Minimum bias designs under
random contamination: application
to polynomial spline models

Dave Woods
University of Southampton, UK

D.C.Woods@maths.soton.ac.uk



Mean squared error

Assumed model for an observation

Y =Ff(x)+¢€
True model

Y =Ff(x)+@(x)+¢€
Aim is to estimate f(x)

Average mean squared error (AMSE)
- error in predictions over design region

- approximated over a discrete grid of r
points
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Variance and bias

For linear model 7(x ) = /:Tﬁ

« AMSE = Variance, V' + Squared Bias, B
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where @ = (CP(X1)---(P(X,))T
and

P=F(X'X) ' X'D-I

* a known form is often assumed for @(x)

e.g. Box & Draper (1959), Montepiedra &
Fedorov (1997)



Random contamination

Assume @(x) is a realisation of a random
variable ®(x)

Population of true models

Y =Ff(x)+D(x)+¢€

Random contamination implies random
bias for given assumed model and design

Notz (1989) and Allen et a/(2003) also
assumed random contamination as
known specified higher order polynomial
terms with random coefficients



Design selection criteria
based on bias

* Minimise expected bias (“EB-optimal’)
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* Minimise variance bias (“VB-optimal’)
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* Minimise percentile bias ("PB-optimal”)
- find the design that minimises 6 >0 such that

P(B<b)=p
forO<p =1



Implementation

Mathematically intractable for even
simple cases

Modified Fedorov exchange algorithm

Embedded Monte Carlo simulation to
approximate properties of bias
distribution

EB-optimality is computationally efficient
- each design search only requires one
approximation of E{CDCDT‘
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Polynomial splines

Allow different low degree polynomials on
different sections - separated by / knots T;

For one factor, assumed model
d ; / J
F(x)= ZB/X + ZBd+/(X _T/)+
i=0 j=1
- truncated power basis

knot locations 1,are known
- but uncertainty about additional knots
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Spline contamination

« Contamination ®(x) has the form
S d
®(x) = Zr/(x -N\,),
/=1

K, A,and I’ are random variables
- prior distributions

Example
* n=4 design points

Assumed model
2
f(x)=B,+B,x+B,x

Spline contamination with

— K 7 Poisson( )
— A, 7 Uniform( /,, /,)
— I N N( Hp: sz)



Example

* Varylng p‘k, upa O-p2

EB-optimal EB evaluated at
W Ky, O design | 201 |210,100 | 15,0,100 | 15,10,1

2.0.1 | @ 3.26 7.91 72.99

2,10,100 Il 0.01 3.39 8.09 74.97

15,0,100 I 0.01 3.26 7.91 72.99

15,10,1 I 0.01 3.26 7.91 72.99

| = {-0.85, -0.35, 0.35, 0.85} 11 ={-0.85, -0.55, 0.15, 0.8}

« Varying /,, /,

® (0.33,1) . . o o

i)

()

5 (0.1) y y y y

@

o

§ (-0.5,0.33) 1 = ° . .

®

Q

S (-1,0) ® o L] o
(_1’1) ® ® o o

-1.0 -0.5 0.0 0.5 1.0 9

Design points



Comparison of designs using

variance and percentile bias

» Designs found with parameters

U=2 =10 0,2=1 4=0 4=1/3

Criterion Design EB VB P=0.95
EB -0.85, -0.55,0.15,0.8 | 6.97 76.8 23.8
VB -0.75, -0.05, 0.65, 0.85 | 6.79 76.5 25.0
PB -0.85,-0.45,0.2,0.8 6.96 77.5 25.0
P=0.95
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Findings from studies

Results from a range of empirical studies
agree with the example

« EB-optimal designs appear robust to the
values of ,, W, 0,%....

 ....but not to the values of /, and /

* The size of the expected bias depends
most on p,and /, 4

» EB-optimal designs perform well under
the other bias criteria
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Conclusions and future research

EB-optimal designs

* have more support points than designs
from variance based criteria

o are efficient under other random bias
criteria

e are computationally practical

|deas extend to an expected AMSE criterion

Future work
« application to models in laser chemistry
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