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Mean squared error

• Assumed model for an observation

• True model

• Aim is to estimate f (x)

• Average mean squared error (AMSE)

– error in predictions over design region

– approximated over a discrete grid of r
points
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Variance and bias

For linear model                                           

• AMSE = Variance, V + Squared Bias, B

• a known form is often assumed for φ(x)

e.g. Box & Draper (1959), Montepiedra & 
Fedorov (1997)
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Random contamination

• Assume φ(x) is a realisation of a random 
variable Φ(x)

• Population of true models

• Random contamination implies random 
bias for given assumed model and design

• Notz (1989) and Allen et al (2003) also 
assumed random contamination as 
known specified higher order polynomial  

terms with random coefficients
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Design selection criteria 

based on bias

• Minimise expected bias (“EB-optimal”)

• Minimise variance bias (“VB-optimal”)

• Minimise percentile bias (“PB-optimal”)

– find the design that minimises find the design that minimises find the design that minimises find the design that minimises b b b b >0 such that>0 such that>0 such that>0 such that

for 0< for 0< for 0< for 0< pppp ≤ 1111
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Implementation

• Mathematically intractable for even 

simple cases

• Modified Fedorov exchange algorithm

• Embedded Monte Carlo simulation to 

approximate properties of bias 
distribution

• EB-optimality is computationally efficient 

– each design search only requires one 
approximation of [ ]TΦΦE
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Polynomial splines

• Allow different low degree polynomials on 

different sections – separated by l knots τj

• For one factor, assumed model

- truncated power basis

• knot locations τj are known 

– but uncertainty about additional knots
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Spline contamination

• Contamination ΦΦΦΦ(x) has the form

K,  ΛΛΛΛiiii and ΓΓΓΓiiii are random variables 
– prior distributions

Example 

• n = 4 design points

Assumed model

Spline contamination with

— K ~ Poisson( µµµµkkkk )
— ΛΛΛΛiiii ~ Uniform( l1111, l2222 )
— ΓΓΓΓiiii ~ N( µµµµpppp, σσσσpppp

2222)
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15,10,115,10,115,10,115,10,115,0,10015,0,10015,0,10015,0,1002,10,1002,10,1002,10,1002,10,1002,0,12,0,12,0,12,0,1

72.9972.9972.9972.997.917.917.917.913.263.263.263.260.010.010.010.01IIII15,10,115,10,115,10,115,10,1

72.9972.9972.9972.997.917.917.917.913.263.263.263.260.010.010.010.01IIII15,0,10015,0,10015,0,10015,0,100

74.9774.9774.9774.978.098.098.098.093.393.393.393.390.010.010.010.01IIIIIIII2,10,1002,10,1002,10,1002,10,100

72.9972.9972.9972.997.917.917.917.913.263.263.263.260.010.010.010.01IIII2,0,12,0,12,0,12,0,1

EB evaluated atEB evaluated atEB evaluated atEB evaluated atEBEBEBEB----optimaloptimaloptimaloptimal

designdesigndesigndesignµµµµkkkk, , , , µµµµpppp, , , , σσσσpppp
2222

Example 

• Varying µk, µp, σp
2

• Varying l1, l2
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I = {I = {I = {I = {----0.85, 0.85, 0.85, 0.85, ----0.35, 0.35, 0.85}  II = {0.35, 0.35, 0.85}  II = {0.35, 0.35, 0.85}  II = {0.35, 0.35, 0.85}  II = {----0.85, 0.85, 0.85, 0.85, ----0.55, 0.15, 0.8}0.55, 0.15, 0.8}0.55, 0.15, 0.8}0.55, 0.15, 0.8}
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Comparison of designs using 

variance and percentile bias

----0.85, 0.85, 0.85, 0.85, ----0.45, 0.2, 0.80.45, 0.2, 0.80.45, 0.2, 0.80.45, 0.2, 0.8

----0.75, 0.75, 0.75, 0.75, ----0.05, 0.65, 0.850.05, 0.65, 0.850.05, 0.65, 0.850.05, 0.65, 0.85

----0.85, 0.85, 0.85, 0.85, ----0.55, 0.15, 0.80.55, 0.15, 0.80.55, 0.15, 0.80.55, 0.15, 0.8

DesignDesignDesignDesign

25.025.025.025.077.577.577.577.56.966.966.966.96PBPBPBPB

PPPP=0.95=0.95=0.95=0.95

25.025.025.025.076.576.576.576.56.796.796.796.79VBVBVBVB

23.823.823.823.876.876.876.876.86.976.976.976.97EBEBEBEB

PPPP=0.95=0.95=0.95=0.95VBVBVBVBEBEBEBEBCriterionCriterionCriterionCriterion

• Designs found with parameters

µk=2  µp=10  σp
2=1  l1=0  l2=1/3
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Findings from studies

Results from a range of empirical studies 

agree with the example

• EB-optimal designs appear robust to the 
values of µk, µp, σp

2....

• ....but not to the values of l1 and l2

• The size of the expected bias depends 

most on µp and l1, l2

• EB-optimal designs perform well under 

the other bias criteria
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Conclusions and future research

EB-optimal designs

• have more support points than designs 
from variance based criteria

• are efficient under other random bias 
criteria

• are computationally practical

Ideas extend to an expected AMSE criterion

Future work

• application to models in laser chemistry 
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