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Abstract. Although extensive research has been undertaken into the dry sliding wear of 

aluminium alloys, only limited work has been reported on the lubricated wear. In this 

paper, the lubricated sliding wear of some powder derived aluminium alloy 

composites is reported. Stereo pairs of the worn surface were obtained in the SEM and 

digitally reconstructed to give a quantitative projection of the surface topography. 

Analysis of the average surface roughness (Ra) along chosen sections provided 

quantitative information about the wear mechanism. Following this, dual beam 

focused ion beam (FIB) was undertaken to further explore the features revealed by the 

SEM surface reconstructions, with TEM sections removed from selected regions. 

Surface deformation was confined to a narrow layer, typically 1 m thick. Subgrain 

size within the subsurface layer was comparable to that found in dry sliding wear tests. 

Reinforcement fracture occurred in the surface particles only. The resultant fragments 

were often incorporated back into the surface following detachment, such that the total 

volume fraction reinforcement at the surface was greater than in the bulk.  Thus, the 

dynamic surface topography was a result of three factors: surface deformation, local 

detachment of reinforcement and re-incorporation of the fragments back into the 

surface.  

1.  Introduction 

The use of aluminium alloys and composites for sliding contact surfaces has been extensively 

investigated in an effort to optimise the material properties for wear resistance [1]. Although there 

have been many studies on the effect of material and test parameters, relatively few pertain to the 

lubricated sliding of these materials, perhaps surprising given that this is the industrially relevant 

condition. 

In an effort to understand the effect of lubricated sliding on the near surface layer of aluminium 

alloy composites, a number of powder metallurgy/extruded composites were wear tested under 

lubricated sliding conditions and the worn surfaces characterised using SEM/FIB/TEM. 

2.  Experimental Procedure 

AA2124 and AA5056 were blended with either SiC, Cr3Si, or MoSi2 and hot extruded (450ºC), such 

that a nominally 15vol.% volume fraction reinforcement was obtained. Extrusions of the unreinforced 

alloys were also carried out under the same parameters for comparison. The resulting composites were 



 

 

 

 

 

 

sectioned in the transverse plane and polished to <0.1µm Ra, prior to wear testing in a pin-on-ring 

configuration against a hardened (705Hv) M2 tool steel counterface, also polished to <0.2µm Ra.  

A high normal load (630N) was applied via a cantilever beam, which allowed initial Hertzian point 

contact stresses in the range 0.9-1.2GPa, according to the elastic properties of each material. 

Lubricated sliding was achieved by partially immersing the counterface in an oil bath of Mobil 1 

Motorsport 15W-50, with tests run at 1ms
-1

 for distances of hundreds of kilometres to assess the wear 

response over extended sliding distances.  

SEM observations of the worn surface were carried out using a Jeol 6500Fabrika. Secondary 

electron stereo pairs of the worn surfaces were obtained by tilting the images 16º apart at 

magnifications of >x1000. Mex software, from Alicona, allowed digital reconstruction of the worn 

surface topography, providing a 3-dimensional visualisation of the worn surfaces. Profile traces of 100 

pixel width were taken perpendicular to the wear direction and provided quantitative information 

about the local surface roughness.  

Dual beam focused ion beam (FIB, Jeol 6500Fabrika; 30kV and 1.5µA) allowed site specific 

investigation of subsurface areas by milling sections parallel to the worn surface Secondary ion 

imaging made use of the ion channelling contrast effect to provide information about grain 

orientations. 

TEM samples were prepared from selected regions by both lift-out and trench techniques. Surfaces 

were protected by either deposition of Pt or W from a metal precursor gas, or in the case of the trench 

technique, as applied to 5056 alloy, by Ni plating using Electroless Nickelmerse, followed by 

sectioning and grinding to ~30µm thickness, prior to FIB thinning. TEM observations of the worn 

surfaces were carried out using a FEI Tecnai operating at 200kV. 

3.  Results and Discussion 

3.1.  Specific Wear Rates 

Figure 1 shows the relative wear rates of the unreinforced alloys to be significantly higher than the 

reinforced composites, as expected. It would appear that the harder precipitation strengthened alloy 

2124 (119.6Hv) is more wear resistant than the softer 5056 work hardening alloy (95.8Hv). Alloys 

reinforced with intermetallics all showed a decrease in the relative wear rates compared to the alloys, 

with silicide reinforced composites showing similar or lower wear rates compared to a more traditional 

SiC reinforced composite. 

 

 

 

Figure 1. Specific wear rates for lubricated 

sliding wear of Al alloys and composites. 

 
Figure 2. 3-D surface reconstruction of the  

worn surface 2124 + MoSi2, x1000. 

 

 

3.2.  SEM Observations 



 

 

 

 

 

 

SEM analysis of the worn surface of unreinforced alloys indicated a surface characterised by both 

broad (10µm) and narrow (<1µm) wear tracks, along with a multitude of craters and smaller wear 

debris particles from the counterface. 3-D stereo reconstructions of areas where transfer of particles 

from the counterface to the alloy had taken place indicated that the particles were flush to the surface, 

evidence of the high contact pressure exerted from the counterface and the plastic yielding of the 

matrix to accommodate them. 

Observations of the response of the composite surfaces to lubricated sliding differed according to 

type of reinforcement. In the case of silicide reinforced alloys, a relatively polished surface was 

observed, Figure 2, with extensive fracture of the reinforcement appearing to cause an increase in the 

local surface volume fraction. As previously reported [2] this was indeed the case with volume 

fractions increasing from 15vol.% to ~25vol.% for 2124 reinforced composites and to ~35vol.% for 

5056 composites.      

In the case of 2124 + SiC the 3-D model showed a small (~3.5µm) distribution in asperity heights  

however, the abrasive 3
rd

 body effect of the SiC particles resulted in a much rougher composite surface 

topography, as indicated by profile traces perpendicular to the wear tracks. Ra values calculated from 

the primary profiles indicated that the smoothest worn surface was for the 5056 alloy (Ra=0.10µm, 

0.12µm), whilst 2124 + SiC was the roughest (Ra=0.20µm, 0.17µm), as expected. However these 

values of surface roughness are still relatively low, given that an average metallographic polish can 

also yield similar values [3]. The metallographic evidence therefore indicates that at extended sliding 

distances the alloys and composites were operating in the ‘mild wear regime’, with fine-scale abrasion 

by second and third bodies the main material removal mechanism. 

Table 1. Average roughness values (Ra) of worn surfaces. 

 Roughness, Ra (µm) 

5056 Alloy; Area 1 0.101 

5056 Alloy; Area 2 0.126 

5056 + 15vol.% MoSi2 0.138 

2124 + 15vol.% MoSi2 0.159 

2124 + 15vol.& SiC; Area 1 0.203 

2124 + 15vol.& SiC; Area 2 0.174 

3.3.  Focused ion beam 

Ion channelling contrast of sub-surface sections revealed a near surface layer of heavy plastic 

deformation, approximately 1µm deep for all samples investigated, except 2124 + SiC. The strain of 

features, e.g. small particles and grain boundaries towards the sliding direction was evident, as was the 

nucleation of sub-surface voids, giving further evidence of the high levels of local contact stress 

applied [2].  

 

 
 

 

 

 

Figure 3. Focused ion beam milled section 

from the worn surface 2124 + 15vol.% SiC 

composite, parallel to the sliding direction 

 

In the case of 2124+ SiC, however, this surface deformed layer was not present. Instead, relatively 

equiaxed grains, approximately 2µm in size, were observed near the worn surface, Figure 3. However, 

sub-surface deformation was observed at depths greater than 1µm below second phase reinforcing 



 

 

 

 

 

 

particles, where the reinforcement was slightly proud of the surface. This demonstrates that the high 

points acted as the contacting asperities, and load transfer occurred at these points from the 

reinforcement to the subsurface matrix. Importantly, the nearby angular pits were a result of loss of the 

SiC via fracture of the reinforcement/matrix interface, resulting in the liberation of hard ceramics as 

3
rd

 body abrasives. This would indicate why 3-D surface reconstructions show a high roughness for 

the topography of the aluminium alloy-SiC composite, which is fully consistent with the observation 

that the counterface to these composites suffers from abrasive wear. 

3.4.  Transmission electron microscopy 

TEM observations of the worn surface of the unreinforced 5056 alloy, Figure 4, indicated that the 

region of heaviest plastic deformation, whilst confined to approximately 1µm below the worn surface, 

was similar to that seen for dry sliding of aluminium against steel [4]. Sub-grain sizes as low as 30nm 

were seen in dark-field images of material believed to be debris particles that had adhered to the worn 

surface. Average grain sizes of the bulk material as the surface was approached were of the order 

90nm in heavily deformed regions, with selected area diffraction pattern from the near surface 

confirming the polycrystalline nature. 

 

Figure 4. FIB thinned TEM cross-section of the worn 5056 alloy surface. 

 

4.  Summary 

The dynamic surface topography and its influence on the wear mechanism associated with the 

lubricated sliding of these aluminium alloys and composites depended largely on the material 

properties, in particular the reinforcement type. Unreinforced alloys were subjected to severe 

deformation of the near surface layer, to a level similar to that seen for dry sliding wear. Silicide 

reinforced composites exhibited an interesting ability to increase their surface volume fraction 

reinforcement through fracture and re-incorporation of the particles into the surface. This allowed 

wear rates, at an extended sliding distance, to be similar to that of a conventionally reinforced SiC 

composite. SiC reinforcements are effective at transferring contact loads to the matrix, but at the same 

time are also prone to fracture at the particle/matrix interface. The 3
rd

 body abrasive action of these 

particles leads to a much rougher surface topography, and the overall wear resistance becomes a 

compromise between the two competing beneficial and detrimental effects.  
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