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(NMAR) nonresponse. We assume a model for the outcome variable under complete response 

and a model for the response probability, which is allowed to depend on the outcome and 

auxiliary variables. The two models define the model holding for the outcomes observed for the 

responding units, which can be tested. Our methods utilize information on the population totals 

of some or all of the auxiliary variables in the two models, but we do not require that the 

auxiliary variables are observed for the nonresponding units. We develop an algorithm for 

estimating the parameters governing the two models and show how to estimate the distributions 

of the missing covariates and outcomes, which are then used for imputing the missing values for 

the nonresponding units and for estimating population means and the variances of the estimators. 

We also consider several test statistics for testing the model fitted to the observed data and study 

their performance, thus validating the proposed procedure. The new developments are illustrated 

using simulated data and a real data set collected as part of the Household Expenditure Survey 

carried out by the Israel Central Bureau of Statistics in 2005.  

 

Key Words: Bootstrap, Calibration, Horvitz-Thompson type estimator, Nonrespondents  

                     distribution, Respondents distribution.  

 

Acknowledgement: This research is supported by a grant from the U.S.-Israel Bi-national  

                                  Science Foundation.  



 2 

1. INTRODUCTION 

     Most of the methods dealing with nonresponse assume either explicitly or implicitly that the 

missing values are “missing at random” (MAR), and that the auxiliary (explanatory) variables 

are observed for both the respondents and the nonrespondents. These assumptions, however, are 

not always met in practice. In this paper we consider the often practical situation where the 

probability to respond depends on the outcome value, and possibly also on explanatory variables. 

For example, the probability to observe income may depend on the income level, as well as on 

socio-demographic variables. For this kind of response mechanism, the missing outcome values 

are not missing at random (NMAR), since for the non-responding units the probability of 

nonresponse depends on the missing outcomes. We consider mostly the case of ‘unit 

nonresponse’, where the auxiliary (covariate) information for the nonrespondents is likewise 

unobserved, except for the population totals of some or all of these variables. The totals of the 

covariates are often available from administrative or census records.  

     We propose a new approach for handling NMAR nonresponse, which does not require 

knowledge of the covariates for the nonrespondents. We assume a model for the outcome 

variable under complete response (the ‘sample model’), and a model for the response probability, 

which is allowed to depend on the outcome and auxiliary variables. The resulting ‘respondents 

model’ defines the likelihood for the observed outcomes. In order to utilize the additional 

information provided by the population totals of the covariates, we add calibration constraints, 

which match pseudo probability weighted estimates of the totals of the covariates with their 

known population values. The weights used for these estimates are the products of the sampling 

weight (inverse of the sample inclusion probability) and the inverse of the response probability 

under the model. The unknown model parameters are then estimated by an iterative algorithm 

which maximizes the likelihood with respect to the parameters governing the sample model, and 

solves the calibration constraints with respect to the parameters of the response probabilities. We 

prove the convergence of the algorithm and discuss the properties of the resulting estimators.   

     Having estimated the model parameters, we predict the population mean of the outcome 

values by use of Horvitz-Thompson (H-T, 1952)) type estimators, utilizing the estimated 

response probabilities. Alternatively, when the covariates are observed for all the sampled units, 

we can estimate the conditional distribution of the outcome values for the non responding units 

given their respective covariates, and then use this distribution for imputing the missing 
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outcomes. Combining the observed and imputed values provides another predictor of the 

outcome population mean. In the case of missing covariate information for the nonresponding 

units, the missing values of the covariates are imputed as well from their approximate 

distribution. The variances of the proposed estimators are estimated by parametric and 

resampling methods. Finally, we test the combined model fitted for the responding units by using 

standard tests that compare the cumulative hypothesized distribution with the corresponding 

empirical distribution, and by testing moments of the hypothesized model. 

     The various procedures considered in this article are illustrated using data collected as part of 

the Household Expenditure Survey (HES) carried out by the Israel Central Bureau of Statistics in 

2005. The initial response rate in this survey was 43%, but after many recalls, the final response 

rate went up to 90%. This survey provides therefore a rare opportunity of comparing the imputed 

values after the first interview with the actual values obtained from the recalls.   

 

2.  EXISTING APPROACHES TO DEAL WITH NMAR NONRESPONSE 

     In this section we review briefly some of the approaches proposed in the literature to deal 

with NMAR nonresponse. Let 
iy  denote the value of an outcome variable Y , associated with 

unit i  belonging to a sample {1,..., }S n= , drawn from a finite population {1,..., }U N=  by 

probability sampling with known inclusion probabilities Pr( )i i sπ = ∈ . Let 1( ,..., )i i pix x x=  

denote the values of p auxiliary variables (covariates) associated with unit i . In what follows we 

assume that the population outcomes are independent realizations from distributions with 

probability density functions (pdf), ( ; )P i if y x θ , governed by an unknown vector parameter θ . 

Let {1,..., }R r=  define the sample of respondents with observed outcomes and covariates, and 

{ 1,..., }cR r n= +  define the subsample of nonrespondents, for which at least the outcomes are 

missing. The response process is assumed to be independent between units.  

     In the present study we assume that the sampling process is noninformative such that under 

complete response, ( | ) ( | , ) ( | )S i i i i P i if y x f y x i S f y x i= ∈ = ∀ . Most of the approaches 

considered in the literature to deal with nonresponse assume (sometimes implicitly) that the 

missing data are 'missing at random' (MAR, Rubin, 1976; Little, 1982). This type of nonresponse 

requires that the probability to respond does not depend on the unobserved data, after 

conditioning on the observed data. Under this condition, and if the parameters governing the 
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distribution under full response are distinct from the parameters governing the response process, 

the nonresponse can be ignored for likelihood and Bayesian inference. Notice that in this case,  

                                   ( | ) ( | , ) ( | )
R i i i i S i i

f y x f y x i R f y x= ∈ = ,                                                     (1) 

where ( | )R i if y x defines the marginal pdf  for responding unit i  and ( | )S i if y x  is the 

corresponding sample pdf defined above. There are many approaches for handling MAR 

nonresponse, see the books by Schafer (1997) and Little and Rubin (2002), and the recent article 

by Qin et al. (2008) for comprehensive accounts. 

     In this research we consider situations where the probability to respond may depend also on 

the outcome value even after conditioning on the covariates. For example, the probability to 

observe income may depend on the income level as well as on socio-demographic variables. For 

this kind of response mechanism, the missing outcomes are not missing at random (NMAR).   

     Suppose first that all the covariates are known for every sampled unit. Define by iR  the 

response indicator such that 1(0)iR =  if sampled unit i  responds (does not respond) to the 

outcome variable. A possible way to deal with the nonresponse in this situation is by postulating 

a parametric model for the joint distribution of 
iY  and 

iR , given
ix . Little and Rubin (2002) 

distinguish between two ways of formulating the likelihood in this case.  

A- Selection Models specify,  

                      ( , | ; , ) Pr( | , ; ) ( | ; )i i i i i i S i if y R x R y x f y xθ γ γ θ= ,                                 (2)                    

where ( | ; )
S i i

f y x θ  defines the sample pdf (model), Pr( | , ; )
i i i

R y x γ  models the response 

process and θ  and γ  denote the (distinct) parameters of the two models. Assuming that the 

outcomes are independent given the covariates, the full likelihood takes in this case the form, 

                                 
1 1

Pr( 1 , ; ) ( ; ) Pr( 0 ; , )
r n

i i i S i i i i

i i r

L R y x f y x R xγ θ θ γ
= = +

= = =∏ ∏ ,                        (3)                      

where Pr( 0 ; , ) 1 Pr( 1 , ; ) ( | ; )i i i i i S i i iR x R y x f y x dyθ γ γ θ= = − =∫ . The response probability is often 

modeled as, 

                          
0 1 2Pr( 1| , ; ) ( )t

i i i i iR y x g x yγ γ γ γ= = + + ,                                        (4)                          

for some function g taking values in the range (0,1) (see below).  
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     Suppressing for convenience the parameters from the notation, the missing sample values can 

be imputed in this case by the expectations ( | ) ( | , 0)c i i i i iR
E Y x E Y x R= = , which can be 

calculated using Bayes theorem as,  

      ( 0 | , ) ( | )
( | ) ( | , 0)

( 0 | , ) ( | )

c

i i i S i i
i i i i i i i i iR

i i i S i i i

P R y x f y x
E Y x y f y x R dy y dy

P R y x f y x dy

∞ ∞

∞
−∞ −∞

−∞

=
= = =

=
∫ ∫

∫

.              (5)              

     In practice, the probabilities and densities in (5) are replaced by their estimates, obtained by 

estimating the unknown parameters. Alternatively, the imputed values can be obtained by 

drawing at random from the pdf ( | ) ( | , 0)c i i i i iR
f y x f y x R= = , thus accounting for the variability 

of the outcomes around their expectations. An example of the use of selection models is 

considered by Greenlees et al. (1982). The authors assume that the sample model is normal and 

the probability to respond is logistic. 

     Selection models allow estimating all the unknown model parameters, but as noted by Little 

(1994), the use of the likelihood in (3) is based inevitably on strong distributional assumptions. 

Beaumont (2000) proposes to robustify the model considered by Greenlees et al. (1982) by 

dropping the normality assumption for the regression residuals. The author estimates the 

parameters γ  by maximizing the likelihood 
1 1

( 1| , ; ) ( 0 | ; , )
r n

i i i i i

i i r

L P R y x P R xγ θ γ
= = +

= = =∏ ∏  with 

respect to γ  assuming that θ  is ‘known’, and the parameters θ  by solving weighted least square 

equations, assuming that γ  is ‘known’. The procedure is carried out iteratively, with the ‘known’ 

values on a given iteration defined by the estimates obtained on the previous iteration, and with 

the weights defined by the inverse response probabilities as computed on the previous iteration. 

A drawback of this method is that the probability ( 0 | ; , )i iP R x θ γ=  cannot actually be 

calculated, since the sample pdf of i iY x  is not specified. The author deals with this problem by 

expanding ( 1| , , )
i i i

P R y x γ=  around the mean ( | )S i iE Y x , but this amounts to assuming a MAR 

nonresponse.  

B- Pattern-mixture models specify,  

                     ( ) ( )( , | ; , ) ( | , ; ) Pr( | ; )l l

i i i m r i i i m i i rf y R x f y x R R xψ ψ ψ ψ= ,                      (6)               
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where ( )( | , ; ), 0,1l

i i i m
f y x R lψ =  define the pdfs of Y under the different patterns of the missing 

data, ( 0, 1)i iR R= = , and Pr( | ; )i i rR X ψ  models the response probability given the covariates, 

with ( )l

mψ  and rψ  denoting the corresponding unknown parameters. The likelihood takes in this 

case the form, 

                               (1)

1 1

( | , 1; ) Pr( 1| ; ) Pr( 0 | ; )
r n

i i i m i i r i i r

i i r

L f y x R R x R xψ ψ ψ
= = +

= = = =∏ ∏ .               (7)              

     A major drawback of pattern-mixture models is that the model holding for the 

nonrespondents, (0)( | , 0; )i i i mf y x R ψ= , cannot be extracted from the models (1)( | , 1; )i i i mf y x R ψ=  

and Pr( | ; )i i rR x ψ  fitted under this approach, and hence it is not clear how to impute the missing 

outcomes unless under strong assumptions, which are generally hard to test. Little (1993, 1994) 

discusses plausible relationships between the parameters governing the models holding for the 

respondents and nonrespondents and provides examples for the application of selection and 

pattern-mixture models. Rubin (1987) discusses selection and pattern-mixture models from a 

Bayesian perspective.  

     Tang et al. (2003) propose a ‘pseudo-likelihood’ method that uses the conditional pdf, 

( | )S i ig x y  for the respondents. Application of this method requires specification of the sample 

pdf ( | )S i if y x , and of the marginal pdf ( )S ig x , which can be replaced by the empirical sample 

distribution. The method does not require a parametric model for the response probability but it 

assumes that it depends only on the outcome. The likelihood takes now the form, 

                      
1 1

( | ; ) ( ; )
( | ; , )

( | ; ) ( ; )

r r

S i i S i
S i i

i i S i S

f y x g x
L g x y

f y x g x dx

θ η
θ η

θ η= =

= =∏ ∏
∫

.                            (8)                      

Note that although the product is only over the responding units, estimation of the pdf ( )S ig x  

requires that the covariates are known for all the sample units. The authors point out that this 

method is robust to misspecification of the response process but the use of this approach does not 

allow imputing the missing outcomes based on the distribution ( | ) ( | , 0)c i i i i iR
f y x f y x R= = . 

     So far we considered methods that require that the covariates are observed for all the sampled 

units. Qin et al. (2002) propose a method that can be applied when the covariates are only known 

for the respondents. The method assumes a parametric model for Pr( 1| , )i i iR x y= , and known 

population means of the covariates. The authors use an empirical likelihood defined as,  
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1

Pr( 1 , ; ) (1 )
r

n r

i i i i

i

L R y x pγ λ −

=

= = −∏ ,                                        (9)     

where Pr( 1)iRλ = =  and ( , )i S i ip dF y x=  is the ‘jump’ of the joint cumulative distribution 

( , )S i iF y x  at ( , )i iy x , ri ,...,1= , which, however, is not defined. The empirical likelihood is 

maximized under the constraints, 

                
1 1 1

[Pr( 1| , ; ) ] 0, ( ) 0; 0, 1
r r r

pop

i i i i i i i i

i i i

p R y x p x X p pγ λ
= = =

= − = − = ≥ =∑ ∑ ∑ .      (10) 

The use of this method addresses the problem of missing covariate information by using the 

unconditional response probability Pr( 1)iRλ = =  in the likelihood, and it accounts for the 

known population means of the covariates. However, our experience so far shows that the 

performance of this procedure depends on having sufficiently accurate initial values for the 

response model parameters and the Lagrange multipliers used for the constrained maximization.  

     Chang and Kott (2008) propose an approach for estimating the response probabilities that 

uses known totals of calibration variables. The authors assume a parametric model for the 

response probabilities that can depend on the outcome value, and estimate the unknown 

parameters of this model by regressing the H-T estimators of the totals of the calibration 

variables against the corresponding known totals. The weights used for the H-T estimators are 

the product of the sampling weights and the inverse of the response probabilities under the 

model. The use of this approach allows estimating population totals of interest, but it does not 

allow imputation of the missing data, since no model is assumed for the outcome values.  

 

     3.  THE RESPONDENTS DISTRIBUTION AND PARAMETER ESTIMATION 

3.1 The respondents distribution and its relation to the sample distribution  

    In what follows we denote by 
ix  the covariates included in the population model and by 

iv  the 

covariates included in the response model. Let ( )i i iz x v= ∪ .   

    The marginal pdf of the outcome for a responding unit is obtained, similarly to Pfeffermann et 

al. (1998) as, 

      ( )R i if y z = ( | , , 1)i i if y z i S R∈ = =
Pr( 1 , , )

Pr( 1 , )

i i i

i i

R y v i S

R z i S

= ∈

= ∈
( )S i if y x ,                     (11)  
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where Pr( 1 , ) Pr( 1 , , ) ( | )i i i i i S i i iR z i S R y v i S f y x dy= ∈ = = ∈∫  and ( | )S i if y x  is the sample pdf 

under complete response. As noted before, in this article we assume that the sample pdf and the 

population pdf are the same. 

Remark 1. As in selection models, the use of the respondents’ model requires modeling the 

sample pdf, ( | )
S i i

f y x  and the response probability, Pr( 1| , , )
i i i

R y v i S= ∈ . Notice, however, 

that the resulting respondents’ model can be tested, since it relates to the data observed for the 

responding units (see Section 7).  

     By (11), if the sample outcomes and the response are independent between the units, one can 

estimate the parameters (θ ,γ ) by maximizing the ‘respondents likelihood’, 

Resp

1 1

Pr( 1 , , ; ) ( ; )
( | , 1, ; , )

Pr( 1 , ; , )

r r
i i i S i i

i i i

i i i i

R y v i S f y x
L f y z R i S

R z i S

γ θ
θ γ

θ γ= =

= ∈
= = ∈ =

= ∈∏ ∏ .       (12) 

     The notable property of the likelihood (12) is that it does not require knowledge of the 

covariates for nonresponding units, or modeling the distribution of the sampled covariates. As 

shown later, estimation of the parameters in (12) permits imputing the missing values and 

estimating the finite population mean of the outcome variable (or any other variable). 

 

3.2 The respondents' likelihood for Generalized Linear Sample Models (GLM) 

     The GLM is defined as, 

      
0 0

( ; , ) exp{ ( )[ ( ) ( )] ( , )}
p p

S i i i k ki k ki i i

k k

f y x a y x g x d y yβ φ φ β β η φ
= =

= − + +∑ ∑ ,                    (13) 

where 1
ko

x = , ( , )θ β φ=  defines the set of unknown parameters and (.)g , (.), (.)a d  and (.)η  

are known real functions with ( )g ⋅  strictly increasing and differentiable.   

     In what follows we assume that ( , ) ( )iyη φ η φ= . The log of the respondents' likelihood in (12) 

for the GLM in (13) can be written then as,  

         

Resp

1 0 0

1 1

( ) [ ( ) ( )] ( )

log[Pr( 1 , , ; )] log[Pr( 1 , ; , , )]

p pr

i k ki k ki i

i k k

r r

i i i i i

i i

l a y x g x d y r

R y v i S R z i S

φ β β η φ

γ β φ γ

= = =

= =

= − + +

+ = ∈ − = ∈

∑ ∑ ∑

∑ ∑
.         (14) 

Denote  ( , ; ) Pr( 1 , , ; )i i i i iy v R y v i Sπ γ γ= = ∈ . Taking the derivatives of the log-likelihood with 
 

respect to β  and φ , we obtain  after some tedious algebra the following equations: 
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1

[ ( | ; , , )] 0, 0,...,
r

k i R i i ki

i

l y E Y z x k pβ φ γ
=

= − = =∑ ,                    (15a) 

           1

1

[ ( ) ( ( ) | ; , , )] 0
r

p i R i i

i

l d y E d Y z β φ γ+
=

= − =∑ ,                                 (15b) 

where  
( , ; ) ( | ; , )

( | ; , , ) ( | ; , , )
( , ; ) ( | ; , )

i i S i i i

R i i i R i i i i

i i S i i i

y v f y x dy
E Y z y f y z dy y

y v f y x dy

π γ β φ
β φ γ β φ γ

π γ β φ
= =∫ ∫

∫
.  

      

     Let 0 1( ,..., )qγ γ γ += . Taking derivatives of the log-likelihood (14) with respect to γ  and 

assuming that the order of integration and differentiation can be interchanged yields the 

equations,  

  
1 1

( , ; ) 1 ( , ; ) 1
( | ) ( ), 0,...,

( , ; ) ( , ; )

r r

i i i i
R i

i ik i i k i i

y v y v
E z k q

y v y v

π γ π γ
γ π γ γ π γ= =

∂ ∂
= =

∂ ∂∑ ∑ .            (16) 

For example, if the response probability is logistic such that ( , ; )i iy vπ γ  

1

0 1[1 exp( ( )]i q iv yγ γ γ −
+′= + − + + , we obtain the following equations: 

 

        
1 1

1 1 1 1

( ( , ; ) | ) ( , ; ) ; ( ( , ; ) | ) ( , ; )
r r r r

R i i i i i i R i i i i i i

i i i i

E y v z y v v E y v z v y vπ γ π γ π γ π γ
= = = =

= =∑ ∑ ∑ ∑  

                                                                            ⋅  
                                                                            ⋅                                                               .       (17)     

                                                                            ⋅  

        
1 1 1 1

( ( , ; ) | ) ( , ; ) ; ( ( , ; ) | ) ( , ; )
r r r r

qi R i i i qi i i R i i i i i i i

i i i i

v E y v z v y v E y y v z y y vπ γ π γ π γ π γ
= = = =

= =∑ ∑ ∑ ∑                               

 

The solution of the equations (15a), (15b) and (16), (or 17 in the case of logistic response 

probabilities), yields the maximum likelihood estimators (MLE) for ( , , )β φ γ .  

 

3.3 Calibration constraints   

     In what follows we assume knowledge of the population totals of all the covariates included 

in the response model and at least one of the covariates included in the sample model. We later 

relax this requirement. The additional information contained in the population totals is not part of 

the likelihood (14). We utilize this information by imposing the following constraints. Let the 

sample pdf be the GLM defined by (13) and denote by 1 *( ,..., )pop pop pop

tZ Z Z=  
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1 1 *( ,..., , ,..., )pop pop pop pop

q pV V X X=  the known population totals, where * dim( )ip p x≤ = , 

* dim( )it t z≤ = . The calibration constraints are, 

       
1 1

1
, 1,..., ;

( , ; ) ( , ; )

r r
popki

i k i

i ii i i i

v
w V k q w N

y v y vπ γ π γ= =

= = =∑ ∑ ,                   (18a) 

where{ (1/ ) 1/ Pr( )}i iw i Sπ= = ∈ are the sampling weights. When the response model has an 

intercept, we use the additional constraint,  

                                              
1 ( , ; )

r
popi

i

i i i

x
w X

y v

β
β

π γ=

′
′=∑

� �
� �                                                        (18b)                                    

where 
1 *( ,..., )i i p ix x x=� , 1 *( ,..., )pop pop pop

pX X X=�  and β�  is the vector of coefficients of 
ix�  in the  

 

sample model. Notice that if 
0

( | ; , )
p

S i i k ki

k

E Y x xβ φ β
=

=∑ , (e.g., the sample model is normal) and 

*p p= , the constraint (18b) implies, 
1 1 1

( | )
( | ) ( | )

( , ; )

r N N
S i i

i S j j p j j

i j ji i

E Y x
w E Y x E Y x

y vπ γ= = =

= =∑ ∑ ∑ , since we  

assume  that the population and sample models are the same. 
 

Remark 2. The left hand sides of (18a) and (18b) are the familiar H-T estimators of the 

corresponding totals under the following two-phase sampling process: in the first phase a sample 

S of size n  is sampled with inclusion probabilities Pr( ) 1/
i i

i S wπ∈ = = ; in the second phase 

the sampled units respond with probabilities ( , ; )i iy vπ γ  (Särndal and Swensson, 1987).  

 

3.4 Estimation algorithm, properties of estimators 

     In order to utilize the additional information provided by knowledge of the population totals, 

we replace Eqs. (16) by Eqs. (18a) and (18b), and use the following iterative algorithm.  

Let (0) (0)( , )β φ  denote initial values for the vector ( , )β φ  indexing the sample pdf ( ; , )s i if Y X β φ .  

Step j: For given ( ) ( )ˆ ˆ( , )
j jβ φ  from iteration  j, set ( ) ( )ˆ ˆ( , ) ( , )

j jβ φ β φ=  and solve the set of 

equations (18a) and (18b) as a function of the unknown parameters γ  indexing the model 

( , ; )i iy vπ γ  of the response probabilities. This step yields new estimators ( 1)ˆ jγ + .  

Step j+1: Solve (15a) and (15b) with respect to ( , )β φ , with γ  equal to ( 1)jγ + . This step yields 

new estimators ( 1) ( 1)ˆ ˆ( , )j jβ φ+ + . Continue the iterations until convergence. 
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     Our experience so far shows that the use of this algorithm simplifies the computation of the 

estimators and is more stable than the solution of the likelihood equations (15a), (15b) and (16). 

It also utilizes the additional information provided by the known totals of the covariates. The 

solution of the Equations (15a) and (15b) for fixed γ  is outlined in Appendix A.  

     Let Resp
( , )

log( )
l

L
θ γ

θ
=
∂

∂
 with RespL  defined by (12), denote by ( , )h θ γ  the system of equations 

(18a) and (18b) and let ˆ ˆ( , )θ γ′ ′  define the estimators obtained by application of the algorithm.  

 

Theorem 1: Suppose that: 

I) The population (sample) model belongs to the family of generalized linear models,  

II) 0 1( , ; )i iy vπ γ< < , with bounded first derivatives with respect to γ .  

III) The functions ( , )l θ γ and ( , )h θ γ  are continuous and twice differentiable with respect to 

( , )θ γ  in a compact neighborhood of the solution 0 0( , )θ γ .  

IV) The matrices 
( , )l θ γ

θ
∂

∂
 and 

( , )h θ γ

γ
∂

∂
 are nonsingular in the neighborhood of ( , )θ γ� � . 

Then, as ,N n→ ∞ → ∞  such that ( / )N n < ∞  the estimator ˆ ˆ( , )θ γ′ ′  converges in probability to 

the solution of the equations 15(a)-15(b), 18(a)-18(b).  

The theorem is proved in Appendix B.  

     Next we establish the consistency and asymptotic normality of the estimator ˆ ˆ ˆ( , )ξ θ γ′ ′ ′= . For 

this, note first that the equations (15a)-(15b), (18a)-(18b) can be written as 

1

1
( , , ; , , ) 0

n

i i ii
R y z

n
ϕ β φ γ

=
=∑ ,  where as before, ( , )θ β φ=  and iR  is the response indicator. 

Denote also by ( , )ξ θ γ′ ′ ′=� � �
 the true vector parameter. In the theorem below all the expectations 

are taken over all possible samples of respondents and all possible outcomes under the sample 

distribution. 

Theorem 2: Suppose that: 

(i) ξ�  is an interior point of the parameter space, (ii) ( , , ; )i i iR y zϕ ξ
 
is continuously differentiable 

in a neighborhood δ  of ξ� , (iii) [ ( , , , )] 0i i iE R y zϕ ξ =�  and ξ�  is the unique solution of the 
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equations [ ( )] 0E U ξ = , (iv) [ ( , , , ) ( , , , ) ]i i i i i iE R y z R y zϕ ξ ϕ ξ ′ < ∞� � , (v) 
( , , )

sup i iy z
E

ξ δ

ϕ ξ
ξ∈

 ∂
< ∞ ∂ 

. 

Then the estimator ˆ ˆ ˆ( , )ξ θ γ=  is consistent for ( , )ξ θ γ=� � �
 and ˆ( ) [0, ( )]

D
n N Vξ ξ ξ− →� � .  

The theorem is proved in Appendix C. 
 

     Another possibility of utilizing known covariate totals for estimating the parameters γ  

governing the model for the response probabilities is by applying an approach proposed by 

Chang and Kott (2008). By this approach, the H-T estimators of totals of calibration variables 

1,..., KC C , which may contain some or all of the covariates in the response model are regressed 

against their known population totals. Thus, in the case that the probability to respond depends 

on the outcome variable and 1q +  covariates (including an intercept), the method requires that 

2K q≥ + . The major difference between the calibration equations in (18) and this method is that 

it allows utilizing more population totals than the totals of the variables included in Z . In 

particular, population totals of variables not included in the model for the response probabilities 

may be used. This results in more equations than estimated parameters and hence possibly more 

stable estimators.  

     Let ic  denote the values of the calibration variables for unit i . Chang and Kott (2008) 

estimate the unknown parameters by setting the nonlinear regression equations,  

1

*
( , ; )

r
pop i

i

i i i

c
C w

y v
ε

π γ=

= +∑  where 
1

Npop

jj
C c

=
=∑  and *ε  is a vector of errors. The 

parameters γ  are estimated by applying the iterative algorithm,  

{ } 1
( 1) ( ) ( ) 1 ( ) ( ) ( ) 1 ( )

( )
1

ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )( )
ˆ( , ; )

r
j j j T j j j T j pop i

i j
i i i

c
H V H H V C w

y v
γ γ γ γ γ γ γ

π γ

−
+ − −

=

= + −∑ ,    (19) 

where 1( ) ( )

[ ]
( , ; )ˆ ˆ ˆ( )

r
i

i

ij ji i

c
w

y v
H

π γ
γ γ γ

γ
=

∂
= =

∂

∑
 and 1 ( )ˆ ˆ( )

j
V γ−  is the inverse of an estimator for the 

quasi-randomization variance of 
1 ( , ; )

r
i

i

i i i

c
w

y vπ γ=
∑ , computed at ( )ˆ jγ γ= .  

 

Remark 3. Chang and Kott (2008) do not assume a model for the outcome so that their approach 

is restricted to estimation of the model of the response probabilities and it cannot be used for 

imputation. However, the following theorem holds (the proof can be obtained from the authors). 
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Theorem 3:   

Let *γ  be the estimator obtained by application of (19), and *θ  be the solution of the equations 

( , *) 0l θ γ =  (Eqs. 15(a)-15(b) with *γ γ= ). Suppose that 0 1( , ; )i iy vπ γ< <  with bounded first 

derivatives with respect to γ . Then under some added regularity conditions ( *, *) ( , )
p

θ γ θ γ→ � � , 

and ( *, *) [( , ), *]n Nθ γ θ γ→ Σ� �  for some fixed matrix *Σ .  

Remark 4. The obvious advantage of the use of (19) instead of (18a) and 18(b) for the 

estimation of ( , )θ γ  is that it does not require knowledge of the population totals of all the 

covariates featuring in the model for the response probabilities and at least one of the covariates 

featuring in the model for the outcome variable. On the other hand, our experience so far shows 

that the use of  (18a) and 18(b) yields better parameter estimates and better imputations when the 

totals required for the use of these equations are known. 

 

4. IMPUTATION AND ESTIMATION OF POPULATION MEANS 

Denote by      

                                  
;Pr( 0 | , , ; ) ( | )ˆ ( | )

Pr( 0 | , ; )

ˆˆ

ˆ ˆ,
c

i i i S i i
i iR

i i

R y i S f y x
f y z

R i S

v

z

γ θ
θ γ

= ∈
=

= ∈
,                                        (20)  

                                  ˆˆˆˆ( , ) ( , ; ), ( | ) ( | ; , )ˆc ci i i i i i i iR R
y v y v E Y z E Y zπ π γ θ γ= = ,                                        (21)  

the estimated pdfs for the nonresponding units, the response probabilities and the expectations 

for the nonresponding units respectively. The expectation ( | )C i iR
E Y z  in (23) is with respect to the 

pdf ( | )c i iR
f y z . The estimates in (20) and (21) provide several possibilities for the imputation of 

the missing values and the estimation of the population mean of the outcome variable.  

     When the covariates for the nonrespondents are unknown, the population mean of the 

outcome can be estimated using the (pseudo) H-T estimator,  

1 1

1ˆ ˆ/ ( , )
r

i i i ii
Y w y y v

N
π

=
= ∑ .                                                     (22) 

When the covariates are known for all the sampled units, another estimator is obtained as,    

*

2 1

1ˆ n

i ii
Y w y

N =
= ∑ ;  *

i iy y=  if i R∈  , 
* imp

i i
y y=  if 

c
i R∈ .                     (23) 

The imputed values can be computed either as, 
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                                                     ˆ ( | )C

imp

i i iR
y E Y z= ,                                                                   (24) 

or by generating one or more random observations from the pdf ˆ ( | )c i iR
f y z and taking the average 

of these observations as the imputed value, using multiple imputation techniques (Rubin, 1987, 

Schafer and Schenker, 2000).  

Remark 5. It is important to emphasize that no model is assumed for the outcomes of the 

nonresponding units. This model is defined mathematically by the relationship (20). The sample 

model, ( | ; )S i if y x θ , and the model for the response probabilities, ;( , )
i i

y vπ γ , define the model 

holding for the outcomes of the responding units and this model can be validated by application 

of goodness of fit test statistics since it refers to the observed data (see section 6).  

     The predictor (2)
ˆ

Y  in (23) assumes that the covariates are known for every unit in the sample. 

When the covariates are only known for the respondents, we can first impute the missing 

covariates for the nonrespondents from the probability function |0 |( ) Pr( 0, )
Z i i i i

P z Z z R i S= = = ∈ , 

and then predict the outcome value as described above. By Sverchkov and Pfeffermann (2004), 

the latter probability function can be expressed as, 

       

|0

( 0 | , )
( ) Pr( | )

( 0 | )

( 0 | , ) Pr( | 1, ) Pr( 1| )
.

( 0 | ) Pr( 1| , )

i i i
Z i i i

i

i i i i i i i

i i i i

P R Z z i S
P z Z z i S

P R i S

P R Z z i S Z z R i S R i S

P R i S R Z z i S

= = ∈
= = ∈

= ∈

= = ∈ = = ∈ = ∈
=

= ∈ = = ∈

                         (25) 

Estimating P̂r( | 1, ) (1/ )i i iZ z R i S r= = ∈ =  i R∀ ∈  and P̂r( 1| )iR i S= ∈  
1

ˆ/ [ [1/ ( )]
r

jj
r zπ

=
= ∑ , 

the probability |0 ( )Z iP z  can be estimated as,  

                                    
|0

1

ˆ[1 ( )]ˆ ( )
ˆ ˆ( )[ (1/ ( )) ]

i

Z i r

i jj

z
P z

z z r

π

π π
=

−
=

−∑
, 

iz R∈ .                                      (26)  

Remark 6. The estimator (26) assumes that the covariates in the subsample of the 

nonrespondents take the same values as in the subsample of the respondents (although with 

different frequencies). Note that 
|01

ˆ ( ) 1
r

Z jj
P z

=
=∑ . When the dimension of iz  is small, the 

estimate  P̂r( | 1, )i i iZ z R i S= = ∈  can be enhanced by use of a ‘smoothed’ estimator, using more 

advanced density estimation methods.  
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5. ESTIMATION OF VARIANCES OF ESTIMATORS OF POPULATION MEANS  

     In Section 4 we considered several estimators of the population mean of the outcome variable. 

In order to estimate the variance of these estimators, we can apply a parametric bootstrap 

procedure, distinguishing between estimation of the conditional variance given the observed 

covariates for the respondents (and thus conditioning also on the number of respondents), and the 

unconditional variance over all possible samples of respondents (and thus also over all possible 

numbers of respondents). The bootstrap procedure for estimating the conditional variances 

consists of the following steps: 

1.  Generate a large number B of samples of outcomes of size r  from the estimated respondents'  

    distribution ˆ ˆ( | ; , )R i if y z θ γ  with fixed (original) covariates 
iz .  

2.   For each new sample, re-estimate ( , )θ γ  and then compute the estimators (1)
ˆ

Y  and (2)
ˆ

Y  using  

     the new parameter estimators. 

3. Estimate,  

                                 ( ) 2 ( )

( ) ( ) ( ) ( ) ( )1 1

ˆ ˆ
(

1 1ˆˆ ( ) ) ; , 1, 2
B Bb b

k k k k kb b
Y YVar Y Y Y k

B B= =
= − = =∑ ∑ ,                       (27) 

where ( )

( )
ˆ b

kY  denotes the estimators obtained for bootstrap sample 1,...,b B= .  

     For estimating the unconditional variances we first impute the missing covariates for the 

nonrespondents, if they are missing, using Eq. (26). Next we generate the outcomes for the 

whole sample using the estimated sample distribution, ˆ( | ; )S i if y x θ  and then select respondents 

with probabilities ˆ( , ; )ivyπ γ . In this case the number of respondents and their covariates change 

from one bootstrap sample to the other. The whole process is repeated B times. The rest of the 

computations are the same as for the conditional variances.  

     Another way of estimating the variance of the H-T estimator (1)
ˆ

Y  is by computing the 

conditional variance, 

                           (1) (1) , 1) | , ..., , )
ˆ

(
ˆ

[ ( , ]pop pop pop

v x qY Var V V XVar Y T N β ′′= = �� �� ;                  (28) 

(1)

1 ( , ; )

1 r
i i

i i i

w y
Y

y vN π γ=

= ∑� , 1
,

1 1 1 1

, ...,
( , ; ) ( , ; ) ( , ; ) ( , ; )

ˆ
1

[ , , ]
r r r r

qii i
v x i i i i

i i i ii i i i i i i i

vv
w w w w

y v y v y v y v

x
T

π γ π γ π γ π γ

β

= = = =

′
′= ∑ ∑ ∑ ∑

� �
� .      

This variance accounts for the calibration equations used for estimating the model parameters 

(Eqs. 18(a) and 18(b)) and hence the response probabilities. (Deville and Tille, 2005 propose a 
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similar variance estimator in a different context). Denote 11 (1)( )Var Yσ = � , 22 ,( )v xVar TΣ = �  and 

12 (1) ,( , )v xCov Y Tσ ′ = � � . Assuming (1) , ,, ( | ) 0t

v x v xY T E Tδ ε ε≅ + =� � �  for some vector δ , (e.g., by 

assuming asymptotic normality of (1) ,( , )v xY T
� � ), 

                                              1

(1) 11 12 22 12)
ˆ

(Var Y σ σ σ−′= − Σ .                                                           (29)  

The variance components in (29) and hence the variance of the estimator (1)
ˆ

Y  can be computed 

and estimated with respect to the randomization distribution over all possible samples of 

respondents, or over all possible samples of respondents and all possible outcomes under the 

sample model, with the unknown model parameters replaced by their original sample estimates. 

The apparent advantage of the estimator (29) is that it does not require resampling procedures. 

Remark 7.  In principle, the variance of (2)
ˆ

Y , which uses observed and imputed values can be 

estimated also using the multiple imputation theory (Rubin, 1987, Schafer and Schenker, 2000). 

However, empirical results obtained so far show that a textbook application of this method in the 

present context does not produce well behaved estimators, requiring some extra adjustments that 

are still under investigation. 

 

6. TESTING THE GOODNESS OF FIT OF THE MODEL 

     As noted before, the pdf (11), which is fitted for the responding units can be validated (tested) 

since it refers to the observed data. In fact, one faces the classical problem of having a random 

sample from a hypothesized pdf which has to be validated. In what follows we consider several 

goodness of fit test statistics that seem appropriate for our problem.  

 

6.1. Classical Tests 

     Suppose first that the true model parameters ( , )θ γ  are known. Denote by 

( ) ( | ; , )
y

i R iU y f t z dtθ γ
−∞

= ∫  the hypothesized cumulative sample distribution function (cdf) of 

|
i i

y z , 1,...,i r= . For an absolutely continuous cdf the random variables ( )
i

U ⋅  are independent 

Uniform [0,1] variables since the responses 
i

y  are independent given the covariates 
i

z .      

Denote by 
1,..., ru u  the values of 

1,..., rU U  at the sample values 
1,..., ry y  respectively, and let 
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empF  define the empirical distribution of 
1,..., ru u . Following Landsman (2008), we apply three 

classical goodness of fit tests to the ordered values (1) ( ),..., ru u . The tests are: 

 Kolmogorov-Smirnov:  ( ) ( )max | ( ) |Emp i i
i

KS F u u= − ,                                     (30)                                        

      Cramer-von Misses:       2

( )

1

1 2 1
[ ]

12 2

r

i

i

i
CM u

r r=

−
= + −∑ ,                                      (31)                             

Anderson-Darling:   
( ) ( )

1

1
[(2 1) ln( ) (2 1 2 ) ln(1 )]

r

i i

i

AD r i u r i u
r =

= − − − + + − −∑ .      (32)           

As discussed in Babu and Feigelson (2006), the KS statistic is sensitive to large-scale differences 

in location and shape between the model and the empirical distribution, the CM statistic is 

sensitive to small-scale differences in the shape and the AD statistic is sensitive to differences 

near the tails of the distribution.  

 So far we assumed known parameter values. When the test statistics are computed with 

estimated parameters, the asymptotic distribution of the three statistics depends in a complex 

way on the hypothesized model, the true model parameters and the method of estimation. Correct 

critical values can be obtained in this case by use of parametric bootstrap. The procedure consists 

of generating a large number of samples from the estimated hypothesized model, re-estimating 

the unknown parameters from each bootstrap sample and then computing the corresponding test 

statistics. The bootstrap distribution of these statistics provides approximate critical values for  

the null distribution with correct order of error. See Babu and Rao (2004) for regularity 

conditions validating the use of this procedure. 

 

6.2. Other Tests 

     In addition to the classical tests considered above, we propose additional tests that compare 

the theoretical moments of the fitted distributions with their HT estimators. In what follows we 

illustrate the use of these statistics for the case where the population pdf  is normal, but the tests 

can be modified to other population distributions.  

     Under normality of the population pdf, 2, ~ (0, )i i i iY x N εβ ε ε σ′= +  and we can test, for 

example, (3) (3) 3

0 : ( ) 0H Eµ ε= = , or (4) (4) 4

0 : ( ) 3H Eµ ε= = , using the following test statistics:  

3

(3)

0 (3)
3 (3)

1

ˆ

ˆ( , ; )

( )1
:

ˆˆ

r
i

i

i i i

i
x

y v

y
H C w

N V

β

π γσ =

′−
= ∑ ,                                   (33) 
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4

(4)

0 (4) 4
(4)

1

ˆ

ˆ( , ; )

( )1 1
: [ 3]

ˆ ˆ

r
i

i

i i i

t

i
x

y v

y
H C w

N V

β

π γσ =

−
= −∑ ,                                 (34) 

where  
3

(3)

1 ˆ( , ; )

ˆ( )ˆ ˆ ( )
r

i i
i

i i i
Y

y x
V Var w

vπ γ

β

=

′−
= ∑  and 

4
(4)

1 ˆ( , ; )

ˆ( )ˆ ˆ ( )
r

i i
i

i i i
y

y x
V Var w

vπ γ

β

=

′−
= ∑  are the conditional 

variances given the calibration constraints 18(a)-18(b). Critical values for the test statistics 

(3)C and (4)C  can be obtained by parametric bootstrap, similarly to the procedure described in 

Section 6.1. Alternatively, for large r  one can use the standard normal approximation by 

application of an appropriate central limit theorem.  

 

7. APPLICATION OF METHODS TO HOUSEOLD EXPENDITURE SURVEY  

7.1 Study Population and Outcome Variable 

     In this section we illustrate and study the performance of the proposed approach by using data 

collected as part of the Household Expenditure Survey (HES) carried out by the Israel Central 

Bureau of Statistics in 2005. The survey collects information on socio-demographic 

characteristics of each member of the sampled households (HH), as well as information on the 

HH income and expenditure. The HHs were sampled with equal probabilities by a two-stage 

sampling design. The initial response rate in this survey was as low as 43%, but after many 

recalls it increased to 90% of the sampled HHs. In what follows we restrict to HHs where the 

head of the HH is an employee, aged 25-64 and born in Israel. We only consider HHs where at 

least one of its members worked during the three months preceding the interview. After 

removing 4 HHs as outliers, the total sample size is 1717n = , with 629r =  responding HHs and 

1088n r− =  nonresponding HHs, so that for our sample the response rate is 37%. The head of 

the HH is the member with the highest income among its members. The target outcome variable 

is the household income per standard person.  

     For the present study we define the responding HHs to be the HHs that responded on the first 

interview.  The nonresponding HHs are the HHs which did not respond on the first interview but 

responded on one of the later interviews, such that the data for both the responding and the 

nonresponding HHs are actually known. This allows comparing the imputed values with the 

corresponding true values, assuming that the reported incomes are not affected by being 

collected at a later interview. As noted above, the HHs were sampled with equal probabilities 
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and we assume therefore that the population model and the sample model under full response are 

the same. 

7.2  Sample Model and Response Probabilities 

     We assume (and validate in Section 7.5) that the sample distribution of the outcome (under 

full response) given the covariates is lognormal, and that the response probabilities given the 

outcome and the covariates can be modeled by the logistic function, that is,   

                              
2

, ~ (0, )
i i i i

y x N εβ ε ε σ′= + ,                                                   (35) 

                                                   0 1 1
]

( )
( 1 | , ) [1

i i
i i i

y
P R y e

v
v

γ γ −− +
= = +

′
,                                        (36) 

where 
i

y  is the log(income) per standard person in household i  and x
i  and vi

 are the 

corresponding vector covariates. The covariates include characteristics of the head of the HH: 

gender, age, occupation (‘Occ.’) and number of years at school (‘Sch.’), as well as HH 

characteristics: number of earners (‘earners’), HH size (‘HHsize’) and district of residence 

(‘Dist.’). Most of the covariates included in the sample model (35), and in particular the outcome 

variable log(income) are nonsignificant when included in the response model (36). However, 

removing the nonsignificant covariates from the model makes the log(income) variable 

significant and the resulting model contains much fewer covariates.  

     Tables 1 and 2 show the estimated coefficients of the models (35) and (36) as obtained when 

fitting the models separately to all the sample data (respondents and ‘nonrepondents’), and when 

fitting the respondents’ model (11) to only the responding units, using the algorithm described in 

Section 3.4. For the application of the algorithm we took the true population totals of the 

covariates included in the logistic response model to be the corresponding sample totals.  

     The values of the coefficients in the two tables show that they can be estimated sufficiently 

accurately based only on the model holding for the responding units. When fitting the sample 

model (Eq. 35) to all the sample data, we obtained 2 0.612R =  with residual variance 

2ˆ 0.394εσ = . The estimator of 
2

εσ  from fitting the respondents model is 2ˆ 0.393εσ = . The values 

of the regression coefficients are sensible. For example, the coefficients of the education 

variables increase as the level of education increases. The number of earners in the household 

has a strong positive effect on the income, while the size of the household has a strong negative 

effect. The coefficient of Gender (being a female) is negative.  
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Table 1: Sample model when fitted to all sampled HH (Respondents and Nonrespondents), 

and when fitting the respondents’ model to the responding HHs. 
 

Coeff. Const. Gender Age Dist. 21 Dist.41 Dist.42 Dist. 43 Dist. 44  

All HH 7.29 -0.12 0.02 -0.18 0.16 0.13 0.19 0.18 

Respond. 7.18 -0.13 0.02 -0.10 0.14 0.10 0.19 0.16 

 

Coeff. Earners HHsize Occ.0 Occ.1 Occ.4 Sch.10 Sch.12 Sch.16 

All HH 0.25 -0.14 0.44 0.23 0.15 -0.36 -0.14 0.16 

Respond. 0.27 -0.14 0.45 0.26 0.15 -0.36 -0.14 0.19 

 

Table 2: Model for response probabilities when fitted to all sampled HH (Respondents and 

“Nonrespondents”), and and when fitting the respondents’ model to the responding HHs. 

 

Coeff. Const. ( )Log y  Gender Dist.43 Dist.44 Dist.53 HHsize 

All HH 1.00 -.21 -0.21 0.86 -0.58 -0.77 0.10 

Respond. 1.35 -.26 -0.20 0.90 -0.59 -0.79 0.12 

 

     Figure 1 compares the empirical distribution of the estimated sample model residuals with the 

normal distribution with mean zero and same standard deviation, 2ˆ 0.394εσ = . The distribution of 

the estimated residuals is seen to be close to the normal distribution, although with somewhat 

shorter tails, which can be explained by the fact that the estimated residuals are not independent. 

The normality assumption is tested and validated in section 7.5. 

 

Figure 1: Distribution of estimated regression residuals and normal distribution with mean 

                 zero and same variance ( 2ˆ 0.394εσ = ). 
 

7.3 Imputation of Missing Outcomes 

     Next we show the performance of the proposed approach in imputing the missing incomes. 

The imputations were carried out under two different scenarios: In scenario 1 we use the known 
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covariates for the nonrespondents and impute the incomes by drawing at random from the 

estimated pdf 2ˆ ˆ ˆ( | ) ( | , 0; , , )ˆ,c i i i i iR
f y z f y z i RS εβ γσ= =∈  (Eq. 24). We imputed 5 values for each unit 

and averaged the 5 imputations. In Scenario 2 the covariates for the nonresponding units are 

taken as unknown and the imputation of the missing incomes is carried out by first imputing the 

missing covariates using Eq. 26, and then imputing the incomes similarly to Scenario 1. Figures 

2 and 3 compare the true empirical cumulative distribution of the incomes of the nonresponding 

units with the means of the estimated empirical distributions over the 5 imputation sets. Also 

shown in the two figures is the cumulative distribution of the imputed values when ignoring the 

nonresponse process, that is, when imputing the missing covariates by drawing at random from 

their empirical distribution for the responding HHs and imputing the missing incomes given the 

covariates by drawing at random from the estimated sample distribution. 

     Figures 2 and 3 show that application of our approach yields imputations with distribution 

that is close to the true distribution. On the other hand, ignoring the nonresponse yields biased 

imputations, particularly when the covariates for the nonresponding units are likewise unknown. 

 

Figure 2:  True empirical cumulative distribution and means of estimated empirical 

cumulative distributions of the incomes over 5 imputation sets. Known covariates. 

 

 

Figure 3:  True empirical cumulative distribution and means of estimated empirical 

cumulative distributions of the incomes over 5 imputation sets. Missing covariates. 
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     It is important to mention that even if the distribution of the income given the covariates was 

the same for the responding and nonresponding units, ignoring the nonresponse in the case of 

unknown covariates for the nonresponding units would still produce biased estimates for the 

income distribution, since the nonresponse process cannot be ignored for some of the covariates. 

For example, Table 3 shows the percentage of HHs by size for the responding and 

nonresponding units. The HH size is an important covariate in both the models (35) and (36) 

(Tables 1 and 2). 

 

Table 3: Distribution of HH size in sub-samples of responding and nonresponding HHs  

 

HH size 1 2 3 4 5 6+ 

Respond. 6.18 13.63 19.33 26.94 20.60 13.31 

NonRespond. 12.39 19.00 17.34 24.40 17.34 9.54 

 

7.4 Estimation of Mean Sample Income and Variance of Estimators 

     In Section 4 we considered two estimators of the population mean of the outcome variable 

and in Section 5 we considered alternative ways of estimating their variance. Tables 4 and 5 

summarize the results obtained when estimating the true sample mean of the incomes. Table 4 

presents the estimated standard errors (Std) when conditioning on the observed covariates for the 

respondents (and hence also on the number of respondents). Table 5 presents the unconditional 

Std estimators. For both cases we used bootstrap samples as described in Section 5. Also shown 

in the two tables is the mean and variance over all bootstrap samples of the H-T estimator that 

uses the ‘true’ probabilities to respond, ˆπ( , ; )i iy v γ , that is, when the probabilities to respond are 

not re-estimated for each of the bootstrap samples. This estimator, denoted by (1, )
ˆ

P KY − , does not 

take into account the known totals of the covariates via the calibration constraints. The estimator 

(2)

ˆ
Y  that uses the imputed values is calculated under Scenario 1, where we assume that the 

covariates are known for the nonresponding units, (denoted by (2, )

ˆ
C K

Y − ), and under Scenario 2, 

where the covariates for the nonresponding units are also imputed (denoted by (2, )
ˆ

C UKY − ).  
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Table 4: Estimation of sample mean of income (True = 7215.06Y ). Conditional Std.  

500 bootstrap samples. 
 

Estimate  

Estimator Original sample  

of respondents 

Mean over 

bootstrap samples 

 

Standard 

Error 

 

(1, )

ˆ
P KY −

 ---- 7303.65 174.16 

(1)Ŷ  7332.30 7299.17 147.38 

(2, )

ˆ
C UK

Y −

 7311.06 7297.09 146.58 

(2, )

ˆ
C K

Y −
 7272.26 7265.53 140.81 

 

Table 5: Estimation of sample mean of income (True = 7215.06Y ). Unconditional Std. 

500 bootstrap samples. 

 

Estimate  

Estimator Original sample  

of respondents 

Mean over  

bootstrap samples 

 

Standard  

Error 

(1, )

ˆ
P KY −

 ---- 7246.26 347.39 

(1)Ŷ  7332.30 7248.88 179.83 

(2, )

ˆ
C UK

Y −

 7311.06 7308.37 152.43 

(2, )

ˆ
C K

Y −
 7272.26 7304.99 148.00 

 

Tables 4 and 5 illustrate that all the estimators of the mean population income overestimate the 

true mean, but with the largest bias in the two tables being 1.6%. In comparison, the mean of the 

incomes computed from only the responding units is 6822.42, an underestimation of 5.4%. As 

anticipated, the standard errors of the estimators are smaller when conditioning on the observed 

covariates (Table 4), than in the case where the standard errors are taken over all possible 

samples of respondents (Table 5). Also, the standard errors are somewhat smaller when the 

covariates for the nonresponding units are known (the estimator (2, )

ˆ
C KY − ) than in the case that 

they have to be imputed (the estimator (2, )

ˆ
C UKY − ). Finally, the estimator 

(1, )

ˆ
P K

Y − , which does not 
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use the calibration constraints has a much larger variance than the other estimators, illustrating 

the advantage of modifying the sampling weights by use of calibration constraints.  

     For estimating the unconditional standard error of the H-T estimator (1)Ŷ  we also computed 

for each of the 500 bootstrap samples the estimator (29), using the distribution over all possible 

samples of respondents and all possible outcomes. The mean of the Std estimators turned out to 

be 184.78, which is very close to the empirical standard error of 179.83 over all the bootstrap 

samples. The standard error estimator based on the original sample is 185.24. 

 

7.5 Testing the model assumptions 

     In this section we study the performance of the test statistics (30)-(34) by considering three 

different combinations of the true distribution of the sample model residuals and the fitted 

(assumed) model:  

I-  The true residual distribution is 2ˆ(0, )N εσ (Model 1), and the fitted distribution is 2(0, )N εσ . 

II- The true residual distribution is a mixture of  2 2ˆ ˆ(0.5 , )N ε εσ σ  and 2 2ˆ ˆ( 0.5 ,0.5 )N ε εσ σ−  with equal  

     probabilities (Model 2), while the fitted distribution is 2(0, )N εσ .  

III- The true residual distribution is a mixture of 2 2ˆ ˆ(0.7 ,0.51 )N ε εσ σ  and 
2 2ˆ ˆ( 0.7 ,0.51 )N ε εσ σ−  with 

equal probabilities (Model 3), while the fitted distribution is 2(0, )N εσ .  

For all the three cases we sampled the respondents using the logistic model, which was assumed 

also under the misspecified distributions. Figure 3 shows the three true sample models. 

 

Figure 4:  Sample models used for studying the performance of the test statistics 
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     In order to study the performance of the test statistics we performed the following experiment 

for each of the three models:  

1. Generate 250 new samples of outcomes from the true respondents' distribution under the 

model with parameters ˆ ˆ( , )θ γ and fixed (original) covariates iz .  

2. For each new sample: 

2i- Re-estimate ( , )θ γ assuming that the true sample distribution is normal,  

2ii- Compute the test statistics (30)-(34), 

2iii- Generate 250 new samples from the respondents’ distribution assuming that the sample 

distribution is normal, using as parameters the estimates from (2i). Then, 

3- For each new sample generated in 2iii, 

3i-  Re-estimate ( , )θ γ  assuming that the true sample distribution is normal and compute the test  

      statistics (30)-(34). 

3ii- Compute the distribution of each test statistic based on the 250 values in 3i.  

     Table 6 compares the empirical distribution of the five test statistics under Model 1 as 

obtained in Step 2ii, with the nominal values computed in Step 3ii. Denoting the ordered values 

of any one of the test statistics obtained in Step 3ii by (1) (250)...u u< < , the critical value for 

nominal level jα  was defined as 
(250 )j

u α  when 250 jα is an integer, and 
[250 ] 1j

u α +  otherwise, where 

[ ]⋅  defines the integer number. The value of any given statistic in a cell corresponding to nominal 

level jα  is the percentage of samples that the statistic was between the critical values for 

nominal levels 1jα −  and 
j

α  (
0 0α = ).  

 

     Table 6: Empirical and theoretical distribution of test statistics under Model 1  

 

Nominal levels Test 

0.05 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.95 1.00 

KS 0.040 0.046 0.088 0.079 0.109 0.097 0.112 0.096 0.146 0.097 0.039 0.053 

AD 0.048 0.046 0.068 0.095 0.093 0.113 0.109 0.144 0.074 0.109 0.043 0.058 

CM 0.056 0.031 0.084 0.110 0.072 0.080 0.125 0.133 0.097 0.101 0.059 0.051 

(3)
C  0.043 0.035 0.088 0.120 0.109 0.120 0.088 0.107 0.079 0.102 0.055 0.053 

(4)
C  0.042 0.043 0.060 0.126 0.098 0.135 0.143 0.108 0.093 0.092 0.027 0.053 
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In general, the empirical distribution of all the statistics is sufficiently close to the nominal 

values, thus validating the parametric bootstrap procedure described above for calculating the 

critical values under an assumed model. The goodness of fit of the empirical distributions to the 

nominal values was tested by the Pearson Chi-square statistic with 11 degrees of freedom, 

yielding p-values of 0.67 for KS, 0.45 for AD, 0.47 for CM, 0.89 for 
(3)

C  and 0.13 
(4)

C .  

     Table 7 exhibits the proportion of samples that each of the test statistics rejects the 

misspecified distribution for the responding units, which assumes that the sample distribution is 

normal when in fact the true sample distribution is as defined under Model 2 or Model 3. For the 

test statistics defined by (30)-(32) we used one sided tests. For the test statistics defined by (33)-

(34) we used two-sided tests. The proportions in Table 7 estimate the powers of the various tests 

in rejecting the misspecified model. 

 

Table 7: Proportion of samples that each test statistic rejects the misspecified model  

for different nominal significance levels  

 

Model 2 Model 3 

Significance level Significance level 

Test 

0.01 0.025 0.05 0.10 0.01 0.025 0.05 0.10 

KS 0.832 0.892 0.936 0.960 0.245 0.549 0.637 0.775 

AD 0.936 0.964 0.984 0.988 0.588 0.725 0.784 0.853 

CM 0.924 0.948 0.980 0.988 0.490 0.696 0.765 0.843 

(3)C  0.876 0.932 0.956 0.984 0.000 0.000 0.020 0.088 

(4)C  0.112 0.188 0.264 0.356 0.480 0.647 0.716 0.823 

 

When the true sample distribution is skewed as under Model 2, the three classical test statistics 

and the statistic 
(3)

C  that is designed for testing the skewness of the distribution have very good 

power properties, with powers higher than 0.9 for significance levels that are equal or higher 

than 0.025. As could be anticipated, the test (4)C  that is designed to test the fourth moment has 

very low power in this case. The powers of all the test statistics except 
(4)

C  reduce when the true 

sample distribution is symmetric but flatter than the normal distribution, as under Model 3. 
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Nonetheless, all the test statistics except for  
(3)

C , and in particular AD and CM still have 

acceptable powers in this case for significance level equal or higher than 0.05.  

     The power of test statistics depends on the distance between the true model and the 

misspecified model and by Figure 4 the distances in our case are not really large. Although more 

work should be invested in developing new model testing techniques, the results in Tables 6 and 

7 suggest that the goodness of fit of models fitted for the responding units can be tested 

adequately. 

     Finally, we applied the test procedure defined by Steps 2ii and 3ii in order to validate the 

normal/logistic model fitted to the original household expenditure data (Eqs. (35)-(36)). For this, 

we generated 500 samples from the fitted respondent’s distribution using the parameter estimates 

in Tables 1 and 2 (estimated based only on the responding units). Table 8 exhibits the p-values 

obtained for the 5 test statistics. 

 

Table 8: P-values when testing the model fitted to the original sample (Eqs. 37, 38) 
 

      Test        KS AD CM 
(3)

C  
(4)

C  

    p-value   0.262 0.098 0.122 0.256 0.108 

  

     With the usual type II error in mind and recalling the powers exhibited in Table 7 under the 

misspecified models, the p-values in Table 8 support the normal/logistic model fitted to the data, 

as already suggested by the other empirical results shown in previous sections.  

 

APPENDIX A, SOLUTION OF EQUATIONS (15a)-(15b) 

In order to solve the equations (15a), (15b) for given vector coefficient γ  we use the Newton-

Raphson algorithm. The second derivatives are as follows:  

1

( ) ( | ; , , ) , , 0,...,
r

j

R i i ji ki

ik

l
a Var Y z x x j k pφ β φ γ

β =

∂
= − =

∂ ∑  

1 0

( )
( | ; , , ) ( , ( ) | ; , , )

pr
j

R i i s si R i i i ki

i s

l a
Var Y z x COV Y d Y z x

φ
β φ γ β β φ γ

φ φ = =

∂   ∂
= − +  ∂ ∂   

∑ ∑ 0,...,j p=  

1

1

( ) ( , ( ) | ; , , )
r

p

R i i i ki

ik

l
a COV Y d Y z xφ β φ γ

β
+

=

∂
= −

∂ ∑  
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1

1 0

( )
( ( ) | ; , , ) ( , ( ) | ; , , )

pr
p

R i i R i i i s si

i s

l a
Var d Y z COV Y d Y z x

φ
β φ γ β φ γ β

φ φ
+

= =

∂   ∂
= − +  ∂ ∂   

∑ ∑  

where RVar  and RCov  are the variance and covariance with respect to the distribution holding for 

the responding units. Denote,  

1

1, . . . ,1 , 0, . . .,0

,. . ., , 0, . . .,0

0, . . .,0 , 1, . . .,1

rX X X

 
 ′ =  
  

,    1 1[ ,. . ., , ( ),. . ., ( )]r rY y y d y d y′ = , 

1 1 1 1{ ( | ),. . ., ( | ), [ ( ) | ],. . ., [ ( ) | ]}R R r r R R r rE Y z E Y z E h Y z E h Y zµ′ = ,  

{ } { }

{ }

1 2

0

( | ) , ( ( ) | ) , 1,...,

(( ( ), ) | ) , [ ], 1,...,

R i i R i i

p

R i i i k ki

k

V Diag Var Y z V Diag Var d Y z i r

C Diag COV d Y Y z S Diag x i rβ
=

= = =

= = =∑
.  

Application of the Newton-Raphson method yields,  

                                     

( 1) ( )

1 1[ ( ) ( )]

m m

T T
A X WX X Y

β β
µ

φ φ

+

− −   
= − −   

   
,                              (A1) 

where A  is a diagonal matrix of dimension ( 2)( 2)p p+ + , with all the elements on the main 

diagonal being ( )a φ−  except for the last element that is 
( )a φ
φ

∂
−

∂
 and 

1 1

2

V C SV
W

C V SC

+ 
=  + 

. 

 

APPENDIX B, PROOF OF THEOREM 1 

     We need to solve the equations ( ) 0U ξ = , where 0 1 0 1( , ) ( ,..., , ,..., )p qξ θ γ θ θ γ γ+ +′ = =  and 

1 1( , ) ( ,..., , ,..., )p qU l h l l h h′ ′ ′ ′= = . The functions 
0 1( ) [ ( ),..., ( )]pl l lξ ξ ξ+ ′=  are defined by (15a)-15(b) 

with ( , )θ β φ= . The functions 
1 2( ) [ ( ),..., ( )]qh h hξ ξ ξ+ ′=  are defined by (18a)-(18b). The true 

vector parameter ( , )ξ θ γ=� � �  is the unique solution of the estimating equations [ ( )] 0E U ξ = , 

where the expectation is taken over all possible samples of respondents and all possible 

outcomes of the responding units under the sample distribution. We now show that the solution 

ξ̂  of the algorithm of Section 3.4 converges in probability to the solution of the equations 

( ) 0U ξ = , which we denote by 0 0 0( , )ξ θ γ′ ′ ′= . Consider the familiar Newton-Raphson algorithm. 

Application of this algorithm to the present problem requires solving iteratively until 

convergence the equations, 
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                                                 ( 1) ( ) 1 ( )( )m m m

mA Uξ ξ ξ+ −= − ,                                                         (B1) 

where ( )mξ  is the solution on the m
th

 iteration. The matrix mA  is defined as, 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

( , ) ( , )

( , ) ( , )

m m m m

m m

m m m mm

m m

l l

A
h h

θ γ θ γ
θ γ

θ γ θ γ
θ γ

 ∂ ∂
 ∂ ∂ =
∂ ∂ 

 ∂ ∂ 

, where 
( ) ( )

( )

( , )m m

m

l θ γ
θ

∂
∂

 is the matrix of partial derivatives of 

( , )l θ γ  with respect to θ  evaluated at ( ) ( )( , )m mθ γ ,  and similarly for the other block matrices. The 

estimation algorithm in Section 3.4 splits instead the system ( ) 0U ξ =  into the two systems, 

( ) 0l ξ =  and ( ) 0h ξ = , and solves them iteratively until convergence as follows: 

Apply one Newton-Raphson iteration to the equations ( ) 0l ξ =  with respect to θ  for given γ , 

and one Newton-Raphson iteration to the equations ( ) 0h ξ =  with respect to γ  for given θ , 

where the given values of θ  and γ  are the solutions from the previous iteration. The updating 

equations in this case can be written as,  

                                                     
( 1) ( ) 1 ( )

( ),
m m m

mB Uξ ξ ξ+ −= −
                                                     (B2) 

where  

( ) ( )

( )

( ) ( )

( )

( , )
0

( , )
0

m m

m

m mm

m

l

B
h

θ γ
θ

θ γ
γ

 ∂
 ∂=  ∂  ∂ 

. Splitting the system of equations into the two sub-

systems is advantageous for large dimensional systems, since it saves the computation of 2 pq  

(possibly complicated) partial derivatives. Define matrices 01M and 02M as follows:  

1 1

0 0 0 0 0 0 0 0
01

0 0 0 0

( , ) ( , ) ( , ) ( , )l l h h
M

θ γ θ γ θ γ θ γ
θ γ γ θ

− −
   ∂ ∂ ∂ ∂

=    ∂ ∂ ∂ ∂   
,  

1 1

0 0 0 0 0 0 0 0
02

0 0 0 0

( , ) ( , ) ( , ) ( , )h h l l
M

θ γ θ γ θ γ θ γ
γ θ θ γ

− −
   ∂ ∂ ∂ ∂

=    ∂ ∂ ∂ ∂   
.  

     Suppose now that the conditions of Theorem 1 hold and that 01 01
,

lim || || 1
N n
P M λ
→∞ →∞

= < , 

02 02
,

lim || || 1
N n
P M λ
→∞ →∞

= < , where ⋅
 

defines the Euclidian norm. We later check the fulfillment of 

the conditions for the model used for the empirical study in Section 7. 

 



 30 

Proof of Theorem 1:  

     It is known that the Newton-Raphson algorithm has a quadratic rate of convergence, 

implying, 
2

( 1) ( )m m
cε ε+ < , where ( ) ( )

0( )m mε ξ ξ= −  and c  is a constant. It follows that,  

                                               

2
( ) 1 ( ) ( )( )m m m

mA U cε ξ ε−− < .                                                   (B3)  

     Next, rewrite the equations B(2) as ( 1) ( ) 1 1 ( )
( ).

m m m

m m mB A A Uξ ξ ξ+ − −= −
 
The rate of convergence 

of the proposed algorithm can be derived therefore as, 

( 1) ( ) 1 1 ( ) ( ) 1 ( ) 1 ( ) ( )
( ) (( ( )) )

m m m m m m m

m m m m m mB A A U B A A Uε ε ξ ε ε ξ ε+ − − − −= − = + − −  

         
1 ( ) 1 ( ) 1

( ) ( ( ))
m m

m m m m m mI B A B A A Uε ε ξ− − −= − + − , or, 

                                   
( 1) 1 ( ) 1 ( ) 1 ( )( )m m m m

m m m m m
I B A B A A Uε ε ε ξ+ − − −≤ − ⋅ + ⋅ − .                      (B4) 

By (B3), 
2

( 1) 1 ( ) 1 ( )m m m

m m m m
I B A c B Aε ε ε+ − −≤ − ⋅ +  and hence for ( )mε  sufficiently small,  

                                                   
( 1) ( )m m

m
Hε ε+ ≤ ⋅ ,                                                              (B5)                    

where ( ) ( ) 1
( , )

m m

m m mH H I B Aθ γ −= = − .  It follows that, 

                                                                
( 1) ( 1)

1

m m

m m
H Hε ε+ −

−≤ ⋅ .                                        (B6)                        

Now, 

1
( ) ( ) ( ) ( )

( ) ( )

1
( ) ( ) ( ) ( )

( ) ( )

( , ) ( , )
0

( , ) ( , )
0

m m m m

p p m m

m m m m m

q qm m

l l

H
h h

θ γ θ γ
θ γ

θ γ θ γ
γ θ

−

×

−

×

  ∂ ∂
−  ∂ ∂  =

  ∂ ∂
 −  ∂ ∂   

 and let 

0 00 ( , )
( , )H H θ γθ γ= . By Taylor expansion of 

m
H  around 

0 0( , )θ γ , ( )

0 0

m

mH H D≈ + Ε , where the 

elements of 0D  and ( )mΕ are defined as follows: Let ijk
h  be the derivative /ij kH ξ∂ ∂ , where 

ijH  

denotes the ( , )i j
th  

element of the matrix 
0H . The matrix 

0D  is obtained from 
0H  by replacing 

each element 
ijH

 
by the row vector 

0 , 1 , 3( ,..., , ,..., )ij ijp ij p ij p qh h h h+ + + . The matrix ( )m
E  is 

( ) ( )

4

m m

p q
E I ε+ += ⊗  where ⊗  defines the Kronecker product. Note that 

2

0dim( ) ( 4) ( 4)D p q p q= + + × + + , and ( ) 2dim( ) ( 4) ( 4)m p q p qΕ = + + × + + . It follows that, 
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( )( )( 1) ( 1) ( 1) ( ) ( 1) 2 ( 1)

1 0 0 0 0 0

m m m m m m

m mH H H D H D Hε ε ε ε+ − − − −
−≤ ⋅ ≈ + Ε + Ε ⋅ ≈ ⋅ , and hence 

by (B6),   

                                                  ( 1) 2 ( 2 1)

0|| || || || || ||
m k m k

Hε ε+ − +≤ ⋅ ,                                                  (B7) 

where 2 01
0

02

0

0
q p

p q

M
H

M
×

×

 
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 
. Since we assume, 01 01

,
lim || || 1

N n
P M λ
→∞ →∞

= < , 
02 02

,
lim || || 1

N n
P M λ
→∞ →∞

= < , 

we obtain 2

0
,

lim || || 0k

N n
P H
→∞ →∞

=  as k → ∞ , and  

                                      ( 1) ( 1)

0|| || || || 0
p

m mε ξ ξ+ += − →
  
for 2 , ,m k k− → ∞ → ∞                            (B8) 

 

showing that the solution ( )mξ  of the proposed algorithm converges in probability to 0ξ . QED  

     It remains to show that the conditions of the theorem are satisfied by the equations (15a)-

(15b) and (18a)-(18b) as obtained for the model defined by (35)-(36). It is easy to show that in 

this case the functions ( , )l θ γ  and ( , )h θ γ  satisfy the conditions I) and III), provided that 

0 ( , ; ) 1i iy vπ γ< <  with bounded first derivatives. For example, in (38) ( , ; )i iy vπ γ  is logistic and 

denoting 
0, 1iv = , 

 1,q i iv y+ = , 
( , ; )i i

l

y vπ γ
γ

∂
∂ ( )

1

1
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2
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i q i
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v y
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v e
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γ γ

γ γ
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+
 for 0,..., ( 1)l q= + . In order to 

show that the norms of 01M
 
and 02M

 
converge in probability to limits smaller than 1, we assume 

(r1)-
1

( )
r

ii
w O N

δ
=

=∑ for 0.5 1δ< ≤ , (r2)- 
1
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jj
w O N

=
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and (r3)- 

1

[ ] ( )
( , ; )

r
ki

i

i i i

x
Var w O N

y vπ γ=

=∑ . 

These are standard requirements in sample surveys. As a simple example suppose that the 

sample is drawn by simple random sampling without replacement and the response probabilities 

are ( , ; ) ( / )i iy v r nπ γ = . In this case, ( / )iw N n=
 
and 2

1
/ ( )

N

jj
w N n O N

=
= =∑  since we assume 

that ( / )N n  is bounded.  Clearly, 
1

( / ) ( )
r

ii
w r N n O Nδ

=
= =∑  for 0.5 1δ< ≤  and the condition 

(r3) is also satisfied as long as ( / ) ( / )( / )N r N n n r=  is bounded.  

     Suppose for convenience that dim(x ) 2
i

=  and dim(v ) 1
i

= . Then, 0 1 2( , , , )θ β β β φ ′=  and 

0 1 2( , , )γ γ γ γ ′= . The matrix 
0 0( , )

( , )
|

h
θ γ

θ γ
θ

∂
∂

 for the functions ( , )h θ γ  in (18a)-(18b) is then a 3 4×  

matrix with all of its elements equal to zero except for the (3,3)
th

 element, which equals 



 32 

1 ( , ; )

r
popi

i

i i i

x
w X

y vπ γ=

−∑
�

� . Next consider the derivatives of the functions in (18a)-(18b) with 

respect to γ . Denoting as above 
0, 1iv = , 

1,q i iv y+ = , we have that 
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by (r1) and therefore the whole expression 

is ( )O N
δ . Some further algebra shows that the only nonzero entry of the matrix 

1
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 ∂ ∂ 

 is a constant times 
1

[ ]
( , ; )

r
popi

i

i i i

x
N w X

y v

δ

π γ
−

=

−∑
�

�  and by Chebyshev 

inequality and the condition (r3),  
1

[ (| | )] 0
( , ; )

r
Ppopi

i N
i i i

x
P N w X

y v

δ ε
π γ

−
→∞

=

− > →∑
�

� , if 0.5δ > . 

It follows that all the elements of 

1

( , ) ( , )
0P

N

h hθ γ θ γ
γ θ

−

→∞

 ∂ ∂
→ ∂ ∂ 

 and hence the norms of 
01M and 

02M
 
converge in probability to limits smaller than 1, as assumed for the proof.  

 

APPENDIX C, PROOF OF THEOREM 2 

     The consistency of the estimator follows from a result by Huber (1967), which states that 

under the conditions of the theorem, as n → ∞  the estimator 
0

ξ  solving the equations ( ) 0U ξ =  

is consistent for ξ� , the solution of the equations [ ( )] 0E U ξ = . By Theorem 1,  the estimator ξ̂     

converges in probability to 
0

ξ , establishing its consistency under the same conditions.   

     The asymptotic normality of the estimator ξ̂  follows from a result by Newey and McFadden 

(1994), which states that under the same conditions,  

                                                         
ˆ( ) [0, ( )]

D
n N Vξ ξ ξ− →� � ,                                             (C1) 
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with the variance matrix ( )V ξ�  defined as 1 1( ) ( ) ( )[ ( ) ]V A B Aξ ξ ξ ξ− − ′=� � � � , where by abbreviating 

( , , , ),i i i iR y zϕ ϕ ξ= �

1

1
( ) ( )

n

n i

i

A E
n

ξ ϕ
=

= −∇∑� , 
1

1
( ) ( );

n

n i i

i

B E
n

ξ ϕϕ
=

′= ∑�

 

( ) lim ( ),
n

n
A Aξ ξ

→∞
=� �

  

( ) lim ( )n
n

B Bξ ξ
→∞

=� �  and iϕ∇
 
is the matrix of first derivatives of 

i
ϕ  with respect to ξ� .  

The equations (15a)-(15b), (18a)-(18b) satisfy the conditions of the theorem, thus establishing 

the consistency and asymptotic normality of the estimator ξ̂ .  QED. 
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