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Abstract 
UNIVERSITY OF SOUTHAMPTON 

ABSTRACT 

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS 

INSTITUTE OF SOUND AND VIBRATION RESEARCH 

Doctor of Philosophy 

INVERSE FILTERING FOR VIRTUAL ACOUSTIC IMAGING SYSTEMS 

by Timoleon Papadopoulos 

The research topic of this thesis is the use of inverse filtering for the design and 
implementation of two-channel virtual acoustic imaging systems that utilise 
loudspeakers. The basic objective of such systems is to invert the electroacoustic plant 
between the input to the loudspeakers and the output at the listener’s ears and hence 
make it possible for a pair of binaural signals to be locally reproduced at the position 
of the listener’s ears. As a starting point for the research presented, a previously 
introduced type of inverse filtering design is considered in which the inverse is 
implemented with FIR filters. The basic formulation of this design is described and a 
number of innovative points regarding its implementation are made. An experimental 
procedure is then formulated for the evaluation of the effectiveness of this inverse 
filtering design that is based on objective measurements of the inversion process. 
Unlike previously employed methods that are based on computer simulations or 
subjective experiments, the introduced experimental procedure is shown to be very 
efficient in isolating and exactly quantifying the effect on the accuracy of the 
inversion of a number of errors and approximations typically present in the 
implementation. A detailed evaluation is thus presented of the inverse filtering design 
at hand in realistic conditions of implementation. Subsequently, a novel method for 
the off-line implementation of the inverse filtering is presented that utilises recursive 
filters of lower order. In this method, the responses of the inverse filters are 
decomposed into two parts, one realisable in forward time and one in backward time. 
The effectiveness of this new method for the implementation of the inverse is tested 
and compared with a small selection of the objective evaluation results described 
above. Finally, an algorithm for the on-line implementation of the forward-backward 
inverse filtering is proposed and its computational cost is compared with the currently 
available frequency-domain block-processing filtering algorithms. 
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1 Introduction 

 

Virtual Acoustic Imaging Systems are sound reproduction systems that allow us to 

control arbitrarily the auditory perception of one or more listeners located in a given 

space. The design of such systems has been a research topic of increasing interest 

over the last few decades. With a diverse range of applications including the fields of 

home entertainment, film production, personal computer multimedia, car audio, 

telecommunications, even aircraft cockpit human interface (see (Begault 1994) and 

references therein), the relevant research currently focuses on a number of different 

implementation strategies. These vary with respect to the underlying theoretical 

models of the acoustics and psychoacoustics, the type and number of acoustic sources 

and audio channels used, and the audio equipment deployed. 

A specific type of implementation is considered in this thesis. This is based on a two-

channel reproduction system using two full audio frequency range loudspeakers. As is 

described in the following, under certain assumptions, the creation of an arbitrarily 

chosen auditory impression in a single static listener using such a system, essentially 

amounts to the inversion of a 2×2 matrix that contains the transfer functions relating 

the input to the sources to the output at the positions of the listener’s ears. The inverse 

of such a transfer function matrix, albeit inherently recursive, is typically 

implemented in currently available realisations with non-recursive filters. Such an 

implementation incurs an excessively high computational cost requirement. The aim 

of this thesis is: (i) to provide a closer investigation of the feasibility and the 

effectiveness of this inversion and (ii) to propose an alternative realisation that makes 

use of the recursive character of the inversion, thus achieving a reduction in the 

required computational cost. 
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1.1 Overview of Virtual Acoustic Imaging Systems 

1.1.1 The objective of Virtual Acoustic Imaging Systems 

From everyday experience we know that, when in the presence of an existing sound-

field, humans are able to extract a great amount of information regarding the sources 

that create this field. We are, in other words, based solely in the sense of hearing, able 

to create an acoustic image1 of the physical phenomena that are responsible for the 

creation of the given sound-field. This acoustic image contains information relating 

to: 

• The number, the type and the individual timbre of the sources that create the 

sound-field. When among a group of people in conversation, a listener can identify 

each particular speaker. Similarly, a trained listener can identify the contribution of 

each instrument when listening to an orchestra performing a musical piece. 

•  The type of acoustic signal emitted by the sources and the information that it 

carries, be it for example speech, music or a specifically identifiable kind of noise. 

• The position, i.e. the direction and the distance, of the sources relative to the 

listener. When crossing the street, the noise from a car is usually enough to tell us 

where the car is and whether it is approaching or moving away. 

• The characteristics of the space in which the sound-field exists. Within a 

reasonable margin of error, a listener can identify whether the sound that they hear 

exists in an open space, in a big cathedral, in a small, furnished room or in a concert 

hall. 

The objective of a virtual acoustic imaging system is then to recreate convincingly the 

perception of this identical acoustic image, termed a virtual acoustic image, in a 

listener that is located in a space that does not contain the original physical 

                                                 
1 In the relevant literature the term acoustic image is often used to denote the perception related to a 
single source of sound whereas in this instance we use it to refer to the total impression created to the 
listener by the soundfield that surrounds him/her (this impression that comprises a collection of 
individual acoustic images is sometimes referred to as the soundstage). The actual meaning of the term 
is self-evident from the context and here we use the term acoustic image loosely to describe both 
notions. 
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phenomena responsible for the creation of the acoustic image. Using the terminology 

introduced by Blauert (1996), the goal is to recreate the “auditory event” which in a 

natural listening situation would correspond to a given “sound event” without the 

presence of the “sound event” itself.  

To take an often used example of such an application, we can imagine a listener who 

uses such a system in his/her living room in order to enjoy the full sensation of a 

musical performance given by a famous orchestra in a music hall of exceptional 

acoustics. Assuming that the stimuli of the other senses are perceptually irrelevant or 

somehow blocked, the design must be able to convey to the listener the musical text 

up to the finest detail supported by the orchestra’s performance and the room’s 

acoustics, as well as to create convincingly in him/her the image of the stage in all its 

dimensions with the positions of the instruments clearly defined (at least as well 

defined as they would be in the natural listening situation) and also to recreate the 

perception of the acoustics of the hall. The natural extension of the above principle is 

the ability to control arbitrarily the auditory perception of the listener, thus being able 

to create acoustic images that do not necessarily originate from an existing listening 

situation. An obvious area of application of such a design would be that of multimedia 

applications and video gaming. 

1.1.2 Stereophony 

The first sound reproduction systems that aspired to achieve the aforementioned goal 

had their roots in A. D. Blumlein’s theoretical work2 in the early 1930’s and first 

appeared as commercial implementations in the 1950’s under the name “stereophonic 

systems”. As the name suggests, the new aspect introduced by two-channel 

stereophony compared to the then known monophonic systems was the goal of 

creating a three-dimensional auditory impression with acoustic images positioned at 

any intended point in the space that surrounds the listener. As has been shown in its 

practically universal use by sound engineers and its widespread application in home-

audio hi-fi systems, with proper use of the “stereo-panning” technique, stereophony 

does indeed succeed in controlling the positioning of images inside the angle spanned 

by the two loudspeakers. On the other hand, it shows little promise as regards the 
                                                 
2 For Blumlein’s original British Patent document and for other works describing the early days of 
stereophony see (AES 1986). 
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creation of a full three-dimensional sound-stage. Images at locations outside the 

loudspeaker span, or at elevations other than the position of the loudspeakers appear 

erratically, if at all. The depth of the sound-stage (i.e. the source distance information) 

is similarly poorly controlled. 

It should be noted that despite the existence of a comprehensive theoretical foundation 

for the stereophonic technique, the methods used in its everyday implementation are 

in many cases based on the practical experience and personal taste of the individual 

recording and producing engineer3. Similarly, at the reproduction end of stereophonic 

systems’ implementation, even though a standard exists specifying that the two 

loudspeakers must be placed at the corners of an equilateral triangle facing a listener 

positioned at the third corner of the triangle, such practice is not always followed. 

Instead, it is usually left to the user to find the placement that gives the best results for 

the specific system and room. Hence it is difficult to undertake an exact overall 

evaluation of the effectiveness of stereophonic reproduction in controlling the spatial 

aspect of the auditory experience of the listener. 

During this “era of stereophony” of the last 50 years, numerous theoretical 

formulations and experimental designs have been proposed in order to address the 

inadequacy of stereo systems in fully reproducing the spatial characteristics of the 

recorded sound-field. Despite the fact that none of them has yet succeeded in 

replacing stereophony as the mainstream audio reproduction design4, some of them 

have shown real promise in their application. A description of those designs follows 

which includes the specific design investigated in this thesis. 

1.1.3 Global sound-field reconstruction 

The most ambitious among the related theoretical formulations is unquestionably that 

of global sound-field capture and reconstruction, which is based on the Kirchhoff-

Helmholtz integral equation. In simple terms this states that the sound-field inside the 

whole volume of a given enclosure that does not contain sound sources is uniquely 

described by the values of the pressure and the pressure gradient on a surface that 

                                                 
3 For a review of stereo recording techniques and of the use of the “stereo panning” method see 
(Borwick 1990). 
4 This is with the possible exception of the recently introduced multi-channel designs described in 
§1.1.5. 
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encloses the volume. The sound-field inside the volume can thus be controlled by a 

continuous distribution of monopole and dipole sources on the surface. The practical 

aspects of a sound recording and reproduction system that could realise this principle 

have been investigated by Berkhout (1988), Berkhout et al. (1993) and Nelson (1994). 

Although it is recognised that the required scale for the implementation of the full 

audio range, three-dimensional formulation is excessively large more recent 

theoretical work has been published which shows that the design can be conveniently 

downscaled to two dimensions and thus become applicable to problems such as those 

of direct sound reinforcement and hall acoustics auralisation (Hulsebos et al. 2002), 

(Start et al. 1999) and (de Vries 1996).  

1.1.4 Ambisonics 

Another approach, equally attractive in its theoretical formulation but much less 

demanding in its practical implementation was presented by Gerzon (1973) in the 

early 70’s under the name “ambisonics”. In the core of this sound recording and 

reproduction technique lies a specific microphone design (Gerzon 1975), commonly 

referred to as the “soundfield” microphone after its commercial realisation by Calrec 

Audio. This microphone allows the recording of four signals corresponding to the 

sound pressure and the pressure gradients on the three Cartesian axes at one point in 

the original soundfield (recording in B-Format). This information can then be decoded 

to drive an arbitrary number of loudspeaker channels (typically four or more) so as to 

reconstruct a soundfield with the same directional characteristics as that of the 

original soundfield. Even though the various commercial implementations of this 

principle never succeeded in establishing a critical mass of installations, mainly due to 

the severe restraints in multi-channel signal storing and transmission capabilities of 

the time, the system seems to enjoy a wide appreciation by users and researchers alike 

and it is widely believed to represent a serious possibility for future commercial 

implementations. 

1.1.5 Multi-channel extensions of stereophony 

Somewhat in contrast to the formulations described above, there also exists a category 

of implementations that are much simpler in their theoretical justification. These 

essentially amount to the expansion of the two-channel stereo and the associated 
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stereo-panning method to more channels and sources. The first system to appear in 

this category in the 1960’s was the “quadraphonic” system, a 4-channel 

implementation which, despite the original enthusiasm it created, was soon 

abandoned. This was partly due to the inability of the analogue storage and 

distribution media of the time to efficiently handle 4-channel signals (the same 

problem as with ambisonics) but more importantly due to the limited capability of the 

system to create a genuinely surround sound perception that soon became apparent. 

Later on, a series of film-sound reproduction systems, that utilise similar technology, 

were developed by Dolby Laboratories first for cinema installations (Dolby Stereo) 

and then for home installations (Dolby Surround). 

With the passing of commercial sound reproduction systems from the analogue to the 

digital domain in the 1980’s and 1990’s, that practically lifted all restraints in the 

storage and distribution of multi-channel sound signals, this “augmented stereo” 

principle gave rise to a number of commercially successful multi-channel systems 

both for film-sound reproduction (5.1 Dolby Digital and DTS, 6.1 or 7.1 Dolby 

Digital EX and DTS-ES etc.) and for music reproduction (DVD-Audio and SACD 

formats)5. With the inclusion of more channels and sources (5 or 6 full audio range 

channels) these systems adequately cover the positioning of sources in the horizontal 

plane. One of their basic shortcomings however is the inability to adequately control 

source height information. Even though the future development of these systems 

promises the inclusion of one or more extra channels dedicated to source height 

information, such a possibility is of course limited by the number of sources that can 

be practically accommodated in a standard installation. 

1.1.6 The binaural technique  

Finally, an altogether different approach to the problem at hand, the approach 

considered in this thesis, is that of binaural reproduction (Møller 1992). The starting 

point of this approach lies in the fact that the auditory perception of the listener is 

solely determined by the pair of sound pressure signals at his/her eardrums. Hence, if 

this pair of sound pressure signals (binaural signals) that corresponds to a given sound 
                                                 
5 For details on the various sound reproduction formats one can refer to the abundance of relative 
information on the Internet, see e.g. 
http://www.dolbylaboratories.com/consumer/technology/tech_overview.html or 
http://www.digit-life.com/articles2/sacd-dvd-a/ 
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event is known and is locally reproduced at the position of the listener’s ears, then the 

listener will perceive the corresponding auditory event without the presence of the 

sound event itself. Evidently, the two basic issues arising in the context of the binaural 

technique are (i) the determination of the binaural signals corresponding to the given 

sound event and (ii) the accurate reproduction of these signals at the ears of the 

listener. The former of these issues is discussed in the next section. For the latter, two 

basic types of implementation exist; the first is reproduction over headphones (for 

which the term “binaural reproduction” is commonly used) and the second is 

reproduction over loudspeakers, for which the term “transaural reproduction” was 

coined by Cooper and Bauck (1989). 

The principle advantage in using headphones is the guaranteed suppression of the 

cross-talk, i.e. of the fact that each one of the binaural signals only reaches the 

intended ear. Furthermore, the use of headphones alleviates the design task from the 

influence of the room acoustics in the reproduction space. Thus, the only processing 

required for the reproduction is the equalisation of the response between the 

headphones and the eardrums, something that is achieved rather easily (Møller 1992). 

On these grounds the headphone-reproduction approach indeed offers an efficient 

implementation option. It does however pose a number of challenges, the most 

prominent being those of the avoidance of the in-head localisation effect, of the robust 

control of images directly in front of the listener, of the avoidance of front-back 

confusions and of the achievement of a sense of natural hearing. It is generally agreed 

that such problems can be successfully addressed if the binaural material is 

determined on the basis of measurements made on the specific listener6. Of course 

such a requirement adds an extra parameter of complexity to the implementation 

which to a degree negates the simplicity mentioned above. 

On the other hand, the main design challenge in systems where the binaural signals 

are delivered over loudspeakers is the suppression of the cross-talk in the contralateral 

loudspeaker-ear transmission paths and also the equalisation of the ipsilateral paths 

which contain the response of the loudspeakers, the room and the listener’s head and 

                                                 
6 For further details on headphone reproduction issues and the related issue of the use of individualised 
and non-individualised HRTFs in see (Asano et al. 1990), (Begault and Wenzel 1993), (Hartmann and 
Wittenberg 1996), (Kulkarni and Colburn 1998), (Kulkarni et al. 1999), (Martens 1997), 
(Middlebrooks et al. 1989), (Møller 1989), (Møller et al. 1995a), (Morimoto and Ando 1980), (Wenzel 
et al. 1993), (Wightman and Kistler 1989a) and (Wightman and Kistler 1989b). 
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body for the given reproduction geometry. This adds one further design and 

implementation stage in comparison to the case of reproduction over headphones, 

something that at first sight might be considered undesirable. Nevertheless there are a 

number of reasons that render the use of loudspeakers equally, if not more, attractive. 

First, the listening experience when loudspeakers are used is effortlessly more natural 

than that achieved with headphones. Even when the cross-talk cancellation and 

ipsilateral equalisation fails to meet the required standard in order to create a 

completely convincing virtual acoustic environment, the auditory display degrades 

very gradually with the virtual images being concentrated on the front half of the 

horizontal plane or at worse collapsing to the location of the sources. As long as 

reasonable care is taken, the timbral characteristics of the display can be maintained at 

an acceptable quality. Conversely, imperfections in the design of headphone 

implementations can automatically lead to very unnatural and even discomforting 

auditory displays. This, in conjunction with the headphone-related “listener fatigue” 

effect, can prove completely prohibitive in applications such as multimedia 

applications and video gaming where long-time exposure is customary. 

Furthermore, the technology and know-how gained over the years in the design and 

production of loudspeakers is greater than that of headphones. Loudspeaker 

unit/cabinets are generally considered to be better sources of sound in terms of their 

ability to cover the whole audio frequency range with good frequency response and 

adequate dynamic range. In this respect there is certainly a greater 

industrial/commercial interest in designs that use loudspeakers than in designs using 

headphones. 

1.2 The specific model discussed in the thesis – Local 

sound-field reproduction over loudspeakers 

In this section we discuss the two basic points mentioned above in the context of the 

binaural reproduction technique, namely that of obtaining the binaural signals and that 

of delivering them at the listener’s ears over loudspeakers. We give the basic 

analytical formulation of the inverse filtering problem arising from the need to 
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suppress the cross-talk and equalise the ipsilateral paths between the loudspeaker 

inputs and the output at the listener’s ears. 

 

Figure 1-1: The sound reproduction model discussed in the thesis. (a) Single-channel 
recording of a real source. (b) Measurement of HRTFs. (c) Reproduction of a pair of 
binaural signals over loudspeakers (black line) and creation of a single virtual acoustic 
image (grey line). 
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The model of virtual acoustics imaging systems discussed in this thesis is described in 

figure 1-1. Two cases are described: In the first, a pair of binaural signals is available 

(e.g. in the form of a binaural recording with microphones inserted at the ears of the 

listener or of a dummy-head) and it is to be reproduced using two loudspeakers at the 

ears of a listener positioned in a different physical space. This is illustrated in part (c) 

of figure 1-1 with the parts plotted in black line. In the second case, a monophonic 

recording signal is to be reproduced over the loudspeakers in order to create a virtual 

image at a specified point of the listener’s auditory space. This case is discussed 

immediately afterwards. 

We denote with x(n) the 2×1 vector containing the pair of binaural signals 

[x1(n) x2(n)], with y(n) the 2×1 vector containing the pair of source input signals 

[y1(n) y2(n)], with d(n) the pair of desired signals [d1(n) d2(n)] that we want to 

reproduce at the listener’s ears, with d̂(n) the 2×1 vector containing the pair of signals 

[d̂1(n) d̂2(n)] that are actually reproduced at the listener’s ears and with e(n) the pair of 

error signals corresponding to the difference between the desired and the reproduced 

signals. Furthermore, with H(z) we denote the 2×2 matrix of transfer functions that 

we use in order to create the necessary source input signals and with C(z) the 2×2 

plant matrix that contains the transfer functions Cij(z) relating the input to the j-th 

source to the pressure at the ear denoted with the index i. With this notation the 

schematic of figure 1-1 can be readily seen to translate to the block diagram of figure 

1-2 (again the case where binaural signals are already available is shown with the 

black-line part of the figure). 

Evidently, for the case of the reproduction of binaural signals over loudspeakers, the 

vector of desired signals d̂(n) is identical to the vector of binaural signals x(n). In that 

case then, and using then the z-transforms of the related signals and systems, the error 

signal becomes equal to: 

 ( ) ( ) ( ) ( ) ( )ˆ ˆz z z z z= − = −e d d x d  (1-1) 

or equivalently 

 ( ) ( ) ( ) ( ) ( )z z z z z= −e x C H x  (1-2) 
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and with I used to denote the 2×2 identity matrix 

 ( ) ( ) ( ) ( )z z z z= −⎡ ⎤⎣ ⎦e I C H x  (1-3) 

 

Figure 1-2: Block diagram of the sound reproduction model discussed in the thesis 
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 ( ) ( ) ( )n n nδ∗ = ⋅c h I  (1-5) 
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21 11 22 21 21 12 22 22
eq

C H C H C H C H
z z z

C H C H C H C H
+ +⎡ ⎤

= = ⎢ ⎥+ +⎣ ⎦
X C H  (1-6) 

or equivalently in the time-domain 
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 ( ) ( ) ( ) 11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22
eq

c h c h c h c h
n n n

c h c h c h c h
∗ + ∗ ∗ + ∗⎡ ⎤

= ∗ = ⎢ ⎥∗ + ∗ ∗ + ∗⎣ ⎦
x c h  (1-7) 

 

Equations (1-4) and (1-5) form the analytical basis of the implementations considered 

in this thesis. 

In the second case, that of positioning a virtual image at a given point in space, the 

formulation described above has to be extended to cover the creation of the binaural 

signals which are now not available (binaural synthesis). This is illustrated with the 

grey line parts in figures 1-1 and 1-2. The notion of the Head Related Transfer 

Function (HRTF) plays a central role in this process. This describes the linear 

transformation that is imposed on the free-field soundfield which is created by a 

source emitting sound from a given direction, by the presence of the listener’s head 

and torso. It is defined (see eq. (1-8)) as the ratio of the Fourier transform of the sound 

pressure signal Pi(ω,φ,θ,r) at a given point along the listener’s ear-canal (where the 

index i denotes the left or right ear of the listener) created by a source that is located at 

an azimuth angle φ, elevation angle θ and distance r, to the Fourier transform of the 

free-field sound pressure signal Pff(ω,φ,θ,r) that would be created by the same source 

at the position of the centre of the listener’s head with the listener not present.  

 ( ) ( )
( ) ( ) ( )

( )
, , , , , ,

, , , , , ,
, , , , , ,

l r
l r

ff ff

P r P r
HRFT r HRFT r

P r P r
ω ϕ θ ω ϕ θ

ω ϕ θ ω ϕ θ
ω ϕ θ ω ϕ θ

= =  (1-8) 

We note that the definition given here corresponds to the free-field equalised HRTF 

while other definitions have also been proposed. For a detailed discussion on the issue 

see (Blauert 1996), (Gardner 1998) (where the term measurement equalised HRTF is 

used for the definition given here) and (Møller 1992). It should also be noted that, 

despite the fact that the above general model describes the HRTF as a function of 

distance r, the usual practise is to assume that the source is located far enough from 

the listener so that the sound wave reaches the listener as a plane wave. In that case 

the dependence on distance simplifies to a scaling following the inverse square law. 

Hence, in all published HRTF databases, the source distance is kept constant 

(typically in the range of 1-2m) across the different values of azimuth and elevation 
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and does not appear as a variable. Finally, given the spherical symmetry of the 

formulation as regards the free-field pressure measurement, it is easily conceived that 

the free-field sound pressure signal Pff should be considered independent of the angle 

of incidence and hence the variables φ and θ become redundant. In this case the 

formulae of (1-8) become: 

 ( ) ( )
( ) ( ) ( )

( )
, , , ,

, , , ,l r
l r

ff ff

P P
HRFT HRFT

P P
ω ϕ θ ω ϕ θ

ω ϕ θ ω ϕ θ
ω ω

= =  (1-9) 

The basic arrangement of an HRTF measurement is depicted in part (b) of figure 1-1. 

A measurement loudspeaker fed with a stimulus signal7 is positioned at a given 

direction with reference to the centre of the head of the listener (or a dummy-head) 

who has a pair of microphones placed at his/her ears8. The responses M1(ω,φ,θ) and 

M2(ω,φ,θ) from the input to the measurement loudspeaker to the output at the 

listener’s ears are measured as well as the response Mff(ω) from the input to the 

loudspeaker to a (omni-directional) microphone positioned at the position of the 

centre of the listener’s head with the listener absent. The responses Mi(ω,φ,θ) are 

measured on a grid sampling the sphere that surrounds the listener. The free-field 

response Mff(ω) has to be measured only once unless more than one measurement 

loudspeakers are used in which case it should be measured for each one of them. It 

then follows directly that the HRFT corresponding to the left and right ear (denoted 

henceforward with A1(ω,φ,θ) and A2(ω,φ,θ)) will be as in equation (1-10). The 

measurement is typically made in an anechoic chamber or a room that is adequately 

sound-insulated and large enough so that the reflections due to the walls occur well 

                                                 
7 Different measurement techniques exist for this type of electroacoustic plant response measurement. 
In all cases, a stimulus that is spectrally rich in the frequency range of interest is used to drive the 
source and the output signal is captured at the sensors. Subsequently, using a process that varies 
according to the type of the stimulus, the response of the stimulus is deconvolved from the output 
response to obtain the response of the system under test. For a detailed review see (Muller and 
Massarani 2001) and the references therein. 
8 The position along the ear-canal where the microphone is placed is a free parameter in this type of 
measurement. Ideally the microphone should be detecting the pressure output at the listener’s eardrum. 
This is very easily achievable in dummy-head measurements but not quite trivial in human listener’s 
measurements where it can only be achieved with probe microphones. Such transducers are typically of 
inferior specification compared to standard measurement-type microphones. This can be addressed 
however with the placement of the microphone higher-up along the ear-canal or even at the entrance of 
a blocked ear canal. This is because the contribution of the sound propagation along the ear-canal to the 
HRTF, despite being highly individualised across humans, has been shown by Hammershoi and Moller 
(1996), Mehrgardt and Mellert (1977), Middlebrooks et al. (1989) and Møller et al. (1995b) to be 
directionally independent. 
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after the measured impulse responses and can thus be removed by a “windowing” 

operation. 

 
( ) ( ) ( )

( )
( )

( )

( ) ( ) ( )
( )

( )
( )
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ω ϕ θ ω ϕ θ
ω ϕ θ ω ϕ θ

ω ω

ω ϕ θ ω ϕ θ
ω ϕ θ ω ϕ θ

ω ω

= = =

= = =

 (1-10) 

The pair of left and right ear HRTFs for a given source location in relation to the 

listener, contains the information that is used by the listener’s auditory system in order 

to localise the position of the source. That is, the magnitude of the ratio of these two 

transfer functions, termed the Interaural Transfer Function (ITF), encodes the 

Interaural Level Difference (ILD) localisation cue that describes the head-shadowing 

effect and is known to be the basic localisation cue for sounds with frequency content 

above 1.5kHz. In the same manner, the phase delay of the ITF encodes the Interaural 

Time Delay (ITD)9 localisation cue that has been shown to be the dominant source of 

information for the localisation of sounds with frequency content up to 1.5kHz. The 

time delays between the envelope of the signals at the two ears, encoded at the group 

delay of the ITF, have also been shown by Blauert (1996) to provide a localisation cue 

at frequencies above 1.5kHz. 

Furthermore, the magnitude of each of the left/right HRTFs encodes information 

related to the monaural spectral cues that represent the basic source of information for 

the localisation in the median plane (Asano et al. 1990), (Blauert 1996) and (Wenzel 

et al. 1993). We note that the human auditory system is known to also use other cues 

that occur in situations where the source-listener geometry changes dynamically and 

which are thus, strictly speaking, not covered by the above time-invariant model of 

the HRTF. Dynamic cues that occur from movements of the listener’s head are 

primarily used in order to resolve situations were the binaural cues leave an ambiguity 

(front-back confusion and ambiguity about points on the cone of confusion). 

Returning then to the process of binaural synthesis, we start from a single-channel 

signal that is available and which contains all the audible information of a given 

                                                 
9 The term ITD is used in some sources to denote the frequency independent time delay between the 
HRTFs of the two ears (e.g. the time difference between the onset of the corresponding HRIRs) as 
opposed to the frequency dependent phase delay of the ITF (Blauert 1996). 
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sound event other than its spatial characteristics. In the most typical case this is a 

recording of the sound pressure P that is created at a given point M of a space, by a 

source S that is located at another point N of the same space as depicted in part (a) of 

figure 1-1. It is then readily seen from equation (1-9) that the sound pressures that 

would have been created at the ears of a listener positioned with the centre of his/her 

head at point M if the sound source S (virtual source) was emitting sound from a 

direction with a given azimuth and elevation, say (φ,θ), would be given by the product 

of the corresponding left and right HRTFs with the spectrum of the recorded sound 

pressure P(ω). This formulation, which is more commonly implemented in the time-

domain as the convolution of the recorded signal p(n) with the time-domain version of 

the HRTFs, termed Head Related Impulse Responses (HRIRs), forms the basis of the 

binaural synthesis part of the design. This is illustrated in figures 1-1 and 1-2 with the 

parts plotted in grey lines10. Concluding, we see that making use of the linearity of the 

binaural synthesis process, this can be extended to give the binaural signals 

corresponding to a number of sources positioned at a number of different locations. In 

that case, the binaural signals will be obtained by the addition of the binaural signals 

corresponding to each one of the sources. 

A few notes can be made regarding the model described above: First it should be clear 

that, unlike the binaural synthesis matrix A the elements of which are HRTFs, the 

electroacoustic responses Cij in the plant matrix C are not HRTFs. That is to say, the 

elements of C are not equalised with respect to a free-field response and so they 

incorporate the response of the reproduction loudspeakers and also the response of the 

room where the reproduction takes place. In an exact implementation of the model 

these components of the responses in the plant matrix also have to be corrected by the 

                                                 
10 A point that should be made here is that this formulation of the binaural synthesis part of the design 
cannot, in principle, take fully into account the individual reverberation characteristics of the space 
where the recording of the original sound event is made. This is because these characteristics depend 
not only on the temporal but also the spatial distribution of the arrival of reflections, the latter being 
clearly lost in a single-channel pressure recording. In a similar sense the information related to the 
directivity characteristics of the source (which would be prominent in situations where the listener is 
moving in relation to the source) is not covered by the model. That is to say, this model can only 
produce the binaural signals that correspond to the same relative rotation between the virtual source 
and listener as that between the recording transducer and the real source.  
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inverse filtering process11. This approach has been adopted in the study presented in 

this thesis. 

Another point to be made, that is evident from figure 1-2, is that in the second case 

described above, i.e. that of the reproduction of a single-channel recording for the 

creation of a single virtual acoustic image, the matrices H and A can be consolidated 

into a single 2×1 vector HV=C-1A. This effectively adds zeros to the recursive transfer 

functions of the inverse matrix H (see also §2.3.1) making the corresponding impulse 

responses decay faster. Thus fewer and shorter FIR filters are needed for the 

implementation. The downside of this approach is that, when multiple or moving 

virtual images are to be created, the inverse filtering has to be applied to each source 

or position. Furthermore, the separation of the binaural synthesis from the inverse 

filtering stage facilitates the investigation of the effectiveness of each stage alone. 

This approach has been taken in the present thesis in which the object of interest is the 

inverse filtering stage. 

Finally, following previous findings regarding the effectiveness of the inverse 

filtering relative to the reproduction geometry (see also the review of §2.2), we use 

the Stereo Dipole geometry (10o total loudspeaker angle span) as the exemplifying 

case in the measured results and the simulations presented in the thesis. 

1.3 The contribution of the thesis and the organisation 

of the presented material  

The initial motivation for the undertaking of this research project was to investigate 

the possibility of realising the inverse matrix H of equation (1-4) with recursive 

filters. As is further elaborated below, the filters comprising H are by nature recursive 

in the sense that they correspond to rational transfer functions. Hence, in principle, 

one would expect such a recursive realisation to result in computational cost savings. 

However, the denominator polynomial of these transfer functions is typically non-
                                                 
11 Strictly speaking, the reproduced signals will also contain the response of the recording microphone 
in part (a) figure 1-1 and of the microphones used to measure the plant. But, presenting closer 
approximations to the ideal response, the microphone responses introduce less distortion if left 
uncorrected.  
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minimum phase when measured electroacoustic responses are involved in the 

determination of H. In that case the direct use of the coefficients of the associated 

rational transfer functions does not result in realisable recursive filters. 

An approach, novel to the area of inverse filtering for virtual acoustic imaging 

applications, was taken to address this issue. This new approach decomposes the 

related transfer functions in two parts; one realisable in forward time and one 

realisable in backward time. At a certain stage in the course of this research it became 

apparent that such an implementation is indeed possible. Nonetheless, its merit in 

terms of the associated computational efficiency could not be properly evaluated 

unless a closer look was taken into the relation between the design parameters of H 

and the corresponding inversion accuracy that is realistically achievable in the real-

world implementation of a virtual acoustic imaging system. Such an investigation was 

thus undertaken which turned out to be of great research interest in itself. This is also 

reflected in the extent of the presentation of the related material in this thesis. Upon 

completion of the investigation of this newly added research topic, the results related 

to the forward-backward time recursive filtering technique were augmented and the 

technique’s computational efficiency was evaluated with reference to this real-world-

implementation context. The presented material is therefore organised as follows: 

In Chapter 2 we review the previously published work related to the inversion 

problem at hand. We discuss the conditions under which the inverse matrix H is 

realisable and we give the formulation details of the specific FIR inverse design 

utilised in the thesis. We review a previously introduced method for the determination 

of this FIR inverse in the frequency-domain and we propose a minor modification in 

order for the method to be directly utilisable in the experimental procedure of the 

following chapters. The use of regularisation in the inversion is discussed and the 

formulae are given for the use of frequency-varying regularisation. Finally, the 

implications of the fact that the poles of the rational transfer functions in the exact 

inverse matrix H are clustered close to the unit circle are discussed and an explanation 

is offered that is based on a simple analytical model. 

In Chapters 3, 4 and 5 we use the inverse design discussed above in a series of 

objective experiments that quantitatively evaluate the effectiveness of the inverse 

filtering in a wide range of implementation scenarios. In Chapter 3 we explain the 
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motivation for the undertaking of the specific type of objective evaluation of the 

inverse filtering implementation. We give the details of the experimental arrangement 

that we used and of the methods employed for the acquisition of the presented results. 

A detailed exposition is presented Chapter 4 in which we determine the absolute 

optimum of the inversion accuracy that can be realistically achieved with this specific 

design. The presentation continues by giving quantitative measures of the degradation 

imposed on the inversion by the introduction of a series of errors and approximations 

in the design of the inverse filter matrix. These include the cases when the in situ 

measurement of the plant matrix is not feasible, when regularisation is introduced as a 

means to increase the overall dynamic range of the processing, when the FIR 

approximation to the ideal inverse filters is of insufficient order, when the responses 

of the reproduction transducers are not included in the design of the inverse and when 

a stable and causal inverse is used based on the minimum-phase approximation of its 

recursive part. Even though the presentation is primarily interested in the objective-

quantitative evaluation of the inversion accuracy, the expected perceptual weight of 

the findings is also briefly discussed in each case. 

In Chapter 5 we expand the exposition to cover a number of errors that typically arise 

in the implementation of the inverse in real-world virtual acoustic imaging 

applications. These include the presence of reflections in the plant, positional 

deviations from the ideal reproduction geometry and the use of non-individualised 

HRTFs for the modelling of the plant. Highly realistic quantitative measures of the 

inaccuracy introduced in the inversion are given for these cases and, again, the 

expected influence on the subjective perception of the listeners is discussed.  

In Chapter 6 we formulate the introduced forward-backward time inverse filtering 

method. Initially the method is illustrated in an artificial single-channel context. 

Subsequently, a number of two-channel variants are considered and a highly accurate 

numerical method for the determination of the involved transfer functions’ 

decomposition in parts realisable in forward and backward time is presented. A 

number of weaknesses of the method are identified and ways to rectify them are 

proposed. These modifications to the method are exemplified on the basis of one of 

the two-channel variants and using the measured plant model of chapter 3. In this 

way, the inversion results obtained are compared with the corresponding FIR 
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inversion results of chapter 3 in terms of the realistically obtainable inversion 

accuracy and the associated computational cost. The possibility of realising the 

inverse with reasonably low order recursive filters implemented in forward-backward 

time is thus ascertained. 

In Chapter 7 we present a block-processing type algorithm for the on-line 

implementation of the proposed forward-backward time inverse filtering method. We 

discuss the computational load associated with the on-line implementation of the 

algorithm and give the formulae that relate the computational load with the incurred 

input-output latency. The computational load vs. input-output latency performance of 

the algorithm is then compared with the corresponding performance of two 

representative frequency-domain block-processing filtering algorithms. The 

comparison shows that our algorithm’s performance is closely following that of the 

existing frequency-domain based algorithms and hence it may well represent an 

attractive alternative if further optimised. 

Finally in Chapter 8 we summarise the conclusions of the research presented and 

propose directions for its further development. 
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2 Inverse filtering in virtual acoustic imaging 

systems 

 

2.1 Introduction 

In this chapter (in §2.2) we give a brief review of the various designs that have been 

proposed in the literature for the implementation of the inverse matrix H(z) of 

equation (1-4). The review extends to cover a wider range of audio-related inverse 

filtering formulations than those strictly pertaining to equation (1-4) and it also covers 

a number of works that address single-channel inversion problems of associated 

interest. In §§2.3-2.4 we focus our interest on one specific method for the 

determination of the inverse and discuss its main properties. The FIR inverse models 

resulting from this particular method described in these two sections are those 

examined in the results of chapters 3, 4 and 5. 

2.2 Review of inverse filtering designs 

The work that practically initiated the research topic of binaural reproduction over 

loudspeakers and the related research into inverse filtering for multi-channel 

equalisation and cross-talk cancellation was that of Shroeder and Atal in the early 

1960’s (Atal and Schroeder 1962) and (Schroeder 1975). The basic form of a cross-

talk cancellation and equalisation filtering network is presented in those works and the 

properties of its implementation are discussed. Early contributions to the field also 

include those of Bauer (1961) and Damaske (1971) in which an experimental 

procedure is described for the determination of an analogue filter of concentrated 

elements (termed “90o filter”) that is used for the implementation of a cross-talk 

cancellation network.  
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Cooper and Bauck (1989) build on Atal’s and Shroeder’s inverse filter design for the 

axisymmetric reproduction geometry case and propose a shuffler topology for the 

implementation of the two-channel inverse. They introduce the notion of joint 

minimum phase for a pair of transfer functions and argue that the shuffler they 

propose can be implemented with stable and causal recursive filters. The same authors 

(Bauck and Cooper 1996) extend the application range of the inverse filter design to 

cases of more than one listener, and more than two channels and sources. They 

investigate the possibility of also extending the two-channel shuffler topology to these 

cases by factorising the corresponding inverse (or pseudoinverse) matrices using the 

Singular Value Decomposition method. They also discuss the issue related to the total 

loudspeaker-input signal power needed for the generation of the required control 

signals. Similar issues are also investigated by Kirkeby (1995). Moller (1989) 

discusses the same equalisation/cross-talk cancellation network introducing free-field 

equalised responses (HRTFs) in the design. Thus his version of the design explicitly 

accounts for the equalisation of the reproduction loudspeakers’ free-field response as 

a separate filtering stage. 

Sakamoto et al. in (1982) propose a slightly modified version of the inverse filtering 

network that essentially separates the cross-talk cancellation and overall equalisation 

stages. Using subjective experiments based on listener individualised plant models 

they show that the overall equalisation stage is necessary for the creation of virtual 

images in the median plane and the rear half of the horizontal plane. They also give 

subjective experimental results for the degradation of the system’s performance due to 

listener position misalignment or when the reproduction takes place in non-anechoic 

environments. Similar issues are considered by Köring and Schmitz (1993) where the 

performance of the inverse filtering in reverberant environments is evaluated again on 

the basis of subjective experiments. That study also investigates the use of non-

individualised inverse models and evaluates the use of a “typical ear” model derived 

from spectral smoothing of measured HRTFs. 

Utilising a feedforward control design previously used in active control of noise and 

vibration applications Elliott et al. (1987) and Nelson et al. (1992) discuss the 

implementation of the inverse matrix C-1 with adaptive FIR filters. They derive the 

least squares solution to the inverse filtering problem and describe a multi-channel 
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version of the filtered-x LMS algorithm for the determination of the inverse. 

Measured experimental results are provided for the two-channel case that verify the 

design’s performance while the ineffectiveness of the design in controlling the 

frequency range below 200Hz is identified and discussed12. The design is further 

investigated in (Nelson et al. 1995) where the case of using more sources than points 

of intended control is considered and it is shown that in this case the adaptive method 

yields the same result as the MINT method (reviewed below). The completely general 

case of more than two sources and more than two points of intended control (i.e. more 

than one listener) is examined in (Nelson 1994) where a formulation is also proposed 

for the extension of the adaptive design technique to recursive inverse filters by 

means of the output error and the equation error methods. 

A computationally efficient method for the determination of the inverse matrix C-1 in 

the frequency domain is described by Kirkeby et al. (1998c). The introduction of 

regularisation in the related optimisation formulation (a penalty in the control effort 

needed for the inversion) is proposed as a means to avoid the time-aliasing arising 

from the computation of the deconvolution in the frequency domain. An additional 

advantage in the use of regularisation is the moderation effected in the excessive 

control power associated with the exact (non-regularised) inversion at the low and 

high ends of the spectrum. This advantage is identified in (Kirkeby and Nelson 1999) 

and further exploited by the introduction of frequency-dependent regularisation13. The 

implementation of the inverse with lower order warped FIR filters is investigated by 

Kirkeby et al. (1999b). 

Extensive research has been presented by the above authors (Kirkeby et al. 1998a), 

(Kirkeby et al. 1998b), (Kirkeby et al. 1999a), (Nelson et al. 1997), (Takeuchi et al. 

1997), (Takeuchi et al. 1998), (Takeuchi et al. 2001) and (Vasileiadis and Nelson 

2004) regarding the influence of the audio reproduction geometry on the effectiveness 

of the imposed control. On this basis the use of a system with the two loudspeakers 

positioned close together (termed the “Stereo Dipole”) is advocated. This principle 

has been further investigated by Takeuchi (2001), in which the use of a two-channel 

                                                 
12 Due to limitations of the then available hardware, the measurements in that work were conducted at a 
sampling rate of 6.4kHz thus limiting the considered frequency range to below 2kHz. Furthermore, the 
results only consider the free-field case (no listener present) and are restricted to anechoic reproduction. 
The results presented in Chapters 3, 4 and 5 of this thesis provide an extensive elaboration of that work. 
13 A more detailed discussion on the use of regularisation is given below in §2.3.3. 
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multi-way system is proposed (termed the “Optimal Source Distribution” system). In 

that design, the author exploits the dependence of the effectiveness of the audio 

control on the relation between the frequency of interest and the reproduction 

geometry by assigning the control of different frequency intervals to pairs of sources 

positioned at different angle-spans relative to the listener. 

Gardner (1998) implements a visually adaptive cross-talk cancellation system in 

which the position of the listener is tracked and the inverse filters are accordingly 

modified on-line. He builds on findings by Jot et al. (1995) according to which 

HRTFs can be represented up to 8-10kHz by a minimum-phase function cascaded 

with a pure delay element and implements a zero-delay band-limited crosstalk 

canceller operating up to 6kHz. A detailed investigation of the implementation 

properties and the perceived quality of his design is presented. 

With the assumption that the squared magnitude of the cross-talk transmission terms 

is much lower than that of the direct transmission terms14 Kyriakakis et al. in (1999) 

propose a method for the factorisation of the inverse matrix C-1 in two terms, one of 

which performs cross talk cancellation and the other ipsilateral equalisation. They 

discuss the use of least squares inversion and the LMS adaptive method for the 

determination of the filters comprising their inverse design. Simulation results of the 

implementation are presented by Mouchtaris (2000). In these works the case of early 

energetic reflections in the plant (as for example the reflections due to the PC monitor 

screen or the table in the case of a PC desktop oriented application) and of the 

possibility of tracking the listener’s position and adapting the inverse model 

dynamically are also considered but no inversion results are provided. 

Garas and Sommen (1998) describe an adaptive solution for the determination of a 

model of the 2×1 matrix C-1A (see discussion in p. 23). They propose its 

implementation with multiresolution filters as a means to address the issue of the non-

robustness of the system to small listener position errors. Aarts et al. (1998) describe 

the implementation of the filtered-x adaptive algorithm using block processing in the 

frequency-domain. A model for the implementation of adaptive multi-channel 

                                                 
14 We note that such an assumption is not always valid as, for instance, is the case with the Stereo 
Dipole geometry. 
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equalisation in subbands is proposed by Weiss et al. (1999) as a means to reduce the 

computational cost associated with the inverse filtering and the adaptation process. 

Important aspects of the theory and implementation of the inverse filtering problem at 

hand have also been investigated by a number of studies associated with single-

channel inverse designs in the context of room dereverberation and loudspeaker 

response correction problems. Neely and Allen (1979) use impulse responses 

determined on the basis of a room acoustics model to determine the conditions under 

which the response between a source and a receiver located inside a room of given 

characteristics is of minimum or mixed phase. They find that even though such a 

response in a typical room with the source and receiver located not very close to the 

walls should be expected to be minimum phase, maximum phase zeros can occur in 

more reverberant rooms and in cases where the source or the receiver moves closer to 

a boundary. 

Miyoshi and Kaneda (1986) and the same authors (1988) formulate the “multiple-

input/output inverse theorem” (MINT) on the basis of which they propose a method 

for the exact inversion of a single-channel mixed-phase plant. Unlike the commonly 

used FIR-inverse technique, in which the realisability issue of the inverse is addressed 

with the introduction of modelling delay, the authors propose the introduction of an 

additional audio channel and source in the plant. Two FIR filters (one for each 

channel) are then to be designed for the implementation of the control. With this 

arrangement the z-domain equation describing the inversion transforms to a 

Diophantine equation in the polynomial transfer functions of the two FIR filters to be 

designed. It is shown that, assuming that the responses of the two plant channels do 

not share any common zeros, an exact inversion (zero residual error) can be effected. 

Work on the single-channel inversion of loudspeaker-to-listener responses in 

reverberant environments that extends back to the early 80’s has been presented by 

Mourjopoulos et al. (1982), Clarkson et al. (1985), Mourjopoulos (1994) and 

Mourjopoulos (2003). Issues regarding the realistically achievable inversion quality in 

such environments are extensively investigated. The use of time-domain least-squares 

techniques for the determination of the inverse rather than the frequency-domain 

method used here is advocated for that type of application (see (Mourjopoulos 2003) 

and references therein). A comparative study of computational methods for the 
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determination of the inverse of a single-channel impulse response is presented by 

Irisawa et al. (1998). They discuss their properties in terms of the accuracy achieved 

and the computational load required by each. 

Finally, a detailed analysis of the feasibility and the properties of the inversion of a 

single-channel room impulse response is presented by Fielder (2003). The aspects that 

bear the greatest importance in terms of the perceived audio quality are discussed and 

criteria for the inaudibility of inversion errors are given in the frequency and time 

domains. In a more recent study Norcross et al. (2004) investigate the use of inverse 

filtering for loudspeaker response correction. They evaluate different inverse filter 

design techniques in subjective experiments and directly relate the presence of 

specific types of imperfections in the inverse with the perceived quality of the 

achieved equalisation. The results and analysis of chapters 3, 4 and 5 of this thesis 

build on the results presented in those two works and extend them to the two-channel 

case of crosstalk cancellation and equalisation for binaural reproduction. 

2.3 Computation of the inverse in the frequency-

domain 

2.3.1 Impulse response of a rational transfer function 

In this section we give the form of the stable but not always causal impulse response 

g(n) corresponding to the rational transfer function G(z) of equation (2-1)15. We 

assume that G(z) is proper, i.e. that M < N, as is the case with the inverse transfer 

functions encountered in the context of this work. 
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15 The presentation of this is essentially a recompilation of what is presented by Proakis and Manolakis 
(1992 pp. 264-271). It is included here for the purposes of consistent referencing in the material 
presented in the folowing. 
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The impulse response g(n) will be given by the inverse z-transform of G(z) as in 

equation (2-2): 

 ( ) ( ){ }1g n Z G z−=  (2-2) 

Assuming that the denominator A(z) in equation (2-1) has no multiple-order roots and 

factorising it into N factors of the form (1-piz-1) there will be N numbers Ai so that the 

partial fractions expansion of equation (2-3) will hold16: 

 ( ) 1 2
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Given that the coefficients in G(z) are real, all the zeros pi of the polynomial A(z) will 

be either real or they will appear in complex conjugate pairs. That is, for every strictly 

complex pi there will be a pj for which pj=(pi)*. Furthermore for every real pole pi, the 

corresponding term Ai will be real and for every complex conjugate pair of poles 

pj=(pi)*, the corresponding terms Ai and Aj will also be conjugate: Aj=(Ai)*. 

Irrespective of pi, Ai being real or complex, each partial fraction in equation (2-3) can 

be written as the infinite sum of a geometric series either as in equation (2-4) where 

the region of convergence of the series is the exterior of the circle |z|=|pi| or as in 

equation (2-5) where the region of convergence of the series is the interior of the 

circle |z|=|pi|. 
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Depending then on the modulus |pi| of the real and complex poles appearing in 

equation (2-3) we can distinguish between the following cases: 

                                                 
16 In the case where A(z) has poles of higher multiplicity then equation (2-3) does not hold but a similar 
expansion in terms of higher multiplicity can be written, see (Dyer 2003) 
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Poles with modulus less than unity 

In the case where |pi| < 1 it is easy to see that the right-sided time series17 equal to the 

inverse z-transform of the sum in (2-4) is decaying exponentially in forward time. We 

can thus take the causal and stable sequence gi(n) of equation (2-6) as the inverse 

transform of the terms of (2-3) for which |pi| < 1 

 ( ) ( ) ( )1
1 , 1 and 

1
ni

i i i i i
i

Ag n Z u n A p p z p
p z

−
−

⎧ ⎫
= = < >⎨ ⎬−⎩ ⎭

 (2-6) 

where u(n) is the unit-step function defined as: 
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 (2-7) 

In the case where pi, and consequently Ai, are real then gi(n) will also be real. If pi is 

complex then we can see that the sum of the time-series gi(n) and gi(n)′ corresponding 

to the fractions containing pi, Ai, and (pi)*, (Ai)* will again be real as is shown in 

equation (2-8): 
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Poles with modulus higher than unity 

In the case where |pi| > 1 we choose the left-sided sequence gi(n) corresponding to the 

inverse z-transform of the sum in (2-5). As is shown in equation (2-9) this sequence is 

again decaying exponentially but in backward time and is thus stable but anti-causal. 
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17 For the terms right-sided and left-sided series see (Oppenheim and Schafer 1975). 
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Again, as in the previous case, gi(n) will either be real or there will be a gi(n)′ so that 

the sum of equation (2-10) will be real: 
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Poles with modulus equal to unity 

In the case where the modulus of one (or more) of the poles pi in (2-3) is exactly equal 

to 1, |pi|=1, it is easy to see that if pi is real then the corresponding real impulse 

response gi(n) will be as in equation (2-11) whereas if pi is not real then the sum of the 

complex impulse responses gi(n) and gi(n)′ corresponding to pi, Ai, and (pi)*, (Ai)* will 

be as in equation (2-12).  
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Hence in both cases the corresponding impulse response (or sum of impulse 

responses) will be either of a constant finite value it will “ring” indefinitely forming a 

sinusoidal envelope. 

Gathering now the three cases |pi| < 1, |pi| > 1 and |pi|=1 and grouping accordingly the 

terms of equation (2-3) we see that the impulse response g(n) of equation (2-2) will be 

a sum of three types of time-series, one decaying in forward time, one decaying in 

backward time and one extending indefinitely. It is also easy to see that the rate of 

decay of these series will be controlled by the magnitude |pi| of the poles, the closer 

each |pi| being to unity the slower the decay while in the case where one (or more) has 

a magnitude exactly equal to 1 the series does not decay but extends indefinitely in 

time. 
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2.3.2 Realisability of the inverse filter matrix 

As was described in §1.2, the design objective for the virtual acoustic imaging system 

under discussion translates to the design and the realisation of the inverse filter matrix 

H according to equation (1-4). The form of the exact inverse matrix H will then be as 

in equation (2-14) where the responses Cij(z) are those defined in §1.2. 
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It can be seen from equation (2-14) that the inverse filter matrix H(z) will comprise 4 

recursive filters Hij(z) the transfer functions of which all share a common denominator 

equal to the determinant of the plant matrix C(z). In general, as was explained in the 

previous section (see §2.3.1), a rational transfer function G(z)=B(z)/A(z) corresponds 

to a causal and stable (and thus realisable) impulse response g(n) if and only if all the 

(generally complex) zeros of the polynomial A(z) have a modulus of less than unity 

(i.e. define minimum phase poles). If on the other hand one, at least, of the zeros of 

A(z) has a modulus greater than unity (making it a maximum phase pole) then the 

impulse response g(n) will be either unstable or non-causal and thus, in both cases, 

unrealisable18. 

The issue of the phase characteristics of measured HRTFs and electroacoustic plant 

responses has been extensively covered in the literature. It is well established that 

                                                 
18 As is explained in 2.3.1, in the event where the magnitude of a zero of A(z) is exactly equal to one, 
the corresponding impulse response extends indefinitely in time. We can note that, even though this 
“pathological” case has never been observed in realistic situations (Kirkeby et al. 1996), it can be 
addressed with the introduction of regularisation (see §2.3.3)   
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single-channel room responses can be minimum phase if the energy of the early 

reflections and the reverberation is kept low (Neely and J. B. Allen 1979) and that 

HRTFs measured in anechoic conditions are generally non-minimum phase but with 

the maximum phase zeros appearing at higher frequencies (see also the discussion in 

§5.2). As has already been reviewed in §2.2, inverse filtering designs have been 

proposed that explore the fact that band limited HRTFs are minimum-phase thus 

resulting in causal and stable realisations of the inverse filtering network. In order to 

achieve that, those designs reformulate equation (2-14) as a function of the ratio of the 

contralateral to the ipsilateral HRTFs Cji(z)/Cii(z) which corresponds to a stable and 

causal impulse response if Cii(z) is minimum-phase19. 

In the work presented here we have not adopted such an approach. That is because, 

first, one of the objectives defined at the outset of this research project was the 

examination of the effectiveness of the particular full-audio range inverse filtering 

design of equation (2-14) and an investigation of the possibility of implementing this 

design with recursive filters. As can be seen in equation (2-14), even if the responses 

Cij(z) are minimum-phase this does not necessarily hold for the expression det[C(z)]. 

In fact, the relative delay between the two ear responses results to a rising initial part 

in det[C(z)] (see e.g. figure 2-2) which can indeed enhance its non-minimum phase 

character. Hence the minimum-phase approach is not trivially applicable. Second, the 

need to address the problem without the non-minimum phase assumption is also 

imposed by the use of regularisation. The motivation for introducing regularisation in 

the inversion is discussed in §2.3.3 and also in Chapter 4. As will be seen there, the 

regularised inverse matrix is bound to be of mixed phase. Finally, in cases where the 

inverse is designed to also invert reflections in the plant (more in §5.2), the minimum-

phase assumption fails altogether. 

With the denominator of the transfer functions Hij(z) in (2-14) being mixed-phase, the 

ideal inverse impulse responses hij(n) will consist of a causal and an anti-causal part 

both extending infinitely in forward and backward time respectively. Given, however, 

that none of the zeros of det[C(z)] has a magnitude equal to one, after a certain 

number of samples both the forward and backward parts of the series will have 
                                                 
19 Note that ratios of this form are independent of the method of HRTF equalisation, or indeed of 
whether equalisation is applied at all, as the equalisation response cancels out (Gardner 1998). Hence 
for such formulations of the inverse the plant matrix can comprise HRTFs rather than responses from 
the input to the loudspeaker at the output of the listener’s ears.  
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decayed to insignificantly low values: hij(n)≈0 for n < -Δ or n > N with Δ and N 

positive integers. Under that assumption a finite length approximation to the ideal 

inverse impulse responses hij(n) can be obtained by truncating the samples 

corresponding to the indices n < -Δ and n > N. Shifting these truncated impulse 

responses by Δ samples forward in time so that they become causal we obtain a causal 

FIR approximation to the ideal inverse of a total length of NH=Δ+N+1 coefficients as 

is described in equation (2-15). 

 ( ) ( ){ }FIR 1( )ij N ijH
h n w n Z z H z− −Δ=  (2-15) 

where wNH
(n) is the unit-height square window of length NH samples: 
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It is then easy to see that the matrix hFIR(n) having the FIR filters hij
FIR(n) as elements 

will satisfy equation (2-17), i.e. a time-delayed version of the original cross-talk 

cancellation equations (1-4) and (1-5). 
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The approximate equality in equation (2-17) is due to the fact that the filters hij
FIR 

represent a truncated version of the ideal infinite-length responses hij. Hence a 

truncation error will appear at the two ends of the time sequences in the matrix c*hFIR 

in the form of a deviation from the ideal zero value. As is further discussed in §4.2 

this type of error can be very important in terms of the perceptual impression of the 

listener and should thus be suppressed by the use of an adequately long window 

wNH
(n). Another way to address this issue could be the use of a window that gradually 

tapers the filters hij
FIR towards zero at their two ends rather than sharply truncating 

them as does the square window. Such an approach has not, however, been considered 

in this thesis. A frequency-domain method for the computation of the FIR inverse 

model of equation (2-15) is described by Kirkeby et al. (1998c) and the FIR models 

used in the present thesis were obtained by a modified version of that method (see 

§2.3.4). 
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2.3.3 Regularisation 

The introduction of regularisation was originally proposed in Kirkeby et al. (1998c) as 

a means to address the problem of time-aliasing that arises from the computation of 

the inverse in the frequency-domain (see also §2.3.4). This is done by modifying the 

exact inverse modelling problem of equations (1-1)–(1-3) to the optimisation problem 

of minimising the quadratic cost function of equation (2-18) which is now formulated 

using the frequency domain expression of the quantities defined in §1.220. 

 ( ) ( ) ( ) ( ) ( )H Hj j j j jJ e e e e eω ω ω ω ωβ= +e e y y  (2-18) 

where the real valued and positive regularisation parameter β is introduced. In this 

cost function the minimisation of the squared error eHe is penalised by the term βyHy, 

which is proportionate to the magnitude of the control effort represented by the source 

input signals y. The unique minimum of the cost function of equation (2-18) can be 

shown (Nelson 1994) to be obtained when the frequency response of the inverse filter 

matrix H becomes equal to: 

 ( ) ( ) ( ) ( )
1H Hj j j je e e eω ω ω ωβ

−
⎡ ⎤= +⎢ ⎥⎣ ⎦

H C C I C  (2-19) 

As is readily seen in equation (2-19), the introduction of regularisation effectively 

penalises the power of the control effort y that is needed for the exact inversion. That 

is, for a value of β equal to zero the optimal solution of equation (2-19) coincides with 

the exact solution of equation (1-4) while for positive values of the regularisation 

parameter β a trade-off is effected between the accuracy in the inversion and the 

required control effort. As is shown by Kirkeby et al. (1996), this translates to the 

replacement of each pole in the responses Hij(z) (i.e. each zero in the response 

det[C(z)]) with one zero and a pair of poles placed on either side of the unit circle in 

the z-plane21. These poles are further away form the unit circle than the original (non-

regularised) pole of Hij(z) and consequently the impulse responses hij(n) will decay 

faster in time, thus reducing the required length of the inverse DFTs needed to 

                                                 
20 The superscript H  denotes the conjugate transpose.  
21 Obviously, this would also address the hypothetical case whereby a zero of det[C(z)] lies exactly on 
the unit circle. 
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suppress the time-aliasing effect. This was the basic principle for the original 

introduction of regularisation as described Kirkeby et al. (1998c). 

On the other hand, as is demonstrated in further detail with the results of Chapter 4, 

by moderating the applied control power the introduction of regularisation effectively 

increases the dynamic range of the inversion. As will become apparent in Chapter 4 

this is a more desirable property of the introduction of regularisation, since the 

dynamic range of the non-regularised inversion can be prohibitively low. When used 

with this objective, however, an extension to the formulation of regularisation seems 

appropriate. This is because, as was also identified by Kirkeby and Nelson (1999), the 

control power needed for the exact inversion becomes excessively high at the low and 

high end of the spectrum where the application of control is either prohibitively 

inefficient or of no interest. The increase at the low end of the spectrum in the 

magnitude response of the inverse is due to the roll-off of the loudspeakers’ 

response22 at this region and also due to the acoustical properties of the 

reproduction23. In this low frequency region, the control is bound to be ineffective 

even when no regularisation is used. Similarly, when the plant matrix comprises 

measured responses, it will have to exhibit a roll-off at the high end of the spectrum 

(close to the Nyquist frequency) because of the antialiasing filters used for the 

measurement. Obviously, the correction of this roll-off to a flat response is of no 

interest. Hence it would be desirable to be able to apply a stricter optimisation penalty 

in these two frequency regions and penalise less (or even not at all) the control in the 

region in-between which we both wish to and are able to apply control more 

efficiently. This can be straightforwardly achieved by replacing the regularisation 

parameter with the frequency variable parameter β(ω) in equation (2-18) which then 

results in the form of the inverse matrix described by equation (2-20)24. 

 ( ) ( ) ( ) ( ) ( )
1H Hj j j je e e eω ω ω ωβ ω

−
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H C C I C  (2-20) 

                                                 
22 It should be noted that this is not true for the case where the plant matrix is modelled with HRTFs 
which by definition should converge to unity at the DC limit (Algazi et al. 2001). It is however true in 
the case where the plant matrix also contains the responses of the loudspeakers used for the 
reproduction, in which case the inverse filtering will have to correct these responses also. 
23 As is discussed in detail in (Takeuchi 2001), the inverse control at the low frequency end of the 
spectrum becomes ill-conditioned, a characteristic that is further amplified by small loudspeaker-span 
angles as is the case with the Stereo Dipole. 
24 Another approach, formulated in the time-domain is taken by Kirkeby and Nelson (1999). We 
believe the method proposed in equation (2-20) to be simpler. 
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The application of this form of frequency varying regularisation is further discussed in 

§4.3. 

2.3.4 Modified method for the determination of the inverse in 

the frequency-domain 

In this section we describe the details of the computation method used to determine 

the FIR inverse models that were used for the results presented in Chapters 3, 4 and 5. 

The method is based on the frequency-domain based method that is described in 

(Kirkeby et al. 1998c) but incorporates a slight modification which allows the chosen 

length of the inverse filters to be independent of (but always lower than) the length of 

the DFTs used. A simplified-case example is given that illustrates the justification of 

such a modification to the method of Kirkeby et al. (1998c).  

The objective here is to find the, say L, coefficients of an FIR filter Hmod that models 

the complex response (magnitude and phase up to a constant delay factor) of the 

reciprocal of a given (plant) response C(z)25 as in equation (2-21). The term z-Δ 

introduces a frequency independent delay of Δ samples in order to address the case 

where the transfer function C(z) is non-minimum phase (see §2.3.1) 

 ( ) ( )
1

modH z z
C z

−Δ⋅�  (2-21) 

The existence of an FIR model that satisfies equation (2-21) up to an arbitrary level of 

accuracy is guaranteed (Claerbout and Robinson 1964) as long as the number of 

coefficients L in the FIR model and the number of modelling delay samples Δ are 

sufficiently high.  

The method proposed by Kirkeby et al. (1998c) for the determination of Hmod consists 

of: 

• Choosing the intended number of coefficients of the inverse model Hmod, say L. 

                                                 
25 The discussion is presented in a single-channel context but is straightforwardly applicable to the 
multi-channel models presented in the thesis. This is done by applying what is presented here for 1/C(z) 
to the rational forms Cij(z)/det[C(z)] of the inverse matrix H(z) of equation (2-14) or their regularised 
equivalent of equation (2-19). 
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• Taking a K-point DFT of c(n), C(k)=DFT[c(n)] with K=L (choosing K=L to be a 

power of 2 maximises the computational efficiency of the FFT). 

• Computing the ratio H(k)=1/C(k) for k = 0,…,K-1 that samples the frequency 

response H(ω) at K equidistant points. 

• Taking the K-point inverse DFT, ĥ(n)=IDFT[H(k)]. 

• Applying a circular shift of K/2 points to ĥ(n) to obtain h(n) which is the sought 

model of the inverse of length K and with the modelling delay Δ set to K/2 points. 

It is then obvious that the length of the model Hmod is directly determined by the 

length of the DFTs that are used to get to the frequency domain and back (L=K). 

However the length of the DFT used and the length of the model are, in principle, 

separate concepts. The former essentially determines the degree to which time-

aliasing is present in the response ĥ(n) that results from the IDFT  while the latter 

controls the length up to which the model Hmod represents the exact inverse26. It could, 

for instance, be the case that one would desire to set L at a relatively low value, hence 

choosing a short model of the inverse that is truncated early, but at the same time 

would want to guarantee that the L samples kept in the model are virtually free of 

time-aliasing distortion, in which case a high value of K would be required. Moreover 

the amount of modelling delay introduced with the above method is fixed to half the 

length of the filter (Δ=K/2). This could easily be set to different values by 

appropriately changing the amount of circular shift but this does not alleviate the issue 

of the time-aliasing. 

The obvious way to address the above issue is to compute the DFT and IDFT 

involved with an excess of zero-padding. This way the aliasing replicas present in 

ĥ(n) can be pushed further way and hence their contribution can be suppressed down 

to an arbitrary level. Rectangular windowing can then be applied on ĥ(n) to keep a 

chosen length of the causal and the anti-causal decay. This was the approach followed 

for the determination of the FIR models used in the thesis. More specifically, the 

method used can be described as follows: 

                                                 
26 Obviously, being the time-domain version of a rational transfer function, the exact inverse will 
extend infinitely in positive time and, if C(z) is of non-minimum phase, it will also extend infinitely in 
negative time. 
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• Choose the intended number of coefficients of the inverse model Hmod, say L, and 

how many of them will correspond to negative time indices (number of samples of 

modelling delay), say Δ. 

• Take a K-point DFT of c(n), C(k)=DFT[c(n)], with K sufficiently large for the 

time-aliasing effect to be negligible up to the index Δ in negative time and L-Δ in 

positive time (in the cases examined in this thesis we typically used for K the first 

power of 2 for which K > 2L and this was always found to be sufficient).  

• Compute the ratio H(k)=1/C(k)⋅e-j2πkΔ/K. This applies the circular shift needed in 

order to bring Δ points corresponding to negative time indices followed by L-Δ points 

corresponding to positive time indices at the beginning of the time-sequence obtained 

with the following IDFT. (For the multi-channel cases that are actually addressed in 

the thesis, this translates to computing the elements of the matrix 

H(k)=e-j2πkΔ/K⋅[C-1(k)]). 

• Compute the inverse DFT ĥ(n)=IDFT[H(k)] (or of the elements of matrix 

ĥ(n)=IDFT[H(k)] for the multi-channel case). 

• Keep the first L points of ĥ(n) to obtain the sought FIR model hFIR(n). 

The points discussed above are illustrated with the aid of the following simplified-

case example. We take here the plant C(z)=1+2.005z-1+1.00425z-2 which has one 

maximum phase zero at z = -1.03 and one minimum phase zero at z = -0.975. For such 

a short plant, the impulse response h(n) of the inverse 1/C(z) can be straightforwardly 

computed up to a given length by taking partial fractions expansion (see §2.3.1). The 

three cases corresponding to the exact inverse computed by partial fractions 

expansion (no time-aliasing), the modified method presented above (time-aliasing 

independent of the filter length) and the method of Kirkeby et al. (1998c) are plotted 

in part (a) of figure 2-1 with blue, green and red colours respectively. For the results 

of the figure the length of the inverse is set to L=28, the modelling delay to Δ=27 and 

for the modified method the length of the DFT was set equal to K=210. The exact 

inverse results (blue colour) are not visible because they exactly coincide with the 

results of the modified method (green colour). However, the effect of the time-

aliasing is visible on the results obtained with the method of Kirkeby et al. (1998c) 
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(red colour). The effect of the time-aliasing becomes more obvious in part (b) of 

figure 2-1 where we plot the convolution of the three inverse models with c(n). Even 

though all three inverse models are truncated at that same point, the truncation end-

effects are more severe in the inverse computed with the method of Kirkeby et al. 

(1998c) (red line) than those of the modified method (green dotted line) which exactly 

coincide with the exact inverse computed with a partial fraction expansion (blue 

dashed line). 
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Figure 2-1: (a) Inverse models of the two-zero mixed-phase plant computed with the 
modified method (green), the partial fractions expansion (blue, not visible) and the 
method of Kirkeby et al. (1998c) (red). (b) Convolution of the inverse models with the 
plant. Modified method (green dotted line), partial fractions expansion method (blue 
dashed line) and method of Kirkeby et al. (1998c) (red solid line). 
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It must be said that the results shown in figure 2-1 are somewhat arbitrary; with 

appropriate placing of the poles of the plant in relation to the unit circle and 

appropriate choices of the lengths L and K the performance of the method of Kirkeby 

et al. (1998c) can be shown to range from insignificantly to exceedingly worse than 

the modified method. It has been found that in realistic cases where the plant results 

from measured impulse responses the difference between the two methods is very 

rarely significant. But in any event it is evident that if the length of the DFT is equal 

to the length of the filter, either the choice of the filter length will be exaggerated or 

the model will be influenced by time-aliasing. The same holds even when 

regularisation is used even though in that case the effect is further minimised because 

the inverse responses decay much faster and a low choice of L=K in the method of 

Kirkeby et al. (1998c) is enough to yield short models of the inverse that are 

practically free of time-aliasing. In fact, the use of regularisation was introduced in 

(Kirkeby et al. 1998c) mainly as a means to minimise the time-aliasing effect. 

However, since the objective of Chapters 3, 4 and 5 of the present work is to 

determine the actual inversion accuracy for any combination of the inverse’s length 

and the regularisation applied, a modification had to be made so as to give us the 

ability to separately adjust these two design parameters of the inversion. 

2.4 Notes on the implementation of the inverse 

2.4.1 Distribution of the zeros of the measured electroacoustic 

transfer functions 

As can be seen from equation (1-4), the form of the inverse filters Hij is principally 

determined by the zero distribution of the polynomial det[C(z)]. The presence of zeros 

of det[C(z)] outside the unit-circle in the z-plane necessitates the introduction of 

modelling delay in order to obtain a causal time-domain representation of each Hij. 

Equally, the proximity of the zeros of det[C(z)] to the unit-circle results in a slowly 

decaying time-response of each Hij
27. Both of these characteristics consistently occur 

when the plant matrix C(z) is formed on the basis of measured electroacoustic 

                                                 
27 This is unless each one of these poles of Hij is cancelled by a zero. 
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responses and even though the former has been interpreted to some extent (see also 

the discussion in §5.2), the latter remains somewhat obscure. The presence of high-Q 

resonances at certain frequencies has been put forth as an explanation by Fielder 

(2003) in cases where C(z) is measured in enclosures. However, in the cases we are 

concerned with, the relevant electroacoustic responses are measured in anechoic 

conditions. Most importantly, the zeros of det[C(z)] are clustered very close to the 

unit circle in an apparently frequency-uniform way. This is shown in figure 2-3 where 

we plot the zero distribution of the polynomial det[C(z)] computed using the HRTFs 

corresponding to the 10o Stereo Dipole geometry. The time-domain version of the 

polynomial det[C(z)] is depicted in figure 2-228.  
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Figure 2-2: Impulse response of the determinant polynomial of the plant matrix. 

We point out here that, apart from the possible presence of sharp resonances or 

notches in the measured system, this clustering of the zeros of det[C(z)] close to the 

unit circle is inherent in the modelling of a system that may contain poles and zeros 

with an FIR model resulting from measurement. This effect should thus be present (as 

                                                 
28 Note that for the results of figure 2-3 we have excluded the initial delay part of the first 22 samples 
seen in figure 2-2 
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is the case) in any measured electroacoustic response of the type considered here. This 

can be illustrated by means of the following simplified example. 
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Figure 2-3: Zero distribution of the determinant polynomial of the plant matrix. 

Let us consider the simple case of a second order resonator (Proakis and Manolakis 

1992) with transfer function Cexact(z) and impulse response cexact(n) as defined in 

equations (2-22) and (2-23) respectively. The pole locations of Cexact(z) with the 

parameter r taking the values 0.6 and 0.9 and the parameter ω equal to π/3 are shown 

in part (a) of figure 2-4 in part (c) of which we plot the frequency response of the 

system. 
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Now when the system is modelled by the non-recursive transfer function of equation 

(2-24) having the (finite length) impulse response shown in part (d) of figure 2-4, we 

see that the corresponding zero distribution will be as in part (b) of the same figure. 
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Figure 2-4: (a) System’s pole locations (b) Model’s zero locations (c) System’s 
frequency response and (d) Model’s impulse response for ω=π/3, r=0.6 (black) and 
r=0.9 (grey).mphil_fig20 

It is then seen that, as the model has no poles, the sharpness of the resonance peak is 

indeed controlled by the proximity of the zeros to the unit circle, in other words, the 

lower the damping of the system the closer the zeros of the model to the unit circle. 

However, the location of the zeros of the FIR model is also significantly influenced 

by the, inevitable, presence of measurement noise in the model as is seen below. 

Assume that the measured impulse response cmeasured(n) is as in equation (2-25) where 
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we assume the presence of additive noise modelled in this case as a white sequence of 

zero mean and variance29 σ2=5×10-2. 

 ( ) ( ) ( )measured modelc n c n w n= +  (2-25) 

The finite impulse response and the frequency response of the model cmeasured(n) are 

plotted in parts (a) and (b) of figure 2-5. We then see in part (c) of the same figure 

that, even in the moderately damped case (r=0.6), the addition of noise in the 

measured impulse response has “pushed” the zeros of the actual model further closer 

to the unit circle. 
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Figure 2-5: (a) Impulse response (b) Frequency response and (c) Zero-map of error-
free (black) and noisy (grey) model with r=0.6 and ω=π/3 

                                                 
29 With the given variance the energy of the additive noise would then be roughly 40dB below the 
energy of the model’s impulse response cexact(n). This is higher than the amount of noise typically 
present in measurements of the type considered here (see §3.3). A higher level of additive noise is used 
here in order to illustrate the point of discussion. 
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2.4.2 Filtering through the common denominator 

Another simple result is presented in this section that is called upon in later parts of 

the thesis. As was discussed in §2.4.1, the computational load in the implementation 

of the inverse matrix H is mainly due to the low rate of decay of the time-domain 

representation of the denominator polynomial of equation (2-14). Hence, given that 

this polynomial is common to all four inverse responses Hij one might expect that the 

separate implementation of this stage could result in some computational advantage. 

That is, instead of filtering each one of the binaural signals x1(n), x2(n) through the 

elements hij(n) of the inverse matrix H, one could filter x1(n) and x2(n) through a 

model hCD(n) of the transfer function 1/det[C(z)] and then filter the two resulting 

intermediate signals through the elements of the matrix adj[C(z)]. 

This amounts to replacing the direct computation of the inverse filters’ output30 
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We denote with NH the chosen order of the FIR filters hij(n), with NCD the chosen 

order of the FIR filter hCD(n) used to model the common denominator reciprocal 

transfer function 1/det[C(z)] and with NC the order of the measured responses of the 

plant. We see then that the computation of equation (2-26) requires four convolutions 

with the impulse responses hij(n), i.e. 4NH multiplications and additions for the 

computation of each pair of output samples in direct sample-by-sample filtering. 

Alternatively, the computation of equation (2-27) requires two convolutions with the 

impulse response hCD(n) and four convolutions with the impulse responses cij(n), i.e. a 

total of 2NCD+4NC multiplications and additions for the computation of each pair of 

output samples. Since the order of the measured model of the plant NC is typically 

much lower than the order of the inverse models NH it would be expected that the total 

                                                 
30 We use here the singals and systems notation introduced in p. 17. 
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cost of the latter process could be lower than that of the former. However, this is not 

always the case as is illustrated with the following set of simulation results. 
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Figure 2-6: Impulse response of the elements of the inverse filter matrix H (red line) 
and of the reciprocal expression of the common denominator (blue line). In both cases 
the regularisation is set to zero. 
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In figure 2-6 we plot the impulse responses of the inverse matrix H defined from the 

MIT database of HRTFs (Gardner and Martin 1994) for the Stereo Dipole geometry 

with the regularisation set equal to zero. In the red line we plot the four FIR filters 

hij(n) that model the exact inverse matrix H with 1000 anti-causal and 1000 causal 

coefficients31. In the blue line we plot the FIR filter hCD(n) that models the single-

channel transfer function 1/det[C(z)] of the common denominator with 1500 anti-

causal and 1500 causal coefficients. Hence the total cost for the computation of each 

sample pair of the output would be 8000 multiplications and additions using the direct 

arrangement of equation (2-26) and 6500 multiplications and additions using the 

common denominator arrangement of equation (2-27). 

In figure 2-7 we compare the inversion results obtained with these two types of 

inverse models. With the red dashed line we plot the results obtained with the direct 

arrangement and with the blue line the results of the common denominator 

arrangement. As is made apparent by these results, the 1500 coefficients used to 

model the anti-causal part of the reciprocal common denominator transfer function 

result in a truncation of the model HCD at a higher level of its decay tail than is the 

case with the 1000 coefficients used for the modelling of the anti-causal delay of the 

filters Hij. This is because the presence of zeros in the transfer functions Hij (see 

equation (1-4)) results in a faster decay of the corresponding time-responses than is 

the case for the all-pole transfer function 1/det[C(z)]32. Hence, for an equal 

suppression of these truncation artefacts one would have to use a longer model of the 

reciprocal common denominator transfer function and thus practically eliminate any 

cost saving. Additional to that, such a realisation would also introduce more delay in 

the inversion. 

                                                 
31 All models discussed here are computed using the frequency-domain method described in §2.3. 
32 This “all-pole effect” is restricted to the exact inversion case. As was discussed in §2.3.3, with the 
introduction of regularisation each pole due to the common denominator is replaced by a pair of a pole 
and zero. Hence the effect described in figure 2-7 should not be present in regularised inversion cases. 
As is also discussed in chapter 8, a complete investigation of the potential presented by the separation 
of equation (2-27) is left as further work. 
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Figure 2-7: Simulated inversion results. The plant matrix C is convolved with a 
model of the inverse HD (red dashed line) and with the matrix corresponding to the 
common denominator filtering process (blue solid line). 

Note that in figure 2-7 the cross-talk appears to be completely suppressed in the 

realisation utilising the common denominator. This should be considered to be an 

artificial effect. In effect, the common denominator arrangement effectively separates 

the cross-talk stage, applied by the adj[C(z)] part from the overall equalisation stage 

applied by the 1/det[C(z)] part33. As is readily seen in equation (1-4), the 

multiplication of the matrices C(z) and adj[C(z)] results in a matrix with zero off-

diagonal terms whereas the term 1/det[C(z)] effectively equalises the diagonal terms 
                                                 
33 As was reviewed in §2.2, such a separation has appeared in previously proposed inverse filtering 
implementations but it has not been investigated in the context of the specific inverse filtering design 
discussed here. 
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to unity. When the inverse is directly realised as in equation (2-26), any error in the 

computation of the inverse (in this case due to the truncation of the infinitely long 

time responses Hij) will be present in all four elements of the resulting matrix 

Xeq=CH. On the other hand, in the simulation example presented here, the matching 

of the model of adj[C(z)] with the plant model C(z) is perfect, so the cross-talk part 

will be apparently implemented perfectly. The truncation is only applied to the model 

of the 1/det[C(z)] term and is hence only visible in the diagonal terms. However, in 

realistic cases where the available model of the plant is not perfect (see the analysis in 

chapter 4) such a perfect suppression of the cross-talk terms is by no means 

guaranteed. 

2.5 Conclusions 

In this chapter we have reviewed the available literature relevant to the inverse 

filtering problem at hand. A specific type of inverse design was presented in detail 

and some of its basic properties highlighted. This type of inverse design, implemented 

in the manner described in §§2.3.3-2.3.4, is utilised in the following chapters where a 

detailed evaluation of its performance is presented. 
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3 Objective evaluation of inverse filtering – 

Motivation and methodology 

 

3.1 Introduction 

In this chapter we describe the experimental arrangement used to obtain the results 

presented in chapters 4 and 5. First, in §3.2 we discuss the original motivation for the 

design of such an experimental procedure and we outline the questions we set out to 

answer. The experimental arrangement itself is described in §3.3. Finally, in §3.4 and 

§3.5, we elaborate on certain aspects of the experimental procedure that are of 

importance in regard to the results presented in the following two chapters.  

3.2 Motivation for the undertaking of the chosen 

objective evaluation experimental procedure 

On the basis of the specific inverse filtering design presented in §1.2 and §2.3 (and 

equally on the basis of most of the other designs reviewed in §2.2) lies a common set 

of assumptions regarding the conditions for the implementation of the inverse 

filtering. These are: (i) the assumption that we have exact knowledge of the plant and 

(ii) the assumption that the transducers involved in the control behave perfectly 

linearly and are transparent i.e. that they have a flat magnitude response and linear 

phase across the audio frequency range. For the first of these assumptions to be 

completely satisfied the following conditions have to hold: 

• The reproduction has to take place in an anechoic environment or the plant has to 

be measured in-situ. 
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• The individual HRTFs of the listener for the specific reproduction geometry have 

to be known. 

• The reproduction geometry has to be fixed or, if the listener is allowed to move, 

the inverse filters need to adapt on-line. In this last case the individual HRTFs of the 

listener for the whole set of possible listener-source geometries have to be known. 

Obviously not all of the conditions listed above are fully satisfied in everyday audio 

reproduction situations. On the contrary, more often than not, none of them holds. 

Usually, the inverse filter matrix H is designed using a model of the plant that has 

been measured in anechoic conditions. However, in most realistic cases the actual 

plant contains reflections as is the case in all home entertainment applications. 

Furthermore, hardly ever are individualised HRTFs used and even in specifically 

designed 3D-audio experiments the plant is usually modelled using HRTFs measured 

with a dummy head. Finally, the responses corresponding to the exact source/listener 

geometry are usually not available. In that case the plant is approximated using the 

responses of the closest available position (or an interpolation between the closest 

available positions) among a spatially sampled set of positions. 

Similarly, the second assumption mentioned above can be only approximately 

satisfied when the non-ideal properties of real transducers are considered. This is 

especially true for medium-priced loudspeakers which, being the weak link of the 

audio reproduction chain, exhibit non-linear behaviour when over-driven, respond 

poorly at the low and high end of the audio spectrum and have non-flat response at 

their crossover region(s) and off-axis. 

These deviations from the ideal model, along with any imperfections or 

approximations inherent in the design of the inverse filtering network, will of course 

degrade the performance of the implementation. This fact is readily verified even in 

simple listening tests of virtual acoustic imaging systems of this type. Front-back 

reversals, increased localisation blur, reduced quality of the presented audio material, 

colouration and artefacts, erratic behaviour of virtual sound images placed at the 

median plane are the most common types of errors encountered in applications of the 

design where one or more of the aforementioned elements of error are present. 
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Numerous studies have been previously published that examine the influence of those 

elements of error on the effectiveness of a number of different inverse filtering 

designs among the ones reviewed in §2.2. The performance of the inverse filtering 

when implemented in a non-anechoic environment (with the inverse filters determined 

either on the basis of anechoic models of the plant or of models that include early 

reflections and reverberation) is examined by Farina and Ugolotti (1997), Gardner 

(1998), Köring and Schmitz (1993), Nelson et al. (1996) and Takeuchi (2001). The 

influence of listener positioning errors is examined by Gardner (1998), Nelson et al. 

(1997), Rose (2004) and Takeuchi (2001). The feasibility of using non-individualised 

plant models for the computation of the inverse is discussed and examined by Gardner 

(1998), Köring and Schmitz (1993), Martens (1997) and Takeuchi (2001). The use of 

non-individualised HRTFs (measured or otherwise synthesised) in the binaural 

synthesis stage is investigated and discussed by Asano et al. (1990), Evans et al. 

(1998), Evans et al. (2000), Kistler and Wightman (1992), Kulkarni and Colburn 

(1998), Kulkarni et al. (1999) and Wenzel et al. (1993). Finally, issues related to the 

effectiveness of the specific inverse filtering design of §2.3 in comparison to other 

inverse filtering designs are examined by Farina and Ugolotti (1997). The same issues 

are also discussed by Fielder (2003), Mourjopoulos (1994), Mourjopoulos (2003) and 

Norcross et al. (2004) in the context of the problems of single channel equalisation 

and room dereverberation. An important feature of these latter studies in relation to 

our study, despite the fact that they are confined to a single channel context, is that 

they offer significant insight into the relation between the design parameters of the 

inverse (i.e. the length of the inverse filters and the amount of regularisation 

introduced) and the expected perceived quality of the inversion. 

Nevertheless, despite this wealth of existing literature, we believe that a certain group 

of questions relevant to the research topic of this thesis remain to a great extent 

unanswered. By this we mean that there does not exist a definite analysis for the 

optimal design parameters of the inverse filter matrix H that takes into account the 

imperfections and approximations inherent in real-world reproduction situations. In 

such real-world situations, the presence of errors and approximations, like the ones 

described above, renders the use of an exact realisation of the inverse matrix H 

unnecessary. Sub-optimal realisations resulting, for instance, from the use of higher 

regularisation values and shorter inverse filter lengths could yield the same (and in 
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some cases even better) inversion results as those obtained by the exact realisation of 

H. The reason why such an investigation of the realistically optimal design 

parameters of H is not presented in the aforementioned studies is that all those studies 

share as a common characteristic the fact the evaluation of the inverse filtering is 

based either on computer simulations of the inversion process or on subjective 

experiments. 

Computer simulations indeed offer a versatile and easy-to-implement method for the 

investigation of the isolated influence and the interrelation of each one of the inverse 

filter design parameters on the system’s performance. Their downside, however, is 

that they typically overestimate the efficacy of the inversion as they rely on implicit 

assumptions regarding the perfect linearity and ideal response of the sources, the 

absence of noise or other sources of error in the measurement of the plant etc. 

Especially when the question of the most accurate, realistically achievable level of 

inversion is considered, computer simulations (as will be seen in the following) can 

lead to exceedingly optimistic results and can hence offer misguiding information 

regarding the optimal design parameters. 

Conversely, evaluation results that are based on subjective listening tests are 

guaranteed to exactly reflect the overall efficacy of the inverse filtering design in 

terms of the perceived impression of the listener. On the other hand, the involvement 

of human subjects restricts the versatility of the experimental design. The exact 

control of factors like the listener’s positioning or the use of individualised plant 

measurements becomes non-trivial. Hence the inadvertent presence of such types of 

error in the implementation of the inversion can conceal the influence of the design 

parameter under investigation. Furthermore, the quantifiable results of such 

experiments are inevitably coupled with the response of the human auditory system 

thus further obscuring the association of the specific choice of the design parameters 

with the actual effectiveness of the imposed control. 

The above are summarised schematically in figure 3-1 which helps describe the 

rationale of the work presented in this and the following two chapters. In the figure, 

the block labelled (I) stands for the specific signal processing design (along with the 

choice of the related design parameters) that is used to derive the source input signals 

y(n) of figure 1-1. The block labelled (II) represents the actual implementation of the 
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design and incorporates any possible deviations from the ideal-implementation 

assumptions listed above (see p. 55). The output of this stage is the signals reproduced 

at the listener’s ears. The block labelled (III) represents the human auditory system 

that includes the human sound localisation mechanism and all the other known or 

unknown attributes and mechanisms (various masking effects, the precedence effect, 

thresholds of perceptibility of the specific characteristics of the reproduced signal, 

etc.). The output of this stage is of course the auditory perception of the listener. 

 

Figure 3-1: Conceptual stages in the realisation of a virtual acoustic imaging system. 

As discussed above, many studies exist that investigate and quantify the effectiveness 

of the design on the basis of the outputs of the first and third blocks of figure 3-1. 

Hardly any have appeared however to provide insight into the output of the second 

block. The results presented in the following chapter aim to provide a closer look at 

the influence of what may be incorporated in the block (II) of figure 3-1 and hence to 

relate the specific choices made in the design of the inverse filtering network to the 

realistically achievable audio control. Even though some discussion is provided 

regarding the expected influence of such findings on the auditory perception of the 

listener, the complete investigation of this issue is left outside the scope of this 

research project. 

The obvious interest in undertaking the analysis outlined above is that its outcome 

could show a significant reduction of the required specifications for the 

implementation of H, the most important of these specifications being the length of 

the inverse filters in H. A second point of interest in such an analysis, one that is even 

more important for the development of the research presented in this thesis, is that its 

results are used as a realistic “benchmark” of accuracy in view of the alternative 

reduced-order recursive designs proposed in chapter 6. 
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The goals of the analysis presented in the following two chapters are therefore the 

following: 

(i) To verify the extent to which the inversion of a given measured plant with the 

inverse model of §2.3 is successful in ideal conditions of implementation and to give 

a detailed investigation of the role that the parameters related to the design of the 

inverse play in the actual accuracy of the inversion. This is done in chapter 4 of the 

thesis. 

(ii) To examine to what extent the full audio frequency range inversion of a 

measured model of the plant of §2.3 (with the design challenges it entails) is justified 

in non-ideal conditions of implementation. This is done in chapter 5 

3.3 Experimental arrangement 

The experimental arrangement that was used to obtain the results presented in the 

following two chapters is described in figure 3-2. The arrangement was based on a PC 

equipped with the HURON Audio Workstation (Lake 2003). A deterministic pseudo-

random stimulus with pink spectrum was fed through HURON’s audio I/O to a stereo 

power amplifier34 that drove a pair of bookshelf two-way loudspeakers35. The 

loudspeakers were positioned with the centre of their units spaced 26.5cm apart. 

KEMAR dummy-head, fitted with the DB-60 and DB-61 (small) right and left pinna 

models36, was placed on the axis of symmetry of the two loudspeakers with the centre 

of its head 150cm from the face of the loudspeakers. This arrangement gives a total 

angle span of 10o between the lines joining the centre of KEMAR’s head with the two 

loudspeakers (the Stereo Dipole geometry). The loudspeakers and KEMAR were 

placed inside the large anechoic chamber of ISVR. The grid floor was not removed 

from the chamber but the whole area between the loudspeakers and KEMAR as well 

as the area surrounding the arrangement by approximately 1m was covered with 

                                                 
34 The power amplifier used was Yamaha H5000. This model offers a gain control knob that can be 
adjusted in the range from -∞dB to 0dB in discrete values. For more details see Yamaha Power 
amplifier H7000/H5000/H3000, Owner's manual.  Hamamatsu Japan. (available online at  
http://www.yamaha.co.jp/english/product/proaudio/products/power_amps/h7000/index.html).   
35 The “Celestion 1” loudspeakers were used for the measurements. They comprise a 5" midrange unit 
and a 1 1/8" and use bass reflex. 
36 See (Burkhard and Sachs 1975), (Burkhard et al. 1985) and (Maxwell and Burkhard 1979). 
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absorbing foam. Two ½ inch microphones mounted at the position of KEMAR’s 

eardrums were used to pick up the sound pressure signals at KEMAR’s ears (i.e. an 

open ear canal measurement). The microphone signals were input back to HURON’s 

audio I/O through a pair of measuring amplifiers37. 

 

Figure 3-2: Measurement apparatus. 

All signals obtained from the ADCs and reaching the DACs of HURON’s I/O were 

sampled at 48kHz and quantised at 24bit word-length. The input signals from the 

ADCs were uploaded to Matlab together with the pseudo-random stimulus and the 

response of the electroacoustic system was computed in Matlab’s 64bit double-

precision arithmetic by use of the tcdeconv function included in Matlab’s 

HURONMAT toolbox (Lake 2003). 

                                                 
37 The B&K 4134 pressure-type microphones were used with B&K 2619 preamplifiers and B&K 2636 
measuring amplifiers. 
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With the (notional) switch in the position drawn in figure 3-2 with solid black line, the 

measured response corresponds to the electroacoustic plant to be inverted. This 

response includes KEMAR’s HRTFs for this specific geometry and also the responses 

of the power and measuring amplifiers, the microphones, the I/O stage of HURON 

and the responses of the loudspeakers. The pink pseudo-random stimulus used for the 

measurement of the plant was 5.46s long (218 samples at 48kHz sampling rate) and 

the microphone signals were averaged 10 times.   

The inverse filtering was realised in real-time with FIR filters implemented in 

HURON as noted in the schematic of figure 3-2 with the grey dashed-line notional 

switches. As can be seen in equation (3-1), this arrangement was used to measure the 

ipsilateral equalisation in one channel and the cross-talk cancellation from that 

channel to the opposite ear. This is done by considering the case where the binaural 

input signal vector x and the desired output signal vector d is equal to [s1 0], i.e. the 

case where a signal s1 is to be reproduced in the left channel with no signal in the right 

channel. The signals ŝ11 and ŝ21 captured at the two microphones will then be given 

by: 
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 (3-1) 

Clearly then, with s1 being again a pseudo-random stimulus with pink spectrum38 and 

with FIR models of H11 and H21 implemented in the filters Hi and Hj of figure 3-2, the 

response between the input s1 and the output ŝ11 corresponds to the (1,1) element of 

the equalisation and crosstalk cancellation matrix Xeq of equation (1-6). Similarly, the 

response between the input s1 and the output ŝ21 corresponds to the (2,1) element of 

the same matrix. In the same manner, substituting H12 and H22 for Hi and Hj and 

measuring the two responses between the stimulus s1 reproduced by the second (right) 

                                                 
38 A different stimulus of the same characteristics as above, but of 2.73s duration was used for the 
measurement of the equalised responses. The measured outputs were again averaged 10 times. 
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channel and the microphone outputs ŝ12 and ŝ22 we measure the elements (2,1) and 

(2,2) of Xeq. 

Before being loaded onto HURON, the inverse filters were scaled so that both the 

coefficients of the four filters hij(n) and the four output signals yi(n) were kept in the 

range [-1,1]. This scaling is hereafter referred to as normalisation. We note that, since 

the stimulus signal s1(n) is scaled to occupy the full range [-1,1], the amount of 

normalisation introduced is equal to the loss of dynamic range in the digital part of the 

reproduction setup. 

A choice needed to be made regarding the level of amplification of the pseudo-

random stimulus before it was fed to the loudspeakers. This choice reflects a 

compromise between (i) the desired increase in the measurement’s dynamic range 

achieved when the stimulus is further amplified by the power amplifier and (ii) the 

undesired excitation of significant non-linear behaviour in the audio reproduction 

chain (especially the loudspeakers) when a given level of amplification is exceeded. A 

measure of the presence of non-linearities and extraneous noise in the measurement is 

the coherence function between the input and output signals (Bendat and Piersol 

1993). This is plotted in figure 3-3 for four different levels of amplification of the 

input signal corresponding to the values -50dB, -40dB, -35dB and -30dB of the power 

amplifier gain. The results of figure 3-3 were obtained for the left side ipsilateral 

response measurement (i.e. stimulus reproduced from the left loudspeaker and 

measured from the left ear microphone). The pink noise pseudo-random stimulus was 

5.46s long (218 samples at 48kHz sampling rate) and the microphone output signal 

was averaged 10 times39. 

As can be seen in the figure, the coherence drops significantly in the region of 2-7kHz 

(loudspeaker crossover region) for the amplification levels of -35dB and -30dB. This 

loss of coherence should be attributed to non-linear behaviour. For the levels of -50dB 

and -40dB the coherence is similar, with the -40dB measurement showing a slightly 

better coherence below 50Hz but slightly worse in the region 4-6kHz. The coherence 

drop at 8kHz is due to a notch of the left ipsilateral response at this frequency (see 

also figure 3-5). Similar results were obtained for the remaining three responses 

                                                 
39 The coherence was computed using Matlab’s cohere function (MathWorks 2000). 
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comprising the plant (i.e. the right-side ipsilateral and the two contralateral 

responses). 
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Figure 3-3: Coherence function of the plant measurement (left loudspeaker to left ear) 
with the power amplifier level set to -50dB (green line), -40dB (red line), -35dB 
(black line) and -30dB (blue line). 

The reduction of the usable dynamic range of the plant measurement as the level of 

the power amplification is increased above the -50dB value, can also be seen in the 

time-domain version of the measured response. This is shown in figure 3-4 where we 

plot the impulse responses obtained with the power amplification set to -50dB, -40dB 

and -35dB. The -40dB and -35dB measurements are shifted down by 10dB and 15dB 

respectively and are thus directly comparable to the -50dB measurement. The 
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difference in the dynamic range of the -50dB and -40dB measurement is clearer in 

this plot as the level of the noise-floor in the latter has risen relatively higher than that 

of the former due to increased non-linear behaviour (Muller and Massarani 2001). 
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Figure 3-4: Squared impulse responses of the left ipsilateral side on a logarithmic 
scale. The amplifier amplification level is set to -35dB (blue solid line), -40dB (red 
dashed line) and -50dB (green dotted line). The -40dB and -35dB responses are 
shifted downwards by 10dB and 15dB respectively. 

The sound pressure level at the dummy-head’s ear microphones was measured at 

71dB SPL (70.5dBA) for the -50dB setting. This level is close to the levels typically 

used in subjective experiments and listening tests (Møller 1995a) and hence we chose 

to use the -50dB gain level throughout the experiments. The measurement dynamic 

range with these settings compares favourably with the two previously published 

measurements that present similar data. Namely, Gardner and Martin (1994) estimate 

the dynamic range as the ratio of the total energy in 100 samples of the measured 

impulse response centred on the energetic part of the measurement to the energy in 

100 samples of the initial delay that should ideally be zero. The quoted SNR is 65dB, 
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while the same estimate in the left ipsilateral impulse response of the measurements 

presented here is 73dB40. 
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Figure 3-5: Plant response measurement (blue line) and measurement of response 
with 8ohm resistor connected at the place of the loudspeaker (red line). 

A different type of estimate for the dynamic range of the measurement arrangement is 

presented by Møller (1995a). In that case the dynamic range is estimated as the 

headroom between the transfer function of a representative measured response and the 

transfer function of a measurement with the output of the power amplifier connected 

to an 8-ohm resistor. The same procedure was followed with our arrangement and the 

                                                 
40 In (Gardner 1998) the SNR estimate is calculated using the impulse response measured with the 
source directly ahead of KEMAR while in our measurements the estimate is taken on the measurement 
with the source 5o to the left of KEMAR. The difference should be considered negligible.  
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results are presented in figure 3-5. A headroom of more than 60dB between the 

measurement and the noise floor can be seen for the frequency range above 200Hz, a 

result equivalent to that in (Møller 1995a). 

 

3.4 The measured model of the plant matrix 

Using the experimental arrangement of figure 3-2 (with the notional switches in the 

lower, solid black line position) we measured the four plant impulse responses of 

figure 3-6. As can be seen in the figure, the responses start with a delay of 

approximately 260 samples that corresponds to the flight time from the loudspeakers 

to the ears of KEMAR and the delay in the measurement system. Their initial part 

persists until about the 450th sample, i.e. a time-duration of approximately 200 

samples which at the chosen sample rate of 48kHz corresponds to approximately 4ms. 

This time-duration is in agreement with previously published measurements of 

anechoic impulse responses of KEMAR and human subjects by Algazi et al. (2001), 

Gardner and K. Martin (1994) and Møller et al. (1995b) and with reviews on the 

implementation of the binaural technique (see Jot et al. (1995) and references therein). 

A series of individual reflections, caused by the stands of KEMAR and the 

loudspeakers and possibly the part of the grid floor that was not covered with foam, 

starts at approximately the 450th-500th sample. These individual reflections persist 

until about the 1000th sample of the impulse responses and are followed by a 

reverberation-like tail that, as can be seen in figure 3-7, decays down to the level of 

the noise floor between the 2000th and 2500th sample. 

We introduce here the following notation to refer to models of the plant matrix C 

corresponding to different lengths of the measured impulse responses of figure 3-6. 

With C190 we denote the matrix containing the impulse responses cij(n) with the 

sample index n in the range 260 ≤ n ≤ 450. Hence, the C190 version of the plant model 

contains only the strictly anechoic part of the measured impulse responses. With C740 

we denote the matrix containing the impulse responses cij(n) with the sample index n 

in the range 260 ≤ n ≤ 1000. This second model of the plant matrix also includes the 
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first individual reflections present in the measured impulse responses. Finally, with 

C1740 we denote the matrix containing the impulse responses cij(n) with the sample 

index n in the range 260 ≤ n ≤ 2000. In this third case the late decay part of the 

measured impulse responses down to the noise level is also included. 
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Figure 3-6: Measured plant impulse responses. figure_10(‘trois4page’) 
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Figure 3-7: Decay tail of the measured plant responses of figure 3-6. figure_11(‘trois4page’) 

It is evident that a different realisation of the inverse filter matrix H should result 

when each one of these different models of the plant is used in the method for the 

determination of a model of the inverse described in §2.3. We denote these different 

cases for the inverse with H190, H740 and H1740. It should be clear of course, that each 

of these symbols for the inverse matrix H does not correspond to a unique realisation 

but to a whole group of different realisations varying with respect to the remaining 

inverse design parameters, i.e. the length of the inverse and the amount of 

regularisation introduced. The effectiveness of each of these models of the inverse is 

examined in the results of the following chapter. 
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3.5 On the accuracy of the computer-simulation of the 

inversion process 

In this section we discuss the computer simulation of the inversion process and we 

describe how such properly designed simulations are used in the results presented in 

the following two chapters. More specifically, we show that when the inversion 

process is simulated by convolving a properly chosen model of the plant matrix C 

with the model of the inverse matrix H under evaluation, the outcome is indeed in 

good agreement with the measured results of the inversion process. On the other hand, 

this is not the case when the strictly anechoic model of the plant matrix is used for the 

convolution. 

The comparison of the measured inversion results with the two different cases of 

simulation results is plotted in figure 3-8. The same model of the inverse matrix H is 

used in all three cases depicted in the figure. This is H190, i.e. the inverse computed by 

substituting the plant model C190 in the method of §2.3. In this instance the 

regularisation is set to the value β=0, the inverse length is set to 4000 coefficients and 

the modelling delay Δ is set to 2000 samples. 

With blue line in figure 3-8 we plot the inversion results measured by means of the 

experimental arrangement of figure 3-2 (with the notional switches in the upper, 

dashed grey line position). This is then the actual, directly measured, performance of 

the inversion against which the simulation process should be compared. With red line 

in the figure we plot the results obtained when the model of the plant containing the 

measured impulse responses cij(n) with the sample index n in the range 1 ≤ n ≤ 300041 

is convolved with the properly normalised (see p. 63) chosen model of the inverse 

H190. Finally, with green line we plot the results obtained with the strictly anechoic 

model of the plant C190 is convolved with H190. We note that this latter method is the 

one typically used when computer simulations are used for the evaluation of the 

inversion process. In such cases, a model of the plant that corresponds to the strictly 

anechoic part of the plant responses is used for the determination of the inverse and 

this inverse is then convolved with the same anechoic model of the plant. Obviously 
                                                 
41 Henceforward we refer to this model of the plant as the “full-length model of the plant”. 
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then, as is confirmed with the green line results of figure 3-8, when no regularisation 

is used and the length of the inverse is chosen to be sufficiently high, it is 

straightforward to (erroneously) obtain perfect inversion results. 

10
2

10
3

10
4

−120

−110

−100

−90

−80

−70

−60

−50

−40

Left l/s Left ear

Frequency [Hz]

dB

10
2

10
3

10
4

−120

−110

−100

−90

−80

−70

−60

−50

−40

Left l/s Right ear

Frequency [Hz]

dB

 

Figure 3-8: Measured inversion results for H190 (inverse computed using C190 as the 
plant model, β=0, inverse length set to 4000 coefficients) (blue line). Simulation 
results obtained by convolving the 3000-coefficients model of the plant with H190 (red 
line). Simulation results obtained by convolving C190 with H190 (green line).figure_14p1(21,pappos) 

On the other hand, the comparison of the measured results (blue line) with the results 

obtained when the full-length model of the plant is used for the convolution (red line) 

can be seen in the figure 3-8 to validate this properly designed simulation process. As 

can be seen in the time-domain plot of figure 3-9, the simulated and measured 

impulse responses are identical above the measurement noise-floor. A small deviation 

of the simulation results from the measured results in figure 3-8 is due to the fact that, 

for the non-regularised case chosen here, the response level is rather close to the 

noise-floor. Hence the difference below the noise-floor between the simulation and 

the measurement becomes significant. In regularised cases where the level of the 

response rises higher above the noise-floor, the agreement between measurement and 

simulation is virtually perfect as is seen in the following example. 
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Figure 3-9: Measured inversion results for H190 (inverse computed using C190 as the 
plant model, β=0, inverse length set to 4000 coefficients) (blue line). Simulation 
results obtained by convolving the 3000-coefficients model of the plant with H190 (red 
line). Simulation results obtained by convolving C190 with H190 (green line). 
figure_14p2(21,pappos) 

A second case of comparison between measurement and simulation is presented in 

figures 3-10 and 3-11 in the time-domain and frequency-domain respectively. In this 

case, the plant contains a strong reflection42 but the inverse is computed on the basis 

of a model of the plant that does not contain this reflection. In this case, the 

regularisation is set to the value β=10-4, the total length of the inverse to 2000 

coefficients and the modelling delay Δ to 1000 samples. Again with blue line we plot 

the directly measured results and with red line the results obtained when the inversion 

process is simulated by convolving the full-length model of the plant with the chosen 

inverse model.   

                                                 
42 This is the case with the wall reflection described in §5.2. A detailed description of that experimental 
arrangement that contains strong early reflections is given in that section. In this instance we are only 
interested in the comparison between the measured and the properly simulated results. 
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Figure 3-10: Comparison of measured (blue line) and simulated (red line) inversion 
results. The regularisation is set to β=10-4 and the inverse length is to set to 2000 
coefficients. The inverse is computed using the anechoic model of the plant.  figure_26p2 

As discussed in further detail in chapter 4, when regularisation is introduced, the level 

of the inversion rises higher above the noise-floor. This can be seen when the results 

of figure 3-10 are compared with those of figure 3-9. In that case then, the 

disagreement between the measured and simulated results below the noise-floor 

becomes less significant. Hence the agreement between measurement and simulation 

can be seen to be virtually perfect also in the frequency-domain results of figure 3-11. 

Concluding then, we see that the two comparison cases presented in this section 

confirm the validity of the simulation of the inversion process when this is 

implemented by convolving the 3000-samples-long measured model of the plant with 

the chosen model of the inverse. More specifically, in that case the simulation results 

are virtually identical with the directly measured results above the measurement 

noise-floor in the time-domain. As long as the level of the inversion is reasonably 

higher than the noise-floor, the simulation results are also identical with the measured 

results in the frequency-domain. 
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Figure 3-11: Comparison of measured (blue line) and simulated (red line) inversion 
results. The regularisation is set to β=10-4 and the inverse length is to set to 2000 
coefficients. The inverse is computed using the anechoic model of the plant. figure_26p1 

3.6 Conclusions 

In this chapter we described the basics of the inverse filtering objective evaluation 

procedure that is used in the following two chapters of the thesis. A detailed 

justification for the specific choice of evaluation procedure was given as well as a 

description of the experimental arrangement that used for the acquisition of the 

presented results. The measured model of the plant matrix C was presented that is 

inverted in a number of different implementation cases in the next chapters. More 

specifically, it was shown that even in controlled anechoic conditions the strictly 

anechoic part of the plant model is followed by a series of reflections of low energy 

and that decay slowly to the level of the noise floor. When substituted into equation  

(2-20) that describes the inverse matrix H, these different models of the plant matrix 

C should result to more or less varying models of the inverse. The examination and 

the comparison of the effectiveness of these inverse models are presented in the next 

chapter. Finally, it was demonstrated that the use of the strictly anechoic part of the 

measured model of the plant for the simulation of the inversion process is highly 
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inaccurate. Conversely, when the full-length model of the plant is used for that 

simulation, the results were shown to be practically identical to the directly measured 

inversion results. This provides us with a versatile simulation method that is 

extensively used in the analysis of the following two chapters but also validates the 

measurement procedure that was described above. 
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4 Objective evaluation of inverse filtering – 

Inversion efficacy under ideal conditions 

 

4.1 Introduction 

In this chapter we present the results obtained when the inverse matrix H is realised 

with a number of different FIR models. The inversion is implemented under “ideal” 

conditions as all the assumptions listed on p. 55 regarding the perfect knowledge of 

the plant are satisfied and, furthermore, the condition of “transparency” of the audio 

reproduction chain is circumvented by the fact that the transducers used for the 

measurement of the effectiveness of the audio control are the same as those used for 

the measurement of the plant. Hence any possible deviations from the flat spectrum 

and linear phase are taken into account in the inversion. 

The only remaining sources of error in the inversion are then the imperfections 

inherent in the design of the inverse matrix H and the presence of non-linear 

behaviour in the audio reproduction chain. As was already seen above, the non-linear 

behaviour in the reproduction chain appears in the measurement as a constant noise-

floor of the measured impulse responses which for the -50dB power amplification 

setting appears at approximately -100dB below the [-1,1] full-scale range of our 

measurement apparatus43 (see figure 3-4). This is of course far from the -144dBFS 

noise-floor of the 24-bit quantisation used here. Nevertheless, it exceeds the -96dBFS 

noise-floor of the 16-bit arithmetic of the standard PCM format that is commonly 

used in existing home audio installations (e.g. in Compact Disc equipment) and is 

thus the basic implementation platform of the virtual acoustic imaging system design 

under examination. 

                                                 
43 Henceforward we denote the dB value relative to the maximum absolute signal value of 1 by the 
symbol dBFS (dB Full Scale).  
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As regards the imperfections introduced by the design parameters of the inverse, the 

parameter that is commonly identified as that primarily impeding the effectiveness of 

the inversion is the required length of the FIR filters in the inverse matrix H. 

However, the results and analysis presented in the following show that the influence 

of the inverse filters’ length on the actual effectiveness of the inversion is in turn 

determined by two other parameters. These are the length of the responses in the 

model of the plant matrix C that is used for the determination of the inverse (see the 

discussion in §3.4) and the amount of regularisation introduced in the inversion. It is 

shown in the following that the chosen values of these two parameters affect the 

expected perceived quality of the inversion as much as that of the inverse filters’ 

length and that for different values of these parameters the required length of the 

inverse filters varies dramatically. The exact relationships between these three 

parameters and their combined influence on the effectiveness of the imposed control 

are the objective of this chapter. 

4.2 Length of the model of the plant matrix 

As was shown in §3.4, even when the plant measurement is carried in anechoic 

conditions, the initial strictly anechoic part of the measured responses that 

corresponds to the head and body of the listener is followed by a low-energy decaying 

part that persists up to approximately the 2000th sample of the responses. Even though 

this late decay part is, strictly speaking, of deterministic nature, it will obviously not 

be repeatable across measurements of the same reproduction arrangement in different 

(even anechoic) spaces. Hence the only case when this part could be taken into 

account in the design of the inverse would be if an in situ measurement of the plant 

was available. This part of the experiment focuses then on the following two 

questions: 

(i) What is the highest level of cross-talk cancellation and equalisation that can be 

realistically achieved when only the strictly anechoic (i.e. approximately 4ms long) 

part of the plant is used for the determination of the inverse? This should be 

considered the absolute optimum for practically every real-world implementation of 
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the system, i.e. for any implementation that excludes the in situ measurement of the 

plant. 

(ii) Can the exact knowledge of the whole length of the plant be used to improve 

the inversion results and under which conditions would that be possible? The answer 

to this second question would apply in cases where the whole length of the plant is 

known, e.g. in subjective experiments where the plant containing the individual 

HRTFs of the subjects is measured, or in real-world implementations where the plant 

pertaining to the specific reproduction geometry is measured in situ.  

In order to answer these questions, different realisations of the inverse matrix H were 

computed based on the three different models C190, C740 and C1740 of the plant matrix 

C that were described in §3.4. In the first case examined, the exact inverse models 

(i.e. with the regularisation parameter β set uniformly equal to zero) H190, H740 and 

H1740 of the three models of the plant are realised with inverse filters that are 2000 

samples long44. 

 The measured ipsilateral equalisation and cross-talk cancellation results are plotted in 

figures 4-1 and 4-2. The frequency response magnitude results of figure 4-1 show that 

the inversion of C740 and C1740 fails for these parameters of the inversion. The 

ipsilateral equalisation deviates from the flat line target by 15dB or more for most of 

the spectrum while the cross-talk cancellation reaches a maximum of 10dB with the 

contralateral channel being reinforced above the level of the ipsilateral channel in 

certain frequency regions. Compared to these results, the results obtained when the 

inverse is calculated using the C190 model of the plant are far better. The cross-talk 

cancellation succeeds consistently from 100Hz up to 20kHz and ranges from 10dB to 

more than 20dB and the equalisation error is confined to less than 10dB for that 

frequency region. 

Apart from the poor inversion results, the inverse filters H740 and H1740 also impose a 

more stringent normalisation requirement, with the equalisation target being nearly 

15dB lower than H190. This incurs a significant reduction in the overall dynamic range 

of the reproduction, something that can be seen more clearly in figure 4-2 where we 

                                                 
44 Hereafter, unless otherwise noted, the modelling delay is set to half the length of the inverse (in this 
case 1000 samples), thus resulting to equal causal and anti-causal parts. 
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plot the time-domain equalised responses for the same three realisations of the 

inverse45. The measurement noise floor at about -100dBFS, constant across our 

measurements, can clearly be seen in this figure. As is then depicted in figure 4-2, the 

normalisation required for the implementation of H190 is -42dB while the 

normalisation of the implementation of H740 and H1740 is -54dB and the effective 

dynamic range of the whole processing scheme reduces from around 58dB to 44dB. 
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Figure 4-1: Measured inversion results. The regularisation is set to β=0 and the 
inverse length to 2000 coefficients. The plant is modelled with C190 (green line), C740 
(red line) and C1740 (blue line). Figure_12p1(‘trois4page’) 

                                                 
45 Unless otherwise stated throughout the thesis, in the time-domain plots of the equalised responses we 
plot the logarithm of the squared impulse response 20log10(|xeq(n)|). 
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Figure 4-2: Measured inversion results. The regularisation is set to β=0 and the 
inverse length to 2000 coefficients. The plant is modelled with C190 (blue line), C740 
(red line) and C1740 (green line). figure_12p2(‘trois4page’)  

The time-domain representation of figure 4-2 offers further information on the 

effectiveness of the inversion with respect to the expected perceived audio quality. 

More specifically, three types of error, i.e. deviations from the ideal delta-spike form, 

can be identified in the ipsilateral equalisation plots. Two of them are more prominent 

in the H740 and H1740 results (red and blue lines respectively). They are visible as 

sharp rises of the equalized responses above the noise-floor at positions 1000 samples 

before and after the delta-spike. Evidently these are due to the fact that the inverse 

model used is a truncated version of the exact inverse with the truncation occurring at 

the samples of index n=-1000 and n=999 of the exact (non-causal) inverse. The 
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inverse computed on the basis of the shorter model of the plant C190 decays faster than 

the other two inverses and hence the error due to the truncation at the same indices 

(shown by the green line) is buried below the noise floor. It should be noted however 

that the error due to the truncation of the anti-causal parts of the inverse filters in H190 

does rise above the noise floor but it is lower than in the H740 and H1740 cases and is 

thus hidden behind the blue and red lines in the figure. A third type of error is on the 

other hand visible in the H190 results. This appears as a broad rise starting 190 samples 

after the delta spike and is due to the fact that C190 is a truncated version of the 

measured plant responses. 

The correlation of deviations from the ideal equalized response such as those of 

figures 4-1 and 4-2 with the subjective evaluation of the inversion results is 

investigated by Fielder (2003) and in a more recent study by Norcross et al. (2004)46. 

As is discussed in (Fielder 2003), depending on the width of the corresponding peaks 

or notches and their position along the frequency axis, variations from the flat 

response as small as 0.5dB can be audible, i.e. distinguishable from the ideal flat 

frequency response. Based on that it is clear that binaural material presented through a 

plant equalised with H740 and H1740 is likely to be perceived as significantly distorted. 

The absence of isolated peaks and notches in the results of H190 should make the 

reproduction through H190 more transparent but again, there is considerable room for 

improvement as the deviations in the order of 10dB from the flat response should be 

audible. 

The deviations from the ideal delta-spike form in the time-domain results are also 

investigated in (Fielder 2003) and (Norcross et al. 2004). The principle 

psychoacoustic effect associated with such deviations is that of the temporal masking 

(also commonly referred to as “the precedence effect” or “the law of the first 

wavefront”) which is in turn related to the temporal integration function of the ear. In 

simple terms this states that diminished-in-level replicas of a sound event that appear 

shortly before or after a main sound event are integrated onto the main sound event by 

the auditory system and thus appear as a single auditory event of increased loudness. 

A detailed exposition of the theory related to this effect is outside the scope of this 

                                                 
46 As is also discussed in the review of §2.2 those studies are restricted to single-channel inversion 
cases but the findings presented there apply to the ipsilateral equalisation part of the two-channel 
inversion presented here. 
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thesis47 but its main properties of interest here are the following: First, the integration 

of sounds arriving before the main sound event extends very briefly, in the order of 5-

20ms and the level of sounds that are masked inside this interval falls very fast. Thus 

sounds that arrive more than 20ms before the main sound event will definitely not be 

masked and will be audible as separate auditory events or as distortion of the main 

event (Fielder (2003) sets this limit where backward masking disappears at 15ms). 

Second, the integration of sounds arriving after the main sound event extends for a 

substantially longer interval, up to 100-200ms. Providing an approximate mean of 

previously published studies, Fielder (2003) stipulates that sounds arriving up to 4ms 

after the main sound will be masked if their level does not exceed the main sound 

while this threshold of masking drops by 35dB per decade (in ms) for later arrivals 

thus falling down to approximately -50dB 100ms after the main sound. These 

stipulations are verified in subjective experiments by Norcross et al. (2004) in the 

context of the loudspeaker-response equalisation problem. As is shown in that study, 

truncation effects as low as 50dB below the level of the delta-spike can significantly 

degrade the perceptual performance of the inversion.  

It is evident then, that the transients that appear in the equalised impulse responses of 

figure 4-2 will result in significant degradation of the perceived quality of the 

delivered binaural material. These transients are more severe for H740 and H1740 and 

can be seen to be only around 15dB below the delta spike. This is normal as these 

inverse filters attempt to invert longer versions of the plant and should hence be 

expected to decay more slowly. On the other hand the truncation transients are much 

lower in the H190 inversion results, their level being 40dB below the delta spike in the 

anti-causal end of the inverse filter and below the noise floor in its causal end. This 

decrease in the truncation error comes at the expense of a rise in the inversion error 

immediately after the delta spike that is due to the imperfect modelling of the plant by 

C190. However, as it appears immediately after the delta spike (extending up to 

approximately 15ms) this artefact should be totally masked by the preceding delta-

spike. It should be clear of course that this temporal masking effect does not alleviate 

the influence of this error element in the equalised frequency response. This can be 

seen in figure 4-1 (green line) as a deviation from the ideal flat form which, as was 

argued above, should be perceptibly significant.   
                                                 
47 For review of the current knowledge on the effect see (Fielder 2003) and references therein. 
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In the next set of results, shown in figures 4-3 and 4-4, we plot the equalisation and 

crosstalk cancellation obtained when C190, C740 and C1740 are inverted with inverse 

filters that are 4000 samples long and again with the regularisation set uniformly 

equal to zero (again we denote these realisations of H with H190, H740 and H1740). The 

frequency response results of figure 4-3 are practically the same as those of the 2000-

samples-long realisations of H presented above, with H740 and H1740 failing both to 

equalise and suppress the cross talk and H190 showing a reasonable success in both 

goals but again with a significant loss of dynamic range. In the time-domain plot of 

figure 4-4, the transients due to the truncation are still present in the results obtained 

with H740 and H1740, but reduced in the H740 case in comparison with the case of 2000 

inverse coefficients shown in figure 4-1. They are now totally absent in the results 

obtained with H190 as the 2000 taps of anticausal part of the filters in H190 are now 

enough to suppress them below the noise floor. As should be expected, the error due 

to the imperfect modelling of the plant with H190 is exactly the same as in the previous 

case of figure 4-2. 

Referring then to the questions posed in p. 77, the point made by the results presented 

up to now is that: (i) the use of the typical 4ms duration plant results in an error rising 

above the noise floor due to the imperfect modelling of the plant, which is however of 

small perceptual importance and (ii) the inversion of the longer versions of the plant 

significantly diminishes the total dynamic range of the processing and results in end-

effects that persist even when the inverse matrix H is realised with 4000-samples-long 

filters. We expect the first of these points to be consistently verified as the length of 

the inverse increases even further (as long as the regularisation is kept to zero). As 

regards the second point, there will of course be a length of the inverse after which the 

end-effects are suppressed below the noise-floor. On the other hand, the issue 

regarding the loss reduction of dynamic range should remain in that case. 
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Figure 4-3: Measured inversion results. The regularisation is set to β=0 and the 
inverse length to 4000 coefficients. The plant is modelled with C190 (green line), C740 
(red line) and C1740 (blue line).figure_13p1('trois4page') 
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Figure 4-4: Measured inversion results. The regularisation is set to β=0 and the 
inverse length to 4000 coefficients. The plant is modelled with C190 (green line), C740 
(red line) and C1740 (blue line).figure_13p2('trois4page') 

The 4000-samples-long realisation presented in figures 4-3 and 4-4 was the longest 

set of inverse filters tried in the experiments, so the validity of the above statement 

cannot be verified with directly measured inversion results. Instead one can use the 

simulation process described in §3.5. This is done in figure 4-5 where we plot the 

inversion results when the three models of the plant C190, C740 and C1740 are inverted 

with 10000-samples-long inverse filters (denoted again as H190, H740 and H1740 

respectively) and again with the regularisation parameter set uniformly to zero. As 

expected, the simulation results verify the fact that, even when realised with 10000-

samples-long filters, H190 demonstrates the error immediately after the delta-spike. 
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Similarly, the transients due to the truncation are present in H1740 but they are now 

suppressed further compared to the previous cases. In the inversion with H740 the 

truncation transients are suppressed below the noise-floor but of the overall dynamic 

range of the processing is again approximately 45dB as with the previous cases. 
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Figure 4-5: Simulated inversion results. The regularisation is set to β=0 and the 
inverse length to 10000 coefficients. The plant is modelled with C190 (blue line), C740 
(red line) and C1740 (blue line). The results are obtained by convolving the 3000-
coefficients model of the plant with the three inverse models. The grey dashed line 
shows the noise-floor of the corresponding measured results. h*c instead of c*h checked and its virtually the same 
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Figure 4-6: Measured inversion results. The regularisation is set to β=10-4, the plant is 
modelled with C190 and the inverse length is set to 2000 coefficients (green line). The 
regularisation is set to β=10-4, the plant is modelled with C740 and the inverse length is 
set to 4000 coefficients (red line). The regularisation is set to β=10-4, the plant is 
modelled with C1740 and the inverse length is set to 4000 coefficients (blue line). 

In the discussion up to now we established the extent of feasibility of the inversion for 

the three different cases of the plant model and for different lengths of the inverse 

models but keeping the regularisation parameter equal to zero. We now introduce 

regularisation into the solution. In figures 4-6 and 4-7 we plot the measured results 

obtained when C190 is inverted with a 2000-samples-long inverse and C740 and C1740 

with 4000-samples-long inverse filters. All three realisations of the inverse (denoted 

again as H190, H740 and H1740) are computed with the regularisation parameter set 

uniformly equal to the value β=10-4.  The frequency-domain results of figure 4-6 
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appear rather similar to each other with H1740 giving the tightest ipsilateral 

equalisation confined to no more than ±1dB in the region above 200Hz and cross-talk 

cancellation of 15-30dB in that region. The normalisation requirement is also similar 

among the three cases, with the equalisation target level being at approximately 

-33dBFS. This is great improvement compared to the non-regularised cases presented 

above. Even at the low-frequency end, where the introduction of regularisation 

prevents the application of the necessary (but excessive) control needed for the 

inversion, the erratic behaviour of the non-regularised inversion is now replaced by a 

gentle roll-off. Regarding the issue of the length of the plant model that should be 

used for the determination of the inverse, the results show that in cases where the 

whole length of the impulse responses that comprise the plant is accurately known, 

the inversion of the whole length of the plant can indeed be advantageous. This 

however is shown to be true only with the extra condition that the proper amount of 

regularisation is introduced in the determination of the inverse. 

A point that needs to be made here is that the superiority of the inversion results 

obtained with H1740 and H740 over the results of H190 is not due to the fact that H1740 

and H740 are 4000-samples-long while H190 is 2000-samples long. This becomes 

evident from the time-domain version of the results shown in figure 4-7. As can be 

seen in the figure, the basic element of error in the H190 inversion results is the 

artefact following immediately after the delta-spike. As it was argued above, this is 

due to the imperfect model of the plant used for the determination of the inverse and 

is not affected by the length of the inverse. Conversely, the end-effects that are due to 

the truncation of the inverse can be seen to be of much lower level and overall power 

even in this 2000-samples-long realisation. Hence, the use of a longer realisation of 

the inverse would not improve the inversion results. 

On the other hand, as should be expected, the error in the results of H1740 is solely due 

to the end-effects caused by the truncation of the inverse. The results of H740 are 

somewhat in between, as they demonstrate artefacts both due to the truncation of the 

inverse (occurring at the 260th sample and after the 4000th sample) and due to the 

truncated model of the plant (these appear at about the 3000th sample, further away 

from the delta-spike than in the H190 case because C740 is truncated at a later point 
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than C190). The latter would be diminished by a longer realisation of the inverse but 

this clearly does not apply to the former. 
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Figure 4-7: Measured inversion results. The regularisation is set to β=10-4, the plant is 
modelled with C190 and the inverse length is set to 2000 coefficients (green line). The 
regularisation is set to β=10-4, the plant is modelled with C740 and the inverse length is 
set to 4000 coefficients (red line). The regularisation is set to β=10-4, the plant is 
modelled with C1740 and the inverse length is set to 4000 coefficients (blue line). The 
introduction of different amounts modelling delay (1000 samples in the first case and 
2000 samples in the second and third cases) is made apparent by the different 
positioning of the delta spike. 
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Figure 4-8: Simulated inversion results. The regularisation is set to β=10-4 and the 
inverse length to 10000 coefficients. The plant model used for the determination of 
the inverse is C1740. The results are obtained by convolving the 3000-coefficients 
model of the plant with the inverse model.figure_16p1(‘trois4page’) 

As before, these 4000-samples-long realisations of the inverse were the longest 

inverse filters tried in the measurements. Hence the determination of the length of the 

inverse filters necessary for the suppression of the truncation effects below the noise-

floor is left to be determined with a simulation. This is done in figures 4-8 and 4-9. 
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Figure 4-9: Simulated inversion results. The regularisation is set to β=10-4 and the 
inverse length to 10000 coefficients. The plant model used for the determination of 
the inverse is C1740. The results are obtained by convolving the 3000-coefficients 
model of the plant with the inverse model. The grey dashed line shows the noise-floor 
of the corresponding measured results. figure_16.m   h*c instead of c*h checked and its virtually the same 

Comparing the results of figure 4-9 with the non-regularised 10000-samples-long 

inverse H1740 (green line in figure 4-5) we see that, as should be expected, the 

introduction of regularisation increases the rate of decay of both the causal and non-

causal parts of the inverse filters. This becomes evident by the fact that the regularised 

10000-samples-long realisation is just enough to suppress the truncation transients 

below the -100dBFS noise-floor something that was not true for the non-regularised 

realisation of figure 4-5. Furthermore, the normalisation requirement is significantly 

relaxed in the regularised inversion, thus yielding an overall processing dynamic 
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range of about 70dB, which is double the 35dB of the corresponding non-regularised 

case. These improved results come at the expense of a rise in the cross-talk level at 

the position of the ipsilateral channel’s delta-spike and also a slight deviation from the 

ideal delta-spike form in the ipsilateral channel. Still, both these effects should be 

expected to have minimal perceptual significance. The former does not significantly 

influence the level of the crosstalk suppression above 200Hz as is seen in figure 4-8 

while the latter can be seen to fall inside the temporal masking intervals described 

above (see pp. 81-82). 

4.3 Regularisation 

The parameter of regularisation has already been introduced in the discussion of §4.2 

where it has been shown that the regularised inversion of an adequately long model of 

the plant yielded better results compared to the non-regularised inversion. More 

importantly, the results of §4.2 brought up the role of regularisation as a means of 

relaxing the normalisation requirement and thus effectively increasing the dynamic 

range of the inversion. In this section we focus our interest on the parameter of 

regularisation and we examine its influence in the effectiveness of the inversion. 

A clear depiction of the role of regularisation in the determination of the inverse is 

given in figure 4-10 where we plot (with a solid line) the magnitude of the frequency 

response of the element in the first row and first column of the inverse matrix H with 

different values of regularisation. The responses plotted in the figure are those prior to 

normalisation, i.e. they correspond to the total control power necessary for the 

inversion of the plant in order for the input signal to be reproduced at the ears of the 

listener at its original level. In the same figure we use dashed thick line of the same 

colour to indicate the introduced amount of regularisation in each case. Note that, 

being a dimensionless scalar, the value of regularisation is not directly comparable to 

the frequency response magnitude values plotted in figure 4-10 and that, for 

illustrative purposes, the regularisation parameter value is depicted in the figure via 

the quantity -5log10(β). 

We see in the figure that, with β set to zero, most of the energy of the inverse filter is 

concentrated in the low frequency region below 500Hz and in the region above 
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20kHz. We saw however in the previous section that both the cross-talk cancellation 

and the ipsilateral equalisation fails in the region up to 200Hz, even in ideal 

conditions. This is normal if we consider that the control is applied with small, two-

way loudspeakers that are virtually non-responsive in this frequency region. As for 

the high frequency region above 20kHz (which we obviously do not intend to control) 

the increase in the required control power is a result of the anti-aliasing filter roll-off 

present in the measured plant responses. 
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Figure 4-10: Frequency response of the element H11 of the inverse matrix H for β=0 
(blue solid line), β=10-4 (red solid line), β=[10-2 10-6 10-2] (green solid line) and 
β=10-2 (black solid line). The quantity -5log10(β) is also plotted for the cases β=10-4 
(red dashed line), β=[10-2 10-6 10-2] (green dashed line) and β=10-2 (black dashed 
line). 

By penalising the control effort, as achieved by the introduction of regularisation, we 

see in figure 4-10 that the level of the applied control is suppressed. This suppression 

starts at the low and high ends of the spectrum for the value β=10-4 leaving the shape 

of the control unaltered for the region from around 600Hz up to about 18kHz. This is 

of course a desirable effect as it effectively (with the necessary introduction of 

normalisation) redistributes the control power from the low and high end of the 

spectrum (that we cannot, or do not wish to control) to the audible and controllable 
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middle region. Nevertheless, we see in the figure that this effect is not fully exploited 

with β set to the value β=10-4 as a significant amount of control is still exerted on the 

ends of the spectrum. By increasing the regularisation penalty to the value β=10-2 the 

control is completely suppressed at the two ends of the spectrum but at the same time 

the shape of the control is also significantly affected in the frequency region of 

interest. 

The above rationale justifies the introduction of regularisation that varies with 

frequency so that the control effort at two ends of the spectrum is heavily penalised 

and at the same time allowing the exertion of the necessary control at the frequency 

region of interest. Such a design is also plotted in figure 4-10. In this case, the 

regularisation is set to the value β=10-2 in the frequency intervals from DC to 100Hz 

and from 18kHz up to the Nyquist frequency and to the value β=10-6 in the interval 

from 100Hz to 18kHz. In order to avoid an abrupt, “brick-wall” type, change in the 

frequency response of the inverse filters that would result in excessive ringing in their 

time response we have shaped the transition from β=10-2 to β=10-6 and back to β=10-2, 

with two half-Hanning windows extending from 20Hz to 200Hz and from 15kHz to 

20kHz48. As can be seen in the figure, the frequency response of this filter follows 

that of the β=10-2 inverse up to 20Hz and, after a transition region extending from 

20Hz to 200Hz, it meets the frequency response of the non-regularised inverse49 and 

follows it up to 18kHz where the opposite transition takes place.  

These different realisations of the inverse are compared in the following measured 

results. First, we examine the typical case where the inverse is determined on the basis 

of the strictly anechoic model of the plant C190. Figures 4-11 and 4-12 compare the 

measured results obtained when C190 is inverted with the regularisation parameter β 

set to the uniform values β=0, β=10-4 and β=10-2 and the variable value β=[10-2 10-6 

10-2] described above. The length of the inverse is set to 2000 taps for the β=10-4 and 

β=10-2 cases and 4000 taps for the β=0 and β=[10-2 10-6 10-2] cases. The frequency-

domain plot of figure 4-11 clearly shows the increase in the level of the signal 

reaching the listener’s ear as the value of β is increased. This desirable increase 

neither improves nor degrades the effectiveness of the equalisation and the cross-talk 

                                                 
48 Henceforward we denote this variable regularisation value with β=[10-2 10-6 10-2]. 
49 The regularisation value of β=10-6 results to no penalty in the region from 200Hz to 18kHz and is 
thus practically equivalent to the value β=0. 
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cancellation as the regularisation increases from β=0 to β=10-4. However, the 

degradation is visible in the comparison of the β=10-4 and β=10-2 cases. The variable 

regularisation case can be seen to succeed in increasing the equalisation target level 

compared to the β=10-4 case preserving the same inversion quality. 

Further insight into the properties of these results is again given by the time-domain 

plot of figure 4-12. First, we see in the figure that the introduction of regularisation 

results in the smearing of the delta spike into a tight pulse that is symmetrically 

distributed around the position of the original, non-regularised, delta-spike (this 

symmetrical smearing is more evident by comparison of figures 4-5 and 4-9). The 

time-symmetry of this smeared pulse is imposed by the desired pure delay (i.e. linear 

phase) character of the sought ipsilateral equalisation and it is thus bound to appear in 

the inversion results when regularisation is introduced. This entails the presence of a 

pre-ringing artefact in the equalised response that50 is more likely to be audible than 

its mirror image. For the regularisation values considered in this case, this smearing 

extends to no more than 5-10 ms and should thus be considered acceptable. Higher 

regularisation values could however render it audible. On the other hand we see in 

figure 4-12 that the smeared energy around the delta spike is also copied in the cross-

talk paths where the absence of the masker should render it audible. The “spill-over” 

of this energy on the cross-talk paths increases with increasing values of the 

regularisation parameter, something that is also evident from the rise in the level of 

the cross-talk paths in the frequency-domain plot of figure 4-11. 

A similar influence of the regularisation can also be seen on the artefact that follows 

the pulse and, as was discussed in the non-regularised case of the previous section, is 

due to the imperfect modelling of the plant by C190. More specifically, with the 

introduction of regularisation and the consequent relaxation of the normalisation 

requirement, the inversion results are effectively scaled by a constant factor that is 

applied both to the equalisation pulse and to the residual error. Hence, this error is 

amplified by the same amount as the main pulse across the different regularisation 

values and is present in both the ipsilateral and the cross-talk paths. 

                                                 
50 See also the discussion in pp. 81-82. 
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Figure 4-11: Measured inversion results. The plant is modelled with C190. The 
regularisation is set to β=0 and the inverse length to 4000 coefficients (black line). 
The regularisation is set to β=10-4 and the inverse length to 2000 coefficients (red 
line). The regularisation is set to β=10-2 and the inverse length to 2000 coefficients 
(blue line). The regularisation is set to β=[10-2 10-6 10-2] and the inverse length to 4000 
coefficients (green line). 
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Figure 4-12: Measured inversion results. The plant is modelled with C190. The 
regularisation is set to β=0 and the inverse length to 4000 coefficients (black line). 
The regularisation is set to β=10-4 and the inverse length to 2000 coefficients (red 
line). The regularisation is set to β=10-2 and the inverse length to 2000 coefficients 
(blue line). The regularisation is set to β=[10-2 10-6 10-2] and the inverse length to 4000 
coefficients (green line). 

To conclude the discussion of the role of regularisation we also examine the case 

where regularisation is used in the inversion of the longer model of the plant, C740. 

We saw in §4.2 that the introduction of uniform regularisation with β=10-4 made the 

inversion of this model possible and indeed advantageous over the inversion of C190. 

Here we are interested in establishing the conditions under which the introduction of 

the frequency varying regularisation penalty β=[10-2 10-6 10-2] can further increase the 
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target level of the equalisation of the β=10-4 case shown in figures 4-6 and 4-7 

preserving at the same the inversion accuracy of those results. 

The simulation results51 for the inversion of C740 with β set to the value [10-2 10-6 10-2] 

are depicted in figures 4-13 and 4-14 and compared with the results of the uniform 

value β=10-4 in the frequency and time domains respectively. The frequency varying 

regularisation is implemented in two ways, one with the penalty of β=10-2 extending 

up to 100Hz and the transition shaping with the half Hanning window extending from 

20Hz to 200Hz (red line) and the other with the penalty of β=10-2 extending up to 

200Hz (blue line) and the transition shaping with the half Hanning window extending 

from 20Hz to 500Hz. In both cases the β=10-6 penalty value extends up to 18kHz with 

the transition back to the β=10-2 penalty value being shaped by a half Hanning 

window extending from 15kHz to 20kHz. The filters that implement the uniform 

regularisation case are set to have 8000 taps (3000 taps for the non-causal and 5000 

taps for the causal part) while the filters that implement the varying regularisation 

case are set to have 25000 taps (2000 taps for the non-causal and 23000 taps for the 

causal part). In all cases, the FFTs used for the computation of the inverse are set a 

length of 217 points. 

The increase in the target level of the inversion can be seen in the figures to be around 

5dB from the β=10-4 to the first varying regularisation case and another 5dB to the 

second varying regularisation case. This is done without loss of the inversion 

accuracy in the region of low regularisation penalty. The reduction of the region that 

is effectively controlled is minimal in the first varying regularisation case with only 

the region from 150Hz to 200Hz being lost compared to the β=10-4 case. Naturally, 

the loss of control extends higher for the second varying regularisation case with the 

control starting to take effect after 400Hz. 

                                                 
51 The results plotted in figures 4-13 and 4-14 are simulation results following the procedure described 
in §3.5. 
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Figure 4-13: Simulated inversion results. The plant model used for the determination 
of the inverse is C740. The regularisation is set to β=10-4 and the inverse length to 
8000 coefficients (green line). The regularisation is set to β=[10-2 10-6 10-2] (sharp 
transition) and the inverse length to 25000 coefficients (red line). The regularisation is 
set to β=[10-2 10-6 10-2] (gentle transition) and the inverse length to 25000 coefficients 
blue line)   figure_19p2 
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Figure 4-14: Simulated inversion results. The plant model used for the determination 
of the inverse is C740. The regularisation is set to β=10-4 and the inverse length to 
8000 coefficients (green line). The regularisation is set to β=[10-2 10-6 10-2] (sharp 
transition) and the inverse length to 25000 coefficients (red line). The regularisation is 
set to β=[10-2 10-6 10-2] (gentle transition) and the inverse length to 25000 coefficients 
blue line). The grey dashed line shows the noise-floor of the corresponding measured 
results. figure_19p1 

The most important difference between the uniform and varying regularisation cases 

can be seen in the time-domain plot of figure 4-14 which shows that for the same 

reduction of the end-effects, the frequency varying regularisation cases require 25000 

taps compared to the 8000 taps required by the uniform regularisation case. This is of 

course due to the sharp roll-off of the frequency response at the point of change of the 

regularisation penalty. We note here that the computation of an inverse of C1740 that 
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equally suppresses the end-effects of the inversion was impossible for these two 

choices of varying regularisation even when filters of 50000 taps were computed 

using FFTs of 218 points. It should be clear of course that the comparison between the 

inverse filters’ length needed to suppress the end-effects below the noise floor for the 

regularised and non-regularised cases (figures 4-14 and 4-5  respectively) should take 

into account the fact that the in regularised cases the headroom between the 

equalisation target level and the noise floor is 22-33dB wider than that of the non-

regularised case. 

Overall then we see that the introduction of uniform regularisation results in a benefit 

as regards the total dynamic range of the inversion between the level of the equalised 

signal and the noise-floor (65dB and 85dB for the β=10-4 and β=10-2 cases compared 

to 55dB for the β=0 case). It does not however improve the level of cross-talk 

cancellation (while in certain cases it can degrade it) and when introduced in excess it 

can result in audible colouration of the reproduced signals (this is already evident in 

figure 4-11 for the results obtained with β=10-2). The use of frequency-varying 

regularisation can be used as a compromise between these to cases, as it does achieve 

an increase in the control target level compared to the low regularisation β=10-4 case 

avoiding at the same time the colouration caused by the high regularisation β=10-2 

case. This is of course done at the expense of the total loss of the signal information in 

the very low frequency region. 

In fact, when used in this way, frequency varying regularisation effectively acts as a 

very sharp linear phase pass-band filter. In this sense it is normal for its time-domain 

response to extend for long, as would be the case for any frequency selective stage 

inserted in the reproduction chain (e.g. a digital crossover). The possible advantage of 

such a use of regularisation is that the delay needed for the linear-phase shaping of the 

control can only be applied once at this stage and effectively be combined with the 

modelling delay needed to compensate for the non-minimum character of the 

inversion. Obviously, the need for such a sharp frequency selection (and the entailed 

extended shape of the related inverse time-responses) is dictated by the fact that we 

desire to penalise the region below 100-200Hz but at same want the control to start 

being effective as close as possible to that lower limit. Such a problem does not exist 
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at the other end of the spectrum, where the rise in control effort is less steep and a less 

sharp frequency selection can be applied. 

4.4 Length of the inverse when regularisation is applied 

The issue of the required length of the inverse filters was to some extent covered in 

the two previous sections. It was shown there that the length required for the inverse 

filters to adequately follow the decay of the ideal inverse was ranging from 1000 or 

2000 taps (for the cases of the strictly anechoic model of the plant C190 and a 

reasonable amount of regularisation) up to many thousands of taps (for the cases of 

the longer models of the plant C740 and C1740 and especially when frequency varying 

regularisation is implemented). This section completes the discussion on this issue by 

focusing on a number of cases where, as shown below, the choice of the remaining 

two parameters of the inversion limits the required length of the inverse filters to 

much lower values. 

In figures 4-15 - 4-18 we plot the measured results of the inversion of C190 with the 

regularisation parameter set to the value β=10-2 (figures 4-15 and 4-16) and β=10-1 

(figures 4-17 and 4-18). The plots compare the results obtained when the inverse is 

realised with 200 tap and 2000 tap inverse filters. These measured results verify the 

fact that with the regularisation parameter set to these high values and with the plant 

modelled by the strictly anechoic part C190, the use of an inverse as short as 200 taps 

is enough to achieve the best obtainable inversion results for both these cases. The 

significant degradation of the ipsilateral equalisation and the reduction of the region 

of cross-talk cancellation as well as the further, but only marginal, increase in the 

dynamic range of the inversion can be seen in the β=10-1 results compared to those 

with β=10-2. Furthermore, the similarity of the inversion results of figure 4-17 with 

the frequency response of the plant (see figure 4-22) demonstrate the fact the with the 

regularisation penalty β=10-1 the control is hardly applied at all. 
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Figure 4-15: Measured inversion results. The plant is modelled with C190. The 
regularisation is set to β=10-2 and the inverse length to 2000 coefficients (blue line) 
and to 200 coefficients (red line).figure_20p1 
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Figure 4-16: Measured inversion results. The plant is modelled with C190. The 
regularisation is set to β=10-2 and the inverse length to 2000 coefficients (blue line) 
and to 200 coefficients (red line).figure_20p2 



Chapter 4 – Objective evaluation of inverse filtering – Inversion efficacy under ideal conditions 

 105

10
2

10
3

10
4

−80

−60

−40

−20

0
Left l/s Left ear

Frequency [Hz]

dB

10
2

10
3

10
4

−80

−60

−40

−20

0
Left l/s Right ear

Frequency [Hz]

dB

10
2

10
3

10
4

−80

−60

−40

−20

0
Right l/s Left ear

Frequency [Hz]

dB

10
2

10
3

10
4

−80

−60

−40

−20

0
Right l/s Right ear

Frequency [Hz]

dB

 

Figure 4-17: Measured inversion results. The plant is modelled with C190. The 
regularisation is set to β=10-1 and the inverse length to 2000 coefficients (blue line) 
and to 200 coefficients (red line).figure_21p1 
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Figure 4-18: Measured inversion results. The plant is modelled with C190. The 
regularisation is set to β=10-1 and the inverse length to 2000 coefficients (blue line) 
and to 200 coefficients (red line).figure_21p2 

A further case of interest is presented in the results of figure 4-19. In this case we 

compare the inversion results obtained when C190 is inverted with the regularisation 

parameter set to β=10-4 and with the length of the inverse set to three different values. 

The green line results correspond to an inverse length of 2500 coefficients (1250 

causal and 1250 anti-causal), the red line to an inverse of 1550 coefficients (300 

causal and 1250 anti-causal) and the blue line to an inverse of 1350 coefficients (100 

causal and 1250 anti-causal). 
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Figure 4-19: Simulated inversion results. The plant model used for the determination 
of the inverse is C190 and the regularisation is set to β=10-4. The inverse length is to 
set to 2500 coefficients (1250 causal and 1250 anti-causal, green line), 1550 
coefficients (300 causal and 1250 anti-causal, red line) and 1350 coefficients (100 
causal and 1250 anti-causal, blue line). The grey dashed line shows the noise-floor of 
the corresponding measured results. The impulse responses are time-shifted relative to 
each other so that the delta spike appears at the same point in time in all three 
cases.figure_37p2(‘trois4page’) 

As can be seen in the figure, the 1250 anti-causal coefficients are just enough to 

suppress the negative-time truncation effect down to the noise floor. However, even 

though a similar number of causal coefficients is needed to achieve the same 

suppression for the positive-time truncation effect, this is not reflected in the results. 

This is because at the point along the equalised responses where the truncation effect 

occurs, these responses exhibit the error due to the truncation of the plant model C190 
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that is used for the determination of the inverse (see also the discussion in pp. 81-83). 

This error exceeds the error due to the truncation of the inverse filter. As a result, 

exactly the same inversion results obtained with 1250 causal coefficients are also 

obtained with 300 coefficients. A further reduction of the causal length to 100 

coefficients becomes visible as it places the effect due to the truncation of the inverse 

further up along the equalised response, less than 190 samples after the delta spike. At 

this point, the error due to the truncated model C190 that is used for the determination 

of the inverse is insignificant and hence the error due to the truncation of the inverse 

is revealed. It should be stressed however that even in this case, this concentrated 

increase in the inversion error is susceptible to temporal masking and would almost 

certainly be imperceptible. In that event we see that, given the practically unavoidable 

element of error introduced by the determination of the inverse using the strictly 

anechoic version of the plant matrix, as few as 100 coefficients are enough for the 

modelling of the causal part of the inverse. 

4.5 Comments on inversion results under ideal 

conditions 

We conclude this chapter by discussing a number of points related to the results 

presented above. The first of these points is the complete ineffectiveness of the 

control at the very low frequency region below 200Hz, something that was 

systematically verified in all the results presented. As has already been identified in 

the literature, this result has to be attributed to three basic reasons being: (i) the 

limited frequency resolution resulting from the truncation of the measured plant 

responses (Gardner 1998), (ii) the inherent properties of the active sound control 

problem that are primarily determined by the geometry of the reproduction (Takeuchi 

2001) and (iii) the poor low-frequency response of the control transducers. In what 

follows we discuss the implications of these issues for the results presented above and 

we argue that the control of this low frequency region is effectively impossible with a 

sound reproduction arrangement like that examined here, even in ideal conditions of 

implementation. 
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Starting with the first of the aforementioned issues and considering the case where the 

inverse is computed using the strictly anechoic model of the plant C190, we see that 

the frequency resolution of the inverse for the 48kHz sampling rate that was used will 

be limited to approximately 250Hz. Hence any spectral detail finer than that will be 

inevitably left uncorrected by the inverse. Such fine spectral detail is conceptually 

irrelevant in terms of the HRTF notion which, by its very definition, is only related to 

the strictly anechoic part of the plant. But when the inversion of the actual plant is 

considered, the late decay of the plant’s responses does indeed introduce such fine 

spectrum detail which is lost in the C190 model. 

On the other hand, the use of a longer model of the plant for the determination of the 

inverse and the corresponding refinement of the inverse’s frequency resolution entails 

other, more severe, difficulties and limitations. As was seen in figures 4-1 and 4-3, the 

equalisation applied by H740 and H1740 is indeed visible down to below 200Hz but is 

practically destroyed anywhere else due to the early truncation of the inverse imposed 

by the 2000 and 4000 tap inverse models. Most importantly, the equalisation target 

level is significantly reduced leading to a severe reduction of the dynamic range of the 

processing. Unlike the early truncation problem which can be addressed with the use 

of longer inverse models, the loss of dynamic range cannot be addressed as 

straightforwardly. In fact, this loss of dynamic range should be directly related to the 

refinement of the frequency resolution as the inverse now follows the boosted 

frequency response magnitude of the exact inverse (see figure 4-10) more closely and 

thus imposes a higher demand in terms of the amplification required for the exact 

inversion. This is illustrated in figure 4-20 where we plot the element H11 of the non-

regularised inverse matrices H190 and H1740 (i.e. the inverse matrices computed on the 

basis of the C190 and C1740 plant models respectively). As can be seen in the figure, 

the refinement of the inverse’s spectrum above 200Hz is confined to the correction of 

minimal details. Conversely, below 200Hz, H1740 follows the power boost of the exact 

inverse, a feature that is absent in H190. 
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Figure 4-20: Element H11 of the non-regularised matrices H190 (red line) and H1740 
(blue line) prior to normalisation. figure_61(‘halfpage’) 

Now this boost in the required control effort at the low end of the frequency spectrum 

is a result of the combination of the two remaining factors listed above. As is 

investigated in detail by Takeuchi (2001), the angle spanned by the two control 

transducers in symmetric geometries determines the position along the frequency axis 

for a number of regions where the inversion becomes ill-conditioned and the 

magnitude of the inverse increases. Using a simplified free-field model describing the 

acoustic propagation from two ideal monopole sources to two receivers in the free-

field (no head present), Takeuchi (2001) shows that the position of these ill-

conditioned frequencies will exhibit a periodicity with frequency and will be 

determined by the interleaving maxima of the two singular values of the inverse 

matrix H. The first ill-conditioned frequency always appears at zero frequency. As the 

transducer span becomes smaller the ill-conditioned frequencies are pushed further 

apart but are associated with an increase in the magnitude of the inverse. In this sense, 

the 10o span Stereo Dipole geometry used here, yields a wide frequency interval 

between the zero frequency ill-conditioned region and the first ill-conditioned 

frequency to appear after that (at approximately 11kHz with nominal values of the 

distances describing the geometry), Kirkeby et al. (1998a). This, however, comes at 
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the expense of an increase in the associated inverse magnitude in the first ill-

conditioned frequency region. 
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Figure 4-21: Magnitude of the elements H11 and H12 of the non-regularised inverse 
matrix for different loudspeaker span angles (10o Stereo Dipole blue line, 60o Stereo 
red line and 180o green line). Magnitude predicted by the free-field ideal monopole 
transducer model (dotted lines). The results for the 60o and 180o cases are plotted with 
a vertical offset of -40dB and -80dB respectively.  figure_62(‘trois4page’) 

This effect is depicted in figure 4-21 where we plot the magnitude of the elements H11 

and H12 of the non-regularised inverse matrix for three different symmetric 

geometries, namely that of 10o, 60o and 180o total angle spanned between the two 

loudspeakers. The results are obtained using HRTFs from the MIT database (Gardner 
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and K. Martin 1994)52. In the same plot, with a dotted line, we plot the maximum 

power amplification versus frequency as estimated by the Singular Value 

Decomposition of the inverse matrix H. In this case, H is derived from the plant 

corresponding to the free-field reproduction using ideal monopole sources for the 

same angle spans (Takeuchi 2001). 

As can be seen in the figure, the increased low frequency power requirement 

estimated by the free-field model for the small angle span is very well replicated by 

the measured HRTF data. At higher frequencies, above 1kHz, a slight (but systematic) 

divergence of the estimated ill-conditioned frequencies can be observed for the 60o 

geometry. This is due to the fact that, as implemented here, the model does not take 

into account the frequency dependent interaural delay due to the presence of the 

head53. In the 180o span case, the estimated peaks due to the ill-conditioning are 

clustered very close together and appear in the measured results as a slight ripple. 

Furthermore, the free-field model is seen to overestimate the power output needed at 

higher frequencies as it does not take into account the natural shadowing of the head 

at higher frequencies which facilitates the cross-talk cancellation. This overestimation 

is obviously more severe in the 180o span case where the head shadowing is greater. 

The results of figure 4-21 also show that the sharp peak in the inverse’s magnitude 

response at approximately 9kHz is not due to ill-conditioning of the inverse but due to 

a notch present in the measured single-channel HRTFs (pinna-notch, see (Lopez-

Poveda and Meddis 1996) and references therein). The presence of this notch and its 

slow upwards shift in frequency as the source moves towards the side of the listener 

seen in figure 4-21 is also visible in similar results by Takeuchi (2001). It should be 

noted however that the combination of the two effects, namely the boost due to ill-

conditioning and the solitary peak at around 9kHz can lead to a much sharper peak. 

This can be seen in the 60o span results and is due to the fact that in that case the 9kHz 

peak coincides with one of the ill-conditioned frequencies. 

                                                 
52 In the MIT HRTF database KEMAR is assumed to be symmetrical and so when those data are used 
Hij=Hji and Hii=Hjj.  
53 The results shown in figure 4-21 assume a frequency constant interaural time delay that is estimated 
here as the maximum of the interaural cross-correlation function between the left and right ear HRTFs. 
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Figure 4-22: Measured plant responses (blue line), measured free-field loudspeaker 
responses (green line) and corresponding HRTFs (red line) for the 10o geometry.figure_64 

Finally we note that the increase in the required low-frequency power amplification of 

the inverse is further exaggerated in the case where the plant is modelled with 

measured responses that include the response of the loudspeaker rather than with 

HRTFs as was the case in the results of figure 4-21. This is made apparent in figure 

4-22 where we plot the magnitude of the measured plant responses used for the results 

presented in the thesis and compare them with the corresponding free-field equalised 

HRTFs. As is seen in the figure, the measured responses display a roll-off below 

200Hz following the low-frequency roll-off of the free-field loudspeaker responses. 

Evidently this leads to a further increase of the low-frequency content of the inverse 

matrix H. The free-field equalised HRTFs on the other hand, converge to a 0dB level 
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at the low frequency end of spectrum. This is the typical low-frequency shape of the 

HRTF as at this frequency region the wavelength of the sound field is much larger 

than the physical dimensions of the listener’s head and body and thus the listener does 

not disturb the soundfield. In the HRTF results of figure 4-22 note a significant 

asymmetry between the left and right ear responses of KEMAR. This asymmetry is 

not contained in the MIT HRTF database responses but it is verified in data from 

other databases (Algazi et al. 2001), (Mannerheim et al. 2004) and is specific to the 

small KEMAR pinnae (DB-60 and DB-61). 

The results presented above then verify the argument put forth above regarding the 

inevitable inefficiency of the control at this very low frequency region. As was 

discussed, the acoustic control properties of the inversion problem result in a boost of 

the power output required by the control sources in order to control this region. This 

boost is maximal for the 10o as predicted by the free-field model of the problem but is 

also evident in the 60o degrees geometry. The remaining peaks predicted by the model 

are indeed present in the measured responses case, but at much lower amplitude than 

predicted due to the effect of the head shadowing. Hence, for the 10o geometry, the 

overall required power amplification is dictated by the low frequency content of the 

inverse. Furthermore, the exact correction of this low frequency region requires the 

knowledge of the full decay of the impulse responses comprising the plant and of the 

low frequency response of the control transducers both of which further increase the 

required low frequency amplification. The time-domain equivalent of that is a long 

ringing in the inverse impulse responses which, as was seen above, need to be 

implemented with several thousands of coefficients to avoid audible truncation 

effects. Even in that case, given that the plant response is measured using the full 

dynamic range of the audio reproduction chain (determined by the quantisation noise 

level, the analogue amplification capability, the sensitivity and maximum level of 

linear response of the loudspeakers, etc.) such an amplification requirement leads to a 

severe loss of dynamic range that would definitely be audible in the delivered audio 

material. In simple terms, the attempt to correct the region below 200Hz would 

inevitably destroy the control of the rest of the spectrum. Hence, the use of 

regularisation becomes necessary and (as was discussed in §4.3) the consequent loss 

of control over the 200Hz region becomes inevitable. 
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On the other hand, the presented results suggest that under certain conditions the 

proper use of regularisation can achieve a gentle transition between the controlled 

(above 200Hz) and the non-controlled (below 200Hz) region and even extend the 

controlled region down to 100Hz. This makes possible the reproduction of the very 

low frequency content by a separate transducer by-passing the inverse filtering 

network. Such a design has an already existing commercial counterpart in a number of 

“2.1” commercially available systems. 

A second point to be discussed regards the approach taken in the thesis for the 

modelling of the plant matrix C using measured responses that contain the response of 

the loudspeakers rather than the use of equalised HRTFs (see also the discussion in 

§1.2). Assuming that the responses of the reproduction loudspeakers are matched in 

magnitude and time-aligned, the difference between the use of non-equalised 

responses and HRTFs in C essentially amounts to the choice between correcting and 

not correcting the free-field response of the loudspeakers. In simple terms, 

determining the inverse matrix H using an HRTF-based model of C should, in 

principle, result to the listener perceiving the virtual source from the intended position 

in space but as if being emitted by the reproduction loudspeaker rather than the 

original sound source. 

Even though this is an effect one would indeed desire to alleviate, the use of the 

inverse H as a means to also correct the individual response of the reproduction 

loudspeakers introduces restrictions to the design. Apart from the fact that an in situ 

measurement of C would be needed for such a design, the most prominent of these 

restrictions is the dynamic range loss imposed in the inverse filtering. The point is 

clarified with the results of figure 4-22. As can be seen in the figure, the free-field 

response of the loudspeakers presents a very good approximation to the ideal flat 

response for frequencies above 200Hz as is typically the case for on-axis responses of 

loudspeakers of reasonable quality. A similarly agreeable behaviour is demonstrated 

as regards the phase of the loudspeakers as is further discussed in §5.2. It would be 

thus reasonable to argue that, as far as the loudspeaker responses are concerned, the 

region above 200Hz could be left uncorrected while the region below 200Hz a 

correction should not be attempted due to the considerations discussed above. 
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Indeed the correction of the loudspeaker response was not included in the research 

interest of this project. In fact, similar issues regarding the depletion of the available 

dynamic range associated with the equalisation of loudspeaker responses have been 

mentioned since the early days of inverse filtering DSP applications (Mourjopoulos et 

al. 1982). Such issues are still considered to be one of the most significant inhibitory 

factors in the use of such techniques for the improvement of loudspeaker response 

(Stuart and Howard 2005). Instead, the reason we chose to use a plant matrix that 

contains the response of the loudspeakers was that (as is discussed in detail in §3.2) 

our objective is to determine the realistically optimal results that can be produced by a 

design like that discussed here and to investigate the influence of the associated 

design parameters in the achievement of these results. Such an investigation could 

obviously not be conclusive if an element of error was already present in the inversion 

as becomes apparent in the following set of results. 

The effect of the use of HRTFs for the determination of H is displayed in figures 

4-23, 4-24 and 4-2554. In all these results the length of the inverse (1500 coefficients 

for the non-regularised case and 600 coefficients for the regularised case) is set by 

trial-and-error to the minimum value that gives the optimum frequency domain results 

and suppresses the truncation effects below the 100dBFS level. As seen in the figures, 

with the plant model used for the determination of the inverse being now effectively 

normalised by the level of the free field sound, the target level of the equalisation rises 

in comparison with the equivalent results of figures 4-3 and 4-4 where the inverse was 

determined using a plant model that contained non-equalised measurements. The -

30dBFS equalisation target level of figures 4-23, 4-24 and 4-25 (red line) can thus be 

regarded as the actual loss of dynamic range of the non-regularised inversion. 

Furthermore, with the low frequency magnitude content of the plant matrix increased, 

the low frequency boost in the inverse filters is reduced. Consequently the decay of 

the inverse responses in time-domain is increased and hence a shorter model of the 

inverse is required in order to avoid the truncation effects. 

                                                 
54 These cases were not included in the measurements and the results plotted in figures 4-23, 4-24 and 
4-25 are simulation results following the procedure described in §3.5. 
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Figure 4-23: Simulated inversion results. The plant model used for the determination 
of the inverse contains the free-field equalised HRTFs of figure 4-22. The 
regularisation is set to β=0 and the inverse length to 1500 coefficients (300 causal and 
1200 anti-causal, red line). The regularisation is set to β=1 and the inverse length to 
600 coefficients (200 causal and 400 anti-causal, blue line).figure_63p2   

This relaxed requirement for the length of the inverse filters is however 

predominantly due to the presence of a significant element of error following the 

initial equalisation spike. As is depicted in more detail in figure 4-24, the equalisation 

spike is now replaced by a smeared pulse with this forward-time smearing 

corresponding to the late arriving energy of the uncorrected loudspeaker responses. 

This decay is physically masking any truncation effect that would otherwise be visible 

(and separately audible) in the equalised responses thus allowing for the much earlier 

truncation of the inverse. Following the discussion in pp. 81-82 regarding the 
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perceptual masking of such late arriving energy, we should again expect this effect to 

not be audible as a time-domain artefact. In fact, given that this energy is arriving 

immediately following the equalisation spike and considering the time-integration 

properties of the human auditory system, we should expect it to enhance the perceived 

loudness of the delivered material. 
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Figure 4-24: Zoomed-in depiction of the results of figure 4-23. figure_63p2zoom 
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Figure 4-25: Simulated inversion results. The plant model used for the determination 
of the inverse contains the free-field equalised HRTFs of figure 4-22. The 
regularisation is set to β=0 and the inverse length to 1500 coefficients (300 causal and 
1200 anti-causal, red line). The regularisation is set to β=1 and the inverse length to 
600 coefficients (200 causal and 400 anti-causal, blue line).figure_63p1 

On the other hand, moving to the frequency-domain inversion results, we see that 

both the ipsilateral equalisation and the cross talk cancellation are significantly 

inferior to the optimal results presented in the previous sections. We note that the non-

regularised results of figures 4-23 – 4-25 (red line) present the inversion’s absolute 

optimum when the inverse matrix H is computed using a plant model C comprising 

HRTFs. As should be expected in this case, the ipsilateral equalisation results 

correspond to the ideal flat response multiplied by the loudspeakers’ free-field 
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response with the characteristic roll-off at the low-frequency end and the shallow dip 

being clearly visible at the frequency interval of the loudspeakers’ crossover. 

More importantly, as can be seen by comparison of the non-regularised with the 

regularised results (red and blue line respectively), the error introduced by the 

imperfect modelling of the plant with HRTFs creates a large margin for reduction of 

the applied control effort that has effectively no cost on the quality of the inversion 

results. That is, when regularisation is introduced the target level of the equalisation 

increases by more than 10dB and the required length of the inverse reduces to less 

than half with virtually no further degradation of the inversion results. Note that given 

the increased magnitude of the plant matrix model, the absolute value of the 

regularisation parameter β resulting in an equally significant penalisation of the effort 

is also increased in magnitude. 

We can then conclude that the choice of including the loudspeakers’ response in the 

plant matrix to be inverted for the results presented here was indeed justified in terms 

of conclusions drawn. The correction of these responses does impose extra 

requirements compared to the inversion of the HRTF-based plant. However, when 

those requirements are met the inversion result can be significantly improved. More 

importantly, when the correction of the loudspeakers’ response is not included in the 

inverse design, the inversion results (even in ideal conditions of implementation) 

should be expected to reach a plateau of accuracy. This plateau is met with much 

more modest values of the inverse design parameters (i.e. higher regularisation and 

lower filter length) than would be estimated by results where the inversion process is 

simulated by convolving through the same HRTF-based matrix C that is used for the 

determination of the inverse. 

Finally, a third point to be discussed is that of the phase of the equalised responses. In 

the results presented throughout the thesis we present the magnitude of the frequency 

response and the impulse response of the inversion results. Obviously this pair 

constitutes a full quantitative description of the results, assuming linearity of the 

system, and it also contains practically all information that can be straightforwardly 

interpreted in terms of its expected perceptual significance. Phase information on the 

other hand is not as easy to interpret. Even the choice of the phase-related quantity 

that bears the perceptually important information -be it phase, phase delay or group 
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delay- to a great extent remains an open issue. Even greater uncertainty exists as to 

the appropriate perceptual indices and perceptibility thresholds related to the phase 

distortion in a system or signal. 

One thing being certain though is that the “Ohm’s law” assertion of the early-days of 

psychoacoustics (see the review of Schroeder (1975) and references therein), namely 

that the human auditory system is only sensitive to the spectrum amplitude of audio 

stimuli and is completely “phase insensitive”, does not hold. A significant amount of 

experimental evidence now exists that proves that the human auditory system can 

indeed detect specific types of phase distortion, e.g. (Blauert and Laws 1978), 

(Lipshitz et al. 1982), (Schroeder 1975) and much more recently (Flanagan et al. 

2005). That said, no complete model of the perceptual weight of phase distortion has 

been yet convincingly put forward. Open issues remain as to whether findings based 

on highly specialised artificial test stimuli also apply to natural sound signals such as 

speech or music. Similarly, audibility thresholds determined using headphone 

reproduction or anechoic reproduction over loudspeakers and trained listeners as 

subjects, seem to significantly rise when the phase distorted signals are presented to 

either untrained listeners or through loudspeakers or in more reverberant 

environments. Furthermore, most of the references mentioned above seek to predict 

and model the absolute threshold of perceptibility of phase distortion. This should be 

expected to be lower than the level of distortion that is perceived as actually 

degrading the audio presentation. This in turn would be separately influenced by some 

of the parameters mentioned above such as the level of training of the listener and the 

type of material presented. 

In this view, the detailed characterisation of the obtained results with respect to their 

phase characteristics falls outside the scope of this research project. Nevertheless, a 

simple finding regarding the phase of the obtained results can be shown. This is done 

in figure 4-26 where we plot the group delay of the equalised ipsilateral paths for four 

different inverse designs. These include the results55 obtained with the non-

regularised inverse H190, the regularised inverse H190 (β=10-4), the regularised inverse 

H1740 (β=10-4) and a strictly causal and stable version of the non-regularised inverse 

H190 denoted with Hmin. In this last realisation, the common denominator of equation 

                                                 
55 The results of figure 4-26 are simulation results following the procedure described in §3.5. 
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(2-14) has been replaced by its minimum phase reconstruction as in equation (4-1)56. 

The four transfer functions Hij of equation (4-1) will thus correspond to causal and 

stable time-responses without the need to introduce modelling delay. In all cases the 

length of the inverse filters is set to be long enough to eliminate any significant 

truncation effects.  
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The equalisation matrix Xeq resulting from the use of this approximation to the inverse 

Hmin will then be as in equation (4-2). 
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As can be seen in equation (4-2) the effectiveness of the cross-talk cancellation in this 

case is determined by the numerator of the off-diagonal terms of X(ω). But this 

expression is equal to that obtained by the mixed-phase inverse of equation (2-14). 

Hence the cross-talk cancellation achieved by this minimum-phase approximation to 

the inverse should be identical to that obtained with the equivalent mixed-phase 

inverse models. The same holds for the magnitude of the ipsilateral equalisation. This 

is solely determined by the ratio of the magnitudes of the numerator and denominator 

of the diagonal terms of Xeq(ω) and is not influenced by the minimum phase 

approximation as is seen in the derivation of equation (4-3). Hence the only element 

of error introduced in the inversion due to the approximation by Hmin is the amount of 

                                                 
56 In the following equations with Ĉij we denote the chosen model of the (i,j) element of the plant 
matrix used for the determination of the inverse (be it C190 or C1740). Similarly, with det[Ĉ] we denote 
the determinant of the chosen model of the plant matrix det[Ĉ]=Ĉ11⋅Ĉ22-Ĉ12⋅Ĉ21. 
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excess phase of the numerators of the diagonal terms that is left uncorrected by the 

minimum phase approximation to the denominators. 
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In figure 4-26 the group delay of the equalised ipsilateral paths for the different 

realisations of the inverse is compared with the group delay of the measured plant 

responses C11 and C22 (magenta coloured line). These are computed using the 

responses that contain the full decay (first 3000 samples of the measured impulse 

responses) and represent the amount of phase distortion introduced by the uncorrected 

plant’s ipsilateral paths, i.e. by the loudspeaker and the listeners HRTF. In all five 

cases, the initial frequency-independent delay (due to air propagation, modelling 

delay etc.) has been removed. 

As can be seen in the figure the uncorrected plant’s ipsilateral responses themselves 

introduce only a minimum amount of phase distortion. We can take the results 

reviewed by Preis (1980) as a rough guide. According to those results, for natural 

sound signals reproduced over loudspeakers in a reverberant environment, deviations 

of up to approximately ±2ms in frequencies above 1kHz should be imperceptible. 

This tolerance further increases at lower frequencies. Hence a signal reproduced in 

normal conditions over one of the loudspeakers used here would reach the listener’s 

ears with imperceptible phase distortion (barring maybe an increase in the group delay 

deviation at 8-9kHz). This of course does not account for the effect of the cross-talk 

paths. The question is what happens when an inverse filtering network is introduced 

aiming at the suppression of the cross-talk paths and the equalisation of the ipsilateral 

paths. 



Chapter 4 – Objective evaluation of inverse filtering – Inversion efficacy under ideal conditions 

 124

10
2

10
3

10
4

0

0

0

0

0

Left l/s Left ear

Frequency [Hz]

G
ro

up
 D

el
ay

 [m
s]

10
2

10
3

10
4

0

0

0

0

0

Left l/s Right ear

Frequency [Hz]

G
ro

up
 D

el
ay

 [m
s]

 

Figure 4-26: Group delay of the ipsilateral paths for various inverse design 
parameters: Non-regularised H190 (blue line), H190 with β=10-4 (red line), H1740 with 
β=10-4 (green line), causal and stable minimum phase reconstruction of the inverse 
(black line) and uncorrected plant ipsilateral responses (magenta line). In all cases the 
initial constant delay is removed. The grey-lined limits correspond to a ±2ms 
deviation from the ideal frequency-independent group delay. 

In principle (Lipshitz 1982), the introduction of an inverse filtering correcting stage in 

a mixed-phase reproduction chain can result in a degradation of the system’s phase 

response. As is again seen in figure 4-26, whatever cross-talk cancellation and 

ipsilateral equalisation is achieved with the non-regularised or regularised versions of 

the H190 inverse (blue and red lines) does indeed introduce a slight extra phase 

distortion compared to the (single-channel) uncorrected plant’s phase but still 

remaining below the perceptibility limit. Most importantly however, the same amount 
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of phase distortion is achieved by Hmin, at least above 200Hz. Recall that the only 

difference in inverting with Hmin compared to inverting with the non-regularised 

version of H190 is that Hmin does not correct the excess phase part (i.e. additive to the 

minimum phase part) of the denominator det[C(ω)] (equations (4-1) – (4-3)). It 

becomes then apparent that the excess phase of det[C(ω)] is due to the late decay of 

the plant responses. The error in the determination of the inverse when this late decay 

is not taken into account (as is the case with the H190 inverse models) is already much 

more significant than the phase discrepancy between H190 and Hmin. This is also in 

agreement with the anechoic responses’ weakly mixed-phase character demonstrated 

and discussed in §5.2. 

Finally, as is seen in the green line results of figure 4-26, the inclusion of the late 

decay of the plant’s responses in the determination of the inverse (by means of H1740) 

can further reduce the group delay deviation. Even though this corresponds to no 

perceptual improvement in terms of phase detection, it is by-product of a perceptually 

significant improvement in terms of amplitude ipsilateral equalisation and cross-talk 

cancellation (see figure 4-6). Note that such a result is only obtainable with the use of 

regularisation (see the relevant discussion in §4.2). In that case, the denominator 

response in H is replaced by the expression det[CH(ω)C(ω)+βI] which, as was 

explained in §§2.3.1–2.3.3, will always be of strongly mixed-phase character. A 

minimum phase approximation should thus not be expected to be as easy to 

implement. 

4.6 Conclusions 

An extensive evaluation was presented in this chapter of the inverse filtering design 

described in §2.3. The evaluation was based on a set of objective measurements using 

the KEMAR manikin. The first set of results in the presentation established and 

quantified the optimal inversion accuracy that can be realistically achieved with the 

inverse design under consideration. It was thus demonstrated that under ideal 

conditions of implementation highly accurate inversion results are possible. In such a 

case it is possible to obtain ipsilateral equalisation confined to ±1dB in the region 

above 200Hz and cross-talk cancellation of 15-30dB in that region. It was explained, 
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however, that these results are practically restricted to the case where the plant can be 

measured in situ. Furthermore it was shown that this degree of inversion accuracy is 

only possible if a small degree of sub-optimality is allowed in advance by the 

introduction of a small amount of regularisation and, additionally, if the inverse 

matrix is implemented by FIR filters comprising several thousands of coefficients. In 

that case, the influence of regularisation is restricted to the very low frequency range 

which is anyway uncontrollable in designs of this type. 

As a first element of error introduced in the inversion, the case was considered where 

only the strictly anechoic part of the otherwise exact model of the plant is available. 

This corresponds to the case where the plant is measured for the individual listener 

and reproduction system in a given (possibly anechoic) space but the reproduction 

takes place in a different anechoic space. It was demonstrated that even this marginal 

amount of disturbance introduces a perceptually significant amount of error. The 

fundamental perceptual indices relevant to this element of error were discussed and it 

was explained that even though the indices pertaining to the time-domain description 

of the reproduced signals should be of minor perceptual weight, those related to the 

frequency-domain description are indeed significant.  

An issue of central importance throughout the presentation of this thesis was 

highlighted, namely the loss of dynamic range incurred by the application of the audio 

control. Consequently, the use of regularisation was advocated as a means to address 

this issue. The role of regularisation was examined in detail and it was shown that in 

certain cases its use can considerably enhance the overall dynamic range of the 

inversion without significantly, if at all, degrading its accuracy. The use of a 

frequency-varying regularisation penalty was also examined. In cases where the very 

low frequency content is to be reproduced by a separate transducer circuit this 

frequency-varying regularisation can achieve a further increase of the dynamic range 

by acting as linear-phase frequency separation stage. This however entails an 

increased requirement of the inverse filters’ length. We do not know if this is indeed 

advantageous compared to the use of a separate frequency-selective network acting 

prior to the inversion stage. 

On completion of the investigation of the aforementioned cases, the issue of the 

required length of the inverse filters was revisited and it was demonstrated that when 
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such parameters as the above are taken into consideration, the required length of the 

inverse reduces to no more than one or two thousand coefficients. Furthermore, it was 

shown (figure 4-19) that the element of error that is directly related to the use of the 

strictly anechoic part of the plant for the determination of the inverse, physically 

masks the error due to the use of a much shorter realisation of the inverse than would 

be otherwise expected. 

Subsequently, the issue of the ineffectiveness of the design under investigation in 

controlling the frequency region below 200Hz was discussed. It was explained that 

this is the combined effect of more than one reasons, namely of the inherent acoustic 

properties of the reproduction geometry and of the determination of the inverse on the 

base of the strictly anechoic part of the plant which in turn is modelled using HRTFs. 

It was thus argued that the control of this region is probably impossible with the 

inverse design under discussion. 

The most typical implementation case, in which HRTFs are used for the 

determination of the inverse, was also examined. When this is the case the responses 

of the reproduction loudspeakers are not corrected. Again, a significant amount of 

error was seen to be inherent in this type of implementation which in practice further 

relaxes the requirement of accuracy in the inversion. Thus higher regularisation can 

be applied and, consequently, shorter inverse filters can be used. 

Finally, the issue of the phase response of the inverted plant was also considered. It 

was shown that, barring the case where an in situ measurement of the plant is 

available, a minimum phase approximation to the recursive part of the inverse can 

give practically equivalent results as the exact inverse. It is not certain if this can be 

used to obtain computational savings in the inversion but it could certainly be used to 

eliminate the need for the introduction of modelling delay. 
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5 Objective evaluation of inverse filtering – 

Inversion efficacy under non-ideal conditions 

 

5.1 Introduction 

In the previous chapter we established the extent of the optimum inversion under ideal 

conditions and presented in detail the role of the design parameters of the inverse in 

achieving this optimum. In the following sections of this chapter we return to the 

issues discussed in §3.1 and examine the effect that the deviation from this ideal 

inversion conditions has on the effectiveness of the inversion. The exposition does not 

intend to exhaustively cover this issue but rather to put the ideal conditions results of 

the previous sections in the context of a more realistic implementation situation and to 

give a measure of the validity of the findings of the previous sections in such realistic 

implementation conditions. 

The effect of the three basic elements of error identified in §3.2 is studied in the 

following three sections. These elements of error are the presence of reflections in the 

plant, the misalignment of the position of the listener and the determination of the 

inverse on the basis of a plant measurement conducted on a different listener 

(typically a dummy-head). They are studied in sections §5.2, §5.3 and §5.4 

respectively. 

5.2 Presence of reflections in the plant 

In realistic applications the audio reproduction system is situated in a non-anechoic 

space, e.g. a living room or a study with a personal computer on top of a desk. In such 

cases, the impulse responses comprising the plant would represent the linear distortion 

in the sound field due to the head and the body of the listener followed by one or more 
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early reflections caused by objects and surfaces close to the direct sound propagation 

paths and then by a late reverberation decay due to the overall acoustics of the room. 

Naturally, the signals delivered at the listener’s ears after being processed by an 

inverse designed on the basis of an anechoic measurement of the plant will differ from 

the desired binaural signals. This should be expected to degrade the performance of 

the system. 

Studies that evaluate the degradation of the perceived quality of the reproduced audio 

material when the reproduction takes place in a reverberant environment include those 

of Damaske (1971), Gardner (1998), Köring and Schmitz (1993), Sakamoto et al. 

(1982) and Takeuchi (2001). They are all based on subjective experiments with the 

exception of (Takeuchi 2001), in which the results of the subjective experiment 

follow a simulation-based objective analysis of the effect of a single reflection by an 

infinitely long surface on the side of the reproduction geometry. These studies cover a 

diverse range of inverse filtering designs57 and different instances of reverberant 

environments58 but their common finding is that virtual imaging in the horizontal 

plane remains to a great extent unaffected by the presence of discrete reflections and 

reverberation, with an increase being observed in the front-back confusion rate. On 

the other hand, virtual imaging in the median plane and in elevated directions is found 

to suffer in such conditions. 

These results are in accordance with the author’s experience from extensive informal 

listening tests using inverse realisations of the type discussed in this thesis. These tests 

consistently verify the fact that in reverberant conditions, imaging in the front half of 

the horizontal plane does indeed succeed in terms of the directional characteristics of 

the presentation but with increased localisation blur, erratic behaviour of the distance 

perception and audible colouration of the presented material. Conversely, 

presentations that succeed in creating imaging in the median plane, in the rear half of 

the horizontal plane and in elevated positions inside the anechoic chamber, fail in 

reverberant environments. The degree of failure seems to be graver when the plant 

                                                 
57 From those listed above, the only study which uses the same inverse filter design with regularisation 
as the one used in this thesis is that of Takeuchi (2001). 
58 In (Damaske 1971), (Gardner 1998) and (Sakamoto et al. 1982)  the subjective experiments were 
conducted in rooms of various reverberation times RT60. The same holds for (Köring and Schmitz 
1993) in which information is also given about the influence of the energy of the reflections relative to 
the energy of the anechoic part of the plant. In (Takeuchi 2001) the role of a single reflection is 
evaluated by use of the mirror image model implemented inside the anechoic chamber.   
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contains strong distinct reflections close to the direct transmission paths, something 

that is in general agreement with the results of Köring and Schmitz (1993). 

The aim of the discussion and the results presented in this section is to give an 

objective measure of the influence of reflections in the inversion accuracy. More 

specifically, we aim to determine the point after which the advantages of an 

accurately implemented inverse of the anechoic model of the plant c(n) are lost due to 

the presence of the reflections. In this view, we seek to determine the degree to which 

the design parameter requirements can be relaxed without any loss in the inversion 

quality. Following that, we examine the case where an accurate model of the plant 

with the reflections, denoted here as ĉ(n), is known and verify the conditions under 

which such a plant can be effectively inverted59. 

 

Figure 5-1: Plant with reflections, top and side view.  

                                                 
59 The model of the plant used for the determination of the inverse throughout this section (§5.2) 
contains the measured impulse responses cij(n) for indices 260 ≤ n ≤ 500. This length is the same both 
for the case where the anechoic model of the plant c(n) is used for the determination of the inverse and 
for the case where the model ĉ(n) containing the reflections is used for the determination of the inverse.  
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The experimental arrangement used to obtain the results of this section is the same as 

that described in §3.3, the only difference being that reflective surfaces are introduced 

in the plant. Three cases are implemented and are illustrated in figure 5-1. In the first 

case, a horizontal reflective surface is placed between the loudspeakers and KEMAR, 

corresponding to the case where the loudspeakers are on top of a table in front of the 

listener, eg on the sides of a pc monitor that is situated on a desk. In the second case, a 

vertical hard reflective surface is placed on the side of KEMAR correspond to the 

situation where the reproduction system is positioned next to a wall. The third case is 

implemented with both these surfaces in place60. 

In figure 5-2 we plot the measured impulse responses corresponding to the four 

different cases (anechoic, reflection due to the wall, reflection due to the table and 

reflections due to both the wall and the table). The initial parts of the measured 

impulse responses are identical and are hence not visible in the plot as they overlay. 

The first reflection to appear is that due to the wall and it can be seen to be stronger in 

the left ear responses. A simple geometric calculation shows that the path-length 

difference between the direct path and the wall-reflection path is approximately 25cm 

for the left ipsilateral response and approximately 72cm for the right ipsilateral 

response. At the sampling rate of 48kHz and with a speed of sound of 340m/s these 

path-length differences correspond to 36 and 67 samples. The delay for the 

contralateral paths lies between these two limits being approximately 50 samples for 

the left loudspeaker to right ear path, ĉwall,21(n), and 55 samples for the right 

loudspeaker to left ear path , ĉwall,12(n). These delays can be seen in figure 5-2 where 

the reflection due to the wall can also be seen to be lower in the right ear responses 

due to the head shadowing. In the case of the reflection due to the table, due to the 

symmetry of the geometry and the small 10o loudspeaker span, the path-length 

difference between the ipsilateral and the contralateral sides is very small and the 

effect of the head shadowing minimal. The path-length difference for all four 

responses is approximately 38cm, i.e. 55 samples, as is verified by the plotted results. 

The case where both the table and the wall reflections are present can also be seen in 

the figure as a combination of the two previous cases. 

                                                 
60 Where needed we specifically denote the plant model containing the wall, table or wall and table 
reflection with ĉwall(n), ĉtable(n) and ĉwall-table(n) respectively. 
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Figure 5-2: Measured impulse responses for the plants depicted in figure 5-1. 
Anechoic response (black line), response with the table in place (red line), response 
with the vertical reflective surface in place (green line), response with the table and 
the vertical reflective surface in place (blue line). 

As was said above, the first set of results in this section aims at demonstrating the 

effect of the presence of the reflections in the effectiveness of the inversion, when the 

inverse is determined on the basis of the anechoic measurement of the plant c(n). In 

figure 5-3 we plot the inversion results61 obtained using such an inverse and compare 

two cases: In the first (red line) the anechoic plant is inverted with a 2000-tap inverse 

and with the regularisation parameter set to the value β=10-4 whereas in the second 

                                                 
61 All the results presented in the section are obtained using the simulation procedure described in §3.5 
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(blue line) the anechoic plant is inverted with a 200-tap inverse and with the 

regularisation parameter set to the value β=10-2.  
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Figure 5-3: Simulated inversion results. The inverse is determined using the anechoic 
model of the plant c(n). The regularisation is set to β=10-4 and the inverse length to 
2000 taps (red line). The regularisation is set to β=10-2 and the inverse length to 200 
taps (blue line). In both cases the measured plant matrix describing the actual plant is 
the one containing the wall reflection. figure_23p2 

The presence of the reflection in the plant but not in the model used for the 

computation of the inverse can be seen to result in a rise of the error in the impulse 

responses. This rise in the error appears with a delay of about 35 samples relative to 

the pulse for the left side direct path. The delay is higher for the other paths with a 

highest value of 55 samples for the right-side direct path. It can also be seen to be 
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higher in level in the left-ear responses, for both the direct and the cross talk paths, 

compared to the right-ear responses. These effects are readily interpreted by 

inspection of equation (5-1) that describes the convolution of the inverse matrix h(n) 

determined on the basis of the anechoic plant matrix c(n) with the matrix ĉ(n) that 

represents the plant with the reflection: 

 
( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

ˆ

ˆ ˆ ˆ ˆ
ˆ ˆ ˆ ˆ

eq n n n

c n h n c n h n c n h n c n h n
c n h n c n h n c n h n c n h n

=

∗ + ∗ ∗ + ∗⎡ ⎤
= ⎢ ⎥∗ + ∗ ∗ + ∗⎣ ⎦

x c *h

 (5-1) 

As was discussed above (see also figure 5-2), the disturbance from the wall reflection 

in the plant’s impulse responses is more significant in the left-ear responses ĉ11(n) and 

ĉ12(n) whereas the deviation of the right-ear responses ĉ21(n) and ĉ22(n) from the 

anechoic responses c21(n) and c22(n) is much lower. Consequently the (1,1) and (1,2) 

elements of the matrix xeq(n) that correspond to the left-ear equalised responses will 

deviate significantly from the desired form (i.e. delta-spike and zero respectively). 

Conversely the disturbance in the right-ear (2,1) and (2,2) elements of xeq(n) will be 

lower. Furthermore, we see from the form of the elements of the matrix xeq(n) in 

equation (5-1) that the point at which the deviation from the desired form starts in the 

equalised responses, is determined by the point in which the terms ĉij(n) deviate from 

the anechoic responses cij(n). More specifically, the point where the rise in the 

inversion error should appear in the (1,1) and (1,2) elements xeq(n) will be the point at 

which ĉ11(n) deviates from c11(n), since this point comes earlier than the point at 

which ĉ12(n) deviates from c12(n). Similarly, the inversion error should appear in the 

(2,1) and (2,2) elements of xeq(n) at the point where ĉ21(n) deviates from c21(n). This 

is in accordance with the 35 and 55 samples of delay between the pulse and the rise in 

the inversion error noted above. 

Despite the significant increase in the inversion error, both in terms of the ipsilateral 

equalisation and in terms of the cross-talk cancellation, the characteristics of the time-

domain results of figure 5-3 do not bear evidence for a major degradation of the 

perceptual impression of the listener. The rise in the error in the direct paths is 

physically bound to appear after the equalisation pulse. For the level and delay 

interval at which it appears in figure 5-3 it will be masked and integrated with the 

equalisation pulse as single auditory event occurring at the time of the pulse. We note 
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that the level of the error relative to the main pulse shown in the results of figure 5-3 

is the highest we should expect to occur due to a side reflection since in this case the 

hard reflective surface was placed only 55cm from the listener’s head. In realistic 

situations a side-wall would probably be further away. In such a case the error due to 

the reflection would be further delayed but also further attenuated and hence equally 

or more susceptible to temporal masking. The level of cross-talk cancellation suffers 

the severest degradation and can be seen to be around 10dB and 20dB for the two 

contralateral paths at the point of the equalisation pulse (the corresponding level for 

the anechoic inversion case of figure 4-12 was 30dB). Again, in realistic situations 

where the reflective surface is further away from the listener the cross-talk 

cancellation level would increase. 

As regards the comparison between the β=10-4 and β=10-2 cases we see that, in 

agreement with the results of §4.3, the increase in the value of β results in an increase 

of the target level of equalisation and thus of the dynamic range of the inversion. 

Unlike the cases discussed in §4.3 however, the smearing of the equalisation pulse 

due to the increase in regularisation is in this case of minimal significance compared 

to the error components due to the presence of the reflection. Additionally, the 1000 

taps corresponding the non-causal part of the inverse filters are not enough to 

completely suppress the truncation end-effect that can be seen to be approximately 

50dB below the equalisation level for the β=10-4 case. Conversely, in the β=10-2 case 

100 taps are enough to totally suppress the non-causal end-effect. 

As was shown in §4.3, the effect of the introduction of regularisation is more visible 

in the frequency domain where the smearing of the equalisation pulse translates to 

gradual deterioration of the ipsilateral equalisation quality and rise of the cross-talk 

transmission in certain frequency regions. The comparison of the β=10-4 (2000-tap) 

and β=10-2 (200-tap) implementations in the frequency domain is shown in figures 

5-4, 5-5 and 5-6 for the cases of the reflection due to the wall, the table and both the 

table and the wall respectively. 
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Figure 5-4: Simulated inversion results. The inverse is determined using the anechoic 
model of the plant c(n). The regularisation is set to β=10-4 and the inverse length to 
2000 taps (red line). The regularisation is set to β=10-2 and the inverse length to 200 
taps (blue line). In both cases the measured plant matrix describing the actual plant is 
the one containing the wall reflection.figure_23p1 

As should be expected, the common feature in all three cases is that the increased 

regularisation penalty of β=10-2 results in a gradual loss of control for the low 

frequency range below 200Hz compared to the β=10-4 case. This effect however 

should be considered to be of minimal importance compared to the general 

degradation of the control effectiveness especially in the case of the table and wall 

reflection of figure 5-6 in which the overall inversion results are very poor.  
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Figure 5-5: Simulated inversion results. The inverse is determined using the anechoic 
model of the plant c(n). The regularisation is set to β=10-4 and the inverse length to 
2000 taps (red line). The regularisation is set to β=10-2 and the inverse length to 200 
taps (blue line). In both cases the measured plant matrix describing the actual plant is 
the one containing the table reflection. figure_24p1 

In all cases the ipsilateral equalisation can be seen to suffer and with the exception of 

the right ipsilateral path in the table reflection case, the degree of degradation is the 

same for both the β=10-2 and the β=10-4 cases. Similarly, the level of cross-talk 

cancellation is significantly reduced in comparison with the anechoic results of 

chapter 4 and confined to the frequency region above 1kHz for the table reflection 

case and in the interval from 2kHz to 7kHz for the wall and table-wall reflection 

cases. With the exception of a small interval around 150Hz for the wall and table-wall 
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reflection cases and of the region below 1kHz for the table reflection case, the level of 

cross-talk cancellation is again identical for the β=10-2 and the β=10-4 cases. 
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Figure 5-6: Simulated inversion results. The inverse is determined using the anechoic 
model of the plant c(n). The regularisation is set to β=10-4 and the inverse length to 
2000 taps (red line). The regularisation is set to β=10-2 and the inverse length to 200 
taps (blue line). In both cases the measured plant matrix describing the actual plant is 
the one containing the reflections due to both the table and wall. figure_25p1 

Overall then, the conclusions drawn from the results presented in figures 5-3 – 5-6 are 

as follows. The time-domain cues are delivered to a reasonable extent despite the 

presence of the reflections. Taking into account that these cues are the dominant 

source of information for localisation in the front half of the horizontal plane, the 

results of figure 5-3 offer a quantitative explanation of the fact that localisation in the 
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front horizontal plane is to a large extent unaffected by the presence of reflections. 

The level of cross-talk cancellation is affected to a greater extent. This amounts to a 

reduced ability to imitate the interaural level differences due to the head shadowing at 

directions well to the side of the listener. It should thus result in a shift of virtual 

images placed at the sides of the listener towards the median plane. Similarly, the 

spectral cues are severely distorted as can be seen in the ipsilateral equalisation results 

with clearly visible comb effects appearing in all three cases. It is worth taking into 

account the findings of Blauert (1996) regarding the “directional bands” and “boosted 

bands” and their role in front-back discrimination and localisation in the median 

plane. We expect this failure of the ipsilateral equalisation to be responsible for the 

aforementioned degradation of the virtual imaging in the median plane and the front-

back reversals in the presence of reflections. 

As far as the parameters of the design of the inverse are concerned, the results show 

that the degradation due to the presence of the reflections is such that the use of a 

more accurate inverse does not translate into any significant improvement of the 

inversion results. The heavier penalisation of the control effort effected by setting β 

equal to 10-2 yields the same inversion accuracy with the β=10-4 case, offering at the 

same time a dynamic range that is approximately 20dB higher and requiring less than 

1/10 of the taps needed to adequately suppress the truncation end-effects.  

Finally, we examine the case where an accurate model of the plant containing the 

reflections is available. In figures 5-7 and 5-8 we plot and compare the inversion 

results obtained for the anechoic plant and the plant with the table and wall reflection. 

Both plants are inverted with the regularisation parameter set to the value β=10-4. The 

length of the inverse is set to 2500 taps (1000 causal and 1500 anticausal) for the 

anechoic case and 10000 taps (6000 causal and 4000 anticausal) for the case with the 

reflections. As can be seen in figure 5-7, when the plant model with the reflections is 

used for the determination of the inverse, equalisation and cross-talk cancellation 

equivalent to that of the anechoic case can be obtained. As is shown in figure 5-8 

however, in order to obtain these equivalent inversion results and to suppress the end-

effects at the same level as for the anechoic case, we have to use more than four times 

the number of coefficients for the inverse filters. 
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Figure 5-7: Simulated inversion results. The inverse is determined using the anechoic 
model of the plant c(n). The regularisation is set to β=10-4 and the inverse length to 
2500 taps. The measured plant matrix describing the actual plant is the anechoic one 
(red line). The inverse is determined using the model of the plant containing the 
reflections ĉwall-table(n). The regularisation is set to β=10-4 and the inverse length to 
10000 taps. The measured plant matrix describing the actual plant is the one 
containing the reflections due to the table and the wall (blue line). figure_27p1 
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Figure 5-8: Simulated inversion results. The inverse is determined using the anechoic 
model of the plant c(n). The regularisation is set to β=10-4 and the inverse length to 
2500 taps. The measured plant matrix describing the actual plant is the anechoic one 
(red line). The inverse is determined using the model of the plant containing the 
reflections ĉwall-table(n). The regularisation is set to β=10-4 and the inverse length to 
10000 taps. The measured plant matrix describing the actual plant is the one 
containing the reflections due to the table and the wall (blue line). figure_27p2 

A last point that deserves to be made concerning the inversion of the plant with the 

reflections, is that the presence of the reflections adds maximum phase zeros in the 

responses comprising the plant. The relation of reflections and the phase 

characteristics of room responses was long ago investigated by Neely and Allen 

(1979)  who by use of synthesised responses it showed that the maximum phase zeros 

start to appear when the reflections increase in strength and move closer to the direct 
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path between the source and the receiver. The presence of maximum phase zeros in 

KEMAR HRTFs measured in anechoic conditions was shown by Gardner (1998) to 

be restricted to frequencies above 6kHz and was attributed to reflections of the pinnae 

that become adequately energetic only in that frequency region. The non-minimum 

phase character of HRTFs of human subject was also examined by Møller et al. 

(1995b) who also found that, in general, human subjects’ HRTFs are non-minimum 

phase. A few examples of the phase of the all-pass component of such responses is 

presented in that reference in which the maximum phase zeros indeed appear above 

6kHz, but no mention is made as to if this holds for all the responses measured by 

those researchers. 

In figure 5-9 we plot the unwrapped phase of the all-pass component of the measured 

responses of the anechoic plant and the three plants with the reflections. In the same 

figure we plot the unwrapped phase of the all-pass component of the free field 

responses of the left and right loudspeakers positioned at the same points used for the 

control and measured with KEMAR removed from the plant and a microphone placed 

at the position of the centre of its head. The results of figure 5-9 were obtained by 

decomposing the measured responses (after windowing out the initial delay part) into 

a minimum-phase and an all-pass component (Oppenheim and Schafer 1975, ch. 7). 

The maximum phase zeros appear thus as 2π negative jumps in the phase curves of 

figure 5-9 (Proakis and Manolakis 1992, §5.4.5). 

As can be seen in the figure, the maximum phase zeros of the anechoic plant that are 

not present in the free-field response (and are thus introduced by the measurement 

apparatus) indeed appear above 6kHz, at approximately 12kHz for the left ear 

responses and 8kHz and 13kHz for the right ear responses. More maximum phase 

zeros, spread across the spectrum, start to appear in the responses of the plants 

containing reflections. The maximum phase part of the right ear responses is 

unaffected by the presence of the wall as should be expected since the influence of the 

wall on the right ear responses not very energetic. Thus the maximum phase curve of 

the right ear responses is identical for the anechoic and wall reflection cases and also 

for the table and the wall and table reflections cases. On the other hand the presence 

of the wall introduces a number of maximum phase zeros on the left ear responses 

that are not present in the anechoic or the table reflection cases. The maximum phase 



Chapter 5 – Objective evaluation of inverse filtering – Inversion efficacy under non-ideal conditions 

 143

zeros due to the reflection off the table are roughly equal in number in all four 

responses. 
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Figure 5-9: Excess phase part of the measured plant responses. Anechoic responses 
(black line), responses with wall in place (dashed green line), responses with table in 
place (dashed red line), responses with wall and table in place (blue line), free-field 
responses of the loudspeakers (dashed magenta line). figure_28 

5.3 Listener position misalignment 

In this section we focus our interest on a second source of error in the inversion 

process, namely the imperfect positioning of the listener. The influence of the 

listener’s position misalignment in the accuracy of the inversion has previously been 
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investigated by Gardner (1998), Rose (2004)62 and Takeuchi (2001). The basic 

finding in these studies is that a displacement of the head by only a few centimetres is 

enough to severely degrade the accuracy of the inversion and the recreation of the 

localisation cues. This is shown on the basis of simulated inversion results in which 

the plant corresponding to the disturbed geometry is approximated by means of 

interpolation between the closest available measured responses. A positioning error of 

such magnitude is shown to be enough to significantly degrade the intended 

localisation properties of the perceived sound impression, something that is validated 

in those studies on the basis of subjective experiments. For symmetrical reproduction 

geometries such as the one discussed here, the degradation of the inversion is shown 

to be worse for misalignment along the left-right direction (i.e. along the interaural 

axis) and much more tolerable in the front-back direction. In (Takeuchi 2001), the 

results show an overall better performance for the Stereo Dipole geometry compared 

to the wider source-span geometries. Earlier studies that investigate the influence of 

listener position misalignment based solely on subjective experiments include those of 

Damaske (1971) and Sakamoto et al. (1982) while measured results of the influence 

of positioning misalignment in a free-field reproduction setup (no head present) are 

presented by Nelson et al. (1992). In a very recent study, Nelson and Rose (2005) 

offer a detailed analytical formulation that describes the effect of misalignment on the 

inversion accuracy which is again based on a free-field model of the reproduction 

arrangement. 

Again, following the general objective of the analysis presented in this chapter, the 

results of this section aim to quantify the influence of this element of error in 

comparison to the inversion results under ideal conditions presented in the previous 

chapter. More specifically we aim to determine the extent of misalignment for which 

the utilisation of the full-frequency-range inverse under investigation is justified. To 

this end, the same experimental arrangement was used as that described in §3.3. The 

arrangement was slightly modified by placing the two loudspeakers on a small board 

that could be slid in the left-right direction on top of a frame. The frame was covered 

with foam to minimise reflections. The movement of the loudspeakers was (manually) 

controlled by means of low gear-ratio threaded shaft. The precision of the loudspeaker 

positioning was less than 0.5mm. 
                                                 
62 Being published very recently, this reference has not been fully reviewed by the author. 
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In this way, measurements were made of the plant models corresponding to the same 

axisymmetric geometry as in chapter 4 as well as of the plant models resulting from 

the left and right displacements of the loudspeakers by 2mm up to a maximum of 

20mm. The same measurement procedure was repeated for increments of 2cm up to a 

maximum of 10cm63. Inverse models of the properly aligned plant models C190 and 

C1740 were computed and the inversion results were then obtained by simulating the 

inversion process as described in §3.5, i.e. by convolving the inverse models the 

3000-coefficient full-length measured model of the plant for the various misaligned 

positions. Following the results of the studies mentioned above, according to which 

the inversion accuracy is mostly influenced by the lateral misalignment along 

interaural axis, we restrict the investigation to this case of misalignment. 

Figure 5-10 shows the degradation of the crosstalk cancellation and ipsilateral 

equalisation as the loudspeakers are moved from the 0mm to the 20mm position to the 

right in 4mm increments (i.e. the listener is moved in equal increments to the left). For 

these results, the inverse filters are computed on the basis of the C190 model of the 

plant with their length set to 4000 coefficients and the regularisation to the value 

β=10-4. As seen in the figure, the degradation increases at higher frequencies where 

the corresponding wavelength becomes comparable with the amount of the path 

lengths’ derangement in the misaligned plants. These results are in general agreement 

with the related analytical estimation of Gardner (1998). Overall, as can be seen in the 

figure, both the ipsilateral equalisation and the cross-talk cancellation are still 

effective for a 2cm displacement but only up to approximately 10kHz. Above that 

frequency a 2cm displacement renders the inversion practically pointless. 

                                                 
63 The second series of measurements (0cm to 10cm in 2cm increments) was made with essentially the 
same setup but in the small anechoic of ISVR. This is a semi-anechoic chamber with rigid floor which 
can be covered with sound absorbing cones. For the measurements we covered the floor with sound 
absorbing cones. However the covering could not be perfect and hence a more energetic decay tail was 
present in the measured responses. This accounts for the slight difference between the zero 
displacement results of figures 5-17 and 5-18 shown below. 
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Figure 5-10: Simulated inversion results for listener misplacement up to 20mm to the 
left in 4mm increments. The inverse is determined using the strictly anechoic model 
of the plant C190 for the 0mm position. The regularisation is set to β=10-4 and the 
inverse length to 4000 coefficients. figure_29(‘trois4page’) 

Note the systematic pattern of error in the misaligned results. This is more visible in 

the linear frequency axis plot of figure 5-11 and particularly in the equalisation results 

of the ipsilateral paths. These demonstrate a systematic fluctuation above and below 

the ideal equalisation line that increases with increasing misalignment. A number of 

points along the frequency axis can be identified for which the equalisation error is 

constantly kept equal to zero. These are at approximately 5kHz, 10kHz and 15kHz for 

the left-side ipsilateral path and at approximately 6kHz, 12kHz and 18kHz for the 

right-side ipsilateral path. Maximal deviations from the ideal occur between these 
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frequencies. The pattern is not easily identifiable in the cross-talk paths where the 

cross-talk cancellation reduction pattern is superimposed in the already fluctuating 

pattern of the non-misaligned result. However an increase of the error as frequency 

increases is clear visible.  
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Figure 5-11: Simulated inversion results for listener misplacement up to 20mm to the 
left in 4mm increments. The inverse is determined using the strictly anechoic model 
of the plant C190 for the 0mm position. The regularisation is set to β=10-4 and the 
inverse length to 4000 coefficients. Linear frequency axis. figure_29linx(‘trois4page’) 
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Figure 5-12: Simulated inversion results for listener misplacement up to 20mm to the 
right in 4mm increments. The inverse is determined using the strictly anechoic model 
of the plant C190 for the 0mm position. The regularisation is set to β=10-4 and the 
inverse length to 4000 coefficients. Linear frequency axis.figure_30linx('trois4page') 

The pattern of figure 5-11 is exactly reversed in figure 5-12 where we plot the 

inversion results for the same case but with the listener’s position misaligned to the 

right this time. As is seen in the figure, the fluctuation around the ideal equalisation 

line is reversed between the left and right ipsilateral channels. The same is true for the 

distribution of the “node” frequency points, with the 5kHz, 10kHz, 15kHz sequence 

appearing now in the left-side ipsilateral path and the 6kHz, 12kHz, 18kHz sequence 

in the right-side ipsilateral path. 
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The error pattern of figures 5-11 and 5-12 is readily interpreted by use of the 

following analysis. When the listener moves away from the ideal position, the plant 

changes from the originally measured model C to a disturbed model Ĉ. For small 

amounts of misalignment, each one of the responses Ĉij(z) in the disturbed model Ĉ 

should be approximately equal to a delayed (or advanced) and attenuated (or 

amplified) version of the corresponding response Cij(z) in the original model C 

depending on whether the specific path length is increased or decreased by the 

misalignment. Hence, denoting with dij the delay in (fractional) number of samples 

and with aij the attenuation ratio due to spherical spreading, we have 

 ( ) ( )11ˆ d
ij ij ijC z a z C z−�  (5-2) 

Using a typical value of 15cm for the interaural distance, a simple geometrical 

analysis shows that the maximum absolute path length change is equal to 2.87mm and 

occurs in the contralateral paths in the ±20mm misalignment cases. Even in that 

extreme case, the path length ratio between the non-misaligned and the misaligned 

case is equal to 1517.154mm/1514.284mm and corresponds to an attenuation (or 

amplification) by a factor of 1.0019. The corresponding ratios for the cases of smaller 

misalignment will be even lower. Hence, in equation (5-2), it is safe to approximate 

the geometrical spreading constants aij with unity and ignore them64. 

Taking into account the symmetry of the geometry about the interaural axis and the 

small loudspeaker angle span considered here, an additional approximation can be 

made. That is, the ipsilateral path responses C11(z) and C22(z) can be considered to be 

approximately equal to each other 

 ( ) ( )11 22C z C z�  (5-3) 

and the same will hold for the contralateral responses C12(z) and C12(z) 

 ( ) ( )12 12C z C z�  (5-4) 

Furthermore, the contralateral responses can be approximated by a scaled and delayed 

version of the ipsilateral responses 
                                                 
64 The validity of this approximation is verified by the agreement of the results presented below with 
the measured results. 
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 ( ) ( )iad
ij sh iiC z a z C z−�  (5-5) 

In equation (5-5), the constant65 ash corresponds to two physical effects; one being the 

attenuation of the contralateral response due to the longer path travelled from the 

source to the contralateral ear and the other being the shadowing effect of the head. 

The symbol dia denotes the delay corresponding to the path length difference between 

the contralateral and the ipsilateral paths, again in fractional number of samples. 

Returning then to the inversion process we see that, in the case where the listener has 

moved from the correct position, the inversion process will be described by the 

convolution of the plant matrix Ĉ that corresponds to the misaligned geometry with 

the inverse matrix H that is determined on the basis of the non-misaligned plant 

matrix C. Hence, equation (1-6) becomes 

 

( ) ( )

11 11 12 21 11 12 12 22

21 11 22 21 21 12 22 22

ˆ

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ

eq z z

C H C H C H C H

C H C H C H C H

=

⎡ ⎤+ +
= ⎢ ⎥

+ +⎢ ⎥⎣ ⎦

X C H

 (5-6) 

and substituting from equation (2-14) we obtain 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
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⎢ ⎥
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X  (5-7) 

Substituting the approximations of equations (5-2) – (5-5) into equation (5-7) and 

after some rearrangement we obtain 
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65 In higher loudspeaker angle span geometries, the shadowing of the head varies significantly with 
frequency. In such a case the approximation of the head shadowing with a constant may not be well-
suited. As is further discussed below, this is one of the issues related to the material presented in this 
section that is left as further work. 
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In figures 5-13 and 5-14 we plot the frequency response of the equalisation matrix Xeq 

that is described in equation (5-8) for listener misalignment of 20mm to the left and 

right respectively. For the results of these figures, the values of the fractional delays 

dij are calculated by a simple geometric analysis using the typical value of 15cm for 

the interaural distance, the value of 340m/s for the speed of sound and the value of 

48kHz for the sampling rate. The values of ash and dia on the other hand, are estimated 

by use of the measured model of the plant C in the non-misaligned position. 

The delay dia is estimated by upsampling the measured responses cij from one 

loudspeaker to the two ears by a factor rfs to obtain the upsampled versions ijc�  and 

subsequently computing the index of the maximum value of the cross-correlation 

function between the upsampled responses. That is, the estimated value of dia is the 

value of n0 that maximises the expression of equation (5-9) divided by the upsampling 

factor rfs. 

 ( ) ( )
0

0
0 0with  such that maxia ij jjnfs n

nd n c n n c nr
⎧ ⎫= +⎨ ⎬
⎩ ⎭
∑ � �  (5-9) 

For the results presented here an upsample factor of 10 was used which gives a 

maximum resolution of 1/10 of a sample. The delay computed with this method was 

equal to 1.6 samples for the responses from the left loudspeaker and 2.6 samples for 

the responses from the right loudspeaker. The large difference between the two values 

is probably due to a deviation of our non-misaligned arrangement from the 

axisymmetric geometry but also due to the asymmetry present in the responses of the 

KEMAR dumy-head (see the discussion in p. 114). For the results of figures 5-13 and 

5-14 we used the average of the two values, dia = 2.1 samples. 

The shadowing factor ash was estimated as the square root of the ratio between energy 

in the strictly anechoic part of the responses for the two ears66. 

                                                 
66 Another method for the estimation of the shadowing factor would be to find the value of ash that 
minimises the quantity cij(n)-ashcjj(n) in the least squares sense after cjj(n) was (fractionally) delayed by 
dia samples. However, the results obtained with the value estimated by equation (5-10) are in good 
agreement with the measured results so the issue was not pursued further. 
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The value obtained by substituting the left-source binaural pair [c11(n) c21(n)] into 

equation (5-10) was ash = 0.7 whereas the right-source binaural pair [c22(n) c12(n)] 

yielded the value ash = 0.75. The average value ash = 0.725 was used. 
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Figure 5-13: Inversion results as estimated by equation (5-8) for listener 
misplacement up to 20mm to the left in 4mm increments. figure_81('trois4page') 
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Figure 5-14: Inversion results as estimated by equation (5-8) for listener 
misplacement up to 20mm to the right in 4mm increments. figure_82('trois4page') 

The results of figures 5-13 and 5-14 can be seen to capture the error pattern of figures 

5-11 and 5-12 very accurately67 and hence completely validate the analysis presented 

above. More specifically, the characteristics of the fluctuation of the ipsilateral 

equalisation above and below the ideal, properly aligned, result that were described 

above are exactly replicated. As regards the cross-talk paths, a peak in the error can be 

seen at approximately 11kHz. This corresponds to a very well documented result 

                                                 
67 Note that in order to make the analytical results of figures 5-13 and 5-14 directly comparable with 
the measured results of figures 5-11 and 5-12, we have introduced in the calculation of equation (5-8) a 
scaling factor equal to the normalisation (see p. 63) applied to the inversion results of 5-13 and 5-14. 
Note also that in the non-misaligned case, the analytical model predicts perfect cross-talk cancellation 
of -∞dB and is thus not plotted in the results. 
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(Kirkeby et al. 1998a), (Nelson and Rose 2005), (Takeuchi et al. 2001) regarding the 

“ringing frequency” of the Stereo Dipole geometry, i.e. the first point along the 

frequency axis (after the zero frequency point) where the inversion for this particular 

loudspeaker angle span becomes ill-conditioned. As is explained in those works, the 

effect of the misalignment should be expected to have the severest impact at the 

frequency regions where the inversion becomes ill-conditioned. Hence, by placing the 

first ill-conditioned frequency of the audio range as high as 11kHz the Stereo Dipole 

geometry is found to be more robust to errors due to misalignment and hence yield a 

larger sweet-spot. This, of course, comes at the expense of a more severe impact of 

the zero frequency ill-conditioned region (see the discussion in §4.5) which, however, 

does not affect the system’s robustness to misalignment error. 

Hence the measured and analytical results presented here are in very good agreement 

with the aforementioned works68. However, the results presented here offer an 

additional element of information to the relevant analysis. That is, unlike those 

previous works in which the analysis is founded on the free-field approximation of the 

inversion process, the analysis presented here incorporates the effect of the shadowing 

due to the presence of the listener. This was done by virtue of the ash parameter. Only 

with the inclusion of this element do the analytical results coincide so well with the 

measured results. 

This is demonstrated with the results of figure 5-15 in which we plot the evaluation of 

equation (5-8) with the parameter ash set to the value predicted solely by the spherical 

spreading effect. In that case the path length ratio between the ipsilateral and 

contralateral paths (and hence the estimated value of ash) is calculated geometrically 

to be equal to 0.99. The interaural sample delay is again set to the value dia=2.1 

samples as the results obtained with the value calculated geometrically where in 

worse agreement with the measurement results.  

                                                 
68 In fact, the analytical approximation presented in equations (5-2) – (5-8) essentially amounts to an 
algebraic reformulation of the detailed analysis previously presented by Nelson and Rose (2005). 
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Figure 5-15:  Inversion results as estimated by equation (5-8) for listener 
misplacement up to 20mm to the left in 4mm increments. The head-shadowing 
parameter ash is set to the value 0.99 and the interaural sample delay to dia is set to 2.1 
samples. figure_83('trois4page') 

Clearly, the results of figure 5-15 demonstrate the same physical effect as the ones of 

figures 5-11 – 5-14. However, they are seen to exaggerate the effect of the ill-

conditioning to the extent that they imply the complete breakdown of the inversion. 

This, however, is not true since the effect of the shadowing of the head was seen 

above to considerably abate the undesirable effect of the ill-conditioning both in the 

ipsilateral equalisation and in the cross-talk cancellation. We believe that this 

observation could have interesting implications as regards the actual effect of the ill-
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conditioning in other loudspeaker angle span geometries also. However the complete 

investigation of this issue is left outside the scope of this thesis.  
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Figure 5-16: Simulated inversion results for listener misplacement up to 20mm to the 
left in 4mm increments. The inverse is determined using the C1740 model of the plant 
for the 0mm position. The regularisation is set to β=10-4 and the inverse length to 
10000 coefficients. figure_66(‘trois4page’) 

We now return to the original question posed in the beginning of this section, namely 

that of the comparison of the results obtained in the presence of misalignment error 

with those obtained under ideal conditions in the previous chapter. A further set of 

results is presented in figure 5-16. These depict the case where the inverse is 

determined on the basis of the C1740 model of the plant. Following the conclusions 
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drawn from §4.2, the regularisation is set to β=10-4 and the inverse length to 10000 

coefficients. As is seen in the figure, the advantage of the ipsilateral equalisation with 

this H1740 inverse model compared to that of the H190 model of figure 5-10, is retained 

up to approximately 7kHz even for the 20mm displacement case. Conversely, the 

cross-talk cancellation efficiency drops very fast (even from the 4mm displacement 

case) to approximately the same level obtained by the H190 model. It thus becomes 

clear that the use of a very accurate inverse model such as H1740 can be of practical 

interest only when the positioning accuracy of the reproduction arrangement is 

guaranteed to be in the order of no more than a few millimetres. No results are 

presented for higher regularisation values, as such an arrangement would primarily 

influence the low frequency region which as is seen is behaving very well for 

reasonably small positioning errors. 

A final set of results is presented in figures 5-17 and 5-18 where we plot the inversion 

results for a listener misalignment of up to a maximum of 10cm to the left and right in 

2cm increments. The asymmetry in the increase of the introduced delays in the 

misaligned plant is reflected in a consequent asymmetry in the cross-talk cancellation 

degradation. As can be seen in figure 5-17, the cross-talk from the right loudspeaker 

to the left ear remains substantially lower than the left side ipsilateral transmission 

even for the 10cm misalignment. Conversely, the cross-talk from the left loudspeaker 

to the right ear reaches the level of the right side ipsilateral transmission already for 

an 8cm misalignment. The situation is, naturally, reversed in the results of figure 5-18 

where the misalignment of the listener to the right is considered.  
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Figure 5-17: Simulated inversion results for listener misplacement up to 10cm to the 
left in 2cm increments. The inverse is determined using the strictly anechoic model of 
the plant C190 for the 0cm position. The regularisation is set to β=10-4 and the inverse 
length to 4000 coefficients. figure_67(‘trois4page’  
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Figure 5-18: Simulated inversion results for listener misplacement up to 10cm to the 
right in 2cm increments. The inverse is determined using the strictly anechoic model 
of the plant C190 for the 0cm position. The regularisation is set to β=10-4 and the 
inverse length to 4000 coefficients. figure_68(‘trois4pag 

Overall, the results of figures 5-17 and 5-18 show that a small amount of cross talk 

cancellation is still achieved in the mid-frequency region for up to 6-8cm of left-right 

misalignment. Note that in the Stereo Dipole geometry used here there is practically 

no natural head-shadowing (see figure 4-22). So even such a slight amount of cross-

talk cancellation can achieve some widening of the soundstage presented by the 

loudspeakers compared to their physical positioning. This, however, comes with a 

severe colouration of the ipsilateral paths and cross-talk spill-over at higher 

frequencies. Even though the use of a non-individualised plant model should be 
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expected to make the influence of misalignment less clear-cut, both these effects have 

been verified in informal listening tests of the author with material presented with 

non-individualised inverse filters over the Stereo Dipole arrangement in anechoic 

conditions. 

In conclusion then, the results of this section make apparent that a misalignment of 

2cm renders the inversion of the frequency region above 10kHz pointless. Such 

misalignment will most probably exist in implementations without tracking of the 

listener’s position in real-time. Hence, in such applications, a band-limited 

implementation of the inverse could reduce the complexity of the problem without 

any perceptible degradation of the performance. The inversion of the model of the 

plant containing the full decay of the measured responses (in this case C1740) does 

indeed achieve an improvement in the ipsilateral equalisation (comparison of figures 

5-10 and 5-16) that is retained in the mid-frequency frequency region up to about 

8kHz for a reasonably large amount of listener misalignment. The advantage in terms 

of the cross-talk cancellation is on the other hand lost when the misalignment exceeds 

a limit of approximately 4mm. Such a fine spatial resolution is challenging to achieve 

even when real-time head-tracking is implemented. On the other hand, the analysis of 

the error pattern in the misaligned results proves that if such accurate knowledge of 

the listener’s position is available, a simple geometrical calculation of the path length 

differences together with the inclusion of the head shadowing parameter (which can 

be deduced from the non-misaligned plant model) can very efficiently rectify the error 

due to the misalignment.  Such an implementation would only incur the scaling of the 

inverse responses by a constant and the introduction of appropriate fractional delay 

corrections (Laakso et al. 1996).  

5.4 Non-individualised plant model 

A third source of error in the inversion, that of the modelling of the plant with non-

individualised responses, is considered in this section. The influence of this element 

of error has been previously investigated Gardner (1998), Köring and Schmitz (1993) 
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and Takeuchi (2001)69. In (Gardner 1998), the restriction of the inverse filtering stage 

to the frequency range below 6kHz is seen to significantly reduce the influence of the 

use of a non-individualised plant model for the determination of the inverse. An 

analysis based on subjective experiments in (Takeuchi 2001) shows that the subjects’ 

set can be divided in a class of “good localisers” and a class of “bad localisers”. The 

use of KEMAR HRTFs for the determination of the inverse is shown to retain most of 

the presented material’s directional information in the first group of subjects and the 

contrary is shown for the second group. These findings are shown to be correlated 

with the degree of deviation of the individual subject’s HRTFs from those of 

KEMAR. The analysis is however restricted to the range up to 8kHz due to 

restrictions of individual HRTF measurement apparatus. Based again on subjective 

experiments, the results of Köring and Schmitz (1993) show that the reproduction is 

perceived as virtually perfect when individualised HRTFs are used in both the 

binaural synthesis and inversion parts of the design. On the other hand, a considerable 

degradation of the results is reported when this is not the case. No quantitative 

inversion results are presented in that study. 

As was the case with the previous sections, the objective here is to give a quantitative 

measure of the error introduced in the inversion achieved by the design under 

investigation, due to this element of error. To achieve this, one would ideally want to 

have knowledge of the full-length model of the plant resulting from a large number of 

different listeners. The convolution of this realistic model of the plant with an inverse 

computed on the basis of a plant derived from the HRTFs of a manikin (e.g. KEMAR) 

would isolate the actual degradation imposed by the use of the non-individual inverse 

model. 

Note that a process whereby an inverse H1 computed on the basis of one listener’s 

HRTFs is convolved with this same listener’s HRTF plant matrix C1 and the result 

C1*H1 is compared to the convolution of C1*H2 where H2 stands for the inverse 

computed on the basis of some other listener’s HRTF matrix is not very useful. In 

such a process, the result of C1*H1 would be virtually perfect whereas the result of 

C1*H2 would drop to a much more modest amount of inversion accuracy. This 

                                                 
69 It should be noted that a significant amount of literature exists regarding the associated issue of the 
use of individualised or non-individualised HRTFs in the binaural synthesis part of the problem (see 
also fn. 6). This is however outside the scope of this thesis.  
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deterioration however would by no means reflect the actual distance between the 

inversion quality in the two cases. As was extensively shown in chapter 4, in real-

world situations the inversion accuracy will be significantly lower than the one 

estimated by C1*H1 even when the individual set of HRTFs is known. This was 

specifically made apparent with the results of figure 3-8 where it was shown that the 

results of the convolution of the strictly anechoic part of the plant with the inverse are 

excessively optimistic compared to the actually achieved inversion results. 

Furthermore, as was shown with the results of figure 4-25, an additional element of 

error is imposed on the inversion when the inverse is computed on the basis of HRTFs 

rather than on the basis of a model of the plant that also incorporates the responses of 

the loudspeakers. 

It thus becomes apparent that the difference between the actual inversion accuracy 

when the inverse is computed on the base of individualised and non-individualised 

HRTFs should be much smaller than estimated by a process such as that described 

above. The exact objective therefore is to estimate the distance between the quality 

achieved when the individual HRTF-based inverse H1 is used to invert the actual 

plant and the one achieved when a non-individual inverse H2 (based on, say, 

KEMAR’s HRTFs) is used for the same purpose. 

Strictly speaking, to achieve such an objective one would need to have measurements 

of the full-length model of a set of individualised plants. Such a measurement has not 

been feasible during the course of the current research project. Hence a different 

approach has been taken that utilises an existing dataset available in the public 

domain. This is the CIPIC HRTF database (Algazi et al. 2001) that contains measured 

HRTFs of 43 human subjects and also two sets of KEMAR HRTFs fitted with the 

small and large pinna models. Thus, for the results presented, the inverse is 

determined of each one of these 45 HRTF-based plants70. Our measured 3000-

coefficients full-length model of the plant (downsampled to 44.1kHz to meet the 

sampling rate of the CIPIC database) is then convolved with each of the 45 inverse 

models. In simple terms this inversion process represents the case where KEMAR is 

presented with binaural material using our ISVR anechoic chamber reproduction 

arrangement with the inverse processing network designed on the basis of some other 
                                                 
70 In the results presented in this section the length of the inverse is always set to a high enough value 
to avoid the presence of truncation effects, typically a few thousand coefficients. 
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listener’s HRTFs. The additional amount of error introduced by this inversion process 

compared to the inversion designed using KEMARs own HRTFs is a good estimate of 

the additional amount of error that would be introduced in real conditions of 

reproduction to a listener due to the design of the inverse using KEMAR HRTFs. 

This is explained in equations (5-11) and (5-12). In these equations, with Cind and 

CKEMAR we denote the actual plants corresponding to an individual listener and 

KEMAR respectively. These contain the responses of the loudspeakers used for the 

reproduction and the late decay tail. Hence CKEMAR is well modelled with our full-

length 3000-coefficients measured model of the plant. With HRTF
indH  and HRTF

KEMARH  we 

denote the models of the inverse determined using the HRTF-based plant matrix 

corresponding to an individual listener and KEMAR respectively. Hence the error 

matrix quantity E(ω) in equation (5-11) corresponds to the amount of error 

superimposed on the inversion by the use of the non-individualised inverse HRTF
KEMARH  

instead of the individualised inverse HRTF
indH . This is the error quantity we would 

ideally want to measure but are not able to measure directly because we lack a set of 

measurements of Cind for different listeners. 

 
( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

HRTF HRTF
ind KEMAR ind ind

HRTF HRTF
ind KEMAR ind

ω ω ω ω ω

ω ω ω

= ⋅ − ⋅

⎡ ⎤= ⋅ −⎣ ⎦

E C H C H

C H H
 (5-11) 

Instead, the error quantity E� (ω) of equation (5-12) is that estimated by the simulation 

process described above. 
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ω ω ω ω ω

ω ω ω
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E C H C H
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�
 (5-12) 

We see that the two error quantities in equations (5-11) and (5-12), albeit not 

identical, are essentially of the same form. More specifically, we see that in both cases 

the error quantity is equal to the difference between HRTF
indH  and HRTF

KEMARH  left-

multiplied (or equally convolved in the time-domain) with the full-length model 

matrix of a given plant. Even though in equation (5-11) this is the plant matrix 

corresponding to the individual listener whereas in equation (5-12) it corresponds to 

KEMAR, the responses contained in these two matrices are roughly of the same form. 
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We thus expect the amount of error estimated by each one of these two expressions to 

be of approximately the same magnitude.  
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Figure 5-19: Simulated inversion results. The inverse is determined using a plant 
model containing KEMAR HRTFs from the CIPIC database with KEMAR fitted with 
the small pinna shape (red line) and the large pinna model (blue line). The 
regularisation is set to β=10-4. The inversion process is simulated by use of our 
measured full-length model of the plant. figure_71(‘trois4page’) 

The quantity CKEMAR· HRTF
KEMARH  described above is depicted in figure 5-19. In this figure 

we plot the results obtained from the above process using the two KEMAR plant 

models (small and large pinna shapes) from the CIPIC database. Simply speaking, 

these results correspond to the case where a listener (in this case KEMAR) has had 



Chapter 5 – Objective evaluation of inverse filtering – Inversion efficacy under non-ideal conditions 

 165

his/her HRTF database measured in an anechoic facility and then uses this database to 

process binaural material which is to be reproduced in another anechoic environment 

by a different audio setup. Such a scenario, which thus represents the realistic 

optimum when the individual HRTFs of the listener are known but the plant 

corresponding to the specific reproduction arrangement is not measured in situ, 

incorporates a number of error sources. These include (in a roughly ascending order 

of importance) the sampling rate conversion, the fact that the electroacoustic 

responses of the reproduction arrangement are not corrected (see the discussion in pp. 

115-120), the presence of measurement errors in the HRTF measurement and the 

probability of positioning discrepancies between the HRTF measurement geometry 

and the reproduction geometry. 

The last of these sources of error is probably the most important. For the case 

considered here the angles of the reproduction arrangement were identical with those 

of the HRTF measurement arrangement. On the other hand the CIPIC database 

HRTFs were measured with the measurement loudspeaker positioned 1m way from 

the centre of the listener’s head whereas in our reproduction arrangement this distance 

was slightly more than 1.5m. At this distance range, the plane wave local 

approximation to the spherical spreading can be appreciably erroneous and hence an 

increase of the distance can introduce error. This assumption is supported by the 

difference in the results corresponding to the small and the large pinna shapes at low 

frequencies. At a few hundred Hz the wavelength of the sound-field is in the range 

metres, so a variation of the plant by an object whose difference in shape is in the 

order of millimetres should not affect this frequency region. 

Moving then to the results of figure 5-19, we see that a significant amount of cross-

talk cancellation ranging from 5dB to more than 20dB is retained in the region from 

100Hz to 10kHz. The ipsilateral equalisation in this region displays an error of 

approximately ±5dB which should also be considered tolerable. Note that the broad 

peak in the 2-3kHz region is due to the fact the CIPIC HRTFs were measured at the 

entrance of a blocked ear canal whereas our plant model was measured at the position 

of the eardrum. The ear canal resonance, typically appearing as a broad peak in this 

region, is thus left uncorrected and it would not be present both measurements were 
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made at the same point along the ear canal71. For frequencies above 10kHz both 

cross-talk cancellation and ispilateral equalisation can be seen to fail. 

The collective comparison of the results of figure 5-19 with the results obtained with 

non-individualised inverse models are plotted in figures 5-20 and 5-21. In figure 5-20 

we plot the frequency response of the (1,1) element of the matrix CKEMAR· HRTF
indH  with 

HRTF
indH  derived from the set of 45 subjects’ HRTFs of the CIPIC database. KEMAR 

fitted with the small pinna shape is subject 165, so the last line of the figure is the 

same with the results (red line) of figure 5-19. Lines with minimal colour variation 

show subject cases were the left channel ipsilateral equalisation has succeeded despite 

the use of a non-individualised inverse model. Such a case is shown, for example, by  

the subject number 3 (first line in figure 5-20) which would correspond to the “good 

localisers” class described by Takeuchi (2001). A few more subjects (e.g. 9, 15, 58, 

124, 126 and 154) can be seen for which the use of a non-individualised inverse 

model seems to also work fairly well. On the other hand, in a few subjects (e.g. 33, 

51, 137 158) the equalisation seems to fail altogether. Those would correspond to the 

group of “poor localisers” of (Takeuchi 2001). Note that the measurement artefact due 

to the non-correction of the ear canal resonance is present in nearly all subject cases. 

In figure 5-21 we plot the ratio of the (1,2) over the (1,1) element of the matrix 

CKEMAR· HRTF
indH . This corresponds to the level difference (in dB) between the signal 

reaching the left ear from the left loudspeaker and the signal reaching the same ear 

from the right loudspeaker. The closer any line of the figure is to blue, the better the 

cross-talk cancellation is for that subject. Normally, the best result is seen for 

KEMAR fitted with the small pinna shape (subject 165) but a good level of cross-talk 

cancellation is retained for a number of other subjects too. Those largely coincide 

with those for which the ispilateral equalisation was also effective. In all cases 

however, as was should be expected from the results of figure 5-19, the inversion can 

be seen to be completely ineffective in the high frequency region above 8kHz or so. 

 

                                                 
71 For a detailed discussion on the issue of the optimal HRTF measurement position see (Köring and 
Schmitz 1993), (Møller 1992) and (Møller et al. 1995b). 
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Figure 5-20: Results of left channel ipsilateral equalisation. The inverse is determined 
using KEMAR HRTFs (subject 165) and with the regularisation set to β=10-4.figure_70(‘full 
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Figure 5-21: Results of right channel to left ear cross-talk suppression. The inverse is 
determined using KEMAR HRTFs (subject 165) and with the regularisation set to 
β=10-4.figure_72(‘fu 
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Figure 5-22: Simulated inversion results for subjects 165 (green line), 51 (blue line) 
and 3 (red line). The inverse is determined using KEMAR’s HRTFs (small pinna 
shape, subject 165). The regularisation is set to β=10-4. figure_73(‘trois4page’ 

A clearer depiction of two extreme instances of the results presented above is given in 

figure 5-22 where we plot the results obtained for subjects 3, 51 and 165 (KEMAR 

fitted with small pinna shape). As is seen in the figure, the use of non-individualised 

inverse seems to leave the inversion virtually uninfluenced for subject 3. This is 

hardly the case for subject 51 who should be expected to receive only a slight cross-

talk cancellation in the region of 200Hz to 1kHz and a large amount of colouration 

throughout the spectrum of the presented material. Assuming, however, that the 

analysis of equations (5-11)-(5-12) is correct, one would have to presume that even 

this level of inversion quality is enough to retain a small portion of the localisation 
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information in a binaural recording or a binaurally synthesised pair of signals. This is 

because, after an extensive record of demonstrations of such material to literally 

hundreds of visitors in ISVR, the author has never come across a single listener who 

failed to perceive virtual images from the “easy-to-achieve” directions, namely those 

in the front half of the horizontal plane. 

In conclusion then we see that in all case where the inverse is determined using a non-

individual HRTF model of the plant, the region above 8kHz is practically pointless to 

invert. This would even be true in the case where an individual HRTF model is known 

but not measured in situ. Further to that, the results show that a significantly large 

group of the CIPIC subjects can indeed be accommodated with the use of KEMAR 

based inverse. It is possible that the remaining cases could be classified in one or 

more different sets and that an equally satisfactory inverse representative could be 

found for each one of them. In such an event a set of, maybe as few as three or four, 

subject-representative HRTF database measurements could cover the entire 

population in terms of designing a satisfactory approximation to the ideal 

individualised inverse matrix. Finally we note that the results of figure 5-22 strongly 

suggest that the ample use of regularisation should be in order for the case of listeners 

like subject 51. Such a heavily regularised inverse should not at all degrade the 

already poor quality of the inversion and at the same time result in the associated 

benefits in terms of the design complexity discussed at length in chapter 4. On the 

other hand, such a choice could be damaging for cases like subject 3 in which the 

inversion is successful despite the use of a non-individualised inverse. This could be 

addressed in real-world implementations by the incorporation of a user-adjustable 

amount of regularisation that is set to the optimum value by means of trial-and-error. 

5.5 Conclusions 

In this chapter we expanded the evaluation of the inverse filtering design of §2.3 to 

cover a number of errors and approximations that are typically present in everyday 

reproduction situations. 

First we considered the case where the reproduction arrangement contains strong 

early reflections. It was shown that when a model of the plant is available that 
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contains the effect of these reflections, then their presence can be efficiently treated 

by the inverse and the inversion results can be of equivalent accuracy to that of the 

anechoic inversion. This, however, incurs an increased requirement in the inverse 

filters’ length. Conversely, if such early and strong reflections are ignored in the 

determination of the inverse, the quality of the inversion is dramatically influenced. 

The localisation cues that are mostly influenced are the monaural spectral cues the 

efficient delivery of which is determined by the accuracy of the ipsilateral 

equalisation. The failure to deliver these cues has as a result the ineffectiveness of the 

system in creating virtual images in the median plane and at the rear of the listener. In 

such an event, it was demonstrated that the best level of achievable inversion accuracy 

can be obtained with a very compact, heavily regularised model of the inverse and 

that any higher specification for the inverse is pointless. As a final point regarding the 

presence of reflections in the plant, we illustrated the fact that the presence of such 

early and strong reflections enhances the non-minimum phase character of the 

measured plant responses. 

Subsequently we considered the case where positioning error is present in the 

reproduction arrangement. The measured results verified an expected effect, namely 

that the high frequency part of the inversion begins to fail for positional errors of the 

order of a few millimetres. The error in the inversion exhibited a systematic pattern 

which was explained with the use of an analytical model. This analytical model was 

obtained by applying a slight modification to an already existing analysis of the 

inversion process. The excellent agreement between the measured results and the 

proposed analytical model shows that (if an accurate knowledge of the position of the 

listener is available) the error introduced by the misalignment of a few tens of 

millimetres can be efficiently alleviated by the introduction of fractional-sample 

delays and constant scaling in the inverse filters without any need to recalculate the 

inverse filters. The need for high spatial-resolution head-tracking for such an 

implementation was highlighted. When such high-resolution head-tracking is not 

available and consequently positional errors in the order of a few millimetres are 

inevitable, the results verify that the inversion of the region above 10kHz is not 

justified. The case of positional error of the order of a few centimetres was also 

examined. The measured results again verified a previously observed fact, namely 

that the sweet-spot size of the Stereo Dipole geometry for the creation of virtual 
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images in the frontal half of the horizontal plane extends to approximately ±8cm to 

the left and right of the listener. 

Finally, using data from the CIPIC database, we examined the effectiveness of the use 

of a non-individual HRTF model of the plant for the determination of the inverse. It 

was shown that a number of listeners are indeed well represented by the KEMAR-

based HRTF model while others are not. It is thus possible that a collective database 

of a few dummy-head measurements of various sizes and shapes could cover all 

individuals. On the other hand, as was also the case with the positioning misalignment 

type of error, the results showed that, even when individual HRTFs are used for 

transaural reproduction in anechoic conditions, the inversion of the frequency range 

above 10kHz is not justified. Hence there is considerable room for complexity 

reduction and computational savings if the inverse filtering design is implemented at 

lower sampling rates.   
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6 Recursive inverse models – 

Forward-backward time filtering 

 

6.1 Introduction 

In this chapter we present a method for the implementation of the inverse filter matrix 

H(z) with recursive filters. The fundamental difficulty in such a design is the fact that 

the determinant polynomial of the plant matrix is typically non-minimum phase, a fact 

long recognised in the literature (see also the discussion in §2.3.1). Hence, the 

recursive implementation that follows directly from the rational form of H(z) of 

equation (2-14) is non-realisable. Recursive implementations exist in the literature 

that overcome this difficulty by various approximations or reductions of the 

complexity of the problem. The aim of the work presented here, however, is the 

investigation of the possibility of a recursive design that follows the FIR inverse 

models of the previous chapter, copying thus the local sound field reconstruction 

results that were presented there. 

Some initial work on the possibility of such a recursive design of the filters 

comprising the inverse matrix H(z) was undertaken in a previous project by the author 

(Papadopoulos 2000). From that work it became apparent that the standard zero-pole 

form of a recursive filter fails to effectively model the rising anti-causal part of the 

inverse filters considered in our case. Hence, a different approach is taken in the 

method introduced in this chapter. More specifically, the transfer functions 

comprising the matrix H(z) are decomposed into two parts, one that is realisable in 

forward time and a second that is realisable in backward time. With this 

decomposition all the responses involved in the realisation of H(z) correspond to 

decaying impulse responses that can more naturally be modelled with recursive filters. 

As is shown in the following, this can indeed lead to more efficient implementations 

of H(z). 
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The technique of backward-time filtering appears in the literature mainly in 

association with the problems of zero-phase filtering (Czarnach 1982), (Gilbert and 

Morrison 1996), (Gustafsson 1996), (Powell and Chau 1990a), (Powell and Chau 

1990b), (Powell and Chau 1991) and subband signal coding and reconstruction in 

image processing (Chen and Vaidyanathan 1992), (Ramstad 1988). The details of its 

implementation are not covered however in any of the standard signal processing 

textbooks and we thus begin the presentation in this chapter by giving in §6.2 the 

related terminology and the basic formulae involved. In §§6.3–6.4 we describe how 

the technique is applied to the specific inverse filtering problem at hand and present a 

method for the numerical calculation of the transfer functions involved. In §6.5 we 

discuss a number of shortcomings associated with the basic formulation of the method 

and propose methods of improvement. Finally, in §6.6 we present and discuss the 

simulation results obtained when the method is used for the inversion of the plant 

matrix corresponding to the Stereo Dipole audio reproduction geometry. We begin the 

presentation in a single-channel context and subsequently we describe its application 

to the two-channel case. The formulation in this chapter assumes an off-line 

implementation of the method. A block processing algorithm the can be used for the 

on-line implementation of the method is presented in the next chapter. 

6.2 Convolution in backward time 

The basic idea behind the proposed inverse filtering technique is that, given a system 

with impulse response h(n) and an input signal x(n) the filtering of x(n) through h(n) 

can be implemented either in forward or in backward time. That is, one can either 

compute the convolution of the input time-series with the system’s impulse response 

to obtain the output y(n)=h(n)*x(n) or alternatively, assuming that the whole input is 

known beforehand, reverse both the input series and the system’s impulse response in 

time to get x̂(n) and ĥ(n)72, and after computing the convolution u(n)=x̂(n)*ĥ(n) 

reverse the outcome to acquire the same output as before: û(n)=y(n). As this process 

forms the basis of all the inverse filtering implementations described in the following, 

we give here its exact analytical formulation.  

                                                 
72 In what follows we use the ^ symbol to denote the reversal in time of a given sequence. 
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We introduce the following terminology, to which we adhere throughout the 

following discussion. For any given sequence x(n) of finite length73 N=N2-N1+1 that is 

non-zero for the interval N1 ≤ n ≤ N2 we associate the (N×1) vector x and the 

(N+M-1×M) Toeplitz matrix XM with M a given positive number, as in equation   

(6-1)74. We also use the symbols (·)T, (·)R and (·)C to denote the transposition, reversal 

of rows and reversal of columns of the matrix or vector in the brackets. 
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We can then see that, for a finite length signal x(n) which is non-zero in the interval 

N1 ≤ n ≤ N2 and a finite length impulse response h(n) which is non-zero in the interval 

M1 ≤ n ≤ M2, the convolution sum y(n)=h(n)*x(n) which is equal to 

 ( ) ( ) ( ) ( ) ( )
2

1

N

k k N

y n x k h n k x k h n k
∞

=−∞ =

= − = −∑ ∑  (6-2) 

can be written in the matrix-vector notation introduced as 
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73 The sequence x(n) can be either a signal or a system’s impulse response. 
74 The corresponding symbols for the sequences y(n) and h(n) are y, YM and h, HM

  respectively. 
Similarly, to the time reversed sequence ŷ(n) we assign the symbols ŷ and ĤM  and so on for the 
remaining symbols. 
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Now it follows directly from the above that the vector x̂ corresponding to the N-

samples-long time-reversed signal x̂(n) can be obtained by reversing the rows of the 

vector x corresponding to the original N-samples-long signal x(n) 

 ( )R ˆ=x x  (6-4) 

Similarly, the matrix ĤN  corresponding to the M-samples-long time-reversed impulse 

response ĥ(n) can be obtained by reversing both the rows and the columns of the 

matrix HN
  

 ( )( )RC ˆ , for any given positive integer N=H HN N  (6-5) 

Finally, we make use of the algebraic identity 

 ( )( ) ( ) ( )
RC R R=A v Av  (6-6) 

which holds for any matrix A and vector v of appropriate dimensions75. 

Using equations (6-3), (6-4), (6-5) and (6-6) we obtain 
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Equation (6-7) proves what was stated in the beginning of this section. That is, if y(n) 

is the convolution of h(n) with x(n) (i.e. y=HNx) then convolving a time reversed 

version of x(n) with a time reversed version of h(n) results in a time reversed version 

of y(n) (i.e. ŷ=ĤN x̂).  

A very important note that has to be made here, however, is that the analysis above 

assumes the computation of the full-length convolution of the input x(n) with the 

                                                 
75 A proof of the identity in equation (6-6) is given in the appendix (see §A2) 
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impulse response h(n). Obviously this computation is not realisable when h(n) is of 

infinite duration, i.e. when it corresponds to a rational transfer function as is the case 

with the inverse filtering implementations discussed below. A formulation in which 

zero-padded finite length filtering is used to approximate the infinite length 

convolution is presented in the appendix (see §A1). 

6.3 Decomposition of the inverse into minimum and 

maximum phase parts 

Having seen how the convolution of a given input with a given impulse response can 

be implemented either in forward or in backward time, we describe in this section 

how a given transfer function can be decomposed into two parts, one realisable in 

forward time and one in backward time. We show that this decomposition can be 

effected in two ways, which we term the parallel and the cascade connection after a 

similar formulation presented in the context of linear phase filtering by Czarnach 

(1982). For notational simplicity we first describe the application of these two 

decompositions on the single-channel transfer function 1/C(z). Again we assume that 

the polynomial C(z) contains no pure delay and is factorised in first order terms as in 

equation (6-8). 

 ( ) ( )
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1 1 1
0 1 1 0

1

1
N

N
N i

i

C z c c z c z c p z
−

− − + −
−

=

= + + + = −∏…  (6-8) 

6.3.1 Parallel connection 

Starting then with the rational expression 1/C(z) we can take the partial fraction 

expansion76 of equation (6-9) in a similar manner as was described above (see §2.3.1) 

                                                 
76 As we also did in the analysis of §2.3.1, we assume in this section that the transfer function C(z) has 
only single order zeros and that none of its zeros is of magnitude equal to one. Even though the first 
assumption is not necessarily true we will see that the numerical method we propose for the 
decomposition of (6-9) (see §6.4) is formulated without such an assumption. As far as the second 
condition is concerned, the presence of a zero with magnitude equal to one is equivalent to a plant that 
completely removes the input’s content at a certain frequency point. This cannot be true in cases where 
the plant is modelled with measured (and typically averaged) impulse responses that always exist on 
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We can then separate the, say L, terms for which |pi| > 1 and the, say K, terms for 

which |pi| < 1 
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And finally regrouping these two groups of terms we obtain 
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where the orders of the polynomials Bmin(z), Bmax(z), Cmin(z) and Cmax(z) are defined in 

equation (6-12). The K roots of Cmin(z) are all of magnitude less than unity, while the 

L roots of Cmax(z) are all of magnitude higher than unity. Hence Cmin(z) is of strictly 

minimum phase and Cmax(z) of strictly maximum phase. Note that this is not the case 

for Bmin(z) and Bmax(z) in which the subscripts min and max are used for notational 

convenience. 
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 (6-12) 

Following the discussion in §2.3.1 we see that the term Bmin(z)/Cmin(z) in equation 

(6-9) corresponds to a causal and stable impulse response whereas the impulse 

response corresponding to the term Bmax(z)/Cmax(z) will either be unstable in forward 

time or stable in backward time. We denote with hleft(n) the left-sided77, anti-causal 

and stable impulse response given by  

                                                                                                                                            
top of a noise floor. Furthermore, in a case where such a nullification of a certain frequency was 
effected by the plant, the inverse transfer function would have a pole at this frequency and its 
frequency response magnitude at this frequency would be infinite. The introduction of regularisation 
would then certainly constrain the magnitude of the inverse at this point by replacing the ill-
conditioned pole with a pair of poles and a zero. 
77 For the terms right-sided sequence and left-sided sequence see (Oppenheim and Schafer 1975). 
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We now define the “reversed” polynomials B̂max(z) and Ĉmax(z) as 
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and we note that these will satisfy the relation 
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i.e. the expression resulting by substituting z-1 in the place of the z variable in the ratio 

Bmax(z)/Cmax(z), is equal to the expression z-1B̂max(z)/Ĉmax(z). 

We then make use of the time-reversal property of the z-transform (Proakis and 

Manolakis 1992) according to which, if x(n) and X(z) are a z-transform pair then x̂(n) 

and X(z-1) are also a transform pair. It thus follows that the right-handed, stable and 

causal impulse response hright(n) of equation (6-16) will satisfy equation (6-17).  
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ˆ ˆ( ) , max : 0ˆ

max
right i max i

max

z Bh n Z z p C p
C

−
− ⎧ ⎫⎪ ⎪= > =⎨ ⎬

⎪ ⎪⎩ ⎭
 (6-16) 

 ( ) ( ) for all right lefth n h n n= −  (6-17) 

In other words the transfer function z-1B̂max(z)/Ĉmax(z) will correspond to a realisable 

impulse response that is the exactly symmetrical around the time-origin to the impulse 

response corresponding to Bmax(z)/Cmax(z). 

Hence, upon determination of the polynomials Bmin(z), B̂max(z), Cmin(z) and Ĉmax(z) of 

equations (6-12) and (6-14) and with reference to what was said in §6.2, the filtering 

through the inverse transfer function 1/C(z) can be implemented as is described in 



Chapter 6 – Recursive inverse models – Forward-backward time filtering 

 180

figure 6-178 from which the reason for the term “parallel connection” becomes 

evident. 

 

 

Figure 6-1: Inverse filtering (parallel connection). The thick-line addition symbol in 
the figure denotes the shift-add process. 

6.3.2 Cascade connection 

A second way of decomposing the inverse transfer function 1/C(z) into two parts, one 

realisable in forward time and the other in backward time, is as follows. Starting again 

from the factorisation of C(z) into first order terms as in equation (6-8) we see that the 

reciprocal transfer function 1/C(z) can be written as the product of two terms as in  

equation (6-18). The polynomials Cmin(z) and Cmax(z) are the same as in equation 

(6-12) so again the term 1/Cmin(z) will correspond to a causal and stable impulse 

response and the term 1/Cmax(z) to an anti-causal and stable impulse response. 
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In the same manner as in the previous section we see that equation (6-19) will hold.  
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78 The thick-line addition symbol in the figure denotes the shift-add process (explained in detail in the 
appendix, see §A1) in which samples of ymin(n) and ymax(n) with the same time-index are added to 
produce the (longer) output y(n).  

Time 
Reverse

1 ˆ ( )
ˆ ( )

max

max

z B z
C z

−

( )
( )

min

min

B z
C z

 

x(n) 

Time 
Reverse

ymin(n) 

ymax(n) 

y(n) 



Chapter 6 – Recursive inverse models – Forward-backward time filtering 

 181

Thus the left-handed sequence 
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and the right-handed sequence  
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will be a mirrored version of each other. 

 ( ) ( ) for all right lefth n h n n= −  (6-22) 

The filtering through the inverse transfer function of equation (6-18) can thus be 

implemented by means of the “cascade connection” of figure 6-2. 

 

Figure 6-2: Inverse filtering (cascade connection) 

6.3.3 Computation of the decomposition determining the poles 

and residues of the inverse transfer function 

As an example of the parallel and the cascade connection decompositions described 

above, we consider here the 6th order mixed-phase plant of equation (6-23) the 

impulse response c(n) together with the zero locations of which are shown in figure 

6-3. 
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Using then the residuez function included in Matlab’s Signal Processing Toolbox 

(MathWorks 2000) we can compute the roots pi and residues Ai of equation (6-9) 
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listed in table 6-1 which, in turn, are used for the determination of the polynomials 

Bmin(z), Bmax(z), B̂max(z), Cmin(z), Cmax(z) and Ĉmax(z) of equations (6-12) and (6-14). 
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Figure 6-3: Impulse response and zero-map of the plant of equation (6-23) 

i pi Ai 
1  -2+i  0.3372+0.2965i 
2  -2-i  0.3372-0.2965i 
3  1.5   0.3746  
4  0.5 -0.0332  
5  0.3+0.3i -0.0079-0.0018i 
6  0.3-0.3i -0.0079+0.0018i 

Table 6-1: Roots and residues of the inverse transfer function of equation (6-23) 

The 41-samples-long FIR approximation to 1/C(z) with the modelling delay set to 20 

samples will then be as in part (a) of figure 6-4, while the 20 first samples of the 

impulse responses corresponding to the rational transfer functions Bmin(z)/Cmin(z), 

Bmax(z)/Cmax(z) and z-1B̂max(z)/Ĉmax(z) of the parallel connection implementation will 

be as in parts (b), (c) and (d) of the same figure. Similarly, in parts (a), (b) and (c) of 

figure 6-5 we plot the first 20 samples of the impulse responses corresponding to the 

rational transfer functions 1/Cmin(z), 1/Cmax(z) and z-3/Ĉmax(z) of the cascade 

connection implementation. 
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Figure 6-4: (a) Impulse response of the FIR approximation to the inverse, (b), (c) and 
(d) First 20 samples of the impulse responses of Bmax(z)/Cmax(z), Bmin(z)/Cmin(z) and 
z-1B̂max(z)/Ĉmax(z) 
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Figure 6-5: (a)-(c) First 20 samples of the impulse responses of 1/Cmax(z), 1/Cmin(z) 
and z-3/Ĉmax(z) 
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6.3.4 Two-channel case 

Concluding the basic formulation of the proposed inverse filtering method we give 

here the decomposition formulae corresponding to the two-channel case where the 

plant is modelled by the 2×2 matrix C(z) containing four transfer functions Cij(z) and 

the ideal 2×2 inverse matrix H(z) is as in equation (2-14). Combining the direct and 

common denominator arrangements of §2.4.2 and the parallel and the cascade 

connection arrangements of §6.3.1 and §6.3.2 we see that the filtering through the 

inverse matrix H(z) can be implemented in four ways depicted in the block diagrams 

of the figures 6-6 – 6-8. It is easy to see that that the formulae for the determination of 

the polynomials appearing in these block diagrams will be as in equations (6-24) for 

the direct arrangement (parallel and cascade connection) cases and equations (6-25) 

for the common denominator arrangement (parallel and cascade connection) cases 

with the minimum and maximum phase polynomials Cmin(z) and Cmax(z) being as in 

equation (6-26). 
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 ( ) ( ) ( )det min maxz C z C z=⎡ ⎤⎣ ⎦C  (6-26) 
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Figure 6-6: Parallel connection direct filtering arrangement 
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Figure 6-7: Parallel connection common denominator arrangement 

 

Figure 6-8: Cascade connection common denominator arrangement 
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Figure 6-9: Cascade connection direct filtering arrangement 

We denote the computational costs in the four cases of the parallel connection direct 

arrangement, parallel connection common denominator arrangement, cascade 

connection direct arrangement and cascade connection common denominator 

arrangement with OPDI, OPCD, OCDI and OCCD respectively. These denote the number 

of multiply-add operations needed for the computation of each output sample 

(madds/output sample) and will be as in equations (6-27)-(6-30). In these equations, 
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 ( )4 2 2 2 16 madds/output samplePDI C C CN N N= + − ≈O  (6-27) 

 ( )2 2 2 2 4 12 madds/output samplePCD C C C CN N N N= + − + ≈O  (6-28) 

 ( )4 2 12 madds/output sampleCDI C C CN N N= + =O  (6-29) 

 2 2 4 8 madds/output sampleCCD C C CN N N= ⋅ + =O  (6-30) 

6.4 Numerical method for the decomposition of the 

inverse transfer function 

In the previous section we showed how a given rational transfer function B(z)/C(z) 

can be decomposed into a sum or a product of two rational transfer functions one of 

which can be realised in forward and the other in backward time and we gave an 

example of this decomposition based on the use of Matlab’s residuez function. 

However, a computation like that described in §6.3.3 cannot be relied upon for the 

decomposition of the inverse transfer functions resulting when the plant’s model 

comprises a few hundreds of coefficients as it presupposes a highly sensitive 

numerical computation for the determination of the roots of the polymomial C(z)79. 

In this section we present an alternative method for the determination of the 

polynomials of equations (6-24)-(6-26). First, in §6.4.1, we show how the minimum 

and maximum phase polynomials Cmin(z) and Cmax(z) of equation (6-26) can be 

determined by means of computing the cepstrum of the polynomial det[C(z)]. As is 

evident from equations (6-24) and (6-25), the accuracy of that computation solely 

determines the accuracy of the implementation of the cascade connection (both for the 

direct and the common denominator arrangements) while for the implementation of 

the parallel connection one has to also determine the polynomials Bij,min(z) and 

                                                 
79 The residuez function makes use of the roots function for the determination of the roots of 
C(z). For the details of the specific implementation see (Mathworks 2000). Methods that promise better 
accuracy of the numerical solution of the root-computation problem for high-order polynomials have 
been published recently (see (Sitton et al. 2003) and references therein). These methods however are 
tailored to the case of polynomials of much higher order than those encountered here and are thus not 
considered in this work. 
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Bij,max(z) of equation (6-24) (or the polynomials Bmin(z) and Bmax(z) of equation (6-25) 

in the case where the common denominator filtering arrangement is used). We show 

in §6.4.2 how this can be achieved by means of solving the equivalent Diophantine 

equation resulting in each case. 

6.4.1 Determination of Cmin(z) and Cmax(z) 

A way to avoid computing the roots of C(z) in the determination of the polynomials 

Cmin(z) and Cmax(z) is to solve equation (6-26) in the cepstral domain. Denoting with 

ccep(n) the cepstrum of a given time-sequence c(n) as in equation (6-31)  

 ( ) ( ){ }1 log ,cepc m Z C z m−= − ∞ < < ∞⎡ ⎤⎣ ⎦  (6-31) 

the minimum and maximum phase polynomials Cmin(z) and Cmax(z) satisfying the 

equation C(z)=Cmin(z)Cmax(z) will be given by the following80. 

 
( ) ( ){ }
( ) ( ){ }

exp , 0

exp , 0

max cep

min cep

C z Z c m m

C z Z c m m

⎡ ⎤= ≤⎣ ⎦
⎡ ⎤= ≥⎣ ⎦

 (6-32) 

The computation of the complex cepstrum of a given time series and of the time series 

corresponding to the inverse of a given complex cepstrum are implemented by 

cceps and  icceps Matlab’s functions81 which we used for the results presented in 

this section. The implementation of these Matlab functions directly follows the 

relevant discussion in (Oppenheim and Schafer 1975) where a method for the 

calculation of ccep(n) based on the computation of the DFT C(k) of c(n) is presented. 

As explained in (Oppenheim and Schafer 1975), the critical point in the computation 

of the cepstrum sequence ccep(n) is the proper unwrapping of the phase of C(k) in a 

continuous function, an issue that can be successfully addressed if the length (and 

hence the frequency resolution) of the corresponding DFT is made large enough. 

Additionally, an adequately long DFT guarantees that the time-aliasing in the 

computation of the inverse DFT ccep(n)=IDFT{log[C(k)]} becomes insignificant. 

                                                 
80 For a detailed discussion of the related theory of homomorphic signal processing see (Oppenheim 
and Schafer 1975) and (Oppenheim and Tribolet 1976). 
81 For the details concerning the implementation of cceps and  icceps see (Mathworks 2000) 



Chapter 6 – Recursive inverse models – Forward-backward time filtering 

 190

As an example of the cepstrum-based determination of the minimum and maximum 

phase parts of a given impulse response, we apply the method to the decomposition of 

a 128-samples-long HRIR c(n) from the MIT-database (Gardner and Martin 1994). 

The HRIR used corresponds to a source directly in front of the listener and is plotted 

in figure 6-10.  
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Figure 6-10: MIT-database HRIR corresponding to a source directly in front of the 
listener 

The effect of the DFT length on the accuracy of the cesptrum-based computation is 

demonstrated in figure 6-11 where we have plotted the computation error 

c(n)-cmin(n)*cmax(n) achieved with DFT lengths ranging from 210 points in part (a) up 

to 217 points in part (h). As can be seen in the figure the accuracy of the solution 

increases as the length of the computed DFT goes up from 210 points to 213 points. As 

we go further up in the DFT length the error stays roughly constant so, evidently, both 

the phase unwrapping and time-aliasing issues discussed above are being properly 

addressed when a DFT length of 213 points or higher is used. 
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Figure 6-11: (a)-(h) Precision of the cepstrum-based decomposition for DFT lengths 
ranging from 210 points to 217 points 
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Figure 6-12: (a), (c), (e) precision of the roots-based decomposition, (b), (d), (f) 
precision of the cepstrum-based decomposition with the DFT length set to 214 points. 
fig4changed 

When, on the other hand, the roots Matlab function is used for the determination of 

cmin(n) and cmax(n) the results are far inferior. This is demonstrated in figure 6-12 

where we compare the accuracy of the cepstrum-based and the roots-based solutions 

when the decomposition is applied to the full impulse response c(0 ≤ n ≤ 127) and two 

shorter versions c(0 ≤ n ≤ 91) and c(0 ≤ n ≤ 109). As can be seen in the figure the 

roots-based method works very well for lower order plants but as the order increases 

the performance drops dramatically. The accuracy in the determination of cmin(n) and 
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cmax(n) is of course of extreme importance in the implementation of the method. This 

is because a small error in the coefficients of the polynomials Cmin(z) and Cmax(z) that 

are placed in the taps of the recursive loop of the resulting filters will inevitably result 

in increased error in the output of the filters. Even more important, unlike the 

cepstrum-based method where the computed impulse responses cmin(n) and cmax(n) are 

guaranteed to be of strictly minimum and maximum phase respectively as long as the 

cepstrum computation length is chosen to be sufficiently high, the roots-based 

solution can easily diverge to give mixed phase impulse responses. Such an error is 

obviously detrimental as the reciprocal of such mixed phase responses is unrealisable 

in both forward and backward time. 
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Figure 6-13: (a)-(i) Accuracy of the cepstrum-based decomposition of det[C(z)] for 
DFT lengths ranging from 210 points to 218 points. 

Similar results as above are obtained in the two-channel case where, as was discussed 

in §6.3.4, the decomposition into minimum and maximum phase parts is applied to 
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the transfer function det[C(z)]82. The accuracy of the decomposition is depicted in 

figure 6-13 where it can be seen that, as expected, like for like accuracy with the 

single-channel case of figure 6-11 is achieved here for higher values of the DFT 

length with the highest accuracy being achieved for a DFT length of 214 points or 

more. 

6.4.2 Determination of Bmin(z) and Bmax(z) 

Having computed the polynomials Cmin(z) and Cmax(z) as described in the previous 

section, the calculation of the transfer functions related to the parallel connection 

decomposition reduces to the solution of the four equations (6-24) in the unknown 

polynomials Bij,min(z) and Bij,max(z) or equation (6-25) in the unknowns Bmin(z) and 

Bmax(z) in the case where the common denominator is implemented separately83. 

It is now easy to see that equation (6-25) can be written as  

 ( ) ( ) ( ) ( ) ( ) ( )
( )det

min max
min max max min

C z C z
B z C z B z C z

z
+ =

⎡ ⎤⎣ ⎦C
 (6-33) 

which using equation (6-26) takes the form of the Diophantine equation 

 ( ) ( ) ( ) ( ) 1min max max minB z C z B z C z+ =  (6-34) 

Similarly, equations (6-24) can be transformed to the Diophantine form 

 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

11, 11, 22

12, 12, 12

21, 21, 21

22, 22, 11

min max max min

min max max min

min max max min

min max max min

B z C z B z C z C z

B z C z B z C z C z

B z C z B z C z C z

B z C z B z C z C z

+ =

+ = −

+ = −

+ =

 (6-35) 

In general then both equations (6-24) and (6-25) can be written in the general 

Diophantine equation form 

                                                 
82 For the results shown here we use the matrix C(z) containing the MIT-database HRTFs 
corresponding to ±50 azimuth and 00 degrees elevation (Stereo Dipole format). The impulse response 
and the root distribution corresponding to the polynomial det[C(z)] are those already plotted in figures 
2-2 and 2-3 respectively. 
83 As was already noted above (see p. 188), only the determination of the Cmin(z) and Cmax(z) 
polynomials is necessary for the implementation of the cascade connection arrangement.  
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 ( ) ( ) ( ) ( ) ( )P z X z Q z Y z R z+ =  (6-36) 

where the known polynomials P(z) and Q(z) are equal to Cmin(z) and Cmax(z), the 

polynomials X(z) and Y(z) are the unknowns Bij,min(z) and Bij,max(z) for the direct 

filtering arrangement or the unknowns Bmin(z) and Bmax(z) for the common 

denominator arrangement and the polynomial R(z) in the right-hand side is equal to 

one of ±Cij(z) for the direct filtering arrangement or equal to 1 for the common 

denominator arrangement. 

A detailed exposition of the properties of the general form the Diophantine equation 

(6-36) can be found in (Kučera 1979) where it is shown that a solution in the 

unknowns X(z) and Y(z) exists if and only if the greatest common divisor D(z) of the 

known polynomials P(z) and Q(z) is a divisor of the right-hand side polynomial R(z). 

Furthermore, with P′(z) and Q′(z) defined as in equation (6-37) and S(z) any 

polynomial, it is shown in (Kučera 1979) that if X0(z) and Y0(z) is a solution then the 

pair X(z)=X0(z)+Q′(z)S(z) and Y(z)=Y0(z)+P′(z)S(z) is also a solution of (6-36). In the 

specific case with which we are concerned here, a solution is then guaranteed to exist 

given that the polynomials Cmin(z) and Cmax(z) share no common roots84 and thus their 

greatest common divisor is equal to one. 

 
( ) ( )

( )

( ) ( )
( )

P z
P z

D z

Q z
Q z

D z

′ =

′ =

 (6-37) 

The available numerical methods for the solution of Diophantine equations are 

reviewed in (Kučera et al. 1991) where they are categorised in the three families of 

matrix, polynomial and mixed methods. A numerical analysis is also presented in 

(Kučera et al. 1991) of the “best-known representatives” of the three categories, 

respectively the indeterminate coefficients, the polynomial reduction and the state-

space realisation methods. The conclusion is that the method of indeterminate 

coefficients is the most reliable in the ill-conditioned case where the polynomials P(z) 

and Q(z) have roots close to each other but not close to a root of R(z). Hence we used 

this method for the computation of the results presented below. 
                                                 
84 This is because one of them is of strictly minimum phase and the other of strictly maximum phase. 



Chapter 6 – Recursive inverse models – Forward-backward time filtering 

 196

In simple terms, the method of indeterminate coefficients amounts to arranging the 

coefficients of the polynomials P(z) and Q(z) in a matrix M85, the coefficients of R(z) 

in a vector N and the coefficients the unknown polynomials X(z) and Y(z) in a vector 

K so that (6-36) becomes equivalent to the matrix-vector equation MK=N and solving 

for the unknown vector K (for a more detailed presentation of the method’s 

formulation see (Kučera 1979)). 

Again, in order to compare the accuracy of the method with the accuracy achieved 

when the partial fraction expansion is used for the computation of the decomposition, 

we apply it to the single-channel transfer function C(z) of figure 6-10. That is, we use 

the minimum and maximum phase polynomials Cmin(z) and Cmax(z) computed as was 

explained in §6.4.186 to solve equation (6-38) that is equivalent to the decomposition 

Bmin(z)/Cmin(z)+Bmax(z)/Cmax(z)=1/C(z)87. 

 ( ) ( ) ( ) ( ) 1max min min maxC z B z C z B z+ =  (6-38) 

The corresponding error quantity cmin(n)*bmax(n)+cmax(n)*bmin(n)-δ(n) is plotted in part 

(b) of figure 6-14 where it can be seen to be greatly superior compared to the same 

error quantity -plotted in part (a) of figure 6-14- achieved when the decomposition is 

effected by computing the partial fraction expansion of 1/C(z) (using Matlab’s 

residuez function). 

                                                 
85 This matrix will then have the specific form a Sylvester matrix (Åström and Wittenmark 1997) 
86 The solution for Cmin(z) and Cmax(z) is the one obtained with the DFT length used for the transition 
from the cepstral domain and back set to 214 points. 
87 It is interesting to note the similarity in form between this formulation and the MINT formulation 
presented by Miyoshi and Kaneda (1986). Unlike the MINT, where the element corresponding to the 
non-minimum phase part of the plant is inverted through an additional electroacoustic channel, in this 
case this part is implemented in negative time and the two parts of the inverse are combined in the 
same electroacoustic channel. 
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Figure 6-14: Accuracy of the parallel connection decomposition of the transfer 
function 1/C(z), (a) using the partial fraction expansion and (b) solving the equivalent 
Diophantine equation using the method of indeterminate coefficients.  

Finally we move to the two-channel case. The error quantity 

cmin(n)*bij,max(n)+cmax(n)*bij,min(n)±cij(n) corresponding to the solution of equations 

(6-35) when the MIT-database HRTFs are used for the modelling of the Stereo Dipole 

geometry are plotted in figure 6-1588. The error quantity 

cmin(n)*bmax(n)+cmax(n)*b,min(n)-δ(n) demonstrating the precision of the solution of 

equation (6-34) corresponding to the common denominator arrangement is plotted in 

figure 6-16. 

                                                 
88 Given the symmetry of the plant when it is modelled using the MIT-database HRTFs, the first and 
fourth as well as the second and third lines in equation (6-35) will be identical so we only plot the 
results corresponding to the first two lines of equation (6-35) in figure 6-15. 
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Figure 6-15: Precision of the solution of equation (6-35) 
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Figure 6-16: Precision of the solution of equation (6-34) 
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6.5 Issues regarding the practical implementation of 

the method – Reduced order inverse models 

In the previous sections we showed how the exact (non-regularised) inverse matrix 

H(z) of equation (2-14) can be realised by implementing its elements with rational 

transfer functions in forward and backward time. As is demonstrated with the 

simulation results of the next section, when the decomposition in forward and 

backward time parts is computed in Matlab’s double-precision arithmetic by use of 

the numerical method of §6.4, a highly accurate model of H(z) can be obtained. 

On the other hand as was shown with the results of chapter 3, the actual accuracy of 

the inversion, is significantly limited in the real-world implementation of the design, 

even when this implementation takes place in ideal conditions of reproduction. Hence, 

the high accuracy achieved by the exact recursive modelling of H(z) described above, 

is of limited practical interest in this specific audio signal processing application. 

Its practical interest would be further reduced by the fact that the order of the resulting 

recursive filters (and hence the number of multiplications/additions needed for the 

computation of their output) is very high. From equations (6-27)-(6-30) it can be seen 

that, for the typical 4ms-long anechoic plant model described in §3.4, the total order 

of the four elements in H(z) turns out to range from about 1500 coefficients (for the 

common denominator cascade arrangement) to about 3000 coefficients (for the direct 

parallel arrangement). Compared to the non-regularised FIR inverse models 

considered in chapter 4 which needed a number of coefficients in the order of 8000 to 

16000 (see the results in figures 4-2 and 4-4 respectively) in order to avoid the 

presence of truncation end-effects, we see that the exact recursive models do indeed 

offer a reduction in the number of coefficients but this reduction is not dramatic. 

 Further to that, the realisation of recursive filters of such order would pose a serious 

design challenge in lower-precision arithmetic platforms that are typically used in 

audio applications. Even in the double precision arithmetic of Matlab, the numerical 

decomposition becomes less robust as the length of the plant model increases. A final 
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drawback of the forward backward time filtering method as described above is that it 

does not accommodate the use of regularisation in the inverse89.  

In order to address these issues, two alternative approaches for the modelling of the 

inverse are examined: In the first, the recursive model of the inverse is determined in 

the frequency-domain. The frequency response of the elements Hij(ω) of the 

(regularised or non-regularised) inverse matrix H of equation (2-20) are computed 

over a chosen grid of N points ωn on the frequency axis. 

 ( ) ( ) ( ) ( ) ( )
1

0 1 1with   0 , , ,

H Hj j j j

N

e e e eω ω ω ωβ ω

ω ω ω ω π

−

−

⎡ ⎤= +⎢ ⎥⎣ ⎦
≤ = ≤

H C C I C

…
 (6-39) 

Subsequently, rational transfer functions Bij(z)/Aij(z) of chosen order are fitted to these 

responses. 

 
( )
( ) ( )ij

ij
ij

B z
H z

A z
�  (6-40) 

This is done by minimising the quantity of equation (6-41) over the coefficients of the 

rational transfer function Bij(z)/Aij(z). 

 ( ) ( ) ( )min n n nj j j
ij ij ij

n

B e A e H eω ω ω⎧ ⎫−⎨ ⎬
⎩ ⎭
∑  (6-41) 

This practically amounts matching the frequency response of Bij(z)/Aij(z) to Hij(ω) at 

the chosen set of points ωn on the frequency axis. In the results presented here this 

was done using the invfreqz function of Matlab (Mathworks 2000). 

This optimisation procedure retains both the magnitude and the phase of the desired 

responses Hij(ω) and hence the resulting rational expression Bij(z)/Aij(z) will have 

poles outside the unit circle. A realisable design is then obtained by applying the 

decomposition to forward and backward time realisable recursive filters using the 

method of §§6.2-6.4. As will be seen with the results of the next section, a reduction 

                                                 
89 The above list  of issues does not include the fact that, as presented up to this point, the method is 
restricted to off-line implementation. This issue is addressed in the next chapter. 
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in the order of the recursive models is indeed achieved in comparison with the exact 

model but this reduction is only minor. 

In the second approach, the recursive filters that model the inverse are determined in 

the time-domain. First, the method described in §2.3 is employed to compute a 

(regularised or non-regularised) FIR model h(n) of the inverse matrix H of chosen 

length N. As is explained in §2.3, a chosen amount of coefficients, say Δ, out of the 

total of N coefficients in each hij(n) will correspond to the anti-causal part of the 

inverse. The method then proceeds by fitting a recursive model Bmin,ij(z)/Amin,ij(z) to 

the causal part of each hij(n) 

 
( )
( ) ( )1 , 1, 2, , 1min,ij

ij
min,ij

B z
Z h n n N

A z
−

⎧ ⎫⎪ ⎪ = Δ + Δ + −⎨ ⎬
⎪ ⎪⎩ ⎭

� …  (6-42) 

and another recursive model Bmax,ij(z)/Amax,ij(z) to the time-reversed version of the anti-

causal part of each hij(n). 

 
( )
( ) ( )1 , 0,1, , 1max,ij

ij
max,ij

B z
Z h n n

A z
−

⎧ ⎫⎪ ⎪ − = Δ −⎨ ⎬
⎪ ⎪⎩ ⎭

� …  (6-43) 

The method for the determination of the recursive models that was found to give the 

best results was the Steiglitz-McBride algorithm as implemented by the stmcb 

function in Matlab (Mathworks 2000), (McBride et al. 1966), (Steiglitz and McBride 

1965). The recursive models of equations (6-42) and (6-43) are then directly 

applicable to the direct arrangement parallel connection form of §6.3 (see figure 6-6). 

As will be seen with the results of the following section, with both the responses in 

the right-hand sides of equations (6-42) and (6-43) decaying in time, the modelling 

turns out to be more efficient than the frequency-domain method which was described 

above.  

In the results presented in the next section we examine the application of these two 

methods to the direct arrangement parallel connection form of the inverse matrix H. 

Similar formulations could be devised for the remaining three cases of figures 6-7 – 

6-9. However the issue brought up in §2.4.2 should be expected to render the two 

common denominator arrangements impractical. The conclusions drawn here for the 

direct arrangement parallel connection are expected to be valid also for the direct 
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arrangement cascade connection case, however the actual implementation and 

evaluation of that case is left as further work.  

6.6 Inversion results 

We present here the results obtained when the recursive inverse models described 

above are used for the inversion of the plant measured as described in §§3.3-3.4. The 

results are presented in the same manner as the results of chapter 4. That is we plot the 

logarithm of the squared impulse responses from the input to the inverse filter matrix 

to the output at the listener’s ears and/or the logarithm of the squared magnitude of 

the corresponding frequency responses. In each case presented, a comparison with the 

corresponding FIR inversion results is made. The FIR inversion results are obtained 

with the simulation process described in §4.2, i.e. by convolving the 3000-samples-

long model of the plant matrix with the FIR model of the inverse matrix. For the 

inversion results of the recursive models we first compute the two impulse responses 

(for the part realised in forward time and of the part realised in backward time) up to a 

chosen length90 (set here to 5000 points). We then concatenate the reversed-in-time 

version of the backward-time realisable part with the forward-time realisable part to 

obtain the 10000 points FIR equivalent of the recursive model. This FIR model is then 

used to obtain the results with the same simulated convolution process as in the FIR 

case91. 

First, in figure 6-17, we compare the inversion results for the 3000-tap non-

regularised FIR H190
92 with the results obtained with the exact recursive model of the 

inverse that was described in §§6.2-6.4. The squared impulse responses plotted in the 

                                                 
90 A detailed exposition of the effective length of the corresponding filter impulse responses taken into 
account when the rational transfer functions considered here are implemented in forward and backward 
time is given in §A1. As is shown there, this length is determined by the length of the input signal. If 
this is large enough then full length of the associated inverse impulse responses is effectively taken into 
account in the convolution process. On the other hand, as if further elaborated with the results of 
chapter 7, in the block-processing on-line impelementation of the method, zero padding has to be 
applied to the (short) blocks of input and consequently the choice of this length needed to be taken into 
account significantly influences the computational cost of the algorithm. For the presentation of this 
chapter where the algorithm is implemented off-line we took this length to be higher and follow the 
decay of the determined recursive filters further down in positive and negative time. 
91 We use here the symbols H190 (introduced in §3.4) to refer to the inverse computed on the basis of 
the C190 measured model of the plant. 
92 We set the anticausal length of the inverse equal to 2000 taps and the causal length equal to 1000 
taps. 
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figure are obtained by convolving C190 with the inverse matrix. As was discussed in 

§3.5, the responses obtained with this simulation are excessively optimistic compared 

to the actually obtained inversion accuracy. They are included here, however, as an 

indication of the adequacy of the proposed numerical solution for the determination of 

the polynomials of equation (6-24). 

As can be seen in the figure, the accuracy of the inverse model determined with that 

method succeeds in suppressing the error down to approximately -200dBFS. This is 

of course seen to be a modest result compared to the accuracy of the FIR model 

determined by the frequency-domain method of § 2.3 (which in this case was 

implemented with a DFT length of 213 points). Nevertheless it is quite sufficient with 

reference to the actual accuracy obtained in the best practical conditions in which the 

error rises much above this level as was seen in the results of chapter 4. Furthermore, 

even though the use of a DFT of this length is enough to suppress the time-aliasing 

effect down to more than -300dBFS as can be seen in the figure, the 2000 coefficients 

used for the FIR realisation of the anti-causal part of the inverse are just enough to 

keep the truncation error down to -100dBFS. In the recursive model on the other 

hand, the length of the filter’s impulse response that is effectively used in the filtering 

depends on the length of the input. Hence, as long as the input is long enough or 

appropriately zero-padded, the end-effects can be suppressed at will (see also §A1). In 

the decomposition of the polynomial corresponding to the determinant of the plant 

matrix det[C190(z)], the order of the minimum phase part is 344 samples and that of 

the maximum phase part is 38 samples93. Hence, as should be expected, the total order 

of the transfer functions Cij(z)/det[C(z)] is divided into a high-order forward-time 

realisable recursive structure and a much lower-order backward-time realisable 

recursive structure. 

                                                 
93 The length of each response in C190(n) is 191 samples, hence the determinant polynomial det[C190(z)] 
has 381 coefficients and this is in agreement with these orders of the minimum and maximum phase 
parts as is described in equation (6-26). 
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Figure 6-17: Convolution of C190 with the 3000-tap non-regularised (β=0) FIR 
inverse (blue line) and with 10000-points impulse response matrix of the exact 
recursive model of eq. (6-24) and figure 6-6 (red dashed line). 
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Figure 6-18: Actual performance of the 3000-taps non-regularised (β=0) FIR inverse 
(blue line) and of the exact recursive model of equation (6-24) and figure 6-6 (red 
dashed line). 
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Figure 6-19: Inversion results. Each one of the transfer functions Hij is realised with 
(i) an FIR filter of 3000-tap (2000 anti-causal and 1000 causal), (black dashed line), 
(ii) a rational transfer function of total order (100,120) determined using invfreqz and 
decomposed as described in §6.4, (blue line), (iii) a rational transfer function of total 
order (120,150) as above, (red line) and (iv) a rational transfer function of total order 
(190,200) as above, (green line). In all cases the regularisation is set to β=0. 
figure_33p2(‘trois4page’) 

What was said above regarding the actual accuracy of the inversion is illustrated in 

figure 6-18 in which we plot the results obtained with the same inverse models as in 

figure 6-17 but this time simulating the convolution by use of the full-length 3000-

samples model of the plant. As is seen in the figure, the actual performance of the 



Chapter 6 – Recursive inverse models – Forward-backward time filtering 

 207

exact recursive model of the inverse is identical to the FIR model94 except for the 

truncation effects. We see then that the order of the exact recursive model 

(approximately equal to 4×760≈3000, see equation (6-27)) is indeed lower than the 

order of the FIR inverse (equal to 4×3000=12000) that gives the same results. This 

reduction in the order is nevertheless rather minor and also not satisfactory due to the 

reasons exposed in §6.5. Still, the fact that the exact recursive model achieves an 

excess of accuracy, even if it proves to be redundant in the actual implementation of 

the inversion, suggests that a reduction in the required order of the recursive model 

should be possible. In the following we present the results obtained when this 

reduction in the order of the inverse is attempted with the two methods proposed in 

§6.5. 

We start by showing in figure 6-19 the performance of the recursive models 

determined by the frequency-domain method described in §6.5. The results of figure 

6-19 correspond to the non-regularised case (β=0) and the order of the three recursive 

models examined is (100,120), (120,150) and (190,200)95. As is seen in the figure, the 

first two cases give poor results. In the (100,120) model, the effect of one or more 

minimum phase poles of either H11(z) or H21(z) that have shifted out of position in 

relation to the zeros of the model, can be seen in the form of a long ringing in the 

equalised plant. Finally, the model of order (190,200) can be seen to achieve the 

optimum inversion results, i.e. the same accuracy as the 3000-tap FIR. Obviously, in 

all cases of the inversion with the recursive models there are no truncation end-

effects. 

Figure 6-20 shows the results of the same inverse models in the frequency-domain. 

For the models of order (100,120) and (120,150) the inversion can be seen to be 

effective only above 1.5kHz with deviations up to 10dB in the ipsilateral equalisation 

and no cross-talk cancellation below this frequency. The pole-zero misplacement in 

the (100,120) model is now manifested as a sharp high resonance at 7kHz and a lower 

one at 5kHz at the left-loudspeaker-left-ear and left-loudspeaker-right-ear responses. 

                                                 
94 This result can be seen to be the same above the measurement noise floor as the directly measured 
result of figure 4-3.  
95 The first number in the brackets is the total number of zeros and the second the total number of poles 
used for the modelling of the each one of the rational transfer functions Cij(z)/det[C(z)] of the inverse 
matrix H. The order of the forward and backward time realisable parts resulting in each case varies.  
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Figure 6-20: Inversion results. Each one of the transfer functions Hij is realised with 
(i) an FIR filter of 3000-tap (2000 anti-causal and 1000 causal), black dashed line, (ii) 
a rational transfer function of total order (100,120) determined using invfreqz and 
decomposed as described in §6.4, blue line, (iii) a rational transfer function of total 
order (120,150) as above, red line and (iv) a rational transfer function of total order 
(190,200) as above, green line. In all cases the regularisation is set to β=0. figure_33p1(‘trois4page’) 
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Figure 6-21: Inversion results. Each one of the transfer functions Hij is realised with 
(i) an FIR filter of 2500-tap (1500 anti-causal and 1000 causal), black dashed line, (ii) 
a rational transfer function of total order (120,150) determined using invfreqz and 
decomposed as described in §6.4, blue line, (iii) a rational transfer function of total 
order (150,180) as above, red line and (iv) a rational transfer function of total order 
(200,250) as above, green line. In all cases the regularisation is set to β=10-4. figure_34p2(‘trois4 

Next, in figures 6-21 and 6-22 we plot the results obtained for the regularised 

inversion (β=10-4). In this case the recursive models are of orders (120,150), 

(150,180) and (200,250). The FIR inversion case included for comparison is now of 

slightly lower order than before with the filters implemented with 2500 taps (1500 

acausal and 1000 causal)96. Surprisingly, the orders of the recursive models needed to 

                                                 
96 In fact, as was shown in §4.4 (see pp. 106-108) this length of the inverse is higher than required in 
this case. 
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match the FIR performance are now higher than in the previous (non-regularised) 

case. As is seen in both the time and the frequency domain plots, the (120,150) model 

fails altogether. The (150,180) model is only marginally worse than the FIR inverse 

but in order to exactly match the performance of the FIR inverse one would need to 

use a (200,250) recursive model. 
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Figure 6-22: Inversion results. Each one of the transfer functions Hij is realised with 
(i) an FIR filter of 2500-tap (1500 anti-causal and 1000 causal), black dashed line, (ii) 
a rational transfer function of total order (120,150) determined using invfreqz and 
decomposed as described in §6.4, blue line, (iii) a rational transfer function of total 
order (150,180) as above, red line and (iv) a rational transfer function of total order 
(200,250) as above, green line. In all cases the regularisation is set to β=10-4. figure_34p1(‘trois4 
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Overall then, of the two modified methods proposed in §6.5 for the recursive 

modelling of the inverse, that computed in the frequency-domain is seen to yield poor 

performance. It does achieve a reduction by half of the total order of the recursive 

models which from 4·NC=4·190≈800 per element of H (see equation (6-24)) is 

reduced to 200+190≈400. But it does worse in the regularised case and is certainly not 

attractive compared to the approximately 2000 taps needed for the FIR modelling of 

each element of H in that case. 

We then move on to examine the same inversion cases for the second modified 

method proposed in §6.5. This is that of fitting one recursive model to each of the 

causal and anti-causal parts of the (pre-calculated) time-domain responses of the four 

elements Hij of the inverse matrix. The results obtained are plotted in figures 6-23, 

6-24, 6-25 and 6-26. Figures 6-23 and 6-24 depict the time and frequency domain 

results for the non-regularised inversion case and figures 6-25 and 6-26 the results 

obtained with the regularisation parameter set to β=10-4. In all cases, the recursive 

filters are set to model the first 1000 coefficients of the causal and anti-causal parts of 

the responses Hij. In both the regularised and non-regularised results two cases are 

considered. In the first, the anti-causal parts are modelled with filters of order (20,10) 

and the causal parts with filters of order (30,15). These results are plotted in the blue 

line. In the second case, the anti-causal parts are modelled with filters of order (25,20) 

and the causal parts with filters of order (40,25). These results are plotted in the red 

line. The results of the FIR inversion (identical with the ones presented above) are 

again plotted in black dashed line. 

As is seen in these results, the larger order recursive models succeed in achieving 

virtually identical results with the FIR inverse. These models are of a total order of 

(40,25)+(25,20)=(65,45) which constitutes a significant reduction with the order of 

the frequency-domain method presented above. A further order reduction will 

probably not be possible as in all cases, the lower order models can be seen to fail. 
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Figure 6-23: Inversion results. Each one of the transfer functions Hij is realised with 
(i) an FIR filter of 3000-tap (2000 anti-causal and 1000 causal), black dashed line, (ii) 
recursive filters of total order (50,25) determined using the time-domain method of 
§6.5, blue line and (iii) recursive filters of total order (65,45) determined using the 
time-domain method of §6.5, red line. In all cases the regularisation is set to β=0. 
figure_35p2 
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Figure 6-24: Inversion results. Each one of the transfer functions Hij is realised with 
(i) an FIR filter of 3000-tap (2000 anti-causal and 1000 causal), black dashed line, (ii) 
recursive filters of total order (50,25) determined using the time-domain method of 
§6.5, blue line and (iii) recursive filters of total order (65,45) determined using the 
time-domain method of §6.5, red line. In all cases the regularisation is set to β=0. 
figure_35p1 
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Figure 6-25: Inversion results. Each one of the transfer functions Hij is realised with 
(i) an FIR filter of 2500-tap (1500 anti-causal and 1000 causal), black dashed line, (ii) 
recursive filters of total order (50,25) determined using the time-domain method of 
§6.5, blue line and (iii) recursive filters of total order (65,45) determined using the 
time-domain method of §6.5, red line. In all cases the regularisation is set to β=10-4. 
figure_36p2 
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Figure 6-26: Inversion results. Each one of the transfer functions Hij is realised with 
(i) an FIR filter of 2500-tap (1500 anti-causal and 1000 causal), black dashed line, (ii) 
recursive filters of total order (50,25) determined using the time-domain method of 
§6.5, blue line and (iii) recursive filters of total order (65,45) determined using the 
time-domain method of §6.5, red line. In all cases the regularisation is set to β=10-4. 
figure_36p1 

6.7 Conclusions 

A technique was presented in this chapter for the decomposition of the elements Hij of 

the inverse matrix H in two parts, one realisable in forward and one in backward time. 

The technique was first presented in a highly analytical form in §§6.2-6.4. In that 

form, an overwhelmingly accurate recursive representation of the inverse can be 

obtained. It was argued however that in such a form the technique can be of very 
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limited practical interest, mainly due to the excessively high order of the resulting 

recursive structures. Despite the fact that this order is slightly lower than the FIR 

order needed to model the inverse with equivalent accuracy, such a level of accuracy 

would be lost in any real-world implementation of the system. Even in cases when 

such an accurate implementation of the inverse is of importance, the FIR equivalent 

could be implemented with one of the available frequency-domain block-processing 

algorithms (Press et al. 2002), (Gardner 1995) at a fraction of the computational cost. 

Two modifications were proposed in the method for the determination of the recursive 

filters that model the forward and backward time realisable parts of the inverse. One 

of them was found to give very promising results in terms of reducing the order of the 

involved recursive filters without reducing the accuracy of the inversion below the 

level that one would realistically expect to achieve in real-world implementations. 

Due to time restrictions the presented investigation of the application of the proposed 

inverse structures was confined to a small “sample” set among the inversion cases 

previously examined in chapters 4 and 5. It is quite probable that this example case is 

not the one most suitable to show the full potential of the proposed method. This 

argument is expanded as follows. 

As was shown in the analysis of chapters 4 and 5, depending on a number of factors, 

the required length of the inverse filters FIR model ranges from several thousands of 

coefficients (in the case where an accurate model of the plant is known that contains 

the responses of the loudspeakers) to no more than a few hundreds of coefficients. 

This last case would correspond to most everyday virtual acoustic imaging 

applications where the plant contains non-individual HRTFs and some degree of 

listener misalignment and reverberation is inevitable. This wide range of possible 

requirements for the order of the inverse filters translates to a corresponding 

computational cost requirement in a somewhat non-linear fashion. When filters of 

many thousands of coefficients need be implemented, the existence of frequency-

domain block-processing algorithms guarantees an extremely efficient 

implementation. The relatively recent development of such algorithms in zero (or very 

low) input-output latency formulations, e.g. by Gardner (1995), makes them 

practically impossible to beat when such high filter orders are considered. This is 

more clearly shown in chapter 7 where we give the computational cost of the block-
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processing on-line version of the proposed method. At the opposite end of the 

spectrum, when filters of no more than one to two hundred coefficients are to be 

implemented, the direct FIR sample-by-sample filtering implementation is usually 

advantageous as it is more robust to lower-precision arithmetic platforms and easier to 

design. The results of this chapter, however, show that the recursive forward-

backward-time modelling of inverse impulse responses of the order of several 

hundred to a few thousand coefficients can indeed be meaningful. The closer 

investigation of the actual merit of the proposed method in such a type of 

implementation is proposed as further work. 
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7 On-line implementation of the forward-

backward time inverse filtering 

 

7.1 Introduction 

In this chapter, in §7.2, we describe a method for the implementation of the forward-

backward time filtering of the input signal in segments. This forms the basis for the 

on-line implementation of the inverse recursive models that were presented in the 

previous chapter97. In §7.3 we discuss and give the formulae describing the effect of 

the segmenting in the total processing cost of the filtering and the resulting input-

output latency.  An example of the computational cost and input-output latency in the 

application of the algorithm is given based on the inverse recursive model used for the 

results of figures 6-25 and 6-26. This is compared with the corresponding cost and 

input-output latency of the available block-processing frequency-domain algorithms. 

7.2 On-line implementation of the inverse filtering 

algorithm – Filtering of the input in segments 

Let us assume here that the input signal x(n) corresponding to the vector98 x=[x(0) 

x(1) ... x(N-1)]T is partitioned in segments xk(n) corresponding to the vectors xk=[xk(0) 

xk(1) ... xk(L-1)]T=[x(kL) x(kL+1) ... x(kL+L-1)]T of length L99, each one available at 

the time index kL+L-1, k=0,…,N/L-1 and that we are to compute the output y(n) 

partitioned in the corresponding segments yk. In general, when we filter an input 
                                                 
97 A similar formulation is presented in (Powell and Chau 1990a) and (Powell and Chau 1991). 
98 We use here the notation introduced in §6.2. 
99 For notation simplicity we assume here that the signal’s length N is an exact multiple of the 
segment’s length L and, hence, that the integer index k takes the values 0,1,…,N/L-1. Of course this 
does not restrict the generality of the presentation as, if this is not the case, k will take the values 0,1,…, 
[N/L]-1,[N/L] but the last segment’s length will be equal to NmodL 
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signal in segments, we have to address the issue of the initial conditions with which 

implement the filtering of each segment. As an example of that let us consider the 

case where the k-th input segment xk(n) is to be convolved (in the normal forward-

time sense) with an M-samples-long, strictly causal impulse response h(n)100. The first 

output sample of the convolution h(n)*xk(n) will be equal to 

 ( ) ( ) ( )
1

0
0

M

k k
l

y h l x l
−

=

= −∑  (7-1) 

Now given that the lth sample of the kth segment of the input will be the (kL+l)th 

sample of the input: xk(l)=x(kL+l) we get 

 ( ) ( ) ( )
1

0
0

M

k
l

y h l x kL l
−

=

= −∑  (7-2) 

or equivalently 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 1 1 1 1ky h x kL h x kL h M x kL M= + − + + − − +…  (7-3) 

and replacing back the segmented time indices we can write 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 10 0 0 1 1 1 1k k k ky h x h x L h M x L M− −= + − + + − − +…  (7-4) 

In other words, as is described in equation (7-4), the first sample of the k-th output 

segment yk(n) is a function of input samples contained not only in the corresponding 

k-th input segment xk(n) but also in the previous input segment xk-1(n) (and possibly, 

depending on the relative lengths M and L of the impulse response and the input 

segments, of samples contained in the even earlier input segments xk-2(n), xk-3(n) etc.). 

Now in the forward-time filtering case, this issue can be trivially addressed by storing 

the state of the filter’s internal buffer at the end of each input segment and using it as 

initial conditions for the filtering of the next segment. If we want to compute the full-

length (N+M-1)-samples-long convolution y(n)=x(n)*h(n), then the full-length 

(L+M-1)-samples-long of the last segment xN/L-1(n)*h(n) has to be computed (for 

example by zero-padded sample-by-sample filtering as is explained in §A1). 

                                                 
100 For the purposes of the current discussion h(n) can be considered to be the approximation up to the 
Mth sample of an infinitely long impulse response corresponding to a recursive filter. 
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However, this approach is clearly not feasible in the backward-time filtering case 

since, due to the reversal in time, the first sample of the input segment xk(n) to “enter” 

the filtering process is xk(L-1) followed by xk(L-2) and so on, the last sample to be 

processed being xk(0). With this arrangement, the sample “preceding” 

xk(L-1)=x(kL+L-1) in this reversed sequence would be x(kL+L)=xk+1(0) i.e. the first 

sample of the next input segment. This means that for the computation of the output 

segment yk,max(n) we need knowledge of a number of samples of the next input sample 

xk+1(n) that is yet not available. 

A simple illustration of this process is given in the next example in which we assume 

that the causal input x(n) corresponding to the vector x=[x(0) x(1) ... x(7)]T is to be 

convolved in backward-time with the strictly anti-causal impulse response h(n) 

corresponding to the vector h=[h(-1) h(-2) h(-3)]T. The 10-samples-long output y(n) 

calculated by means of zero-padded sample-by-sample filtering (see the discussion in 

§A1) will then be as in equation (7-5): 
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(7-5) 

If now this computation is carried by segmenting the input into two segments x0=[x(0) 

x(1) x(2) x(3)]T and x1=[x(4) x(5) x(6) x(7)]T then the two corresponding output 

segments y0 and y1 will be as in equation (7-6) which, by comparison with equation 

(7-5), readily shows that the output y(n) will be related to the segments y0 and y1 as in 

equation (7-7), i.e. it will be equal to an overlap-addition of the two (reversed-in-time) 

output segments y0 and y1. 
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 (7-7) 

In the general case then, where the N-samples-long input x(n) partitioned in segments 

xk each of length L is to be convolved with the Δ-samples-long anti-causal impulse 

response h(n)101 we see that the (N+Δ-1)-samples-long output y(n) will be related to 

the (L+Δ-1)-samples-long segments yk by means of the overlap-addition of equation 

(7-8). Note that in this equation we have implicitly assumed that the segment length L 

is larger than the (effective) length of the impulse response Δ. If this is not the case 

then more than two consecutive output segments have to be overlapped for the 

creation of the output y(n). 

                                                 
101 Again, in the case where h(n) is of infinite length, M stands for the effective length we want to take 
into account in the calculation of the convolution (see the discussion in §A1) 
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Combining then the forward and backward time cases presented above we see that the 

(infinitely long) full-length convolution of an N-samples-long input x(n) with a 

doubly infinite non-causal impulse response can be approximated up to the index Δ in 

backward time and M-1 in forward time by the (N+M+Δ-1)-samples-long output y(n) 

computed in segments by means of the algorithm explained in the block diagram of 

figure 7-1. For the direct arrangement case considered here, each one of the blocks 

labelled “forward-backward time filtering algorithm” in figure 7-1 corresponds to the 

algorithm described in the block diagram of figure 7-2. In this block diagram, for the 

processing of the last input segment xN/L-1(n) through the forward time branch we have 

to zero-pad the segment xN/L-1(n) with M-1 zeros at its end in order to compute the 

(M-1)-samples-long tail of the convolution output (hence the zero-padding of the 

dashed block is only applied for the filtering of the last input segment). As is further 

discussed below, with the basic assumption that the total computing time needed for 

the processing of each input segment is less than the time-duration of the segment, the 

algorithm of figure 7-1 can be implemented on-line. 



Chapter 7 – On-line implementation of the forward-backward time inverse filtering 

 223

 

Figure 7-1: Forward-backward time convolution in segments 
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Figure 7-2: Forward-backward time convolution of each input segment 
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first Δ-1 samples of y1(n). As can be then seen in figure 7-3, the Δth sample of y0(n) 

occurs at time 2L⋅Ts+TC, i.e. (if the real-time assumption TC < L⋅Ts holds) at the time 

when we have finished the processing of y1(n) and we are thus in position to keep 

reproducing the properly overlap-added output. The same holds for the case where the 

segmenting length L becomes smaller than the anti-causal length Δ but in this case it 

is easy to infer from figure 7-3 that the overlap-addition process will involve more 

than two consecutive output segments. 

 

Figure 7-3: On-line implementation of the computation of the output y(n) of each of 
the four elements Hij of the inverse matrix H. 

As is then illustrated in the figure, the total input-output latency of this on-line 

implementation will be described by equation (7-9) where the first term is due to the 
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non-causal approximation to the inverse and is the same in the FIR inversion. The 

remaining two terms correspond to the extra delay due to the segmenting and the time 

needed for the block processing. 

 s s CLatency T L T T= Δ ⋅ + ⋅ +  (7-9) 

Assuming that the real-time-implementation condition holds, the input-output latency 

of equation (7-9) is readily seen to be bounded by the expression of equation (7-10). 

In other words, the total input-output latency will be no more than the sum of the 

modelling delay plus twice the block size. 

 ( )2 sLatency L T< Δ + ⋅ ⋅  (7-10) 

The computation cost Osample per sample-pair of the two-channel output y(n) will be 

equal to the cost for the computation of each output segment Oseg divided by the 

length L of the input segment. This segment cost Oseg is given in equation (7-11) as a 

sum of three terms. The term 4·Ntot·L corresponds to the filtering of the L-samples-

long segment through the 4 recursive structured modelling the elements of the inverse 

matrix H. Hence in this term, the factor Ntot stands for the total number of coefficients 

needed to model each of the elements Hij. The second term 4·Nmax·Δ corresponds to 

the extra zero-padding length Δ that has to be filtered through the backward-time 

realisable part of the 4 recursive models. Hence in this term, the factor Nmax stands for 

the total number of coefficients needed to model the anti-causal part of the response 

of each of the elements Hij. The third term corresponds to the overlap-additions of the 

consecutive output segments. This last term is neglected since in the equation as it can 

be seen to always be very small compared to the remaining two terms102. 
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102 In the case where the segment length L is of comparable value with Δ this term is negligible 
compared to the 4·Ntot term while in the case L << Δ where the factor 8·Δ/L becomes increasingly large, 
this term has again a negligible contribution to the total cost compared to the second term. 
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The computational cost of equation (7-10) for different input segment lengths is listed 

in table 7-1. This is done for the example-case of figures 6-21 and 6-22 (red line). In 

that case the total order for the modelling of each of the four elements Hij of the 

inverse was 65+45=110 taps and the total order for the modelling of the anti-causal 

part of each of them was 25+20=45 taps. Note that this cost reflects strictly the 

number of multiplications/additions needed and does not take into account any extra 

arithmetic-specific load for the implementation of the recursive filtering (internal 

scalings to avoid overflows etc.). In the same table we list the total-input output delay 

of the implementation as estimated by equation (7-10) for a sampling rate of 48kHz. 

The same results of the computational cost Osample versus the input segment length are 

plotted (with the blue line) in figure 7-4. The total-input output delay corresponding to 

each input segment length is given in the top x-axis of the figure. 

The performance of the proposed algorithm is compared in table 7-1 and figure 7-4 

with that of three other algorithms for the computation of the filter output. These are; 

(a) The direct sample-by-sample computation of the output as described by the 

convolution sum of equation (6-2).  This computation requires a number of 

multiplications and additions equal to the length NH of the filter for the computation 

of each output sample and has an input-output equal to one sampling period. 

 madds/output sampledirect HN=O�  (7-12) 

(b) The well documented overlap-save algorithm (Press et al. 2002). In that case the 

convolution sum of equation (6-2) is computed by means of circular convolutions 

implemented in the frequency-domain. These circular convolutions are between 

properly overlapped segments of the input with the filter’s impulse response. For the 

implementation of the algorithm, a segment of the input of length equal to the length 

of the impulse response has to be obtained first. Hence, the input-output latency in the 

implementation of this algorithm is typically taken to be twice the length of the 

impulse response of the filter. A detailed analysis of the computational cost for the 
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implementation of the overlap-save algorithm is presented by Gardner (1995) where it 

is demonstrated that this cost for a reasonably optimised realisation is equal to103 
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9 log 8 additions/output sample

2

H H H

overlap save H
H H

N N N
N N N−

+⎧
⎪= ⎨

+⎪⎩

O�  (7-13) 

(c) The zero-delay modification of the overlap-save algorithm introduced by Gardner 

(1995). In that algorithm, the impulse response of the filter is partitioned in segments 

of increasing length. The convolution with the first (and smallest) of these segments is 

implemented with direct sample-by-sample filtering. Hence the need to obtain a 

segment of the input beforehand is alleviated and the algorithm does not incur any 

extra input-output delay compared to the direct filtering case. The convolution with 

the remaining segments of the impulse response is implemented using overlap-save 

convolutions and thus reaps the computational efficiency of the FFT. The 

computational cost of this algorithm is approximated in (Gardner 1995) by104 

 234 log 151 multiplications/output samplezero delay HN− = −O�  (7-14) 

It should be noted here, with reference to this algorithm, that a variant is described in 

(Gardner 1995) which trades a small amount of input-output delay for a further 

reduction of the computation cost. 

The performance estimates of the these three algorithms for the same inversion case 

as above are listed in table 7-1 and plotted in figure 7-4 in red, black and green line 

respectively. In this inversion case (dashed black line results of figures 6-21 and 6-22) 

the length of the FIR inverse filters was set to 2500 coefficients and the modelling 

delay to 1500 samples. The cost estimate for the computation of each pair of output 

samples will be four times the cost of equations (7-12), (7-13) and (7-14) (one for 

each element of the inverse filter matrix). 

                                                 
103 As this algorithm is mainly about computing FFTs, the computational cost is not directly linked to 
the multiply/add process and hence the number of multiplications is different from that of additions. As 
is the usual practice, we estimate the cost on the basis of the number of multiplications. 
104 Again, we use the number of multiplications needed for the computation for each output sample to 
estimate the cost of the algorithm. It should also be noted that in the derivation by Gardner (1995) of 
both formulae (7-13) and (7-14) additional assubmptions are made regarding the length NH being equal 
to a power of 2 or equal to a sum of powers of 2. If this is not ture, as for instance in the cases 
examined in Table 7-1, the associated costs should be expected to be sliglytly higher. Nevertheless we 
still use these formulae for the results of Table 7-1. 
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  Algorithm Input segment 
length [samples] 

Computational 
cost [madds/pair 
of output 
samples] 

Total input-output 
latency [ms] 

Forward-backward 
time filtering 

1 270440 31.3 

Forward-backward 
time filtering 

10 27440 31.7 

Forward-backward 
time filtering 

100 3140 35.4 

Forward-backward 
time filtering 

1000 710 72.9 

Forward-backward 
time filtering 

2500 548 135.4 

Forward-backward 
time filtering 

10000 467 447.9 

Direct sample-by-
sample filtering 

1 10000 31.3 

Zero-delay 
frequency-domain 
method (Gardner 
1995) 

1 931 31.3 

Overlap-save 
frequency-domain 
filtering 

2500 159 135.4 

Table 7-1: Computational cost and total input-output latency of the introduced block-
processing algorithm for various segment lengths. Computational cost and total input-
output latency for the sample-by-sample FIR filtering, the zero-delay algorithm of 
(Gardner 1995) and the overlap-save algorithm. 
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31.2917 31.6667 35.4167 72.9167 135.417 447.917
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Figure 7-4: Computational cost of the introduced block-processing algorithm versus 
segmenting length (blue line). Cost of direct sample-by-sample FIR filtering (red 
line). Cost of zero delay algorithm of (Gardner 1995) (green line). Cost of overlap-
save algorithm (black line). The corresponding input-output delay is noted on the top 
axis.figure_78 

Returning then to our forward-backward time filtering algorithm, as is displayed in 

the results of table 7-1 and figure 7-4, when the input segment length is set to be very 

small, the input-output delay approaches the hard limit of the implementation which is 

equal to the modelling delay. In that case, however, the cost of the algorithm 

overshoots. Evidently this is due to the influence of the second term in equation (7-

11). In other words, the filtering of the extra zero-padded length has to be 

implemented at every input sample. 
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As the segment length is increased so is the total input-output latency. However, a 

segment length of 100 samples can be seen to result in a very modest increase from 

31ms to 35ms and at a significant computational saving compared to the direct 

sample-by-sample FIR filtering. For input segment length of above 1000 samples the 

influence of the second term in equation (7-11) has completely abated and the cost of 

the proposed algorithm reaches its optimum. For this input segment length value the 

total input-output latency has only doubled compared to the lowest physically 

obtainable value.   

As far as the frequency-domain filtering algorithms are concerned, the results show 

that, when the overlap-save algorithm is used, the computational cost saving is 

tremendous at the expense of a significantly increased input-output latency. At the 

other end, the zero-delay algorithm yields a quite significant reduction compared to 

the direct sample-by-sample FIR implementation without any increase of the input-

output latency. A formulation achieving a trade-off between the input-output latency 

and the computational cost is given in (Gardner 1995). On the basis of that we can 

estimate that using the same input-output latency that our algorithm needs, the 

frequency-domain algorithm of (Gardner 1995) should achieve better results. 

Nevertheless, the results of figure 7-4 make clear that the computational cost of our 

algorithm is broadly on a par with that of the frequency-domain based algorithms. 

This in itself is far from trivial in the broader context of the comparison between 

recursive and frequency-domain filtering. Furthermore, it is quite probable that a 

more exhaustive examination of its performance in the wide range of cases covered 

throughout chapters 4 and 5 together with possible optimisations would prove the 

proposed method to be a preferable candidate in certain cases of implementation (see 

also the relevant discussion in §6.7). 

7.4 Conclusions  

In this chapter we presented a block-processing algorithm for the on-line 

implementation of the forward-backward time recursive filter structures introduced in 

chapter 6. Formulae for the overall input-output latency of the algorithm and the 

associated computational cost were given. As in any block-processing formulation, 
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the basic characteristic of the on-line implementation is the trade-off that was shown 

to exist between the input-output latency and the computational cost. It was 

demonstrated that our algorithm is impractical when the input-output latency needs to 

be set close to the hard limit physically imposed by the modelling delay. In those 

cases, the segment length has to be very small and, as was made apparent, the 

computational cost overshoots. Nonetheless, when the latency requirement is 

modestly relaxed to no more than double the minimum physically obtainable value, 

the cost of the algorithm drops dramatically. Hence the algorithm showed genuine 

promise for implementations where such a minor amount of extra input-output delay 

is tolerable. 

Compared to the frequency-domain based algorithms, two possible advantages of the 

proposed algorithm already at this first stage of its development are (i) the 

significantly lower order of the filter structures involved and hence the lower memory 

required for its implementation and (ii) the fact that its design and realisation does not 

depend on the length of the inverse responses to be modelled, unlike the zero-delay 

frequency-domain filtering algorithm where the optimal partitioning of the inverse 

filters’ impulse response is not trivial for any filter length. 
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8 Conclusions – Proposed further research 

 

The objective of the research presented in this thesis was the investigation of a 

specific signal processing design that has previously been proposed for the 

determination of the control signals needed for the reproduction of a pair of binaural 

signals at the ears of a single static listener. The further development of the design in 

order to replace the used FIR filters with recursive filters was undertaken. A detailed 

examination of the properties, the capacity and the limitations of this design was 

carried that was based on objective experiments. Based on this examination, a 

significant amount of conclusions related to the real-world implementation of the 

design were drawn that were not identifiable from previous studies based on 

subjective experiments or computer simulations. A method was introduced for the 

implementation of the inverse using forward-backward time recursive filtering. The 

application of the method was exemplified using the results of the objective 

experiments and it was shown to achieve a significant reduction of the required order 

of the inverse models. The method was modified to accommodate its on-line 

implementation and its properties were compared to those of the already available 

highly efficient frequency-domain filtering methods. 

The key findings of the presented research can thus be summarised as follows. 

• In the first set of results of chapter 4 we established and quantified the optimal 

inversion accuracy that can be realistically achieved with the inverse design under 

consideration. We showed that under ideal conditions of implementation highly 

accurate inversion results are possible. In such cases it is possible to obtain ipsilateral 

equalisation confined to ±1dB in the region above 200Hz and cross-talk cancellation 

of 15-30dB in that region. On the other hand, it was demonstrated in chapter 4 that 

these results are restricted to the case where the plant corresponding to the individual 

listener and the specific reproduction system is measured in situ. In cases where such 

an in situ measurement is not possible (and hence the late decay part of the plant’s 

model is not available) a perceptually significant amount of error is introduced even 

when knowledge of the strictly anechoic part of the plant corresponding to the 
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specific listener and reproduction system is available. Furthermore it was shown that 

the aforementioned optimal inversion accuracy is only possible if a small degree of 

sub-optimality is allowed in advance by the introduction of a small amount of 

regularisation. 

• The next stage of approximation, namely the cases where (i) the inverse filters are 

determined based on plant models that contain HRTFs and hence do not contain the 

transfer functions of the specific reproduction chain and (ii) do not describe the 

individual listener’s HRTF, were considered in §4.5 and §5.4 respectively. In the 

former case it was shown that a significant amount of error is introduced due to the 

fact that the responses of the reproduction loudspeakers are not corrected which in 

practice relaxes the requirement of accuracy in the inversion. Thus higher 

regularisation can be applied and, consequently, shorter inverse filters can be used. In 

the latter case, using data from the CIPIC database, we demonstrated that a number of 

listeners are indeed well represented by the KEMAR-based HRTF model while others 

are not. It is thus possible that a collective database of a few dummy-head 

measurements of various sizes and shapes could cover all individuals. On the other 

hand the results made apparent that, even when individual HRTFs are used for 

transaural reproduction in anechoic conditions, the inversion of the frequency range 

above 10kHz is not justified. Hence there is considerable room for complexity 

reduction and computational savings if the inverse filtering design is implemented at 

lower sampling rates 

• The issue of the loss of dynamic range associated with the application of the 

inverse filtering was also highlighted with the aid of the results of chapter 4. The role 

of regularisation as a means to address this issue was examined in detail and it was 

shown that in certain cases its use can considerably enhance the overall dynamic 

range of the inversion without significantly, if at all, degrading its accuracy. The use 

of a frequency-varying regularisation penalty was also examined. We showed that, in 

cases where the very low frequency content can be reproduced by a separate 

transducer circuit, this frequency-varying regularisation can achieve a further increase 

of the dynamic range by acting as linear-phase frequency separation stage. The 

overall evaluation of the actual advantages of such an approach (especially in view of 
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the increased requirement for the inverse filters’ length that it entails) was left outside 

the scope of the thesis.  

• The justification of the choice to invert the frequency region below 200Hz as well 

as that of correcting the phase of the plant were also examined §4.5 where it was 

demonstrated that the region below 200Hz is practically uncontrollable with a system 

of the type considered here. As far as the second issue is concerned, it was shown that 

the equalisation of the phase response of the plant is indeed possible if an accurate 

(measured in situ) model of the plant is available, but that such an attempt to correct 

the phase is probably futile in any other case as in such cases the use of a minimum-

phase approximation to the inverse yields nearly equivalent results. 

• The case where the reproduction arrangement contains strong early reflections 

was considered in §5.2. It was shown that when a model of the plant is available that 

contains the effect of these reflections, their presence can be efficiently treated by the 

inverse and the inversion results can be of equivalent accuracy to that of the anechoic 

inversion. This, however, incurs an increased requirement for the inverse filters’ 

length. Conversely, if such early and strong reflections are ignored in the 

determination of the inverse, the quality of the inversion is dramatically influenced. In 

such an event, it was demonstrated that the best level of achievable inversion accuracy 

can be obtained with a very compact, heavily regularised model of the inverse and 

that any higher specification for the inverse is pointless. 

• Furthermore, the case where positioning error is present in the reproduction 

arrangement was considered in §5.3. The measured results verified an expected effect, 

namely that the high frequency part of the inversion begins to fail for positional errors 

of the order of a few millimetres. The error in the inversion exhibited a systematic 

pattern which was explained with the use of an analytical model. The excellent 

agreement between the measured results and the proposed analytical model shows 

that (if an accurate knowledge of the position of the listener is available) the error 

introduced by the misalignment up to a few tens of millimetres can be efficiently 

alleviated by the introduction of fractional-sample delays and constant scaling in the 

inverse filters without any need to recalculate the inverse filters. Conversely, when 

such highly accurate knowledge of the listener’s position is not available, the results 

verify that the inversion of the region above 10kHz is not justified. The case of 
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positional error of the order of a few centimetres was also examined. The measured 

results verified a fact previously observed in subjective experiments, namely that the 

sweet-spot size of the Stereo Dipole geometry for the creation of virtual images in the 

frontal half of the horizontal plane extends to approximately ±8cm to the left and right 

of the listener. 

• Gathering all the above cases we can conclude that the required filter length for 

the implementation of the FIR-based inversion method under examination ranges 

from several tens of thousands of coefficients (for the highly accurate inversion case 

where the inverse is determined on the base of a plant model measured in situ and 

frequency varying regularisation is introduced) to no more than a few hundreds of 

coefficients, when one or more of the aforementioned elements of approximation and 

error are present. 

• In chapter 6 we introduced a technique for the decomposition of the elements Hij 

of the inverse matrix H in two parts, one realisable in forward time and one in 

backward time. We showed that with the use of this technique, an overwhelmingly 

accurate recursive representation of the inverse can be obtained. We noted however 

that in such a form the technique is of limited practical interest, mainly due to the 

excessively high order of the resulting recursive structures. Two modifications were 

proposed in the method for the determination of the recursive filters that model the 

forward and backward time realisable parts of the inverse. One of them, formulated in 

the time-domain, was found to give very promising results in terms of reducing the 

order of the involved recursive filters without reducing the accuracy of the inversion 

below the level that one would realistically expect to achieve in real-world 

implementations. The evaluation of the proposed recursive inverse modelling method 

was confined to a small “sample” set among the inversion cases previously examined 

in chapters 4 and 5 while a more comprehensive evaluation is left a further work. 

• Finally, in chapter 7, we introduced a block-processing algorithm for the on-line 

implementation of the forward-backward time recursive filter structures of chapter 6. 

We examined the overall input-output latency and the associated computational cost 

of the algorithm and gave the related formulae. As in any block-processing 

formulation, the basic characteristic of the on-line implementation is the trade-off that 

was shown to exist between the input-output latency and the computational cost. It 
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was demonstrated that our algorithm is impractical when the input-output latency is 

set close to the hard limit physically imposed by the modelling delay. Nonetheless, 

when the latency requirement is modestly relaxed to no more than double the 

minimum physically obtainable value, the cost of the algorithm drops dramatically. 

Hence the algorithm showed genuine promise for implementations where such a 

minor amount of extra input-output delay is tolerable 

A number of further research directions of interest were identified during the course 

of this project. These are the following:   

• Subjective verification of the results of chapters 3-5: We propose the validation 

of the findings of our objective experiments with subjective tests. Even though a 

significant amount of published research exists in this area, little knowledge exists 

with respect to the actual requirements of the inverse filter design that would achieve 

the best realistically obtainable results in different implementation situations. Based 

on the results of chapters 3-5, we believe that properly designed subjective 

experiments that simulate the real-world implementation of the system would show 

that a significant downgrade of the inverse filter design specifications could be 

achieved. Again based on those results we believe that the, admittedly cumbersome, 

additional requirement for the in situ measurement of the plant matrix could be 

proven with properly designed subjective experiments to be a justifiable means for the 

improvement of the system’s performance. 

• Separate implementation of the cross-talk cancellation and ipsilateral 

equalisation stages (see also §2.4.2): Even though such an implementation has been 

considered in the past, we believe that it has not been adequately exploited in the 

context of the inverse filtering design examined in this thesis. Some experimental 

results obtained during the acquisition of the measurements presented in chapters 3-5 

show that, when an in situ measurement of the plant is available, a separate cross-talk 

cancellation stage can be made to work very effectively without the limitations 

inherent in the inverse filtering. In other words, the perfect cross-talk cancellation of 

figure 2-7 (which in the discussion of §2.4.2 was deemed to be an artificial effect of 

the simulation process) can to some extent be replicated in the actual implementation 

of the inversion. The overall-equalisation inverse filtering stage can then be 

implemented separately with the introduction of a significant amount of regularisation 
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and hence a more modest inversion specification. In this way, a tolerable amount of 

colouration would be introduced but the dynamic range issues would be addressed 

much more efficiently. Minimum-phase approximations could also be more suited to 

such a design. 

• Application of the forward-backward time recursive modelling to a wider 

selection of implementation cases of chapter 3: As was also mentioned in the main 

text, time limitations did not allow the extensive application of the proposed recursive 

modelling methods to the wide range of cases that were presented in chapter 3. Given 

the increased amount of error in the inversion in certain implementation cases 

(especially those of §5), we expect the undertaking of such a task to show that much 

more compact recursive models can be achieved in those cases. 

• Improvement of the recursive modelling methods of §6.5: General purpose 

Matlab functions were used for the recursive modelling methods presented in §6.5. It 

is thus probable that the obtained models were not optimal. This is supported by the 

fact that using other time-domain model-fitting methods (Prony’s method and Shank’s 

method) we obtained quite varying results. A more detailed investigation of the issue 

could thus result in more efficient modelling.   

• Application of the reduced order recursive models to lower-precision 

arithmetics: Assuming that the introduced recursive inverse models reach a stage of 

development where their use becomes clearly advantageous, the possibility of their 

implementation in platforms of lower precision arithmetic (than the double-precision 

used here) should be examined. This is fairly straightforward to do in modern 

computing packages such as Matlab. 

• Examination of the possibility for optimisation of the block-processing 

algorithm: Finally, it is possible that some optimisation could be achieved in the 

simple block-processing algorithm presented here. To this end, the block-processing 

form of the cascade connection arrangement should also be considered. One issue to 

be addressed, should such a research direction was to be followed, would be the 

modification of the algorithm to achieve uniform computational load over the 

segment length.  
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Appendix 

 

A1. Convolution and filtering in backward time 

 

In this section we give the analytical expressions and formulae describing the notions 

of full-length convolution and linear filtering in the context of forward and backward 

filtering through recursive filters. We describe how full-length convolution with 

infinitely long impulse responses is implemented in the results presented in the thesis 

using the filter command, which is the standard way of implementing recursive 

filtering in Matlab. 

The formula for the convolution of two finite length sequences x(n) and h(n) that are 

non-zero in the intervals N1 ≤ n ≤ N2  and M1 ≤ n ≤ M2 respectively105, is given in 

equation (A1-1) from which it is readily seen that the output signal yc(n) will be, 

generally, non-zero for the interval N1+M1 ≤ n ≤ N2+M2. Clearly, for an infinitely long 

input impulse response h(n) the convolution output yc(n) will also be infinitely long 

and can thus be only approximately realised. 

 ( ) ( ) ( ) ( ) ( )
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On the other hand, in the case of sample-by-sample filtering of the input x(n) through 

the filter h(n) resulting in the output yf(n) we typically take yf(n) to be of the same 

length N=N2-N1+1 as the input, irrespective of the length M=M2-M1+1 of the filter’s 

impulse response (this is for example the case with Matlab’s filter function). This 

practically means that we consider the filter’s output yf(n) to cease as soon as the input  

x(n) stops whereas, due to the “memory” of the impulse response h(n), the 

convolution sum of equation (A1-1) continues to produce output even after the input 

                                                 
105 With Ni, Mi either positive or negative integers 
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has stopped. The corresponding formula for the sample-by-sample filtering will then 

be as in equation (A1-2). 
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Equivalently, in the terminology introduced in §6.2, the operation of sample-by-

sample filtering will translate to the matrix-vector equation yf=HNx where the (N×N) 

Toeplitz matrix HN is defined as in equation (A1-3) and where, depending on the 

relative lengths of x(n) and h(n), either a triangle of the lower-right part of the matrix 

will be equal to zero or some of the last samples of h(n) will not be present in the 

matrix. 
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We then see that the statement ((HN)C)R=Ĥ N  of equation (6-5) which holds for the 

full-length convolution formula (A1-1) does not hold for the filtering formula (A1-2) 

as the filtering matrix HN does not satisfy the corresponding algebraic identity: 

((HN)C)R≠ĤN
 . In other words, the output uf(n) that we obtain by filtering x̂(n) through 

ĥ(n) is not equal to the time reversed version of yf(n): ûf(n)≠yf(n). 

However, it is easy to see that when the input signal x(n) is replaced by xM-1(n), a 

zero-padded version with M-1 zeros at its end, the corresponding (N+M-1×N+M-1) 

filtering matrix HN+M-1 will be as in equation (A1-4) and equation (A1-5) will hold106. 

In other words, the convolution of the input x(n) with the M-samples-long impulse 

response h(n) is equivalent to the filtering of xM-1(n) through h(n).  

                                                 
106 The partitioning lines in the matrix HN+M-1 in equation (A1-4) correspond to N and M-1 number of 
rows and columns with N and M the lengths of the input and the impulse response respectively.  
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 1 1+ − − = =x y xH HN
N M M  (A1-5) 

Furthermore, as is shown in equation (A1-6), in the backward time filtering case the 

time-reversed full-length convolution output ŷ(n) can be obtained when x̂M-1(n), i.e. a 

zero-padded version of the time-reversed input x̂(n) again with M-1 zeros at its end, is 

filtered through the time-reversed impulse response ĥ(n) corresponding to the filtering 

matrix ĤN+M-1. 
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We now consider the specific case where a causal N-samples-long input x(n) is to be 

convolved with the infinitely long and strictly causal impulse response hIIR(n) in 

which case the convolution matrix HIIR
N will have an infinite number of rows. If 

however hIIR(n) is decaying in positive time we can assume that it will be 

insignificantly small after a given index M: hIIR(n)≈0 for n ≥ M, with M a positive 

integer. In that case the infinite length convolution hIIR(n)*x(n) can be approximated 
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to an arbitrary degree of accuracy by the (M+N-1)-samples-long convolution 

h(n)*x(n) with h(n) the finite length sequence of equation (A1-7). In the case then 

where sample-by-sample filtering is used for the computation of the convolution we 

see that in order to approximate the infinite length convolution up the index (M+N-1) 

we need to zero pad the input x(n) with M-1 zeros at its end.   

 ( ) ( ) , 0
, otherwise0

IIR n Mh n
h n

≤ <⎧
= ⎨

⎩
 (A1-7) 

Next, we consider the case where a causal N-samples-long input x(n) is to be 

convolved with the infinitely long and strictly anti-causal impulse response hIIR(n) of 

which we have a time-reversed model ĥIIR(n). As before we assume that hIIR(n) 

becomes insignificantly small for indices smaller than -M: hIIR(n)≈0 for n < -M, with 

M a positive integer and similarly for its time-reversed model ĥIIR(n). In that case the 

(M+N-1)-samples-long a-causal convolution output y(n)=h(n)*x(n) will be as in 

equation (A1-8), where depending on the relative lengths of h(n) and x(n) some of the 

terms appearing as h(-N), h(-N+1) etc. in the convolution matrix will be falling out of 

the range 0 < -n ≤ M and will thus be considered of insignificantly small value.  
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We now take the case where this convolution is implemented by sample-by-sample 

filtering through the time-reversed finite-length impulse response ĥ(n), an 

approximation to infinitely long time-reversed model ĥIIR(n) up to the sample n=M. In 

this case, as said above, we have to use a zero-padded version x̂M-1(n) of the time-

reversed input in which case the time-reversed output will be as in equation (A1-9). It 

becomes thus evident from equation (A1-9) that the amount of zero-padding applied 

to the time-reversed input signal determines the (anti-causal) length of the infinite 
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impulse response hIIR(n) taken into account in the computation of the output y(n) and 

is in effect equivalent to the modelling delay that has to be introduced in order to 

make the indices of the output correspond to positive time: Δ=M. 
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Combining then the two cases described above, we see that in order to approximate 

the infinitely long convolution of the N-samples-long input x(0 ≤ n < N) with the 

infinitely long impulse response h(n)=Z-1{1/C(z)} in the interval –Δ ≤ n < N+M2-1 by 

means of the parallel connection (see figure 6-1 in the main text) using sample-by-

sample filtering, we have to zero pad the input x(n) and its reversed version x̂(n) with 

M2-1 and Δ zeros respectively in order to compute the N+M2-1 and N+Δ-1 outputs 

ymin(n) and ymax(n). These outputs have then to be shift-added with the (Δ+1)th sample 

of ymax(n) (i.e. the one with time index n=0) added to the 0th sample of ymin(n) and so 

on, in order to acquire the (N+Δ+M2)-samples-long output y(n), the first Δ samples of 

which will correspond to negative time. 
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Finally, in the case of the cascade connection of figure 6-2 of the main text, we see 

that the decomposition is equivalent to the factorisation of the (infinite rows) 

convolution matrix HN corresponding to the non-causal impulse response 

h(n)=Z-1{1/C(z)} as a product of the (infinite rows) convolution matrices Hcaus
N and 

Hacaus
N corresponding to the strictly causal and anti-causal impulse responses 

hcaus(n)=Z-1{1/Cmin(z)} and hacaus(n)=Z-1{1/Cmax(z)}. Assuming as before that h(n)≈0 

for n ≤ -M1 and n ≥ M2 (with M1 and M2 positive integers) the implementation of the 

convolution of an N-samples-long input x(n) with h(n) can be implemented by 

sample-by-sample filtering the signal xM2-1(n) through hcaus(n), time-reversing it, zero-

padding it with M1-1 zeros at its end, filtering it through ĥacaus(n) and time-reversing it 

again to obtain the (N+M2+M1-2)-samples-long output y(n), the first M1-1 samples of 

which will again correspond to negative time indices. 
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A2. Proof of the matrix identity of §6.2 

 

In this section we give a proof of the matrix identity of equation (A2-1) that was used 

in the formulation of §6.2. 

 ( )( ) ( ) ( )
RC R R=A v Av  (A2-1) 

In (A2-1), A is a matrix with, say, M rows and N columns and v is a vector with N 

elements. As was introduced in §6.2, the notation (·)R and (·)C is used to denote the 

reversal of rows and reversal of columns respectively of the matrix or vector inside 

the brackets. We also use the notation [A]i,j to denote the element in the ith row and 

the jth column of the matrix A and similarly [v]i to denote the element in the ith row of 

the vector v. Hence, the algebraic definition of (·)R for the matrix A will be 

 ( ) [ ]R

1,, M i ji j − +
⎡ ⎤
⎣ ⎦A A�  (A2-2) 

the algebraic definition of (·)C for the matrix A will be 

 ( ) [ ]C

, 1, i N ji j − +
⎡ ⎤
⎣ ⎦A A�  (A2-3) 

and the algebraic definition of (·)R for the vector v will be 

 ( ) [ ]R

1N ii − +
⎡ ⎤
⎣ ⎦v v�  (A2-4) 

Finally, the definition of matrix-vector multiplication in the introduced notation will 

be 

 [ ] [ ] [ ],
1

N

i i k k
k =

= ∑Av A v  (A2-5) 

Hence, we see that the element in the ith row of the M×1 vector in the right-hand side 

of equation (A2-1) will be equal to 
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whereas, the same element of the vector in the left-hand side of equation (A2-1) will 

be equal to 
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and substituting the running index k that runs the interval from 1 to N with the index 

 1k N k= − +�  (A2-8) 

which runs the same interval in the opposite direction from N to 1 we can write 

equation (A2-7) as 
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The equality of the right-hand sides of equations (A2-6) and (A2-9) proves the 

intended. 
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