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In some experiments in the physical and biological sciences, a binary response is of primary
interest and is often described by a generalized linear model. Examples include experiments in
food technology and studies in chemistry where the outcome is whether or not a salt is formed
in a chemical reaction. For such experiments, designs that are efficient under the assumption
of a linear model may be inadequate for the description and prediction of the response. The
generation of designs using a search algorithm is addressed for completely randomized designs
when a generalized linear model describes the response. A method of assessing the designs is
discussed and illustrated by examples.

1. Introduction

Experiments which produce a binary or binomial response arise in a variety of areas such
as engineering, chemistry and food technology. Although a generalized linear model (GLM)
is often used to describe such a response, methods of designing experiments tailored to these
nonlinear models are largely limited to situations when only one or two variables are to be inves-
tigated and a simple first order linear predictor is assumed. These methods include sequential
approaches, such as Wu (1985), Bayesian methods, for example Chaloner and Larntz (1989),
and the application of a maximin criterion, see Sitter (1992) and King and Wong (2000). When
several variables are involved in the experiment, classical factorial or response surface designs
are sometimes employed, see Myers et al. (2002). These designs are effective when resources
allow each treatment to be replicated a large number of times and when the probabilities of
success are not close to 0 or 1; in other circumstances such designs may be inefficient.

We address the problem of finding and assessing exact designs for a binary response de-
scribed by a GLM for experiments that involve several variables. As with other nonlinear
models, the design problem is complicated by the dependence of the asymptotic generalized
variance of the maximum likelihood estimators of the model parameters on the unknown values
of these parameters. An approach is described that uses a search algorithm to generate designs
which are robust to the values of the model parameters and other aspects of the model speci-
fication. The algorithm uses simulated annealing (Haines, 1987) and is implemented in C++.
It can be used to find a single design or to build designs sequentially. A method of assessing
competing designs is also indicated. An example is given of a design for a GLM with logit link
and the performance of this design is compared with that of a response surface design.

2. Design selection and assessment

Suppose that the treatments in the experiment are allocated at random to the units
and a single observation is made on each unit. Let the n observations be held in vector
Y = (Y1, . . . , Yn)′, where E(Y ) = µ and Var(Y ) = V . The link function g(·) of the GLM
relates µ to the linear predictor x′iβ through µi = g−1(x′iβ), i = 1, . . . , n, where β is the vector
of p unknown model parameters and x′i is the ith row of the model matrix X. The form of
the diagonal matrix V is determined by the distribution assumed for the response. For binary



data, each Yi has a Bernoulli distribution and V = diag{µi(1−µi)}; appropriate link functions
are the probit, the complementary log-log and the logit link which is given by

g(µi) = log

(
µi

1− µi

)
, for i = 1, . . . , n .

The asymptotic variance-covariance matrix of the maximum likelihood estimator β̂ is
Var(β̂) = (X ′∆V ∆X)−1 (see, for example, McCullagh and Nelder, 1989, p. 119), where ∆ =
diag(g′(µi))

n
i=1 and the matrix ∆V ∆ involves the unknown β. If a value of β is assumed, then

the application of a standard optimality criterion within a search algorithm may be used to find
a locally optimal design. For example, the use of D-optimality gives a design which maximizes
the local objective function

φ(d|β) = |M(d,β)|1/p for d ∈ D ,

where D is the set of all possible designs with n runs and M(d,β) = X ′∆V ∆X. This criterion
is equivalent to minimizing the asymptotic confidence ellipsoid for the model parameters.

The optimum-in-average criterion of Fedorov and Hackl (1997) overcomes the dependence
of design choice on β by selecting a design that optimizes the average of a local objective function
evaluated over a predefined parameter space; see also Pettersson and Nyquist (2003) for GLM
designs. We use this criterion to find exact designs in a continuous design space and note that
it can be extended to incorporate uncertainty in the link function and the form of the linear
predictor. For full details, see Woods et al. (2004). Uncertainty in the parameter values is
incorporated through the choice of parameter space which may strongly influence the resulting
designs and should reflect any prior information from the experimenters’ knowledge or from
pilot experiments.

To implement a search of the design space which is computationally feasible, a surrogate
criterion must be formulated that can be evaluated efficiently. We apply the approach of Woods
et al. (2004) in choosing a small set S of parameter vectors that is representative of the specified
parameter space. An objective function is then defined over this set as

Φ(d,S) =
∏

β∈S
φ(d|β) .

A compromise design that maximizes Φ(d,S) over set D may be found by search algorithm.
The efficiency of a design may be assessed by sampling from the entire parameter space, as
illustrated below.

3. Example

An experiment in the food technology industry investigated the joint effects of three vari-
ables on a binary response for which a GLM with a logit link was assumed. The experimenters
wanted to consider a full second order linear predictor and chose a central composite design
(CCD) with 16 runs and axial points at ±1.3. As an alternative, a compromise design of the
same size can be found using the same range for each of the variables. A 10-dimensional para-
meter space was considered which was defined by 10 intervals, one for each model parameter.
For two of the variables, an interval [2, 6] was used for the coefficients of the linear terms as
these terms were thought likely to have a positive effect on the probability of success. Little was
known about each of the remaining eight model parameters and hence intervals [−2, 2] were
used. The problem of selecting a representative set S of parameter vectors from this space is
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Figure 1: Boxplots of D-efficiencies for a central composite design and a compromise design
relative to a locally optimal design for each of a random sample of 10,000 parameter vectors

equivalent to finding a space-filling design in 10 dimensions. This was achieved by latin hyper-
cube sampling and a compromise design was obtained by search algorithm under the criterion
of maximization of Φ(d,S).

The performances of the compromise and CCD designs over the specified parameter space
were assessed relative to a locally optimal design d∗ found for each of a random sample of
10,000 parameter vectors drawn from the space. This computationally intensive evaluation was
carried out using a Beowulf cluster. Figure 1 shows boxplots of the calculated D-efficiencies,
φ(d|β)/φ(d∗|β), for each design and indicates that the compromise design is an improvement
over the CCD. For example, the compromise design has probability 0.05 of being less than
25% efficient compared with the locally optimal design; the corresponding probability for the
CCD is 0.5. The issue of the non-existence of maximum likelihood estimators (Silvapulle, 1981)
should also be considered and leads to the use of several copies of the design, see Woods et al.
(2004).

4. Discussion

In order to design an experiment for a binary or binomial response described by a GLM,
the dependence of the performance of a design on the unknown model parameters must be
overcome. One approach is to use a standard factorial or response surface design but, as
illustrated in the above example, these designs may be outperformed by more robust designs
tailored to the individual problem using available prior information. The method outlined here
requires less computational effort than a corresponding Bayesian or maximin approach and can
be applied to find designs for a response described by any GLM.

If the experimental units are to be arranged in blocks, then a blocking factor needs to be
incorporated into the linear predictor. For fixed block effects, an extension of the above algo-
rithm is computationally feasible. The inclusion of random block effects leads to a generalized
linear mixed model. A challenge for finding designs is then to tailor the design selection to the
model estimation procedure. Penalized quasi-likelihood (Breslow and Clayton, 1993) provides
a simple method of estimation involving a first-order Taylor series expansion of g(Y ) about
µ. However, this approximation is known to be poor for blocks composed of a small number
of units. The incorporation into design search algorithms of recent advances in modeling, such
as the use of Monte Carlo methods (McCulloch and Searle, 2001, ch.10), presents even greater
computational challenges and is an area for future investigation.
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RÉSUMÉ

Les réponses binaires sont de grand intérêt dans le cadre de beaucoup d’expriences dans les
sciences physiques et biologiques, notamment dans les processus chimiques de formation de sels
qui ont lieu lors de la combinaison d’acides et de bases. Dans la conception des telles expriences,
l’utilisation de modèles linéaires peut s’avrer inadéquate dans la description et prédiction de la
réponse. Nous nous occupons de la génération pratique de designs complètement randomisés à
l’aide d’algorithmes de recherche dans les cas où un modèle linéaire généralisé décrit la réponse.


