

Minimum bias designs under random contamination: application to polynomial spline models

Dave Woods
University of Southampton, UK

D.C.Woods@maths.soton.ac.uk

Mean squared error

- Assumed model for an observation

$$Y = f(x) + \varepsilon$$

- True model

$$Y = f(x) + \varphi(x) + \varepsilon$$

- Aim is to estimate $f(x)$
- Average mean squared error (AMSE)
 - error in predictions over design region
 - approximated over a discrete grid of r points

$$\frac{n}{r \sigma^2} \sum_{i=1}^r E \left\{ \hat{f}(x_i) - f(x_i) - \varphi(x_i) \right\}^2$$

Variance and bias

For linear model $f(x_i) = f_i^\top \beta$

- AMSE = Variance, V + Squared Bias, B

$$V = \frac{n}{r} \operatorname{tr} \left\{ F(X^\top X)^{-1} F^\top \right\} \quad B = \frac{n}{r \sigma^2} \varphi^\top P^\top P \varphi$$

where $\varphi = (\varphi(x_1) \dots \varphi(x_r))^\top$

and

$$P = F(X^\top X)^{-1} X^\top D - I$$

- a known form is often assumed for $\varphi(x)$
e.g. Box & Draper (1959), Montepiedra & Fedorov (1997)

Random contamination

- Assume $\varphi(x)$ is a realisation of a **random variable** $\Phi(x)$
- Population of true models

$$Y = f(x) + \Phi(x) + \varepsilon$$

- Random contamination implies **random bias** for given assumed model and design
- Notz (1989) and Allen *et al* (2003) also assumed random contamination as known specified higher order polynomial terms with random coefficients

Design selection criteria based on bias

- Minimise expected bias (“EB-optimal”)

$$E(B) = \frac{n}{r \sigma^2} \operatorname{tr} \left\{ P^T P E \left[\Phi \Phi^T \right] \right\}$$

- Minimise variance bias (“VB-optimal”)

$$V(B) = \frac{n^2}{r^2 \sigma^4} V \left(\operatorname{tr} \left\{ P^T P \Phi \Phi^T \right\} \right)$$

- Minimise percentile bias (“PB-optimal”)
 - find the design that minimises $b > 0$ such that

$$P(B < b) = p$$

for $0 < p \leq 1$

Implementation

- Mathematically intractable for even simple cases
- Modified Fedorov exchange algorithm
- Embedded Monte Carlo simulation to approximate properties of bias distribution
- EB-optimality is computationally efficient
 - each design search only requires one approximation of $E[\Phi\Phi^\top]$

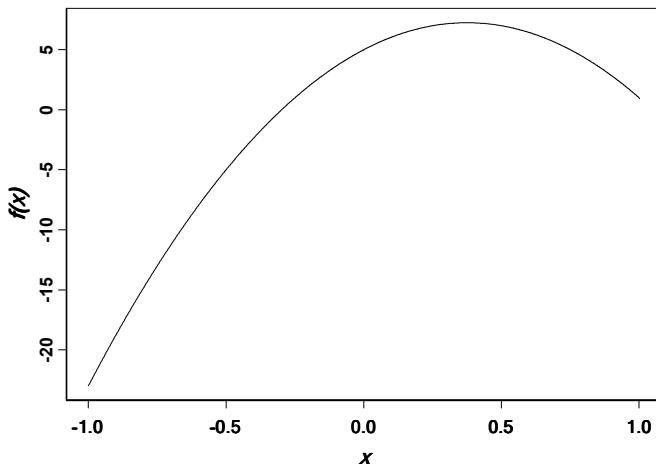
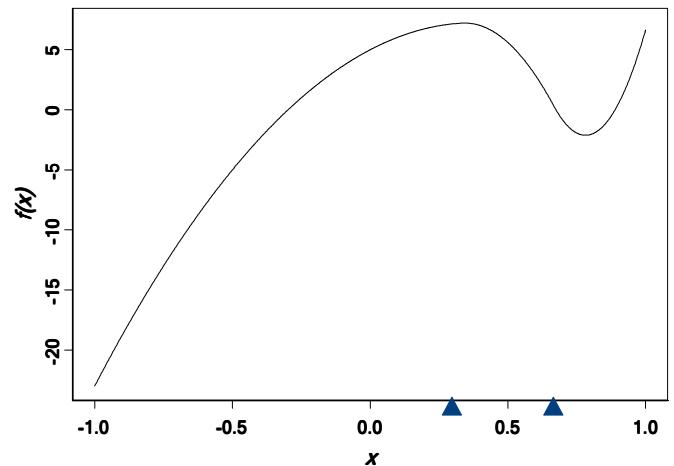
Polynomial splines

- Allow different low degree polynomials on different sections - separated by / knots τ_j
- For one factor, assumed model

$$f(x) = \sum_{i=0}^d \beta_i x^i + \sum_{j=1}^l \beta_{d+j} (x - \tau_j)_+^d$$

- truncated power basis

- knot locations τ_j are known
 - but uncertainty about additional knots



Spline contamination

- Contamination $\Phi(x)$ has the form

$$\Phi(x) = \sum_{i=1}^K \Gamma_i (x - \Lambda_i)_+^d$$

- K , Λ_i and Γ_i are random variables
 - prior distributions

Example

- $n = 4$ design points

Assumed model

$$f(x) = \beta_0 + \beta_1 x + \beta_2 x^2$$

Spline contamination with

- $K \sim \text{Poisson}(\mu_k)$
- $\Lambda_i \sim \text{Uniform}(l_1, l_2)$
- $\Gamma_i \sim N(\mu_p, \sigma_p^2)$

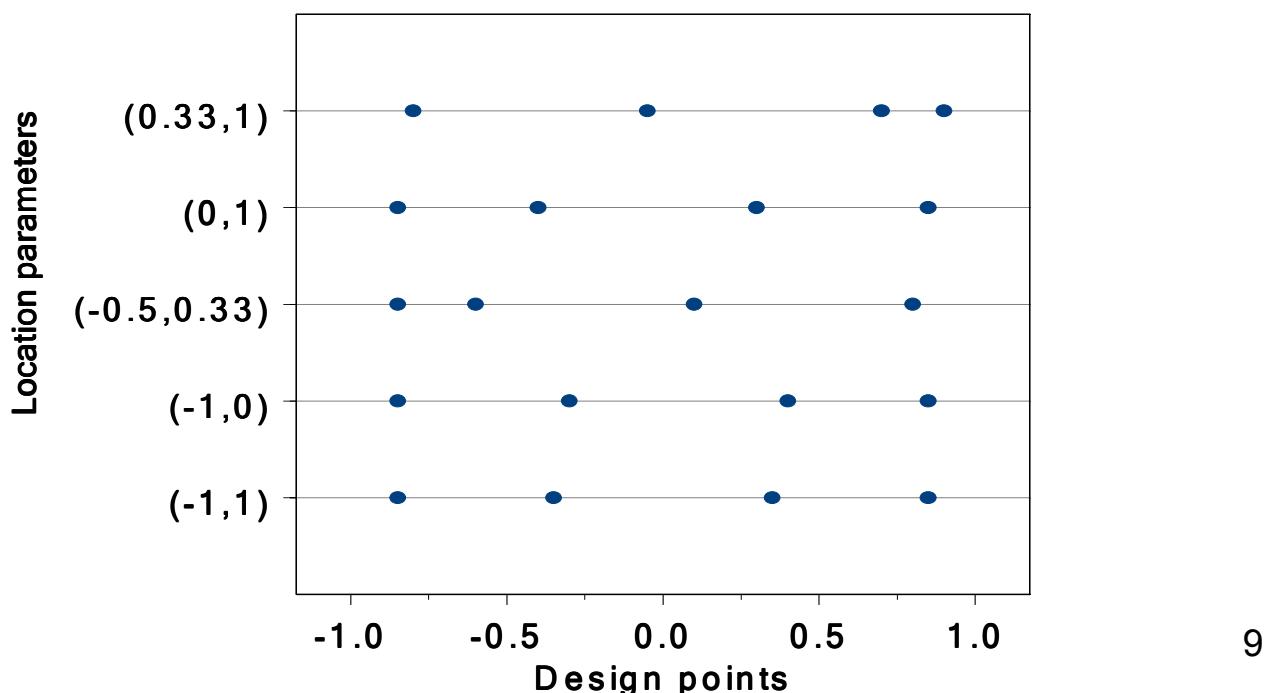
Example

- Varying μ_k, μ_p, σ_p^2

μ_k, μ_p, σ_p^2	EB-optimal design	EB evaluated at			
		2,0,1	2,10,100	15,0,100	15,10,1
2,0,1	I	0.01	3.26	7.91	72.99
2,10,100	II	0.01	3.39	8.09	74.97
15,0,100	I	0.01	3.26	7.91	72.99
15,10,1	I	0.01	3.26	7.91	72.99

$$I = \{-0.85, -0.35, 0.35, 0.85\} \quad II = \{-0.85, -0.55, 0.15, 0.8\}$$

- Varying I_1, I_2



Comparison of designs using variance and percentile bias

- Designs found with parameters

$$\mu_k = 2 \quad \mu_p = 10 \quad \sigma_p^2 = 1 \quad l_1 = 0 \quad l_2 = 1/3$$

Criterion	Design	EB	VB	$P=0.95$
EB	-0.85, -0.55, 0.15, 0.8	6.97	76.8	23.8
VB	-0.75, -0.05, 0.65, 0.85	6.79	76.5	25.0
PB $P=0.95$	-0.85, -0.45, 0.2, 0.8	6.96	77.5	25.0

Findings from studies

Results from a range of empirical studies agree with the example

- EB-optimal designs appear robust to the values of μ_k , μ_p , σ_p^2
-but not to the values of λ_1 and λ_2
- The size of the expected bias depends most on μ_p and λ_1 , λ_2
- EB-optimal designs perform well under the other bias criteria

Conclusions and future research

EB-optimal designs

- have more support points than designs from variance based criteria
- are efficient under other random bias criteria
- are computationally practical

Ideas extend to an expected AMSE criterion

Future work

- application to models in laser chemistry
 - supported by EPSRC Combechem E-science grant