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Design selection criteria
deet D denote the set of all point designs IR. A designé* € D IS

tween a continuous respongeandm factorse = (x4, ..., z,,) IS thought to be approx- 1.expected biasK{ B-) optimal if
Imated over the design regidgd of interest by theassumed model

Introduction
Consider a factorial experiment where, prior to experimentation, the relationshi

E[B(®)[5"] = min £ [B(®)]3]

2.expected mean squared erraiN/ .S E-) optimal if

Y(z) = flz)+¢,

where f(-) is a function of then factors,s is a random error term with zero mean and
variances? and the random error terms for different observations are assumed inde-
pendent. Instead of assuming some known true functional form, we may represent our
uncertainty about the true model by assuming a randamaminatiorterm®(x), giving
a population ofrue models

E(AMSE|0*) = min V(6) + E(B(®)|0) .

0eD
oy Allen et al. (2003).

Criterion 2 was also considered

Implementation
(1) | By placing a prior distribution o, we can find designs using these criteria which pr
hysical sciences. fect against a population of possible contaminations. This task is analytically intrac

example is when a simple approximation to some complicated relationship will b find so we use a search approach and have developed a modified Fedorov excha

ted to the data from an experiment. This approximate model will then be used to m&1thm (Cook and Nachtsheim, 1980) with embedded Monte Carlo simulation to
inferences which are subject to possible bias. One example is using the Brgnsted-DeB§&§I9ns under these, and other, criteria.

Huckel equation to estimate the relationship between the rate constant of a reaction 8¢y change algorithm swaps points between a candidate list of possible points at
the ionic strength of the compounds in the reaction. The validity of this linear approx MBbints in the design in an attempt to find an optimal design. The criteria require the vz

tion has been tested extensively and found to be accurate at low ionic strength. Ho eéf%roperties of the bias distribution. For each design search, a Monte Carlo simul

curvature may appear for higher ionic strength, as in the schematic in figure 1. is performed in order to approximate these properties, with a sample of siz&)000
simulated for each approximation.

Y(r)=f(x)+P(x)+ <.
This Is often a realistic scenario for practical experiments in the p

Polynomial spline contamination
For a single factor, consider an assumed model

d
flz) = B, (3)
1=0

and contamination built from polynomial spline basis functions (Eubank, 1999, ch
iven b
ey Y

X

Figure 1. Schematic for an assumed model (dashed line) and true model (solid lir
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Mean-squared error with random contamination Dla) = 2 Tilx = A", (4)
For fixedcontaminationp(x), a design selection criterion which takes account of model . "~ . .
misspecification is thaverage mean squared errkMSE), which can be approximated where the number of knot&s, their locations\; and coefficient$’; are random variables

over a grid ofr evaluation points and can be split intariance(1’) andbias (B) com- (i _ L,..., ). This type of contamination allows different curvature over differe
. sections of the range af
ponents as follows:

A theorem for spline contamination

T

A Monte Carlo exchange algorithm for finding near-optimal designs under model contamination
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Corollary Wheny,, = 0,
E[AMSE] = “tr {F/(X'X)"'F + R[FAD — I|[FAD — I|E} |
T

whereR = po,/0°.

Example

Consider an assumed model (3) with = 2 and contamination (4) wher& ~
Poissofy,), Ai ~ U(—0.2,0.2) andI'; ~ N(0,0;). Table 1 gives four point approx-
iImate £’ M S E-optimal designs for different values of the rafio= uka]%/az.

R % Design
—o0o— 0 -0.8,-0.2,0.2,0.8
213 1.0-0.85, -0.25, 0.25, 0.85
O- 90 2.0 -0.9,-0.3,0.3,0.9
able 25 5.2-0.95, -0.25, 0.25, 0.95
nge al- 10 /7.9 -1,-0.15,0.15,1
find 5 14.5 -1,0,0, 1

d
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AMSE — For the important case when the expected value of each term of the contamination

tion Is zero, analytical results can be derived which greatly increase the computalt
efficiency of the design search.

> E{[f(@) — E(f(z))’} +

1=1

V+B,

(2)

. . . L . Theorem Suppose the true model Is specified by (3) and the contamination has
wheren is the number of design points afidz) is the least squares estimatorfefe). form (4), consisting of independent random variableswith meany,;, and variance
Under model (1), the bias for any given design and assumed model is a random variabie,and, for givenk” = k, random locations\; and coefficientd’;, with meany,, and

B(®), which can be shown to have the form variances;, (I =1,...,k). Thenify, =0

tr {[FAD — I[FAD — I|$%'}

o
whereA = (X'X)~'X’, F is anr x p matrix holding the values of theassumed model
terms for the- evaluation pointsD Is ann x r matrix with:jth entry non-zero and equa
to 1 only when théth design point and thgh evaluation point coincide andis anr x r
identity matrix.

B(®) () E[B(®)] = npo’tr {[F(X'X)7'X'D — IV[F(X'X)"'X'D - IJEV} /(ro?).

|

(i) the expected bias optimal design is invarianj4o o} ando,.

d
+

d
+

whereE}; = E |(z; — )l (z; — A)

5 the
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Table 1. Approximater' M S E-optimal designs for different values of the rafio
MER tends to Infinity, thek' M S E-optimal design tends towards th&3-optimal design,

AlUeSmely{ —0.8, —0.2,0.2,0.8}. As R decreases, the design points slowly shift towards the
AlUPoptimal design for this assumed modgk1,0,0,1}. A V-optimal design minimises

the variance component,, in equation (2). However, as can be seen from the table, th
V-optimal design is not achieved until is over 14 times the size @ (B). The limiting

FE B-optimal andV -optimal designs are determined by the distribution of the additione
knot locations and the assumed model respectively.

Figure 2 shows the expected average mean squared error for the appraokihi&te -
and £’ B-optimal designs and for thg-optimal design for a selection of values Bf It
IS clear that the gain in expected mean squared error from using-thi@imal design

. ®ver theE B-optimal design for lowR values is much smaller than the gain from using

the £ B-optimal design for higher values é¢f. The advantage of th&' M .S E-optimal
design is clear, as fanyvalue of R, it has the lowest possible value fBfAM SE).
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Figure 2. Expected mean squared error values for a selectifrvalues.
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