produced by ESO. The conclusions remain the same—ESO does not often produce
Pareto-optimal designs; however, if one can afford only limited computational
resources, then it produces some very good designs at relatively small cost. Finally,
the topology optimization problem was reformulated as one of gradually reducing the
thickness in a range—so that a structural member is not altogether removed in one
step, but is reduced only when the thickness approaches zero (or a prescribed lower
threshold). The general observations for this case are consistent with the other
numerical experiments presented in this thesis—ESO does not often produce Pareto-
optimal solutions, however, it affords some very good designs inexpensively.

Two new methods were also implemented in order to combine the efficiency
of GA and the small computational cost of ESO. The first method (ESO assisted GA)

decreases significantly the large computational cost of GA in the way it concentrates
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on the designs surrounding the ESO trajectory. Including ESO designs in the GA
population enriches the population with promising designs thus increasing the
effectiveness of GA. ‘

A second method of combining the ESO and GA was proposed (GA assisted
ESO) in which the designs that are obtained by GA for a number of populations and
generations were used as starting points for a family of ESO runs. Instead of running
the GA for a large number of generations, we can save a lot of computational time by
simply running the GA for a small number of generations followed by multiple runs
of ESO each of which is computationally cheap.

After visual and quantitative comparisons among the new optimization
methods for the two structural problems of 6-node and 12-node frameworks, we
conclude that the performance of the hybrid optimization methods becomes even
more efficient when large structures such the 12-node example are considered. This
conclusion is supplied by the Kruskal-Wallis test of statistical significance. We also
observed that for the same computational time, the GA assisted ESO (GAaESO) is
relatively more efficient than the ESO assisted GA (ESOaGA) for larger structural
problems. Both methods though can obtain better optimized designs in less
computational time than the “unassisted” GA method. The efficiency of ESOaGA
method can be improved by applying ESO to the results of ESOaGA. This new
promising approach called ESOaGAaESO can provide even better results than
ESOaGA in the same computational time, as ESO cost is considered marginal.
However, its results are still dominated by GAaESO. In spite of that, further research
could be focused on the effect of the iterative application of GA and ESO on the
performance of ESOaGA and GAaESO.

To summarize, the major contributions of this thesis are listed below:

e Achievement of general shape of the trajectory in which designs evolve during
the ESO process on the maximum stress-weight plane.

¢ Pareto-comparison between the ESO and Genetic Algorithm (GA) applied to
frameworks.

e Sizing optimization using ESO in framework structures.

e Development of two new algorithms that blend the strengths of ESO and GA.
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6.2. Future Work

Based on the results obtained from the current study, future work could

concentrate on the following aspects:

e Modification of the objective function when a specified number of structural
members are removed from the original fully connected design is necessary. A
third objective -deflection- could be introduced, which is a measure of
stiffness.

e The current work could be extended to problems including other constraints
such as buckling. The applications of the approaches developed in this thesis
could be investigated furthér if local buckling constraints are included in the
topology optimization.

e The use of long members is not economical, and their removal results in
structures of lower weight. On the other hand, the use of too many members in
the ground structure increases the computational time and in the process of
optimization leads to non-practical configurations. One of the most suitable
forms for topology optimization is when every node is connected to the
neighbouring nodes only. Avoid co-linear members. The use of fully
connected structures as initial structures for genetic algorithms increases the
length of the chromosomes, decreasing' the speed of convergence.

e Movement of internal nodes may play an important role during the
optimization. This approach could be used so that variation in performance
can be checked.

e The Pareto Front concept presented in Chapter 4 and the two new methods
proposed in Chapter 5 could be applied in 3-D frameworks. The method
developed for 2-D structures can easily be extended immediately to structures
of three dimensions. This only needs the generation of a three-dimensional
mesh and the definition for each node of six degrees of freedom instead of
three. However, the ground structures would contain a lot of nodes. Moreover,
the simple fact of working in three dimensions will increase considerably the

number of possible designs.
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e A further study could be focused on the analytical approach and proof of the
general results such as the obtained trends of ESO for the framework topology
design.

e Further research is needed in order to investigate the effect of applying ESO
and GA several times iteratively and the advantage of this over the ESOaGA
and GAaESO methods. '
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Appendix

The input structure to NSGA2 used within the OptionsMatlab package is
presented here. It describes the problem, and configures the design search and
optimization. A number of optional fields may be used additionally to adjust the
control parameters.

In this example, some important parameters required for running the
“unassisted” GA are — the number of variables (15), the number of generations (20)

and the number of designs in each population (20).

disp('*** Initiating NSGA2 ...');
% Create the input structure

.OBJCON_FUNCTION='trussconfun';
.NVRS=15;

.LVARS=zeros (1, s.NVRS) ;
.UVARS=ones (1, s.NVRS) ;
.OBJECTIVE_NAMES={'MASS', 'MAXS'};
.VARS=s.UVARS;

.NOBJECTIVES=2;

.NCONSTRAINTS=0;

.GA_GEN=20;

.GA_NPOP=20;

N nnnonnnnin

s=createNSGA20ptionsStruct (s);
truss_struct=createTrussStruct;

s.DVARS=truss_struct.DVARS;
s .NDVRS=truss_struct.NDVRS;

% Run NSGA2 with OptionsMatlab

disp('*** Results after each generation will be saved to
NSGA20UTPUT.mat') ;
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r=OptionsNSGA2 (s) ;
disp('*** OptionsNSGA2 completed successfully');

title([num2str(size(r.PF,1)),' points on the pareto front for
function ',s.0OPTCON]) ;
ylabel (s.CNAM(1)) ;xlabel (s.CNAM(2)) ;

disp('*** END OF trussnsga2.m ***');

The Matlab function trussconfun provides the values of the two objective
functions. The penalties used in order to exclude the infeasible designs from the
optimization process are also included in this function. The file createTrussStruct
includes the definitions of all the parameters needed by OptionsMatlab. A brief

description of the parameters that appear in the input stack is followed:

NVRS: The number of design variables

VARS: : A vector of NVRS design variables corresponding to
the initial design variables to be evaluated

LVARS: A vector of length NVRS representing the lower limits
to the design variable values

UVARS: A vector of length NVRS representing the upper limits
to the design variable values

NDVRS: The maximum number of discrete design variable
values

DVARS: A matrix of size NVRS by NDVRS of the discrete

design variable values
OBJECTIVE_NAMES: Names of the objectives
NOBIJECTIVES: Number of objectives
NCONSTRAINTS: Number of constraints
OBJCON_FUNCTION: Objective function
GA_GEN: Number of generations

GA_NPOP: Number of designs included in each population
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The meaning and default values of the OptionsMatlab [127] optional control
parameters with respect to the genetic algorithm search used in the current thesis are

presented in the table below.

Control Parameter Meaning : Value
GA _NBIN The number of bits used per variable in binary 2
discretization
GA NPOP Population size each generation 20
GA PENAL Set the penalty function control parameter, r, | 1.00E+20

with values less than one invoking the modified
Fiacco and McCormick function (OPTIM?2)

otherwise the one pass method is used

(OPTIM1)

GA PBEST The proportion of the solutions that are used to | 0.8
form the parents of the next generation |

GA_PCROSS The proportion of the solutions in the | 0.8
population that are crossed to form new
solutions

GA _PINVRT The proportion of the solutions in the|0.2

population that have their ordering codes

inverted to form new solutions

GA_PMUTNT Mutation is allowed at a level set by this | 0.005
parameter, i.c., this fraction of the total number
of binary digits are reversed at each pass (n.b.

greater than 0.5 results in randomisation)

GA _PRPTNL If .TRUE. the make-up of the following |1
generation is then biased in favour of the most | (TRUE.)
successful according to their objective function
values, otherwise survival is proportional to
ranking but scaled to prevent dominance and

stagnation
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GA_ALPHA

The cluster penalising function. Small values
giving less severe penalties than those nearer
one, and a value less than zero turning the

mechanism off

0.2

GA_DMIN

The minimum distance between cluster

centroids

0.05

GA_DMAX

The furthest distance a new solution can be
from an existing cluster centroid without a new

cluster being formed

0.2

GA_NCLUST

The initial number of clusters, either in absolute
terms or, if it is < 1.0, as a fraction of the

population size

0.1

GA_NBREED

Breeding is restricted to be between members
of the same cluster if there are at least this many
members in the cluster, otherwise random
members of the population are used, if this
parameter is set to zero breeding is not
restricted, producing a greater variety of
solutions but more “lethals”; if the number is
less than unity it is taken to be a fraction of of
the population, default 0.1, min.=2/GANPOP,
max.=GA NPOP.

0.1

GA_PSEED

Seeding of the initial, randomly generated
members of the population is allowed at a level

set by this parameter (0 = random, 1.0 clones of

| initial point)

GA_NRANDM

The number of random numbers drawn and

discarded before starting the optimiser
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