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Introduction
Consider a factorial experiment where, prior to experimentation, the relationship be-
tween a continuous responseY andm factorsx = (x1, . . . , xm) is thought to be approx-
imated over the design regionR of interest by theassumed model

Y (x) = f (x) + ε ,

wheref (·) is a function of them factors,ε is a random error term with zero mean and
varianceσ2 and the random error terms for different observations are assumed inde-
pendent. Instead of assuming some known true functional form, we may represent our
uncertainty about the true model by assuming a randomcontaminationtermΦ(x), giving
a population oftrue models

Y (x) = f (x) + Φ(x) + ε . (1)

This is often a realistic scenario for practical experiments in the physical sciences. An
example is when a simple approximation to some complicated relationship will be fit-
ted to the data from an experiment. This approximate model will then be used to make
inferences which are subject to possible bias. One example is using the Brønsted-Debye-
Huckel equation to estimate the relationship between the rate constant of a reaction and
the ionic strength of the compounds in the reaction. The validity of this linear approxima-
tion has been tested extensively and found to be accurate at low ionic strength. However,
curvature may appear for higher ionic strength, as in the schematic in figure 1.
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Figure 1: Schematic for an assumed model (dashed line) and true model (solid line).

Mean-squared error with random contamination
For fixedcontaminationφ(x), a design selection criterion which takes account of model
misspecification is theaverage mean squared error(AMSE), which can be approximated
over a grid ofr evaluation points and can be split intovariance(V ) andbias (B) com-
ponents as follows:

AMSE =
n

rσ2

r∑

i=1

E
{
[f̂ (x)− E(f̂ (x))]2

}
+

n

rσ2

r∑

i=1

{
E[f̂ (x)]− f (x)− φ(x)

}2

= V + B , (2)

wheren is the number of design points and̂f (x) is the least squares estimator off (x).

Under model (1), the bias for any given design and assumed model is a random variable,
B(Φ), which can be shown to have the form

B(Φ) =
n

rσ2
tr {[FAD − I ]′[FAD − I ]ΦΦ′} .

whereA = (X ′X)−1X ′, F is anr× p matrix holding the values of thep assumed model
terms for ther evaluation points,D is ann×r matrix with ijth entry non-zero and equal
to 1 only when theith design point and thejth evaluation point coincide andI is anr×r
identity matrix.

Design selection criteria
LetD denote the set of alln point designs inR. A designδ∗ ∈ D is

1.expected bias (EB-) optimal if

E [B(Φ)|δ∗] = min
δ ∈D

E [B(Φ)|δ] .

2.expected mean squared error (EMSE-) optimal if

E(AMSE|δ∗) = min
δ ∈D

V (δ) + E(B(Φ)|δ) .

Criterion 2 was also considered by Allen et al. (2003).

Implementation
By placing a prior distribution onΦ, we can find designs using these criteria which pro-
tect against a population of possible contaminations. This task is analytically intractable
and so we use a search approach and have developed a modified Fedorov exchange al-
gorithm (Cook and Nachtsheim, 1980) with embedded Monte Carlo simulation to find
designs under these, and other, criteria.

An exchange algorithm swaps points between a candidate list of possible points and the
points in the design in an attempt to find an optimal design. The criteria require the values
of properties of the bias distribution. For each design search, a Monte Carlo simulation
is performed in order to approximate these properties, with a sample of sizes = 10000
simulated for each approximation.

Polynomial spline contamination
For a single factor, consider an assumed model

f (x) =
d∑

i=0

βix
i , (3)

and contamination built from polynomial spline basis functions (Eubank, 1999, ch. 6)
given by

Φ(x) =
K∑

i=1

Γi(x− Λi)
d , (4)

where the number of knotsK, their locationsΛi and coefficientsΓi are random variables
(i = 1, . . . , K). This type of contamination allows different curvature over different
sections of the range ofx.

A theorem for spline contamination
For the important case when the expected value of each term of the contamination func-
tion is zero, analytical results can be derived which greatly increase the computational
efficiency of the design search.

Theorem Suppose the true model is specified by (3) and the contamination has the
form (4), consisting of independent random variablesK, with meanµk and variance
σ2

k, and, for givenK = k, random locationsΛl and coefficientsΓl, with meanµp and
varianceσ2

p (l = 1, . . . , k). Then ifµp = 0

(i) E [B(Φ)] = nµkσ
2
ptr

{
[F (X ′X)−1X ′D − I ]′[F (X ′X)−1X ′D − I ]E(1)

}
/(rσ2).

whereE
(1)
ij = E

[
(xi − Λ)d+(xj − Λ)d+

]
.

(ii) the expected bias optimal design is invariant toµk, σ2
k andσ2

p.

Corollary Whenµp = 0,

E[AMSE] =
n

r
tr

{
F ′(X ′X)−1F + R[FAD − I ]′[FAD − I ]E(1)

}
,

whereR = µkσ
2
p/σ

2.

Example
Consider an assumed model (3) withd = 2 and contamination (4) whereK ∼
Poisson(µk), Λi ∼ U(−0.2, 0.2) andΓi ∼ N(0, σ2

p). Table 1 gives four point approx-
imateEMSE-optimal designs for different values of the ratioR = µkσ

2
p/σ

2.

R V
E(B) Design

→∞→ 0 -0.8, -0.2, 0.2, 0.8
213 1.0-0.85, -0.25, 0.25, 0.85
90 2.0 -0.9, -0.3, 0.3, 0.9
25 5.2-0.95, -0.25, 0.25, 0.95
10 7.9 -1, -0.15, 0.15, 1
5 14.5 -1, 0, 0, 1

Table 1: ApproximateEMSE-optimal designs for different values of the ratioR.

As R tends to infinity, theEMSE-optimal design tends towards theEB-optimal design,
namely{−0.8,−0.2, 0.2, 0.8}. AsR decreases, the design points slowly shift towards the
V -optimal design for this assumed model,{−1, 0, 0, 1}. A V -optimal design minimises
the variance component,V , in equation (2). However, as can be seen from the table, the
V -optimal design is not achieved untilV is over 14 times the size ofE(B). The limiting
EB-optimal andV -optimal designs are determined by the distribution of the additional
knot locations and the assumed model respectively.

Figure 2 shows the expected average mean squared error for the approximateEMSE-
andEB-optimal designs and for theV -optimal design for a selection of values ofR. It
is clear that the gain in expected mean squared error from using theV -optimal design
over theEB-optimal design for lowR values is much smaller than the gain from using
theEB-optimal design for higher values ofR. The advantage of theEMSE-optimal
design is clear, as foranyvalue ofR, it has the lowest possible value forE[AMSE].
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Figure 2: Expected mean squared error values for a selection ofR values.

Acknowledgements
The author would like to thank Professor S.M.Lewis, his PhD supervisor, for her advice
and guidance. This work was supported by EPSRC grant GR/R67729.

References
Allen, T. T., Yu, L. and Schmitz, J. (2003) An experimental design criterion for minimizing meta-model prediction errors

applied to die casting process design.J. Roy. Statist. Soc. C., 52, 103–117.

Cook, R. D. and Nachtsheim, C. J. (1980) A comparison of algorithms for constructing exact D-optimal designs.Technometrics,
22, 315–324.

Eubank, E. L. (1999)Nonparametric Regression and Spline Smoothing. New York: Marcel Dekker.


