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Abstract

In comparison with low-order finite element methods, the use of oscillatory ba-
sis functions has been shown to reduce the computational complexity associated
with the numerical approximation of Helmholtz problems at high wave numbers.
We compare two different wave element methods for the 2D Helmholtz problems.
The methods chosen for this study are the partition of unity finite element method
(PUFEM) and the ultra-weak variational formulation (UWVF). In both methods,
the local approximation of wave field is computed using a set of plane waves for
constructing the basis functions. However, the methods are based on different vari-
ational formulations; and the PUFEM basis also includes a polynomial component
whereas the UWVF basis consists purely of plane waves. As model problems we
investigate propagating and evanescent wave modes in a duct with rigid walls; and
singular eigenmodes in an L-shaped domain. Results show a good performance of
both methods for the modes in the duct but only a satisfactory accuracy was ob-
tained in the case of the singular field. On the other hand, the both methods can
suffer from the ill-conditioning of the resulting matrix system.

Key words: Helmholtz problem, Partition of Unity, Ultra-weak variational
formulation
PACS: 43.20.Mv, 02.70.Dh, 02.60.Cb

1 Introduction

A wide range of physical systems in steady-state oscillation can be charac-
terized using the Helmholtz equation. Yet the numerical approximation of



Helmholtz problems poses a serious challenge to standard, low-order finite el-
ement techniques. Due to the requirement of dense spatial discretization, the
modeling of wave fields at high wave numbers is computationally demand-
ing when conventional polynomial finite elements are used. Approximability
requirements are severe and these are exacerbated by cumulative phase and
dispersion errors. This presents one of the unsolved problems of the finite
element method [22].

A promising improvement for relaxing the mesh density of the finite element
methods is the incorporation of the physical features of the solution into the
approximation subspace. This approach has been utilized for the Helmholtz
problem by locally approximating the solution as a superposition of propagat-
ing plane waves or by enriching the polynomial finite element basis function
with the plane waves. The enriched methods include, for example, the par-
tition of unity finite element method (PUFEM) [18,3], the generalized finite
element method (GFEM) [21,2], which is a combination of the classical fi-
nite element method and the partition of unity method, and discontinuous
enrichment method (DEM) [9]. A purely plane wave basis has been used,
for example, with the ultra-weak variational formulation [6,7], discontinuous
Galerkin method [10] and the least-squares method [19]. The aim of this study
is to compare the PUFEM and UWVF for 2D Helmholtz problems. In partic-
ular, we shall extend PUFEM and UWVF simulations for problems including
evanescent waves and singularities.

In the PUFEM, the polynomial finite element basis is multiplied by discrete
plane waves. The method has been evaluated for the Helmholtz problem in
[14,15] and the results show a notable reduction in the computational burden
associated with the high frequency wave problem.

An improvement in computational efficiency compared to a low-order FEM is
also observed with the DEM [9] in which the basis is constructed by adding
plane wave solutions to the polynomial basis. The PUFEM and DEM, in
addition to the generalized finite element method [21], are compared for a
1D flow acoustic problem in [2]. All methods give a tolerable accuracy when
the number of degrees of freedom per wavelength is approximately 4 which
is clearly below a common rule of thumb of 10 points per wavelength for the
low-order FEM.

While having similarities with the PUFEM, the major differences of the ultra-
weak variational formulation are a different underlying variational formulation
and the construction of a basis using only plane waves. The UWVF was first
introduced in general form in [8] and analyzed for the Helmholtz and time-
harmonic Maxwell equations in [5–7]. The results obtained by the originators
of the UWVF and in the subsequent study [13] show that the method permits
the use of a relatively coarse mesh and, in comparison to conventional finite
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elements, reduces the number of degrees of freedom per wavelength needed for
tolerable accuracy.

Finally we note that although the simulations of this study focus on the
Helmholtz equation, the wave basis methods which are presented are also
used for a wider class of time-harmonic wave problems. The original work
on the UWVF focused mainly on the solution of the 3D Maxwell equations
[5]. Subsequently, the method has been also extended for elastic wave prob-
lems [12] and fluid-structure interaction problems [11]. On the other hand,
the PUFEM has been applied to flow acoustics problems and proved to be
far more efficient than standard finite element methods when applied to short
wave acoustic propagation on uniform and nonuniform potential flows [2,1].
We therefore anticipate that the results obtained here will benefit other ap-
plications of wave elements methods.

2 Numerical methods for the Helmholtz model

2.1 Statement of the problem

The Helmholtz problem investigated in this study is now presented. Let Ω be
a domain in R2 with the boundary Γ. Then a time-harmonic wave field with
the wave number κ ∈ R satisfies the Helmholtz equation

∆u + κ2u = 0 in Ω, (1)

(1 + Q)
∂u

∂ν
+ (Q− 1)iκu = g on Γ, (2)

where the boundary condition (2), Q ∈ C, gives either a Dirichlet when Q =
−1, Neumann when Q = 1, or mixed, Robin-type boundary condition when
Q 6= 1,−1 ( |Q| < 1 for a strictly dissipative condition). The source term on
the boundary is denoted by g.

Since the both methods investigated in this study use similar finite element
meshes, a disjoint partition of the domain is defined so that Ω = ∪K

k=1Ωk. The
number of vertices in the mesh is denoted by L.

2.2 Partition of unity finite element method

The Partition of Unity Method was proposed by Melenk and Babuška [18,3] as
a general approach for enhancing the finite element solution of partial differen-
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tial equations. PUFEM provides a framework for including information about
the local behavior of the solution within the approximation subspace of a con-
ventional FE discretisation, leading in theory to a better approximation of the
underlying physics and to reduced CPU time and memory requirements. Re-
cent studies [15,20,16] of homogeneous 2-D and 3-D Helmholtz problems have
confirmed that very significant computational efficiencies can be achieved for
short wave problems.

While providing an improved local approximation, the PUFEM retains in a
global sense many of the attractive features of a conventional finite element
model. It accommodates unstructured meshes and generates a trial solution
which is continuous at all points in the solution domain. Most importantly, the
nodal definition of the basis functions is preserved, which leads to sparse ma-
trix systems. The flexibility which exists in the choice of local basis and shape
functions also provides a natural way of tackling inhomogeneous problems by
defining local approximations which vary over the solution domain.

In application to wave problems, local plane wave solutions are a natural choice
for enriching the finite element trial space

ψ(x, y) = Ae−iκ(x cos θ+y sin θ), ∀A ∈ C and θ ∈ [0, 2π],

since they are solution of the homogeneous Helmholtz equation (1). The dis-
crete trial space is built by selecting at each node ` of a conventional Finite
Element mesh a finite number p` of wave directions which can vary from node
to node. In all of the cases considered in this article the wave directions are
chosen angularly equispaced. A uniform distribution is not mandatory. If there
is a priori knowledge about the probable direction(s) of propagation at a par-
ticular node, this can be used to select a suitable set of wave functions for
inclusion in the local approximation basis at that node.

A generic element φh of the PUFEM finite element space therefore takes the
form

φh(x, y) =
L∑

`=1

N`(x, y)
p∑̀

n=1

A`,n e−iκ(x cos θn+y sin θn) (3)

where L is the number of nodes in the mesh, and {A`,n} is a set of unknown
nodal amplitudes which form the degrees of freedom of the model. The func-
tions

N`(x, y), ` = 1, 2, . . . , L

are conventional finite element shape functions which satisfy the usual ‘Parti-
tion of Unity’ relationship that

L∑

`=1

N`(x, y) = 1.
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Equation (3) can also be written as a double summation in terms of composite
basis functions ψ`,j(x, y) which contain both the conventional shape functions
and the discrete wave solutions, i.e.

φh(x, y) =
L∑

`=1

p∑̀

n=1

A`,n ψ`,n(x, y), where ψ`,n(x, y) = N`(x, y) e−iκ(x cos θn+y sin θn).

The PUFEM finite element space

Vh := {φh eq.(3) : Al,j ∈ C, ` = 1, . . . , L, j = 1, . . . , p`}

is used to obtain an approximate solution to the problem posed by equations
(1) and (2). In order to do that first we introduce the following sesquilinear
and antilinear forms

a(u, φ) =
∫

Ω
∇φ̄ · ∇u− κ2

∫

Ω
φ̄ u− iκ

(
1−Q

1 + Q

) ∫

ΓR

φ̄ u

b(φ) =
1

2

∫

ΓN

φ̄ g +
1

1 + Q

∫

ΓR

φ̄ g

to write the weak formulation of problem (1)-(2)

a(u, φ) = b(φ), ∀φ ∈ H1
ΓD

(Ω),

where ΓN , ΓR and ΓD are Neumann, Robin-type, and homogeneous Dirichlet
boundaries respectively, so that;

∂u

∂ν
=

g

2
on ΓN ,

∂u

∂ν
= iκ

(
1−Q

1 + Q

)
u +

g

1 + Q
on ΓR,

u = 0 on ΓD,

where Γ = ΓN ∪ ΓR ∪ ΓD, and

H1
ΓD

(Ω) :=
{
v ∈ H1(Ω) : v |ΓD

= 0
}

.

H1(Ω) is the Sobolev space

H1(Ω) :=

{
v ∈ L2(Ω) :

∂v

∂xj

∈ L2(Ω), j = 1, 2

}
.

When an inhomogeneous Dirichlet condition is present, u = g on ΓD, it is easy
to get a similar variational formulation by writing the solution as a sum of
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functions u = u0+uD, where uD is any function in H1(Ω) satisfying uD|ΓD
= g,

and u0 ∈ H1
ΓD

(Ω) is the solution of the following variational problem

a(u0, φ) = b(φ)− a(uD, φ), ∀φ ∈ H1
ΓD

(Ω).

The PUFEM is based on a Galerkin type approximation of the above weak
formulation. It is important to note that when Dirichlet conditions are present,
the construction of the PUFEM approximation of H1

ΓD
(Ω) is not as direct as

for standard finite elements because, in general, the set of functions defined on
ΓD by the traces of the PUFEM basis functions are not linearly independent.
The construction of the approximation of the space H1

ΓD
(Ω) can be avoided

by introducing Lagrange multipliers, to impose weakly the Dirichlet condition,
and rewriting the weak formulation consistently. However, in the present work
the space of admissible solutions H1

ΓD
(Ω) is discretised with a PUFEM basis

by considering the following subspace of PUFEM functions

VhΓD
:= {φh ∈ Vh : φh|ΓD

= 0} .

2.3 Ultra-weak variational formulation

We shall next briefly outline the ultra-weak variational formulation. The deriva-
tion of the UWVF in detail can be found from the reference [6]. Let us denote
by Σk,j the interface between elements Ωk and Ωj. For the UWVF, the original
Helmholtz problem (1) is decomposed into sub-problems for each element Ωk,
k = 1, . . . , K so that

∆uk + κ2uk = 0 in Ωk (4)

∂uk

∂νk

− iκuk = −∂uj

∂νj

− iκuj on Σk,j (5)

∂uk

∂νk

+ iκuk = −∂uj

∂νj

+ iκuj on Σk,j (6)
(

∂uk

∂νk

− iκkuk

)
= Q

(
− ∂uk

∂νk

− iκkuk

)
+ g on Γk (7)

The function to be solved in the UWVF is defined on the element boundaries
as

χk =

(
−∂uk

∂νk

− iκuk

) ∣∣∣∣
∂Ωk

, 1 ≤ k ≤ K. (8)

In [6] the decomposed problem (4)-(7) and integration by parts are used to
show that χk satisfies
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K∑

k=1

∫

∂Ωk

1

κ
χk

(
− ∂vk

∂νk

− iκvk

)
−

K∑

k=1

K∑

j=1

∫

Σk,j

1

κ
χj

(
∂vk

∂νk

− iκvk

)

−
K∑

k=1

∫

Γk

Q

κ
χk

(
∂vk

∂νk

− iκvk

)
=

K∑

k=1

∫

Γk

1

κ
g

(
∂vk

∂νk

− iκvk

)
, (9)

where vk satisfies the local adjoint Helmholtz equation

∆vk + κ2vk = 0 in Ωk. (10)

Here the overbars refer to complex conjugation. The equation (9) is called the
ultra-weak variational formulation of the Helmholtz equation.

The discrete UWVF results in by approximating the function χk using a su-
perposition of propagating plane waves

χa
k =

pk∑

n=1

χk,n

(
−∂ψk,n

∂νk

− iκψk,n

)
, (11)

where the plane wave basis functions can be written as

ψk,n =





eiκ(x cos θn+y sin θn) in Ωk

0 elsewhere.

As for the PUFEM, the propagation directions θn of the waves are chosen
angularly equispaced on the unit circle. The numbers of basis directions pk

can vary between elements Ωk, k = 1, ..., K.

By substituting the discrete approximation of χk (11) into the UWVF equation
(9) and by setting vk = ψk,n, the discrete UWVF can solved in the matrix form
as

(D − C)X = b, (12)

from which the weights X = (χ1,1, χ1,2, ..)
T for the basis functions can be

solved.

The structure of elements in the matrices D and C; and the right hand side
b are given in detail in [6] and [13]. The discrete UWVF equation (12) can be
also written in an alternative, preconditioned form

(I −D−1C)X = D−1b, (13)
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which is generally preferred due to the improved conditioning of the problem
[6],[13]. The latter form is particularly useful when large-scale problems are
solved using iterative methods. In this study, the both forms (12) and (13) are
used to resolve the UWVF approximations.

3 Numerical simulations

The coding of both methods is done in Matlab and the resulting systems of
linear equations are solved using Matlab’s backslash, i.e. by Gaussian elim-
ination. A lower bound for the 1-norm condition number of the matrices is
computed by means of the function condest of Matlab.

3.1 Wave propagation in a duct with rigid walls

Rigid walls

x

y

y = 0

y = 1

x  = 2x = 0

Fig. 1. Duct domain.

The first model problem consists of a rigid wall duct Ω ∈ [0, 2] × [0, 1] with
the outward boundary unit normal ν (see Figure 1). We analyze the follow-
ing Helmholtz problem for the acoustic pressure u and associated boundary
conditions

∆u + κ2u = 0 in Ω,
∂u

∂ν
= cos(mπy) on x = 0, m ∈ N

∂u

∂ν
+ iκu = 0 on x = 2

∂u

∂ν
= 0 on y = 0, 1.

The inlet boundary x = 0 has an inhomogeneous Neumann condition and
the outlet boundary x = 2 is characterized using an absorbing boundary
condition. The boundaries y = 0, 1 are assumed perfectly rigid leading to
vanishing normal derivatives on the boundary.
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The exact solution for the problem can be obtained in the closed form as

uex(x, y) = cos(mπy)(A1e
−iκxx + A2e

iκxx)

where κx =
√

κ2 − (mπ)2 and coefficients A1 and A2 satisfy the equation

i




κx −κx

(κ− κx)e
−2iκx (κ + κx)e

2iκx







A1

A2


 =




1

0




The solution represents propagating modes when the mode number m is below
the cut-off value

m ≤ mcut−off =
κ

π
.

The modes for which m > mcut−off are evanescent. We compute numerical ap-
proximations for the highest propagating mode and the two lowest evanescent
modes. To measure the accuracy of the numerical solution uh, we introduce
the following L2 error,

Error(%) := 100
‖uex − uh‖L2(Ω)

‖uex‖L2(Ω)

The simulations are performed for the wave numbers κ = 20, 40 and 80 when
the corresponding highest propagating mode numbers are m = 6, 12 and 25.

The meshes used in the simulation are shown in Fig. 2. The maximum element
size hmax for the meshes is computed as the length of the longest edge of an
element in the mesh.

0 0.5 1 1.5 2
0

0.5

1

x

y

0 0.5 1 1.5 2
0

0.5

1

x

y

Fig. 2. The meshes used in the simulations. The mesh of the left has 100 vertices,
168 elements and hmax=0.26. The finer mesh on the right consists of 367 vertices,
672 elements and has hmax=0.13. The maximum element size hmax refers to the
length of the longest edge of an element in the mesh.
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Tables 1 and 2 summarize the PUFEM and UWVF results for the wave number
κ = 20. We list the approximation error for the mode numbers m = 6, 7 and
8, the number of degrees of freedom (DOF), condition number (Cond) and
the number of nonzero elements in the resulting matrix system (Nnz) as the
function of basis dimension p = pk = p` and maximum element size hmax. In
these simulations the basis dimension p is same in all elements.

In Table 2 the subscripts 1 and 2 in the condition number (Cond) and the
number of nonzeros of the matrix system (Nnz) refer to the two forms of the
UWVF matrix equation (12) and (13), respectively.

The results of Tables 1 and 2 suggest that the PUFEM provides a better
accuracy than the UWVF whereas the UWVF is better conditioned than the
PUFEM. In addition, there is a notable improvement in the conditioning of
the UWVF equation when the preconditioned form (13) is used (Cond2 in
the table). The number of degrees of freedom associated for a fixed mesh and
basis dimension is lower for the PUFEM. But the reason for this is evident.
The degrees of freedom in the PUFEM are associated with element vertices
so that total DOF is

∑L
`=1 p`, where p is the dimension of the basis and L is

the number of vertices in the mesh. However, the degrees of freedom in the
UWVF are defined for element edges and therefore the DOF is

∑K
k=1 pk, where

K is the number of elements.

Nevertheless, the overall memory storage needed for the solution of the prob-
lem is not only dependent on DOFs but also on the number of nonzero elements
in the corresponding matrix system (Nnz). The comparison of Nnz reveals that
PUFEM and unpreconditioned UWVF have a comparable number of nonzeros
but the preconditioned UWVF matrix equation has the lowest value of Nnz.

The results for the wave number κ = 40 are listed in Tables 3 and 4; and for
the wave number κ = 80 in Tables 5 and 6. At κ = 40, the accuracy of the
UWVF becomes comparable to that of the PUFEM. A further increase in κ
(Tables 5 and 6) makes UWVF the most accurate of the two methods.

It is interesting that despite the UWVF matrix system (13) having a condition
number two orders lower than the unpreconditioned form (13), the accuracy
of the solution of (13) deteriorates earlier than for (12). The reason for this is,
however, most likely in the two step inversion of the UWVF equation used in
(13). It is shown earlier (see e.g. [13]) that the condition of subblocks Dk, and
therefore the conditioning of D, closely follows the conditioning of the overall
matrix system I−D−1C. Then, the inversion of D at high condition numbers
is inaccurate which deteriorates the solution of corresponding matrix equation
(13) leading to poorer accuracy.

The tables for UWVF results list the accuracy with the unpreconditioned
equation. Since the accuracy obtained from the two forms of the UWVF equa-

10



Table 1
PUFEM results for κ = 20.

Error (%)

p hmax m = 6 m = 7 m = 8 DOF Cond Nnz

8 0.26 3.74 0.80 3.17 800 6.9e4 0.4e5

12 0.26 1.19e-2 9.37e-2 0.40 1200 8.3e7 0.9e5

4 0.13 7.90 1.77 3.53 1468 5.9e3 0.4e5

8 0.13 3.87e-2 4.14e-2 0.16 2936 3.7e7 1.6e5
Table 2
UWVF results for κ = 20.

Error (%)

p hmax m = 6 m = 7 m = 8 DOF Cond1 Cond2 Nnz1 Nnz2

8 0.26 23.9 9.15 30.4 1344 5.9e4 5.6e3 0.4e5 0.3e5

12 0.26 5.07e-2 0.41 2.17 2016 4.5e8 4.8e5 0.9e5 0.7e5

4 0.13 101.5 33.6 44.4 2688 1.3e3 1.7e3 0.4e5 0.3e5

8 0.13 0.66 0.74 1.93 5376 1.3e7 8.6e4 1.7e5 1.3e5

tion differ at high condition numbers, when the error is different, the errors
for preconditioned form is given below the tables 4 and 6.

It is clear that the accuracy of the PUFEM and UWVF approximations are
comparable for a given problem size and can be improved either by increasing
the number of basis functions (a p-refinement) or by refining the mesh (a h-
refinement). In Fig. 3, we compare these two approaches for the duct problem
at the wave number κ = 40. The UWVF results are computed by solving the
discrete equation in the form (13). Results for both the propagating (m = 12)
and the evanescent mode (m = 13) show that the most memory efficient
increase in accuracy is obtained via the p-refinement. Yet this approach also
leads to a more severe deterioration of the conditioning of the problem.

4 A singular problem

The second model problem is a singular eigenmode of the Helmholtz problem
in an L-shaped domain, see Fig 4. The exterior boundary Γ is divided into
two parts Γ = Γ1 ∪ Γ2 so that the edges meeting at the origin are denoted by
Γ1 and the rest of the boundary Γ constitutes Γ2.

We seek the solution of the problem

11



Table 3
PUFEM results for κ = 40.

Error (%)

p hmax m=12 m=13 m=14 DOF Cond Nnz

12 0.26 26.7 56.0 170 1200 1.3e6 0.9e5

16 0.26 6.19e-2 1.32 4.10 1600 4.0e6 1.6e5

20 0.26 9.43e-4 3.43e-2 0.60 2000 1.6e9 2.5e5

8 0.13 38.5 0.29 4.02 2936 5.0e4 1.6e5

12 0.13 2.85e-2 2.08e-2 0.12 4404 4.6e7 3.5e5
Table 4
UWVF results for κ = 40.

Error (%)

p hmax m=12 m=13 m=14 DOF Cond1 Cond2 Nnz1 Nnz2

12 0.26 33.1 9.58 73.7 2016 2.5e5 1.8e4 0.9e5 0.7e5

16 0.26 5.50e-2 0.28 1.52 2688 7.0e8 7.4e5 1.6e5 1.3e5

20 0.26 7.93e-4a 1.18e-2 0.11 3360 6.8e12 1.1e9 2.6e5 2.0e5

8 0.13 53.1 6.16 21.3 5376 9.0e4 2.3e4 1.7e5 1.3e5

12 0.13 9.65e-2 0.12 0.54 8064 7.1e8 2.5e6 3.8e5 3.0e5
1.66e-3a (the corresponding error when the UWVF is solved using the precondi-
tioned equation (13))

∆u + κ2u = 0 in Ω,

u = 0 on Γ1,
∂u

∂ν
+ iκu =

∂g

∂n
+ iκg on Γ2,

where

g(r, θ) = J2/3(κr) sin
(

2

3
θ
)

.

The exact solution of the problem is uex = g. This solution has a singular
derivative at the origin.

Two meshes are used in the simulation. The first, labeled with M1, has nearly
equal sized elements and the second mesh M2 is refined near the origin. Figures
5 and 6 show the error of PUFEM and UWVF as the function of conditioning
and the number of nonzeros of the matrix equation for κ = 40. The results for
both meshes are presented in the same figures. In addition, two forms of the
matrix equation (Equations (12) and (13)) are used in the case of the UWVF.
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Table 5
PUFEM results for κ = 80.

Error (%)

p hmax m=25 m=26 m=27 DOF Cond Nnz

24 0.26 37.2 33.1 57.2 2400 2.1e4 3.7e5

28 0.26 1.22 8.86 19.1 2800 2.7e8 5.0e5

32 0.26 1.42e-3 3.76 5.71 3200 2.3e10 6.5e5

16 0.13 9.28 3.64 4.46 5872 8.8e6 6.3e5

20 0.13 7.42e-2 0.59 0.81 7340 1.5e9 9.8e5
Table 6
UWVF results for κ = 80.

Error (%)

p hmax m=25 m=26 m=27 DOF Cond1 Cond2 Nnz1 Nnz2

24 0.26 0.59 1.12 4.54 4032 2.4e10 1.3e7 3.7e5 2.9e5

28 0.26 8.30e-3b 7.82e-2 0.34 4704 7.0e13 1.2e10 5.0e5 4.0e5

32 0.26 7.80e-5c 6.98e-3d 3.71e-2e 5376 1.3e17 8.8e12 6.6e5 5.2e5

16 0.13 0.47 0.36 0.95 10752 1.2e9 3.9e6 6.7e5 5.2e5

20 0.13 3.43e-3f 1.63e-2 6.00e-2 13440 9.9e12 1.1e10 1.1e6 8.1e5
1.68e-2b, 29.5c, 1.11d, 4.56e, 4.12e-3f (the corresponding errors when the UWVF is
solved using the preconditioned equation (13))

Results suggest that both methods suffer from ill-conditioning before high
accuracy levels (say < 1%) are reached. The smallest errors are obtained
by using the refined mesh M2 (in the case of UWVF only unpreconditioned
equation gives improved accuracy). For the coarser mesh M1, the accuracy
almost levels off until conditioning starts to increase the error.

In Fig. 7 we show the error and conditioning of the PUFEM and UWVF
approximations as a function of the wave number. The results are computed
in the coarse mesh M1 and by using the basis dimension pk = p` = 24.
The UWVF is again more sensitive for ill-conditioning which deteriorates the
accuracy at the lowest wave number. On the other hand, it is interesting to
observe the similarity of the conditioning of PUFEM and unpreconditioned
UWVF.

Since the ill-conditioning appears to be the major factor for deteriorating the
error and it evidently stems from the use of large number of basis functions in
small element, we analyze next two strategies for choosing the basis. In Fig.
8, the error is plotted as a function of the conditioning and the number of
nonzeros when the number basis functions is same in all elements or when the
basis dimension varies from element to element (or from node to node).
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Fig. 3. A comparison of the two strategies for improving the accuracy. The errors
presented using solid lines are computed by refining the mesh and using a fixed num-
ber of basis functions (pk = 12) (we call this approach by h-UWVF and h-PUFEM).
Dotted line errors are computed in the coarser mesh (hmax = 0.26) and by increas-
ing the basis dimension (p-UWVF and p-PUFEM). The results are shown for the
wave number κ = 40 and for the modes m = 12 (first row) and m = 13 (second
row).

For the UWVF, the element size hk for an element Ωk is the length of the
longest edge of the element. And the number of basis functions pk for the
element Ωk is computed as

pk = round
[
κhk + C(κhk)

1/3
]
, (14)

where the constant C is chosen as C = 3, 4, ..., 14 (however, in Fig. 8 the
accuracy of the UWVF started to deteriorate before the largest C values).
This formula for the basis dimension stems from the analysis of truncation of
the Jacobi-Anger series in the context of the fast multipole method [4]. It can
be expected that a similar analysis is needed for studying the approximating
properties of plane waves. In this point and in this context, however, the
formula (14) is used without a rigorous mathematical analysis of its validity.
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Fig. 4. The meshes for the L-shaped domain. Left: Mesh M1 consisting of 78 vertices,
124 elements and having hmax = 0.38. Right: Mesh M2 consisting of 233 vertices,
422 elements and having hmax = 0.31.
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Fig. 5. The error of the PUFEM and UWVF approximation as a function of the
condition number of the corresponding matrix equations. Two forms (12) and (13)
are used for solving the UWVF problem. In addition, results are shown for two
different meshes, see Fig. 4.

For the PUFEM, the number of directions is chosen by using a similar formula

p` = round
[
κh` + C(κh`)

1/3
]
. (15)

In the PUFEM, however, the degrees of freedom are associated with the el-
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Fig. 6. The error of the PUFEM and UWVF approximation as a function of nonzeros
elements in the corresponding matrix equations.

ement vertices. Then, p` denotes the number of directions at the `’th node.
Correspondingly, h` is the longest element edge coming out of the `’th node.
The parameter C is the same as for the UWVF.

The graphs of Fig. 8 show that the use of nonuniform number of basis func-
tions notably improves the conditioning of both methods. In particular, the
accuracy with the nonuniform basis is much better if we compare the errors
in the region where the condition numbers are below 1012. When one allows
condition numbers that are higher than 1012, the benefit of the nonuniform
basis starts to vanish. In fact, the most accurate approximation is obtained
by using unpreconditioned UWVF with an equal number of basis directions
in each element. But it is also interesting to observe that with the nonuniform
basis, the accuracy of PUFEM and unpreconditioned UWVF approximations
is slightly less sensitive to ill-conditioning, that is, the error as a function of
the condition number using the nonuniform basis decreases little longer than
with the uniform basis.

In the case of PUFEM and unpreconditioned UWVF, the improved condi-
tioning comes with the price of the increased matrix storage needed to obtain
highest level of accuracy. The benefit of the nonuniform basis is the most
evident with the preconditioned UWVF since it suffers earlier from the ill-
conditioning caused by the uniform basis.

16



20 30 40 50 60 70 80
10

0

10
1

10
2

 p = 24

Wave number κ

R
el

at
iv

e 
er

ro
r 

( 
%

 )
UWVF  D−C
UWVF  I−D−1C
PUFEM

20 30 40 50 60 70 80

10
5

10
10

10
15

10
20

 p = 24

Wave number κ

C
on

di
tio

n 
nu

m
be

r

UWVF  D−C
UWVF  I−D−1C
PUFEM

Fig. 7. The error as a function of the wave number κ for a fixed number of basis
functions p = 24 and in the mesh M1.

5 Discussion and conclusions

We compared two wave element methods for solving Helmholtz problems in
2D. The methods chosen for this study were the partition of unity finite ele-
ment method (PUFEM) and the ultra-weak variational formulation (UWVF).
We investigated the performance of the methods for simulating propagating
and evanescent modes in a rigid wall duct; and singular eigenmodes in an
L-shaped domain.

Both PUFEM and UWVF resulted in a high level accuracy for the propagating
modes even if the meshes used in computations were relatively coarse (e.g. it
was possible to obtain errors below 0.01% in meshes for which λ/h ≈ 0.3). The
error increased in the case of evanescent modes but, in most cases, remained on
a tolerable level. A general trend was the UWVF performed better at higher
frequencies whereas the PUFEM was more accurate at the low frequency. On
the other hand, the PUFEM has a lower condition number at the highest
frequency, even compared with the preconditioned form of the UWVF. It was
observed that care must be taken of the form in which the discrete UWVF is
solved. While the preconditioned form (13) has a lower condition number its
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Fig. 8. Comparison of two approaches for choosing the number of plane wave basis
functions. In the case of uniform p, the basis dimension is same throughout the whole
computational domain Ω. The curves labeled with nonuniform p are computed so
that the basis dimension p varies within the computational domain. The number of
basis functions for the UWVF and PUFEM are computed from the formulas (14)
and (15), respectively. Results are computed in the mesh M2.

accuracy starts to deteriorate before that of the unpreconditioned equation
(12).

The performance of the both methods for the singular problem was only sat-
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isfactory. In the coarse mesh, it was impossible to obtain an error below 1%
whereas the refinement of the mesh near the singularity improved the accuracy
(the smallest errors in the refined mesh were about 0.4 %). The refinement of
the mesh also led to a severe ill-conditioning of the problem if an equal number
of basis functions was used in all elements. The conditioning was improved by
letting the basis dimension to vary from node to node (or from element to
element in the UWVF). The basis dimension was chosen by using an ad hoc
formula which took into account the scaled wave number in each element.

We wish to remind that the formula we used for choosing the varying number
of basis functions has not been proven to be optimal for this purpose. But
the results suggest that by allowing the basis dimension to vary, it is possible
to control the conditioning of the resulting matrix equations. The need of a
low condition number becomes more important when iterative methods are
used for solving the matrix systems. In the case of ill-conditioned problems,
iterations may not converge.

To further increase the accuracy in the singular problem, one should use even
more refined meshes or possibly use alternative basis functions which better
imitate the solution near the singularity. For example, the use of Bessel func-
tion type basis near the singularity might, at least in part, compensate the
need of mesh refinement. This possibility, however, was not investigated in
this study.

This study was also limited in problems with constant material parameters.
Yet, the both methods can be extended for problems with jumps in material
parameters (see e.g. [17] and [13]). In the PUFEM, this is done using the
Lagrange multipliers whereas in UWVF the extension is needs only minor
modifications to the form used in this study.
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