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Abstract
IL (interleukin)-4 and IL-13 are key cytokines in the pathogenesis of allergic inflammatory disease. IL-4
and IL-13 share many functional properties as a result of their utilization of a common receptor complex
comprising IL-13Rα1 (IL-13 receptor α-chain 1) and IL-4Rα. The second IL-13R (IL-13 receptor) has been
identified, namely IL-13Rα2. This has been thought to be a decoy receptor due to its short cytoplasmic tail
and its high binding affinity for IL-13 but not IL-4. IL-13Rα2 exists on the cell membrane, intracellularly and
in a soluble form. Recent reports revealed that membrane IL-13Rα2 may have some signalling capabilities,
and a soluble form of IL-13Rα2 can be generated in the presence of environmental allergens such as DerP.
Interestingly, IL-13Rα2 has also been shown to regulate both IL-13 and IL-4 response in primary airway cells,
despite the fact that IL-13Rα2 does not bind IL-4. The regulator mechanism is still unclear but the physical
association of IL-13Rα2 with IL-4Rα appears to be a key regulatory step. These results suggest that the
cytoplasmic tail of IL-13Rα2 may interfere with the association or activation of signalling molecules, such
as JAK1 (Janus kinase 1), on IL-4Rα and thus prevents downstream signal cascade. The receptor has more
complicated functions than a simple decoy receptor. In this review, we discuss newly revealed functions of
IL-13Rα2.

Introduction
IL (interleukin)-4 and IL-13 are pleiotropic cytokines with
key roles in the pathogenesis of asthma and other atopic
diseases. They induce VCAM-1 (vascular cell adhesion
molecule-1) on vascular endothelium and thus direct the
migration of T-lymphocytes, monocytes, basophils and eo-
sinophils to the inflammation site [1–3]. In asthma, IL-4 and
IL-13 contribute to inflammation and to airway obstruction
through the induction of mucin gene expression and
the hypersecretion of mucus [4]. Both cytokines inhibit
eosinophil apoptosis and promote eosinophilic inflammation
by inducing chemotaxis and activation through the increased
expression of eotaxin [5].

IL-13 mediates its functions via its cognate receptor, a
heterodimer composed of the IL-4Rα (IL-4 receptor α-chain)
and the IL-13-binding protein, IL-13Rα1 [IL-13R (IL-13
receptor) α-chain 1] [6]. The IL-13Rα1–IL-4Rα complex can
act as an alternative receptor for IL-4, especially in cells that
lack the common γ -chain (γ c) that usually forms a complex
with IL-4Rα to bind IL-4 [7]. The IL-13R complex is formed
in a sequential manner: IL-13 first binds to IL-13Rα1 before
recruiting IL-4Rα to form a high-affinity, signalling complex
[8]. In the case of IL-4 binding to IL-13Rα1–IL-4Rα,
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IL-13Rα1 contributes little to the overall binding affinity
and its role within this complex remains unknown [9].

IL-13Rα2
A second IL-13 binding protein, IL-13Rα2, has been
identified [10]. It shares 37% homology with IL-13Rα1 and
binds IL-13 with high affinity, but not IL-4 [8]. Binding
studies have shown that IL-13Rα2 has the characteristics
of a negative regulator, with a fast association rate but
an exceptionally slow dissociation rate [8]. IL-13Rα2 has
a short cytoplasmic tail that lacks any obvious signalling
motif and is unable to instigate a signal through the STAT
(signal transducer and activator of transcription) 6 pathway.
IL-13Rα2 appears to regulate IL-13, as receptor expression
makes cells unresponsive to IL-13 despite the high binding
affinity. This high affinity, together with the finding of soluble
IL-13Rα2 in vivo [11], has led to speculation that IL-13Rα2
is a decoy receptor. However, it has been revealed that
membrane IL-13Rα2 may have some signalling capabilities.
Fichtner-Feigl et al. [12] have suggested that IL-13 can
signal through IL-13Rα2 in macrophages to activate an AP-1
(activator protein 1) variant containing c-Jun and Fra-2,
leading to IL-13-induced TGFβ (transforming growth factor-
β)-mediated fibrosis [12]. They found that prevention of
IL-13Rα2 expression reduced the production of TGFβ1 in
oxazolone-induced colitis and that prevention of IL-13Rα2
expression, IL-13Rα2 gene silencing or blockade of IL-
13Rα2 signalling led to marked down-regulation of TGFβ1
production and collagen deposition in bleomycin-induced
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lung fibrosis. This group also showed that IL-13 signalling via
the IL-13Rα2 is a key initiation point for a complex fibrotic
programme in the colon consisting of TGFβ1 activation,
IGF-1 (insulin-like growth factor 1) and EGR-1 (early
growth-response gene product 1) expression, myofibroblast
apoptosis, and myofibroblast production of collagen [13].

Expression of IL-13Rα2 varies across cell types and can be
induced by inflammation and cytokines [14,15]. A role for
IL-13Rα2 as a potent modulator of inflammatory responses
in asthma is suggested by the IL-13- and IL-4-dependent
up-regulation of IL-13Rα2 in primary bronchial epithelial
cells and the demonstration that overexpression of IL-13Rα2
in primary airway cells decreases IL-13-dependent STAT6
phosphorylation and eotaxin production [16]. Daines et al.
[17] demonstrated that IL-13Rα2 is largely an intracellular
molecule, which is rapidly mobilized from intracellular stores
after treatment with IFNγ (interferon γ ) [17]. Up-regulation
of IL-13Rα2 surface expression in response to IFNγ was
rapid, did not require protein synthesis, and resulted in
diminished IL-13 signalling. Furthermore, there appeared
to be communication between the intracellular pools and
the cell surface as prolonged treatment of cells with trypsin
revealed an ongoing decrease in total cell IL-13Rα2 [18].
The authors suggest that this continued decline in IL-13Rα2
was due to mobilization of the cytoplasmic IL-13Rα2 to the
surface where it was susceptible to trypsin-mediated cleavage.

Soluble IL-13Rα2 has been postulated as a critical
endogenous modulator of IL-13 responses. Specific blockade
of IL-13 by soluble IL-13Rα2 to allergen challenged mice
reversed airway hyperreactivity and mucus production
[19], but the mechanism for the generation of soluble
IL-13Rα2 remains unclear. Soluble cytokine receptors can be
generated by several mechanisms, including the proteolytic
cleavage of membrane-bound receptor proteins from the
cell surface and alternative splicing of mRNA transcripts.
Matsumura et al. [20] reported that endogenous MMP(s)
[matrix metalloproteinase(s)] solubilize IL-13Rα2 in airway
epithelial cells, whereas Chen et al. [21] demonstrated that
soluble IL-13Rα2 can be produced by means of direct
cleavage by MMP-8 and that MMP-8 contributes to the
solubilization of IL-13Rα2 in BALF (bronchoalveolar lavage
fluid) in house dust mite-treated mice. Furthermore, this
group showed that exposure to mould or house dust mite
allergens resulted in degradation of surface IL-13Rα2 [22].
This reduction in receptor levels may contribute to the
pathogenesis of allergic disorders in individuals with allergy
because of the loss of IL-13Rα2 inhibition of IL-13 responses.
They also found that an alternatively spliced transcript of
the mouse IL-13Rα2 gene generates biologically relevant
soluble IL-13Rα2 protein in vitro, which can effectively
block IL-13-dependent STAT6 activation [23]. Thus these
results indicate that the generation of soluble IL-13Rα2 can
occur from an alternative transcript encoding a soluble form
in addition to the cleavage of membrane-bound IL-13Rα2.

We have observed that expression of IL-13Rα2 in primary
human fibroblast cells varied considerably between volun-
teers [24]. There is a correlation between IL-13Rα2 baseline

levels and eotaxin release, suggesting that IL-13Rα2 is able
to regulate IL-13-mediated effects in fibroblasts. IL-13-
mediated eotaxin release from fibroblasts with low levels of
IL-13Rα2 was significantly higher than that from fibroblasts
with high receptor expression. Fibroblasts with high surface
levels of IL-13Rα2 were virtually unresponsive to IL-13 as
the amount of eotaxin released from these cells was not
significantly different from the untreated control [25]. The
natural variability in IL-13Rα2 expression remains unclear as
there are no known polymorphisms in the promoter region of
the IL-13Rα2 gene. Receptor expression was not linked to the
age or sex of volunteers and there was only a slight association
with atopy. However, in light of recent reports, differences
in cumulative environmental allergen exposure or in the
intrinsic regulation of the production of soluble IL-13Rα2
could lead to decreased IL-13Rα2 in subjects and increased
susceptibility to IL-13. A variant of IL-13, R110Q, has been
associated with atopy and atopic diseases such as atopic
dermatitis and rhinitis [26,27]. We have also demonstrated
that IL-13Rα2 has a lower affinity for R110Q and thus is
unable to regulate this cytokine as effectively as wild-type
IL-13, thus leading to a more sustained response than that
observed for wild-type IL-13 [28]. If this is then linked
with a natural variation in IL-13Rα2, the ability of R110Q
to contribute to an allergic response is dependent not only
on its reduced affinity for IL-13Rα2, but also on naturally
occurring levels of IL-13Rα2. Thus IL-13Rα2 may represent
an important biomarker for asthma and allergic diseases.

Regulation of IL-13 and IL-4 signalling
The exact mechanism by which IL-13Rα2 regulates IL-13 is
still under investigation. It has been suggested that IL-13Rα2
present on the cell surface competes with the IL-4Rα/IL-
13Rα1 complex for IL-13. We have previously characterized
the binding of IL-13 to its receptor components and shown
that IL-13Rα2 binds IL-13 with a significantly higher
affinity than IL-13Rα1, a property that is derived primarily
from its extremely low dissociation rate [8]. Thus, once
IL-13 has been captured by IL-13Rα2, it is effectively
sequestered from the lower-affinity IL-13Rα1 signalling
receptor. Alternatively, a soluble form of the receptor might
be present in interstitial spaces, where it can sequester IL-13
to limit its bioavailability and suppress activation of receptor
complexes on the cell surface. The presence of a soluble
form represents a potential mechanism for IL-13Rα2 to have
effects on cells distant from its production. Daines et al. [18]
reported that soluble IL-13Rα2 released from transfected
cells was unable to inhibit IL-13 signalling in untransfected
cells, probably because the level of soluble receptor was
low [18]. However, during inflammation the levels may
be higher and therefore functionally relevant. The in-
hibitory effects of the IL-13Rα2 on IL-13 appeared to be
rapid and persistent but could be overcome by increasing
concentrations of IL-13. Thus the ability of IL-13Rα2 to
quench IL-13 responses is dependent on both the level of
expression of the receptor and the amount of IL-13 present.
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IL-13Rα2 is overexpressed in a vast majority of high-grade
astrocytomas, and it has been proposed as a tumour-speci-
fic antigen [29]. Studies of the expression of the membrane-
anchored form of IL-13Rα2 in tumour cells suggest that it
also functions as a negative regulator of IL-13 in these cells.
However, it has been shown that it not only competes with
IL-13Rα1 for binding of IL-13, but it also promotes IL-13
internalization, resulting in marked suppression of IL-13 acti-
vity [30]. This property has been exploited for tumour target-
ing by using an IL-13 Pseudomonas exotoxin fusion protein.
This is a highly specific cytotoxin to medulloblastoma cell
lines expressing IL-13Rα2 and has led to the proposal that
IL-13Rα2 might serve as a tumour-specific antigen for
active immunotherapy of brain tumours [31]. Similarly, lung
fibroblasts isolated from the most severe form of idiopathic
interstitial pneumonia (usual interstitial pneumonia) exhibit
increased expression of IL-4 and IL-13 receptor subunits, and
these can be targeted with an IL-13 Pseudomonas exotoxin
fusion protein [32]. Significantly, this effect was dependent
on expression not only of IL-13Rα2, but also of IL-4Rα.

The variability in the level of IL-13Rα2 on the surface
of primary epithelial cells is inversely correlated to their
responsiveness not only to IL-13 but also to IL-4, despite the
fact that IL-13Rα2 does not bind IL-4. Increased levels of
IL-13Rα2 on the cell surface lead to a significant inhibition
of both IL-13- and IL-4-mediated effects. The addition of
neutralizing antibodies to IL-13Rα2 prevented the inhibition
of the IL-13-stimulated responses and surprisingly IL-
4-mediated responses as well [25]. The involvement of
IL-13Rα2 in the regulation of IL-4 is supported by evidence
that IL-13Rα2 forms a complex with IL-4Rα when cells
are exposed to IL-4. The fact that IL-13Rα2 associates with
IL-13Rα1 when cells are exposed to IL-13, but not IL-4, rules
out the possibility that IL-13Rα2 inhibits IL-4 signalling by
sequestering IL-13Rα1 [33]. Similarly, IL-13Rα2 is unable to
bind IL-4, and therefore it would be unable to inhibit IL-4
signalling by sequestering the ligand.

The cytoplasmic tail of IL-13Rα2
regulates IL-4
A more likely explanation is that the short cytoplasmic tail of
IL-13Rα2 might interfere with the association or activation
of signalling molecules, which, in turn, prevents downstream
signal cascade. The intracellular domain of IL-4Rα contains a
membrane-proximal Box-1 sequence that serves as a docking
site for JAK (Janus kinase) 1. It may be this site at which
IL-13Rα2 is able to regulate IL-4 responses, as blocking the
interaction of this signalling molecule with its receptor com-
plex completely inhibits the JAK/STAT6 signalling pathway.
A similar mechanism has been linked to the abnormal pro-
liferation of glioblastoma cells, in which IL-4-mediated anti-
tumour activity in rodent experimental gliomas is abrogated
by aberrant expression of IL-13Rα2 by the glioblastoma cells
[33]. This involves the cytoplasmic tail of IL-13Rα2, which
partly blocks IL-4-mediated activation of STAT6 and up-
regulates the activation of STAT3, although the latter does
not require a direct physical interaction between STAT3 and

IL-13Rα2 [34]. Furthermore, although glioblastoma cells fail
to express the alternative IL-4Rα/common γ -chain receptor
complex, this form of IL-4R is present on both epithelial cells
and fibroblasts, suggesting that IL-13Rα2 has the ability to
inhibit IL-4Rα in either signalling configuration.

Conclusion
The IL-4/IL-13 pathway is an extremely important mediator
of inflammatory responses. Small genetic differences such as
the expression of the IL-13 variant, R110Q, or environmental
exposure to allergens can lead to the dysregulation of IL-4
and IL-13 that contributes to an asthmatic phenotype. Thus
a complete understanding of how IL-13Rα2 regulates these
two important cytokines may lead to the development of
a novel therapy for asthma that selectively targets these
cytokines. Previous attempts to augment either IL-4 or IL-13
have been relatively unsuccessful due to their shared receptor
system. By targeting IL-13Rα2, which has the ability to
regulate both molecules, the problem of subverting an
alternative pathway can be overcome. Such a multifunctional
interaction would identify the transmembrane form of IL-
13Rα2 as a powerful suppressor of Th2-mediated responses.
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