Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology
Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology
The physical properties (rheology) of biofilms will determine the shape and mechanical stability of the biofilm structure and consequently affect both mass transfer and detachment processes. Biofilm viscoelasticity is also thought to increase fluid energy losses in pipelines. Yet there is very little information on the rheology of intact biofilms. This is due in part to the difficulty in using conventional testing techniques. The size and nature of biofilms makes them difficult to handle, while removal from a surface destroys the integrity of the sample. We have developed a method which allowed us to conduct simple stress-strain and creep experiments on mixed and pure culture biofilms in situ by observing the structural deformations caused by changes in hydrodynamic shear stress (tau(w)). The biofilms were grown under turbulent pipe flow (flow velocity (u) = 1 m/s, Reynolds number (Re) = 3600, tau(w) = 5. 09 N/m(2)) for between 12 and 23 days. The resulting biofilms were heterogeneous and consisted of filamentous streamers that were readily deformed by changes in tau(w). At tau(w) of 10.11 N/m(2) the streamers were flattened so that the thickness was reduced by 25%. We estimated that the shear modulus (G) of the mixed culture biofilm was 27 N/m(2) and the apparent elastic modulus (E(app)) of both biofilms was in the range of 17 to 40 N/m(2). The biofilms behaved like elastic and viscoelastic solids below the tau(w) at which they were grown but behaved like viscoelastic fluids at elevated tau(w). The implications of these results for fluid energy losses and the processes of mass transfer and detachment are discussed.
83-92
Stoodley, Paul
08614665-92a9-4466-806e-20c6daeb483f
Lewandowski, Z.
1f3f2a52-af00-4d39-99b9-cb4a372959ce
Boyle, J.D.
368bdeb9-d77b-42e8-811a-09fb24a33c12
Lappin-Scott, H.M.
fa1948ea-97cd-47a8-9fea-4f67567a50c8
5 October 1999
Stoodley, Paul
08614665-92a9-4466-806e-20c6daeb483f
Lewandowski, Z.
1f3f2a52-af00-4d39-99b9-cb4a372959ce
Boyle, J.D.
368bdeb9-d77b-42e8-811a-09fb24a33c12
Lappin-Scott, H.M.
fa1948ea-97cd-47a8-9fea-4f67567a50c8
Abstract
The physical properties (rheology) of biofilms will determine the shape and mechanical stability of the biofilm structure and consequently affect both mass transfer and detachment processes. Biofilm viscoelasticity is also thought to increase fluid energy losses in pipelines. Yet there is very little information on the rheology of intact biofilms. This is due in part to the difficulty in using conventional testing techniques. The size and nature of biofilms makes them difficult to handle, while removal from a surface destroys the integrity of the sample. We have developed a method which allowed us to conduct simple stress-strain and creep experiments on mixed and pure culture biofilms in situ by observing the structural deformations caused by changes in hydrodynamic shear stress (tau(w)). The biofilms were grown under turbulent pipe flow (flow velocity (u) = 1 m/s, Reynolds number (Re) = 3600, tau(w) = 5. 09 N/m(2)) for between 12 and 23 days. The resulting biofilms were heterogeneous and consisted of filamentous streamers that were readily deformed by changes in tau(w). At tau(w) of 10.11 N/m(2) the streamers were flattened so that the thickness was reduced by 25%. We estimated that the shear modulus (G) of the mixed culture biofilm was 27 N/m(2) and the apparent elastic modulus (E(app)) of both biofilms was in the range of 17 to 40 N/m(2). The biofilms behaved like elastic and viscoelastic solids below the tau(w) at which they were grown but behaved like viscoelastic fluids at elevated tau(w). The implications of these results for fluid energy losses and the processes of mass transfer and detachment are discussed.
This record has no associated files available for download.
More information
Published date: 5 October 1999
Organisations:
Engineering Mats & Surface Engineerg Gp
Identifiers
Local EPrints ID: 157461
URI: http://eprints.soton.ac.uk/id/eprint/157461
ISSN: 0006-3592
PURE UUID: f7bfda64-6c11-4f7c-9934-14078cdf8350
Catalogue record
Date deposited: 15 Jun 2010 08:53
Last modified: 14 Mar 2024 02:55
Export record
Altmetrics
Contributors
Author:
Z. Lewandowski
Author:
J.D. Boyle
Author:
H.M. Lappin-Scott
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics