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UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS
SCHOOL OF ELECTRONICS & COMPUTER SCIENCE
Doctor of Philosophy
EXPLOITING GENE EXPRESSION AND PROTEIN DATA FOR
PREDICTING REMOTE HOMOLOGY AND TISSUE SPECIFICITY
by Daniela Christine Wieser

In this thesis I describe my investigations of applying machine learning methods
to high throughput experimental and predicted biological data. The importance of
such analysis as a means of making inferences about biological functions is widely
acknowledged in the bioinformatics community. Specifically, this work makes three
novel contributions based on the systematic analysis of publicly archived data of
protein sequences, three dimensional structures, gene expression and functional
annotations: (a) remote homology detection based on amino acid sequences and
secondary structures; (b) the analysis of tissue-specific gene expression for predictive
signals in the sequence and secondary structure of the resulting protein product; and
(c) a study of ageing in the fruit fly, a commonly used model organism, in which
tissue specific and whole-organism gene expression changes are contrasted.

In the problem of remote homology detection, a kernel-based method that com-
bines pairwise alignment scores of amino acid sequences and secondary structures is
shown to improve the prediction accuracies in a benchmark task defined using the
Structural Classification of Proteins (SCOP) database. While the task of predicting
SCOP superfamilies should be regarded as an easy one, with not much room for
performance improvement, it is still widely accepted as the gold standard due to
careful manual annotation by experts in the subject of protein evolution.

A similar method is introduced to investigate whether tissue specificity of gene
expression is correlated with the sequence and secondary structure of the resulting
protein product. An information theoretic approach is adopted for sorting fruit fly
and mouse genes according to their tissue specificity based on gene expression data.
A classifier is then trained to predict the degree of specificity for these genes. The
study concludes that the tissue specificity of gene expression is correlated with the
sequence, and to a certain extent, with the secondary structure of the gene’s protein
product.

The sorted list of genes introduced in the previous chapter is used to investigate
the tissue specificity of transcript profiles obtained from a study of ageing in the fruit
fly. The same list is utilised to investigate how filtering tissue-restricted genes affects
gene set enrichment analysis in the ageing study, and to examine the specificity of
age-associated genes identified in the literature. The conclusion drawn in this chapter
is that categorisation of genes according to their tissue specificity using Shannon’s
information theory is useful for the interpretation of whole-fly gene expression data.
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Chapter 1

Motivation and Outline

1.1 Motivation for this work

The widespread use of high-throughput technologies in molecular biology has led
to a wealth of publicly available data on genes and proteins (Flicek et al., 2010;
The UniProt Consortium, 2010). However, the interrelationships of these genes
and proteins are as yet poorly understood and are further complicated by the
immense amount of data available, making manual characterisation by experts
unfeasible. The general aim of this PhD work was to use machine learning techniques
to detect biological relationships hidden in both gene and in protein data, and to
make inferences based on these relationships. Even though this thesis and the work
presented in it are my own and has been generated by me as the result of my own
original research, I will use 'we’ throughout the document, since for most parts of
the thesis other people were involved, as stated in the acknowledgements.

The first problem that we approached concerned remote homology detection of
proteins. The motivation for this work was that distant evolutionary relationships
between proteins with low amino acid sequence similarity are difficult to recognise
by computational methods. Consequently, many sequences obtained from large-scale

sequencing projects cannot be assigned to any known proteins or families despite



1.1 Motivation for this work

being evolutionarily related. Various sequence-based methods have been developed
to predict remote homology of proteins. Some of these methods have been modified
to make use of the better conserved secondary structure to boost sensitivity. Our
motivation was to develop a kernel-based remote homology detection method that
allows for a combination of sequence and secondary structure similarity scores in a
discriminative approach. This work is described in detail in the chapter "Remote
Homology Detection Using a Kernel Method that Combines Sequence and Secondary
Structure Similarity Scores”.

Building on this work we developed a similar method to investigate tissue speci-
ficity of gene expression. Tissue specificity of gene expression is important for a
number of studies, but is often difficult to determine by experimental methods. This
leads to many genes being uncharacterised in terms of the tissues in which they
are expressed. Various gene properties have been shown to be different between
tissue-restricted and housekeeping genes. The motivation for this part of the thesis
was to investigate whether tissue specificity of gene expression is also correlated
with the sequence and secondary structure of the resulting protein product , and
whether this information can be used to predict gene tissue specificity. For this, we
used an information theoretic approach to sort fruit fly and mouse genes according
to their tissue specificity. The method is based on an adaptation of Shannon’s
information theory to the transcriptome framework. We then trained support vector
machine (SVM) classifiers to predict classes of genes that display various degrees of
tissue specificity. This work is detailed in the chapter ”Tissue Specificity of Gene
Ezxpression is Correlated with the Sequence and Secondary Structure of Resulting
Protein Product”. When we use the term gene specificity we refer to gene tissue
specificity throughout this thesis.

Related to this work we investigated in the final part of this thesis the tissue-
specific contribution to whole-body RNA transcript profiles in the fruit fly Drosophila

melanogaster. The fruit fly is widely used to investigate mechanisms underlying



1.2 Outline of this thesis

diverse biological processes, including development, metabolism, neurobiology and
ageing. Whole-body RNA microarray profiling has been applied to monitor gene
expression changes in various conditions related to these mechanisms. However, there
is little information concerning the capacity of microarrays to capture tissue-specific
effects of these processes in whole-fly samples. Building on the work described in
the previous chapter we used the sorted list of fly genes to investigate transcript
profiles obtained from a study of ageing in the adult fly in terms of tissue specificity.
The sorted list of genes was also used to investigate how filtering tissue-specific
genes affects gene set enrichment analysis in the ageing study, and to study the
tissue specificity of age-associated genes from the literature. This work is detailed
in the chapter “Analysis of the Tissue-Specific Contribution to Whole-Body RNA

Transcript Profiles in Drosophila Melanogaster”.

1.2 Outline of this thesis

This thesis is structured as follows:

e Chapter 2 provides background information on biological entities, microarray
technology, machine learning techniques and statistical methods relevant or

used in this work.

e Chapter 3 introduces the three topics investigated in this work, and summarises

relevant literature.

e Chapter 4 presents the detailed methods used in the first project examined in
this thesis, i.e. the prediction of protein remote homologoues. Results are also

presented for this project and a discussion is included.

e Chapter 5 provides detailed methods for the work done on prediction of tissue

specificity, as well as results and discussion.
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e Chapter 6 details the methods used to examine whole-body transcript profiles

in the fruit fly and presents the results and discussion of this chapter.

e Chapter 7 presents final conclusions by summarising the contributions of this

thesis and discusses directions for future work.



Chapter 2

Background and Methods

This chapter gives a brief overview of biological terms that are relevant for this work
and describes them in a general manner. Associated technologies to obtain data
related to these terms are explained if they have direct relevance to this work. The

statistical methods and associated evaluation metrics used are also introduced.

2.1 Biological background

2.1.1 From DNA to RNA to proteins

Deoxyribonucleic acid (DNA) stores the genetic information that enables cells to
reproduce and perform their functions. It consists of two strands of nucleotide bases.
There are four types of bases: Adenine (A), Guanine (G), Cytosine (C) and Thymine
(T). Tt is the sequence of these four nucleotide bases that encodes information on how
to build a protein. This information is read using the genetic code, which specifies
the sequence of the amino acids within proteins, whereas three nucleotides (codon)
code for one amino acid. The code is read by copying stretches of DNA into the
related ribonucleic acid (RNA), in a process called transcription (Figure 2.1a). The
precursor messenger RNA (pre-mRNA) molecule contains two types of segments in

eukaryotes, exons and introns, the latter of which is removed during splicing. This



2.1 Biological background

process enables the construction of alternate products. The combination of the coding
regions of all these exons is called the coding sequence (CDS). The complementary
or copy DNA, ¢cDNA, is a DNA molecule usually obtained by a reverse transcription
of an mRNA molecule. Spliced RNA sequences are referred to as messenger RNA
(mRNA) that consists of an open reading frame (ORF) and untranslated regions
(UTRs). UTR refers to either of two sections on each side of a coding sequence on
a strand of mRNA. The ends of mRNA strands are called the 5’ (five prime) and
3’ (three prime) ends. If the UTR is found on the 5’ side, it is called the 5> UTR,
or if it is found on the 3’ side, it is called the 3’ UTR. The proteins are built based
upon the ORF in the RNA in a process called translation. The mRNA is processed
by a ribosome, which, with the aid of transfer RNA (tRNA), strings together the
prescribed amino aids of the protein. An mRNA may or may not cover the complete
coding sequence of a gene (alternative splicing). The resulting product of this process,
proteins, are large polymers required for the structure, function, and regulation of
the body’s cells, tissues, and organs. They are made of 20 common amino acids (see
Figure 2.2). Throughout this work the amino acid alphabet is used to refer to the
amino acids. The amino acid alphabet is a twenty-character alphabet consisting of
the characters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W and Y, each
representing one of the 20 amino acids coded for by DNA. Amino acids contain an
carbon that is connected to an amino (NH3) group, a carboxyl group (COOH), and
a variable side group (R). Amino acids bind together via peptide bonds, which occur

between the amino and carboxyl groups of adjacent amino acids.

Protein structures

Proteins have four levels of structure: primary, secondary, tertiary and quaternary.
Figure 2.3a depicts a primary protein sequence, which is simply a string of letters
each of which represents one of the 20 amino acids. The order in which the amino

acids appear in this sequence is important because it largely determines the structure
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Figure 2.1: From DNA to RNA to proteins. Schematic view of gene transcription
and translation (from http://commons.wikimedia.org/wiki/File:Gene2-plain.svg).
DNA is transcribed into pre-mRNA. Introns, and sometimes exons, are removed from
the pre-mRNA during splicing, resulting in a mRNA molecule. The mRNA molecule is
translated into a protein product. Enhancers are regulatory regions that increase the
level of expression of a gene. Promoters are another type of regulatory regions in DNA
sequences.
of a protein that in turn determines its function. Alteration to this order may result in
the loss of function of the protein. Normally proteins range from 10 to 10,000 amino
acids. The largest protein is Titin which consists of 34,350 amino acids. Titin is a key
component in the assembly and functioning of vertebrate muscles. The UniProtKB
(The UniProt Consortium, 2010) is a public repository for the collection of primary
amino acid sequences alongside functional information. UniProtKB/Swiss-Prot, the
manually curated section of UniProtKB, contains 514,789 sequence entries comprising
181,163,771 amino acids. The remainder, UniProtKB/TrEMBL, contains 10,376,872
sequence entries comprising 3,344,735,583 amino acids (release 57.14, February 2010).
The majority of these sequences were predicted from the DNA sequences, while &
26% of sequences in Swiss-Prot have experimental evidence at either the transcript
or protein level.

The surrounding chemical environment, which is composed of water and other

solvents at different concentrations and temperatures, and the amino acid side chains,

determine the way in which these are arranged in space relative to each other. The
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Figure 2.2: Amino Acids. Grouped table of the twenty common eukaryotic amino acids’
structures, nomenclature, and their side groups’ pKa’s and charge at pH 7.4. The pH is
a measure of the acidity or basicity of a solution while pKa indicates the acid or basic
properties of an amino acid. A pKa < 2 means strong acid, pKa > 2 but < 7 means
weak acid, pKa > 7 but < 10 means weak basic and pKa > 10 means strong basic.
The figure also includes an additional amino acid, Selenocysteine. However, none of the
protein sequences used in this work contained this amino acid. The figure is taken from
http://upload.wikimedia.org/wikipedia/commons/0/0f/Amino_acids.png
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secondary structure of proteins is defined by the conformation of the polypeptide
and the hydrogen bonding between the carbonyl oxygen atoms and amide atoms in
the peptide bonds. Hydrogen bonds are well established and their role in secondary
structure architecture and protein folding has been studied extensively (Baker and
Hubbard, 1984; Jeffrey and Saenger, 1991; McDonald and Thornton, 1994).

The basic secondary structures that form are known as a-helices, -sheets and
turns; these are also known as basic secondary structures. In addition, there
are random coils. Random coils are highly flexible portions of a polypeptide chain
that have no fixed three-dimensional structure. On average, 60% of a protein exists
as a-helices and (-sheets. The remainder of the molecule is in coils and turns
(Lodish et al., 2007). The protein domains used in Chapter 4.1.1 consist of 31%
a-helices and 25% (-sheets as assigned by the DSSP program (Kabsch and Sander,
1983a). The PSIPRED program (Jones, 1999a) predicted a similar average secondary
structure content for these protein domains, namely 32% a-helices and 24 % [3-sheets.
Following explanations on a-helices and (3-sheets have been adapted from Lodish
et al. (2007).

An a-helix contains 3.6 amino acids per turn. The helix is stabilised by hydrogen
bonding between the backbone carbonyl of one amino acid and the backbone NH
of the amino acid four residues away. All main chain amino and carboxyl groups
are hydrogen bonded, and the R groups stick out from the structure in a spiral
arrangement. This structure is very stable but flexible, and it is often seen in parts
of a protein that need to bend or move. There are both hydrophilic and hydrophobic
helices, depending on the characteristics of the side chains of the amino acids. The
former is often found on protein surfaces, whereas the latter tend to be buried
within the core of the folded protein. The amino acid proline is usually not found in
a-helices. A specialised form of an a-helix is called a coiled coil, a rodlike quaternary
protein structure formed by two or three a-helices interacting with each other.

In a f-sheet, two or more strands of amino acids are involved. These line up
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to form a pleated like structure that tends to be rigid and less flexible than alpha
helices. Each strand is made up of five to eight residues. Hydrogen bonding in the
(B-sheet occurs between backbone atoms in separate, but adjacent, S-strands. These
distinct [-strands may be either within a single polypeptide chain, with short or
long loops between the (-strand segments, or on different polypeptide chains. In
some proteins, (3-sheets form the floor of a binding pocket or a hydrophobic core;
in other proteins embedded in membranes the (§-sheets curve around and form a
hydrophilic central pore through which ions and small molecules may flow.

Turns are usually related to proline and glycine, which are common and small
amino acids and are often responsible for sharp bends and twists in a-helices and
hairpins in J-sheets. They are composed of four residues and located on the surface
of a protein.

By knowing which spatial geometry neighbouring amino acids adopt when they
bind together it is possible to determine which secondary structure a protein may have.
The DSSP (Define Secondary Structure of Proteins) algorithm is a standard method
for assigning secondary structure to the amino acids of a protein where atomic-
resolution coordinates are available (Kabsch and Sander, 1983a). The assignment
is based on the detection of hydrogen-bonds defined by an electrostatic criterion.
Secondary structure elements are then assigned according to characteristic hydrogen-
bond patterns. DSSP defines eight types of secondary structure depending on the
pattern of hydrogen bonds: H = «-helix, B = residue in isolated (-bridge, F =
extended strand, participates in (3 ladder, G = 3 helix (310 heliz), I = 5 heliz (pi heliz),
T = hydrogen bonded turn, S = bend, and L = loop or other. STRIDE (Structural
identification) is another algorithm for the assignment of protein secondary structure
elements given the atomic coordinates of the protein (Frishman and Argos, 1995).
In addition to the hydrogen bond criteria used by the DSSP algorithm, the STRIDE
assignment criteria also include dihedral angles. The assignment of STRIDE is close

to the one done by DSSP (95% of identity). DSSP remains the most widely-used
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program for secondary structure assignment, and is used in this thesis.

For proteins where no crystal structure is available methods have been developed
to predict secondary structure elements from the amino acid sequence. These
methods typically define three states: a-helix, g-strand and others. The performance
of predictions of secondary structure are measured via the 3-state accuracy, also
termed the Q3 score. The Q3 score is the percent of residues for which a method’s
predicted secondary structure is correct.

The first secondary structure prediction methods were introduced around 30
years ago. Early secondary structure prediction methods have a Q3 score of 50-60%
(Kabsch and Sander, 1983b). The most well-known methods include the Chou-
Fasman (Chou and Fasman, 1978) and GOR methods (Garnier et al., 1978). These
considered single amino acid statistics and are based on the observation that different
amino acids have different preferences in adopting secondary structure elements.
Later approaches of secondary structure prediction incorporated local dependencies
i.e. the neighbouring amino acids (Bowie et al., 1991; Holley and Karplus, 1989;
Levin et al., 1986; Nishikawa and Ooi, 1986; Qian and Sejnowski, 1988; Yi and
Lander, 1993). These methods achieved Q3 scores above 60%.

The performance of prediction programs was further boosted through the inclusion
of evolutionary information into the methods (Hua and Sun, 2001; Kloczkowski et al.,
2002; Pollastri et al., 2002; Salamov and Solovyev, 1995; Zvelebil et al., 1987).
Conservation evident in multiple sequence alignments of homologs can reveal which
amino acids are functionally or structurally important. For instance, surface-exposed
loop regions that are not important functionally tend to be part of non-conserved
regions in sequence alignments. Including evolutionary conservation knowledge led
to the first program to surpass 70% (Rost and Sander, 1993).

Further improvement came from better remote homology detection or HMMs and
larger sequence databases. The PSIPRED program (Jones, 1999a) is an example of

a secondary structure prediction program in this category. It consists of feed-forward
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neural networks which perform an analysis on output obtained from PSI-BLAST
and achieved a Q3 score of around 77%. Jpred is a secondary structure prediction
server that provides a-helix, 8-strand and coil predictions (Cole et al., 2008) with
a Q3 score of 81.5%. It is also based on multiple sequence alignments and neural
networks. Another method whose Q3 score is given as above 80% is called PROTEUS
(Montgomerie et al., 2006). PROTEUS exploits the information that is available in
the protein structure databases. The accuracy of current protein secondary structure
prediction methods can be assessed for example in EVA (Eyrich et al., 2001), which
automatically analyses protein secondary structure prediction servers.

In Chapter 4 we develop a classification method that integrates primary and
secondary structures (assigned by DSSP and predicted by PSIPRED) of proteins to
predict membership of protein families. Primary and secondary protein structures
are also used to predict tissue specificity of gene expression in Chapter 5. Tissue
specificity of gene expression is clarified in the next subsection. However, first the
terms tertiary and quaternary protein structure are clarified.

Once the process of protein synthesis is completed, the protein takes its final shape.
This stable form of the protein is known as the tertiary structure (Figure 2.3c).
Each protein ultimately folds into a three dimensional shape with a distinct inside
and outside. The interior of a protein molecule contains mainly hydrophobic amino
acids, which tend to cluster and exclude water. By contrast, the exterior of a protein
molecule is largely composed of hydrophilic amino acids, which are charged or able
to H-bond with water. The Protein Data Bank (PDB) is a public repository for the
threedimensional structural data of proteins (Weissig and Bourne, 2002). It contained
63,559 structures in February 2010. For most proteins that have been identified to
date, only the primary sequence is available in public databases. Since the function
of a protein is determined through its three-dimensional structure, computational
methods have been developed that aim to predict the three-dimensional structure for

these proteins from sequence, and detect similarities to proteins with known structures.

12



2.1 Biological background

An important community effort is CASP (Critical Assessment of Techniques for
Protein Structure Prediction) that takes place every two years since 1994 to assess
predictions to monitor progress in this direction (Moult et al., 2009).

The quaternary structure is the arrangement of multiple folded protein
molecules in a multi-subunit complex (Figure 2.3d).

(a) Primary (b) Secondary

N FACEVAEISYKKFRALIGVN p
D

VKESFHERARAMAASERVHL
WHHQ\

P
éll-l-ﬂ GHEGRTHKHAMGBPHTMAD

"CSRETVGRILKMLEDQN ¢ c

alpha helices beta strands

(c) Tertiary (d) Quaternary gy
\-1

XY

Figure 2.3: Protein conformations. The architecture of proteins at four levels of organsiation
is shown: a) primary b) secondary c) tertiary d) quartenary

2.1.2 Tissue specificity of gene expression

In multicellular organisms some genes are expressed and translated to proteins in
essentially all tissues, whereas others are expressed predominantly in only one or a
few tissues. Housekeeping genes are constitutively expressed in all tissues to maintain
cellular functions. It is often assumed that housekeeping genes are expressed at
the same level in all cells and tissues, but there are some variances, in particular

during cell growth and organism development. Human cells have several hundreds of
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housekeeping genes, but the exact number is unclear. An example for a housekeeping
gene is GAPDH (glyceraldehyde 3-phosphate dehydrogenase) that codes for an
enzyme that is vital to glycolysis. Another important housekeeping gene is albumin,
which assists in transporting compounds throughout the body. Several housekeeping
genes code for structural proteins that make up the cytoskeleton such as beta-actin
and tubulin. Others code for subunits of the ribosome. Examples of genes that are
expressed in a tissue specific manner include various transcription factors and germ
line transcripts. A specific example is the the glycoprotein hormone alpha subunit
that is produced only in certain cell types of the anterior pituitary and placenta, but
not in lungs or skin.

RNA in situ hybridization (ISH) can be used to identify the spatial pattern of
expression of a particular mRNA. The probe is labelled, either radioactively or by
chemically attaching a fluorochrome. A tissue is soaked in a solution of single-stranded
probes under conditions that allow the probe to hybridize to complementary RNA
sequences in the cells. Unhybridized probes are then removed. Radioactive probes are
detected by autoradiography. Fluorochrome is detected by fluorescence microscopy.
Another technology frequently used to investigate tissue specific expression are

microarrays. These are explained in the following paragraph.

2.1.3 Microarray technology

Although all of the cells in a living organism contain identical genetic material, every
cell shows a different gene expression profile. Studying which genes are active and
which are inactive in different cell types helps to understand both how these cells
function normally and how they are affected when various genes do not perform
properly. With the development of microarray technology, scientists can examine
how active thousands of genes are at any given time. A DNA microarray consists of
an arrayed series of thousands of microscopic spots of DNA oligonucleotides each

containing picomoles of a specific DNA sequence. This can be a short section of a gene
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or other DNA element that are used as probes to hybridize a cDNA. Probe-target
hybridization is usually detected and quantified by fluorescence-based detection of
fluorophore-labeled targets to determine relative abundance of nucleic acid sequences
in the target. In standard microarrays, the probes are attached to a solid surface
by a covalent bond to a chemical matrix. The solid surface can be glass or a silicon
chip. Affymetrix GeneChip arrays are commonly used. In this technology each gene
is typically represented by a set of 11-20 pairs of probes.

Next-generation sequencing (NGS) platforms, that are a relatively new develop-
ment, also allow transcriptional profiling (RNA-Seq). Microarrays as described above
are expected to be superseded by RNA-Seq in the next couple of years. They provide
a more precise measurement of levels of transcripts and are often more cost-effective
(Wang et al., 2009c¢).

In this thesis, we used Affymetrix GeneChip array data from the fruit fly and
the mouse to investigate tissue specificity of gene expression. In future, similar data
based on RNA-Seq may become available that could further refine the methods and

results of Chapter 5 and 6 due to advances in technologies.

2.1.4 Sites, regions and modifications in DNA sequences

Following definitions and explanations on sites, regions and modifications in DNA

sequences are relevant for Chapter 5.

DNA methylation and CpG islands

After DNA replication, several modifications occur in the DNA, and methylation
is one such post-synthesis modification. DNA methylation has been implicated
with a number of biological processes including regulation of imprinted genes, X
chromosome inactivation, and tumor suppressor gene silencing in cancerous cells.
DNA methylation usually occurs in the CpG islands, a CG rich region (cytosine

followed by guanine), upstream of the promoter region. The letter p signifies that the
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C and G are connected by a phosphodiester bond. In humans, DNA methylation is
carried out by a group of enzymes called DNA methyltransferases. DNA methylation
systems are well-characterised in vertebrates, but methylation in the fruit fly and
other invertebrates remains controversial (Wang et al., 2006). CpG islands are
often located around the promoters of housekeeping genes or other genes frequently
expressed in a cell. At these locations, the CG sequence is not methylated. By
contrast, the CG sequences in inactive genes are usually methylated to suppress their
expression. The methylated cytosine may be converted to thymine by accidental
deamination. The cytosine to thymine mutation can be corrected only by an inefficient
repair mechanism. Hence, over evolutionary time scales, the methylated CG sequence
will be converted to the TG (thymine followed by guanine) sequence. This explains
the deficiency of the CG sequence in inactive genes.

The ratio of observed to expected CpGs can be used to predict methylated and

unmethylated genomic regions (Equation 2.1).

frequency of observed CpG frequency of observed CpG

CpGlofe] = frequency of expected CpG ~ frequency of C x frequency of G
(2.1)
A number of relationships were found between the occurrence or location of
CpG islands and the extent of tissue-specific expression of the associated genes (e.g.
Elango et al. (2009); Gardiner-Garden and Frommer (1987); Schug et al. (2005)).

These are reviewed in Chapter 3.2. In Chapter 5 we revisit and investigate the

occurrence of CpG islands in the fruit fly and in the mouse.

Scaffold matrix attachment region

Scaffold matrix attachment regions (S/MARs) are genomic elements thought to
delineate the structural and functional organisation of the eukaryotic genome. Origi-

nally, S/MARs were identified through their ability to bind to the nuclear matrix
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(i.e. the network of fibres found throughout the inside of a cell nucleus). Binding
is dispersed over a region of several hundred base pairs. These elements are found
flanking a gene or a small cluster of genes and are located often in the vicinity of
cis-regulatory sequences. This has led to the suggestion that they contribute to
higher order regulation of transcription by defining boundaries of independently
controlled chromatin domains. S/MARs may act as boundary elements for enhancers,
restricting their long range effect to only the promoters that are located in the same
chromatin domain.

A study on chromatin compactness showed that putative S/MARs were more
abundant upstream of tissue-specific genes than upstream of housekeeping genes.
S/MARs attach themselves to the nuclear matrix and help the formation of chromatin
loops. Tissue-specific genes appear to have less accessible and more compact DNA in
their promoter regions, and hence more S/MAR sequences (Ganapathi et al., 2005).

S/MAR sites are identified in Chapter 5 and used to help to discriminate between

tissue-specific and broadly expressed fruit fly and mouse genes.

Simple sequence repeats

Simple sequence repeats (SSRs) in DNA sequences are composed of tandem iterations
of short oligonucleotides. For example, CGG CGG CGG is a repeat because CGG is
repeated three times. The number of repeated copies can also be fractional as in
CCCCA CCCCA CCCC. SSRs have been shown to differ between housekeeping and
tissue-specific genes in human and mouse in the 5-UTR region and other genomic
regions (Lawson and Zhang, 2008). In this thesis SSRs were computed for the 5’UTR
regions for the fruit fly and mouse genes investigated in Chapter 5. Compared to
the work above we not only determined the SSRs for the most broadly expressed
and tissue-specific genes, but we also determined them for genes with mid-range
pattern of expression. The mreps (Kolpakov et al., 2003) program is a software for

identifying serial repeats in DNA sequences used in this work. In particular we make
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use of the periods and exponents identified by mreps and use them as attributes in
the classification models trained to predict tissue-specific genes. The period of the
repeat describes the length of a repeated string while the exponent describes the
number of repeated copies. For example, the period and exponent of CGG CGG are

3 and 2 respectively.

2.1.5 Polysomes

As mentioned earlier, ribosomes read the sequence of messenger RNAs and assemble
proteins out of amino acids bound to tRNAs. The simultaneous translation of a
single mRNA molecule by multiple ribosomes increases the overall rate at which cells
an synthesise a protein. Complexes containing several ribosomes are referred to as
polyribosomes or polysomes. Simultaneous translation of a single mRNA molecule
is observable in electron micrographs and by sedimentation analysis. Two numbers
of importance related to simultaneous translation are the ribosome occupancy and
ribosome density. Ribosome occupancy refers to the fraction of a given gene’s
transcripts associated with ribosomes while ribosome density refers to the average
number of ribosomes bound per unit length of coding sequence.

In Chapter 5 we use ribosomal occupancy data for Drosophila melanogaster to

investigate the relationship between ribosomal occupancy and tissue specificity.

2.1.6 Ageing

Ageing is often described as the accumulation of damage to macromolecules, cells,
tissues and organs over time. Understanding and characterising the genetic effects on
ageing is an ongoing effort, but with the advent of high-throughput sequencing and
microarray technologies this task is greatly facilitated. A central step in unraveling
the mechanisms involved is to record differences during ageing by comparing gene

expression profiles of old animals with young animals. Genetic alterations and
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environmental interventions in the laboratory to extend lifespan include reducing
insulin/IGF-like signaling via mutations, dietary restriction, and reducing stress or
temperature (Partridge, 2008). Bioinformatics methods to analyse these data and
suggest novel biological hypotheses include profiling of changes in gene expression,
evolutionary considerations, or finding orthologues via sequence similarity. In Chapter
6 we investigate how filtering tissue-specific genes from whole-fly gene expression

data can help to find more subtle connections to ageing in the fruit fly.

2.2 Computational methods and tools

In the following section we will describe the machine learning methods and evaluation

measures used throughout this thesis.

2.2.1 Support vector machines

Support vector machines (SVMs) are widely used to solve data classification prob-
lems (Vapnik, 1999). Their flexible structure allows the modeling of diverse sources
of data. Further, they are able to deal with high-dimensional and large data-sets,
making SVMs a popular choice for application in bioinformatics. In Chapter 4 and 5,
SVMs are used for discriminating protein domains belonging to SCOP superfamilies
and to predict classes of tissue specificity for fruit fly and mouse genes. In the
following, some basic principles and background information on SVMs are given.
SVM models are trained from a set of positively and negatively labeled training
vectors. The trained model can be used to classify new unlabeled test samples. SVM
learns the model by mapping the input training samples x, ..., x,, into a feature space
and seeking a hyperplane in this space which separates the two types of examples
with the largest possible margin. If the training set is not linearly separable, SVM
finds a hyperplane, which optimises a trade-off between good classification and large

margin. Kernel functions can also be used to train non-linear classifiers. The two
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key concepts of SVMs, large margin separation and kernel functions, are explained

below.

Large margin separation

Figure 2.4a shows a simple example of linear separable data. The stars and circles
can be separated by drawing a straight line so that the circles (negative points) lie
on one side of the line and the stars (positive points) on the other side. Large margin
separation draws the line so that it is as far away as possible from the points in
both data sets (Figure 2.4b). For large margin separation, not the exact location
but only the similarity of the data points to each other is important. Similarity of
two feature vectors can be computed by the dot-product also known as the scalar or
inner product between the corresponding feature vectors (Equation 2.2, as explained
below).

Let x denote a vector with M components z; j7=1,....M, i.e. a point in an
M-dimensional vector space. The notation x; will denote the " vector in a data
set {(zi,v;)7_} where y; is the label associated with x; and n is the number of

examples.

(w, ) = ij X (2.2)

A linear classifier is based on a linear discriminant function of the form

ylxr) =wxz+b (2.3)

The discriminant function y(x) assigns a score for the input x, and is used to
decide how to classify it. The vector w is known as the weight vector, and the scalar
b is called the bias. In two dimensions, the points satisfying the equation (w, z)
= 0 correspond to a line through the origin in the two-dimensional classifier. In a

three-dimensional classifier the line is substituted by a plane, and in an n-dimensional
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Figure 2.4: Support vector machine classification - key concepts. Panel a shows
a possible hyperplane that separate the data points (positive and negative instances
displayed as stars and circles) in two dimensions. Panel b shows the optimal hyperplane,
the maximum margin boundary, which separates the positive from the negative instances.
Panel ¢ shows a non-linear boundary. Panel d maps the input data from Panel ¢ to a
separable problem using a kernel function in a higher dimensional feature space.
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classifier by a hyperplane. The bias translates the hyperplane with respect to the
origin. The hyperplane divides the space into two half spaces according to the sign
of y(x), that indicates on which side of the hyperplane a point is located. If y(x)>0,

then one decides for the positive class, otherwise for the negative.

Kernel methods

In machine learning, the kernel trick is a method for using a linear classifier algorithm
to solve a non-linear problem (Figure 2.4c) by mapping the original non-linear
observations into a higher-dimensional space, where the linear classifier is subsequently
used; this makes a linear classification in the new space equivalent to non-linear
classification in the original space (Figure 2.4d).

The resulting algorithm is formally similar, except that every dot product is
replaced by a non-linear kernel function. The two commonly used families of kernels
are polynomial kernels and radial basis functions (RBF). These are the two kernels

of choice in Chapter 4 and 5.

Implementation

All computational results presented in this thesis were generated using one of two
implementations of SVMs. First, we used the freely available SVM-1ight package
(Joachims, 1999) implemented in Java for the work on protein remote homology
detection. Second, we used R’s implementation in the package 1071 for the work
on predicting tissue-specific classes. The reasons for using these different software
packages was simply a switch from the Java to the R programming language due to

the multitude of packages available for microarray data analysis for the latter.

2.2.2 Forward feature selection

SVMs generally aim at maximising predictive accuracy, ignoring the important

issues of validation and interpretation of discovered knowledge which can lead to
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new insights and hypotheses which are biologically meaningful and advance the
understanding of domain knowledge by biologists. Knowing which features led to a
prediction increases the confidence of the biologist in the system’s predictions, leading
to new insights about the data and the formulation of new biological hypotheses,
and detecting errors in the data (Freitas et al., 2010). Decision trees and models
are examples of systems that are immediately interpretable. In Chapter 5 we use
forward feature selection (FFS) (Miller, 1990) to extract the feature with highest
discriminative power in SVMs. Feature selection is the technique of selecting a
subset of relevant features for building robust learning models. By removing most
irrelevant and redundant features from the data, feature selection helps improve the
performance of learning models by alleviating the effect of the curse of dimensionality,
enhancing generalisation capability, speeding up learning process, and improving
model interpretability. In forward feature selection one adds the best feature at each

round of classification.

2.2.3 Shannon entropy

The Shannon entropy was introduced by Claude E. Shannon in his seminal paper A
Mathematical Theory of Communication (Shannon, 1948). It measures the degree
of uncertainty for a given variable in a system. The entropy is calculated as a
product of probability and the logarithm of probability for each possible state of
the targeted variable. Suppose we have the discrete probability distribution p(x;),
for the probability of events x; for "1’ in [1..N], i.e., p(x;) is a discrete probability

distribution with N states. Then, the Shannon entropy is defined as:

H(X)= =) P(x)log,[P(x) (2.4)

bits, where P(x) is the probability that X is in the state x, and Plogs P is defined

as 0 if P=0. H is maximal when all states occur at equal probability. The minimum
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is taken on if one state occurs at probability 1, the others being ”forbidden”; then
H=0 holds. One of the original usages (Shannon, 1948) for Shannon entropy was
the measure of information conveyed on average for symbols in a given language,
but it has been generalised and applied to many fields in bioinformatics to quantify
information content (Herman and Schneider, 1992; Loewenstern and Yianilos, 1999;
Ritchie et al., 2008; Schmitt and Herzel, 1997; Schneider, 2000; Strait and Dewey,
1996).

Schug et al. (2005) demonstrated the effectiveness of using Shannon information
entropy for ranking genes according to their tissue specificity ranging from tissue-
specific to ubiquitous expression. This approach was validated using gene expression
data from human and mouse, demonstrating that most genes show statistically
significant tissue-dependent variations in expression levels. An investigation of the
promoter regions of tissue-specific and ubiquitously expressed genes revealed distinct
DNA motifs for these classes. Kadota et al. (2006) extend this method to account for
the fact that entropy alone can only measure the overall tissue-specificity of a gene,
but it does not explain to which tissue a gene is specific to. Shannon’s entropy was
also used to define and estimate the diversity and specialisation of transcriptomes
and gene specificity in human data (Martinez and Reyes-Valdes, 2008). We use a
similar approach as in the latter paper to define gene specificities in fruit fly and
mouse data, as detailed in Chapter 5.1.2.

A toy example is given in the following to further assist the reader with under-
standing the entropy measurement used in this work. Let us assume there is a mouse,
and there are 64 different tissues or organs in the mouse. Let us further assume that
there is exactly one gene expressed in one tissue, for instance in tissue number five.
According to the probability distribution, the chance that the gene is expressed is
the same in each of the tissues i.e., 6—120.015625. The task is to guess in which tissue
the gene is expressed by asking questions with yes and no answers. One strategy

that always leads to the answer using a minimal number of questions is to divide
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the search space. For example, the first question one would ask is: ”Is the tissue
number we are looking for < 327”. If it is, one can go on to ask if the number is
< 16, and then < 8, and so on until the search space is narrowed down and the
right answer is reached. If the total number of tissues is 64, one will always find
the right answer by asking exactly six questions. And that is the basic principle of

Shannon entropy. It can be computed by taking the negative binary logarithm of the

1

51)=0). In cases were

probability that the gene is expressed in a tissue (here: -logs(
the gene is expressed in several tissues, the average of all cases is computed using
Equation 2.4. In Chapter 5.1.2 the average frequency of a gene among tissues is also

taken into account for normalisation purposes.

2.2.4 Performance measures
Receiver Operating Characteristic (ROC) curves

To evaluate classifier performance in Chapter 4 we use receiver operating characteristic
(ROC) curves, which show the true positive rates (TPR) on the y-axis over the full
range of false positive rates (FPR) on the x-axis. The distribution of the test results
of a classifier often overlaps, as shown in Figure 2.5. For every possible threshold
value that is selected to discriminate between the two classes, there will be some
cases with the positive class correctly classified as positive (TP = true positive
fraction), but some cases within the positive class will be classified negative (FN =
false negative fraction). On the other hand, some cases in the negative class will be
correctly classified as negative (TN = true negative fraction), but some cases will be
classified as positive (FP = false positive fraction).

In a ROC curve the true positive rate (sensitivity (recall), Equation 2.5) is
plotted in function of the false positive rate (1-specificity; see Equation 2.6 for
specificity) for different threshold values. Each point on the ROC plot represents a

sensitivity /specificity pair corresponding to a particular decision threshold. A test
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with perfect discrimination has a ROC plot that passes through the upper left corner
(100% sensitivity, 100% specificity). Therefore the closer the ROC plot is to the

upper left corner, the higher the overall accuracy of the test (Zweig and Campbell,

1993).
sensitivity (recall) = TP}—jI——PFN (2.5)
speci ficity = % (2.6)
precision = TPjii——PFP (2.7)

It is possible to average the curves from several runs. In Chapter 4 we use vertical
averaging to combine the results of several benchmark sets. Vertical averaging takes
vertical samples of the ROC curves for fixed FP rates and averages the corresponding
TP rates.

Another measure of accuracy that is frequently used by biologists is precision.
Precision is defined as the ratio of true positives over the sum of true positives plus
false positives (Equation 2.7). If there are no false positives, the precision is 100%.
In a typical analysis, there is a trade-off between recall and precision. A combined
measure of these two numbers is accuracy, which is defined as the ratio of true
positive plus true negative cases over the total number of cases. Precision/recall
curves are presented in Chapter 4. We mainly use ROC curves to measure the
performance of the classifiers, as used by other work to which we compared our

results (De Ferrari and Aitken, 2006; Handstad et al., 2007).

Area Under the ROC curve (AUC)

An ROC curve is a two-dimensional depiction of classifier performance. To compare

classifiers it is often useful to reduce ROC performance to a single scalar value
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Figure 2.5: Receiver Operating Characteristic (ROC). Panel a shows an overlap of
the distribution of the test results of a classification problem. Panel b shows an example
ROC curve. The dashed line in the latter panel represent the result of a random classifier.
representing expected performance. A common method is to calculate the area
under the ROC curve, abbreviated AUC. AUCs are used in Chapter 4 and 5 to
compare classifier performance. The AUC quantifies the quality of the classifier, and
a larger value indicates better performance. The AUC is equal to the probability that

a classifier will rank a randomly chosen positive instance higher than a randomly

chosen negative one. Values range from 0 to 1.

Fisher ratio

In Chapter 5 the Fisher ratio is used to select the most discriminant amino acid
that separates tissue-specific from broadly expressed genes. The Fisher ratio is a
measure of class distinction which reflects the difference between classes relative to
the standard deviation within the classes. It is calculated as:

(my — m2)2

Fisher’s ratio = (2.8)

V1 + V2
where m,, and my are the means of class 1 and class 2, and v, and vy the variances.
Tighter classes have smaller variances. The difference between the means should be

higher and the standard deviation of each class should be lower for linearly separable
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cases. Fisher ratio provides an insight of how much two classes are separable. The

higher the score the more separable are the two classes.

p value

P values are used in Chapter 4 and 6 to indicate the significance of a particular result,
and are explained in a generic manner below. A p value describes the probability
that a particular result, or a result more extreme than the result observed, could have
occurred by chance, if the null hypothesis were true. The null hypothesis typically
proposes a general or default position, such as that there is no relationship between
two quantities, or that there is no difference between a treatment and the control.
The lower the p value, the less likely the null hypothesis, so the more significant the
result. Commonly used thresholds for rejecting a null hypothesis are p values < 0.05
or < 0.01, corresponding to a 5% or 1% chance respectively of an outcome at least

that extreme. The threshold is often represented by the Greek letter a (alpha).

False discovery rate (FDR) control and q value

The false discovery rate (FDR) is often used in multiple hypotheses testing to
correct for multiple comparisons. In a list of rejected hypotheses, the FDR controls
the expected proportion of incorrectly rejected null hypotheses. The FDR can be
considered as the expected false positive rate. For instance, if 1000 functional terms
were over-represented in a comparison, and a maximum FDR for these observations
was 0.10, then 100 of these observations would be expected to be false positives. The
q value (Storey, 2003) of an hypothesis test measures the minimum FDR that is
obtained when calling that test significant. In Chapter 6 we estimate ¢ values for

each functional term found to be over-represented in sets of genes.
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Student’s t-test

In Chapter 4, a paired t-test is used to test if the differences in classifier performances
were significant when predicting remote homologues. The paired t-test provides an
hypothesis test of the difference between population means for a pair of random
samples whose differences are approximately normally distributed. The test statistic

is calculated as:

_ Yya — YB
V/$4/na+ s%/ng

(2.9)

variance = §° =
n—1

ya and yp are the means of the two samples A and B, s% and s% are their

variances, and n is the number of elements in the two samples.

Standard linear regression

Linear regression refers to any approach to modelling the relationship between two
variables, such that the model depends linearly on the unknown parameter to be
estimated from the data. Such a model is called a linear model. Linear models are
used in Chapter 4 and 5 to describe the relationship between gene specificity and
other variables (Equation 2.11). The R function 1m which stands for ’Linear Model’
was used for this purpose.

y=a+bx (2.11)

Correlation coefficient

A widely-used type of correlation coefficient is Pearson r. The correlation coefficient
determines the extent to which values of two variables are proportional to each other
i.e. linearly related. The correlation is high if it can be approximated by a straight

line sloped upwards or downwards. This line is called the regression line or least
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Figure 2.6: Corrleation coefficient example. The three extreme cases are shown were
there is perfect positive correlation, no correlation and perfect negative correlation between
two variables.

squares line, because it is determined such that the sum of the squared distances of
all the data points from the line is the lowest possible. The Pearson product moment

correlation coefficient for two variables x and y is calculated as follows:

_ Z?:l (xz - j) (?Jz - ?7)
Vi (@i = 2)2 30 (v — §)?

where Z and 7 are the mean of x and y respectively.

(2.12)

r

The statistic r ranges from -1, through 0, to 1 where -1 corresponds to perfect
negative correlation, 0 to no correlation, and 1 to perfect positive correlation (Fig-
ure 2.6). The closer the coefficients are to +1.0 or —1.0, the greater is the strength of
the linear relationship.

The correlation coefficient r are used in Chapter 5 and 6 of this work to quantify
the strength as well as direction of relationships of several variables e.g. between

tissue specificity of gene expression and sequence length or mean expression signal.

Boxplots

Boxplots are used throughout the document (e.g. Figure 4.4), and rather than to
explain them each time individually, they are explained in a generic form here. In
boxplots, the box itself contains the central 50% of the data. The upper edge of the

box indicates the 75th percentile of the data set, and the lower edge indicates the
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25th percentile. The range of the middle two quartiles is known as the inter-quartile
range, with the lines within the boxes representing the median data values. The ends
of the vertical lines signify the minimum and maximum data values, unless outliers
are present in which case the vertical lines extend to a maximum of 1.5 times the

inter-quartile range. The points outside the ends of the vertical lines are outliers.
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Chapter 3

Introduction and Literature

Review

3.1 Remote homology detection

The following paragraphs explain the motivation that led to the first main project
pursued during the course of this PhD study entitled " Remote Homology Detection
Using a Kernel Method that Combines Sequence and Secondary Structure Similarity
Scores”. Relevant literature related to this topic is reviewed, and the method is
introduced. More detailed methods, results and discussion are given in Chapter 4.
The motivation for this project originated from the observation that protein
sequences are being accumulated in public data repositories at an exponential rate.
The number of proteins, however, for which a three-dimensional atomic structure has
been determined and for which the biochemical function has been experimentally
verified, is comparatively low (Berman et al., 2010; The UniProt Consortium, 2010).
To make matters worse, metagenomics projects swamp the scientific community
with even more sequences: for example, 6.12 million proteins from the Global Ocean
Sampling Expedition were published recently and await characterisation (Rusch

et al., 2007). Machine learning and data-driven statistical modelling techniques
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3.1 Remote homology detection

are being developed in order to assist characterisation; these techniques aim to
predict structural, functional and evolutionary relationships between these proteins
automatically (Friedberg, 2006). Generally, distinctions are made between instance-
based learning, and generative and discriminative methods. Instance-based learning
methods typically classify an unknown sequence based on the nearest training
sequences in a database of known proteins. An example is the k-nearest neighbour
algorithm (Shakhnarovich et al., 2005), which is often used in conjunction with the
pairwise alignment algorithms Smith-Waterman (Smith and Waterman, 1981) or
BLAST (Altschul et al., 1990).

A widely used generative approach is the hidden Markov model (Durbin, 1998)
that characterises the likelihood of a given biological sequence being generated by
a statistical model. Decision trees (Quinlan, 1990) and SVMs (Vapnik, 1999) are
discriminative approaches. They train a classification model to distinguish a group
of proteins, which has some property of interest (positive examples) from a set that
is known not to have this property (negative examples) (Kretschmann et al., 2001;
Liao and Noble, 2003).

Of the above-mentioned methods, instance-based learning is the simplest. It
is efficient in detecting homologues if sequence similarity is close. Much of the
challenge in making predictions from amino acid sequences, however, arises from
the fact that a higher degree of variability can accumulate at the sequence level
than at the atomic structure level during evolution; i.e. multiple sequences can
give rise to similar structures (Chothia and Lesk, 1986). An example is shown
for the SCOP (Murzin et al., 1995) domain pair dlemy (myoglobin) and d1it2a
(hagfish hemoglobin) in Figure 3.1. The sequence identity between these domains is
only 16.4 per cent, while their structural similarity is close which is indicated by a
RMSD of structure alignments of only 1.667 A(angstrom) with 688 atoms aligned.
According to the protein data bank (PDB)(Berman, 2008) classification they are

both concerned with Ozygen transport and according to the UniProtKB (Wu et al.,
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a) Sequence Alignment

dlemyA 2 LSDGEWELVLKTWGKVEADIPGHGETVFVRLFTGHPETLEKFDKFKHLKT 51
B e ks 0
dlemy_ 52 EGEMKASEDLKKQGVTVLTALGGILKKKGHHE---AEIQPLAQSHATKHK 98
B K BT T AT 108
dlemy_ 99 IPIKYLEFISDAIIHVLQSKHPAEF 123
05 e amy 131

b) Secondary Structure Alignment (SS defined by DSSP, 3 States)

dlemy__ 1 LLLHHHHHHHHHHHHHHHLLHHHHHHHHHHHHHHHLHHHHHHLLLLLLLL 50
FEPEEREEETEEE TP TP PR EEE T

dlit2a_ 10 LLLHHHHHHHHHHHHHHHLLHHHHHHHHHHHHHHHLHHHHHHLLLLLLLL 59

dlemy 51 LHHHHHLLH---HHHHHHHHHHHHHHHHHHLLLLLHHHHHHHHHHHHH- - 95
FEE PEEEEEEE TP TP

dlit2a_ [ — LLHHHLHHHHHHHHHHHHHHHHAHLLLLLHHHHHHHHHHHHHEE 103

dlemy 96 ----LLLLLHHHHHHHHHHHHHHHHHHLLLLLLHHHHHHHHHHHHHHH 139
FEPEEETEETTETTTT FEPEETEEETEETTETT T

dlit2a_ 104 HHLLLLLLLHHHHHHHHHHHH-—--—-—- LLLLHHHHHHHHHHHHHHH 143

c) Secondary Structure Alignment (SS predicted by PSIPRED)

dlemy 21 HHHHHHHHHHHHHHHHHHHHHHCHH-——————- CCCCCCHHHCCCCHHHH 62
FEVCEREEETEEE LR LT FEEEEE T
dlit2a_ 23 HHHHHHHHHHHHHHHHHHHHHHCHHHHHHHHHCCCCCCC---CCCCHHHH 69
dlemy 63 HHHHHHHHHHHHHHHHCCC---HHHHHHHHHHHHHHHCCCCHHHHHHHHH 109
FEVEEPEEELEE T FEEEEE TP
dlit2a_ 70 HHHHHHHHHHHHHHHHCCCHHHHHHHHHHHHHHHHHHCCCCHHHHHHHHH 119
dlemy 110 HHHHHHHHHCCCCCCHHHHHHHHHHHHHHHH 140
FITETITT CEVEEETETTTEE T
dlit2a_ 120 HHHHHHHHH----—- HHHHHHHHHHHHHHHH = 144

d) Alignment by PyMol

Figure 3.1: Alignments of (a) sequence, (b & c¢) secondary and (d) tertiary structures
of proteins dlemy (myoglobin) and dIit2a (hagfish hemoglobin) from the SCOP family
a.1.1.2 (globins). Bold symbols and the pipe symbols indicate an alignment match between
two columns. Colon and period symbols indicate conservative and semi-conservative
substitutions, respectively. While there is a close structural similarity between these
proteins, their sequence alignment is poor. The secondary structures, both true and
predicted, show close similarities. Chapter 4 of this thesis exploits this observation by
augmenting sequence similarities with predicted secondary structures. The alignment was
created using the JAligner software.
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2006) they share the Swiss-Prot keywords Heme, Iron, Metal-binding and Ozygen
transport. Sequence-based methods are not very efficient in detecting this similarity.
A BLAST query against UniProtKB Release 14.5 using the accession number P02186
(d1emy) returns the protein Q7SID0 (dIit2a) with an E value of 0.067. This is
above the E values 107 to 107" that are often used as a threshold for confident
function assignment (Cai et al., 2006; Engelhardt et al., 2005; Gopal et al., 2001;
Martin et al., 2004; The Arabidopsis Initiative, 2000). Approaches to detecting
such similarities are called remote homology detection methods. Generally, remote
homology detection methods use a generative or discriminative model, because these
models are able to detect subtle sequence similarities. One approach, which combines
generative and discriminative models, is the work of Jaakkola and Haussler. They
showed how score functions derived from a generative model of positive examples
can be used in a discriminative setting (Jaakkola et al., 2000); their method is known
as the Fisher kernels. Recent research suggests that the best-performing methods
are discriminative. In this category several techniques use protein sequences to
train SVM classifiers. For instance, Liao and Noble introduced an SVM method,
called SVM-pairwise, which uses Smith-Waterman similarity scores (Liao and Noble,
2003). Each sequence is represented as a vector of the pairwise sequence-similarities
scores to all the sequences of the training set. SVM-pairwise was shown to perform
better than the above-mentioned Fisher kernel method. Other alignment-based
methods include the LA-kernel (Saigo et al., 2004) and SVM-SW (Rangwala and
Karypis, 2005). Instead of representing the sequences as a vector of features these
methods directly calculate the kernels using an explicit protein similarity measure.
Leslie and colleagues introduced several string kernels for use with SVMs (Leslie
et al., 2002, 2004): spectrum, mismatch and profile kernels. These kernels measure
sequence similarity based on shared occurrences of fixed-length patterns in the data.
More recently, the GPkernel (Handstad et al., 2007) was introduced. The GPkernel

is a motif kernel based on discrete sequence motifs where the motifs are evolved
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using genetic programming. The GPkernel method achieved better results than
the SVM-pairwise method, the mismatch kernel and a PSI-BLAST (Altschul et al.,
1997) based approach. The methods mentioned in the last paragraph primarily use
amino acid sequence information to train the classifiers. It is known that sequences
which are distantly related but which have similar functions also tend to have highly
conserved patterns of secondary structures (Russell and Barton, 1994). Several
researchers have demonstrated that the prediction performance of remote homology
detection (and fold recognition) methods can be improved by incorporating secondary
structure information. Wallqvist et al. (2000), for instance, report an increase in
sensitivity of their fold-recognition method after modifying the Smith-Waterman
algorithm to consider an alignment of both amino acid and secondary structure
elements. Ginalski et al. (2003) have shown that the addition of predicted secondary
structures to conventional sequence profiles is able to boost the sensitivity of profile-
profile comparison methods for sequence similarity searches. The technique described
in the latter paper is known from fold recognition algorithms, for example (Jones,
1999b; Shi et al., 2001). Chung and Yona present a method for classifying protein
families into superfamilies (Chung and Yona, 2004). The authors use statistical
models of protein families in the form of profiles and augment the profiles with
structural information. The authors note that true structure performs significantly
better. Secondary structure element alignments methods (SSEA) have been shown
to provide a rapid prediction of the fold for given sequences and have also been
applied to the related problem of novel fold detection (McGuffin and Jones, 2002;
McGuffin et al., 2001). DomSSEA is a modified form of this method that uses
predicted secondary structure to predict continuous domains (Marsden et al., 2002).
HHsearch (Soding, 2005) is a program based on profile hidden Markov models that
augments the sequence profiles with secondary structure.

These and similar studies have indicated that the incorporation of secondary struc-

ture information, even if predicted, can increase sensitivity of a protein comparison
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model. While these studies, which have been covering instance-based and generative
learning systems, are clearly important, it is also important to investigate discrim-
inative approaches since it has been pointed out that discriminative approaches
generally outperform instance-based methods in remote homology detection. One
approach that uses secondary structures in a discriminative setting was introduced
in (Hou et al., 2004). Their SVM-I-sites method encodes structure information
into feature vectors after comparing sequence profiles to the I-sites library of local
structural motifs (Bystroff and Baker, 1998); it achieves a comparable performance
to the sequence-based SVM-pairwise method. One limitation of this method is that
it uses secondary structures only, thus disregarding potentially useful information
that is encoded in the amino acid sequence. A method that was tested for using
both kinds of information in a discriminative setting is the previously mentioned
profile kernel. The authors report that secondary structure profiles can help the
profile kernel achieve better performance. The prediction performance of a classifier
that uses the secondary structures alone, however, was not investigated. The results
were calculated for the entire SCOP database but not for its respective classes. Our
approach is also based on combining sequence and secondary structures in a discrim-
inative setting. Instead of using string kernels based on shared occurrences of fixed
length patterns, we exploit the performance improvement gained by using a kernel
that measures similarity based on all-against-all Smith-Waterman similarity scores.
We calculated Smith-Waterman similarity scores from sequences, from observed
secondary structures and from predicted secondary structures; the sets of scores
were fed into SVM classifiers separately and in combination. Further, we carried
out score re-weighting experiments in which more influence was given to either the
sequence or secondary structure similarity scores. We compare our method with the
sequence-based SVM-pairwise method and with the mean achieved by the GPkernel
method. We show that a complementary classifier is superior to these sequence-only

based methods overall, for the different SCOP classes and for the majority of the
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families participating in the benchmark. We note that it has been reported before
that remote homology detection is improved by integrating secondary structures. The
difference to most other works lies in the use of SVMs and kernels thus investigating
performance in a discriminative setting in contrast to instance-based and genera-
tive models. This work has been published in 2009 (Wieser and Niranjan, 2009).
Since the publication of our paper another method was developed that combines
sequence and secondary structure information (Wang et al., 2009a). This method
complements profile-profile comparison with various structure- and function-related
patterns revealed by multiple sequence alignments. The resulting tool, PROCAIN
(Wang et al., 2009b), improves homology detection and alignment quality beyond
the range of other tools, e.g. COMPASS, a tool for comparison of multiple protein
alignments (Sadreyev and Grishin, 2003). In another recent paper, Dobson et al.
(2009) showed that machine learning approaches to predicting SCOP categories can
be improved by performing a sequence enrichment step that exploits unannotated
sequences within genomic sequence databases. Margelevicius and Venclovas (2010)
presented a new homology detection method based on sequence profile-profile com-
parison that integrated position-dependent gap penalties. Evaluation results showed
that at the level of protein domains the method compared favorably to other tested
methods including HHsearch, COMPASS and PSI-BLAST.

Methods and results of this study are detailed in Chapter 4. Next the remaining

research problems addressed in this thesis are introduced.

3.2 Tissue specificity of gene expression

A similar method as used in the remote homology detection problem was developed
to investigate whether tissue specificity of gene expression is correlated with the
sequence and secondary structure of the resulting protein product. The motivation

for this is described in the following paragraphs, and a corresponding literature
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review is also included.

Virtually all of the cells in multi-cellular organisms are genetically identical, i.e.,
they carry the same DNA. Different cells take on different roles by activating only
parts of the DNA they carry. Cell fate changes are accompanied by gene expression
changes and consequently, gene expression varies widely amongst cell types and
tissues. Capturing these differences is important for a number of studies including
developmental and disease or age-related studies. For instance, the success of gene
manipulation experiments designed to extend lifespan often depends on the tissue
in which the gene is deleted or over-expressed (Broughton and Partridge, 2009).
Knowledge of tissue specificity of gene expression can help in targeting the correct
tissue in which the pathway to be manipulated has the desired function. The tissue-
specific genes can be used as a targeting agent in order to reach a particular tissue
or organ. A complete knowledge of the tissue specificity of gene expression in model
organisms is desirable for the study of ageing and other biological processes.

Various experimental techniques have been developed to identify tissue-specific
gene expression signatures. Microarray analysis (Brown and Botstein, 1999) and in
situ hybridization (Jones and Robertson, 1970; Tautz and Pfeifle, 1989) are the most
commonly used techniques for the study of spatial patterns of mRNA expression. For
instance, high-density microarrays have been used to interrogate the gene expression
of the vast majority of protein-encoding genes in 79 human and 61 mouse tissues (Su
et al., 2004). A digital atlas containing the expression patterns of around 20,000 genes
in the adult mouse brain also exists (Lein et al., 2007). These data were generated
using ISH (see Chapter 2.1.2). FlyAtlas is a microarray-based atlas of gene expression
in multiple adult tissues in the fruit fly. It currently provides gene expression profiles
for 17 adult tissues (Chintapalli et al., 2007). Image-based data from hundreds of
Drosophila blastoderm embryos has been used to build a model ”virtual embryo”
that captures the average spatial expression patterns for 95 genes (Fowlkes et al.,

2008). An atlas of gene expression patterns during fruit fly embryogenesis has been
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assembled based on ISH (Tomancak et al., 2007). About 40% of the genes with
detectable expression showed tissue-restricted expression in this study. The Berkeley
Drosophila Genome Project (BDGP; http://www.fruitfly.org) is a further resource
for tissue-specific data in the fruit fly.

However, experimental data is not always available for all organisms, and our
knowledge of tissue-specific expression is incomplete. Experimental techniques have
their limitations. For example, microarray studies depend on the ability to isolate
mRNA from a particular tissue, which requires dissection of the animal. Frequently
this is a formidable task. In the case of worms, this is barely feasible and, in the case
of flies, it is laborious and time-consuming to obtain sufficient tissue for analysis.
Clean tissue separation is critical. In higher organisms, such as humans and mice,
the sheer number of different cell types, organs and tissues make it difficult to obtain
a complete picture of genes that are truly expressed in a tissue-specific fashion.
In contrast to microarray or other similar assays, ISH does not require dissection.
However, the drawback to ISH is that it is not quantitative (Wilcox, 1993). In
addition, parameters such as genetic variability, nutritional state, pathogen exposure
and effects of the isolation procedure add to the complexity of obtaining accurate
and complete tissue-specific measurements. Another limitation is the cost, which
limits the number of tissues that can be profiled. If, for example, a cost of £350
per array is assumed (data taken from http://affy.arabidopsis.info/costs.html
in February 2010), then the sampling of 60 mouse tissues, with 4 replicates each,
results in a total cost of £84,000.

Thus, because of lack of suitable experimental techniques, difficulties with dis-
secting, high costs and time demands to dissect and investigate each and every tissue
in many organismes, tissue-specific information is frequently lacking.

There have been efforts to use computational models to predict tissue specificity.
For instance, De Ferrari and Aitken (2006) trained a Naive Bayes classifier, based on

physical and functional characteristics of genes, to discriminate tissue-specific from
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housekeeping genes. The input features included cDNA length, CDS length, number
of exons, measures of chromatin compactness, percent of GO terms for the gene that
match with a housekeeping GO terms list, and percent of GO terms for the gene
that match with a tissue-specific GO terms list. Their classifier achieved a 90%, 93%
and 97% success rate in classification of human, mouse and fruit fly housekeeping
genes. The performance of the classifiers was good. However, it should be noted
that including classifier attributes that are based on functional characteristics (here
GO terms) lead to at least two issues. First, it is known that there are functional
differences between tissue-specific and housekeeping genes. One of the housekeeping
GO terms used by the authors is ”GO:0005840 ribosome”. Ribosomes are the
components of cells that make proteins from amino acids and thus they are present
in every single cell and tissue. Labelling genes that are annotated with this GO
term as housekeeping genes is therefore a simple task. Second, many of the GO
terms have been transferred automatically via computational methods and are thus
predicted themselves. Basing a prediction method on the outcome of another one is
generally not practical because errors can be easily propagated. Features such as the
cDNA length, CDS length and number of exons are better suited to be used with a
classifier since they are directly observed from the genomic sequence.

In the first part of this thesis, we investigated how combining sequence and
secondary structures in a discriminative setting affects the ability of support vec-
tor machines to discriminate protein domains. Here, we use a similar method to
investigate if tissue specificity of gene expression is correlated with the sequence
and secondary structure of the resulting protein product. We are also interested in
knowing to what extent this information can be used to predict tissue specificity of
genes computationally. Our interest in pursuing this question stems mainly from the
observations discussed in the next paragraph.

First, housekeeping genes are known to evolve, on average, more slowly than

tissue-specific genes (Hastings, 1996; Larracuente et al., 2008; Zhang and Li, 2004; Zhu
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et al., 2008). The hypothesis is that broadly expressed genes are subjected to greater
negative selection pressure because they must function in a more diverse biochemical
environment than do narrowly expressed genes. Substitution rates at nonsynonymous
sites show strong negative correlation with tissue distribution breadth. Conversely,
silent substitution rates do not vary with expression pattern, even in ubiquitously
expressed genes (Duret and Mouchiroud, 2000). Genes selectively expressed in one
human tissue can often be discriminated from genes expressed in another tissue
purely on the basis of their synonymous codon usage (Plotkin et al., 2004). Gene
expression has also been shown to evolve faster in narrowly expressed, compared to
broadly expressed, genes (Yang et al., 2005).

Second, the types of proteins encoded by housekeeping and tissue specific genes
differ. A mouse study established a relationship between the domains encoded
by a gene and its degree of tissue specificity (Lehner and Fraser, 2004). Many
protein domains in both tissue-specific or widely expressed genes were enriched.
The authors found that genes that encoded domains associated with receptors,
ligands and extracellular matrix proteins or in DNA- or nucleic acid- binding proteins
were expressed in significantly fewer tissues than were other genes. In contrast,
genes encoding protein domains that functioned in protein degradation, in the
cytoskeleton or in RNA-binding, were expressed significantly more widely than were
other genes. Another study showed that proteins with a universal distribution tend
to be predominantly enzymes and transporters, while the tissue-specific forms are
dominated by regulatory proteins such as transcription factors (Freilich et al., 2005,
2006).

Third, the two classes showed several different genomic features. For example,
human housekeeping genes were found to be more compact and shorter than other
genes (Eisenberg and Levanon, 2003). The average length for introns, exons, 3’'UTR
and 5’UTR was shorter for housekeeping genes than for tissue-specific genes. In a

human and mouse study (Schug et al., 2005), most tissue-specific genes were found
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to typically contain a TATA box, but no CpG island, and they often coded for
extracellular proteins. In contrast, the widely-distributed (i.e. least tissue-specific)
genes frequently contained CpG islands and often coded for nuclear or mitochondrial
proteins. The genes in the class that had no CpG island or TATA box were commonly
mid-specificity genes that coded for membrane proteins. Spl, a binding site for
selected ubiquitous transcription factors, was found to be a weak indicator of less-
specific expression. YY1 binding sites, also binding sites for ubiquitous transcription
factors were strongly associated with the least-specific genes. Several other studies
also observed a relationship between the occurrence of CpG content or CpG islands
and tissue specificity of genes in various organisms (Elango et al., 2009; Foret et al.,
2009; Gardiner-Garden and Frommer, 1987). However, a different study on human
genes showed that the majority of tissue-specific genes possessed neither CpG islands
nor TATA boxes in their core promoters (Zhu et al., 2008).

A study on chromatin compactness showed that putative Scaffold/Matrix At-
tachment Regions (S/MAR) were more abundant upstream of tissue-specific genes
than upstream of housekeeping genes. S/MARs attach themselves to the nuclear
matrix and help the formation of chromatin loops. Tissue-specific genes appear to
have less accessible and more compact DNA in their promoter regions, and hence
more S/MAR sequences (Ganapathi et al., 2005).

In human, the use of SVMs allowed the identification of DNA hexamers that
discriminate tissue-specific gene promoters or regulatory regions from those that are
not tissue-specific (Rao et al., 2007). It was also shown that housekeeping and tissue-
specific genes in human and mouse differ in simple sequence repeats (SSR) in the
5-UTR region (Lawson and Zhang, 2008). SSR densities in 5’-UTRs in housekeeping
genes were about 1.7 times higher than those in tissue-specific genes. Other regions,
i.e., introns, coding exons, 3’-UTRs and upstream regions, also contained different,
but less obvious, SSRs.

Recently, the correlation of tissue specificity with genomic structure, phyletic age,
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evolutionary rate and promoter architecture of human genes was re-evaluated. Again,
housekeeping genes were found to be less compact and older than tissue-specific
genes. It was confirmed that they evolved more slowly in terms of both coding and
core promoter sequences. Housekeeping genes primarily use CpG-dependent core
promoters, whereas the majority of tissue-specific genes possess neither CpG-islands
nor TATA-boxes in their core promoters (Zhu et al., 2008). A study in the nematode
worm, Caenorhabditis elegans, showed that gene expression data from whole-animal
microarray data can be used to predict tissue specificity of genes (Chikina et al.,
2009). The authors leveraged existing whole-animal C. elegans microarray data to
generate predictions of tissue-specific gene expression and experimentally validated
these predictions. SVMs were used to build a predictive model of tissue-specific
microarray profiles. The SVMs automatically identified expression patterns that
separated genes expressed in a particular tissue from other genes (e.g., neuronal
and non-neuronal genes). Their predictions reached a precision of 90% for all of the
major tissues of the worm (intestine, hypodermis, muscle, neurons, and pharynx)
except germ line. This study concentrated on genes expressed in a particular tissue,
but housekeeping genes were not considered.

Lastly, in Saccharomyces cerevisiae, a correlation was found between the expres-
sion level of a gene and the amino acid composition of its protein (Raghava and
Han, 2005). The authors analysed 3,468 S. cerevisiae genes. Some amino acid
residues were observed to have significant positive correlation, while other residues
had negative correlation with the expression level of genes. A significant negative
correlation was also found between length and gene expression.

Combining these observations, we speculate that the amino acid content may differ
among those genes that show different tissue specificity. The ability to successfully
predict whether a given gene is a housekeeping or tissue-specific gene would add to
the understanding of tissue specificity and how it arises.

We investigate the use of sequence and secondary structure information with
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SVMs to discriminate between tissue-specific and broadly expressed genes. We
determined the amino acid sequences and secondary structures in proteins that
varied in their tissue specificities and then used the sequences and structures to
calculate Smith-Waterman similarity scores. The sets of scores were fed into SVM
classifiers, both separately and in combination. We also investigate the effects of
combining these attributes with genomic features such as lengths of various genomic
regions on the performance of the classifier. We also examine whether a relationship
exists between ribosomal occupancy and tissue specificity.

We apply our definition to microarray-based expression data for fruit fly genes
and then validate and contrast these results with similar data derived from mouse
genes. We concentrate on the fruit fly, Drosophila melanogaster, because it is the least
studied organism (Table 3.1) for which good data have recently become available.
For the fruit fly, we used a data set that contains the expressions of a large number
of genes in 17 fruit fly tissues (Chintapalli et al., 2007). For the mouse, we used a
data set that contains the expression data of a large number of genes in 61 mouse
tissues (Su et al., 2004). These data sets allowed a detailed examination of the
relationship between tissue expression of genes and their related protein products.

We found that tissue specificity of gene expression is correlated with the sequence
and secondary structure of the resulting protein products, and that this specificity
can be predicted to a certain extent in both the fruit fly and the mouse. Simple
amino acid counts perform almost as well as using Smith-Waterman similarity scores.
Integrating secondary structure does not improve upon prediction performance, but
still results in performance that is better than random. Combining amino acid
percentages with other attributes, such as cDNA length, CDS length, 5’UTR length,
further improves the classifier performance.

The experiments performed and results related to this topic are detailed in

Chapter 5.
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Table 3.1: Computational studies on tissue specificity. The table summarises previ-
ously published work that investigated housekeeping (HK) or tissue-specific (TS) genes.
TF= transcription factor.

Author,Year Species | Nr. of genes used Short description
Lengths of genomic regions were stud-
Eisenberg and Levanon human 575 HK genes ied. HK genes were found to be shorter
(2003) 5404 non-HK genes + more compact compared to other
genes.
ranked list of genes Shannon’s entropy was used to rank
human human: genes according to their tissue speci-
Schug et al. (2005) 12,626 probesets (8,571 genes) | ficity. Investigation of correlation be-
mouse i
mouse: tween T'S and base composition of pro-
12,655 probesets (7870 genes) moters, CpG islands + TF motifs.
595 HK eenes Investigation of the differences in the
Ganapathi et al. (2005) | human - & chromatin features (S/MAR regions)
532 TS genes
between the two groups of genes.
human:
76 HK genes (103 transcrlPts) A Naive Bayes classifier was trained to
326 TS genes (580 transcripts) L
human mouse: discriminate between the two classes
De Ferrari and Aitken : . based on: ¢cDNA +CDS lengths, num-
mouse 93 HK genes (113 transcripts) .
(2006) fruit 286 TS genes (564 transcripts) ber of exons, S/MAR regions, Poly(dA-
y oot ﬁ}g,. b dT) 4+ (CCGNN)2-5 motifs, and per-
40 HK genes (80 transcripts) centage of GO terms.
193 TS genes (412 transcripts)
9973 non-TS SVMs were trained to discriminate T'S
Rao et al. (2007) human genes from those that are not T'S based
1817 TS . .
on 6-mers in the promoter regions.
human:
1914 HK genes
Lawson and Zhang | human 275 TS genes Investigation of differences of SSRs be-
(2008) mouse mouse: tween HK and TS genes.
1597 HK genes
890 TS genes
Correlation of tissue specificity with ge-
885 TS genes nomic structure, phyletic age, evolu-
Zhu et al. (2008) human 3140 HK genes tionary rate + promoter architecture
was re-evaluated.
Predictions of TS gene expression in
Chikina ef al. (2009) worm 2872 genes expressed in Varlous.tlssues using SVMs.based on
one or more tissues expression profiles (e.g. brain vs non-
brain).
fruit fly: N
11,804 genes (15,560 tran- Dlgcrlmln?tlng TS from HK genes
. (with various degrees) based on se-
. scripts)
. fruit fly quences, secondary structures 4+ ge-
This study mouse: . ,
mouse 21,000 genes (11,355 tran- nomic features (cDNA, CDS, 5UTR,
. ’ 3'UTR and protein length, CpG is-
scripts)
. lands and content, SSRs).
ranked lists of genes
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3.3 Whole-fly body gene expression data and the
ageing fruit fly

The sorted list of genes introduced above was also used to investigate the tissue
specificity of transcript profiles obtained from a study of ageing in the fruit fly. The
motivation for this is detailed in the next paragraphs, alongside a literature review
on relevant topics.

Small invertebrate model organisms such as the nematode worm and the fruit
fly are widely used to investigate mechanisms underlying diverse biological pro-
cesses, including development, metabolism, neurobiology and ageing. Whole genome
transcript profiles have become an important tool in such investigations, to direct
attention to candidate genes and processes for targeting in subsequent experimental
analysis. Because of the small size of these organisms and the difficulties of dissecting
specific tissues for analysis, molecular methods have been developed to isolate RNA
from specific tissues (Chalfie et al., 1994; Jin and Lloyd, 1997). However, these
methods have their own technical limitations (Jin and Lloyd, 1997; Klebes et al.,
2002), and RNA expression-profiling is still often applied to RNA extracted from
whole organisms or from body parts of heterogeneous tissue composition (Girardot
et al., 2006; Kim et al., 2005; Landis et al., 2004; Magwire, 2007; Pletcher et al.,
2005). It would therefore be helpful if bioinformatics methods could be developed to
extract tissue-specific information from these whole body expression profiles. We
have developed such a method for the fruit fly and we have applied the method to
RNA transcript profiles obtained from studies of ageing in the adult fly.

The fruit fly has been much employed to unravel mechanisms of ageing and to
identify genes that may have a functional role in it (McElwee et al., 2007; Partridge,
2008; Piper and Bartke, 2008; Piper and Partridge, 2007; Pletcher et al., 2005;
Skorupa et al., 2008). More than 80 genes whose manipulation increases or decreases

lifespan, or alters the phenotypic ageing process, have been identified (de Magalhaes
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and Toussaint, 2004; Kaeberlein et al., 2002). For instance, null mutation of chico,
a gene that codes for the single fly insulin receptor substrate, has been found to
extend lifespan up to 48% in females (Clancy et al., 2001), while fly mutants for
methuselah displayed approximately a 35% increase in average lifespan (Lin et al.,
1998). It is well established that the insulin/insulin-like growth factor signaling
(IIS) pathway is central to regulation of lifespan in various organisms (Bartke,
2008; Clancy et al., 2001; Cowen, 2001; Holzenberger et al., 2003; Tissenbaum and
Ruvkun, 1998). Fat and neuronal tissues appear to be of particular importance
for lifespan extension via lowered IIS (Broughton and Partridge, 2009). However,
the exact signalling mechanisms and biochemical changes by which this, and other
evolutionarily conserved pathways such as TOR (target of rapamycin) signalling
(Greer and Brunet, 2008), promote longevity in various tissues are not yet fully
understood.

Gene expression profiling has been a useful method for identifying candidate
processes for lifespan-extension by reduced IIS and other interventions (Cao et al.,
2001; Fu et al., 2006; Hong et al., 2008; Kim et al., 2005; Landis et al., 2004;
Magwire, 2007; McElwee et al., 2006, 2007; Miller, 2009; Park and Prolla, 2005;
Pletcher et al., 2005; Thompson et al., 2009; Zahn et al., 2006). Identifying groups
of genes that are differentially expressed in long-lived nematode worms (McElwee
et al., 2006; Miller, 2009; Thompson et al., 2009) and in flies (Kim et al., 2005;
Landis et al., 2004; Magwire, 2007; McElwee et al., 2007; Pletcher et al., 2005) has
been implicated, for example, with enhanced stress resistance (Miller, 2009) and
xenobiotic metabolism (McElwee et al., 2007). However, accurate identification and
interpretation of differentially expressed genes have been limited by several factors.
Gene expression profiles vary among tissues, and expression of a significant fraction of
the genome is highly tissue-specific in the adult fly (Chintapalli et al., 2007; Whitehead
and Crawford, 2006) and worm (Hunt-Newbury et al., 2007). Many ageing-related

changes can be associated with changes in tissue-specific gene expression, while there
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also may be a common set of genes that change equivalently in different tissues
(Cao et al., 2001; Girardot et al., 2006; Kayo et al., 2001; Lee et al., 2000, 2002;
Park and Prolla, 2005; Pattison et al., 2003; Rodwell et al., 2004; Welle et al., 2003;
Zhan et al., 2007). For example, genes that make up the mitochondrial electron
transport chain appear to decrease in expression with age in multiple tissues (Zahn
et al., 2006). In contrast, the effects of ageing are particularly pronounced in the
brain, where a reduction in synaptic density has been observed in various organisms
(Girardot et al., 2006; Hong et al., 2008). The age-related genes in a fruit fly study
in seven tissues at six adult life stages showed tissue-specific patterns (Zhan et al.,
2007). However, the authors also identified overlaps of the age-related functional
groups among tissues. The seven tissues for which genome-wide expression profiles
were measured were the brain, thoracic muscle, gut, malpighian tubule, accessory
gland, testis and abdominal adipose tissue. In each tissue hundreds of age-related
differentially expressed genes were found. Less than 10% of them in each tissue were
in common with any other tissue. Similarly, less than 20% of the biological processes
enriched with the age-related genes were in common between any two tissues.
Ideally, to capture and interpret both specific and common transcriptional re-
sponses during the ageing process and as a result of interventions that extend lifespan,
the animal should be dissected into several tissues before gene expression is profiled.
The trade-off is that, in the case of worms, this is barely feasible and, in the case
of flies, it is laborious and time-consuming to obtain sufficient tissue for analysis.
Consequently, whole flies (Landis et al., 2004; Magwire, 2007; Pletcher et al., 2005),
or tissues that are technically easy to separate from the fly body such as the head
and thorax (Girardot et al., 2006; Kim et al., 2005) are frequently used. While it is
known that a significant fraction of the genome will be missed or under-represented
in whole-fly samples (Chintapalli et al., 2007) and that tissue-specific expression
may be inadequately captured, there is little information concerning the capacity of

microarrays to capture tissue-specific effects of ageing in whole-fly samples. To date,
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knowledge of tissue specificity of differentially expressed genes is often insufficiently
considered in the subsequent data analysis.

We describe a computational approach, which partitions genes according to their
tissue specificity, that can be used to address some of the above shortcomings and
clarify tissue-specific fly transcripts and gene expression in the ageing fly, and in
general. Based on an information theoretical approach, we investigate how to utilise
FlyAtlas (Chintapalli et al., 2007), a microarray-based atlas of gene expression in
multiple adult tissues, to delineate tissue-specific from ubiquitous expression in
whole-fly experiments. We begin by taking the sorted list of fruit fly genes according
to their degree of tissue specificity introduced in the previous chapter, obtained from
the FlyAtlas gene expression profiles. We then use the defined tissue specificity to
determine the capacity of Affymetrix high-density oligonucleotide whole-genome
micro arrays to capture tissue-specific age-associated changes in whole-fly samples.
Importantly, we find that genes with tissue-specific expression are associated with
higher fold-changes amongst significantly differentially expressed genes and a lower
mean expression signal indicating that changes in tissue-specific expression might
be easier to detect using whole-fly arrays. We also describe how filtering genes
with tissue-specific expression from data from a whole-fly ageing experiment affects
data analysis and the derivation of meaningful information from the data. The
significance of several age-related GO terms was increased after removing tissue-
specific differentially expressed genes. This is due to a bias in GO annotation
towards broadly expressed genes, and to differences in function of broadly and
tissue-specifically expressed genes. This study is complemented by an analysis of
the tissue specificity of age-associated genes in the fly. We found that most known
age-associated genes are broadly expressed.

The investigations concerning this study are described more fully in Chapter 6.
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Chapter 4

Remote Homology Detection
Using a Kernel Method that
Combines Sequence and Secondary

Structure Similarity Scores

Below, we explain the experiments performed to investigate the ability of our method

to predict protein remote homologues and present and the discuss the results.

4.1 Methods

4.1.1 Benchmark sets

All the experiments are based on protein domains retrieved from the manually
curated SCOP database (Murzin et al., 1995). SCOP classifies proteins with known
structures hierarchically into classes, folds, superfamilies and families based on
their evolutionary relationships and structural or functional similarities. Figure
4.1 shows a schematic representation of the SCOP hierarchy. The top level places

domains with similar secondary structure elements in classes. Examples include
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All a protein and All § proteins. All the available classes are summarised in
Table 4.1. The second level assigns the domains belonging to a class to different
folds, depending on the topology of their secondary-structure elements. A fold
is divided up into superfamilies. Domains sharing the same superfamily have a
probable common evolutionary origin, which is usually suggested by their structural
and functional features. The superfamilies are further divided up into families of
domains with sequence identity > 30%, or domains with very similar functions and
structures. Domain pairs belonging to the same superfamily, but to different families
are considered to be remote homologues. The benchmarks used in this work were
those defined previously to test the performance of the GPkernel (Handstad et al.,
2007). Figure 4.1 also shows a schematic representation of the benchmark set. Briefly,
domains belonging to one family constitute the positive test set. Domains inside the
same superfamily but of different families form the positive training set. Negative
training and test domains are taken from outside the superfamily. The negative test
set consists of one random family from each of the other superfamilies while the
negative training set is composed of the rest of the families in these superfamilies.
A total of 102 classification tasks were carried out, each positive training set holds
at least ten domains and each positive test set holds at least ten domains (4,019

domains were used in total).

Table 4.1: Available SCOP classes. Classes a, b, ¢, d and g were used in the benchmarks.

Symbol | Description

a a-helical domains

b B-sheet domains

¢ /B domains which consist of 3-a-3 structural units
or motifs that form mainly parallel 3-sheets

d a+fB domains formed by independent a-helices and
mainly antiparallel -sheets

e multi-domain proteins

f membrane and cell surface proteins and peptides (not

including those involved in the immune system)
small proteins

coiled-coil proteins

low-resolution protein structures

peptides and fragments

e e 509

designed proteins of non-natural sequence
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SCOP

Class

e.g. All alpha proteins

Fold

e.g. DNA/RNA-binding 3-helical bundle

o

Superfamily

e.g. Homeodomain-like a1 a.1.2

Family | (1) 11 (2)

eg i Pos Pos |
Homedomain :

test and train

test train

Figure 4.1: Schematic representation of the SCOP hierarchy and setup of the benchmark
set. Domains belonging to one family constitute the positive test set. Domains inside the
same superfamily but of different families form the positive training set. Negative training
and test domains are taken from outside the superfamily.
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4.1.2 Data preparation

The data preparation steps are illustrated in Figure 4.2, and further explained below.
The SCOP domains were downloaded from the ASTRAL database (Chandonia et al.,
2004) (SCOP version 1.67; < 95% identity) and supplemented with observed and
predicted secondary structures. The definition of secondary structure of proteins
(DSSP) programme (Kabsch and Sander, 1983a) was executed in order to assign an
observed secondary structure to each domain included in the benchmark. The DSSP
sequences were calculated from PDB entries; PDB-style files were also downloaded
from the ASTRAL database. As mentioned earlier, the DSSP distinguishes between
eight secondary structure states,namely H = a-helix, B = residue in isolated (3-bridge,
E = extended strand, participates in 3 ladder, G = 8 helix (319 heliz), [ = 5 helix
(pi heliz), T = hydrogen bonded turn, S = bend. The PSIPRED programme (Jones,
1999a), version 2.5, was executed in order to retrieve predicted secondary structures
for the domains participating in the benchmark. NCBI Toolkit Version 6.1 and
blast-2.2.15 were installed and used with PSIPRED. PSIPRED also requires the
installation of a sequence database for which we compiled UniProtKB/Swiss-Prot.
The latter was filtered to remove low-complexity regions (repetative short fragments),
transmembrane regions, and coiled-coil segments, using the pfilt programme that
is included in PSIPRED. The E value threshold for the blastpgp programme used
for PSIPRED was 0.001; otherwise default values were used throughout. The
PSIPRED programme distinguishes between three secondary structure states, i.e.
H = Helix, E = Strand, C' = Others. All-against-all pairwise similarity scores were
calculated using the JAligner software (Moustafa, 2007), with gap opening and gap
extension penalties of 10.0 and 0.5, respectively. JAligner is an open source Java
implementation of the Smith-Waterman algorithm for performing local sequence
alignments. Here, it was employed to compute alignments between two proteins
based on their amino acid or secondary structure symbols. The alignments were

scored so that comparatively high scores were given to highly similar alignment

54



4.1 Methods

Table 4.2: Scores for different alignment situations. The sequences are toy examples. Scores
have been computed using the JAligner software as explained in the methods.

Sequence 1 Sequence 1 score comment
YYYY AAAA 0 Unrelated sequences (short)
YYYYYYYYYYYY AAAAAAAAAAAA 0 Unrelated sequences (long)
YYYYYY AAA 0 Unrelated sequences (different length)
VDAA VDAD 14 similar sequences (short)
VDAA VDAA 18 identical sequences (short)
VDAAVAKVC VDAAVA 26 identical sequences (different length)
VDAAVAKVC VDADVAKVD 29 similar sequences (long)
VDAAVAKVC VDAAVAKVC 44 identical sequences (long)

regions and low scores otherwise. The raw score for an alignment is calculated by
summing the scores for each aligned position and the scores for gaps. The similarity
matrices used for the sequence alignments and for the secondary structure alignments
were BLOSUMG62 and IDENTITY, respectively. The JAligner software uses the
affine gap penalty model, which charges the score -a for the existence of a gap, and
the score -b for each residue in the gap. A gap of k residues thus receives a total
score of -(a+bk) while a gap of length 1 receives the score -(a+b). Table 4.2 shows
some examples that demonstrate how the scores vary for sequences with different
similarities. The score increases with the length for alignments of identical sequences.
The scores were not normalised for length, so if A is longer than B, then A aligned
with A has a higher score than B aligned with B. The scores (base-ten logarithm)

were then used to assemble the SVM input vectors, as described below.

4.1.3 SVM training

We trained six types of SVMs to identify proteins belonging to a superfamily in
the SCOP database. We refer to them as SVM-pairwise+, SVM-pairwise (AA),
SVM-pairwise (DSSP), SVM-pairwise (PSIPRED), SVM-pairwise (AA+DSSP) and
SVM-pairwise (AA+PSIPRED). AA indicates that the method uses amino acid
sequence information, while DSSP and PSIPRED indicate the use of secondary

structure information and the type of secondary structure assignment program used.
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Calculate Scores
All-against-all Smith-Waterman scores using JALIGNER

Determine true SS

2 ) Predict SS™
for SCOP 1.67

for SCOP 1.67 i
using the using the DSSP

from g
http://astral.berkeley.edu/ PSIPRED program program(based on
pdbstyle-1.67)

~

Benchmark
Setup

(downloaded*z)

Benchmark Set

Input Files
contain sequence,
predicted + observed SS

a1.1.2 d.15.4.1 g.39.1.3

"""" """"

positive negative positive negative positive negative
training training training training training training
D\ D\ N D D\ D
negative positive negative positive negative positive
test test test test test test

*1 Secondary Structure
*2 http://www.bi tral.com/conter tary/1471-2105-8-23-S1.txt

Figure 4.2: Data preparation workflow. A total number of 102

benchmark sets were

prepared. Sequence and secondary structure alignment scores were calculated for each of

the 4019 protein domains participating in the benchmark sets.
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SVM-pairwise+ is a simplified version of SVM-pairwise (AA) that uses a subset of
the all-against-all pairwise similarity scores only (see below). The distance metrics
used when combining sequence and secondary structure similarity scores are as given

in Equation 4.1:

d(i,7) = ad(si, s;) + (1 — a)d(ss;, ss;) (4.1)

The similarity between protein ¢ and protein j is measured by summing their
sequence similarity score calculated from the sequences s; and s; and their secondary
structure similarity score calculated from the secondary structures ss; and ss;. Setting
a to its extreme values of one and zero give classifiers that are based purely on
sequence alignment scores and secondary structure alignment scores, respectively.
The range of 7 is over both positive and negative training-sequences. In SVM-
pairwise+ the range of j is over the positive training-sequences only, while for all
other methods scores are computed by computing alignments over both positive and
negative training-sequences. The LIBSVM library (Chih-Chung and Chih-Jen, 2001)
was employed to train and test the classifiers using a Radial Basis Function (RBF)
kernel for binary classification. Default settings were used for the kernel parameters
C and gamma. These were 1 and 1/k respectively where k equals the number of
attributes in the input data. The RBF kernel was used because it performed better
than the other kernel types available in LIBSVM, all of which were tested using
default settings. It is possible that sensitivity can be further boosted if the kernel
parameters are systematically optimised. However scarcity of the training-data
makes tuning the parameters difficult. The positive classes, for instance, contain
only 30 instances on average; to tune parameters properly yet another validation set
is needed, which would reduce the amount of data that is available for estimating the
SVM parameters. We took the base-ten logarithm of all values of the input feature

vector. The feature vectors were normalised before training and a linear scaling
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applied to range between -1 and 1. The output of the SVM is a discriminant score

that was used to rank the members of the test set.

4.1.4 Other methods

The areas under the curves (AUCs) were computed using the R package ROCR (Sing
et al., 2005). The same package was used to calculate the average ROC curves
in Figure 4.4 (vertical averaging). Following Handstad et al. (2007) we compared
the significance of the performance differences between the methods by means of p
values. We used two-sided paired t-tests, with a confidence interval of 0.95. Thus, p
< 0.025 implies a significant difference between the two methods. Using the more

conservative Wilcoxon test resulted in the same conclusions (results not reported).

4.2 Results and discussion

4.2.1 Overall performance

The results of the experiments are generally in agreement with the expectation that a
method that combines sequence and structure-similarity scores into one kernel should
significantly increase the classifier’s performance: the SVM-pairwise (AA+DSSP),
SVM-pairwise (AA+PSIPRED) methods performed best over all (Figure 4.3, Figure
4.4). The latter methods gave the highest medians - 0.981 and 0.977 (Table 4.4),
and show the smallest inter-quartile range after excluding extreme values, i.e. the
dispersion of the AUCs is small. The low p values of 0.0007 and 0.0009 suggest
that these methods performed significantly better than the sequence-based method
(Table 4.3). The averaged ROC curves (Figure 4.4) demonstrate that these classifiers
mostly achieve higher or equal true positive rates for arbitrary thresholds of the
false positive rate than classifiers that are based on sequence or secondary structure

similarity scores only. These two methods also achieve higher precision for arbitrary
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AUC

(area under the ROC curve)

0.6
I

0.5

T T T T T T
SVM-pairwise SVM-pairwise SVM-pairwise SVM-pairwise SVM-pairwise SVM-pairwise+
(DSSP) (PSIPRED) (AA] (AA+DSSP) (AA+PSIPRED) based on sequences
based on observed  based on predicted  based on sequences based on sequences + based on sequences +  (positive only)
secondary structures  secondary structures observed predicted
secondary structures  secondary structures

Figure 4.3: Boxplots comparing the performance of six methods. The methods were
tested for their ability to predict SCOP superfamily memberships. Performance was
measured as AUC (area under the ROC curve). The methods that combine sequence
and secondary structure similarity scores - SVM-pairwise (AA+DSSP) and SVM-pairwise
(AA+PSIPRED) - showed the highest median AUCs.

thresholds of the recall rate (black straight and green dotted line in Figure 4.5).
The two methods which use secondary structures only - SVM-pairwise (DSSP)
and SVM-pairwise (PSIPRED) - showed similar performances (p value: 0.838);
their medians were 0.938 and 0.934 respectively. This indicates that the secondary
structures predicted by the PSIPRED programme were useful for improving the
detection of remote homologues. The sequence-based SVM-pairwise (AA) method
achieved a higher mean than the method using secondary structures only, but again
the difference is not significant (p values: 0.9416 and 0.9799). The comparison of
SVM-pairwise (AA) with SVM-pairwise+ accords with previous observations made
by Liao and Noble (2003), where the former performs slightly better than the latter.
Figure 4.4 shows the relative performance of the classifiers at a relatively low false
positive rate of 0.05. The corresponding mean (averaged over 102 families for each
method) true positive rates were 0.70, 0,70, 0.65, 0.60, 0,60 and 0.48 for SVM-
pairwise (AA+DSSP), SVM-pairwise (AA+PSIPRED), SVM-pairwise (AA), SVM-
pairwise (DSSP), SVM-pairwise (PSIPRED) and SVM-pairwise+ respectively. The
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4.2 Results and discussion

corresponding median true positive rates were 0.86, 0.84, 0.75, 0.62, 0.64 and 0.45 for
SVM-pairwise (AA+DSSP), SVM-pairwise (AA+PSIPRED), SVM-pairwise (AA),
SVM-pairwise (DSSP), SVM-pairwise (PSIPRED) and SVM-pairwise+ respectively.
We also calculated the mean and median true positive rates for a false positive rate
of 0.01. The resulting means were 0.58, 0.58, 0.53, 0.39 and 0.35 and the medians
were 0.66, 0.67, 0.61, 0.35 and 0.26 (reported in the method order as above). Our
methods performed better than recently published results for this data set. The
GPkernel, for instance, achieved a mean 0.902. The best performing method in their

study was the LA-kernel that achieved a mean of 0.919 (Table 4.4).

4.2.2 Performance for SCOP classes

Table 4.5 shows the same results divided into the different SCOP classes. The classes
participating in the benchmark were: All o proteins, All 5 proteins, o and 3 proteins
(a/b), a and 3 proteins (a+b) and Small proteins. The medians and means achieved
by SVM-pairwise (AA+DSSP) and SVM-pairwise (AA+PSIPRED) were the highest
for all classes. In particular, domains belonging to the classes All 5 proteins and
« and [ proteins (a+b) are generally classified more easily by these methods. For
example, the median and mean achieved by SVM-pairwise (AA+DSSP) for the class
All B8 proteins were 0.963 and 0.900, respectively; the medians calculated by the
other methods ranged from 0.817 to 0.920 and their means ranged from 0.782 to
0.891. The fact that the mean is only slightly higher than the means calculated
by some of the other methods is largely due to two outlier families (Figure 4.6)
which cause the overall mean to drop: 0.40.2.1 Bacterial ABS toxins, B-subunits and
b.40.2.2 Superantigen toxins, N-terminal domain; this is further discussed in the next
section. SVM-pairwise (AA+DSSP) also calculated the highest median and mean
for all the other SCOP classes. Note that domains belonging to the class e: Small
proteins are assigned easily by using the sequence-based method; SVM-pairwise

(AA) achieved a median of 0.995 and mean of 0.991. Therefore the improvement of
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Figure 4.4: Averaged ROC curves. For each method the 102 ROC curves — one for each
superfamily benchmark set - were averaged using vertical averaging. We trained six types
of SVMs to identify proteins belonging to a superfamily in the SCOP database. We refer
to them as SVM-pairwise+, SVM-pairwise (AA), SVM-pairwise (DSSP), SVM-pairwise
(PSIPRED), SVM-pairwise (AA+DSSP) and SVM-pairwise (AA+PSIPRED). The vertical
dashed line indicates the performance of the method at a false positive rate of 0.05.
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Figure 4.5: Averaged precision/recall curves. For each method the 102 precision /recall
curves — one for each superfamily benchmark set - were averaged using vertical aver-
aging. We trained six types of SVMs to identify proteins belonging to a superfam-
ily in the SCOP database. We refer to them as SVM-pairwise+, SVM-pairwise (AA),
SVM-pairwise (DSSP), SVM-pairwise (PSIPRED), SVM-pairwise (AA+DSSP) and SVM-
pairwise (AA+PSIPRED).
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4.2 Results and discussion

Table 4.3: P values indicating the significance of different AUCs. A p value < 0.025
suggests that the difference is significant.

SVM-pairwise SVM-pairwise p-value

method 1 method 2
AA PSIPRED 0.9799
AA DSSP 0.9416
AA AA+DSSP 0.0007
AA AA+PSIPRED  0.0009
AA+DSSP AA+PSIPRED  0.5214
DSSP PSIPRED 0.8381

SVM-pairwise (AA+DSSP) over this method is only slight. Another reason could be
that the secondary structure element L (Loops and irregular elements), as defined
by the DSSP, is the most frequent element in this class. Proteins belonging to this
class might be less structured, and therefore, the method might benefit less from
the structural annotations in this case. It can be concluded that the complementary
methods showed better performances over all and in each individual SCOP class.
The two classes All 3 proteins and « and (3 proteins (a+b) benefit the most by using

sequence and secondary structures.

4.2.3 Performance for constituent families

To establish whether the hypothesis that SVM-pairwise (AA+DSSP) performs better
than SVM-pairwise (AA) is universal across all 102 families, a family-centric version
of the data was plotted (Figure 4.6). The majority of the families - the dots in the
plot that have a positive value on the x-axis - display a classification improvement, or
show equal performance. A performance improvement of > 0.1 was observed for the
families: Hemoglobin I (a.1.1.2); Phycocyanin-like phycobilisome proteins (a.1.1.3);
Ferritin (a.25.1.1); Galectin (animal S-lectin) (5.29.1.3); Pepsin-like (6.50.1.2);
Pleckstrin-homology domain (b.55.1.1); DnaQ-like 3’-5’ exonuclease (¢.55.5.5); Bac-
terial dinuclear zinc exopeptidases (¢.56.5.4); and Transferrin (¢.94.1.2). Discordant

families with a performance drop of > 0.1 are: Bacterial AB5 toxins, B-subunits
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4.2 Results and discussion

(b.40.2.1); and Superantigen toxins, N-terminal domain (b.40.2.2). We account for
the lower performance of SVM-pairwise (AA+DSSP) with two explanations. First,
it is possible that there is similarity in the secondary structures, but that the Smith-
Waterman algorithm cannot capture this similarity using the IDENTITY matrix.
In order to check this hypothesis, we applied a spectrum kernel which measures
secondary structure similarity based on shared occurrences of fixed-length patterns
in the data. Surprisingly, domains belonging to Bacterial AB5 toxins, B-subunits
(b.40.2.1) can be predicted easily by using such a spectrum kernel. A spectrum
kernel with pattern length of 9, 11 and 13 achieved an AUC of 0.983. The AUC
calculated by SVM-pairwise (AA+DSSP) was 0.473 only. However, overall this
method is not very efficient; it achieved a median of 0.827 and a mean of 0.797 only,
and was therefore not longer included in the results and discussions. The second
explanation is that there is no structural similarity, but that the proteins are grouped
for functional reasons. An investigation of Swiss-Prot keywords in the respective
families shows that the keyword Toxin is over-represented. Toxins vary greatly in
purpose and mechanism, and can be highly complex; presumably this makes them
difficult to predict. Intuitively, it is expected that families for which the sequence
similarity scores are relatively low and the secondary structure similarity scores are
relatively high, benefit most from the usage of SVM-pairwise (AA+DSSP). This
hypothesis can be confirmed in several cases; for instance, Hemoglobin I (a.1.1.2),
Phycocyanin-like phycobilisome proteins (a.1.1.%), and Ferritin (a.25.1.1). However,
it is not universally true; for example, Pepsin-like (5.50.1.2) also benefits despite a

high level of sequence similarity.

4.2.4 SCOP benchmarks - weighting kernels

We use a weighted sum of two alignment scores to integrate information: the first
representing sequence similarity and the second representing secondary structure

similarity (Equation 4.1). The results discussed in the previous sections are based
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Figure 4.6: Scatterplots showing the relationship between improvement in homology
detection and similarity scores. Each of the 102 points in the scatter diagram corresponds
to a domain family. A performance increase was observed for all families that are located
to the right of the dashed line. Those families for which the performance difference between
amino acid sequence based methods and a complementary method (x-axes) is greater than
0.1 are shown as circles, the areas of which are proportional to the numbers of protein
domains in them. The y-axes show the discrepancy of average similarity scores between
the domains in the positive and the negative test sets.
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on experiments that used equal weight on both sets of scores, i.e. a = 0.5. Table 4.5
shows the variation in prediction performance of SVM-pairwise (AA+DSSP) with «,
the differential weighting. We carried out evaluations for only for the highlighted
families in Figure 4.6, i.e. those families that showed a performance difference of
> 0.1 compared to SVM-pairwise (AA). It was found that Hemoglobin I (a.1.1.2)
domains can be predicted more easily by using the complementary classifier. The
AUCs gradually increase with the weight given to the secondary structure similarity
scores; they range from 0.688 to 0.967. The effect of setting different o values
for this family is further illustrated in Figure 4.7. Similar to a.1.1.2, the AUCs
for the families Phycocyanin-like phycobilisome proteins (a.1.1.3), DnaQ-like 3’-
5" exonuclease (¢.55.3.5) and Transferrin (¢.94.1.2) also increase with the weight
given on the secondary structure similarity scores; they range from 0.644 to 0.988,
from 0.549 to 0.947 and from 0.691 to 0.948 respectively. The performance does
not always increase if the highest weight is given to the secondary structure score.
Pepsin-like (b.50.1.2), for instance, reaches the maximum AUC with an « value of
0.5, i.e. if equal weight is set to sequence and to secondary structure. We observed
previously that proteins belonging to Bacterial AB5 toxins, B-subunits (b.40.2.1)
and Superantigen toxins, N-terminal domain (5.40.2.2) are less clearly attributed
using the complementary classifier. Weighting the kernels did not result in a clear
improvement of performance, indicating that this family is generally difficult to

predict.

From this study it is difficult to conclude which weight should be given to the
sequence and to the secondary structure similarity scores. However, it is clear
intuitively that there is overlapping information in the two scores used in this work -
both sequences and secondary structures describe the same protein. Investigating
how sequences and their corresponding secondary structures may be combined more

effectively in ways other than summing their independently derived alignment scores
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Figure 4.7: Variation in pairwise similarity scores - computed from sequence and predicted
secondary structure alignments- plotted as intensities for three different values of «, on a
subset of the data i.e. from the training set domains corresponding to the family a.1.1.2
(globins). All 31 positive examples and a subset (40) of negative examples are shown. The
top left corners correspond to the target (positive) class of examples, where sequence (and
structure) similarities are high because these are proteins from the same SCOP family.
With predicted secondary structures only (o = 0), structural correlations within a family
decrease, but similarities across proteins from the negative class almost disappear (high
blue). When combining these sources of information (o = 0.6), we see that the scores of
alignment to the negative class can be suppressed, while maintaining high similarities for
proteins within the target family.
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Table 4.5: AUCs calculated by weighting. Setting « to its extreme values of one and zero
give classifiers that are based purely on sequence alignment scores and secondary structure
alignment scores respectively.

@ a.l1.1.2 a.1.1.3 a.25.1.1 b.29.1.3 b.40.2.1 b.40.2.2 b.50.1.2 b.55.1.1 c.55.3.5 c.56.5.4 c.94.1.2
1.0 0.688 0.644 0.831 0.723 0.628 0.706 0.793 0.811 0.549 0.601 0.691
0.9 0.764 0.737 0.916 0.782 0.595 0.629 0.809 0.846 0.581 0.627 0.733
0.8 0.822 0.809 0.962 0.829 0.569 0.582 0.853 0.890 0.586 0.632 0.757
0.7 0.865 0.865 0.980 0.864 0.532 0.435 0.882 0.925 0.604 0.656 0.761
0.6 0.893 0.902 0.994 0.895 0.510 0.435 0.900 0.957 0.667 0.684 0.780
0.5 0.915 0.935 0.999 0.918 0.475 0.483 0.907 0.977 0.732 0.703 0.812
0.4 0.925 0.962 1.000 0.932 0.574 0.536 0.899 0.987 0.758 0.736 0.858
0.3 0.929 0.973 1.000 0.944 0.606 0.594 0.889 0.989 0.768 0.781 0.883
0.2 0.933 0.982 1.000 0.950 0.646 0.602 0.893 0.990 0.750 0.845 0.902
0.1 0.940 0.986 1.000 0.950 0.706 0.606 0.841 0.985 0.813 0.892 0.924
0.0 0.967 0.988 0.999 0.938 0.597 0.600 0.898 0.966 0.947 0.888 0.948

could extend this work. For example, secondary structures can be used to guide a
sequence alignment algorithm in order to get a more biologically relevant alignment,
in particular when sequence similarity is low. It has been demonstrated, for instance,
that sequence alignments can be improved by limiting the number of gaps in the
regions of secondary structures (Barton and Sternberg, 1987; Gerstein and Levitt,
1996; Lesk et al., 1986). Yet the Smith-Waterman alignment algorithm used in
this work disregards this knowledge. The algorithm also disregards the fact that
mismatches between residues become, in principle, more likely if they correspond to
the same secondary structure. Chapter 7 expands on this issue and gives directions
on how secondary structures could help to guide sequence alignments using weighted
finite state machines (WFSMs)(Cortes and Mohri, 2005). Other ideas for improving
this work includes the use cross validation to set an optimal value for «, monitoring
performance on a hold-out subset of the training data. In the results reported here
on SCOP domains, we did not pursue this due to scarcity of data. Chapter 7 adds

some further critical evaluation of this work.

4.2.5 Comparison to PSI-BLAST

Handstad et al. (2007) used the same benchmark set as we did in this study. The
authors also tested a PSI-BLAST based approach, which is briefly reviewed in the

following. The authors first created a multiple sequence alignment of the positive
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training set. This alignment was given as input to PSI-BLAST, which was then
run for 1 iteration against the test set using standard parameter values. The E
values of the resulting alignments were used to rank the test set. An average ROC
score of 0.575 was reported for the superfamily benchmark, as compared to scores
of 0.797-0.919 for the SVM based methods tested in this study. An important
issue with the PSI-BLAST based approach described above is the relatively small
amount of labelled data used. Through iterative heuristic alignment, PSI-BLAST
can leverage unlabeled data from a large sequence database to obtain a much richer
profile representation of each sequence, but in the method used by Handstad et al.
(2007) only the 4,019 protein domains from SCOP were utilised. It is conceivable
that had they performed an iterative search against all the sequences in UniProtKB,
for example, the search might have found matches outside SCOP via which remote
homologous in the test set could have been linked. Alternatively one could also start
with the test sequences as starting point for the search rather than with the training
sequences, and check if their superfamilies can be successfully detected.

We implemented an improved version of PSI-BLAST that is more sensitive in
detecting remote homologous. For this we downloaded and installed PSI-BLAST
version ncbi-blast-2.2.23. We also downloaded UniProtKB release 2010_06 including
the SwissProt and TrEMBL databases comprising 517,100 and 10,867,798 sequence
entries, respectively. The UniProt sequences were combined with the 4,019 SCOP
benchmark domains, resulting in 11,388,917 sequences. We generated a combined
BLAST database using the makeblastdb command. This database was then searched
with each positive test sequence available in the benchmark set using an iterative
PSI-BLAST search. There were 3,128 positive test sequences in total. Default values
were used for running PSI-PLAST (Matrix: BLOSUMG62; gap existence penalty: 11
gap extension penalty: 1). The results were recorded and after the 10th iteration (or
at the point of convergence which happened earlier in few cases) we checked which

SCOP domains were detected with E values < 10. Appendix A shows the resulting
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hits for one of the families. i.e. family ’a.1.1.2’. All hits are listed, except hits to
members of the same family as the query family.

We report the recall rate of such a PSI-BLAST based method for various E value
thresholds based on the following method. For each query sequence, we recorded the
superfamily of the best hit. We counted a true positive if it matched the superfamily
of the query sequence, and a false negative otherwise. Figure 4.8 shows the recall
rate that was achieved for various E value cut-offs. If all hits are taken into account
a recall rate of 0.57 is achieved. If a more restrictive E value cut-off of 0.01 or 0.0001
are used, the recall rate drops to 0.54 and 0.51, respectively. The effect of further
reducing the E value cut-off on the recall rate is illustrated in Figure 4.8. Additional
experiments would have to be performed to determine which E value cut-off should
be used to detect similarities to remote homologues. Even though it is unclear how
to count the false positives in such a method, it is obvious that restrictive cut-offs
yield the fewest false positives, improving precision, but reducing the recall rate. A
direct comparison to the family-based discrimination methods above is difficult since
the method described is not a classification approach in which positive and negative
classes were predicted in a rank-based manner. In Chapter 4.2.1 we reported a true
positive rate (recall) of 0.58 at a false positive rate of 0.01 for the two best performing
methods of SVM-pairwise(AA+DSSP) and SVM-pairwise(AA+PSIPRED). If we
assume an equally low false positive rate for the PSI-BLAST result, taking into
account all hits up to an E value threshold of 10, then this method achieves a similar

recall rate of 0.57.
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Figure 4.8: The recall (sensitivity) of the PSI-BLAST based method is shown for various
E value cut-offs. For each of the 3,128 query sequences, we recorded the superfamily of the
best BLAST hit outside the query family. We counted a true positive if this superfamily
matched the superfamily of the query sequence, and a false negative otherwise.

72



Chapter 5

Tissue Specificity of Gene
Expression is Correlated with the
Sequence and Secondary Structure

of Resulting Protein Product

The successful prediction of protein remote homologues through combining sequence
and secondary structure similarity scores in a discriminative setting prompted us
to investigate a similar method to predict tissue specificity of gene expression, as
introduced in Chapter 3.2. Two data sets were prepared for this purpose. These are
explained in the following paragraphs, followed by other methods and the results

and discussion of this topic.
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5.1 Methods

5.1.1 Data collection
5.1.1.1 Fruit fly

Pre-processed data files were downloaded from the FlyAtlas website (Chintapalli
et al., 2007). The data consist of probe expression levels using Drosophila Genome 2.0
Arrays. This comprises whole-fly data, and data from 17 tissues dissected from the
adult fruit fly. The tissues investigated are the brain, head, eye, thoracicoabdominal
ganglion, crop, midgut, hindgut, ovary, testis, accessory gland, carcass, heart, salivary
gland, tubule, fat body, spermatheca mated and spermatheca virgin. Genes that
were not expressed in any of the tissues were removed from the data set, leaving
14,171 present probe sets. A gene was considered expressed if it was called present
in at least 3 of the 4 replicates. The 14,171 Affymetrix IDs were mapped to 11,804
FlyBase gene IDs. For this, all individual probes were mapped against all known
and predicted transcripts of the Drosophila melanogaster genome release version
5.4. Probes that mapped to more than one gene in the genome and probes that did
not map to any known or predicted gene in the genome were excluded from further
analysis.

Protein sequences for the 11,804 present genes were downloaded from the Ensembl
database (Ensembl 55, BDGP5.4). These are uniquely identified via the FlyBase
transcript IDs. In total, 8,598 FlyBase gene IDs could be mapped to exactly one
FlyBase transcript ID, while 3,206 IDs were mapped to more than one transcript,
resulting in a total of 18,133 protein sequences. If several transcripts IDs mapped to
the same sequence, one of the transcripts was removed, resulting in 15,560 unique
sequences for the final data set.

The PSIPRED programme (Jones, 1999a), version 2.61, was executed in order
to retrieve predicted secondary structures for the proteins participating in the

experiment. NCBI Toolkit and Blast (blast-2.2.18) (Altschul et al., 1990) were
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installed and used with PSIPRED. The PSIPRED programme also requires the
installation of a sequence database for which we compiled UniProtKB/Swiss-Prot
(version 14.9) (The UniProt Consortium, 2010). As before, the latter was filtered
to remove low-complexity regions, transmembrane regions, and coiled-coil segments,
using the pfilt programme that is included in PSIPRED. The E value threshold for
the blastpgp programme used for PSIPRED was 0.001; otherwise default values were
used throughout. The PSIPRED programme distinguishes between three secondary
structure states, i.e., H = Helix, E = Strand and C = Others.

The number of exons, the cDNA, CDS, 5’UTR length and 3’UTR length were

downloaded from the Ensembl BioMart for each transcript.

5.1.1.2 Mouse

The GNF mouse expression atlas (Su et al., 2004) was downloaded from its website
(http://biogps.gnf.org/downloads/). The GEO code for this data set is GSE1133. We
also downloaded the chip annotation file from the same site (GEO platform accession:
GPL1073). Affy IDs were mapped to Entrez Gene GenelDs. Rows where an affy 1D
corresponded to none or several GenelDs were disregarded. Rows that corresponded
to the same GenelDs were merged and the mean value taken. This resulted in a data
set with 21,900 genes. Protein sequences corresponding to these IDs were downloaded
from UniProtKB using a Java library named UniProtJAPI (Patient et al., 2008),
whereas fragments were excluded. The final data set consisted of 11,356 genes. If
several Entrez Gene GenelDs mapped to the same sequence, one of the genes was
removed, resulting in 11,352 unique sequences for the final data set used for the SVM
training.

As above, PSIPRED was executed to predict secondary structures for each protein
sequence.

This downloaded set comprised data from 61 mouse tissues. The tissues included

B220 B cells, CD4 T cells, CD8 T cells, adipose tissue, adrenalgland, amygdala,
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bladder, blastocysts, bone, bonemarrow, brown fat, cerebellum, cerebral cortex,
digits, dorsal root ganglia, dorsal striatum, embryo day 10.5, embryo day 6.5, embryo
day 7.5, embryo day 8.5, embryo day 9.5, epidermis, fertilized egg, frontal cortex,
heart, hippocampus, hypothalamus, kidney, large intestine, liver, lung, lymph node,
mammary gland, medial olfactory epithelium, olfactory bulb, oocyte, ovary, pancreas,
pituitary, placenta, preoptic, prostate, retina, salivary gland, skeletal muscle, small
intestine, snout epidermis, spinal cord lower, spinal cord upper, spleen, stomach,
substantia nigra, testis, thymus, thyroid, tongue, trachea, trigeminal, umbilical cord,
uterus and the vomeralnasal organ.

The number of exons, the cDNA, CDS, 5’UTR length and 3’UTR length were

downloaded from the Ensembl BioMart for each Entrez Gene GenelD.

5.1.2 Ranking genes according to their tissue specificity

We calculated the degree of tissue specificity for each of the 11,804 fruit fly genes
and 21,900 mouse genes by measuring the degree by which a given gene’s expression
profile differed from a ubiquitous expression profile. We used the gene specificity
index 5; to measure the tissue specificity of each gene. The formula used to calculate
the gene specificity is based on an adaptation of Shannon’s information theory to the
transcriptome framework, as described in Martinez et al. (Martinez and Reyes-Valdes,
2008). First, the gene expression profiles were converted into frequency matrices
by calculating the relative frequency p;; for the ith gene (i = 1,2, ..., g) in the ;"
tissue (j = 1, 2, ..., t). The average frequency p; of the #" gene among tissues of an

organism is defined by
1 t
L — sz‘j (5.1)
j=1

Si =

~ | =

t
Z &1092& (5'2)
= b Di
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where ¢ is the number of tissues examined in each organism (Equation 5.1). The
gene specificity then is defined as the information that its expression provides about
the identity of the source tissue (Equation 5.2).

The S; values range from 0 to logs(t), with higher values indicating higher tissue
specificities. A minimum of 0 is achieved if the gene is expressed at the same level
in all tissues, and the maximum of logs(17) = 4.09 in the fruit fly, and logs(61) =
5.93 in the mouse, is achieved if the gene is expressed in only one tissue. Examples
of S; values for genes with various expression patterns are shown in Figure 5.1. We
used Equation 5.3 to define 17 bins for the fruit fly and 61 bins for the mouse, with
each bin defining a group of genes with a certain degree of tissue specificity. Bin C;
(i=1,2, ... ,t) defines the central S; value associated with a group of genes. The
differences between two C; values of two neighbouring bins were divided in half so
that the upper 50% of S; values was attributed to the first bin and the lower 50%
to the second bin. Figure 5.2 summarises how many genes were attributed to the
respective bins in both organisms. Note that bin 7 contains genes that are expressed
in one tissue only, whereas bin 17 in the fruit fly, and bin 61 in the mouse, contain
genes that are expressed in all tissues. Note also that the distribution to the bins
could have been done differently. For example, we could have chosen to distribute an
equal number of genes to each bin. We used the formula above because it separates
the data into the bins observed after visual inspection of the gene-specificity against
the mean expression signal. Using this formula results in a class imbalance for some
of the bins. For some of the experiments, we chose the n-top an n-bottom genes from
the sorted list of gene specificities, in order to reduce dependency on this imbalance.

For evaluation purposes we compared and contrasted the ranked gene list cal-

culated using Shannon’s information theory with the gene list published in Suppl.
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Figure 5.1: Example gene specificities. The gene specificity values (legend boxes) are
shown for 4 fruit fly genes with various expression profiles in 17 tissues. Genes with a
ubiquitous expression profile have gene specificity values close to 0, while genes with specific
profiles have gene specificity values close to 4. (a. = accessory , t. = thoracicoabdominal ,
sp.= spermatheca)
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tables S1 and S2 of FlyAtlas to address the differences and similarities of these gene
lists. S1 lists 45 highly specific genes, with the five top ranking genes included for
each tissue. These represent genes present in all four replicates in that tissue and
absent in all four replicates everywhere else. The genes also have the highest signals
possible compared with other tissues. Similarly, a list of 50 genes was published in S2
containing genes that are ubiquitously expressed. For this, the mean expression value
for each tissue and the standard deviation of all means were calculated for each probe
set. The resulting standard deviations were divided by the mean of all means. The
resulting list was sorted and the top 50 genes were selected. The Shannon’s entropy
method is largely in agreement with the selection procedure explained above (median
S; for S1= 3.825, median S; for S2= 0.049), except for some genes that are classified
highly tissue-specific by FlyAtlas but show a midrange pattern of expression by the
method used in this work ( .S; < 2 for: FBgn0029090, FBgn0033419, FBgn0033702,
FBgn0038526, FBgn0052815). These correspond to lowly expressed genes that are
detected in only one tissue using present/absent counts. An important advantage
of using Shannon’s entropy formula is that it also considers potential biases in the
expression levels across the tissues that express the gene (Schug et al., 2005). The S;
value for the disparate genes is relatively low because the expression levels measured
for these genes are similar in most tissues. Another important advantage of using
Shannon’s entropy formula is that it not only clearly separates the tissue-specific from
ubiquitously expressed genes, but also allows us to distinguish between genes that
show mid-range expression. Furthermore, using a single measurement for defining
gene specificity makes it easier to globally analyse and inspect the properties of
genes assigned to a specific category. Thus, the ranked gene list presented here is
more detailed than previously presented, and a clearly defined statistical framework
is used that has previously been proven valuable. The bins containing genes with
various degrees of tissue specificity overlap with previously identified categories for

tissue-specific (De Ferrari and Aitken, 2006) and housekeeping genes (Farre et al.,
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2007). Many significantly upregulated terms in the ubiquitous bins relate to genes
whose products are involved in RNA processing. Overall, the tissue-specific genes

have a more varied set of functions.

5.1.3 Sequence alignments and similarity scores

All-against-all pairwise similarity scores were calculated using the R package Biostrings
(Pages et al., 2009), with default gap opening and gap extension penalties of 10.0
and 4, respectively. The Smith-Waterman algorithm for performing local sequence
alignments was chosen in the settings. The software was employed to compute
alignments between two proteins, based on their amino acid or secondary struc-
ture symbols. The alignments were scored so that comparatively high scores were
given to highly similar alignment regions and low scores were given otherwise.
The similarity matrices used for the sequence alignments and for the secondary
structure alignments were BLOSUMG62 and IDENTITY, respectively. The scores
were then used to assemble the SVM input vectors. Note that computing all-

against-all sequence alignments is computationally expensive. For the mouse, we

11,356 x 11,356 11,356
2 + 2 )

computed 2 * ( = 128,970,092 alignments while we computed

2 % (18’133;187133 + 18’2133) = 328,823, 820 alignments alignments for the fruit fly.

5.1.4 SVM training

The R package 1071 (Dimitriadou et al., 2009) was employed to train and test the
classifiers, using a polynomial kernel for binary classification. Model parameters were
chosen by searching possible values and identifying those that minimised prediction
errors on the training data. The polynomial kernel was used because it performed
slightly better than did the other kernel types available in 1071 (linear, sigmoid,
rbf) when tested on a small subset of the data.

The models were trained 100 times on a randomly selected 90% of the data and
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Figure 5.2: Splitting fruit fly and mouse genes into bins according to their tissue
specificity values (S;). The genes are grouped into 17 (fruit fly) and 61 (mouse) different
bins as described in the methods section using Equation 5.3. Tissue specificity is highest
for bin 1 and lowest for bin 17 (fruit fly) and bin 61 (mouse). a) Bin names used in
the manuscript b) The S; cutoffs used to assemble the respective bins ¢) The number of
FlyAtlas genes assigned to the bins d) The number of proteins assigned to the bins e) The
unique number of proteins assigned to the bins (for the mouse these numbers are almost
identical with the numbers in d). A) Fruit fly B) Mouse C) Example on how the upper S;
threshold for bin 10 was calculated for the fruit fly D) Boxplots showing the gene specificity
distribution of all genes in both organisms.
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performance was tested on the remaining 10% of the data. The resulting ROC curves

for each run were combined using vertical averaging.

5.1.5 SVM input vectors

The SVM input vectors assembled are described in the following subsections. Their
predictive performances were compared using mean AUCs which are given a a later

section.

5.1.5.1 Composition of amino acid residues

Each protein in the training data set of proteins was characterised by a vector (i = 1,
..., 21) representing the amino acid composition, together with a positive or negative
label for discriminating the two different groups (e.g. tissue-specific and broadly
expressed genes). The vector had 20 elements for the amino acid composition since
there are 20 possible amino acids. Amino acid composition is defined as the ratio
between the number of occurrences of a specific amino acid residue and the total

number of residues in a protein.

5.1.5.2 Composition of secondary structure symbols

Each protein in the training data set of proteins was characterised by a vector (i =
1, ..., 4) representing the secondary structure element composition, together with a
positive or negative discrimination label. The vector had 3 elements for the secondary
structure composition since there are 3 states predicted by PSIPRED. Secondary
structure composition is defined as the ratio between the number of occurrences of a

specific secondary structure state and the total number of residues in a protein.

5.1.5.3 Smith-Waterman similarity scores

Each protein in the training data set of n proteins was characterised by a vector (i

=1, ..., n+1) representing the Smith-Waterman similarity scores computed against
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all other proteins in the training data set, together with a positive or negative
discrimination label.

The sequence based classifier was trained on sequence similarity scores, while
the secondary structure based classifier was trained on secondary structure sequence
similarity scores. For the combined classifier, each protein in the training data set
of n proteins was characterised by a vector (i = 1, ..., 2x n+1) representing the
Smith-Waterman similarity scores computed against all other proteins in the training
data set, using both the amino acid sequences and secondary structure sequences,

together with a positive or negative discrimination label.

5.1.5.4 Genomic features

Each protein in the training data set of proteins was characterised by a vector
representing the genomic features, together with a positive or negative discrimination
label.

The attributes used for each transcript were: 1. protein length (log), 2. number
of exons, 3. presence of S/MAR in the 5’ region (binary), 4. presence of S/MAR in
the 3’ region (binary), 5. ¢cDNA length (log), 6. CDS length (log), 7. 5’'UTR length
(log), 8. 3'UTR length (log), 9. the number of CpG islands, 10. the CpG content
and 11. the mreps period and the mreps exponent.

If a value was not available for a transcript, it was set to 0.

5.1.5.5 Combined input vector

The attributes used for each transcript were as described above for the genomic

features. In addition, the percentage of each of the 20 amino acids was used.

5.1.6 Other methods

The areas under the curves (AUCs) were computed using the R package ROCR (Sing

et al., 2005). The same package was used to calculate the average ROC curves based
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on vertical averaging.

SSRs were computed using the mreps program (Kolpakov et al., 2003) for the
5’'UTRs. A minimum length of 10 was required for the sequence repeats, otherwise
default values were used. A Java program was written to parse the mreps output.
The mreps period and exponent were used in the SVMs.

The program newcpgreport was used to detect CpG islands in the sequences
1,000 bp upstream of the transcription start sites. Default settings were used, i.e.,
the window size was 100, the shift increment was 1, the minimum length 200,
the minimum ratio between observed and expected CpG content was 0.6, and the
minimum percentage 50%. A Java program was written to parse the number of CpG
islands in each sequence.

The CpG bias of a sequence is defined as the ratio of the observed frequency of
CpG dinucleotides divided by their expected frequency (Equation 2.1). The expected
number of CpG dinucleotides is the product of the frequency of C and G nucleotides
in a given sequence. A Java program was written to calculate the number of CpG
dinucleotides.

Genomic features, such as cDNA length, etc., were downloaded from Ensembl
using BioMart.

The EMBOSS program marscan was executed to find MAR/SAR sites in nucleic
sequences (here 1,500 upstream). A Java program was written to extract the number
of MAR sites identified.

All Affymetrix arrays taken from Zid et al. (2009) were normalised using gcerma
background correction to correct for non-specific binding, followed by a quantiles

and loess normalisation using the corresponding Bioconductor packages.
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5.2 Results

5.2.1 Prediction performances

Prediction performances for all classifiers tested are summarised in Tables 5.4-5.7.
Median AUCs are presented in Tables 5.4 and 5.6 while mean AUCs are presented
in Tables 5.5 and 5.7. The mean AUCs are presented with a confidence interval to

give an indication of unreliability.

5.2.1.1 Protein sequence-based classifier

First, we studied the ability of SVMs to discriminate the various tissue specificities
of 17 groups of fruit fly genes and 61 groups of mouse genes, based on the amino
acid content of their protein products. Columns 3 in tables 5.4 and 5.6 summarise
the AUCs obtained for discriminating the tissue-specific bin 1 from bins 1-17 in the
fruit fly, and bins 1-61 in the mouse, based on frequency counts of amino acids in
the transcripts. All groups of genes with various tissue specificity showed better than
random predictions (AUCs fruit fly = 0.541-0.795, AUCs mouse = 0.596-0.942). The
discriminating power increased with the bin number, i.e., the negative training set
number, in most cases (black dots in Figure 5.3). In the fruit fly, the performance
was best for discriminating bin 1 and bin 1/ (AUC= 0.795), and worst for genes
belonging to the same bin i.e., bin 1 (AUC= 0.541). In the mouse, the performance
was best for discriminating bin 1 and bin 41 (AUC= 0.942), and worst for genes
belonging to the same bin i.e. bin I (AUC= 0.596).

Next, we investigated whether the use of Smith-Waterman sequence similarity
scores, rather than simple amino acid counts, improves the ability of the SVMs to
discriminate between tissue-specific and broadly expressed genes. Pairwise mean
homologies within and between tissue specificity bins are presented for both organisms
in Figures B.1, B.2 and B.3 (Appendix B).

Overall, the classifiers using Smith-Waterman similarity scores had more discrimi-
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Figure 5.3: Discriminating tissue-specific genes from broadly expressed genes in
the fruit fly and in the mouse. Prediction performances of SVMs for discriminating
tissue-specific genes (bin 1) from tissue-specific and broadly expressed genes (bins 1-17
in the fruit fly and bins 1-61 in the mouse) based on sequences, predicted secondary
structures and genomic features. The prediction performances were measured as median
AUC averaged over 100 runs. AA% and SS% indicate that the input vector for the SVM
contained amino acid percentages and the secondary structure symbol percentages for each
gene. AA is based on Smith-Waterman similarity scores of the protein sequences, SS is
based on Smith-Waterman similarity scores of the secondary structures and AA+SS is a
combination of the latter two. GF indicates that genomic features where used to assemble
the input vector. a) results for the fruit fly b) results for the mouse.
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native power than did the classifiers based on the amino acid content (blue and black
dots in Figure 5.3). We observed an increase of 3.2% and 4.1% in the mean AUCs
for the fruit fly and mouse, respectively. A total of 15 out of the 17 benchmarks
showed higher AUCs using this method in the fruit fly (Table 5.4) while we observed
an improvement in 46 out of 60 benchmarks in the mouse (Table 5.6). However, the
additional benefits of these became negligible when compared to the computational
expense added by calculating all-versus-all Smith-Waterman similarity scores. For
this reason, in many of the classifiers below, we used only the amino acid counts.

Because the distribution of genes to groups using Equation 5.3 results in an
imbalance in the number of genes attributed to classes, we looked for a different way
to build the test and training sets. To do this, we used the ordered list of genes
and took the most tissue-specific and most broadly expressed genes, starting with
at least 30 in the positive and negative training sets, up to 5,000 transcripts (i.e.,
10,000 in total if considering both groups). We ran classifiers for different numbers
of genes, and determined the best classifier using amino acid counts.

Figures 5.4a and ¢ summarise the results of these experiments for both organisms.
It shows that the prediction performance decreases with the number of genes added
to the training sets. This was not surprising since intuitively it should be more
difficult to discriminate genes that have more similar gene specificity values. The
best discriminative power was found if the 60 most specific genes were compared to
the 60 most broadly expressed genes in the fruit fly (AUC = 0.833), while 30 was
the best number of genes in the mouse (AUC=1). Figure B.4 lists the gene names
and descriptions for the 30 most tissue-specific and 30 most broadly expressed genes
responsible for the AUC=1 result in the mouse. There is an increased occurrence
of ’olfactory receptor genes’ in the list of broadly expressed genes (5 genes), while
several instances of the ’kallikrein 1-related peptidase’ (5 genes), ’crystallin’ (2 genes)
and ’carcinoembryonic antigen-related cell adhesion molecule’ (2 genes) might bias

the list of tissue-specific genes. Figure B.5 presents the amino acid contents of these
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genes. These were used as input for the classifier that achieved the AUC=1 result. It
is not immediately obvious which amino acids separated clearly between the classes,
even though some tendencies are apparent. For example, the amino acid asparagine
(N) appears to be more frequent in the list of tissue-specific genes. A more detailed
analysis of amino acid content in the different classes is presented below. Figures
B.6 and B.7 present the all-against-all sequence similarity scores calculated for these
60 genes.

We were also interested in the prediction performance of a model that is trained
on genes from one of the two organisms and tested on the other. Figure 5.5a shows
the results of a model that was built using mouse genes, and tested on fly genes
while Figure 5.5b shows the results after swapping the organisms. The classifier that
was trained on mouse genes and tested on fly genes performed best when 65 genes
were used to train and test the model (AUC of 0.711). In contrast, the classifier that
was trained on fly genes and tested on mouse genes performed best when 15 genes
were used to train and test the model (AUC of 0.751). The models trained on mouse
genes overall performed better (median AUC = 0.596) than the models trained on
fly genes (median AUC = 0.537) when averaged over all benchmark sets tested (99

benchmark sets in which the number of genes ranged from 15 to 500).

5.2.1.2 Secondary structure-based classifier

The classifier based on secondary structure symbols was generally poor. The average
AUCs were 0.515 and 0.604 for the fruit fly and mouse, respectively. Again, the full
results are given in tables 5.4, 5.6 and Figure 5.3 (green dots). The use of secondary
structure similarity scores as input vectors for the SVMs resulted in an increase in
AUCs compared to those obtained using the secondary structure symbols alone (see
red dots in Figure 5.3). The average AUCs were 0.674 and 0.751 for the fruit fly and
mouse, respectively. Compared to the classifiers using amino acid similarity scores,

no performance improvement could by gained for any of the benchmarks in either
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Figure 5.4: Relationship between the number of genes in the training set and
the prediction performance. The n-top and n-bottom genes from the ordered list of
genes, according to their gene specificities, were used as positive and negative training
sets. The x-axes indicate how many genes have been used in the positive and the negative
training set. The prediction performance is plotted in the y-axis and is measured as median
AUC averaged over 100 runs. The classifiers were based on a+b) Amino acid percentage.
c+d) secondary structure symbol percentage.
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Figure 5.5: Relationship between the number of genes in the training set and
the prediction performance. The n-top and n-bottom genes from the ordered list of
genes, according to their gene specificities, were used as positive and negative training
sets. The x-axes indicate how many genes have been used in the positive and the negative
training set. The prediction performance is plotted in the y-axis and is measured as AUC.
The classifiers were trained on a) mouse genes (tested on fly genes) b) fly genes (tested on
mouse genes).
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organism.

We investigated how the prediction performance changes with the number of
genes attributed to the positive and negative training sets taken from the bottom
and top of the ordered list of gene specificities. Figures 5.4b and d summarise the
results of these experiments for both organisms. Prediction performance decreases
with the number of genes added to the training sets. For the secondary structure
similarity scores, the best number of genes was 30 for the fruit fly (AUC = 0.889)
and 60 for the mouse (AUC = 0.778).

5.2.1.3 Combined sequence and secondary structure-based classifier

Combining sequence and structure similarity scores did not increase the performance
of the sequence based classifier (yellow dots in Figure 5.3). In the fruit fly, none of
the benchmark showed any performance improvement, except if genes belonging to
bin 1 were tested against themselves, which was likely to represent a random effect.
In the mouse, only 7 out of the 60 benchmark could be improved (bin 1 against bins

2,6, 9, 10, 18, 22 and 2/).

5.2.1.4 Classifier based on genomic features

Next, we investigated the influence on classifier performance of other features that
had previously been found to discriminate between tissue-specific and housekeeping
genes in human, mouse and, to some extent, fruit fly samples. The prediction
performances for the bin experiments ranged from 0.579-0.849 in the fruit fly and
0.477-0.927 in the mouse. The performance of this classifier was roughly in the range

of the classifier that used amino acid percentages (brown dots in Figure 5.3).

5.2.1.5 Combining sequence-based classifier with genomic features

We also investigated if combining amino acid percentages and the genomic features

results in an improvement in the classifier performance. The prediction performances
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for the bin experiments ranged from 0.473-0.925 in the fruit fly and 0.569-0.968 in
the mouse. In the fruit fly, this was the best classifier tested for all benchmarks,
while in the mouse, it was the best classifier for 41 groups of the 61 groups tested
(brown dots in Figure 5.3). This amounts to a 13.86% and 6.32% increase in average
AUCs for the fruit fly and mouse, respectively, if compared to the classifier based on
amino acid percentages only, and to a 5.69% and 9.25% increase compared to the

classifiers based on genomic features only.

5.2.2 Relation to other work

De Ferrari and Aitken (2006) trained a Naive Bayes classifier to discriminate between
housekeeping and tissue-specific genes in human, mouse and fruit fly data. We
downloaded the supplementary material for the fruit fly and mouse experiments from
this study to compare the data set with ours and test our SVM method on these data.
For the fruit fly, data for 20,016 transcripts were downloaded. Of these, 80 were
labelled housekeeping while 412 were labelled tissue-specific. A Naive Bayes classifier
was trained by the authors of the study to classify transcripts in the benchmark sets
and also the remaining transcripts. The resulting probabilities, for a transcript to be
housekeeping, were included in the supplementary data files. First, we examined the
gene specificity of the training examples. The median gene specificity values for the
80 housekeeping and 412 tissue-specific transcripts, using the S; values calculated
from the FlyAtlas data, were 0.082 and 0.400, respectively (Figure 5.6a, first two
boxes). While the housekeeping genes have low gene specificity values indicating
broad expression, the genes labelled tissue-specific in this study, show a mid-range
pattern of expression rather than a clear tissue-specific expression. The tissue-specific
genes were originally identified by mapping homologues to human tissue-specific
genes that in turn have been identified by various sources. Our data shows, that these
appear not to be truly tissue-specifically expressed in the fruit fly. For instance, the

gene FBgn0003071 (Phosphofructokinase; mapped to the transcripts CG4001-RA,
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CG4001-RB, CG4001-RC) that is involved in glycolysis, is expressed in all tissues
examined by FlyAtlas, yet the transcripts were used as tissue-specific examples in
the work above. It should be noted that our gene specificity values are based on
genes, while the authors worked with gene transcripts. However, the gene has three
annotated transcripts and it is unlikely that all three of them are tissue-specific
transcripts.

Second, we investigated the gene specificity values for transcripts that were
predicted to be housekeeping or tissue-specific (Figure 5.6a, boxes 2-10). Several
thresholds were used to identify the class for a transcript (ranging from 50% to 95%
probability). Housekeeping genes could be reliably identified using a probability
threshold > 90%. However, below that threshold many genes with restricted expres-
sion were predicted to be housekeeping. Tissue-specific genes could not be identified
reliably at all thresholds used according to the gene specificity values S; calculated
from FlyAtlas. However, it should be noted that the downloaded supplementary data
was partly inconsistent with the published paper. For instance, 3,410 transcripts were
predicted to be housekeeping using a probability threshold >50% in the main paper,
while in the supplementary data only 1,081 transcript were labelled housekeeping
when using the same threshold. It was unclear which data was the correct one.

Similar results were observed for the mouse (Figure 5.6b). The housekeeping
transcripts had low S; values, while the tissue-specific genes showed midrange patterns
of expression. Many outliers were present when investigating the gene specificities of
the predicted class labels. Again, there was an inconsistency with the downloaded
data. The lines in the downloaded data set for the mouse did not add up to the
numbers presented in the paper, and is incomplete. Therefore only the fruit fly data
set was further investigated in the following for which all the training examples were
available for download.

We mapped the 80 housekeeping and 412 tissue-specific transcripts from the

fruit fly data set to the sequence data and genomic features defined in previous
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paragraphs. Out of the 412 tissue-specific transcripts only 392 transcripts could
be mapped to these data, hence a few training data examples were lost during the
mapping. Next, we trained several SVMs to discriminate between the two classes
of genes. Figure 5.7 shows the prediction performance of several SVM classifiers
trained on three different sets of features: (1) on the amino acid counts in the protein
sequences as explained in chapter 5.1.5.1 (2) on the amino acid counts in the protein
sequences and various genomic features as explained in chapter 5.1.5.4 (3) on the
features used by De Ferrari and Aitken (2006) (reviewed in chapter 3.2), excluding
the percentage of GO terms. As explained before, we do not think that functional
characteristics should be used to train the classifier and therefore were re-trained the
classifier without that information and used it for comparison reasons. The figure
also indicates the performance of the Naive Bayes classifier on the same data-set as
reported by the authors using the full set of features (4). We compared the TPR at a
constant FPR of 20% of all four classifiers. The TPRs were 85%, 93%, 62% and 77%
for classifier 1-4, respectively. The SVM classifier based on amino acid percentages

and genomic features performed best.

5.2.3 Additional information on features that discriminate

between the classes
5.2.3.1 Amino acids with best discriminative power

Some amino acids are not independent and do not provide any additional advantage
when evaluated together. A forward feature selection (Miller, 1990) was used to
select the amino acid combinations which gave most discriminative power between
the test set and the training set for the 250 most tissue-specific and 250 most
ubiquitously expressed genes. The number 250 was chosen because we felt it was
a good compromise between the number of genes in the training and test sets

and the computational expense, as well as the degree of tissue specificity, which
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Figure 5.6: Gene specificity of housekeeping (HK) and tissue-specific (TS) genes
(transcripts) defined by De Ferrari and Aitken (2006). The first two boxes in each

figure correspond to the genes (transcripts) in the training-set. All other boxes show the

gene specificities of transcripts predicted to be HK or TS by the Naive Bayes classifier at

various probability thresholds.
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Figure 5.7: Prediction performance compared with published work. Our classifier
based on amino acid counts and/or genomic features was applied on the fruit fly data used
by De Ferrari and Aitken (2006). In this, 80 housekeeping transcripts were discriminated
from 412 tissue-specific transcripts. The green star indicates the performance of the Naive
Bayes classifier on the data set. The other curves represent the performances of SVMs
trained in this work. The SVMs were trained on (1) amino acid percentages in the sequences
(AA%), (2) amino acid percentages combined with genomic features (AA%+GF) and (3)
the genomic features used by DeFerrari and Aitken, excluding the percentage of GO terms.
becomes less clean as more genes are added to the training set. Forward selection
was started from the single amino acid that discriminated best between the classes
according to the Fisher’s ratio test (Equation 2.8). This test is based on the ratio
of between-class variance to within-class variance. It evaluates how well a single
amino acid is correlated with the separation between classes. We then built all of
the two-dimensional feature subsets that include the amino acid already selected
from the first step and finds the best one. This process was continued, building
n-dimensional feature subsets until the subset reached a size of 20. We used AUCs
for the selection criteria in this work. This procedure of attribute selection has been
termed a greedy approach. A disadvantage of using this selection approach is that if
two features have similar discriminative power, only one of them will be selected and
appear important in the results.

Using this method, the amino acid N (asparagine) discriminated best between the

two groups in both organisms in a 1-dimensional classifier, with asparagine being more
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frequent in tissue-specific genes than in broadly expressed genes (Figure 5.8). The
medians for the broadly expressed genes were 4.12 and 2.88 and for the tissue-specific
genes were 5.0 and 4.22 for the fruit fly and mouse, respectively. The robustness was
investigated by evaluating which amino acids discriminated between the groups for
n number of tissue-specific and broadly expressed genes, where n ranged from 30 to
1,000. In the fruit fly, asparagine was the best discriminator in 518 cases, followed
by cysteine in 350 cases, leucine and proline in 51 cases and glutamine in one case.

In the mouse, asparagine was the best discriminator in 549 cases, and leucine in 422

cases (5.9).
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Figure 5.8: Density distribution of asparagine in the 250 most tissue-specific and the
250 most broadly expressed protein transcripts for the a) fruit fly and b) mouse.

Next, 19 two-dimensional classifiers were trained for finding the best combination
of two amino acids, i.e., between asparagine and the other 19 amino acids. The pair of
amino acids that achieved the highest AUC was recorded. This process was repeated
100 times to prevent situations where a well-scoring feature set might be found by
chance. For the fly, the amino acid pair N+A (asparagine and alanine) performed
best, while for the mouse the amino acid pair N+-E (asparagine and glutamic acid)
achieved the highest AUC (Figure 5.10). Similarly, the best combinations of 3-20

amino acids were determined. Table 5.1 lists the best combinations of features. In
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Table 5.1: AUCs calculated for n-dimensional classifiers. The 250 genes with the lowest
gene specificity value (broadly expressed) were compared with the 250 genes with the
highest gene specificity value (tissue-specific expression). The column in grey indicates
the amino acid combination that results in best performance. Classifiers were trained 100

times.

Amino Acid Combination l AUCs
Fly (Drosophila melanogaster)
N 0.640
N+A 0.732
N+A+C 0.705
N+A+C+P 0.730
N+A+C+P+S 0.756
N+A+C+P+4S+R 0.755
N+A+C+P+S+R+Q 0.754
N+A+C+P+S+R+Q+I 0.769
N+A+C+P+S+R+Q+I1+F 0.776
N+A+C+P+S+R+Q+I+F+Y 0.773
N+A+C+P+S+R+Q+I+F+Y+K 0.771
N+A+C+P+S+R+Q+I+F+Y+K+V 0.770
N+A+C+P+S+R4+Q+I+F+Y+K+V+M 0.768
N+A+C+P+S+R4+Q+I+F+Y+K+V+M+W 0.769
N+A+C+P+S+R4+Q+I+F+Y+K+V+M+W+D 0.773
N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D+A 0.763
N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D+A+L 0.774
N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D+A+L+T 0.774
N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D+A+L+T+G 0.772
all 20 amino acids 0.764
Mouse (Mus Musculus)
N 0.732
N+E 0.781
N+E+K 0.795
N+E+K+A 0.810
N+E+K+A+H 0.823
N+E+K+A+H+C 0.834
N+E+K+A+H+C+W 0.833
N+E+K+A+H+C+W+L 0.827
N+E+K+A+H+C+W+L+V 0.836
N+E+K+A+H+C+W+L+V+Q 0.831
N+E+K+A+H+C+W+L+V+Q +R 0.835
N+E+K+A+H+C+W+L+V+Q +R+G 0.855
N+E+K+A+H+C+W+L+V+Q +R+G+T 0.851
N+E+K+A+H+C+W+L+V+Q +R+G+T+M 0.858
N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P 0.851
N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P+F 0.858
N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P+F+ S 0.849
N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P+F+ S +1 0.848
N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P+F+ S +1 +Y 0.843
all 20 amino acids 0.837
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Figure 5.9: Best discriminating amino acids in 1-dimensional classifiers. Fisher’s
ratio versus the number of genes used for positive and negative training-sets. Fisher’s
ratios are shown for only those amino acids that had the highest discrimination power for
at least one of the benchmark sets. a) fruit fly and b) mouse.

the fruit fly, the residue combination N+A+4C+P+S+R+Q+I+F led to the best
prediction performance (AUC= 0.776), while in the mouse, the residue combination

N+E+K+A+H+C+W+L+V+Q +R+G+T+M (4+P+F) led to the best prediction
performance (AUC= 0.858).

5.2.3.2 Secondary structure elements with the best discriminative power

Forward feature selection was also used to select the secondary structure element
combinations which gave most discrimination between the test set and the training
set for the 250 most specific and ubiquitously expressed genes. C was the best
secondary structure character for a 1-dimensional classifier, with an AUC=0.620 in
the fruit fly, while E results in the best performance in the mouse, with an AUC
=0.904 (Table 5.2). The overall C content was higher for the tissue-specific genes
than for the broadly expressed genes (48.15 and 42.71) in the fruit fly and in the
mouse (49.33 and 44.11). To investigate the robustness, we also checked which
secondary structure elements best discriminated between the groups for n number of

tissue-specific and broadly expressed genes, where n ranged from 30 to 1,000. In the
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Figure 5.10: Distribution of asparagine (N) and alanine (A)/glutamic acid (E) in
the 250 most tissue-specific (ts) and the 250 most broadly expressed (hk) protein transcripts
for the a) fruit fly and b) mouse.

Table 5.2: AUCs calculated for n-dimensional classifiers. The 250 genes with the lowest
gene specificity value (broadly expressed) were compared with the 250 genes with the
highest gene specificity value (tissue-specific expression).

Secondary Structure Elements | AUCs Secondary Structure Elements | AUCs
Fly Fly Mouse Mouse

C 0.620 E 0.904

C+E 0.621 E+H 0.683

C+E+H 0.612 E+H+C 0.686

fruit fly, C was the best discriminator in 967 cases, followed by H in 4 cases. In the

mouse, E was the best discriminator in 292 cases, and H in 679 cases (5.11).

Next, we analysed some features individually that have been shown to differ

between tissue specific and housekeeping genes:

5.2.3.3 Sequence lengths

Housekeeping genes were observed to be shorter in human data (Eisenberg and
Levanon, 2003). We did not find any correlation between sequence length and tissue
specificity in the fruit fly and mouse data used in this work. Figure 5.12 shows the
protein sequence lengths for each gene in the two data sets versus tissue specificity.

There is no immediate obvious correlation between protein sequence length and gene
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Figure 5.11: Best discriminating secondary structure elements in 1-dimensional
classifiers. Fisher’s ratio versus the number of genes used for positive and negative
training-sets. Fisher’s ratios are shown for the three secondary structure elements predicted
by PSIPRED. a) fruit fly and b) mouse.

specificity. The correlation coefficients r were -0.108 and -0.065 for the fruit fly and
mouse, respectively.

We also tested if a linear correlation existed between tissue specificity and cDNA,
3’UTR length, 5’'UTR length and CDS length. Again, no clear linear relationship
was found. For the mouse, the highest correlation was found for the 3’UTRs that
had a correlation coefficient of -0.137. The other correlation coefficients were -0.07,
-0.107 and -0.078 for CDS, ¢cDNA and 5" UTR lengths respectively. Similarly, the
highest correlation was found for the 3’'UTR length for the fly genes (r=-0.126). The
other correlation coefficients were -0.111, -0.150 and -0.116 for CDS, cDNA and 5’

UTR lengths, respectively.
5.2.3.4 CpG islands and predicting the methylation status of transcrip-
tion units

A correlation between the occurrence of CpG islands, and thus DNA methylation,
in housekeeping and tissue-specific genes has been investigated in a comprehensive

mouse data set (Schug et al., 2005). Limited DNA methylation was observed in the
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Figure 5.12: Protein sequence lengths versus tissue specificity. There was little
evidence for any relationship between sequence length and tissue specificity in the fruit
fly (15,560 sequences) and mouse data set (11,805 sequences). The correlation coefficients
were -0.108 for the fruit fly and -0.065 for the mouse.

fruit fly (Lyko et al., 2000; Wang et al., 2006), but to the best of our knowledge
there was no study that investigated a possible correlation between the expression
breadth and DNA methylation in the fruit fly. We investigated the FlyAtlas data set
for this purpose. We also investigated the mouse data set for such a correlation to
confirm or negate previous observations.

We plotted the fraction of promoters with CpG islands against the gene specificity
value for both organisms (Figure 5.13). In the fruit fly, the CpG islands appeared to
be randomly distributed for genes with various tissue specificity (r = 0.212), while in
the mouse there was a clear negative correlation between the fraction of promoters
with CpG islands and tissue specificity (r = 0.922). This negative correlation has
been shown previously in human and mouse genes (Schug et al., 2005).

Next, we investigated the ratio of observed to expected CpGs (Equation 2.1) in
the fruit fly and mouse sequences to predict methylated and unmethylated genomic
regions. Figure 5.14 shows the frequency of all annotated protein coding genes in

the fruit fly for which tissue specificity information is available, with CpG [o/e]
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Figure 5.13: Frequency of CpG islands in fruit fly and mouse promoter regions.
The fraction of promoters with CpG islands, as identified by the newcpgreport program,
is plotted against the gene specificity value. The variable r in the legends indicates the
correlation coefficient between the two variables.

frequencies between 0 and 2. For comparison, the contrasting distribution of all
protein coding genes in the mouse is shown in panel b. In the fruit fly, most genes
have a value around 1.0. Genes with a value < 0.7 represent CpG deficient genes.
These are the genes that are expected to be methylated; these are very few compared
to the number in the mouse. Again, this is in agreement with previous observations
that there is limited DNA methylation in the fruit fly (Lyko et al., 2000; Wang et al.,
2006). For both organisms, the density curves for broadly expressed genes are shifted
towards the right when compared with the density curves for the tissue-specific genes.
Although this signal was weak in the fruit fly data set, this indicated that the broadly
expressed genes are less frequently methylated and agrees with previous observations
that housekeeping genes are not methylated (Foret et al., 2009).

To further assess the difference in CpG [o/e] frequencies between ubiquitous
and tissue-specific transcripts, we compared these two categories. We observed an
even distribution of the CpG-deficient genes (CpG [o/e] < 0.7) across varying gene
specificity values. For both organisms, CpG-deficient genes cover all levels of tissue

specificity (Figure 5.15). CpG over-represented genes are more commonly broadly
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Figure 5.14: Distribution of CpG bias in the fruit fly and mouse. The 100 most
tissue-specific and 100 most broadly expressed genes are plotted as well as the distribution
for all genes.

expressed genes.
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Figure 5.15: Gene specificities for CpG deficient (CpG [o/e] < 0.7) genes and CpG
overrepresented genes (CpG [o/e] > 1.0).

5.2.3.5 Simple sequence repeats (SSR)

We contrasted the occurrence of SSRs in the 5’'UTR region of housekeeping and
tissue-specific genes to see if there are any distinguishable differences between the
two classes of genes. The percentage of genes with SSR was higher for broadly

expressed genes in both organisms (Figure 5.16). This is in agreement with previous
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observations in human and mouse studies (Lawson and Zhang, 2008) where SSR
densities in 5’-UTRs in housekeeping genes have been shown to be higher than in
tissue-specific genes. Our results confirmed this and also showed that this trend was

repeated in the fruit fly.
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Figure 5.16: Percentage of tissue-specific and broadly expressed genes with
SSRs. The x-axis indicates the number of tissue specific genes or broadly expressed genes
investigated, and the y-axis indicates the percentage of the genes in which SSRs were
identified. Unique indicates that transcripts with > 1 SSRs were counted once only, while
all indicates that these transcripts were counted several times.

5.2.3.6 S/MAR

The promoter regions (1,500 upstream and downstream of T'SS) of the transcripts
were scanned for S/MAR regions using the EMBOSS marscan program. We noted
the presence or absence of S/MAR regions in a transcript; however, when two regions
were identified in a transcript, this information was disregarded. This allowed us to
work with binary data. Start and end position of the regions were also discarded in
this study.

For the fly, 4,260 S/MAR regions were identified in the upstream regions pertaining
to 3,846 unique transcript IDs. These were mapped back to 2,644 FlyBase gene

IDs. A total of 3,311 S/MAR regions were identified in the downstream regions
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pertaining to 2,962 unique transcript IDs. These were mapped back to 2,073 FlyBase
gene IDs. For the mouse, 1,119 S/MAR regions were identified in the upstream
regions pertaining to 1,058 unique Ensembl transcript IDs. These were mapped back
to 1,053 EntrezGene gene IDs. In downstream regions 1,319 S/MAR regions were
identified, pertaining to 1,250 unique transcript IDs. These were mapped back to
1,211 EntrezGene gene IDs.

No differences were immediately obvious between tissue-specific and broadly
expressed genes. The tissue specificity of the genes with S/MAR region was sim-
ilar to all genes (Figure 5.17). In human, it was shown that S/MARs are more
abundant in the 5 regions of tissue specific genes as compared to the housekeeping

genes (Ganapathi et al., 2005) but we did not confirmed this here.
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Figure 5.17: Tissue specificity of genes with S/MAR regions in the a) fruit fly
and b) mouse. Boxplots are shown for all genes in which a S/MAR region was identified
by the marscan program in the upstream regions, for all genes in which a S/MAR regions
was identified by the marscan program in the downstream regions, and for all genes.

5.2.3.7 Ribosomal occupancy

Lastly, we investigated whether ribosomal occupancy is also correlated with tissue
specificity in the fruit fly.
We looked at two data sets to determine any possible association between riboso-

mal occupancy and tissue specificity. The first data set was taken from a study on
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mRNA translational control during early Drosophila embryogenesis (Qin et al., 2007)
and concerns embryo data. In this study, sucrose polysomal gradient analyses and
GeneChip analysis were used to investigate post-transcriptional regulation during
Drosophila early embryonic development during the first 10 hours after egg-laying.
The conclusion of the study was that genes involved in some biological processes are
co-regulated at the translational level at certain developmental stages. Figure 5.18
shows the ribosomal loading for genes that were found to be expressed in the adult
fruit fly. The plot shows tissue specificity (adult fruit fly data) versus occupancy
(embryo data) at different embryonic stages. The occupancy spread ranged from 20-
100% for all levels of tissue specificity, but was centred towards 60% for tissue-specific
genes. The figures are somewhat biased because there are more broadly expressed
genes than tissue-specific genes. The same trend was seen, but was somewhat clearer,
when the genes were restricted to the 100 most tissue-specific and 100 most broadly
expressed genes (Figure 5.18, Panel b+c).

The second data set was taken from a study of lifespan extension in adult flies
upon a yeast restricted diet (Zid et al., 2009). In this study, sucrose polysomal
gradient analyses and GeneChip analysis were used to investigate the effects of
dietary restriction on Drosophila lifespan. The experiment consisted of 12 arrays;
these included 6 arrays under normal conditions and 6 under dietary restriction.
Under each condition, 3 arrays with high ribosomal loading and 3 arrays with low
ribosomal loading (< 5 ribosomes) were prepared. Originally, these data were used
to see translational differences between two conditions. In the present study, we only
used the 6 arrays under normal conditions.

After normalisation and background correction, we looked at the differences in
mean expression values between high and low ribosomal loading for the genes that
showed a significant difference between the high and low fractions under normal
conditions (1,011 probe sets, p<0.001, ANOVA analysis). We plotted the 100 most

tissue-specific versus the 100 most broadly expressed genes (Figure 5.19). Overall,
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Figure 5.18: Ribosomal occupancy in the fruit fly using embryo data at different
embryonic stages. Ribosomal occupancy, which is defined as the percentage of polysomal

associated mRNAs for individual transcripts, is shown on the y-axes.

Three major

developmental stages of fruit fly embryogenesis are investigated: 0-2 hours, 4-6 hours and
8-10 hours after egg layinga) Ribosomal occupancy is plotted versus gene specificity. b+c)
Ribosomal occupancy is shown for the 100 most broadly expressed genes and 100 most
tissue-specific genes.
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the difference in mean expression signals between high and low ribosomal loading was
higher for the tissue-specific genes. This indicates that there was a greater variation
in translational regulation for tissue-specific genes. This was expected since most
housekeeping genes are required at a relatively constant level, while it is assumed

that this is less critical for many tissue-specific genes.
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Figure 5.19: Ribosomal occupancy. Difference between low ribosomal loading and high
ribosomal loading in adult flies for the 60 most broadly expressed and 60 most tissue-specific
fruit fly genes.

5.3 Discussion

Several genomic features are known to differ between tissue-specific and housekeeping
genes. In this work, we have investigated the tissue specificity of gene expression and
its possible relationship with the sequence and secondary structure of the resulting
protein product. The approach used here was to adopt an information theoretic
approach to sort genes in FlyAtlas, and in the mouse GNF data set, according to their
tissue specificity. Based on their gene specificity values, the genes were distributed
to several groups that were then used to build positive and negative training sets

for SVMs used to predict gene specificity. Our primary interest was in the sequence
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and predicted secondary structure, but we also considered other genomic features
that have been previously implicated in discrimination of these two gene classes.
The results obtained were clearly not random, and the classification performance
was good for the sequence based classifier. Therefore, these computational studies
confirmed the expectation, in both the fruit fly and the mouse, that amino acid
sequences are different for genes with various degrees of tissue specificity. In most
benchmark sets, the classifiers using Smith-Waterman similarity scores had more
discriminative power than did the classifiers based on the amino acid contents. This
suggests that there is additional discriminative power in the order of the amino acids.
The performance of the classifier was not further improved by integrating secondary
structure similarity information indicating that, in the investigated data set, there
was not additional discriminative power in the predicted secondary structure.

The fruit fly was chosen as a primary organism because its tissues have been
less well studied than human and mouse tissues in terms of their gene specificities
(Table 3.1). The recent availability of FlyAtlas made it possible to revisit some
of the features that have been associated with tissue specificity and housekeeping
properties of human and mouse genes in much more detail in the fruit fly than was
previously possible. We also tested our method on mouse data to confirm the results
we saw in the fruit fly data and to investigate the range of applicability of the method
based on sequence and/or secondary structures. Due to difficulties with mapping the
GNF probe set IDs to protein sequences for the human data set, we did not further
investigate the method on human genes. The human data set contained 44,760 probe
sets, but annotation was available for only 22,558 of these probe sets. Only 8,282
probe sets (5,850 unique ones) out of the 22,558 are mapped to an EntrezGene ID in
the annotation file provided by GNF. Only 25% of the remaining probe sets could
be mapped to a protein sequence in UniProtKB, the majority of which corresponded
to ubiquitously expressed genes. Hence, there were no good training data available

for tissue-specific genes in the human data set. The mouse GNF probe set data used
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in this work was also mapped to protein sequences via their EntrezGene IDs. A
more complete set might be obtained by mapping the probe sets to FlyBase (FBpp)
protein IDs and then to extract the corresponding protein sequences from Ensembl.

One of the problems encountered in this study was the question of how to divide
the genes into groups of certain tissue specificity. Depending on how one defines
tissue specificity, genes may be divided differently. For instance, a gene may be
considered tissue-specific if it is expressed in exactly one tissue only. However, for
other cases, one might consider genes to be tissue-specific if they are expressed in,
for example, 10% of the tissues. We had to decide how to distribute the genes to
bins and the method chosen resulted in an imbalance in training sets for positive
and negative training examples. To circumvent the problem of imbalance for the
positive and negative training examples, we performed further experiments that
included the same number of positive and negative examples. However, the question
of how to best assemble the training sets remains. Another problem in this work
was that microarray data are noisy and that the low resolution of microarrays can
be a problem. Genes with low expression may in fact be broadly expressed, but they
may be below the detection threshold limits of the microarray technologies used in
this work.

Another difficulty was the presence of several transcripts for one gene, which
occurred in especially in the fruit fly data set. Even though transcripts with the same
amino acid sequences were removed from the data set, a bias might be introduced by
those transcripts that are highly similar. One way of circumventing this problem is to
remove genes with several transcripts altogether. However, this would reduce the fruit
fly data set by almost 30%. Another possibility is to take the mean of the amino acid
percentages and similarity scores for two transcripts. The problem with this strategy
is that some of the transcripts were highly diverse, and thus it would be better to
include them both, but separately. Similarly, paralogous genes that may have high

sequence or structural similarity might introduce another bias. Additional study is
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Table 5.3: Paralogous genes. A total number of 18 genes were extracted from the
FlyMine (Lyne et al., 2007) database, that were found to be paralogous genes to the gene
FBgn0000024. The table lists the genes alongside their gene specificity values. In the gene
name column, NA indicates that no gene name was available for that gene.

FlyBase gene | gene symbol gene name S
FBgn0000326 clt cricklet 0.17
FBgn0001114 Glt Glutactin 1.19
FBgn0001987 Gli Gliotactin 0.48
FBgn0015568 alpha-Est1 alpha-Esterase-1 0.69
FBgn0015569 alpha-Est10 alpha-Esterase-10 | 0.70
FBgn0015570 alpha-Est2 alpha-Esterase-2 1.49
FBgn0015571 alpha-Est3 alpha-Esterase-3 0.64
FBgn0015572 alpha-Est4 alpha-Esterase-4 0.51
FBgn0015574 alpha-Est6 alpha-Esterase-6 2.14
FBgn0015575 alpha-Est7 alpha-Esterase-7 | 0.75
FBgn0015576 alpha-Est8 alpha-Esterase-8 0.45
FBgn0015577 alpha-Est9 alpha-Esterase-9 0.49
FBgn0027584 CG4757 NA 1.35
FBgn0032131 CG3841 NA 3.17
FBgn0033943 CG12869 NA 0.24
FBgn0034736 CG6018 NA 1.03
FBgn0037090 CG7529 NA 0.70
FBgn0039084 CG10175 NA 1.32

required to determine if paralogous genes typically display the same tissue specificity.
If so, they should be removed from the data set. As a preliminary test we investigated
the paralogous genes of the broadly expressed gene 'FBgn0000024 (Acetylcholine
esterase)’ regarding their ranges of tissue specificity. The gene specificity values for
the 18 paralogous genes range from 0.17 to 3.17 indicating varying degrees of tissue

specificity for these genes (Table 5.3).

The amino acid residue, asparagine, was found to discriminate best between
the 250 most tissue-specific genes and broadly expressed genes in both the fruit
fly and the mouse data, in a 1-dimensional classifier. Asparagine was, on average,
more frequently found in tissue-specific genes than in broadly expressed genes.
Deamidation of asparagine residues is one of the most common post-translational
modifications and results in protein degradation. During the process of deamidation,
the asparagine residue is converted to aspartate. The biological properties of the
mutated proteins differ from those of the original material, due to this conversion.

One hypothesis is that broadly expressed genes must be more stable because they
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often have housekeeping function and therefore must be expressed at a relatively
constant level across many or all known conditions. Deamidation of glutamine
residues can also occur but does so at a much lower rate. Glutamine did not appear
to have additional discriminative power in the feature selection process. However, as
mentioned earlier, a disadvantage of greedy forward selection is that if two attributes
are equally good discriminators then only one of them will appear on top of the list.

The feature selection process showed that not all amino acids are different between
the two classes of transcripts. For the fly a combination of 9 amino acids led to
the best performance while 14 amino acids were required for the mouse to get
best performance. All amino acids additionally added resulted in a decrease of
performance, indicating that they have no discriminative power. Adding more
features can increase the noise, and hence the decrease of performance may be
observed. There is a certain risk of overfitting when selecting the best discriminating
features using a greedy forward selection approach, and the results are likely to be
less reliable for higher dimesions.

In general, the predicted performance, based on secondary structure elements
was poor. The secondary structure element C (Others) was found to discriminate
best between the 250 most tissue-specific genes and broadly expressed genes in
the fruit fly, in a 1-dimensional classifier. In the mouse, the element E (extended
strand) was the better discriminator for these two groups. However, care should be
taken when drawing conclusions from this, since many of the benchmark sets showed
classifier performance that was not much better than random, when based only on
the secondary structure elements.

We applied and compared the performance of the SVM classifier based on
amino acid percentages in the sequence combined with various genomic features
to a previously used data set for the fruit fly (De Ferrari and Aitken, 2006). The
performance of the SVM classifier compared favourably with that of De Ferrari and

Aitken (2006). One difficulty with comparing the two works was the discrepancy
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between results reported in the paper, and provided with the supplementary data
files. Another difficulty arose due to the fact that our gene specificity values were
base on genes, whereas the authors worked with transcripts. It is possible, that some
of the genes have transcript with distinct tissue specificity, but our measurement
based on the FlyAtlas data does not capture this.

When compared to previous studies, we observed a discrepancy in the correlation
between expression breadth and sequence length in this fruit fly and mouse study.
According to our results, there is no obvious correlation between sequence length and
tissue specificity. We did not find that protein sequences and various genomic regions
are shorter for housekeeping genes. This may be due to the definition of housekeeping
genes. The broadly expressed genes investigated here might not necessarily all have
housekeeping functions.

We observed a good correlation between the frequency of CpG islands in the
mouse promoter regions and gene specificity. However, in the fruit fly, no correlation
was found. This is in agreement with our expectation, since Drosophila is not known
to have DNA methylation.

Because of the flexible structure of the SVM classifier, additional attributes can be
easily added: either attributes already studied or newly discovered ones. For instance,
in addition to the amino acid composition, the amino acid pair compositions could be
integrated. In addition, transcription factor binding sites that are discovered de-novo
or via database searches could also be incorporated. The ribosomal occupancy data
investigated here could also be integrated in the SVMs.

Considering the success in discriminating tissue-specific and broadly expressed
genes within an organism, future work might include the prediction of tissue specificity
of genes in other model organisms. For instance, the worm, C. elegans is a popular
model organism, but tissue-specific information is only available for part of its genome.
The fruit fly and mouse models trained in this work could potentially be used to infer

tissue specificity for these worm data. However, we did not follow this up during
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the course of this PhD study due to time limitation. We showed, however, that a
classifier trained on mouse genes and tested on fly genes, or vice versa, performed
better than random in experiments using between 15 and 500 genes to train and
test the model. Systematically optimising the number of genes in the training and
test sets is expected to further increase the prediction performance since the 100
most tissue-specific genes in the mouse are not directly comparable to the 100 most

tissue-specific genes in the fly.
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5.3 Discussion

Table 5.6: Median AUCs calculated for different classifiers discriminating genes with various
tissue specificity in the mouse. Genes assigned to bin I are tissue-specific and constitute the
positive training set, while genes belonging to one of the other bins constitute the negative
training set. Tissue specificity decreases with the bin number. AA% and SS% indicate that
the input vector for the SVM contained amino acid percentages and the secondary structure
symbol percentages for each gene. AA scores is based on Smith-Waterman similarity scores
of the protein sequences, SS scores is based on Smith-Waterman similarity scores of the
secondary structures and AA—+SS scores is a combination of the latter two. The attributes
of the SVM based on genomic features were protein sequence length, cds length, cDNA
length, 5’UTR length, 3’'UTR length, upstream marscan results, downstream marscan results,
number of exons, number of CpG islands and the CpG content.

Neg. Median AUCs
Class AA AA SS SS AA+SS genomic AA % + gen—
Bin % scores % scores scores features omic features
1 0.625 0.500 0.500 0.500 0.500 0.500 0.667
2 0.596 0.577 0.490 0.500 0.596 0.477 0.569
3 0.659 0.761 0.545 0.636 0.705 0.625 0.733
4 0.650 0.700 0.650 0.612 0.700 0.540 0.680
; 5 0.750 0.875 0.525 0.700 0.812 0.683 0.850
é 6 0.775 0.788 0.625 0.712 0.800 0.580 0.800
E 7 0.750 0.844 0.625 0.688 0.812 0.689 0.800
‘E 8 0.722 0.806 0.667 0.722 0.736 0.667 0.733
-g 9 0.719 0.875 0.688 0.750 0.906 0.625 0.775
; 10 0.750 0.750 0.638 0.738 0.775 0.800 0.836
é 11 0.719 0.875 0.469 0.688 0.859 0.778 0.900
12 0.766 0.812 0.688 0.641 0.797 0.744 0.844
13 0.736 0.833 0.639 0.750 0.778 0.760 0.840
14 0.821 0.857 0.643 0.786 0.839 0.771 0.857
15 0.778 0.778 0.694 0.694 0.778 0.820 0.840
16 0.847 0.833 0.639 0.792 0.806 0.815 0.923
17 0.861 0.889 0.611 0.750 0.861 0.840 0.920
18 0.833 0.861 0.667 0.819 0.889 0.780 0.800
19 0.812 0.906 0.688 0.812 0.875 0.800 0.925
20 0.844 0.906 0.656 0.766 0.844 0.811 0.889
21 0.875 0.944 0.694 0.792 0.889 0.867 0.889
22 0.861 0.875 0.681 0.778 0.889 0.880 0.890
23 0.750 0.786 0.607 0.643 0.714 0.850 0.850
24 0.875 0.825 0.612 0.750 0.850 0.825 0.933
25 0.806 0.861 0.583 0.681 0.806 0.800 0.900
26 0.875 0.938 0.688 0.812 0.906 0.822 0.900
27 0.844 0.844 0.719 0.734 0.812 0.889 0.889
28 0.875 0.938 0.750 0.812 0.891 0.860 0.920
29 0.875 0.900 0.725 0.825 0.875 0.850 0.883
30 0.865 0.875 0.719 0.781 0.833 0.885 0.938
31 0.900 0.900 0.575 0.750 0.875 0.873 0.909
32 0.875 0.900 0.675 0.775 0.850 0.800 0.900
33 0.788 0.875 0.650 0.725 0.812 0.818 0.864
34 0.833 0.917 0.677 0.812 0.896 0.893 0.933
Continued on next page
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Table 5.6 — continued from previous page

Neg. Median AUCs
Class AA AA SS SS AA+SS genomic AA % + gen—
bin % scores % scores scores features omic features
35 0.875 0.850 0.675 0.750 0.812 0.900 0.950
36 0.875 0.900 0.600 0.825 0.900 0.891 0.945
37 0.884 0.893 0.607 0.786 0.839 0.912 0.950
38 0.841 0.898 0.636 0.773 0.841 0.846 0.923
39 0.875 0.917 0.615 0.781 0.896 0.923 0.892
40 0.929 0.946 0.688 0.857 0.929 0.893 0.947
41 0.942 0.917 0.717 0.833 0.883 0.912 0.938
42 0.839 0.875 0.455 0.759 0.839 0.825 0.900
43 0.891 0.922 0.570 0.766 0.844 0.894 0.944
44 0.875 0.921 0.441 0.776 0.855 0.900 0.927
45 0.897 0.912 0.669 0.809 0.882 0.927 0.968
46 0.847 0.917 0.618 0.757 0.861 0.910 0.933
47 0.881 0.900 0.531 0.750 0.875 0.892 0.933
48 0.905 0.893 0.571 0.738 0.821 0.904 0.961
1 49 0.938 0.926 0.670 0.761 0.915 0.881 0.944
% 50 0.889 0.944 0.569 0.778 0.894 0.906 0.941
§ 51 0.901 0.914 0.647 0.823 0.862 0.837 0.941
5 52 0.929 0.893 0.464 0.763 0.857 0.903 0.942
Ef: 53 0.882 0.929 0.464 0.771 0.879 0.837 0.937
;')' 54 0.884 0.925 0.619 0.756 0.844 0.884 0.942
% 55 0.890 0.913 0.480 0.770 0.866 0.774 0.932
= 56 0.907 0.928 0.470 0.819 0.898 0.865 0.943
57 0.904 0.939 0.465 0.760 0.891 0.843 0.951
58 0.901 0.885 0.500 0.767 0.849 0.796 0.947
59 0.855 0.902 0.473 0.777 0.865 0.785 0.934
60 0.893 0.958 0.335 0.835 0.906 0.837 0.956
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5.3 Discussion

Table 5.7: Mean AUCs calculated for different classifiers discriminating genes with various
tissue specificity in the mouse. The mean AUCs are averaged over 100 runs and are given with
a confidence interval (+£1.96xstandard error). Genes assigned to bin 1 are tissue-specific
and constitute the positive training set, while genes belonging to one of the other bins
constitute the negative training set. Tissue specificity decreases with the bin number. AA%
and SS% indicate that the input vector for the SVM contained amino acid percentages and
the secondary structure symbol percentages for each gene. AA scores is based on Smith-
Waterman similarity scores of the protein sequences, SS scores is based on Smith-Waterman
similarity scores of the secondary structures and AA+SS scores is a combination of the
latter two. The attributes of the SVM based on genomic features were protein sequence
length, cds length, cDNA length, 5’UTR length, 3'UTR length, upstream marscan results,
downstream marscan results, number of exons, number of CpG islands and the CpG content.

Neg. Median AUCs
Class AA AA SS SS AA+SS genomic AA % + gen—
Bin % scores % scores scores features omic features
1 0.638+0.055 0.50240.057 0.38240.059 0.552+0.057 0.530+0.061 0.4274+0.053 0.608+0.049
2 0.597+0.027 0.585+0.029 0.490+0.035 0.508+0.037 0.605+0.033 0.478+0.029 0.574+0.027
3 0.667+0.031 0.75540.027 0.54640.031 0.627+40.031 0.701£0.031 0.6054+0.029 0.72740.025
4 0.656+0.031 0.70040.031 0.64440.025 0.618+0.033 0.690+0.031 0.54140.027 0.659+0.027
; 5 0.744+0.029 0.85140.022 0.526+0.033 0.687+0.031 0.781+£0.027 0.693+0.024 0.826+0.022
§ 6 0.745+0.029 0.79340.024 0.61440.033 0.709+40.031 0.798+0.025 0.5784+0.025 0.776+£0.024
E 7 0.733£0.027 0.81240.025 0.61040.041 0.696+0.029 0.795+0.027 0.6814+0.024 0.783+0.024
§ 8 0.698+0.029 0.7514+0.033 0.67240.039 0.70440.031 0.723+£0.031 0.6564+0.031 0.735+0.022
é 9 0.710+£0.029 0.870+0.022 0.69440.037 0.743+0.033 0.870+0.024 0.63240.029 0.765+0.022
§ 10 0.728+0.027 0.7384+0.027 0.62240.041 0.739£0.027 0.755+0.027 0.7884+0.024 0.828+0.022
é 11 0.711+£0.031 0.85740.022 0.50240.037 0.659+0.031 0.827+0.027 0.77040.024 0.867+0.024
12 0.769+0.027 0.7834+0.029 0.650+0.039 0.664+0.035 0.797+0.027 0.7254+0.027 0.810+0.024
13 0.716+0.029 0.81640.029 0.61540.033 0.730£0.033 0.769+0.033 0.75040.025 0.82940.020
14 0.795+0.031 0.85040.024 0.638+0.039 0.797+40.031 0.820+0.027 0.76940.025 0.827+0.025
15 0.763£0.027 0.75440.031 0.668+0.037 0.675+0.033 0.744+0.035 0.796+0.022 0.831£0.022
16 0.829+0.027 0.81740.024 0.64140.035 0.758+0.033 0.786+0.027 0.82040.020 0.909+0.014
17 0.850+£0.024 0.85540.022 0.600+0.033 0.73440.031 0.828+0.027 0.82340.020 0.892+0.020
18 0.815+0.024 0.83740.024 0.67440.033 0.802+0.027 0.878+0.020 0.77840.022 0.795+0.024
19 0.808+0.025 0.89440.020 0.689+0.035 0.79240.031 0.840+0.027 0.798+0.024 0.886+0.022
20 0.829+0.024 0.86140.024 0.65840.035 0.758+0.029 0.826+0.025 0.78540.024 0.881+0.020
21 0.848+0.024 0.91040.022 0.6584+0.035 0.780+0.029 0.854+0.024 0.85340.022 0.870+£0.020
22 0.844+0.024 0.85940.022 0.667+0.037 0.770£0.031 0.866+0.024 0.8714+0.018 0.871+£0.018
23 0.724+0.029 0.795+0.027 0.59740.031 0.652+0.037 0.686+0.031 0.83+0.0220 0.832+0.024
24 0.862+0.022 0.81440.024 0.618+0.031 0.74240.031 0.820+0.025 0.81240.020 0.910+0.016
25 0.809+0.025 0.84340.025 0.609+0.041 0.681+0.033 0.778+0.025 0.777+0.024 0.886+0.020
26 0.858+0.022 0.92940.014 0.67140.035 0.812+40.025 0.892+0.018 0.81940.022 0.888+0.018
27 0.847+0.022 0.8454+0.022 0.688+0.033 0.730£0.029 0.814+0.025 0.86440.020 0.870+£0.018
28 0.852+0.022 0.906+0.020 0.71340.033 0.795+0.029 0.870£0.022 0.839+0.018 0.903+0.016
29 0.866+0.022 0.88440.018 0.698+0.031 0.808+0.027 0.844+0.024 0.83140.020 0.876+£0.016
30 0.845+0.024 0.87240.018 0.687+0.037 0.750£0.033 0.825+0.022 0.883+0.014 0.927+0.014
31 0.867+0.020 0.8754+0.024 0.58840.035 0.74340.031 0.846+0.024 0.84840.020 0.897+0.016
32 0.842+0.025 0.8754+0.020 0.67440.039 0.782+0.027 0.851+0.024 0.80040.022 0.891+0.018
Continued on next page
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5.3 Discussion

Table 5.7 — continued from previous page

Neg. Median AUCs
Class AA AA SS SS AA+SS genomic AA % + gen—
bin Y% scores Y% scores scores features omic features
33 0.785+0.024 0.86740.018 0.67440.033 0.718+0.029 0.804+£0.027 0.7984+0.022 0.863+0.018
34 0.822+0.024 0.89940.020 0.66140.035 0.795+0.027 0.876+0.020 0.8854+0.016 0.911+0.014
35 0.871£0.020 0.838+0.022 0.670+0.033 0.730£0.031 0.797+£0.025 0.879+0.018 0.930£0.012
36 0.866+0.020 0.87340.022 0.61240.033 0.814+£0.025 0.876+£0.024 0.89440.014 0.927+0.014
37 0.875+0.020 0.87740.020 0.6054+0.033 0.771£0.025 0.829+0.025 0.90740.012 0.929+0.014
38 0.821+0.024 0.8854+0.018 0.630+0.039 0.768+0.029 0.843+0.024 0.82440.022 0.911+0.016
39 0.871£0.020 0.90140.020 0.616+0.035 0.769£0.027 0.862+0.024 0.91340.014 0.888+0.016
40 0.894+0.020 0.92140.018 0.676+0.035 0.840£0.025 0.887+0.022 0.876+0.016 0.932+0.012
41 0.905+0.020 0.90040.020 0.676+0.037 0.808+0.025 0.859+0.020 0.89440.014 0.917+0.014
42 0.819+£0.022 0.85740.024 0.46140.035 0.738+0.029 0.807£0.029 0.813+0.018 0.890£0.014
43 0.875+0.020 0.8944+0.016 0.55540.039 0.75640.027 0.825+0.025 0.879+0.018 0.92940.012
44 0.854+0.022 0.896+0.020 0.44740.035 0.766+0.033 0.857+0.020 0.8814+0.018 0.918+0.014
45 0.865+0.022 0.906+0.016 0.656+0.035 0.798+0.024 0.859+£0.020 0.920+0.012 0.950+£0.012
46 0.829+0.024 0.88940.020 0.618+0.043 0.75440.029 0.828+0.024 0.90240.012 0.922+0.012
47 0.855+0.024 0.87940.018 0.53440.039 0.751£0.027 0.847+0.024 0.858+0.020 0.918+0.014
48 0.890£0.018 0.87940.022 0.557+0.039 0.745+0.027 0.809+0.024 0.881+0.016 0.954£0.008
48 0.890£0.018 0.87940.022 0.55740.039 0.745+0.027 0.809+£0.024 0.881+0.016 0.954£0.008
1 49 0.891+0.022 0.909+0.014 0.64740.035 0.756+0.029 0.879+0.022 0.85340.020 0.935+0.010
% 50 0.855+0.022 0.92440.016 0.57040.037 0.787+0.025 0.856+0.025 0.8834+0.018 0.920+0.016
§ 51 0.871+£0.018 0.89240.016 0.633+0.033 0.798+0.024 0.836+0.024 0.81440.020 0.923+0.012
g 52 0.887+0.020 0.8824+0.016 0.44940.035 0.769+0.025 0.848+0.022 0.890+0.014 0.928+0.012
Ejé 53 0.852+0.024 0.9094+0.016 0.4454+0.035 0.765+0.029 0.848+0.024 0.82240.020 0.921+0.012
é)‘ 54 0.855+0.024 0.890+0.022 0.58440.035 0.758+0.027 0.821+£0.025 0.871+0.014 0.918+0.016
% 55 0.873£0.020 0.896+0.018 0.496+0.031 0.763£0.029 0.854£0.020 0.75940.022 0.909+0.016
= 56 0.881+0.020 0.90240.016 0.49440.039 0.771£0.031 0.868+0.022 0.83740.020 0.924+0.012
57 0.878+0.018 0.926+0.012 0.46740.041 0.768+0.027 0.858+0.022 0.837+0.016 0.922+0.016
58 0.883£0.020 0.87440.018 0.480+0.039 0.750£0.029 0.823+0.024 0.790+0.020 0.919+0.014
59 0.825+0.027 0.900+0.014 0.48240.039 0.759+0.029 0.845+0.020 0.776+0.024 0.925+0.014
60 0.873+£0.020 0.9454+0.010 0.36940.039 0.826+0.024 0.885+0.018 0.81940.018 0.940+0.012
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Chapter 6

Analysis of the Tissue-Specific
Contribution to Whole-Body RNA
Transcript Profiles in Drosophila

Melanogaster

The ordered list of genes for fruit fly genes introduced in the previous chapter is
used in the following to analyse the capacity of whole-body microarrays to detect
tissue-specific expression in the ageing fly and in general. The tissue specificity
of age-associated genes is also investigated. The chapter starts by describing the

methods used, and presents the results and a discussion of the results.

6.1 Methods

6.1.1 Ranking genes according to their tissue specificity

The same method was applied to rank genes according to their tissue specificity as

in Chapter 5.1.
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6.1 Methods

6.1.2 Whole-fruit fly gene expression data

An ageing experiment was used to investigate the tissue-specific contribution to
whole-body RNA transcript profiles, and to investigate the tissue specificity of age-
associated genes. Data on whole-genome Drosophila melanogaster gene expression for
the aged fly were previously described (McElwee et al., 2007). In this study, wild-type
(Dahomey) and long-lived chico!/+ heterozygotes were compared. Chicol /+ is a
null mutation in the fly insulin receptor substrate in the insulin/insulin-like growth
factor-1 signalling (Insulin and Insulin-like growth factor signaling (IIS)) pathway, a
pathway central to ageing. We used Supplementary data file 9 of this study, which
contains the results from the statistical analysis including probeset IDs, gene IDs,
mean expression signals, fold changes and the results of the statistical analysis. The
list was used to determine differentially expressed genes (¢ < 0.1). This identified
1,169 differentially expressed genes (893 upregulated gene, 276 downregulated gene
in chico' /4 ). FlyBase gene IDs were mapped to Gene Ontology (GO) IDs version
1.107 (Ashburner et al., 2000).

Data for other whole-fly experiments, again based on Drosophila Genome 2.0
Arrays, were downloaded from ArrayExpress (Parkinson et al., 2007). For all six
datasets (E-GEOD-7763, E-GEOD-5404, E-GEOD-8775, E-MEXP-1594 (208), E-
MEXP-1594 (301), E-GEOD-7614), raw data (cel files) were normalised, using eight

different normalisation routines following the method used in McElwee et al. (2007).

6.1.3 Age-associated genes

A list of 46 fly genes that have been shown to extend lifespan was downloaded from
GenAge (de Magalhaes and Toussaint, 2004) to investigate their degree of tissue
specificity.

Lists of age-related genes in seven tissues have been collected from a microarray

study on 15-60 days old flies (Zhan et al., 2007).
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6.1 Methods

6.1.4 Others

For functional overrepresentation analysis, we used a modified Fisher’s exact test.
We re-implemented the EASE (Expression Analysis Systematic Explorer) software
(Hosack et al., 2003; Huang da et al., 2007) in R. EASE calculates over-representation
with respect to the total number of genes assayed and annotated within each system
(here Gene Ontology annotations). We used all genes available in Supplementary
data file 9 from (McElwee et al., 2007) as background sequences. For the filtering
experiments, tissue-specific genes were removed from both the set of differentially
expressed genes and the full set of background sequences. We used the EASE score to
determine the significance of categories. The EASE score is a conservative adjustment
to the Fisher exact probability that favours more frequent categories (Hosack et al.,
2003) over less frequent categories. The EASE score is calculated by removing
one gene within the given category from the list and calculating the Fisher exact
probability for that category. This process is exemplified in the following. Assume
a list of 200 genes is differentially expressed from a population of 12,000 genes. If
there is only one gene in the population in a rare category, e.g. ”Rare function”, and
that gene happens to appear on the list of 200 genes, the Fisher exact test would
deem that category significant (p = 0.016). Similarly, the Fisher exact test would
consider a more common category, "More common function”, with 765 members in
the population and 20 members on the list, as slightly less significant (p = 0.017).
From the biological perspective, a category based on the presence of a single gene
is rarely interesting. If the single gene is a false positive, then the significance of
the corresponding category is false. The EASE scores for these combinations are p
= 1 and p = 0.030 for categories ”"Rare function” and for category ”More common
function”, respectively. Thus, the EASE score eliminates the significance of the
infrequent category while only slightly penalising the significance of the more global
theme. The EASE score penalises the significance of categories supported by fewer

genes and favours more robust categories compared to the Fisher exact probability.
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6.1 Methods

Linear regression to measure the correlation between mean expression signal and
tissue specificity was performed using the R programming language (R, 2009).

Clover (Frith et al., 2004) was used for motif detection. We used experimentally
verified transcription factor binding sites (TFBS) from TRANSFAC (2007) (Matys
et al., 2003) to scan the fruit fly promoter sequences (846 motifs in total). The
promoter sequences (1000 bp from the transcription start sites) were extracted from
Ensembl using BioMart (Durinck et al., 2005), a data integration system for large
scale querying of biological data. Clover compares each motif to the given sequence
set, and calculates a raw score that quantifies the degree of the motif’s presence
in the test sequences. The present genes on the microarray served as background
DNA sequences. The Clover algorithm repeatedly extracts random fragments of the
background sequences (here we used 1000 randomisations), matched by length to
the target sequences, calculates a raw score for each set of fragments and uses these
to estimate a p value. The proportion of times that the raw score of a fragment set
exceeds or equals the raw score of the target set, e.g. 0.01, is taken as the p value.
Thus the p value indicates the probability of obtaining a raw score of this size or
greater merely by chance, computed using background sequence sets. For each motif,
a separate p value was calculated. In this work we considered motifs with a score >
15 and a p value < 0.01 to be over-represented in the given gene lists. We did not
consider under-represented motifs.

We tested whether each motif from a library of 846 is significantly overrepresented
in a given sequence set. That means that it is likely that a few motifs will have p
values more significant than 0.01 merely by chance. However, all the p values in
this study were obtained by performing 1,000 randomisations, and motifs with p
values < 0.01 and score > 15 are listed. Amongst the 90 overrepresented motifs we
found 45 motifs with a p value of zero, i.e. the raw scores were never equalled in
1,000 randomisations, which is highly unlikely to occur by chance. We also find more

motifs with p values < 0.01 than expected by chance. On average we would expect
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6.2 Results and discussion

to get a false positive result about once every 100 times the test is used (1/0.01).
This translates to 622 false positives (0.01x 72 groups x 864 motifs). A total of
2,355 motifs has been found at a p value < 0.01, whereas a total of 330 of these were
unique motifs. These were further reduced to a final number of 90 motifs by taking
into account only those motifs with a score > 15. Thus, we are confident that the

majority of motif predictions made here are not merely due to chance.

6.2 Results and discussion

—

-
|
|
|
|

3
|

-
|
|
|
|
|
|
|
|
|

tissue-specific
expression
Gene Specificity (S))
i

ubiquitous
expression

I

6)Brain— [ [ ]---------d--

oy cu| FL_J -
L ey S
R N o e P —

5) Accessory
gland

9) Malpighian —
Tubule

(all)

«—
1
l
1)FlyAtlasgenes 4 +{ | ]------------+
2) Diff. genes in chico1/+— |-—-1 |
3) Diff. genes in chico ' /+ - F-----1
(logo fc > 2)
-4
(AgeMap)
S i i R

4) Age-associated genes —|

Figure 6.1: Tissue specificity of genes in the fruit fly. The boxplots show the average
gene specificity of genes expressed in at least one of the FlyAtlas tissues (box 1), of all
differentially expressed genes identified in a longevity experiment (box 2) and genes with a
logs fold change > 2 identified in this longevity experiment (box 3), of genes that have been
shown to extend lifespan in the adult fruit fly (box 4), of genes that have been associated
with ageing in various tissues (boxes 5-11).

We downloaded gene expression profiles for 17 tissues from FlyAtlas. For each
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6.2 Results and discussion

gene that could be detected in at least one of these tissues (11,804 fruit fly genes)
we calculated a gene specificity index S; by measuring the degree by which its gene
expression profile differs from a ubiquitous expression profile in which the same
expression levels is observed for all tissues (Chapter 5). In this data set a minimum
S; value of 0.014 was achieved, and a maximum of 4.09. The median S; value of
0.580 indicates that the majority of genes in this data set are broadly expressed
(Figure 6.1, Box 1). We grouped the genes with variable tissue specificity into bins
using Formula 5.3 as detailed in the previous chapter. Each bin defines a group of

genes with a certain degree of tissue specificity (Figure 6.6).

6.2.1 Applying tissue-specific information to whole body ex-

pression profiles
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Figure 6.2: Tissue specificity of differentially expressed genes in chico'/+. a)
Volcano plot of logs fold changes versus significance of differential expression. The 2,000
genes with the lowest (black dots) and highest (yellow dots) gene specificity values are
plotted. The dotted horizontal line marks the threshold of p value = log (0.1) = 2.3 above
which genes were considered differentially expressed in chico'/+. b) The relationship
between gene specificity and mean expression signal measured for these genes in the whole-
fly longevity experiment. Each gene is plotted with the specificity value calculated from
the FlyAtlas tissue data (X-axis) versus the mean expression value for that particular gene
in the wild type and chico'/+ whole-fly samples (Y-axis). Note the decrease of the average
expression amplitude with increasing gene specificity. Blue dots indicate downregulation
while red dots indicate upregulation in the long-lived animals (logs fold change > 0).
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6.2 Results and discussion

To investigate the capacity of whole body expression profiles to capture the
tissue-specific contributions regarding age-associated changes, we used data from a
previously published longevity study (McElwee et al., 2007), which included data in
which wild-type (Dahomey) and long-lived chico'/+ heterozygotes were compared.
In this study, evolutionary conservation of regulated longevity assurance mechanisms
was investigated using microarray data from long-lived mutant worms, mice with
lowered IIS and a long-lived ITS mutant in flies (chico' /+ heterozygotes). The whole
fly gene expression data set was downloaded together with a set of 1,169 differentially
expressed genes identified in the chico' /+ flies.

We determined the average tissue specificity of these differentially expressed genes
using the gene specificity values calculated from the FlyAtlas data (Figure 6.1, Box
2). The tissue specificity of differentially expressed age-associated genes covers the
possible range. We found, however, that, in this experiment, tissue-specific genes are
associated with higher fold changes between wild type and long-lived flies (Figure
6.1 Box 3, Figure 6.2). The median S; value of all differentially expressed genes was
1.17 while it increased to 2.22 if only significantly differentially expressed genes with
a logy fold change > 1 were considered.

At least three explanations could account for these higher fold changes. First,
we expect the absolute quantities of mRNA to be lower for tissue-specific genes
than for broadly expressed genes. Lowly expressed genes are often associated with
high variances and will tend to exceed higher fold change cut-offs (Mutch et al.,
2002). The Cyber-T software (Baldi and Long, 2001) used to detect the differentially
expressed genes in this experiment penalises lowly expressed genes and, thus, many
changes in tissue-specific expression with low fold changes might not be reported by
this method. A test for association and a simple linear regression were performed
on the data to determine if there was a significant relationship between the gene
specificity value (S;) and the mean expression signal (S) in this data (Figure 6.2b).

There was evidence that S; negatively correlated with S, with a Pearson’s product

128



6.2 Results and discussion

moment correlation coefficient r of -0.39. The t-statistic for the slope was significant
at the 0.05 critical alpha level, p < 2.2x10716; 15.2% of the variability in mean
expression signals could be explained by the gene specificity value (r* = 0.152). Thus,
we rejected the null hypothesis and concluded that there was a negative significant
relationship between the gene specificity values and the mean expression signals.
This indicates that tissue-specific genes overall display a lower mean expression signal
than broadly expressed genes in this sample. To investigate if this trend was specific
for this experiment, or if this is generally observed, we tested if we could find a
similar correlation in other whole-fly experiments (Ayroles et al., 2009; Chintapalli
et al., 2007; Edwards et al., 2006; Magwire, 2007; Morozova et al., 2007). All data
sets examined showed a negative correlation between tissue specificity and mean
expression signal (Figure 6.3: -0.323 < r < -0.143).

The observation that gene expression signals correlate with the tissue specificity of
genes is compatible with the previous findings that gene expression level and breadth
are positively correlated in human data (Eisenberg and Levanon, 2003; Lercher et al.,
2002; Reverter et al., 2008; Vinogradov, 2004; Zhu et al., 2008). However, it is
not compatible with a later study on human and mouse data where virtually no
correlation was found between expression level and tissue specificity (Liao and Zhang,
2006). The lower mean expression signal for tissue-specific genes partially explains
the higher fold changes for tissue-specific differentially expressed genes. However,
the many points deviating from the regression line (* = 0.152) indicate that there
might be further reasons for the bias in fold changes, since not all tissue-specific
genes display low expression signals and vice versa.

A second possible explanation for the bias in fold changes is that changes in
tissue-specific expression might be easier to detect in whole-fly samples by microarray
technologies: the resulting data for each gene on an array represents the sum of
signals from every tissue and cell-type present in the sample. Thus, a change of the

expression level of a constitutively expressed gene in one tissue can be compensated
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Figure 6.3: The relationship between gene specificity and mean expression signal.
The relationship between gene specificity and mean expression signal measured in various
whole-fly experiments. E-GEOD is the accession number for the respective experiment
in ArrayExpress. The variables r in the legends indicate the values of the correlation
coefficient. The data were extracted from studies of (1) whole-fly wildtype data, (2)
aggressive behavior in fruit flies (3) lifespan extension (4+5) different Drosophila lines and
(6) alcohol sensitivity in the fruit fly.
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by changes in the opposite direction in one of the other tissues resulting in overall
lower fold changes. In order to validate this a data set would be required that provides
similar information to the FlyAtlas data set but with the additional dimension of
ageing added. A comprehensive data set was not available at the time of writing, but
we investigated another ageing data set that was performed on whole-body, thorax
and head to see if the direction of up-/downregulation of genes is the same in different
tissues (Girardot et al., 2006). The expression levels of about two-third of the genes
(3,034 out of 4,503 genes) changed in the same direction in the head, thorax and
whole-body data while the remaining genes change in opposite directions (Figure
6.4). Note that this data set is based on Affymetrix Drosgenome 1 and therefore
not fully comparable to the other data sets used in this study. Another study (Zhan
et al., 2007) found 16 genes that were consistently differentially expressed with age
amongst several tissues. The expression levels of all but one of these genes was
upregulated in some tissues, and downregulated in other tissues (Figure 6.4).

The third explanation is that tissue-specific genes change their expression more
with age. Indeed it was recently suggested that it is possible that genes with lower
maximum expression levels might be changing to a larger degree with age (Hong et al.,
2008). Again, a tissue-specific gene expression atlas with the additional dimension of

ageing added may help to validate this hypothesis.

6.2.2 Filtering tissue-specific age-associated transcripts be-
fore enrichment analysis increases the significance of

age-associated gene ontology terms

The usefulness of enrichment-based analysis greatly depends on the quality of the
functional annotation associated with the input genes. False positive and false
negative annotation errors in the GO database can adversely affect performance. In

this data set, only 60% of the differentially expressed genes could be associated with
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Figure 6.4: Up-/downregulation of age-responsive genes in fruit fly body parts.
Green and red indicate up- and downregulation respectively in old flies (15-60 days old
flies) compared to young flies (3 days old flies). a) 4,503 genes which have been identified
as responsive in various ageing experiments. The figure shows the up-/downregulation
of these genes in three body parts: whole body, head or thorax. b) 16 genes that were
differentially expressed with age in at least 3 tissues according to spatial transcriptional
profiles of aging in 7 tissues.
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Figure 6.5: GO annotation distribution. Percentage of fruit fly genes in the data
set that are annotated with GO annotation. The coverage is comparatively low for
tissue-specific genes in bin 1.

one or more GO annotations. Tissue-specific genes are generally less well annotated
than ubiquitously expressed genes (Figure 6.5).

The bias in functional annotation towards richer annotation for broadly expressed
genes may have important repercussions on the conclusions drawn from an enrichment
analysis study. Important connections to processes of interest, here ageing, may be
missed just because of missing annotations associated with the data set. For instance,
most of the 55 genes that are annotated with the term determination of adult lifespan
in the full data set are broadly expressed (median S; = 0.29) but it is unknown
how many false negative annotations are associated with the data set. Removing
tissue-specific genes from the data set before enrichment analysis may, thus, alter
the significance of age-related terms associated with the differentially expressed
genes. The results of such an analysis are reported in the following. Functional
differences in tissue-specific and broadly expressed differentially expressed genes are

also established.

The entire set of differentially expressed genes in chico'/+ (819 up, 237 down)
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was divided into 17 groups based on their degree of tissue specificity (Figure 6.6).
We then searched for over-represented GO terms (Ashburner et al., 2000) in each
list of genes, and combinations thereof (48 bins: s1-s15, 1-17, ul-ul5, all), using
gene-annotation enrichment analysis. Note that only 1,070 of the 1,169 differentially
expressed genes (92%) could be associated with a gene specificity value. As a result
99 genes could not be assigned to any of the filtered bins, but they are part of the all
bin. Thus it is not surprising that some GO terms could be detected by investigating
the full set of genes only. For instance, the full set of differentially expressed genes was
required to detect the terms insulin receptor binding and transforming growth factor
beta receptor signaling pathway. The gene chico that was mutated in this ageing
study encodes an insulin receptor substrate that functions in an insulin/insulin-like
growth factor (IGF) signaling pathway, and this accords with the over-representation
of these terms.

We found 111 over-represented GO (81 up, 30 down) terms associated with one
or more of the 48 groups of genes. Seven of these categories (2 up, 5 down) could
only be identified using the full set of differentially expressed genes (bin all), but in
none of the other groups (bins s1-s15, 1-17, ui-u15). Conversely, 43 categories (11
down, 32 up) were identified in one or more of the filtered groups, but not in the
full set of differentially expressed genes. Most of these categories were found after
filtering tissue-specific genes (32 terms), some of them were found after removing
broadly expressed genes (6 terms), and a few have been found in both of these groups
(3 terms). Six GO terms could be detected if any of the 17 groups were tested alone
(bins 1-17), the other GO terms required a combination of groups of genes (bins
ul-ulh, s1-s15).

The upregulated terms that were significant only after removing tissue-specific
genes from the set of differentially expressed genes include various terms related
to metabolism (e.g. hormone metabolic process and galactose metabolic process)

and oxidoreductase activity (e.g. antiozidant activity and ozidoreductase activity).
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¢) Gene specificity value
d) Number of genes
a) Name b) Clusters S)
Min Max All Down | Up | Down (FC2) | Up (FC2)

1 1 3.59 4.09 624 3 70 0 43

2 2 2.79 3.59 1008 | 19 | 100 2 49

3 3 229 2.79 529 10 80 0 35

4 4 1.93 2.29 498 7 48 2 14

5 5 1.63 1.93 430 14 44 1 17

* 6 6 1.39 1.63 416 9 54 3 15
% 7 7 1.18 1.39 418 15 58 1 13
é’ 8 8 1 1.18 495 15 86 1 13
;é 9 9 0.84 1 482 11 50 0 11
H 10 10 0.7 0.84 486 | 10 | 47 0 6
§ 11 1 0.57 0.7 589 17 50 3 7
é 12 12 0.44 0.57 685 16 41 2 6
13 13 0.33 0.44 928 20 41 0 6

14 14 0.23 0.33 1247 | 29 29 2 3

15 15 0.13 0.23 1560 | 26 23 3 8

16 16 0.04 0.13 1359 | 19 9 2 0

17 17 0 0.04 50 0 0 0 0

sl 1-2 2.79 4.09 1632 | 22 | 170 2 92
52 1-3 2.29 4.09 2161 | 32 | 250 2 127

3 1-4 1.93 4.09 2659 | 39 | 298 4 141
s4 1-5 1.63 4.09 3089 | 53 | 342 5 158
* 55 1-6 1.39 4.09 3505 | 62 | 396 8 173
% 56 1-7 118 4.09 3923 | 77 | 454 9 186
E; 57 1-8 1 4.09 4418 | 92 | 540 10 199
2 58 19 0.84 4.09 4900 | 103 | 590 10 210
H 59 1-10 0.7 4.09 5386 | 113 | 637 10 216
g s10 1-11 0.57 4.09 5975 | 130 | 687 13 223
£ sl 1-12 0.44 4.09 6660 | 146 | 728 15 229
s12 1-13 0.33 4.09 7588 | 166 | 769 15 235
s13 1-14 0.23 4.09 8835 | 195 | 798 17 238
sl4 1-15 0.13 4.09 10395 | 221 | 821 20 246
s15 1-16 0.04 4.09 11754 | 240 | 830 22 246

ul 16-17 0 0.13 1409 | 19 9 2 0

u2 15-17 0 0.23 2969 | 45 32 5 8

u3 14-17 0 0.33 216 | 74 61 7 11

u4 13-17 0 0.44 5144 | 94 | 102 7 17

% us 12-17 0 0.57 5829 | 110 | 143 9 23
§ u6 11-17 0 0.7 6418 | 127 | 193 12 30
é u7 10-17 0 0.84 6904 | 137 | 240 12 36
3 ug 9-17 0 1 7386 | 148 | 290 12 47
f ) 8-17 0 1.18 7881 | 163 | 376 13 60
é ul0 7-17 0 1.39 8299 | 178 | 434 14 73
v ull 6-17 0 1.63 8715 | 187 | 488 17 88
ul2 5-17 0 1.93 9145 | 201 | 532 18 105
ul3 4-17 0 2.29 9643 | 208 | 580 20 119
ul4 3-17 0 2.79 10172 | 218 | 660 20 154
uls 2-17 0 3.59 11180 | 237 | 760 22 203
all 1-17 0 4.09 11804 | 240 | 830 22 246

Figure 6.6: Splitting 11,804 fruit fly genes into bins according to their tissue
specificity values (S;). The genes are bined in 3 ways. (1) Into 17 different bins as
described in the methods section using Equation 5.3. tissue specificity is highest for
bin 1 and lowest for bin 17. (2) Combining bins defined in (1) starting from the most
tissue-specific genes (s1-s15). (3) Combining bins defined in (1) starting from the least
tissue-specific genes (ul-u15). a) bin names used in the manuscript b) Indicates which
bins are combined for the analysis ¢) The S; cut-offs used to assemble the respective bins
d) The total number of FlyAtlas genes assigned to the bins and the numbers of up- and
downregulated genes in the ageing experiment studied. FC 2 indicates that a fold change
cut-off of loga > 1 was used.
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Ageing is known to influence certain key metabolic processes (Curtis et al., 2005) and,
thus, the over-representation of these terms is not surprising. The over-representation
of the terms related to oxidoreductase activity (e.g. ozidoreductase activity, acting
on the CH-NH group of donors, NAD or NADP as acceptor and steroid dehyodro-
genase activity) and the term antioxidant activity is in agreement with previous
observations that possible determinants of the enhanced life maintenance include
increased resistance to oxidative stress provided by a shift to a highly reducing
redox status (Houthoofd et al., 2002). Some of the tissue-specific groups of genes
were also associated with terms related to oxidative activity and metabolism. One
mechanism involved in the defense of oxidative products is the family of glutathione
transferases (Martinez-Lara et al., 2003). This is reflected by an overrepresentation of
the term gluthatione transferase activity in the upregulated set of genes, for primarily
ubiquitously expressed ones. The latter term is significant for the all group and
several of the bins (all, u6-u13 and ul15: p < 0.05).

The downregulated terms that were significant only after removing tissue-specific
genes from the set of differentially expressed genes include the terms determination
of adult lifespan (bins w4 and ud: p < 0.05, all: p = 0.148) and protein kinase
activity. Conversely, the terms eggshell chorion formation, cell proliferation, skeletal
muscle fiber development, response to other organism were significant after removing
broadly expressed genes.

In addition to the detection of age-associated GO terms after filtering tissue-
specific and /or broadly expressed genes, the significance of some terms was increased
after filtering. We were able to associate the term response to starvation with the
downregulated set of primarily broadly expressed genes (all, s13-s15 and uj-ul5: p
< 0.007; u4-ul5 < all). Tt is known that nutritional factors can exert major effects
on ageing and interact with experimentally induced mutations that induce longevity.
There is evidence that the chico mutation, analysed in this work, is involved in

the same mechanisms as dietary restriction (Piper and Bartke, 2008), and this is
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in agreement with the overrepresentation of this term. In the fruit fly, starvation
promotes the mobilisation of glycogen and lipid stores in response to increases in
circulating adipokinetic hormone (Djawdan et al., 1998; Kim and Rulifson, 2004). In
our data set, this is reflected by an upregulation of monosaccharide, polysaccharide,
lipid and carbohydrate biosyntetic processes (e.g. trehalose biosynthetic process, lipid
transporter activity and carbohydrate phosphatase activity). Again, the significance
of some of these terms was increased after filtering tissue-specific genes, although
they were significant in the full set of differentially expressed genes too.

Thus our specificity analysis reveals functional bins which have previously been
implicated in ageing encouraging us to believe that this approach is useful and pow-
erful. We conclude that filtering tissue-specific genes prior to annotation enrichment
analysis helps to find more subtle connections to ageing. The tissue-specific and
ubiquitous bins represent different and complementary sets of genes, which can and
should be studied for their expression during the ageing process taken together and
separately. Note that the tissue-specific differentially expressed genes are predom-
inantly midgut specific genes (68% for genes with an S; value > 2.80). Thus, the
GO terms over-represented in the tissue-specific groups are dominated by midgut
specific terms.

It should be noted that in the approach used to detect significant GO terms
each term was statistically tested independently. An important issue which arises
is the effect of multiple testing on power. Each time we statistically test a term
with a statistical test, we incur the risk of a false positive. It is standard practice in
bioinformatics to use a p value threshold of 0.05 for the decision as to whether a term
is significant or not. This p value is the probability of getting a false positive result,
so on average we would expect to get a false positive result about once every 20
times the test is used (1/0.05). In the above experiment we tested 2,439 GO terms.
This translates to 122 false positives (0.05 * 2,439 tests). The total number of terms

that were significant was 333 (before parent nodes were removed from the result list).
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It has to be assumed that approximately one third of the results are false positives,
even though this calculation is conservative, as it ignores correlations between genes.
Choosing a stricter EASE score cut-off to select significant GO terms might yield
a lower false positive result. We used a relatively tolerant EASE score because we
did not want to miss terms that have potential association to ageing. To further
investigate multiple testing issues we used Storey’s q value calculation to formally
assess the false discovery rate (FDR) using the corresponding R package (Dabney
et al., 2010). The software, which we used with default values, takes a list of p values
resulting from the simultaneous testing of many hypotheses and estimates their q
values by using characteristics of the p value distribution. The ¢ values, for the
111 GO terms that were deemed to be significant earlier, are reported in Tables C.1
and C.2 (Appendix C). They were first estimated from the EASE scores, and then
also from the original Fisher p values. Choosing a q value of 0.05 means that we
should expect 5% of all the terms with q value less than this to be false positives.
Of the list presented in Appendix C we find 33 such GO terms if the q values are
estimated from the EASE scores, while we find 77 if the q values are estimated from
the Fisher p values. These are reported in Tables D.1 and D.2 (Appendix D). We
expect 33%0.05= 1.65 and 77*0.05 = 3.85 false positives, respectively. When deciding
on a cut-off or threshold value, we can now do this from the point of view of how
many false positives will this result have rather than choosing an arbitrary cut-off.

Another possibility to address the multiple testing issues here would be to reduce
the number of GO categories tested. A slim version of GO could be created that is
specific to ageing and contains a reduced number of categories. Another possibility
would be to exclude highly over- or underrepresented terms in the background gene

set.
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6.2.3 DNA motifs associated with tissue-specific and broadly

expressed age-associated genes
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Figure 6.7: Overrepresented TFBS. Transcription factor binding sites, which are
significantly over-represented in genes showing differential expression between wild type
and long-lived fruit fly mutant. Several GATA regulatory motifs are enriched in the
promoter regions of age-regulated genes for both tissue-specific and broadly expressed
genes. Other motifs are primarily found in promoter regions of age-regulated genes that
are tissue-specific (e.g. NFKB_Q6.01) or broadly expressed (e.g. MYC_Q2).
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Differentially expressed genes often share a number of TFBS located upstream
of the transcriptional start site, implying that they might be regulated by similar
transcription factors that regulate a group of genes involved in a similar cellular
function. In the previous section, it was shown that differentially expressed genes
identified on whole-fly experiments capture both common and tissue-specific responses
to ageing. These may or may not involve the same transcription regulatory machinery.
We applied Clover (Frith et al., 2004), a program for identifying functional sites
in DNA sequences, to the promoter sequences of genes associated with extension
of lifespan. As before the entire set of differentially expressed genes was divided
into 17 groups based on their degree of tissue specificity. We then searched for
over-represented functional sites in each list of genes, and combinations thereof. A

total of 90 TFBS were identified. Of these, one TFBS could only be detected using
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the full set of differentially expressed genes (up: HNF) while 56 additional potential
TFBS were detected using the filtered sets of genes. For instance FOXO1_01 was
identified in ubiquitously expressed down-regulated genes (u2, u3) but not in the
full set of down-regulated genes. This is interesting because the FOXO transcription
factor is implicated in animal ageing (Greer and Brunet, 2008).

The data further suggests that tissue-specific and broadly expressed age-modulated
genes share some TFBS (Figure 6.7). For example processes involving the GATA
family of transcription factors appear to be shared across genes including all levels
of tissue specificity. In flies GATA factors have a central role in heart specification
(Qian and Bodmer, 2009), and they are also implicated in insect innate immune
response (Bettencourt and Ip, 2004). In the worm several GATA transcription factors
were found to be responsible for age regulation of several genes (Budovskaya et al.,
2008). Our data shows that the GATA transcription factors can be linked to age
regulation of tissue-specific and broadly expressed genes in the fruit fly. An example
for a TFBS that was primarily associated with the tissue-specific age-regulated genes
is NFKB_Q6_01. The NF-kB system is the master regulator of the innate immunity,
an ancient signaling pathway found in both insects and vertebrates. Recent studies
have revealed that several key regulators of aging in budding yeast and C. elegans
models, regulate the efficiency of NF-kB signaling and the level of inflammatory
responses (Salminen et al., 2008). Our data suggests a tissue-specific involvement
of the NF-kB regulator in ageing for the adult fruit fly. A TFBS for MYC, which
has been linked to ageing-related genes (Grandori et al., 2003; Wu et al., 1999) in

human, was primarily found in the set of broadly expressed genes (down-regulation).

6.2.4 Age-associated genes

A total of 46 lifespan extending mutations are known for the fruit fly so far (de Mag-
alhdes and Toussaint, 2004). Little is known about the overall tissue specificity of

these genes, i.e., whether these genes primarily perform housekeeping or tissue-specific
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functions. To address this question we scrutinised the ordered set of fruit fly genes for
46 fruit fly genes previously highlighted to be lifespan extending. Figure 6.1, Box 4,
shows that most of these genes are ubiquitously expressed. The gene with the highest
gene specificity value was FBgn0029752 (Thioredoxin T, S;=3.88), an evolutionarily
conserved antioxidant and molecular chaperone whose over-expression in neurons
was associated with lifespan extension of 15% in the fruit fly (Umeda-Kameyama
et al., 2007). This gene is highly expressed in the testis, but in none of the other
adult tissues provided with the current FlyAtlas data set. An example of a gene with
a midrange pattern of expression is FBgn0037324 (Odorant receptor 83b, S;=1.33).
Loss-of-function mutation of FBgn003732/ that is expressed in the brain, head and
eye resulted in olfactory defects, altered adult metabolism, enhanced stress resistance
and life-extension of up to 56% in the fruit fly (Libert et al., 2007). The gene with the
most ubiquitous expression was FBgn0086768 (Protein-L-isoaspartate (D-aspartate)
O-methyltransferase). This gene is involved in protein repair mechanisms. Overex-
pression of this gene extended lifespan in flies by 32-39% under certain conditions
(Chavous et al., 2001).

We found that most currently known age-associated genes in the fruit fly are
ubiquitously expressed (median 5;=0.28). It is possible, however, that longevity-
associated pathways involve far more tissue-specific genes than Figure 6.1 indicates
since tissue-specific genes are less well studied (Figure 6.5). An investigation of
age-associated genes in several fruit fly body parts (Zhan et al., 2007) also showed
that most of the genes are broadly expressed, but that some of the genes are highly
specific (Figure 6.1, Boxes 5-11). The authors of the study state that only 3% to
10% of age-related genes in any given tissue overlapped with those in any other
tissue. This lack of overlap across genelists is partly explained by the tissue-specific
age-related genes in each tissue, that by definition have low chances to overlap with
the genes from another tissue. Again, the ordered list of fruit fly genes according to

their tissue specificity could be used to remove genes with a certain tissue specificity
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from the tissue lists.
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Chapter 7

Final Remarks and Future Work

7.1 Conclusions

In this thesis I described my investigations of applying machine learning methods
to high throughput experimental and predicted biological data. This work made
three novel contributions based on the systematic analysis of publicly archived data
of protein sequences, three dimensional structures, gene expression and functional
annotations: (a) remote homology detection based on amino acid sequences and
secondary structures; (b) the analysis of tissue-specific gene expression for predictive
signals in the sequence and secondary structure of the resulting protein product; and
(c) a study of ageing in the fruit fly, a commonly used model organism, in which
tissue specific and whole-organism gene expression changes are contrasted. The
conclusions of these studies are summarised in the following, and future directions

are given subsequently.
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7.1.1 Remote homology detection using a kernel method
that combines sequence and secondary structure sim-

ilarity scores

In the first part of this thesis, we have developed a kernel-based remote homology
detection method that allows for a combination of sequence and secondary structure
similarity scores. We studied its performance to predict superfamily membership
as defined by the SCOP database. We showed that a kernel method that combines
sequence similarity scores with predicted secondary structure similarity scores per-
forms similar to a classifier that uses scores calculated from sequences and true
secondary structures, but performs better than a sequence-only based classifier and
achieved a better mean than recently published results on the same data-set i.e.
the GPkernel which in turn was compared to other methods such as SVM-pairwise
method, the mismatch kernel and a PSI-BLAST based approach. Our method can
be tuned to re-weight the influence of the scores, and it is widely applicable because
alignment scores and secondary structures are readily computable. We note several
important points about this work. First of all, we note that the observation that
secondary structures provide complementary information to amino acid sequence is
not new; in fact, as stated in the chapter 3.1, this has been shown by many other
researchers. The difference to most other works lies in the use of SVMs and kernels
thus investigating performance in a discriminative setting in contrast to instance-
based and generative models - which has not yet been done in a comprehensive study.
Even though it is known that secondary structures can improve remote homology
detection methods, many recent methods do not use this kind of information. Thus,
we hope this work gives a refreshing view on this issue and will encourage others
to integrate secondary structures in their methods. Further we note that we have
used the SCOP database, driven by the need to compare our results with previously

published results. The manual annotations in SCOP, particularly at the higher levels

144



7.1 Conclusions

of the hierarchy, do indeed use knowledge of secondary structures as an important
source of information. Secondary structure assignment algorithms are all trained
on the relatively small set of proteins for which structures have been determined,
and SCOP domains are a subset of these. While the inevitable bias arising from
these facts does not negate our conclusion, caution must be exercised in how far
one might generalise our findings. The performance increases we see are small, and,
in problems posed on the SCOP database we are operating at very high levels of
accuracy. Still, for comparisons against other work and for reliabilities of annotation
we needed to work with this database. In future work, we suggest to move away from
this and to formulate sequence classification problems using other databases. Finally
we note that the SVMs used in this work were trained to solve two-class problems.
To be able to classify new proteins, which are not part of the benchmark sets, the
method needs to be extended to solve multi-class problems. One of the most widely
used approaches to solve multi-class problems is the one-against-all classification, in
which a new instance is tested against all binary SVMs (102 for the SCOP version
used here), and the classifier which outputs the largest score is chosen. In this work
our intention was to explore if secondary structure inclusion can increase classifier
performance - to establish this, in comparison to already published work, we limited
the experiments to solving two-class problems, and performance of new instances

has yet to be determined.

7.1.2 Tissue specificity of gene expression is correlated with
the sequence and secondary structure of resulting pro-

tein product

The second part of this thesis concerns an investigation of the predictability of
gene specificity based on the amino acid content associated with gene protein

products, their predicted secondary structures and various genomic features in the
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fruit fly Drosophila melanogaster and the mouse Mus Musculus. Gene specificity
can be predicted at better than random rates using all classifiers tested on most
benchmark sets suggesting the existence of useful signals at these levels. The
classifier based on amino acid percentages combined with genomic features performed
best overall. It also compared favourably with a classifier previously published
(De Ferrari and Aitken, 2006). We conclude that tissue specificity of gene expression is
correlated with the sequence and secondary structure of the resulting protein product.
Shannon’s information theory provides a clearly defined statistical framework that
has previously been proven valuable in several genomic applications. Here, we
applied it to mouse and fruit fly expression profiles to obtain lists of genes ordered
according to their tissue specificity and used it to investigate tissue specificity in
these organisms. We concentrated on the fruit fly because it is the least studied
organism (Table 3.1) for which good data have recently become available. Further
studies are required to investigate if there is an evolutionary conserved correlation of
amino acid sequences and tissue specificity, and if such a correlation could be used
to predict this information for less well studied organisms. We found that the amino
acid asparagine discriminated best between broadly expressed and tissue specific
genes in both the fruit fly and the mouse and it would be interesting to follow up this
finding in future studies. We showed that a classifier trained on mouse and tested on
fly genes, or vice versa, performed better than random on a number of benchmark
sets. The number of genes used in these benchmarks can be systematically optimised
to further improve performance. There are several other areas for improvement and
future research to extend this work. Recent technological advances that allow faster
and cheaper DNA sequencing and transcriptional profiling (RNA-Seq) are likely to
produce high-quality data that could be used to refine many of the approaches used
in this work (Wang et al., 2009¢). For instance, RNA-Seq provides a better estimate
of absolute expression level (Fu et al., 2009) that in turn give a better estimate of

true tissue-specificity. This thesis has taken some steps in the development of a
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computational method which can serve as a stable platform for further research on

tissue-specificity when large scale RNA-Seq data becomes available.

7.1.3 Analysis of the tissue-specific contribution to whole

body RNA transcript profiles in Drosophila Melanogaster

Finally we used the same computational approach as above to partition genes
according to their tissue specificity in the fruit fly and used it to clarify tissue-
specific fly transcripts and gene expression in the ageing fly, and in general. Based
on an information theoretical approach, we investigated how to utilise FlyAtlas,
a microarray-based atlas of gene expression in multiple adult tissues, to delineate
tissue-specific from ubiquitous expression in whole-fly experiments. We began by
taking the sorted list of fruit fly genes according to their degree of tissue specificity
introduced in the previous chapter, obtained from the FlyAtlas gene expression
profiles. We then used the defined tissue specificity to determine the capacity of
Affymetrix high-density oligonucleotide whole-genome microarrays to capture tissue-
specific age-associated changes in whole-fly samples. Importantly, we found that
genes with tissue-specific expression are associated with higher fold changes amongst
significantly differentially expressed genes and a lower mean expression signal. This
indicates that changes in tissue-specific expression might be easier to detect than
expression changes of broadly expressed genes when using whole-fly arrays. We
also described how filtering genes with tissue-specific expression from data from a
whole-fly ageing experiment affects data analysis and the derivation of meaningful
information from the data. The significance of several age-related GO terms was
increased after removing tissue-specific differentially expressed genes. This is due to a
bias in GO annotation towards broadly expressed genes, and to differences in function
of broadly and tissue-specifically expressed genes. This study was complemented

by an analysis of the tissue specificity of age-associated genes in the fly. We found
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that most known age-associated genes are broadly expressed. As before, the future
availability of RNA-Seq data is expected to be useful to validate some of the results

of this work.

7.2 Future directions

Ideas for extensions of this work are given in the following paragraphs.

7.2.1 Joint alignments

In Chapters 4 and 5 we used a joint sequence and secondary structure approach
to predict remote homology and tissue specificity. Future work could include the
development of a method that better captures the relationship between sequence and
secondary structure. A joint alignment between these two entities might be a step in
this direction. Several previous studies have examined the improvement of pairwise
sequence alignments by incorporating secondary structure information. In particular,
it has been demonstrated that sequence alignments can be improved by limiting the
number of gaps in the regions of secondary structures (Barton and Sternberg, 1987,
Gerstein and Levitt, 1996; Lesk et al., 1986). In these studies it has been shown that
positions in an alignment that correspond to a-helices or 3-strands are less likely to
be affected by gaps. These studies demonstrated on overall improvement in alignment
accuracy by limiting the number of gaps in regions of secondary structures, but they
focused on a small number of model proteins. For instance, Barton and Sternberg
(1987) considered five pairs of structurally homologous proteins, while Lesk et al.
(1986) looked at proteins within the globin and serine proteinase families. Gerstein
and Levitt (1996) also investigated a small number of proteins.

Multiple sequence alignments have also been shown to be improved by making
use of secondary structures (Elofsson, 2002). For example, von Ohsen et al. (2004)

combine amino acid profile-profile scores with weighted secondary structure profile-
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profile scores to compute the final alignment score. They build a frequency profile for
the target sequence over the amino acid alphabet and over the three-state secondary
structure alphabet using the PSIPRED program. A secondary structure similarity
matrix (Kawabata and Nishikawa, 2000) is used to compute the secondary structure
profile-profile scoring term while the BLOSUM62 matrix is used to compute the amino
acid profile-profile score. The authors use this profile—profile alignment approach
in their software termed Arby which is a server for protein structure prediction
based on its sequence. According to the CAFASP3 experiment (Critical Assessment
of Fully Automated Structure Prediction), the server is one of the most sensitive
methods for predicting the structure of single domain proteins. Chung and Yona
(2004) also showed that integration of primary and secondary structure information
can substantially improve detection of relationships between remotely related protein
families. Their method augments sequence profile columns using PSIPRED secondary
structure predictions and assesses statistical similarity using information theoretical
principles.

Another example where a similar method is used is PRALINE which is a multi-
ple sequence alignment toolbox that integrates homology-extended and secondary
structure information (Simossis and Heringa, 2005). PRALINE makes a profile-
profile alignment with PSI-BLAST profiles used as templates. The profile can be
complemented with a secondary structure prediction in an attempt to improve the
alignment accuracy. A choice of seven different secondary structure prediction pro-
grams is provided that can be used individually or in combination as a consensus for
integrating structural information into the alignment process. A different scoring
scheme is used for profile positions with matching secondary structure elements than
for positions that show mismatching residues. The authors report that the use of
the secondary structure information significantly improves the PRALINE alignment
quality.

The above mentioned methods make use of secondary structures to guide the
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alignments. Alignment methods that integrate three-dimensional structure have also
been developed. For instance, the 3D-Coffee (Poirot et al., 2004) method, or its newer
version named Expresso (Armougom et al., 2006) make use of PDB structures to
assemble a structure-based multiple sequence alignment. Providing the appropriate
structural information is available, Expresso is significantly more accurate than
regular homology based methods and its alignments are often indistinguishable
from reference structure based alignments. FUGUE (Shi et al., 2001) is a program
for recognising distant homologues by sequence-structure comparison. It utilises
environment-specific substitution tables and structure-dependent gap penalties, where
scores for amino acid matching and insertions or deletions are evaluated depending
on the local environment of each amino acid residue in a known structure. Given
a query sequence, FUGUE scans a database of structural profiles, calculates the
sequence-structure compatibility scores and produces a list of potential homologues
and alignments. JOY (Mizuguchi et al., 1998a) is a program for annotating protein
sequence alignments with three dimensional structural features. It was developed to
help understand the conservation of amino acids in their specific local environments.
HOMSTRAD (HOMologous STRucture Alignment Database) (de Bakker et al., 2001;
Mizuguchi et al., 1998b; Stebbings and Mizuguchi, 2004) is a database of multiple
alignments, created using the three dimensional structure as a guide (Mizuguchi
et al., 1998a). The alignments are annotated with JOY in a format that represents
the local structural environment of each amino acid residue.

Even though some automatic methods are available that incorporate secondary
structure information in alignments, the most frequently used alignment methods do
not use this kind of information. We think there might be further improvements to
the works mentioned above, and hence we started to investigate how weighted finite
state machines (WFSMs) could be used to create such a method.

In the following a possible approach is detailed that could be used to generate

such an alignment. The approach was developed during the course of this PhD study,
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but since a complete study is missing, this is given as an idea for future directions
rather than an own chapter.

WSFMs, or more specifically weighted finite-state acceptors and transducers, are
generic devices for modelling sequences of symbols. On an abstract level, acceptors
represent a sequence of input symbols, while transducers encode a mapping between
input and output sequences. Weights such as match or mismatch probability can be
assigned to each transition. Regular expressions and HMMs, which are used for a wide
range of applications in bioinformatics, are specialised cases of WFSMs. In this pre-
liminary study, WFSM were trained to perform pairwise sequence alignments guided
by secondary structure knowledge. The AT&T FSM library was used (Mehryar,
1997), which has been successfully applied to many natural language-processing
tasks (Mohri et al., 2002) and also to some bioinformatics problems (Cortes et al.,
2004). A conclusive, peer-reviewed publication on this software package in sequence
analysis applications is, to the best of our knowledge, not available. The library and
its potential to model sequence related algorithms was introduced in the tutorial
"Weighted Finite-State Transducers in Computational Biology’ at the 13th Annual
International Conference on Intelligent Systems for Molecular Biology (Cortes and
Mohri, 2005).

WEFSM were used to calculate an alignment which allows for the combination of
the sequences and their corresponding secondary structures. Specifically we used
acceptors to model sequences and secondary structures. We used transducers to
define weights from one amino acid to another and from amino acids to secondary
structure elements. Figure 7.1a, demonstrates how a standard sequence alignment
can be calculated using WFSMs. The user provides two input sequences and weights
for amino acid matches, mismatches and gaps. These inputs are represented by two
unweighted acceptors (S1, S2) and one weighted transducer (T). Their graphical
representation is shown in Figure 7.1. A high weight in T indicates that this transition

is likely to occur and vice versa. For example, a transition from A:A (-0.13) is more

151



7.2 Future directions

likely than the introduction of a gap, A:e (-3). In order to calculate an alignment,
the above FSMs are composed. Composing FSMs means taking the output from
the one FSM and to match it with the input of another FSM. For example, the
first output of (S1) is an A. It matches all three inputs of (T), i.e. A:A, A:S, A:V.
The resulting transition consists of the input of the first FSM and the output of the
second FSM; i.e. composing of (S1) and (T) results in transitions: A:A, A:S, A:V.
The resulting, temporary FSM, represents all transitions between the given sequence
and an unknown sequence, which are, in principle, possible. This intermediate FSM,
is further composed with (S2). The same procedure is done for all the other states.
A:e introduces a gap in S1. Gaps can be introduced in S2 as well, but the example
is greatly simplified. The resulting WFSM defines all possible paths between the
two sequences. The path with the highest weight, is the most likely one and it is
selected as the alignment.

Figure 7.1b illustrates how the same principles can be used to calculate an
integrated alignment. The algorithm stays the same, the difference lies in the input
that the user gives to the program. More precisely six WFSMs are composed in the

following order

SlOT105510T205520T30T4OSQ (71)

S1 and S5 in the equation above represent the amino acid sequence of protein
1 and 2 respectively. 55 and SS; represent the secondary structure sequence of
protein 1 and 2 respectively. T7 defines transition weights from an amino acid symbol
to a secondary structure symbol. T5 represents transition weights from one secondary
structure element to another. T3 defines transition weights from a secondary structure
element to an amino acid. T defines transition weights between amino acids. The
user provides sequence and secondary structure, as well as four files which define

transitions probabilities or weights between amino acids and secondary structure. If
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a lot of weight is given to matching secondary structure, the resulting alignment is
different to the alignment shown in Figure 7.1a.

Figure 7.2 shows an real world example of such an integrated alignment.

STANDARD ALIGNMENT(a) SEAL(b)
INPUT INPUT -n-@ss1) ameie| | wopts
A@ (s1) o A@ (s1)-H-@EO(5s2) S (_NL
ghts SS2A AA
%00 - bl OV2) v
COMPOSE: COMPOSE: 51
(o]
O0() =D Ty
O2(0) "

ss; FSMs similar
o as figure a, but
T, more steps in

o between
ss,

A:A0133 o\ eSB /) ViVi0.s6 s
0 1 2 30
O N N 2

OUTPUT OUTPUT HH- ;
A-v A OO av- @

w0
|

zlxswli Al@-(]\D zlasv 'A'@'&}
HO

HHC -H

Figure 7.1: Schematic view of weighted finite state machines used for pairwise
alignments. The sequences S1, S2, SS1 and SS2 are modeled as acceptors. The ”weight”
files in the figure define transition probabilities between one amino acid residue or secondary
structure symbol to the next. Weighted transducers (T) are used to connect two sequences
depending on the defined transition probabilities. a) WFSMs are used to align two
sequences S1 and S2. b) Joint sequence and secondary structure alignment. WFSMs are
used to align two sequences S1 and S2 and two secondary structure sequences SS1 and
SS2. The method was named SEAL.

7.2.2 Predicting tissue specificity for other organisms

Considering the success of discriminating tissue-specific and broadly expressed genes

within organism, future work might include the prediction of tissue specificity of genes
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a) Global Sequence Alignment (EMBOSS)

P02186 @ @ ————————- LLLHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHLGGGGG
————————— GLSDGEWELVLKTWGKVEADIPGHGETVFVRLFTGHPETLE
Q7SIDO PIIDQGPLPTLTDGDKKAINKIWPKIYKEYEQYSLNILLRFLKCFPQAQA
LLLLSSSLLLLLHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHLGGGGG

P02186 GLTTTTTLLSHHHHHTLHHHHHHHHHHHHHHHHHHHTTTLLH---HHHHH
KFDKFKHLKTEGEMKASEDLKKQGVTVLTALGGILKKKGHHE---AEIQP
Q7SIDO SFPKFSTKKS--NLEQDPEVKHQAVVIFNKVNEIINSMDNQEEIIKSLKD
GLTTTTTLLS--LGGGLHHHHHHHHHHHHHHHHHHTTTTLHHHHHHHHHH

P02186 HHHHHHHTSLLLHHHHHHHHHHHHHHHHHHSTTTSLHHHHHHHHHHHHHH
LAQSHATKHKIPIKYLEFISDAIIHVLOSKHPAEFGADAQGAMKKALELF

Q7SIDO LSQKHKTVFKVDS IWFKELSSIFVSTIDG——-———— GAEFEKLFSIICILL
HHHHHHHTSLLLTTHHHHHHHHHHHHTTL - — - ——— LHHHHHHHHHHHHHH
P02186 HHHHHHHHHHETTSLL
RNDIAAKYKELGFQG
Q7SIDO RSAY-————————m—
HTTL———————————

b) Sequence/Secondary Structure Alignment

P02186 Lo LLHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHLGGGGG
G LSDGEWELVLKTWGKVEADIPGHGETVFVRLFTGHPETLE
Q7SIDO PIIDQGPLPTLTDGDKKAINKIWPKIYKEYEQYSLNILLRFLKCFPQAQA

LLLLSSSLLLLLHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHLGGGGG

P02186 GLTTTTTLLSHHHHHTLHHHHHHHHHHHHHHHHHHHTTTL---LHHHHHH
KFDKFKHLKTEGEMKASEDLKKQGVTVLTALGGILKKKGH---HEAEIQP
Q7SIDO SFPKFSTKKSNLE--QDPEVKHQAVVIFNKVNEIINSMDNQEEITKSLKD
GLTTTTTLLSLGG--GLHHHHHHHHHHHHHHHHHHTTTTLHHHHHHHHHH

P02186 HHHHHHHTSLLLHHHHHHHHHHHHHHHHHHSTTTSLHHHHHHHHHHHHHH
LAQSHATKHKIPIKYLEFISDAIIHVLQSKHPAEFGADAQGAMKKALELF

Q7SIDO LSQKHKTVFKVDSIWFKELSSIFVST—————— IDGGAE--—====== FEK
HHHHHHHTSLLLTTHHHHHHHHHHHH-—-=——- TTLLHH-=-====—=—— HHH
P02186 HHHHHHHHHHTTSLL
RNDIAAKYKELGFQG
Q7SIDO LFSIICILLRSA--Y

HHHHHHHHHHTT--L

Figure 7.2: Sequence alignment alone and augmented with secondary structure.
First graphic shows a standard sequence alignment. A secondary structure element is
attributed to each amino acid. The grey boxes highlight areas where there is a mismatch
of secondary structure elements. The algorithm employed to create the second graphic uses
secondary structure information. If we search in UniProtKB for P02186 (MYG_ELEMA)
for relevant hits using BLAST, we could not find Q7SIDO (GLBF1_EPTBU) within a
significant E value 107% despite high simiarity in their secondary structure sequence (see
Chapter 3.1 where these proteins are discussed further). The pipe symbols indicate an
alignment match between two columns.
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in other model organisms. For instance the worm, C. elegans, is a popular model
organism, but tissue-specific information is only available for part of its genome.
Despite the variety of techniques available and the number of studies performed
thus far, our understanding of tissue-specific expression in C. elegans is not yet
complete; most genes have not been analysed at the single-gene level, nor under
diverse conditions and developmental stages (Chikina et al., 2009). The fruit fly and
mouse models trained in this work could potentially be used to infer tissue specificity
for these worm data. In Chapter 5 we described how the amino acid asparagine was
the best discriminator between tissue-specific and broadly expressed genes. It would
be interesting to investigate this in other organisms, to see this is an evolutionary

conserved signal.

7.2.3 Multi-view learning

In Chapter 4 and 5, prediction models have been built that include all the variables
available, without taking into consideration that the data sets were comprised of
multiple feature sets from diverse domains often referred to as views. Consider the
collection of protein domains belonging to a particular superfamily used in Chapter
4. The available information about the protein domains can be organised in the
following two views: the sequence alignment scores and the secondary structure
alignment scores. It is of great interest to develop a model that provides insight
into the underlying relationship amongst these two views, potentially identifying
interactions between them, and also to assess their predictive capabilities. In Chapter
4, we investigated how giving different weights to the two views affects the classifier
performance that allowed to investigate how complementary sequence and secondary
structure information were in this problem. A technique that can further help
to answer the above questions, and also improve predictive performance, is multi-
view learning. Multi-view learning methods have been shown to be advantagous

to learning with only a single view (Blum and Mitchell, 1998), especially in cases
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were the weakness of one view complements the strength of the other. Multi-view
learning methods exploit view redundancy to learn from partially labeled data. In
the multi-view learning paradigm, the input variable is partitioned into two different
views X1 and X2 and there is a target variable Y of interest. The underlying
assumption is that either view alone is sufficient to predict the target Y accurately.
This provides a natural semi-supervised learning setting in which unlabeled data can
be used to eliminate hypothesis from either view, whose predictions tend to disagree
with predictions based on the other view. Multi-view learning has been applied in
bioinformatics (Culp et al., 2009; Scheffer and Krogel, 2004; Yamanishi et al., 2004),
and could be exploited on the problems of remote homology detection and prediction
of tissue specificity to both increase accuracy and gain a better understanding of the

interrelationships of the data.
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Appendix A

PSI-BLAST output (a.1.1.2)

In the following we report the results of the PSI-BLAST experiment discussed in
Chapter 4.2.5 for all the 68 positive test sequences in the benchmark set for the
SCOP family a.1.1.2. The lines starting with Query= indicate which family member
was used for the PSI-BLAST search. Subsequent lines show all PSI-BLAST hits to
SCOP domains outside the query family a.1.1.2. The numbers at the end of the
lines represent the PSI-BLAST scores and E values, respectively. For the evaluation
in Chapter 4.2.5, only the first (best) hit were considered. For the test sequences

below a total of 66 true positives and a total of 2 negatives were counted if all hits

are considered independent of the E value.

Query= d1jl7a_ a.1.1.2 (A:) Glycera globin (Marine bloodworm (Glyceradibranchiata))

lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (m...

lclldihi0a_ dih10a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin...

33.0

27.6

0.17

8.8

Query= divhba_ a.1.1.2 (A:) Bacterial dimeric hemoglobin (Vitreoscillastercoraria)

lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (m...

lclldirtxa_ dirtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ...

34.1
27.9

Query= d2gdm__ a.1.1.2 (-) Leghemoglobin Yellow lupin (Lupinus luteus)

lcl|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (m...

42.7

0.093

6.2

2e-04

Query= d2hbg__ a.1.1.2 (-) Glycera globin (Marine bloodworm (Glyceradibranchiata))

Query= digcvb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Houndshark (Mustelusgriseus))

lclldikr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n...
Query= dlcgbb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Cartilaginous fishakaei (Dasyatis akajei))
lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (m...

Query= dla4fa_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Bar-headed goose(Anser indicus))
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30.6

32.2

1.1

0.35



lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.4 0.15

Query= dispgb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Teleost fish(Leiostomus xanthurus))

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (m... 30.1 1.7

Query= dihlm__ a.1.1.2 (-) Hemoglobin, different isoforms (Sea cucumber(Caudina (Molpadia) arenicola))
lcl|ldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 39.3 0.003

lcl|dilh10a_ dihi0a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 27.7 7.8

Query= dlor4a_ a.1.1.2 (A:) Heme-based aerotactic transducer HemAT, sensordomain (Bacillus subtilis)

lclldingka_ dingka_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 60.3 1e-09
lcll|dirtxa_ dirtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 57.6 8e-09
lclldlidra_ dlidra_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 53.3 2e-07
lclldidlwa_ didlwa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 47.9 8e-06
lclldidlya_ didlya_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 46.0 3e-05
lcl|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.1 0.43

Query= d1g08a_ a.1.1.2 (A:) Hemoglobin, alpha-chain Cow (Bos taurus)

lclldikr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.4 4.9
Query= di1d8ua_ a.1.1.2 (A:) Non-symbiotic plant hemoglobin (Rice (Oryzasativa))
lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 41.2 Te-04

Query= dimbs__ a.1.1.2 (-) Myoglobin Common seal (Phoca vitulina)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 38.1 0.007
Query= dih97a_ a.1.1.2 (A:) Trematode hemoglobin/myoglobin (Paramphistomumepiclitum)
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 45.3 4e-05
lclldigl3a_ diql3a_ a.3.1.1 (A:) Cytochrome c552 (Paracoccus den... 32.6 0.24
Query= dimba__ a.1.1.2 (-) Myoglobin Sea hare (Aplysia limacina)

lcll|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 42.3 3e-04
Query= dilhdsa_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Deer (Odocoileusvirginianus))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.6 0.22
Query= dlad4fb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Bar-headed goose(Anser indicus))
lcl|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.7 0.26
Query= dla9we_ a.1.1.2 (E:) Hemoglobin, beta-chain (Human (Homo sapiens),embryonic gower II)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.2 0.096

Query= dlcgxal a.1.1.2 (A:1-150) Flavohemoglobin, N-terminal domain(Alcaligenes eutrophus)

lcl|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.9 0.22
lclldirtxa_ dirtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 32.5 0.26
lclldihi0a_ dih10a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 27.5 8.6

Query= dluc3a_ a.1.1.2 (A:) Lamprey globin (River lamprey (Lampetrafluviatilis))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 30.7 0.91
lclldirtxa_ dirtxa_ a.l1.1.1 (A:) Protozoan/bacterial hemoglobin ... 30.3 1.4
Query= dlaém__ a.1.1.2 (-) Myoglobin Sperm whale (Physeter catodon)

lclldikr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.9 0.37
Query= dihbra_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Chicken (Gallusgallus))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.4 0.064

Query= d1v75b_ a.1.1.2 (B:) Hemoglobin, beta-chain (Aldabra giant tortoise(Geochelone gigantea))
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lcl|ldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 35.7 0.027
Query= difhja_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Maned wolf(Chrysocyon brachyurus))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (m... 39.5 0.002
Query= dlgjna_ a.1.1.2 (A:) Myoglobin Horse (Equus caballus)

lcl|ldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.1 0.68
Query= dlcgba_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Cartilaginous fishakaei (Dasyatis akajei))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.3 0.15
Query= d1jl6a_ a.1.1.2 (A:) Glycera globin (Marine bloodworm (Glyceradibranchiata))
lclldlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.4 0.63
lcl|dilh10a_ dihi0a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 27.6 7.7
Query= difsla_ a.1.1.2 (A:) Leghemoglobin (Soybean (Glycine max), isoformA)

lcl|ldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.0 0.19
Query= d3sdha_ a.1.1.2 (A:) Hemoglobin I (Ark clam (Scapharcainaequivalvis))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (m... 39.2 0.003
lclldirtxa_ dirtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 28.0 5.7
Query= d2mmi__ a.1.1.2 (-) Myoglobin Human (Homo sapiens)

lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 35.3 0.044
Query= dlirda_ a.1.1.2 (A:) Hemoglobin, alpha-chain Human (Homo sapiens)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.5 0.13
Query= dilhdsb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Deer (Odocoileusvirginianus))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.0 0.69
Query= dlemy__ a.1.1.2 (-) Myoglobin Asian elephant (Elephas maximus)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.3 0.33
Query= d21hb__ a.1.1.2 (-) Lamprey globin (Sea lamprey (Petromyzonmarinus))

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.2 0.34
lclldirtxa_ dirtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 28.7 3.4
Query= dihlb__ a.1.1.2 (-) Hemoglobin, different isoforms (Sea cucumber(Caudina (Molpadia) arenicola))
lcl|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 37.6 0.009

Query= dleca__ a.1.1.2 (-) Erythrocruorin (Midge (Chironomus thummithummi), fraction III)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.6 0.054
Query= dihbrb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Chicken (Gallusgallus))
lcl|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 36.5 0.014

Query= dilht__ a.1.1.2 (-) Myoglobin (Loggerhead sea turtle (Carettacaretta))

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.2 0.66

Query= dich4a_ a.1.1.2 (A:) Chimeric hemoglobin beta-alpha (Synthetic,based on Homo sapiens sequence)
lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.4 0.13

Query= dlit2a_ a.1.1.2 (A:) Hagfish hemoglobin (Inshore hagfish(Eptatretus burgeri))

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 45.7 3e-05

lclldirtxa_ dirtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 29.9 1.7

Query= digpwa_ a.1.1.2 (A:) Hemoglobin, alpha-chain Pig (Sus scrofa)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.9 3.1

Query= digvhal a.1.1.2 (A:1-146) Flavohemoglobin, N-terminal domain(Escherichia coli)
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lclldirtxa_ dirtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 30.3 1.1
lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.8 3.9
lclldifmja_ difmja_ c.37.1.5 (A:) Retinol dehydratase (Fall army... 28.4 4.9

Query= d1g08b_ a.1.1.2 (B:) Hemoglobin, beta-chain Cow (Bos taurus)

lcl|ldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 36.4 0.016
Query= dlirdb_ a.1.1.2 (B:) Hemoglobin, beta-chain Human (Homo sapiens)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 37.5 0.008
Query= dimwca_ a.1.1.2 (A:) Myoglobin Pig (Sus scrofa)

lcl|dlkr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.1 0.097
Query= dliwha_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Horse (Equuscaballus))

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 36.1 0.024
Query= dlewba_ a.1.1.2 (A:) Dehaloperoxidase (Marine worm (Amphitriteornata))
lcl|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 45.0 4e-05
Query= div75a_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Aldabra gianttortoise (Geochelone gigantea))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.2 0.076
Query= dljebb_ a.1.1.2 (B:) Hemoglobin, beta-chain Mouse (Mus musculus)

lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.8 3.1

Query= d1la6b_ a.1.1.2 (B:) Hemoglobin, beta-chain (Fish (Trematomusnewnesi))
lcl|ldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.8 3.8

Query= dlitha_ a.1.1.2 (A:) Hemoglobin Innkeeper worm (Urechis caupo)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.6 0.066
Query= dli3da_ a.1.1.2 (A:) Hemoglobin, beta-chain (Human fetus (Homosapiens), gamma-chain)
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.4 0.14

Query= diljeba_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Human (Homo sapiens),zeta isoform)
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.1 0.093
Query= dibOb__ a.1.1.2 (-) Hemoglobin I Clam (Lucina pectinata)

lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.1 0.093
Query= digcva_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Houndshark (Mustelusgriseus))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 36.1 0.024
lclldihi0a_ dih10a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 30.3 1.3
Query= dimyt__ a.1.1.2 (-) Myoglobin Yellowfin tuna (Thunnus albacares)
lcl|dlkr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 37.6 0.008
Query= dlouta_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Trout (Oncorhynchusmykiss))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.2 0.35
Query= dloj6a_ a.1.1.2 (A:) Neuroglobin Human (Homo sapiens)

lclldikr7a_ dilkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.7 0.25
Query= digpwb_ a.1.1.2 (B:) Hemoglobin, beta-chain Pig (Sus scrofa)

Query= dlscta_ a.1.1.2 (A:) Hemoglobin I (Ark clam (Scapharcainaequivalvis))
lclldikr7a_ dikr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.6 0.061
Query= di1sbxb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Emerald rockcod(Pagothenia bernacchii))
lclldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 30.3 1.3

Query= dlspga_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Teleost fish(Leiostomus xanthurus))
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lcl|ldikr7a_ dlkr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.9

0.056

Query= dlash__ a.1.1.2 (-) Ascaris hemoglobin, domain 1 (Pig roundworm(Ascaris suum))

1cl|dikr7a_ dilkr7a_ a.1.1.4

Query= dlsctb_ a.1.1.2 (B:
lcll|dlkr7a_ dikr7a_ a.1.1.
Query= dliwhb_ a.1.1.2 (B:
lcl|dikr7a_ dilkr7a_ a.1.1.
Query= difhjb_ a.1.1.2 (B:
lcl|dlkr7a_ dilkr7a_ a.1.1.
Query= dloutb_ a.1.1.2 (B:
lcl|dikr7a_ dilkr7a_ a.1.1.
Query= dlla6a_ a.1.1.2 (A:

lcl|dikr7a_ dikr7a_ a.1.1.

)
4
)
4
)
4
)
4
)
4

(A:) Nerve tissue mini-hemoglobin (n... 34.2 0.085
Hemoglobin I (Ark clam (Scapharcainaequivalvis))

(A:) Nerve tissue mini-hemoglobin (n... 39.2 0.003
Hemoglobin, beta-chain (Horse (Equuscaballus))

(A:) Nerve tissue mini-hemoglobin (n... 31.8 0.45

Hemoglobin, beta-chain (Maned wolf (Chrysocyonbrachyurus))
(A:) Nerve tissue mini-hemoglobin (n... 33.4 0.16
Hemoglobin, beta-chain (Trout (Oncorhynchusmykiss))

(A:) Nerve tissue mini-hemoglobin (n... 32.7 0.24
Hemoglobin, alpha-chain (Antarctic fish(Trematomus newnesi))

(A:) Nerve tissue mini-hemoglobin (n... 35.3 0.035
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Appendix B

Additional figures and information

on Chapter 5

Bin| 1 2 3 4 5 6 7 8 9 10 ( 11 | 12 | 13 | 14 | 15| 16 | 17
34.6| 31.5( 31.7| 32.2| 32.5| 32.5| 32.4 32.4| 32.7( 32.8| 32.9( 33.2| 33.1| 32.9| 32.3| 31.3| 31.0
31.5( 33.9( 32.2| 32.7| 33.0( 33.1| 33.0| 33.0| 33.2| 33.3| 33.4| 33.7| 33.7( 33.5( 32.9| 31.8| 31.5
31.7| 32.2( 37.3| 33.4| 33.7| 33.8| 33.7| 33.8| 33.9( 34.0| 34.1| 34.4| 34.3| 34.1| 33.4| 32.3| 31.9
32.2| 32.7( 33.4| 39.7| 34.6| 34.8| 34.7| 34.6| 34.8( 34.9| 35.0( 35.3| 35.3| 35.1| 34.3| 33.0| 32.4
32.5| 33.0( 33.7| 34.6( 41.3| 35.0| 34.9( 35.0| 35.2( 35.3| 35.4( 35.7| 35.7| 35.5| 34.6| 33.3| 32.9
32.5| 33.1( 33.8| 34.8| 35.0| 42.1| 35.1 35.1| 35.3| 35.4| 35.5( 35.7| 35.8| 35.5| 34.7| 33.4| 32.8
32.4| 33.0( 33.7| 34.7| 34.9| 35.1| 42.2( 35.0| 35.2 35.3| 35.5( 35.8| 35.8| 35.5| 34.7| 33.4| 32.8
32.4| 33.0( 33.8| 34.6| 35.0( 35.1| 35.0| 41.6| 35.4| 35.5| 35.5| 35.9| 35.9( 35.6( 34.7| 33.4| 32.9
32.7| 33.2( 33.9| 34.8 35.2| 35.3| 35.2| 35.4| 41.7( 35.7| 35.8( 36.2| 36.1| 35.8| 35.0| 33.6 32.9
32.8| 33.3| 34.0| 34.9( 35.3| 35.4| 35.3| 35.5| 35.7( 41.9| 35.8 36.2| 36.3| 36.0| 35.1| 33.8| 33.0
32.9| 33.4( 34.1| 35.0( 35.4| 35.5| 35.5( 35.5| 35.8 35.8| 41.2 36.4| 36.5| 36.2| 35.3| 33.9| 33.2
33.2| 33.7( 34.4| 35.3| 35.7| 35.7| 35.8| 35.9| 36.2( 36.2| 36.4| 41.6| 36.9| 36.6| 35.7| 34.3| 33.5
33.1| 33.7( 34.3| 35.3| 35.7| 35.8| 35.8| 35.9| 36.1 36.3| 36.5( 36.9| 40.6| 36.8| 35.9| 34.4| 33.5
32.9( 33.5( 34.1| 35.1| 35.5( 35.5| 35.5| 35.6| 35.8| 36.0| 36.2| 36.6| 36.8( 39.1 35.6( 34.2| 33.5
32.3| 32.9( 33.4| 34.3| 34.6| 34.7| 34.7| 34.7| 35.0( 35.1| 35.3| 35.7| 35.9| 35.6| 36.6| 33.6| 32.9
31.3]| 31.8( 32.3| 33.0| 33.3| 33.4| 33.4 33.4| 33.6( 33.8| 33.9( 34.3| 34.4| 34.2| 33.6| 34.2| 32.1
31.0) 31.5{ 31.9] 32.4| 32.9] 32.8] 32.8f 32.9] 32.9 33.0] 33.2| 33.5| 33.5]| 33.5| 32.9| 32.1| 87.7
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Figure B.1: Mean similarity scores within and across bins (fruit fly). The mean
Smith-Waterman similarity scores resulting from pairwise alignments between genes as-
signed to the same and different bins are shown. Bin 1 contains the most tissue-specific
genes while bin 17 contains the most broadly expressed genes. Tissue specificity increases
with the bin number. The mean values are highest within the bins, however these also
contain scores resulting from self-alignments.
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Bin 1 2 3 4 5 6 7 8 9 |10)| 11| 12| 13| 14| 15| 16| 17| 18| 19| 20| 21| 22| 23| 24| 25| 26 | 27 | 28 | 29 | 30 | 31
1 90.0] 39.5( 33.4| 34.3| 33.1| 32.3| 35.1 31.6( 31.7| 32.9| 31.2| 32.6| 32.2| 31.9] 32.8| 32.0| 32.4| 33.1| 31.6| 32.3| 32.7| 31.8| 33.7| 32.7| 32.6( 32.0| 33.1| 31.8| 32.1| 32.4| 33.1
2 39.5|52.6( 34.6| 32.9| 34.0( 33.5| 34.1| 32.5| 33.4| 33.4 32.2| 32.9| 33.0| 32.6| 33.0| 32.9] 33.3| 33.2| 32.5| 32.9] 33.8| 32.7| 33.2| 33.1| 33.1 33.5| 32.9 32.6| 32.9| 32.9| 33.6
3 33.4|34.6( 53.2| 34.1| 34.9( 34.9| 33.8| 32.7| 32.8 33.7| 32.5| 33.9| 33.8| 32.8| 33.0| 33.1| 34.0| 33.6| 33.2| 33.5| 34.1| 33.3| 33.2| 33.7| 33.6| 34.1| 33.2 33.5| 33.2| 33.3| 33.9
4 34.3]|32.9( 34.1| 55.7| 34.2( 32.9| 34.2| 32.3| 32.5/ 33.1| 32.0| 32.6| 33.4| 32.7| 33.3| 32.7| 33.9| 33.7| 32.8| 33.1| 33.8| 33.1| 32.7| 32.8| 32.9| 33.5| 33.3 33.0| 33.3| 33.6| 33.6
5 33.1|34.0( 34.9| 34.2| 58.3( 34.9| 34.1| 32.7 33.1| 34.4| 33.0| 34.3| 34.0| 32.9| 33.5| 33.8| 34.7| 33.6| 33.2| 34.1| 34.1| 33.6 33.4| 33.7| 33.9] 33.8] 33.5 33.3| 33.9| 33.6| 33.9
6 32.3]33.5(34.9] 32.9| 34.9( 56.2| 34.1| 33.5| 33.3| 34.6 32.4| 34.1| 33.9| 33.6| 33.1| 33.4| 34.7| 34.0| 33.0| 33.8| 33.8| 33.3| 32.9| 33.8| 34.0| 33.8] 33.4| 33.4 33.4| 33.6| 34.0|
7 35.1]|34.1| 33.8| 34.2| 34.1| 34.1| 66.1 32.7| 33.1 34.3| 32.7| 33.3| 33.4| 33.7| 34.2| 33.9] 35.0| 34.3] 33.9| 33.8| 34.4| 33.8| 33.8| 33.9| 34.1| 34.2| 34.3| 33.9| 33.8| 34.0( 34.8
8 31.6]32.5(32.7| 32.3| 32.7| 33.5/ 32.7| 57.5| 32.5| 33.2| 32.1| 32.4| 32.6| 32.7| 32.5| 33.5| 33.5| 33.4] 32.9| 33.6| 33.7| 33.1| 32.8| 33.0| 33.2| 33.4| 33.4 33.1 33.3| 33.3 33.7|
9 31.7|33.4(32.8] 32.5| 33.1 33.3| 33.1 32.5| 64.6 33.9| 32.6| 33.4| 35.2| 34.0| 33.3| 33.7| 34.0| 33.9] 33.9| 34.7| 35.6| 33.8| 33.7| 33.8| 33.5| 34.3| 33.6 33.8| 34.0 34.1| 34.7|
10 |32.9]33.4|33.7|33.1|34.4| 34.6| 34.3( 33.2| 33.9| 61.5( 33.1| 34.1| 33.8| 34.5| 34.3| 34.7| 34.4| 34.9| 33.9| 34.3| 34.6| 34.4| 33.6| 34.0| 34.1| 34.3]| 34.9] 33.9| 34.2| 34.6| 34.5
11 | 31.2]32.2|32.5|32.0(33.0]32.4| 32.7( 32.1| 32.6| 33.1| 60.1| 33.3| 33.4| 33.4| 33.4| 33.4| 33.7| 33.9| 33.6| 33.8| 34.5| 33.6| 33.2| 34.1| 33.5| 34.0| 33.9 33.7| 33.5| 34.3( 33.8
12 | 32.6]32.9]33.9|32.6(34.3| 34.1| 33.3( 32.4| 33.4| 34.1 33.3| 66.3| 34.4| 34.0| 33.5| 33.6| 34.2| 35.2| 34.4| 34.9| 34.8| 34.5| 33.7| 34.7| 34.0| 35.4| 34.4( 34.1| 34.3| 34.5( 35.0|
13 | 32.2|33.0|33.8|33.4| 34.0] 33.9| 33.4( 32.6| 35.2| 33.8 33.4| 34.4| 62.7| 34.1| 34.1| 33.7| 34.1| 34.4| 34.0| 34.4| 35.0| 33.9| 34.3| 34.0( 33.9| 35.1| 34.4( 34.4| 34.5| 34.7( 34.7|
14 |31.9]|32.6|32.8]|32.7|32.9]33.6| 33.7( 32.7| 34.0| 34.5[ 33.4| 34.0 34.1| 75.9| 34.0| 34.0| 34.4| 34.8| 34.3| 34.3] 35.2| 34.2| 33.7| 34.1| 34.0| 34.9] 34.3( 34.1| 34.9| 35.3 34.9|
15 |32.8]33.0|33.0|33.3|33.5|33.1| 34.2( 32.5| 33.3| 34.3| 33.4| 33.5| 34.1| 34.0| 60.8| 33.7| 34.1| 34.3| 34.1| 34.3| 34.8| 34.6| 33.8| 34.0| 33.9] 35.3| 34.2| 34.1| 34.6( 34.3| 34.5
16 |32.0|32.9|33.1|32.6(33.8]33.4| 33.9(33.5[33.7| 34.7| 33.4| 33.6| 33.7| 34.0| 33.7| 60.9| 34.4| 34.4| 34.2| 34.5| 34.9| 34.8| 33.7| 34.5| 34.4| 34.9] 34.5( 34.2| 34.3| 34.6( 35.0|
17 |32.4]33.3]|34.0|33.9(34.7|34.7| 35.0( 33.5| 34.0| 34.4 33.7| 34.2| 34.1| 34.4| 34.1| 34.4| 75.2| 35.0| 34.7| 35.0| 35.7| 35.3| 34.2| 34.8| 35.1| 35.3| 35.1| 34.8] 35.1| 35.2| 35.5
18 |33.1]33.2|33.6|33.7|33.6|34.0| 34.3( 33.4] 33.9| 34.9 33.9| 35.2| 34.4| 34.8| 34.3| 34.4| 35.0| 68.8]| 34.9| 35.6| 35.7| 36.7| 34.3| 35.0( 34.9] 35.7| 35.3| 35.1| 35.5| 35.8( 35.7|
19 31.7|32.5|33.2| 32.8| 33.2| 33.0| 33.9| 32.9| 33.9| 33.9| 33.6| 34.4| 34.0| 34.3| 34.1| 34.2| 34.7| 34.9| 71.1| 34.7| 35.3| 35.0| 34.1| 34.7| 34.6| 35.3| 35.2| 34.7| 34.5| 35.0| 35.5
20 32.3|32.9]33.5| 33.1| 34.1| 33.8| 33.8| 33.6| 34.7| 34.3| 33.8| 34.9| 34.4| 34.3| 34.3| 34.5| 35.0| 35.6| 34.7| 69.6] 35.6| 35.2| 34.3| 34.8| 34.8| 35.6| 35.1| 35.2| 35.2| 35.3| 35.4,
21 32.7|33.8|34.1| 33.8| 34.1| 33.8| 34.4| 33.7| 35.6| 34.6| 34.5| 34.8| 35.0| 35.2| 34.8| 34.9] 35.7| 35.7| 35.3| 35.6| 76.5| 35.6| 35.1| 35.6| 35.3| 36.7| 35.7| 35.7| 35.9| 35.9| 36.1
22 31.8|32.7|33.3] 33.1| 33.6| 33.3| 33.8| 33.1| 33.8| 34.4| 33.6| 34.5| 33.9| 34.2| 34.6| 34.8| 35.3| 36.7| 35.0| 35.2| 35.6| 70.0| 34.2| 34.8| 34.6| 35.3| 34.9] 34.8| 35.0| 35.5| 36.0
23 |33.7|33.2]33.2|32.7| 33.4| 32.9| 33.8| 32.8| 33.7| 33.6| 33.2| 33.7| 34.3| 33.7| 33.8| 33.7| 34.2| 34.3| 34.1| 34.3| 35.1| 34.2| 71.5| 34.2| 34.2| 35.2| 34.4| 34.3| 34.4| 34.5| 34.9
24 |32.7|33.1]33.7|32.8] 33.7| 33.8] 33.9] 33.0| 33.8| 34.0| 34.1| 34.7| 34.0( 34.1| 34.0| 34.5| 34.8| 35.0| 34.7 34.8| 35.6| 34.8| 34.2| 62.4| 34.8| 35.4| 35.0| 34.9| 35.3| 35.2| 35.2
25 |32.633.1]33.6/32.9] 33.9| 34.0| 34.1| 33.2| 33.5| 34.1| 33.5| 34.0| 33.9| 34.0| 33.9| 34.4 35.1| 34.9| 34.6 34.8| 35.3| 34.6| 34.2| 34.8| 64.0| 35.3| 35.1| 34.8| 35.2| 34.9| 35.7,
26 |32.033.5|34.1|33.5| 33.8| 33.8| 34.2| 33.4| 34.3| 34.3| 34.0| 35.4| 35.1| 34.9] 35.3| 34.9| 35.3| 35.7| 35.3| 35.6| 36.7| 35.3| 35.2| 35.4| 35.3| 79.8| 35.6| 35.7| 35.8| 35.7| 36.2
27 |33.1|32.9]33.2|33.3| 33.5| 33.4| 34.3| 33.4| 33.6| 34.9| 33.9| 34.4| 34.4| 34.3| 34.2| 34.5| 35.1| 35.3| 35.2 35.1| 35.7| 34.9] 34.4| 35.0| 34.8| 35.6| 78.6| 35.2| 35.2| 35.6| 35.8,
28 |31.8|32.6/33.5/33.0|33.3| 33.4| 33.9] 33.1| 33.8| 33.9| 33.7| 34.1| 34.4| 34.1| 34.1| 34.2| 34.8| 35.1| 34.7| 35.2| 35.7| 34.8| 34.3| 34.9| 34.8| 35.7| 35.2| 71.4| 35.3] 36.2| 35.6
29 |32.132.9]33.2|33.3]| 33.9| 33.4| 33.8| 33.3| 34.0| 34.2| 33.5| 34.3| 34.5| 34.9| 34.6 34.3| 35.1| 35.5| 34.5 35.2| 35.9| 35.0| 34.4| 35.3| 35.0| 35.8| 35.2| 35.3| 66.3| 35.6| 35.8,
30 |32.4|32.9]33.3|33.6|33.6 33.6| 34.0| 33.3| 34.1| 34.6| 34.1| 34.5| 34.9| 35.3| 34.3| 34.6 35.2| 35.8| 35.0 35.3| 35.9| 35.5| 34.5| 35.2| 34.9| 35.7| 35.6| 36.2| 35.6| 64.4| 36.0
31 |32.6(33.6/33.7|33.4| 33.7| 33.8| 34.6| 33.4| 34.1| 34.3| 33.8| 34.8| 34.5| 34.6| 34.3| 34.8 35.2| 35.5| 36.1| 35.2| 35.9| 35.8| 34.6| 35.2| 35.4| 36.2| 35.6| 35.4| 35.6| 35.6| 68.7
32 |32.5(33.2|33.4|33.3]| 33.2| 33.5| 33.7| 33.2| 33.6| 34.0| 33.8| 34.2| 34.5( 35.2| 33.9| 33.9| 34.5| 34.8| 34.5( 35.1| 35.3| 34.7| 34.1| 34.6| 34.4| 35.8| 35.0| 35.4| 34.7| 35.5| 35.5
33 |32.0(32.5/32.9/32.8]33.1| 33.3] 33.3]| 32.8| 33.5| 33.5| 33.1| 33.7| 33.7 33.7| 33.4| 33.9| 34.5| 34.6| 34.5| 34.6| 34.9| 34.7| 34.4| 34.4| 34.4| 35.1| 34.7| 34.6| 34.7| 35.0| 35.0
34 |32.1|33.4]33.633.5| 34.1| 34.0| 34.6| 33.7| 34.1| 34.3| 33.9| 34.2| 34.4| 34.4| 34.5| 34.9| 35.3| 35.2| 35.1| 35.4| 35.9| 35.0| 34.5| 35.1| 35.2| 36.1| 35.4| 35.3| 35.5| 35.6| 35.7,
35 |32.0(32.9/33.4|33.4|33.5|33.6| 34.0| 33.4| 34.0| 34.1| 33.9| 34.1| 34.5( 34.7| 34.3| 34.6| 34.8| 35.0| 35.3 35.2| 35.7| 34.8] 34.4| 34.9| 35.1| 36.0| 35.5| 35.4| 34.9] 35.5| 36.0
36 |32.0(33.233.6/33.7| 34.2| 33.9| 34.3| 33.5| 33.9| 34.6| 34.4| 34.8| 34.9| 34.8| 34.4| 34.5| 35.7| 35.5| 34.9 35.5| 36.0| 34.8| 34.8| 35.5| 34.8| 35.6| 35.5| 35.3| 35.4| 35.6| 35.9
37 |32.233.1]33.633.5| 33.6| 33.7| 34.0| 33.2| 34.0| 34.4| 33.8| 34.6| 34.5( 34.8| 34.7| 34.6 35.1| 35.4| 35.2 35.5| 35.7| 35.6| 34.6| 35.2| 35.0| 36.3| 35.2| 35.3| 35.8| 35.6| 36.1
38 |31.3]32.3]32.7|32.6|33.0|32.9] 33.7| 32.7| 33.5| 33.7| 33.3| 33.8| 33.8( 34.6| 33.7| 34.1| 34.4| 34.4| 34.4( 34.7| 35.1| 34.2| 34.1| 34.6| 34.0| 35.4| 34.9| 34.4| 34.7| 35.0| 35.5
39 |32.133.0/33.7|33.8]| 34.6| 33.9| 34.4| 33.5| 34.3| 34.5| 33.8| 34.8| 34.4| 35.4| 34.3| 34.5| 35.5| 35.5| 35.0 35.6| 35.7| 34.9| 34.7| 34.9| 34.9| 35.6| 35.5| 35.1| 36.2| 35.8| 35.7,
40 |32.1]33.3(33.3]33.2|33.8(33.5/34.2| 33.4| 34.1| 34.2| 33.9| 34.8| 34.4| 34.3| 34.2| 34.7| 35.1| 35.2| 35.0| 35.3| 35.7| 35.3| 34.5| 35.5( 35.0| 35.7| 35.8 35.5| 35.7| 35.7| 35.6|
41 |32.2]33.2(33.5|33.4|33.8(34.0[ 34.2| 33.5[ 34.6| 34.5| 34.2| 34.5| 34.5| 34.6| 34.6| 34.9| 35.4| 35.6| 35.2| 35.3| 36.5| 35.6| 34.7| 35.4( 35.3| 36.0| 36.0( 35.3| 35.7 35.9 36.2]
42 |31.3]|32.2(32.8]32.5(33.0(32.8/33.2| 32.4| 33.1| 33.3| 33.1| 33.4| 33.4| 33.6| 33.5| 33.8| 34.1| 34.5| 34.1| 34.4| 34.9| 34.6| 33.6| 34.3( 34.1| 35.1| 34.4( 34.5| 34.8| 34.7( 34.7|
43 |32.4]33.6(33.6]33.6[34.1|34.0| 34.3| 33.6( 34.6| 34.5| 34.0| 34.4| 34.5| 34.8| 34.5| 34.8| 35.5| 35.5| 35.5| 35.4| 36.3| 35.5| 35.0f 35.5| 35.1| 36.2 35.5| 35.5| 35.6 35.9| 36.1
44 32.0|32.9|33.2| 33.2| 33.5/ 33.3| 33.9| 33.0| 34.0| 34.0| 33.8| 34.1| 34.3| 34.1| 34.1| 34.3| 34.8| 35.2| 35.1| 34.9] 35.8| 34.9| 34.7| 34.9| 34.6| 35.5| 35.0| 35.1| 35.1| 35.4| 35.5
45 32.2|33.0] 33.3] 33.0| 33.5/ 33.5| 34.0( 33.1| 33.8| 34.2| 34.0| 34.0| 34.2| 34.2| 34.4| 34.3| 34.8] 35.0| 35.1| 34.8] 35.6| 35.1| 34.5| 35.4| 34.7| 35.6| 35.3| 35.1| 35.4| 35.3| 35.4,
46 31.6|32.5]|33.0| 33.0 33.4| 33.2| 33.9| 33.2| 33.6| 33.9| 33.7| 34.1| 34.0| 34.4| 33.9| 34.3| 34.7| 34.9| 35.0| 34.9] 35.4| 34.7| 34.3| 34.6| 34.7| 35.5| 35.6| 35.1| 34.9| 35.2| 35.4,
47 32.2|33.0] 33.5| 34.0 33.6| 33.4| 34.2| 33.2| 34.1| 34.1| 33.8| 34.1| 34.6| 34.6| 34.3| 34.8| 35.0| 35.1| 35.0| 35.0] 35.6| 35.2| 34.4| 34.9| 35.0| 35.6| 35.0] 35.2| 35.3| 35.6] 35.6,
48 |32.4]33.1|33.7|33.4|33.9(34.0| 34.0| 33.3| 34.4| 34.1| 33.9| 34.3| 35.2| 34.4| 34.3| 34.7| 35.2| 35.1| 35.1| 35.2| 35.9| 35.1| 34.9| 35.2( 34.8| 35.8] 35.6 35.2| 35.4 35.6 35.7|
49 |31.9]32.7|33.1|33.3|33.4|33.2| 33.8/ 33.0{ 33.9| 33.9| 33.8| 34.1| 34.3| 34.5| 34.1| 34.4| 34.9| 34.9| 35.1| 35.0| 35.7| 34.9| 34.5| 34.9| 34.5| 35.8] 36.2 35.1| 35.2 35.7| 35.6|
50 |31.8)32.8]33.2]33.0|33.5|33.3| 33.8]| 33.0| 33.7| 33.9| 33.9| 34.3| 34.2| 34.2| 34.0| 34.3| 35.1| 34.9| 34.9( 35.1| 35.6| 35.0| 34.4| 34.9| 34.5| 35.7| 35.0| 34.9| 35.0] 35.2| 35.4
51 |31.6(32.5/32.9/32.8] 33.3| 33.0| 33.4| 32.8| 33.5| 33.7| 33.4| 33.9| 33.8 33.9| 33.7| 33.9| 34.8| 34.7| 34.4 34.8| 35.4| 34.6| 34.2| 34.5| 34.3| 35.6| 34.7| 34.9| 35.2| 35.0| 35.1
52 |31.8(32.7|33.1]33.2| 33.5| 33.5| 33.8] 33.2| 33.9| 34.0| 33.7| 34.1| 34.4| 34.3| 34.4| 34.3| 35.1| 35.1| 34.7 35.0| 35.7| 34.9| 34.4| 34.8| 34.5| 35.8| 35.1| 35.1| 35.2| 35.5| 35.8,
53 |31.7|32.7|33.1]33.0| 33.4| 33.2| 33.8| 33.0| 33.8| 33.9| 33.6| 34.1| 34.2( 34.2| 33.9| 34.3| 34.8| 35.0| 34.8 35.0| 35.6| 35.0| 34.3| 35.0| 34.6| 36.0| 35.0| 35.0| 35.7| 35.4| 35.5
54 |31.933.0]33.3|33.2| 33.5/33.5| 33.9] 33.1| 33.9| 34.0| 33.6| 34.1| 34.2| 34.6| 34.0| 34.1| 34.9| 35.0| 34.8 34.9| 35.7| 35.1| 34.4| 34.8| 34.6| 35.5| 35.1| 35.2| 35.3| 35.4| 35.4
55 |31.6(32.4|32.8/32.9]33.1|32.9] 33.4| 32.6| 33.7| 33.7| 33.4| 33.7| 33.9 33.9| 33.6| 33.9| 34.6| 34.7| 34.4| 34.7| 35.6| 34.6| 33.9| 34.5| 34.2| 35.2| 34.7| 34.8| 35.1| 35.1| 35.1
56 |32.1|32.9]33.3]|33.3]|33.5|33.5| 33.9] 33.3| 34.5| 34.2| 33.9| 34.1| 34.3| 34.3| 34.1| 34.4 35.1 35.1| 35.2 35.3| 35.7| 35.2| 34.4| 35.1| 34.8| 35.7| 35.4| 35.3| 35.7| 36.2| 35.9
57 |31.5[32.4|32.8/33.0|33.1| 33.1| 33.4| 32.8| 34.2| 33.7| 33.3| 33.7| 33.9 33.9| 33.7| 33.9| 34.6| 34.6| 34.4 34.7| 35.3| 34.5| 34.1| 34.5| 34.2| 35.3| 34.7| 34.7| 35.5| 35.6| 35.4
58 |31.6(32.7|32.8/33.1] 33.1| 33.0| 33.3]| 32.7| 34.4| 33.7| 33.3| 33.6| 33.7| 33.9| 33.4 33.7| 34.4| 34.3| 34.2| 34.4| 35.1| 34.4| 33.7| 34.3| 34.2| 35.1| 34.4| 34.5| 35.5| 35.4| 35.4
59 |31.5[32.2|32.5/33.1|32.8/32.7| 33.1| 32.5| 34.6| 33.6| 33.0| 33.4| 33.5( 33.6| 33.3| 33.5( 34.2| 34.1| 34.0( 34.4| 34.8| 34.4| 33.7| 34.3| 33.8| 34.8| 34.2| 34.3| 35.7| 35.6| 35.4
60 |31.3]32.0|32.233.1| 32.5| 32.4] 32.9| 32.4| 34.8] 33.4| 32.8 33.1] 33.3 33.4] 32.9| 33.2 33.8] 33.7| 33.5[ 34.1| 34.4| 34.1| 33.2| 33.8| 33.4| 34.3| 34.0| 33.8] 35.4] 35.5| 35.3

Figure B.2: Mean similarity scores within and across groups (mouse part 1). The
mean Smith-Waterman similarity scores resulting from pairwise alignments between genes
assigned to the same and different bins are shown. Bin 1 contains the most tissue-specific
genes while bin 60 contains the most broadly expressed genes. Tissue specificity increases
with the bin number. Scores resulting from self-alignments were not considered in the
calculation of the mean values. The table is continued on the next page. The mean values
are highest within the bins, however these also contain scores resulting from self-alignments.
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Bin 32| 33[34)|35(36| 37| 38| 39|40| 41| 42| 43| 44| 45| 46| 47| 48| 49 [ 50| 51| 52| 53 | 54| 55| 56 | 57 | 58 | 59 | 60
1 32.5(32.0f 32.1] 32.0] 32.0{ 32.2| 31.3| 32.1| 32.1| 32.2| 31.3| 32.4| 32.0| 32.1| 31.6| 32.2| 32.4( 31.9| 31.8 31.6| 31.8| 31.7| 31.9| 31.5| 32.0| 31.6| 31.6( 31.6| 31.3
2 33.2|32.5(33.4| 32.9] 33.2| 33.1| 32.3| 33.0 33.3| 33.2| 32.2| 33.6| 32.9| 33.0| 32.5| 32.9] 33.1 32.7| 32.9| 32.5| 32.8| 32.7| 33.0| 32.4| 32.9| 32.4| 32.4 32.3| 32.0
3 33.4|32.9 33.6| 33.4| 33.6| 33.6| 32.7| 33.7| 33.3| 33.5| 32.8| 33.6| 33.2| 33.3| 33.0| 33.5| 33.7( 33.1| 33.2| 32.9] 33.1| 33.1| 33.3| 32.9] 33.3| 32.9] 32.8 32.5| 32.2
4 33.3|32.8 33.5| 33.4] 33.7| 33.5| 32.6| 33.8| 33.2| 33.4| 32.5| 33.6| 33.2| 33.0| 33.0| 34.0] 33.4( 33.3| 33.0 32.8] 33.2| 33.0| 33.2| 32.9] 33.3| 33.1] 33.2| 33.1| 33.1
5 33.2|33.1| 34.1| 33.5| 34.2| 33.6| 33.0| 34.6| 33.8| 33.8]| 33.0| 34.1| 33.5| 33.5| 33.4| 33.6] 33.9 33.4| 33.5| 33.3] 33.5| 33.4| 33.5/ 33.0] 33.5| 33.1] 33.1| 32.8| 32.5
6 33.5(33.3| 34.0| 33.6] 33.9] 33.7| 32.9| 33.7| 33.5| 34.0] 32.8| 34.0] 33.3| 33.5| 33.2| 33.4| 34.0( 33.2| 33.3| 33.0] 33.6| 33.3] 33.7| 32.9] 33.5| 33.1| 33.0( 32.8| 32.4
7 33.7|33.3( 34.1]| 34.0] 34.3| 34.0| 33.5| 34.4| 34.2| 34.2] 33.2| 34.3]| 33.9| 34.0| 33.9| 34.2| 34.0( 33.8| 33.8| 33.4| 34.1| 33.8] 33.9] 33.4| 33.9| 33.7| 33.3| 33.1| 32.9
8 33.2|32.8] 33.7| 33.4]| 34.0| 33.2| 32.7| 33.5| 33.4| 33.5| 32.4 33.6| 33.0| 33.1| 33.2] 33.2| 33.3| 33.0{ 33.0{ 32.8| 33.2| 33.0| 33.1| 32.6] 33.3| 32.8| 32.8| 32.5[32.4
9 33.6]33.5| 34.1| 34.0] 33.9| 34.0| 33.5| 34.3| 34.1| 34.6| 33.1| 34.6| 34.0| 33.8| 33.6| 34.1| 34.4| 34.0| 33.7| 33.5| 33.9] 34.0| 33.9] 33.7| 34.5| 34.2| 34.4| 34.6( 34.8
10 |34.0]33.5|34.3(34.1]| 34.6| 34.4| 33.7| 34.5| 34.2| 34.5| 33.3| 34.5]| 34.0| 34.2| 33.9| 34.1| 34.1| 33.9( 33.9| 33.7| 34.0| 33.9| 34.0| 33.7| 34.2| 33.7| 33.7| 33.6( 33.4
11 |33.833.1| 34.0| 33.9| 34.4| 33.8| 33.3| 33.8| 33.9| 34.2| 33.1| 34.0| 33.8| 34.0| 33.7| 33.8| 33.9( 33.8| 33.9| 33.4| 33.7| 33.6| 33.6( 33.4| 33.9| 33.4| 33.2( 33.1| 32.8
12 |34.233.7(34.2| 34.1| 34.8| 34.6| 33.8| 34.8| 34.8| 34.5| 33.4| 34.4| 34.1| 34.0| 34.1| 34.1| 34.3| 34.1| 34.3| 33.9| 34.1| 34.1| 34.1| 33.7| 34.1| 33.9] 33.6( 33.4| 33.1
13 | 34.5(33.7|34.4| 34.5| 34.9| 34.5| 33.8| 34.4| 34.4| 34.5| 33.4 34.5| 34.3| 34.2| 34.0| 34.6| 35.2 34.3| 34.2| 33.8| 34.4| 34.2| 34.2| 33.8] 34.3| 33.9] 33.7( 33.6| 33.3
14 |35.2|33.7|34.4|34.7| 34.8| 34.8| 34.6| 34.7| 34.3| 34.6| 33.6| 34.8| 34.1| 34.2| 34.4| 34.6| 34.4 34.5| 34.2| 33.9| 34.3| 34.2| 34.6 33.9| 34.3| 34.0| 33.9( 33.7| 33.4
15 |33.9(33.4(34.5|34.3]|34.4| 34.7| 33.7| 34.3| 34.2| 34.6| 33.5| 34.5| 34.1| 34.4| 33.9| 34.3]| 34.3| 34.1| 34.0| 33.7| 34.1| 33.9| 34.0 33.6] 34.1| 33.7| 33.5( 33.3| 33.0
16 |33.9(33.9(34.9|34.6]|34.5|34.6|34.1| 34.5| 34.7| 34.9| 33.8| 34.8| 34.4| 34.3| 34.3| 35.0| 34.6( 34.4| 34.3| 33.9| 34.3| 34.3| 34.1 33.9] 34.4| 34.0| 33.7( 33.5| 33.3
17 |34.5(34.5[35.3|34.8]35.7| 35.1| 34.4| 35.5| 35.1| 35.4| 34.1| 35.5| 34.8| 34.8| 34.7| 35.0| 35.2| 34.9| 35.1| 34.8] 35.2| 34.8| 34.9] 34.6| 35.1| 34.8] 34.4( 34.2| 33.9
18 |34.8|34.6)35.2|35.0| 35.5| 35.4| 34.4| 35.5| 35.2| 35.6] 34.5| 35.5| 35.2| 35.0| 34.9| 35.1] 35.1| 34.9] 34.9| 34.7| 35.1| 35.0| 35.0( 34.9] 35.1| 34.7| 34.3| 34.2| 33.8
19 |34.5|34.5|35.1| 35.3]| 34.9| 35.2| 34.4] 35.0 35.0] 35.2| 34.1| 35.5]| 35.1| 35.1| 35.0| 35.0| 35.1| 35.1| 34.9| 34.4| 34.7| 34.8| 34.8| 34.4| 35.1| 34.6] 34.2| 34.1| 33.5
20 |35.1|34.6(35.6|35.2|35.5|35.5|34.7| 35.6] 35.3| 35.3| 34.4| 35.4| 34.9| 35.0] 34.9| 35.0| 35.2| 35.0 35.1| 34.8] 35.0| 35.0| 34.9| 34.7| 35.1| 34.7| 34.5[ 34.5] 34.1
21 |35.3|34.9|35.9]35.7| 36.0| 36.0| 35.1| 35.7| 35.7| 36.5| 34.9] 36.3| 35.8| 35.6] 35.4| 35.6| 35.9( 35.7 35.6| 35.4| 35.8| 35.6| 35.7| 35.4| 35.7| 35.2| 35.1| 34.8| 34.4
22 |34.7|34.7| 35.0( 34.8| 34.8| 35.6| 34.2( 34.9| 35.3| 35.6| 34.6| 35.5| 34.9| 35.1| 34.7| 35.2| 35.1| 34.9 35.0| 34.6| 35.0| 34.9| 35.1| 34.5| 35.2| 34.7| 34.4| 34.5| 33.9
23 | 34.1]|34.4]| 34.5( 34.4| 34.8| 34.6| 34.1| 34.7| 34.5| 34.7| 33.6| 35.0| 34.7| 34.5| 34.2| 34.4| 34.8| 34.5| 34.4| 34.2| 34.4| 34.3| 34.3]| 33.9| 34.4| 34.0| 33.7| 33.7| 33.2
24 |34.6]|34.4|35.1| 34.9| 35.6| 35.2| 34.6( 34.9| 35.5| 35.4| 34.3| 35.5| 34.9] 35.4| 34.6| 34.9 35.2| 34.9] 34.9| 34.5| 34.9] 35.1 34.8| 34.5| 35.0| 34.6( 34.4| 34.2| 33.8
25 |34.4]|34.4]35.2|35.1| 34.8] 35.0| 34.0f 34.9| 35.0] 35.3| 34.1| 35.1| 34.6( 34.7| 34.7| 35.0| 34.8| 34.5| 34.5| 34.3| 34.6| 34.6 34.6| 34.2| 34.8] 34.2| 34.2] 33.9| 33.5
26 |35.8]35.1]36.1|36.0 35.6] 36.3| 35.4f 35.6| 35.7| 35.8| 35.1| 36.2| 35.5] 35.6| 35.5| 35.6 35.8| 35.8] 35.7| 35.6| 35.7| 35.9) 35.5| 35.2| 35.7] 35.3| 35.2| 34.9| 34.4
27 |35.0]34.7|35.4|35.5| 35.5| 35.2| 34.9 35.5| 35.1| 36.0| 34.4| 35.5| 35.0f 35.3| 35.6| 35.0| 35.6| 35.3| 35.0] 34.7| 35.2| 35.0| 35.1| 34.7| 35.4| 34.7| 34.5| 34.3| 34.0
28 |35.4]|34.6|35.3|35.4| 35.3] 35.3| 34.4 35.1| 35.5| 35.3| 34.5| 35.5| 35.1| 35.4 35.1] 35.2 35.2| 35.1| 34.9] 34.9| 35.1| 35.0 35.2| 34.8| 35.2] 34.9( 34.5| 34.3| 33.8
29 |34.7]|34.6]35.5[34.9|35.4| 35.8| 34.7| 36.2| 35.7| 35.7| 34.8| 35.6 35.1| 35.4| 34.9] 35.3| 35.4| 35.3| 35.0] 35.2| 35.4] 35.7f 35.3| 35.1| 35.7] 35.5) 35.6 35.6| 35.4
30 |35.5[35.0f35.6]35.5|35.6|35.6|35.0] 35.8] 35.7| 35.9( 34.7| 35.9| 35.4| 35.3] 35.2| 35.6] 35.6| 35.8 35.2| 35.0] 35.5| 35.5| 35.5| 35.1| 35.9] 35.6| 35.5| 35.6] 35.5
31 |35.3|34.8(35.3|36.0| 35.4| 35.8 35.1| 35.6] 35.4| 36.0( 34.6| 35.9| 35.4| 35.2| 35.4| 35.5| 35.5| 35.5 35.4 35.0| 35.6| 35.4| 35.3| 35.0| 35.8| 35.5| 35.3| 35.4]| 35.3
32 |64.1|34.6(35.1) 34.9| 34.9| 34.9| 34.8| 35.2| 34.9| 35.5| 34.2| 35.0| 34.9| 34.9] 34.8| 34.9| 35.3| 35.1| 35.1| 34.4] 35.1| 34.9] 35.2| 34.7| 35.9| 35.8| 35.7| 36.2| 36.6
33 |34.6(/61.3| 34.7| 34.6| 34.5| 35.0| 34.2| 35.1| 34.8| 35.2 33.8] 35.2| 34.5| 34.5| 34.4| 34.6| 34.8] 35.0( 35.1| 34.2| 34.6| 34.5| 34.6| 34.4| 35.0| 34.7| 34.6( 34.9| 34.8
34 |35.1]|34.7|63.1| 35.3| 35.5| 36.6| 35.0 35.5| 35.5| 35.7| 34.8| 36.1| 35.5| 35.7| 35.4| 35.5| 35.8| 35.5| 35.3] 35.3| 35.3| 35.8 35.5| 35.3| 35.6] 35.4| 35.1| 34.9| 34.4
35 |34.9]|34.6|35.3]69.1| 35.1| 35.3| 34.8 35.3| 35.2| 35.5| 34.6| 35.4 35.6] 35.2| 35.0| 35.3| 35.5| 35.1| 35.1| 35.0 35.2| 35.0f 35.0| 34.6| 35.3] 34.7| 34.5| 34.2| 33.8
36 |34.9]|34.5|35.5(35.1| 72.0] 35.6| 35.0f 35.8| 35.3| 35.9] 34.3| 35.5| 35.7| 35.3| 35.4| 35.6| 35.7| 35.3 35.5| 35.2| 35.4| 35.3| 35.3]| 34.9| 35.5| 35.0| 34.7| 34.5| 34.2
37 |34.9]35.0]36.6(35.3| 35.6| 58.7| 35.1 35.5| 35.8] 35.9| 34.9] 35.9( 35.3| 35.6| 35.3] 35.5| 35.6| 35.6 35.5| 35.2| 35.5| 35.8 35.5| 35.4| 36.0] 35.8| 35.7| 35.7| 35.4
38 |35.0]34.2]35.0{34.8/35.0|35.1|60.1f 35.3| 34.7| 35.8| 34.0| 35.3| 34.7| 34.8| 34.9] 35.0| 35.0| 35.3| 35.0| 34.6| 35.1| 35.1f 35.1| 34.8| 36.2] 36.1| 36.3| 36.9| 37.4
39 |35.2]35.1]35.5(35.3| 35.8] 35.5| 35.3| 65.0| 35.9] 36.0| 34.7| 35.7| 35.5] 35.2| 35.4] 35.6 35.6| 35.6| 35.5| 35.1| 35.7| 35.4 35.5| 35.5| 36.2] 36.1| 36.1| 36.6| 36.6
40 |34.9/34.8|35.5]35.2| 35.3| 35.8] 34.7| 35.9( 57.3| 35.6| 34.6| 35.8] 35.5| 35.3| 35.5| 35.6] 35.5| 35.3| 35.4| 34.9] 35.2| 35.4| 35.1| 34.9] 35.3| 35.0| 34.7( 34.4| 34.0
41 |35.5]35.2]35.7| 35.5| 35.9 35.9] 35.8| 36.0| 35.6f 58.9] 35.0| 36.0| 35.6] 35.7| 35.6| 35.6] 36.0( 36.3| 35.8] 35.3| 35.8| 35.6| 35.8| 35.6| 36.8| 36.6| 36.9| 37.6| 38.2
42 |34.2]33.8]|34.8| 34.6| 34.3| 34.9| 34.0] 34.7| 34.6( 35.0| 51.1| 34.9| 34.6| 34.7| 34.2| 34.6| 34.9| 34.5| 34.5| 34.3| 34.5| 34.7| 34.5( 34.5| 34.9| 34.7| 34.5| 34.5| 34.4
43 |35.0]35.2]36.2| 35.4] 35.5/35.9] 35.3| 35.7| 35.8| 36.0| 34.9| 56.4| 35.5] 35.7| 35.3| 35.7| 35.9( 35.6| 35.5| 35.4| 35.6| 35.8 35.7| 35.3| 35.6| 35.5| 35.0| 35.0| 34.3
44 |34.9]34.5| 35.5] 35.6( 35.7| 35.3| 34.7| 35.5| 35.5| 35.6| 34.6| 35.5| 51.6| 35.4| 34.9| 35.4] 35.5| 35.2| 35.1| 34.8] 35.3| 35.1| 35.2| 34.9] 35.5| 35.0| 34.8( 34.8| 34.6
45 |34.9]34.5|35.7| 35.2| 35.3| 35.6| 34.8| 35.2| 35.3| 35.7| 34.7| 35.7| 35.5]| 51.7| 35.1| 35.4| 35.5 35.3| 35.2| 35.0| 35.2| 35.5| 35.3| 35.0f 35.6| 35.2| 34.8]| 34.7| 34.3
46 |34.8|34.4|35.4| 35.0{ 35.4| 35.3]| 34.9| 35.4 35.5| 35.6| 34.2| 35.3]| 34.9| 35.3| 50.0| 35.2] 35.2| 35.2| 35.0| 34.8] 35.2| 35.2| 35.1| 34.7| 35.4| 35.0| 34.8( 34.8| 34.5
47 |34.9]/34.6| 35.5| 35.3| 35.6| 35.5| 34.8) 35.6 35.6| 35.6| 34.6| 35.7| 35.4| 35.4| 35.2| 51.5] 35.6 35.4| 35.2| 35.0| 35.4| 35.4| 35.5| 35.1] 35.7| 35.6| 35.4( 35.4| 35.3
48 |35.3|34.8 35.8] 35.5( 35.7| 35.6| 35.1| 35.6 35.5| 36.0| 34.9| 35.9] 35.5| 35.5| 35.2| 35.6] 50.5| 35.8] 35.6| 35.3] 35.6 35.9| 35.6 35.4] 35.9| 35.8] 35.5( 35.5| 35.4
49 |[35.1]35.0f35.5] 35.1f 35.3| 35.6| 35.3] 35.6 35.2| 36.3| 34.5| 35.6| 35.2| 35.3| 35.2| 35.4] 35.8| 48.2| 35.6| 35.2| 35.6 35.7| 35.7| 35.6] 36.9| 36.8]| 37.0( 37.9( 38.5
50 |[35.1]35.1]35.3|35.1| 35.7| 35.5| 35.0f 35.5| 35.4| 35.8] 34.5| 35.5| 35.1 35.2| 35.0] 35.2| 35.6| 35.6( 46.6| 35.0| 35.4| 35.4| 35.4] 35.0| 35.9] 35.5| 35.4] 35.6 35.5
51 |34.4]|34.2]35.3|35.0| 35.2| 35.2| 34.6( 35.1| 34.9] 35.3| 34.3| 35.4| 34.8| 35.1| 34.8] 35.0| 35.3| 35.2| 35.0| 44.4| 35.1| 35.4| 35.2] 35.1| 35.6] 35.4| 35.2] 35.3 35.0
52 |35.0f34.6(35.3]| 35.2| 35.4| 35.4| 35.1| 35.7| 35.2| 35.8| 34.4| 35.6| 35.2| 35.2| 35.0| 35.4| 35.6 35.6( 35.4| 35.0| 46.4| 35.4| 35.6| 35.2| 36.3| 36.0| 36.0| 36.3| 36.4
53 |34.9|34.5(35.7]35.0| 35.3| 35.8| 35.1| 35.4| 35.4| 35.6( 34.7| 35.8| 35.1| 35.5] 35.2| 35.4| 35.8] 35.7 35.4 35.5| 35.5| 44.2| 35.8| 35.7| 36.4| 36.3| 36.2| 36.5| 36.4
54 |35.3|34.6(35.5]|35.0| 35.3] 35.5| 35.1| 35.5| 35.2| 35.8| 34.5| 35.7| 35.2| 35.3] 35.1| 35.5| 35.7| 35.7| 35.4| 35.2| 35.6| 35.8| 43.7| 35.6| 36.7| 36.5| 36.5( 37.2| 37.4
55 |34.7|34.3|35.3]|34.6| 35.2| 35.4| 34.9| 35.4| 34.9| 35.6( 34.5| 35.3| 34.9| 35.0| 34.6| 35.1| 35.4| 35.6 35.1 35.2] 35.3| 35.9| 35.6/ 41.9| 36.8| 36.9| 37.2| 38.1| 38.8
56 |35.9|35.1f35.6]35.3|35.5|36.036.2| 36.3| 35.3| 36.8( 34.9| 35.6| 35.5| 35.6] 35.4| 35.7| 35.9| 36.9 35.9| 35.5] 36.3| 36.5| 36.8| 36.8| 44.9] 39.9/40.9( 43.1]45.5
57 |35.6]|34.7|35.4|34.9|35.0| 35.7| 36.1| 36.1| 34.9] 36.6| 34.6| 35.5 35.0] 35.1| 35.0| 35.5| 35.7| 36.7| 35.5| 35.4 36.0| 36.2| 36.5| 36.9| 39.9]| 45.1| 42.0/ 44.8| 47.8
58 |35.7]|34.7|35.1|34.5|34.7| 35.6 36.2( 36.1| 34.7| 36.9| 34.5| 35.1| 34.9| 34.8| 34.8] 35.4 35.5| 37.0| 35.4] 35.2| 35.9] 36.2| 36.5| 37.2| 40.9] 42.1| 46.6/ 47.6| 51.8
59 |36.2]|34.8]|34.9|34.2| 34.6| 35.6 36.9( 36.5| 34.4| 37.5| 34.5| 34.8 34.9| 34.6| 34.7| 35.4| 35.5| 37.8| 35.6| 35.2| 36.2| 36.5[ 37.1| 38.1| 43.1]| 44.8| 47.6| 54.5| 58.8
60 | 36.5]|34.7| 34.4| 33.8] 34.3] 35.3| 37.4f 36.6| 33.9] 38.2| 34.4| 34.3| 34.6] 34.2| 34.5] 35.4| 35.4| 38.4] 35.4] 35.0| 36.4| 36.4| 37.4| 38.8| 45.4| 47.7{ 51.8| 58.8]| 71.7

Figure B.3: Mean similarity scores within and across groups (mouse part 2). The
mean Smith-Waterman similarity scores resulting from pairwise alignments between genes
assigned to the same and different bins are shown. Bin 1 contains the most tissue-specific
genes while bin 60 contains the most broadly expressed genes. Tissue specificity increases
with the bin number. The table is a continuation of the table on the previous page and
includes mean scores for bins 32-60.
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EntrezGene.ID MGI.Description MGI.symbol

Figure B.4: List of mouse genes with broad and tissue-specific expression. The 30
top/bottom genes are shown that led to a prediction performance of AUC=1 as described
in Chapter 5.2.1.1. The values 0 and 1 in the 'y’ column indicate broad (green) and
tissue-specific (orange) expression, respectively. Data were mapped using Ensembl 58.

165



Amino Acid (percentage)

Ap Cp Dp Ep Fp Gp Hp Ip Kp Lp Mp Np Pp Qp Rp Sp Tp

11705
14082
18322
18324
22034
22420
22793
50505
67418
67441
68205
69020
70844
93896
104831
107305
109359
214292
224640
227357
235406
238057
258302
258607
259021
272411
319481
338371
353155
545276
11699
12957
12965
12990
12991
13648
14473
14840
15458
16613
16615
16622
17695
17842
18048
20389
20714
22373
57426
66392
66996
67315
74188
77055
84543
100470
104002
109820
114871
233090

[a]
=
(]
=
(7]
Y}
N
()
e
)
=
W

Figure B.5: Amino acid matrix for mouse genes with broad and tissue-specific
expression. The amino acid matrix is shown for the 30 top/bottom genes that led to a
prediction performance of AUC=1 as described in Chapter 5.2.1.1. The values 0 and 1 in
the 'y’ column indicate broad (green) and tissue-specific (orange) expression, respectively.
The amino acid content is given as percentage (Xp) where X represents the amino acid.
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A) tissue-specific genes
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11699 42| 36| 31| 33 |1877] 30 | 37| 28| 28 | 25| 29| 28 | 35| 32| 32| 33| 29| 78| 28| 24| 52| 34| 29| 40| 34| 26| 25| 29| 33| 29
12957 33| 35| 35| 26| 30 |1214)249| 29| 27 | 30| 33| 32| 29| 30| 32| 34| 43| 25| 33| 28| 38| 29| 25| 22| 28| 25| 26| 26| 30| 33
12965 34| 33| 28| 26| 37| 249|988 35| 27| 26| 31| 45| 25| 30| 21| 33| 37| 30| 29| 26| 28| 35| 29| 24| 25| 32| 33| 30| 33| 20
12990 26| 27| 33| 34| 28| 29| 35 |1568 47 | 30| 33| 47| 30| 26| 31| 26| 30| 38| 29| 28 | 39| 28| 24 | 24| 30| 28 | 29| 26| 31| 24
12991 31| 25) 29| 30| 28| 27| 27| 47 |1141] 36 | 32| 36 | 26 | 36| 26 | 30| 20| 28| 32| 34| 27| 37| 30| 22| 35| 31| 27| 28| 41| 30
13648 31| 34| 31| 28| 25| 30| 26 | 30| 36 |1425 34 | 30 | 26 |1096] 964 |1101] 29 | 28 |1027| 28 | 26 | 34 | 27 | 34| 26| 26 | 30| 32| 32| 25
" 14473 41| 27| 29| 40| 29| 33| 31| 33| 32| 34 |2508 32| 42| 30| 30| 32| 34| 28| 34| 31| 39| 30| 46| 36| 31| 35| 30| 42| 36| 28
g 14840 31| 26| 43| 29| 28| 32| 45| 47| 36| 30| 32 |1722) 29| 34| 33| 29| 38| 33| 30| 26 | 30| 41| 31| 36| 31| 32| 27| 35| 30| 29
g‘ 15458 31| 32) 32| 34| 35| 29| 25| 30| 26| 26 | 42| 29 |2558] 31| 39| 29| 32| 24| 27| 29| 32| 30| 37| 25| 33| 28| 27| 34| 31| 30
.g 16613 43| 42| 31| 29| 32| 30| 30| 26 | 36 |1096] 30 | 34 | 31 |1436/1023|1163| 33 | 33 |1064] 26 | 30 | 28 | 26 | 21| 28| 28| 34| 31| 33| 32
:‘5 16615 31| 33| 30| 33| 32| 32| 21| 31| 26 | 964 30 | 33 | 39 |1023]1422|1010f 27 | 33 |907| 28 | 28 | 27| 28 | 29| 23| 35| 40| 31| 28 | 30
g 16622 33| 43)] 30| 30| 33| 34| 33| 26| 30 |1101] 32| 29| 29 [1163]1010]1439 30 | 32 |1150| 33 | 27| 33| 35| 33| 28 | 27| 27| 31| 33| 31
‘In 17695 28| 29| 26| 26 | 29| 43| 37| 30| 20| 29| 34| 38| 32| 33| 27| 30 |644| 22| 29| 27| 25| 26| 29| 22| 31| 30| 21| 29| 24 | 32
g 17842 28| 26| 36| 32| 78| 25| 30| 38| 28| 28| 28| 33| 24| 33| 33| 32| 22| 951| 28| 27| 30| 28| 24 | 31| 26| 27| 26| 27| 30| 28
3 18048 33| 41| 30| 32| 28| 33| 29| 29| 32 |1027] 34 | 30 | 27 |1064) 907 |1150| 29 | 28 |1416] 27 | 27 | 33| 27| 26| 26| 28 | 31| 35| 33| 31
= 20389 32| 27| 40| 25| 24| 28| 26| 28| 34| 28| 31| 26| 29| 26| 28| 33| 27| 27| 27 |982| 34| 29| 23| 25| 28| 27| 26| 25| 33| 26
20714 31| 30) 37| 29| 52| 38| 28| 39| 27| 26| 39| 30| 32| 30| 28| 27| 25| 30| 27| 34 |2117) 26 | 32| 33| 27| 29| 24| 27| 30| 26
22373 34| 29| 29| 27| 34| 29| 35| 28| 37| 34| 30| 41| 30| 28| 27| 33| 26| 28| 33| 29| 26 | 733| 27| 26| 24| 23| 25| 28| 26| 26
233090 35| 28| 32| 32| 29| 25| 29| 24| 30| 27| 46| 31| 37| 26| 28| 35| 29| 24| 27| 23| 32| 27 |581| 33| 25| 24| 21| 29| 38| 22
57426 27| 27| 24| 30| 40| 22| 24| 24| 22| 34| 36| 36| 25| 21| 29| 33| 22| 31| 26| 25| 33| 26| 33 |485| 26| 28 | 32| 28 | 29| 21
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67315 38| 35| 29|425| 25| 26| 33| 29| 27| 30| 30| 27| 27| 34| 40| 27| 21| 26| 31| 26 | 24| 25| 21| 32| 27 |1024/1562] 35| 26 | 24
74188 40| 25| 30| 42| 29| 26 | 30| 26| 28 | 32| 42| 35| 34| 31| 31| 31| 29| 27| 35| 25| 27| 28| 29| 28 | 116| 32 | 35 |1257] 39| 32
77055 34| 30) 43| 33| 33| 30| 33| 31| 41| 32| 36| 30| 31| 33| 28| 33| 24| 30| 33| 33| 30| 26| 38| 29| 50| 35| 26 | 39 |2977 33
84543 26| 28| 26| 28| 29| 33| 20| 24| 30| 25| 28| 29| 30| 32| 30| 31| 32| 28| 31| 26| 26| 26| 22| 21| 27| 24 | 24| 32| 33 | 753
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11705 53| 54| 31]2897) 31| 35| 31| 38| 34| 38| 47| 44| 40| 36| 94| 34| 30| 30| 35| 41| 37| 44| 48| 34| 33| 38| 26| 37| 31| 32
14082 34| 43) 30| 311021 31| 36| 33| 30| 42| 28| 32| 29| 41| 30| 28| 29| 35| 27| 36| 34| 33| 37| 31| 31| 29| 27| 32| 25| 31
18322 35| 28| 28| 35| 31 |1623) 709| 36| 28 | 31| 29| 29| 29| 27| 29 |616| 776| 663| 30| 33| 28 | 36 | 31 | 29| 24| 29| 27| 28| 25| 34
18324 31| 24| 30| 31| 36 | 709|1564] 35| 36 | 31| 28 | 29| 28 | 30| 27 | 563| 957| 771| 29| 30| 28 | 31| 33| 31| 33| 28| 26 | 23| 28 | 34
214292 39| 32| 30| 38| 33| 36| 353269 31| 27| 31| 34| 35| 31| 34| 34| 41| 34| 37| 40| 35| 37| 39| 36| 31| 31| 30| 30| 28] 36
22034 41| 34| 41| 34| 30| 28| 36| 312862 34| 28| 38| 36| 32| 36| 29| 33| 33| 31| 46| 31| 32| 35| 37| 36| 30| 25| 48| 26| 37
22420 39| 42| 34| 38| 42| 31| 31| 27| 34 |1993| 45| 46| 45| 34| 35| 33| 27| 28| 34| 34| 29| 67| 41| 36| 29| 26 | 28| 33| 41| 39

224640 49| 56| 33| 47| 28| 29| 28 | 31| 28| 452698 46 | 42| 37| 42| 31| 26| 31| 36| 36| 45| 42| 35| 34| 40| 32| 32| 34| 42| 44

")) 227357 58| 44| 41| 44| 32| 29| 29| 34| 38| 46| 46 |5353] 47 | 37| 54| 30| 32| 33| 45| 41| 40| 47| 40| 45| 35| 33| 29| 40| 34| 33
g 22793 124 83| 37| 40| 29| 29| 28| 35| 36 | 45| 42| 47 |3115] 35| 34 | 33| 32| 26 | 34| 39| 47| 49| 38| 35| 35| 40| 25| 45| 31| 36
g 235406 41| 33| 32| 36| 41| 27| 30| 31| 32| 34| 37| 37| 35|3047] 38| 31| 26| 28| 35| 41| 35| 42| 35| 32| 34| 39| 27| 33| 27| 31
g 238057 44 | 38| 36| 94| 30| 29| 27| 34| 36| 35| 42| 54| 34| 38 |2420 32| 27| 27| 39| 31| 28| 43| 42| 35| 31| 30| 27| 32| 36| 31
S 258302 42| 25| 25| 34| 28 [ 616]563| 34| 29| 33| 31| 30| 33| 31| 32 |1671] 586] 498| 27 | 32| 32| 38| 29| 34| 27| 33| 26| 29| 27| 39
3 258607 40 | 34| 29| 30| 29| 776|957| 41| 33| 27| 26| 32| 32| 26 | 27 | 586|1560 767| 27 | 34 | 29| 33| 30| 29| 31| 26 | 27| 26 | 26 | 39
'-g 259021 33| 23] 33| 30| 35|663|771| 34| 33| 28| 31| 33| 26 | 28 | 27 | 498| 767|1583| 28 | 32| 27| 42| 38| 30| 30| 22| 26 | 26 | 29| 40
3 272411 46 | 35| 24| 35| 27| 30| 29| 37| 31| 34| 36| 45| 34| 35| 39| 27| 27| 28 |2082] 38| 38| 26| 36 | 33| 27| 34| 23| 28| 35| 38

319481 36| 41| 47| 41| 36| 33| 30| 40| 46| 34| 36| 41| 39| 41| 31| 32| 34| 32| 385334 28| 40| 49| 30| 38| 30| 28| 35| 30| 35
338371 43| 36| 27| 37| 34| 28| 28| 35| 31| 29| 45| 40| 47| 35| 28 | 32| 29| 27| 38| 28 |1350| 32| 30| 41| 34| 30| 25| 32| 22| 30
353155 50| 57| 32| 44| 33| 36| 31| 37| 32| 67| 42| 47| 49| 42| 43| 38| 33| 42| 26| 40 | 32 |1478 34 | 34| 29| 26 | 29| 25| 28| 35

50505 38| 39| 39| 48| 37| 31| 33| 39| 35] 41| 35| 40| 38| 35| 42| 29| 30| 38| 36| 49| 30| 34 |4656] 33 | 41| 36| 30| 34| 33| 38
545276 40| 43| 45| 34| 31| 29| 31| 36| 37| 36| 34| 45| 35| 32| 35| 34| 29| 30| 33| 30| 41| 34| 33 |2272] 35| 39| 27| 36| 34| 28
67418 43| 40| 37| 33| 31| 24| 33| 31| 36| 29| 40| 35| 35| 34| 31| 27| 31| 30| 27| 38| 34| 29| 41| 35 |2613] 34| 33| 36| 29| 34
67441 45| 32| 32| 38| 29| 29| 28| 31| 30| 26| 32| 33| 40| 39| 30| 33| 26| 22| 34| 30| 30| 26| 36| 39| 34 |1049] 23| 27| 24| 30
68205 30| 26| 26| 26| 27| 27| 26| 30| 25| 28| 32| 29| 25| 27| 27| 26| 27| 26| 23| 28 | 25| 29| 30| 27| 33| 23 |531| 26| 26 | 26
69020 40| 26| 29| 37| 32| 28| 23| 30| 48| 33| 34| 40| 45| 33| 32| 29| 26| 26| 28| 35| 32| 25| 34 | 36| 36| 27 | 26 |1895 24 | 33
70844 36| 27)| 30| 31| 25| 25| 28| 28| 26| 41| 42| 34| 31| 27| 36| 27| 26| 29| 35| 30| 22| 28| 33| 34| 29| 24 | 26 | 24 | 796| 32
93896 38| 32| 38| 32| 31| 34| 34| 36| 37| 39| 44| 33| 36| 31| 31| 39| 39| 40| 38| 35| 30| 35| 38| 28| 34| 30| 26| 33| 32 |2746]

Figure B.6: Sequence similarities within groups. All-against-all sequence similarity
scores within the classes are shown. The 30 top/bottom genes are listed that led to a
prediction performance of AUC=1 as described in Chapter 5.2.1.1. Note that these scores
were not used for the classifier achieving the AUC of 1, but the amino acid contents
presented in Figure B.5 instead. The presented scores wore log normalised before used
in any of the classifiers. Yellow cells flag alignment scores > 100. A) All-against-scores
for the 30 most tissue-specific mouse genes B) All-against-scores for the 30 most broadly
expressed mouse genes.
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100470 34| 38| 39|40 ] 40| 28| 27| 35| 35| 33| 37| 31| 28| 34| 36| 30| 33| 30| 29| 30| 28| 30| 30| 38| 34| 29| 26| 37| 36| 33
104002 33| 35| 28| 41| 27| 29| 29| 29| 31| 27| 30| 35| 34| 44| 29| 33| 30| 25| 36| 31| 24| 29| 33| 31| 29| 35| 23| 31| 28| 29
109820 37| 26| 31| 32| 26| 31| 37| 30| 30| 29| 32| 33| 28| 40| 40| 28| 31| 40| 39| 31| 30| 28| 32| 31| 29| 25| 29| 27| 34| 42
114871 34| 30| 35| 30| 29| 32| 29| 35| 37| 37| 40| 31| 29| 36| 29| 32| 30| 31| 39| 42| 30| 26| 36| 28| 35| 30| 26| 31| 31| 38
11699 41| 38| 27| 31| 36| 28| 28| 27| 32| 46| 26 | 43| 29| 28| 33| 37| 24| 27| 36| 34| 29| 26| 31| 29| 34| 30| 27| 39| 34| 30
12957 36| 43| 27| 35| 30| 24| 27| 30| 31| 35| 35| 35| 32| 36| 28| 35| 25| 25| 29| 38| 25| 25| 37| 26| 30| 28| 31| 30| 30| 27
12965 30| 29| 26| 29| 22| 26| 27| 31| 36| 27| 28| 29| 41| 32| 24| 24| 27| 35| 34| 32| 24| 27| 35| 32| 39| 25| 23| 29| 28| 41
12990 40| 42| 40| 31| 42| 24| 28| 36| 28| 23| 36| 28 | 37| 42| 38| 26| 29| 23| 38| 32| 27| 30| 36| 28| 39| 31| 29| 27| 38| 34
12991 64| 39| 31| 38| 29| 26| 31| 33| 29| 24| 28| 30| 57| 33| 46| 27| 36| 28| 29| 32| 27| 27| 40| 31| 29| 32| 23| 23| 26| 31
13648 29| 28| 33| 30| 29| 26| 25| 35| 28| 35| 37| 32| 33| 30| 37| 30| 29| 29| 25| 31| 32| 28| 33| 31| 32| 40| 27| 33| 26| 32
" 14473 40| 35| 47| 41| 37| 33| 31| 34| 39| 35| 33| 35| 33| 32| 42| 33| 31| 32| 30| 39| 33| 33| 35| 42| 36| 31| 24| 32| 26| 30
g 14840 37| 30| 31| 29| 30| 31| 26| 42| 28| 34| 36| 44| 36| 40| 27| 30| 32| 28| 30| 35| 32| 29| 34| 34| 29| 27| 29| 30| 28| 33
g 15458 42| 37| 31| 42| 29| 33| 26| 40| 31| 31| 35| 39| 34| 33| 39| 29| 38| 31| 35| 38| 33| 30| 29| 34| 34| 30| 27| 36| 27| 35
lg 16613 39| 34|35 30| 27| 32| 31| 43| 27| 29| 39| 33| 31| 28| 37| 31| 29| 29| 27| 36| 32| 31| 32| 27| 32| 26| 26| 31| 25| 28
:E 16615 32| 28| 30| 34| 26| 27| 27| 38| 32| 31| 33| 29| 32| 29| 27| 23| 25| 29| 26| 33| 36| 28 | 39| 32| 37| 28| 29| 29| 24| 27
g_ 16622 35| 31| 36| 32| 27| 30| 28| 38| 27| 28| 34| 32| 29| 29| 35| 25| 25| 34| 25| 38| 35| 28| 40| 31| 27| 31| 26| 30| 23| 33
'ln 17695 30| 23| 27| 37| 27| 36| 26| 33| 33| 33| 24| 27| 31| 25| 36| 26| 26| 29| 23| 29| 21| 30| 28| 30| 23| 24| 26| 30| 21| 23
g 17842 34| 25| 34| 32| 25| 33| 38| 30| 29| 29| 26| 31| 24| 30| 27| 33| 27| 32| 27| 31| 26| 24| 29| 25| 40| 23| 20| 24| 29| 30
a 18048 33| 34| 44| 32| 28| 24| 27| 49| 33| 36| 36| 33| 32| 28| 36| 28| 29| 29| 25| 37| 37| 42| 37| 29| 31| 31| 28| 28| 23| 28
- 20389 40| 33| 34| 32| 26| 34| 34| 30| 26| 28| 30| 37| 31| 37| 34| 34| 35| 29| 30| 33| 26| 33| 39| 32| 26| 26| 23| 28| 31| 32
20714 40| 33| 31| 29| 43| 28| 35| 34| 31| 34| 29| 34| 30| 36| 33| 33| 28| 26| 27| 31| 32| 31| 38| 30| 31| 31| 26| 29| 24| 38
22373 34| 251 30| 30| 24| 28| 23| 31| 29| 32| 40| 32| 43| 30| 35| 33| 24| 22| 24| 41| 24| 35| 30| 25| 27| 25| 23| 29| 23| 40
233090 34| 26| 28| 28| 24| 28| 37| 26| 25| 24| 27| 32| 25| 27| 26| 28| 28 | 24| 25| 31| 22| 35| 30| 29| 32| 23| 24| 24| 23| 34
57426 35| 32| 30| 25| 23| 28| 27| 26| 27| 24| 30| 26| 27| 26| 24| 23| 33| 24| 28| 33| 31| 26| 31| 24| 34| 24| 24| 28| 24| 38
66392 39| 33|30 33| 31| 28| 37| 29| 34| 31| 29| 29| 25| 40| 34| 31| 31| 28| 31| 27| 24| 26| 29| 29| 32| 37| 22| 23| 31| 43
66996 42| 281 29| 39| 27| 31| 32| 36| 34| 30| 31| 30| 28| 34| 28| 34| 34| 34| 32| 33| 32| 24| 34| 32| 32| 34| 26| 27| 27| 34
67315 30| 28| 29| 34| 33| 27| 33| 28| 26| 37| 28| 33| 34| 32| 28| 32| 36| 27| 34| 30| 23| 30| 33| 31| 32| 36| 28| 28| 31| 32
74188 32| 33|33 33| 34| 33| 31|41 29| 25| 31| 28| 37| 27| 27| 36| 42| 34| 30| 32| 27| 32| 37| 34| 28| 29| 29| 25| 28| 32
77055 42| 56| 46| 36| 33| 26| 26| 39| 38| 33| 49| 44| 50| 50| 71| 32| 25| 38| 31| 35| 30| 36| 42| 29| 36| 32| 25| 44| 25| 44
84543 30| 311 29| 28| 24| 34| 32| 31| 30| 33| 27| 33| 31| 28| 31| 25| 26| 27| 25| 37| 25| 27| 29| 25| 26| 23| 22| 32| 23| 34

Figure B.7: Sequence similarities across groups. Sequence similarity scores across the
classes are shown. The 30 top/bottom genes are listed that led to a prediction performance
of AUC=1 as described in Chapter 5.2.1.1. Note that these scores were not used for the
classifier achieving the AUC of 1, but the amino acid contents presented in Figure B.5
instead. The presented scores wore log normalised before used in any of the classifiers.
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Appendix C

Q values for GO terms discussed

in Chapter 6

Table C.1: Supplementary data for Chapter 2.2.2 (downregulated categories). Overrep-
resented GO terms in the tissue specificity bins, or their combinations, are shown. Four
different scores are presented: (1) EASE score (2) p values resulting from Fisher’s exact test
(3) q values estimated from the EASE scores (4) q values estimated from the p values in (2).
All terms reported achieve an EASE score < 0.05. BP= Biological Process; CC=Cellular
Component; MF=Molecular Function.

GO term (1) (2) (3) (4)
EASE Fisher’s q value q value
score p value using (1) using (2)
Bin all
BP GO:0010004 gastrulation involving germ band extension 4.50E-04 4.13E-05 1.44E-01 4.91E-03
BP G0:0042594 response to starvation 4.82E-04 1.22E-05 1.44E-01 4.33E-03
CC G0:0042600 chorion 8.37E-04 5.84E-05 1.55E-01 5.20E-03
MF GO:0005213 structural constituent of chorion 1.04E-03 3.81E-05 1.55E-01 4.91E-03
BP GO:0001708 cell fate specification 2.43E-03 4.30E-04 3.03E-01 2.78E-02
MF GO:0003899 DNA-directed RNA polymerase activity 4.81E-03 5.83E-04 5.38E-01 3.19E-02
BP GO:0008286 insulin receptor signaling pathway 7.81E-03 6.81E-04 6.18E-01 3.40E-02
BP G0O:0046112 nucleobase biosynthetic process 8.53E-03 2.86E-04 6.28E-01 2.07E-02
BP G0:0009888 tissue development 1.03E-02 4.87E-03 6.28E-01 8.66E-02
MF GO:0005160 transforming growth factor beta receptor binding 1.47E-02 7.16E-04 7.94E-01 3.40E-02
MF GO:0005158 insulin receptor binding 1.86E-02 1.05E-03 9.48E-01 3.99E-02
MF GO:0003676 nucleic acid binding 1.94E-02 1.38E-02 9.48E-01 1.42E-01
BP GO:0007219 Notch signaling pathway 2.10E-02 4.01E-03 9.48E-01 7.51E-02
CC GO0O:0055029 nuclear DNA-directed RNA polymerase complex 2.15E-02 2.84E-03 9.48E-01 6.12E-02
CC G0O:0044452 nucleolar part 2.70E-02 1.91E-03 1.00E4-00 5.05E-02
BP GO:0007179 transforming growth factor beta receptor signaling pathway 3.38E-02 5.39E-03 1.00E4-00 9.12E-02
BP GO:0000915 cytokinesis; contractile ring formation 3.40E-02 2.81E-03 1.00E4-00 6.12E-02

Continued on next page
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CC G0:0005886 plasma membrane 4.10E-02 2.42E-02 1.00E4-00 1.42E-01
BP GO:0045793 positive regulation of cell size 4.55E-02 4.49E-03 1.00E4-00 8.19E-02
Bin 1

BP G0O:0007306 eggshell chorion formation 2.52E-02 4.27E-04 1.11E-01 1.80E-03
MF GO:0005213 structural constituent of chorion 4.76E-02 1.15E-03 1.11E-01 2.65E-03
CC G0O:0042600 chorion 4.92E-02 1.64E-03 1.11E-01 2.65E-03
Bin 2

CC G0O:0042600 chorion 4.97E-02 5.67E-03 1.00E4-00 8.84E-02
Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

Bin 9

Bin 10

MF GO:0004888 transmembrane receptor activity 3.53E-02 4.07E-03 1.00E4-00 4.17E-02
Bin 11

Bin 12

Bin 13

CC GO0O:0005886 plasma membrane 2.14E-02 4.98E-03 1.00E4-00 5.38E-02
MF GO:0004672 protein kinase activity 3.84E-02 7.26E-03 1.00E4-00 5.38E-02
Bin 14

Bin 15

MF GO:0003676 nucleic acid binding 3.40E-02 1.67E-02 1.00E4-00 1.20E-01
BP GO:0000915 cytokinesis; contractile ring formation 3.68E-02 3.63E-04 1.00E4-00 2.36E-02
Bin 16

BP G0:0031887 lipid particle transport along microtubule 3.07E-02 2.58E-04 1.00E4-00 1.59E-02
BP GO:0035152 regulation of tube architecture; open tracheal system 4.58E-02 7.67E-04 1.00E4-00 2.36E-02
Bin sl

CC GO0:0042600 chorion 5.76E-04 4.21E-05 4.42E-02 1.97E-03
MF GO:0005213 structural constituent of chorion 6.20E-04 2.16E-05 4.42E-02 1.97E-03
BP GO:0007306 eggshell chorion formation 1.40E-03 7.01E-05 7.49E-02 2.46E-03
Bin s2

MF GO:0005213 structural constituent of chorion 7.37TE-04 2.55E-05 5.05E-02 2.98E-03
CC G0O:0042600 chorion 9.74E-04 7.60E-05 5.05E-02 2.98E-03
BP GO:0007306 eggshell chorion formation 3.86E-03 2.76E-04 1.37E-01 7.71E-03
Bin s3

MF GO:0005213 structural constituent of chorion 6.41E-04 2.06E-05 7.87TE-02 4.10E-03
CC G0O:0042600 chorion 7.20E-04 4.99E-05 7.87E-02 4.10E-03
BP GO:0007306 eggshell chorion formation 4.15E-03 3.01E-04 1.86E-01 1.06E-02
Bin s4

CC G0:0042600 chorion 6.05E-04 3.93E-05 7.75E-02 2.99E-03
MF GO:0005213 structural constituent of chorion 6.43E-04 2.04E-05 7.75E-02 2.99E-03
BP G0O:0007306 eggshell chorion formation 8.22E-03 7.79E-04 3.96E-01 2.38E-02

Bin s5

Continued on next page
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CC G0:0042600 chorion 5.26E-04 3.24E-05 9.34E-02 3.59E-03
MF GO:0005213 structural constituent of chorion 7.35E-04 2.40E-05 9.79E-02 3.59E-03
BP GO:0007306 eggshell chorion formation 9.33E-03 9.14E-04 4.15E-01 3.50E-02
Bin s6

CC G0:0042600 chorion 4.75E-04 2.82E-05 1.27E-01 3.21E-03
MF GO:0005213 structural constituent of chorion 8.67E-04 2.96E-05 1.27E-01 3.21E-03
BP GO:0007306 eggshell chorion formation 9.59E-03 9.41E-04 5.61E-01 4.28E-02
Bin s7

CC G0:0042600 chorion 8.24E-04 5.71E-05 1.95E-01 6.06E-03
MF GO:0005213 structural constituent of chorion 1.05E-03 3.83E-05 1.95E-01 6.06E-03
BP GO:0007306 eggshell chorion formation 1.51E-02 1.75E-03 7.00E-01 6.20E-02
Bin s8

CC G0:0042600 chorion 8.43E-04 5.95E-05 1.78E-01 7.76E-03
MF GO:0005213 structural constituent of chorion 9.47E-04 3.30E-05 1.78E-01 7. 76 E-03
BP GO:0007306 eggshell chorion formation 1.83E-02 2.29E-03 1.00E4-00 8.13E-02
BP G0O:0008283 cell proliferation 4.94E-02 1.54E-02 1.00E4-00 1.98E-01
Bin s9

CC G0:0042600 chorion 8.54E-04 6.11E-05 2.34E-01 8.79E-03
MF GO:0005213 structural constituent of chorion 8.73E-04 2.94E-05 2.34E-01 8.79E-03
BP GO:0007306 eggshell chorion formation 2.47E-02 3.49E-03 1.00E4-00 1.25E-01
Bin s10

CC G0:0042600 chorion 9.79E-04 7.21E-05 3.23E-01 1.06E-02
MF GO:0005213 structural constituent of chorion 1.05E-03 3.76E-05 3.23E-01 1.06E-02
BP GO:0007306 eggshell chorion formation 3.48E-02 5.63E-03 1.00E4-00 1.55E-01
Bin sl11

CC G0O:0042600 chorion 8.11E-04 5.65E-05 3.80E-01 8.96E-03
MF GO:0005213 structural constituent of chorion 1.05E-03 3.74E-05 3.80E-01 8.96E-03
BP GO:0007306 eggshell chorion formation 3.89E-02 6.59E-03 1.00E4-00 1.66E-01
Bin s12

CC G0:0042600 chorion 8.37E-04 5.85E-05 4.98E-01 9.02E-03
MF GO:0005213 structural constituent of chorion 1.49E-03 6.29E-05 5.92E-01 9.02E-03
BP GO:0009888 tissue development 3.93E-02 1.94E-02 1.00E4-00 1.37E-01
BP GO:0051707 response to other organism 4.67TE-02 1.41E-02 1.00E4-00 1.37E-01
Bin s13

CC G0:0042600 chorion 6.93E-04 4.58E-05 4.21E-01 8.11E-03
MF GO:0005213 structural constituent of chorion 1.26E-03 4.99E-05 4.21E-01 8.11E-03
BP G0:0042594 response to starvation 6.54E-03 1.76 E-04 1.00E4-00 2.04E-02
BP G0O:0046112 nucleobase biosynthetic process 9.64E-03 3.45E-04 1.00E4-00 2.55E-02
CC G0:0044452 nucleolar part 9.99E-03 3.67E-04 1.00E4-00 2.55E-02
MF GO:0003899 DNA-directed RNA polymerase activity 4.29E-02 4.08E-03 1.00E4-00 1.17E-01
BP G0:0048741 skeletal muscle fiber development 4.69E-02 8.57E-03 1.00E4-00 1.31E-01
Bin s14

CC G0:0042600 chorion 6.63E-04 4.31E-05 3.10E-01 6.32E-03
MF GO:0003899 DNA-directed RNA polymerase activity 1.07E-03 8.08E-05 3.18E-01 9.44E-03
MF GO:0005213 structural constituent of chorion 1.14E-03 4.33E-05 3.18E-01 6.32E-03
BP G0:0042594 response to starvation 5.97E-03 1.53E-04 9.14E-01 1.49E-02
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CC GO0:0055029 nuclear DNA-directed RNA polymerase complex 6.53E-03 5.27E-04 9.14E-01 3.08E-02
BP GO:0046112 nucleobase biosynthetic process 8.81E-03 3.01E-04 1.00E4-00 2.51E-02
MF GO:0003676 nucleic acid binding 2.04E-02 1.40E-02 1.00E4-00 1.49E-01
CC G0:0044452 nucleolar part 2.22E-02 1.39E-03 1.00E+4-00 6.77E-02
CC GO:0005886 plasma membrane 3.29E-02 1.88E-02 1.00E4-00 1.49E-01
Bin s15

BP G0O:0042594 response to starvation 4.42E-04 1.09E-05 1.99E-01 4.43E-03
CC G0O:0042600 chorion 5.43E-04 3.34E-05 1.99E-01 4.43E-03
MF GO:0005213 structural constituent of chorion 9.77E-04 3.53E-05 2.85E-01 4.43E-03
MF GO:0003899 DNA-directed RNA polymerase activity 4.48E-03 5.32E-04 8.22E-01 4.18E-02
BP GO:0046112 nucleobase biosynthetic process 8.06E-03 2.62E-04 1.00E4-00 2.75E-02
CC GO0:0055029 nuclear DNA-directed RNA polymerase complex 1.89E-02 2.38E-03 1.00E4-00 7.86E-02
MF GO:0003676 nucleic acid binding 2.09E-02 1.48E-02 1.00E4-00 1.35E-01
CC GO0O:0044452 nucleolar part 2.46E-02 1.67E-03 1.00E4-00 7.68E-02
CC GO0:0005886 plasma membrane 3.52E-02 2.01E-02 1.00E4-00 1.35E-01
BP G0:0045793 positive regulation of cell size 4.31E-02 4.14E-03 1.00E4-00 1.18E-01
Bin ul

BP G0O:0031887 lipid particle transport along microtubule 2.96E-02 2.40E-04 1.00E4-00 1.46E-02
BP GO:0035152 regulation of tube architecture; open tracheal system 4.42E-02 7.14E-04 1.00E4-00 2.17E-02
Bin u2

MF GO:0003676 nucleic acid binding 3.24E-02 1.85E-02 1.00E4-00 4.51E-02
BP G0:0031887 lipid particle transport along microtubule 3.45E-02 3.11E-04 1.00E4-00 2.37E-02
Bin u3

Bin u4

BP G0O:0042594 response to starvation 3.89E-03 8.10E-05 1.00E4-00 1.37E-02
CC GO0O:0055029 nuclear DNA-directed RNA polymerase complex 1.09E-02 1.13E-03 1.00E4-00 5.24E-02
MF GO:0003899 DNA-directed RNA polymerase activity 1.10E-02 1.16E-03 1.00E4-00 5.24E-02
BP GO:0008340 determination of adult life span 3.28E-02 5.31E-03 1.00E4-00 9.31E-02
MF GO:0003676 nucleic acid binding 3.90E-02 2.57E-02 1.00E4-00 1.08E-01
CC GO:0005886 plasma membrane 3.92E-02 1.62E-02 1.00E+4-00 9.31E-02
MF GO:0004672 protein kinase activity 4.57E-02 1.61E-02 1.00E4-00 9.31E-02
Bin u5

BP G0:0042594 response to starvation 1.56E-04 2.45E-06 7.7T7TE-02 4.56E-04
CC GO0:0055029 nuclear DNA-directed RNA polymerase complex 1.19E-02 1.28E-03 1.00E4-00 3.98E-02
MF GO:0003899 DNA-directed RNA polymerase activity 1.42E-02 1.64E-03 1.00E4-00 4.69E-02
CC GO0O:0044452 nucleolar part 1.79E-02 1.03E-03 1.00E4-00 3.98E-02
BP G0:0008286 insulin receptor signaling pathway 2.00E-02 1.24E-03 1.00E4-00 3.98E-02
BP G0:0045793 positive regulation of cell size 2.77E-02 2.09E-03 1.00E4-00 5.51E-02
BP GO:0001558 regulation of cell growth 4.10E-02 3.92E-03 1.00E4-00 7.81E-02
BP GO:0008340 determination of adult life span 4.70E-02 8.78E-03 1.00E4-00 7.81E-02
MF GO:0003676 nucleic acid binding 4.94E-02 3.40E-02 1.00E+4-00 1.06E-01
Bin u6

BP G0:0042594 response to starvation 1.94E-04 3.27E-06 1.10E-01 6.87E-04
MF GO:0003899 DNA-directed RNA polymerase activity 2.46E-03 2.48E-04 5.89E-01 1.82E-02
CC GO0:0055029 nuclear DNA-directed RNA polymerase complex 1.40E-02 1.59E-03 1.00E4-00 4.88E-02
CC G0:0044452 nucleolar part 2.00E-02 1.22E-03 1.00E4-00 4.88E-02
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MF GO:0003676 nucleic acid binding 2.63E-02 1.79E-02 1.00E4-00 8.19E-02
BP GO:0008286 insulin receptor signaling pathway 2.72E-02 2.00E-03 1.00E4-00 5.68E-02
BP GO:0045793 positive regulation of cell size 3.16E-02 2.56E-03 1.00E4-00 6.74E-02
Bin u7

BP G0:0042594 response to starvation 1.94E-04 3.26E-06 1.15E-01 8.15E-04
MF GO0:0003899 DNA-directed RNA polymerase activity 2.43E-03 2.44E-04 7.23E-01 1.82E-02
CC GO0O:0055029 nuclear DNA-directed RNA polymerase complex 1.31E-02 1.46E-03 1.00E4-00 4.81E-02
CC GO0O:0044452 nucleolar part 1.91E-02 1.14E-03 1.00E4-00 4.81E-02
CC GO:0005886 plasma membrane 2.00E-02 9.19E-03 1.00E4-00 8.03E-02
BP GO:0008286 insulin receptor signaling pathway 2.71E-02 2.00E-03 1.00E4-00 6.12E-02
MF GO:0003676 nucleic acid binding 3.50E-02 2.44E-02 1.00E4-00 8.64E-02
BP G0:0045793 positive regulation of cell size 3.64E-02 3.20E-03 1.00E4-00 7.62E-02
Bin u8

BP G0:0042594 response to starvation 1.93E-04 3.24E-06 1.15E-01 9.66E-04
MF GO:0003899 DNA-directed RNA polymerase activity 2.40E-03 2.40E-04 7.18E-01 2.01E-02
CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.26E-02 1.37E-03 1.00E4-00 5.21E-02
CC G0:0044452 nucleolar part 1.85E-02 1.09E-03 1.00E4-00 5.21E-02
MF GO:0003676 nucleic acid binding 2.42E-02 1.66E-02 1.00E4-00 9.27E-02
BP GO:0008286 insulin receptor signaling pathway 2.70E-02 1.98E-03 1.00E4-00 6.73E-02
CC GO:0005886 plasma membrane 3.11E-02 1.52E-02 1.00E+4-00 9.27E-02
BP GO:0045793 positive regulation of cell size 3.62E-02 3.18E-03 1.00E4-00 8.88E-02
BP G0O:0007219 Notch signaling pathway 4.29E-02 7.64E-03 1.00E4-00 9.27E-02
Bin u9

BP G0:0042594 response to starvation 2.30E-04 4.09E-06 1.47E-01 2.05E-03
MF GO:0003899 DNA-directed RNA polymerase activity 3.22E-03 3.49E-04 9.92E-01 3.46E-02
BP GO:0046112 nucleobase biosynthetic process 5.08E-03 1.20E-04 9.92E-01 2.01E-02
CC GO0O:0055029 nuclear DNA-directed RNA polymerase complex 1.45E-02 1.66E-03 1.00E4-00 5.95E-02
CC G0:0044452 nucleolar part 2.05E-02 1.26E-03 1.00E4-00 5.95E-02
BP GO:0008286 insulin receptor signaling pathway 3.01E-02 2.34E-03 1.00E4-00 7.83E-02
MF GO:0003676 nucleic acid binding 3.13E-02 2.20E-02 1.00E4-00 1.05E-01
BP GO:0051707 response to other organism 3.70E-02 1.05E-02 1.00E+4-00 1.05E-01
BP G0:0045793 positive regulation of cell size 4.03E-02 3.75E-03 1.00E400 1.04E-01
Bin ul0

BP G0:0042594 response to starvation 2.34E-04 4.20E-06 1.55E-01 2.41E-03
MF GO:0003899 DNA-directed RNA polymerase activity 3.51E-03 3.89E-04 1.00E4-00 4.05E-02
BP GO:0046112 nucleobase biosynthetic process 7.60E-03 2.41E-04 1.00E4-00 4.05E-02
MF GO:0003676 nucleic acid binding 9.49E-03 6.38E-03 1.00E4-00 1.24E-01
CC GO0O:0055029 nuclear DNA-directed RNA polymerase complex 1.47E-02 1.69E-03 1.00E4-00 6.93E-02
CC G0:0044452 nucleolar part 2.07E-02 1.28E-03 1.00E4-00 6.93E-02
BP GO:0008286 insulin receptor signaling pathway 3.05E-02 2.39E-03 1.00E4-00 9.11E-02
BP G0:0045793 positive regulation of cell size 4.08E-02 3.81E-03 1.00E4-00 1.24E-01
Bin ull

BP GO:0042594 response to starvation 4.19E-04 1.01E-05 2.84E-01 3.07E-03
MF GO:0003899 DNA-directed RNA polymerase activity 3.68E-03 4.13E-04 9.97E-01 4.95E-02
BP GO:0046112 nucleobase biosynthetic process 7.79E-03 2.50E-04 1.00E4-00 3.78E-02
MF GO:0003676 nucleic acid binding 1.16E-02 7.89E-03 1.00E4-00 1.32E-01
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CC G0:0005886 plasma membrane 1.21E-02 5.95E-03 1.00E4-00 1.32E-01
CC GO0:0055029 nuclear DNA-directed RNA polymerase complex 1.49E-02 1.72E-03 1.00E4-00 6.96E-02
CC GO0O:0044452 nucleolar part 2.08E-02 1.29E-03 1.00E4-00 6.96E-02
BP G0:0008286 insulin receptor signaling pathway 3.13E-02 2.47E-03 1.00E4-00 8.33E-02
BP G0:0045793 positive regulation of cell size 4.18E-02 3.95E-03 1.00E4-00 1.14E-01
Bin ul2

BP G0O:0042594 response to starvation 4.15E-04 9.99E-06 2.85E-01 2.83E-03
MF GO:0003899 DNA-directed RNA polymerase activity 4.20E-03 4.91E-04 9.61E-01 5.56E-02
BP GO:0046112 nucleobase biosynthetic process 7.74E-03 2.47E-04 1.00E4-00 4.67E-02
MF GO:0003676 nucleic acid binding 1.12E-02 7.66E-03 1.00E+4-00 1.26E-01
CC G0:0055029 nuclear DNA-directed RNA polymerase complex 1.51E-02 1.76 E-03 1.00E4-00 6.65E-02
CC G0:0005886 plasma membrane 1.98E-02 1.03E-02 1.00E400 1.26E-01
CC G0:0044452 nucleolar part 2.11E-02 1.32E-03 1.00E4-00 6.65E-02
BP GO:0008286 insulin receptor signaling pathway 3.11E-02 2.45E-03 1.00E4-00 7.72E-02
BP GO:0007283 spermatogenesis 3.42E-02 9.48E-03 1.00E4-00 1.26E-01
BP G0:0045793 positive regulation of cell size 4.15E-02 3.91E-03 1.00E4-00 1.11E-01
Bin ul3

BP G0O:0042594 response to starvation 4.09E-04 9.79E-06 2.84E-01 3.08E-03
MF GO:0003899 DNA-directed RNA polymerase activity 4.12E-03 4.79E-04 1.00E4-00 5.89E-02
BP GO:0046112 nucleobase biosynthetic process 7.66E-03 2.43E-04 1.00E4-00 4.79E-02
MF GO:0003676 nucleic acid binding 9.40E-03 6.39E-03 1.00E+4-00 1.28E-01
CC GO0:0055029 nuclear DNA-directed RNA polymerase complex 1.55E-02 1.81E-03 1.00E4-00 7.13E-02
CC G0:0044452 nucleolar part 2.14E-02 1.35E-03 1.00E4-00 7.13E-02
BP G0O:0009888 tissue development 3.50E-02 1.75E-02 1.00E4-00 1.28E-01
CC G0O:0005886 plasma membrane 3.98E-02 2.23E-02 1.00E4-00 1.28E-01
BP G0:0008286 insulin receptor signaling pathway 4.11E-02 3.85E-03 1.00E4-00 1.26E-01
BP G0:0045793 positive regulation of cell size 4.11E-02 3.85E-03 1.00E4-00 1.26E-01
BP GO:0007283 spermatogenesis 4.23E-02 1.24E-02 1.00E4-00 1.28E-01
Bin ul4

BP G0:0042594 response to starvation 4.19E-04 1.01E-05 2.97E-01 3.77TE-03
MF GO:0003899 DNA-directed RNA polymerase activity 4.22E-03 4.93E-04 1.00E4-00 7.44E-02
BP GO:0046112 nucleobase biosynthetic process 7.78E-03 2.49E-04 1.00E400 5.01E-02
MF GO:0003676 nucleic acid binding 1.02E-02 6.99E-03 1.00E4-00 1.33E-01
CC GO0:0055029 nuclear DNA-directed RNA polymerase complex 1.65E-02 1.98E-03 1.00E4-00 7.96E-02
CC G0:0044452 nucleolar part 2.24E-02 1.44E-03 1.00E4-00 7.96E-02
CC GO0O:0005886 plasma membrane 3.04E-02 1.68E-02 1.00E4-00 1.33E-01
BP G0:0009888 tissue development 4.13E-02 2.11E-02 1.00E4-00 1.33E-01
BP G0:0045793 positive regulation of cell size 4.17E-02 3.94E-03 1.00E4-00 1.33E-01
BP G0O:0008286 insulin receptor signaling pathway 4.74E-02 4.84E-03 1.00E4-00 1.33E-01
Bin ulb

BP G0:0042594 response to starvation 4.43E-04 1.09E-05 3.25E-01 5.14E-03
MF GO:0003899 DNA-directed RNA polymerase activity 4.40E-03 5.20E-04 1.00E4-00 7.86E-02
BP GO:0046112 nucleobase biosynthetic process 8.07E-03 2.63E-04 1.00E400 5.30E-02
CC GO0:0055029 nuclear DNA-directed RNA polymerase complex 1.85E-02 2.30E-03 1.00E4-00 9.93E-02
MF GO:0003676 nucleic acid binding 1.88E-02 1.32E-02 1.00E4-00 1.38E-01
CC G0:0044452 nucleolar part 2.42E-02 1.62E-03 1.00E4-00 9.93E-02
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CC GO:0005886 plasma membrane
CC G0O:0042600 chorion

BP GO:0045793 positive regulation of cell size

3.35E-02

4.00E-02

4.32E-02

1.91E-02

3.66E-03

4.15E-03

1.00E+-00
1.00E4-00

1.00E4-00

1.38E-01

1.23E-01

1.27E-01

Table C.2: Supplementary data for Chapter 2.2.2 (upregulated categories). Overrepresented
GO terms in the tissue specificity bins, or their combinations, are shown. Four different
scores are presented: (1) EASE score (2) p values resulting from Fisher’s exact test (3) q
values estimated from the EASE scores (4) q values estimated from the p values in (2).
All terms reported achieve an EASE score < 0.05. BP= Biological Process; CC=Cellular

Component; MF=Molecular Function.

GO term @ @) 3) @
EASE Fisher’s q value q value
score p value using (1) using (2)
Bin all
BP GO:0006508 proteolysis 1.90E-20 6.90E-21 6.05E-18 2.20E-18
CC GO:0005792 microsome 4.79E-09 8.10E-10 5.39E-07 9.12E-08
MF GO:0004263 chymotrypsin activity 3.75E-08 2.08E-09 3.02E-06 2.09E-07
MF GO:0004497 monooxygenase activity 3.79E-08 9.41E-09 3.02E-06 7.50E-07
MF GO:0004295 trypsin activity 6.43E-08 1.22E-08 4.57E-06 9.31E-07
BP GO:0006869 lipid transport 5.27E-07 9.87E-08 2.72E-05 5.11E-06
CC GO:0005777 peroxisome 5.68E-07 6.49E-08 2.74E-05 3.88E-06
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.69E-06 2.28E-07 7.72E-05 1.09E-05
MF GO:0020037 heme Binding 1.91E-06 5.27E-07 8.19E-05 2.15E-05
MF GO:0008061 chitin Binding 2.33E-06 3.98E-07 9.49E-05 1.75E-05
CC GO:0005764 lysosome 3.66E-05 3.83E-06 1.23E-03 1.38E-04
MF GO:0005506 iron ion Binding 4.47E-05 1.69E-05 1.45E-03 5.39E-04
BP G0O:0051189 prosthetic group metabolic process 2.11E-04 5.48E-05 6.42E-03 1.59E-03
BP G0:0008202 steroid metabolic process 2.83E-04 1.09E-04 8.33E-03 2.97E-03
BP GO:0006118 electron transport 3.28E-04 1.68E-04 9.53E-03 4.39E-03
BP GO0O:0006013 mannose metabolic process 4.07E-04 2.46E-05 1.16E-02 7.73E-04
MF GO:0004558 alpha-glucosidase activity 4.37E-04 4.09E-05 1.23E-02 1.22E-03
MF GO:0004559 alpha-mannosidase activity 4.70E-04 2.94E-05 1.30E-02 9.06E-04
MF GO:0004867 serine-type endopeptidase inhibitor activity 7.08E-04 1.98E-04 1.88E-02 5.04E-03
MF GO:0004035 alkaline phosphatase activity 8.72E-04 6.80E-05 2.26E-02 1.91E-03
MF GO:0004806 triacylglycerol lipase activity 9.19E-04 1.62E-04 2.35E-02 4.30E-03
MF GO:0042708 elastase activity 1.48E-03 1.38E-04 3.64E-02 3.73E-03
MF GO:0005344 oxygen transporter activity 1.63E-03 9.16E-05 3.84E-02 2.54E-03
MF GO:0008010 structural constituent of chitin-based larval cuticle 4.39E-03 7.53E-04 9.76E-02 1.57E-02
MF GO:0008970 phospholipase Al activity 5.10E-03 4.73E-04 1.08E-01 1.11E-02
MF GO:0004179 membrane alanyl aminopeptidase activity 5.81E-03 1.07E-03 1.15E-01 1.97E-02
MF GO:0004182 carboxypeptidase A activity 5.81E-03 1.07E-03 1.15E-01 1.97E-02
BP GO:0006032 chitin catabolic process 6.31E-03 9.40E-04 1.17E-01 1.82E-02
BP GO:0001501 skeletal development 6.51E-03 1.24E-03 1.19E-01 2.20E-02
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MF GO:0004568 chitinase activity 7.18E-03 1.11E-03 1.29E-01 1.98E-02
MF GO:0016490 structural constituent of peritrophic membrane 7.18E-03 1.11E-03 1.29E-01 1.98E-02
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 1.06E-02 2.77E-03 1.81E-01 4.61E-02
MF GO:0050809 diazepam Binding 1.09E-02 7.57TE-04 1.83E-01 1.57E-02
BP GO:0008652 amino acid biosynthetic process 1.10E-02 3.98E-03 1.83E-01 6.24E-02
MF GO:0019204 nucleotide phosphatase activity 1.29E-02 3.40E-03 2.13E-01 5.42E-02
BP G0:0042049 cell acyl-CoA homeostasis 1.64E-02 1.46E-03 2.58E-01 2.57E-02
MF GO:0000062 acyl-CoA Binding 1.78E-02 1.64E-03 2.76E-01 2.83E-02
MF GO:0004364 glutathione transferase activity 1.84E-02 5.23E-03 2.79E-01 7.88E-02
BP G0O:0005992 trehalose biosynthetic process 2.03E-02 6.10E-04 3.04E-01 1.34E-02
MF GO:0008336 gamma-butyrobetaine dioxygenase activity 2.16E-02 6.68E-04 3.17E-01 1.44E-02
MF GO:0016401 palmitoyl-CoA oxidase activity 2.16E-02 6.68E-04 3.17TE-01 1.44E-02
MF GO:0009055 electron carrier activity 2.18E-02 1.25E-02 3.17E-01 1.48E-01
MF GO:0008533 astacin activity 2.67E-02 3.06E-03 3.78E-01 5.01E-02
MF GO:0005319 lipid transporter activity 3.15E-02 7.61E-03 4.36E-01 9.97E-02
MF GO:0008431 vitamin E Binding 3.74E-02 5.13E-03 5.01E-01 7.79E-02
MF GO:0005549 odorant Binding 3.84E-02 1.52E-02 5.02E-01 1.74E-01
MF GO:0005529 sugar Binding 3.85E-02 1.30E-02 5.02E-01 1.51E-01
BP G0:0048066 pigmentation during development 4.20E-02 1.58E-02 5.36E-01 1.76E-01
BP GO:0006800 oxygen and reactive oxygen species metabolic process 4.86E-02 1.74E-02 6.01E-01 1.87E-01
Bin 1

BP GO:0006508 proteolysis 2.06E-02 1.01E-02 3.91E-01 1.40E-01
Bin 2

BP GO:0006508 proteolysis 2.40E-13 4.56E-14 3.30E-11 6.28E-12
MF GO:0004295 trypsin activity 2.04E-03 2.60E-04 3.30E-02 4.21E-03
Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

MF GO:0004867 serine-type endopeptidase inhibitor activity 4.64E-03 2.09E-04 5.79E-01 2.61E-02
Bin 8

Bin 9

Bin 10

Bin 11

MF GO:0005506 iron ion Binding 2.99E-03 3.54E-04 9.17E-01 7.59E-02
CC GO:0005777 peroxisome 2.28E-02 7.77TE-04 1.00E+4-00 8.34E-02
Bin 12

CC GO:0005777 peroxisome 1.93E-02 8.48E-04 9.65E-01 1.31E-01
BP GO:0006118 electron transport 2.66E-02 5.42E-03 9.65E-01 2.13E-01
Bin 13

CC GO:0005792 microsome 4.78E-02 4.71E-03 1.00E+4-00 2.04E-01
CC GO0O:0031966 mitochondrial membrane 4.78E-02 4.71E-03 1.00E+00 2.04E-01
Bin 14

Bin 15

Bin 16

Bin sl
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BP GO:0006508 proteolysis 2.55E-14 6.55E-15 1.98E-12 4.77E-13
MF GO:0004295 trypsin activity 2.69E-04 3.74E-05 5.44E-03 7.59E-04
MF GO:0004263 chymotrypsin activity 9.87E-04 1.31E-04 1.80E-02 2.27E-03
MF GO:0004806 triacylglycerol lipase activity 1.40E-03 6.60E-05 2.42E-02 1.27E-03
MF GO:0004035 alkaline phosphatase activity 1.64E-02 1.07E-03 2.14E-01 1.69E-02
MF GO:0019204 nucleotide phosphatase activity 1.64E-02 1.07E-03 2.14E-01 1.69E-02
BP GO:0001501 skeletal development 1.83E-02 1.23E-03 2.14E-01 1.85E-02
Bin s2

BP GO:0006508 proteolysis 2.67E-15 7.15E-16 5.38E-13 1.44E-13
MF GO:0004295 trypsin activity 3.71E-05 5.45E-06 1.40E-03 2.36E-04
MF GO:0004263 chymotrypsin activity 1.59E-03 2.47E-04 4.81E-02 7.86E-03
MF GO:0004806 triacylglycerol lipase activity 8.36E-03 1.10E-03 2.02E-01 2.75E-02
MF GO:0019204 nucleotide phosphatase activity 1.11E-02 1.13E-03 2.50E-01 2.75E-02
CC GO:0005764 lysosome 2.42E-02 2.02E-03 4.19E-01 4.36E-02
MF GO:0004035 alkaline phosphatase activity 3.38E-02 4.08E-03 5.11E-01 6.86E-02
BP GO:0007498 mesoderm development 3.42E-02 9.17E-03 5.11E-01 1.32E-01
BP G0O:0001501 skeletal development 3.53E-02 4.32E-03 5.11E-01 7.06E-02
MF GO:0008970 phospholipase Al activity 4.69E-02 3.53E-03 6.38E-01 6.40E-02
Bin s3

BP GO:0006508 proteolysis 3.69E-18 8.99E-19 8.88E-16 2.16E-16
MF GO:0004295 trypsin activity 4.77E-07 5.12E-08 2.46E-05 3.08E-06
MF GO:0004263 chymotrypsin activity 4.88E-04 6.26E-05 1.94E-02 2.66E-03
MF GO:0004806 triacylglycerol lipase activity 3.73E-03 4.05E-04 9.74E-02 1.08E-02
CC GO:0005764 lysosome 3.78E-03 2.31E-04 9.74E-02 6.96E-03
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.23E-02 1.55E-03 2.78E-01 3.73E-02
MF GO:0004035 alkaline phosphatase activity 1.96E-02 1.96E-03 3.66E-01 4.29E-02
BP GO:0001501 skeletal development 2.00E-02 2.02E-03 3.66E-01 4.29E-02
MF GO:0019204 nucleotide phosphatase activity 2.31E-02 3.84E-03 3.97E-01 7.29E-02
MF GO:0008533 astacin activity 3.06E-02 1.91E-03 4.89E-01 4.29E-02
BP G0O:0006013 mannose metabolic process 3.11E-02 1.95E-03 4.89E-01 4.29E-02
MF GO:0004558 alpha-glucosidase activity 3.83E-02 5.70E-03 5.65E-01 9.52E-02
Bin s4

BP GO:0006508 proteolysis 3.42E-19 8.28E-20 1.43E-16 3.46E-17
MF GO:0004295 trypsin activity 1.04E-06 1.32E-07 6.24E-05 9.19E-06
MF GO:0004263 chymotrypsin activity 2.85E-04 3.35E-05 1.08E-02 1.33E-03
MF GO:0004806 triacylglycerol lipase activity 1.60E-03 1.87E-04 4.94E-02 6.00E-03
CC GO:0005764 lysosome 2.94E-03 1.67E-04 8.20E-02 5.57E-03
BP GO:0001501 skeletal development 3.66E-03 2.77E-04 9.87E-02 8.27E-03
MF GO:0004035 alkaline phosphatase activity 4.05E-03 3.15E-04 1.06E-01 9.07E-03
MF GO:0004558 alpha-glucosidase activity 9.10E-03 1.05E-03 1.90E-01 2.51E-02
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 9.10E-03 1.05E-03 1.90E-01 2.51E-02
MF GO:0019204 nucleotide phosphatase activity 9.96E-03 1.64E-03 2.03E-01 3.44E-02
BP GO:0006013 mannose metabolic process 2.36E-02 1.33E-03 4.30E-01 2.99E-02
BP G0O:0006665 sphingolipid metabolic process 2.36E-02 1.33E-03 4.30E-01 2.99E-02
MF GO:0008533 astacin activity 2.52E-02 1.45E-03 4.48E-01 3.18E-02
BP GO:0006869 lipid transport 2.80E-02 3.74E-03 4.78E-01 6.80E-02
MF GO:0008970 phospholipase Al activity 3.02E-02 4.14E-03 5.05E-01 7.36E-02

Bin s5
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BP GO:0006508 proteolysis 6.64E-18 1.76E-18 2.18E-15 5.78E-16
MF GO:0004295 trypsin activity 5.63E-06 9.04E-07 3.69E-04 6.35E-05
CC GO:0005764 lysosome 8.65E-05 3.57E-06 4.25E-03 1.95E-04
MF GO:0004263 chymotrypsin activity 2.16E-04 2.43E-05 9.65E-03 1.09E-03
MF GO:0004806 triacylglycerol lipase activity 2.59E-03 3.61E-04 7.96E-02 1.18E-02
BP G0O:0001501 skeletal development 3.03E-03 2.18E-04 9.02E-02 7.94E-03
MF GO:0004035 alkaline phosphatase activity 3.44E-03 2.56E-04 9.95E-02 8.97E-03
MF GO:0004558 alpha-glucosidase activity 7.77TE-03 8.61E-04 2.01E-01 2.42E-02
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 7.77E-03 8.61E-04 2.01E-01 2.42E-02
MF GO:0019204 nucleotide phosphatase activity 1.41E-02 2.65E-03 3.46E-01 6.21E-02
BP GO0:0006013 mannose metabolic process 2.10E-02 1.12E-03 4.70E-01 2.98E-02
BP GO:0006665 sphingolipid metabolic process 2.10E-02 1.12E-03 4.70E-01 2.98E-02
MF GO:0008533 astacin activity 2.27E-02 1.25E-03 4.86E-01 3.15E-02
BP G0O:0006869 lipid transport 2.43E-02 3.09E-03 5.07E-01 6.89E-02
MF GO:0008970 phospholipase Al activity 4.56E-02 7.91E-03 8.79E-01 1.52E-01
MF GO:0004559 alpha-mannosidase activity 4.90E-02 5.32E-03 9.26E-01 1.14E-01
Bin s6

BP GO:0006508 proteolysis 9.88E-19 2.77E-19 5.69E-16 1.59E-16
MF GO:0004295 trypsin activity 1.12E-05 1.94E-06 8.31E-04 1.68E-04
MF GO:0004263 chymotrypsin activity 6.09E-05 6.27E-06 3.69E-03 4.01E-04
CC GO:0005764 lysosome 2.79E-04 1.78E-05 1.53E-02 1.02E-03
BP GO:0001501 skeletal development 7.31E-04 4.54E-05 3.51E-02 2.38E-03
MF GO:0004806 triacylglycerol lipase activity 2.64E-03 3.68E-04 9.81E-02 1.46E-02
MF GO:0004035 alkaline phosphatase activity 3.48E-03 2.59E-04 1.25E-01 1.11E-02
CC GO:0005792 microsome 4.63E-03 1.05E-03 1.48E-01 3.37E-02
MF GO:0004558 alpha-glucosidase activity 7.87TE-03 8.72E-04 2.38E-01 3.05E-02
BP G0:0008652 amino acid biosynthetic process 1.24E-02 2.27E-03 3.49E-01 6.39E-02
MF GO:0019204 nucleotide phosphatase activity 1.43E-02 2.69E-03 3.91E-01 7.38E-02
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.50E-02 2.20E-03 4.02E-01 6.34E-02
BP G0O:0006665 sphingolipid metabolic process 2.11E-02 1.13E-03 4.99E-01 3.51E-02
MF GO:0004497 monooxygenase activity 2.12E-02 8.25E-03 4.99E-01 1.70E-01
MF GO:0008533 astacin activity 2.29E-02 1.26E-03 5.17E-01 3.73E-02
BP GO:0006013 mannose metabolic process 4.57E-02 4.82E-03 9.46E-01 1.18E-01
MF GO:0008970 phospholipase A1l activity 4.60E-02 7.98E-03 9.46E-01 1.70E-01
Bin s7

BP GO:0006508 proteolysis 3.06E-18 9.53E-19 3.87E-15 1.21E-15
MF GO:0004295 trypsin activity 6.92E-05 1.60E-05 4.57E-03 1.01E-03
MF GO:0004263 chymotrypsin activity 7.23E-05 7.60E-06 4.57E-03 5.06E-04
CC GO:0005764 lysosome 3.44E-04 2.27E-05 1.81E-02 1.31E-03
BP G0O:0001501 skeletal development 8.36E-04 5.34E-05 4.06E-02 2.94E-03
BP G0:0008652 amino acid biosynthetic process 2.67E-03 4.61E-04 1.13E-01 2.01E-02
MF GO:0004035 alkaline phosphatase activity 3.79E-03 2.88E-04 1.45E-01 1.30E-02
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 5.02E-03 6.51E-04 1.81E-01 2.65E-02
MF GO:0004806 triacylglycerol lipase activity 5.35E-03 9.10E-04 1.88E-01 3.39E-02
CC GO:0005792 microsome 7.23E-03 2.19E-03 2.23E-01 6.74E-02
MF GO:0004558 alpha-glucosidase activity 8.53E-03 9.65E-04 2.45E-01 3.47E-02
MF GO:0019204 nucleotide phosphatase activity 1.56E-02 3.00E-03 4.03E-01 9.04E-02
MF GO:0004497 monooxygenase activity 2.02E-02 8.78E-03 4.81E-01 1.54E-01
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MF GO:0004867 serine-type endopeptidase inhibitor activity 2.05E-02 6.43E-03 4.81E-01 1.35E-01
MF GO:0005344 oxygen transporter activity 2.41E-02 1.35E-03 5.25E-01 4.50E-02
MF GO:0008533 astacin activity 2.41E-02 1.35E-03 5.25E-01 4.50E-02
BP G0O:0006869 lipid transport 3.89E-02 8.39E-03 7.02E-01 1.54E-01
BP GO:0006013 mannose metabolic process 4.86E-02 5.26E-03 7.81E-01 1.29E-01
BP GO:0006665 sphingolipid metabolic process 4.86E-02 5.26E-03 7.81E-01 1.29E-01
MF GO:0008970 phospholipase Al activity 4.88E-02 8.63E-03 7.81E-01 1.54E-01
MF GO:0016490 structural constituent of peritrophic membrane 4.88E-02 8.63E-03 7.81E-01 1.54E-01
MF GO:0042708 elastase activity 4.88E-02 8.63E-03 7.81E-01 1.54E-01
Bin s8

BP GO:0006508 proteolysis 1.94E-19 6.07E-20 1.30E-16 4.08E-17
MF GO:0004295 trypsin activity 5.95E-06 1.29E-06 5.00E-04 1.16E-04
MF GO:0004263 chymotrypsin activity 9.76 E-05 1.15E-05 6.56E-03 8.12E-04
CC GO:0005764 lysosome 5.25E-04 4.27E-05 2.82E-02 2.49E-03
MF GO:0004806 triacylglycerol lipase activity 1.18E-03 1.68E-04 5.88E-02 8.37E-03
BP GO:0001501 skeletal development 1.50E-03 1.33E-04 6.72E-02 6.86E-03
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 2.10E-03 2.79E-04 8.29E-02 1.25E-02
CC GO:0005792 microsome 2.71E-03 8.23E-04 9.86E-02 3.07E-02
BP G0O:0008652 amino acid biosynthetic process 4.78E-03 9.78E-04 1.43E-01 3.31E-02
BP G0O:0006869 lipid transport 5.51E-03 9.85E-04 1.54E-01 3.31E-02
MF GO:0004497 monooxygenase activity 6.05E-03 2.50E-03 1.56E-01 6.22E-02
MF GO:0004035 alkaline phosphatase activity 6.63E-03 7.01E-04 1.68E-01 2.94E-02
MF GO:0004867 serine-type endopeptidase inhibitor activity 1.15E-02 3.51E-03 2.49E-01 7.73E-02
MF GO:0008061 chitin Binding 1.15E-02 3.51E-03 2.49E-01 7.73E-02
MF GO:0004558 alpha-glucosidase activity 1.27E-02 1.78E-03 2.59E-01 4.75E-02
MF GO:0005344 oxygen transporter activity 2.05E-02 1.08E-03 3.88E-01 3.45E-02
MF GO:0042708 elastase activity 2.17E-02 3.78E-03 4.05E-01 8.19E-02
MF GO:0019204 nucleotide phosphatase activity 3.94E-02 1.05E-02 6.79E-01 1.66E-01
MF GO:0008970 phospholipase A1l activity 4.04E-02 6.70E-03 6.81E-01 1.13E-01
BP G0O:0006013 mannose metabolic process 4.11E-02 4.13E-03 6.81E-01 8.55E-02
MF GO:0008533 astacin activity 4.44E-02 4.61E-03 7.19E-01 8.95E-02
MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 4.44E-02 4.61E-03 7.19E-01 8.95E-02
Bin s9

BP GO:0006508 proteolysis 2.98E-18 1.01E-18 1.40E-15 4.72E-16
MF GO:0004295 trypsin activity 1.16E-05 2.73E-06 8.59E-04 2.02E-04
MF GO:0004263 chymotrypsin activity 6.61E-05 7.37E-06 4.64E-03 5.18E-04
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.36E-04 1.76 E-05 8.34E-03 1.08E-03
CC GO0O:0005764 lysosome 1.97E-04 1.72E-05 1.07E-02 1.08E-03
BP GO:0006869 lipid transport 1.22E-03 2.17E-04 4.19E-02 8.46E-03
MF GO:0004806 triacylglycerol lipase activity 1.59E-03 2.49E-04 5.18E-02 9.38E-03
CC GO0:0005792 microsome 2.33E-03 7.35E-04 6.96E-02 2.07E-02
BP GO:0001501 skeletal development 2.61E-03 2.93E-04 7.55E-02 1.03E-02
MF GO:0004497 monooxygenase activity 4.43E-03 1.83E-03 1.17E-01 4.35E-02
BP GO:0008652 amino acid biosynthetic process 4.59E-03 1.08E-03 1.19E-01 2.80E-02
MF GO:0008061 chitin Binding 4.77E-03 1.36E-03 1.21E-01 3.41E-02
MF GO:0004035 alkaline phosphatase activity 5.43E-03 5.46E-04 1.34E-01 1.70E-02
BP GO:0006013 mannose metabolic process 9.17E-03 7.16E-04 2.05E-01 2.07E-02
MF GO:0004558 alpha-glucosidase activity 1.05E-02 1.40E-03 2.30E-01 3.41E-02
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MF GO:0005344 oxygen transporter activity 1.81E-02 9.02E-04 3.62E-01 2.39E-02
MF GO:0004559 alpha-mannosidase activity 2.01E-02 2.40E-03 3.82E-01 5.53E-02
BP GO:0051189 prosthetic group metabolic process 2.51E-02 9.66E-03 4.58E-01 1.58E-01
MF GO:0042708 elastase activity 2.85E-02 5.61E-03 5.13E-01 9.95E-02
MF GO:0019204 nucleotide phosphatase activity 3.23E-02 8.17E-03 5.61E-01 1.40E-01
MF GO:0008970 phospholipase Al activity 3.48E-02 5.49E-03 5.73E-01 9.95E-02
MF GO:0004867 serine-type endopeptidase inhibitor activity 3.84E-02 1.51E-02 6.07E-01 2.18E-01
MF GO:0008533 astacin activity 3.94E-02 3.89E-03 6.08E-01 8.14E-02
MF GO:0016903 oxidoreductase activity; acting on the aldehyde ... 3.94E-02 3.89E-03 6.08E-01 8.14E-02
Bin s10

BP GO:0006508 proteolysis 1.22E-17 4.34E-18 6.47E-15 2.29E-15
MF GO:0004295 trypsin activity 1.88E-05 4.67E-06 1.42E-03 3.52E-04
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 2.53E-05 3.38E-06 1.82E-03 2.98E-04
MF GO:0004263 chymotrypsin activity 4.30E-05 4.53E-06 2.62E-03 3.52E-04
CC GO:0005764 lysosome 1.62E-04 1.37E-05 7.55E-03 7.73E-04
CC GO:0005792 microsome 5.03E-04 1.48E-04 1.95E-02 5.32E-03
BP G0:0008652 amino acid biosynthetic process 5.93E-04 1.20E-04 2.14E-02 4.92E-03
BP GO:0006869 lipid transport 7.30E-04 1.36E-04 2.41E-02 5.15E-03
CC GO:0005777 peroxisome 9.52E-04 1.28E-04 2.93E-02 4.93E-03
MF GO:0008061 chitin Binding 1.77E-03 4.66E-04 5.10E-02 1.34E-02
MF GO:0004497 monooxygenase activity 2.18E-03 8.88E-04 5.85E-02 2.20E-02
MF GO:0004806 triacylglycerol lipase activity 3.17E-03 6.03E-04 7.98E-02 1.68E-02
BP G0O:0001501 skeletal development 6.73E-03 1.06E-03 1.54E-01 2.49E-02
MEF GO:0005506 iron ion Binding 7.03E-03 3.31E-03 1.57E-01 6.81E-02
BP G0O:0006013 mannose metabolic process 7.75E-03 5.74E-04 1.71E-01 1.62E-02
MF GO:0004035 alkaline phosphatase activity 8.50E-03 1.07E-03 1.82E-01 2.49E-02
MF GO:0004558 alpha-glucosidase activity 8.50E-03 1.07E-03 1.82E-01 2.49E-02
BP GO:0006118 electron transport 1.22E-02 6.71E-03 2.42E-01 1.02E-01
MF GO:0020037 heme Binding 1.42E-02 6.37E-03 2.74E-01 1.00E-01
MF GO:0004559 alpha-mannosidase activity 1.69E-02 1.91E-03 3.05E-01 4.21E-02
BP GO:0006032 chitin catabolic process 2.15E-02 3.94E-03 3.60E-01 7.34E-02
MF GO:0004568 chitinase activity 2.34E-02 4.37E-03 3.82E-01 7.43E-02
MF GO:0042708 elastase activity 2.34E-02 4.37E-03 3.82E-01 7.43E-02
BP GO:0008202 steroid metabolic process 2.61E-02 1.31E-02 4.22E-01 1.85E-01
MF GO:0008970 phospholipase Al activity 2.95E-02 4.41E-03 4.68E-01 7.43E-02
BP G0O:0051189 prosthetic group metabolic process 3.35E-02 1.37E-02 5.16E-01 1.92E-01
MF GO:0004867 serine-type endopeptidase inhibitor activity 3.43E-02 1.47E-02 5.21E-01 2.01E-01
MF GO:0005344 oxygen transporter activity 3.45E-02 3.23E-03 5.21E-01 6.73E-02
Bin sl11

BP GO:0006508 proteolysis 9.07E-17 3.38E-17 5.12E-14 1.90E-14
CC GO:0005777 peroxisome 1.03E-05 1.06E-06 8.30E-04 9.92E-05
MF GO:0004263 chymotrypsin activity 2.09E-05 2.00E-06 1.36E-03 1.70E-04
MF GO:0004295 trypsin activity 2.39E-05 6.20E-06 1.50E-03 3.89E-04
BP G0O:0006869 lipid transport 5.17E-05 8.17E-06 2.86E-03 4. 76 E-04
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 6.45E-05 1.04E-05 3.22E-03 5.89E-04
CC GO:0005764 lysosome 2.02E-04 1.89E-05 8.77E-03 9.40E-04
MF GO:0004497 monooxygenase activity 8.99E-04 3.59E-04 2.98E-02 1.17E-02
CC GO:0005792 microsome 1.11E-03 3.59E-04 3.47E-02 1.17E-02
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MF GO:0004558 alpha-glucosidase activity 1.48E-03 1.47E-04 4.39E-02 5.78E-03
BP GO:0006118 electron transport 1.52E-03 7.58E-04 4.42E-02 2.00E-02
MF GO:0008061 chitin Binding 1.62E-03 4.61E-04 4.64E-02 1.35E-02
BP GO:0008652 amino acid biosynthetic process 1.95E-03 4.95E-04 5.51E-02 1.40E-02
MF GO:0004806 triacylglycerol lipase activity 4.40E-03 9.26E-04 1.14E-01 2.34E-02
BP G0O:0001501 skeletal development 4.43E-03 6.39E-04 1.14E-01 1.74E-02
BP G0O:0006013 mannose metabolic process 5.71E-03 3.86E-04 1.35E-01 1.23E-02
MF GO:0020037 heme Binding 5.74E-03 2.47E-03 1.35E-01 5.36E-02
MF GO:0005506 iron ion Binding 5.89E-03 2.80E-03 1.36E-01 5.85E-02
MF GO:0004035 alkaline phosphatase activity 5.97E-03 6.86E-04 1.36E-01 1.84E-02
MF GO:0005344 oxygen transporter activity 6.19E-03 4.28E-04 1.40E-01 1.29E-02
BP GO:0051189 prosthetic group metabolic process 8.86E-03 3.08E-03 1.85E-01 6.12E-02
MF GO:0004559 alpha-mannosidase activity 1.27E-02 1.31E-03 2.59E-01 3.17E-02
MF GO:0042708 elastase activity 1.68E-02 2.87E-03 3.23E-01 5.85E-02
MF GO:0008970 phospholipase Al activity 2.24E-02 3.06E-03 4.03E-01 6.12E-02
BP G0O:0006032 chitin catabolic process 2.32E-02 4.48E-03 4.03E-01 7.66E-02
MF GO:0004867 serine-type endopeptidase inhibitor activity 2.77E-02 1.15E-02 4.59E-01 1.73E-01
MF GO:0004568 chitinase activity 3.60E-02 8.11E-03 5.75E-01 1.29E-01
BP G0:0008202 steroid metabolic process 4.37E-02 2.35E-02 6.78E-01 2.83E-01
MF GO:0008533 astacin activity 4.92E-02 6.24E-03 7.50E-01 1.02E-01
Bin s12

BP GO:0006508 proteolysis 3.12E-17 1.17E-17 1.87E-14 7.00E-15
CC GO:0005777 peroxisome 9.47E-07 9.88E-08 9.47E-05 9.88E-06
MF GO:0004295 trypsin activity 6.80E-06 1.61E-06 5.32E-04 1.45E-04
MF GO:0004263 chymotrypsin activity 7.98E-06 6.79E-07 5.87E-04 6.43E-05
BP G0O:0006869 lipid transport 2.63E-05 5.26E-06 1.43E-03 3.15E-04
CC GO0:0005792 microsome 5.23E-05 1.45E-05 2.48E-03 6.88E-04
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 6.03E-05 1.01E-05 2.79E-03 5.34E-04
MF GO:0004497 monooxygenase activity 1.32E-04 4.79E-05 5.73E-03 1.96E-03
CC GO0:0005764 lysosome 2.03E-04 1.99E-05 7.77E-03 8.95E-04
BP GO:0006118 electron transport 5.26E-04 2.57E-04 1.79E-02 7.97E-03
MF GO:0008061 chitin Binding 7.96E-04 2.10E-04 2.51E-02 6.87E-03
MF GO:0004558 alpha-glucosidase activity 8.32E-04 7.33E-05 2.58E-02 2.81E-03
MF GO:0020037 heme Binding 1.14E-03 4.46E-04 3.31E-02 1.25E-02
MF GO:0005506 iron ion Binding 1.84E-03 8.26E-04 5.10E-02 2.13E-02
MF GO:0004035 alkaline phosphatase activity 3.72E-03 3.80E-04 8.94E-02 1.14E-02
MF GO:0005344 oxygen transporter activity 4.17E-03 2.56E-04 9.88E-02 7.97E-03
MF GO:0004806 triacylglycerol lipase activity 4.67E-03 1.03E-03 1.08E-01 2.50E-02
MF GO:0004867 serine-type endopeptidase inhibitor activity 5.75E-03 2.00E-03 1.30E-01 4.23E-02
BP G0O:0001501 skeletal development 6.72E-03 1.15E-03 1.49E-01 2.71E-02
BP GO:0051189 prosthetic group metabolic process 7.54E-03 2.59E-03 1.66E-01 5.13E-02
MF GO:0042708 elastase activity 1.08E-02 1.64E-03 2.28E-01 3.73E-02
BP G0O:0008652 amino acid biosynthetic process 1.15E-02 3.97E-03 2.35E-01 7.60E-02
BP G0O:0008202 steroid metabolic process 1.18E-02 5.82E-03 2.38E-01 9.62E-02
BP G0O:0006013 mannose metabolic process 1.46E-02 1.74E-03 2.86E-01 3.89E-02
MF GO:0004559 alpha-mannosidase activity 1.55E-02 1.88E-03 2.94E-01 4.08E-02
MF GO:0008970 phospholipase Al activity 1.55E-02 1.88E-03 2.94E-01 4.08E-02
BP GO:0006032 chitin catabolic process 2.22E-02 4.37E-03 3.77TE-01 7.71E-02
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MF GO:0004568 chitinase activity 2.37E-02 4.76E-03 3.99E-01 8.16E-02
MF GO:0008533 astacin activity 3.72E-02 4.20E-03 5.77E-01 7.71E-02
MF GO:0009055 electron carrier activity 4.06E-02 2.30E-02 6.25E-01 2.49E-01
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 4.37E-02 1.34E-02 6.50E-01 1.89E-01
MF GO:0019204 nucleotide phosphatase activity 4.60E-02 1.37E-02 6.78E-01 1.90E-01
BP G0O:0006635 fatty acid beta-oxidation 4.95E-02 1.01E-02 7.08E-01 1.49E-01
BP G0O:0005992 trehalose biosynthetic process 4.96E-02 2.45E-03 7.08E-01 4.96E-02
Bin s13

BP GO:0006508 proteolysis 5.61E-19 2.02E-19 2.60E-16 9.33E-17
MF GO:0004295 trypsin activity 8.75E-07 1.80E-07 8.52E-05 1.59E-05
BP GO:0006869 lipid transport 9.72E-07 1.67E-07 9.00E-05 1.54E-05
CC GO:0005777 peroxisome 1.38E-06 1.61E-07 1.11E-04 1.54E-05
MF GO:0004263 chymotrypsin activity 1.95E-06 1.39E-07 1.38E-04 1.52E-05
CC GO:0005792 microsome 1.51E-05 3.82E-06 7.98E-04 2.02E-04
MF GO:0004497 monooxygenase activity 2.92E-05 9.66E-06 1.42E-03 4.47E-04
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 3.20E-05 5.14E-06 1.45E-03 2.51E-04
CC GO0O:0005764 lysosome 1.28E-04 1.21E-05 4.94E-03 5.21E-04
MF GO:0020037 heme Binding 3.07E-04 1.09E-04 1.01E-02 3.40E-03
MF GO:0008061 chitin Binding 3.19E-04 7.68E-05 1.03E-02 2.63E-03
MF GO:0004558 alpha-glucosidase activity 3.58E-04 2.66E-05 1.10E-02 1.07E-03
BP GO:0006118 electron transport 4.59E-04 2.25E-04 1.37E-02 6.60E-03
MF GO:0005506 iron ion Binding 8.68E-04 3.72E-04 2.51E-02 1.07E-02
MF GO:0004035 alkaline phosphatase activity 1.86E-03 1.60E-04 5.14E-02 4.87E-03
MF GO:0005344 oxygen transporter activity 2.34E-03 1.21E-04 6.10E-02 3.74E-03
MF GO:0004867 serine-type endopeptidase inhibitor activity 2.79E-03 8.96E-04 7.07E-02 2.18E-02
BP G0O:0051189 prosthetic group metabolic process 2.92E-03 9.44E-04 7.10E-02 2.21E-02
MF GO:0004806 triacylglycerol lipase activity 3.41E-03 7.30E-04 8.10E-02 1.93E-02
BP GO:0001501 skeletal development 4.65E-03 7.53E-04 1.05E-01 1.94E-02
MF GO:0042708 elastase activity 5.58E-03 7.16E-04 1.24E-01 1.92E-02
BP G0:0008202 steroid metabolic process 6.98E-03 3.31E-03 1.54E-01 6.01E-02
BP G0O:0006013 mannose metabolic process 8.46E-03 8.52E-04 1.82E-01 2.10E-02
MF GO:0004559 alpha-mannosidase activity 9.00E-03 9.23E-04 1.89E-01 2.19E-02
MF GO:0008970 phospholipase Al activity 9.00E-03 9.23E-04 1.89E-01 2.19E-02
MF GO:0004179 membrane alanyl aminopeptidase activity 1.02E-02 2.05E-03 2.08E-01 3.91E-02
BP GO:0006032 chitin catabolic process 1.18E-02 1.97E-03 2.26E-01 3.85E-02
MF GO:0004568 chitinase activity 1.27E-02 2.16E-03 2.36E-01 4.08E-02
BP GO:0008652 amino acid biosynthetic process 1.36E-02 4.93E-03 2.47E-01 8.61E-02
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 1.54E-02 4.24E-03 2.74E-01 7.55E-02
MF GO:0009055 electron carrier activity 1.97E-02 1.06E-02 3.41E-01 1.57E-01
MF GO:0019204 nucleotide phosphatase activity 2.98E-02 8.03E-03 4.83E-01 1.23E-01
MF GO:0005319 lipid transporter activity 3.20E-02 7.39E-03 5.07E-01 1.16E-01
BP GO:0006800 oxygen and reactive oxygen species metabolic process 3.61E-02 1.17E-02 5.52E-01 1.71E-01
BP GO:0005992 trehalose biosynthetic process 3.70E-02 1.55E-03 5.52E-01 3.30E-02
MF GO:0016401 palmitoyl-CoA oxidase activity 3.82E-02 1.63E-03 5.66E-01 3.43E-02
MF GO:0008533 astacin activity 3.94E-02 4.99E-03 5.79E-01 8.63E-02
Bin s14

BP GO:0006508 proteolysis 9.85E-20 3.52E-20 3.10E-17 1.11E-17
MF GO:0004295 trypsin activity 2.26E-07 4.33E-08 2.03E-05 3.71E-06
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BP GO:0006869 lipid transport 4.01E-07 6.62E-08 3.22E-05 5.43E-06
MF GO:0004263 chymotrypsin activity 4.01E-07 2.38E-08 3.22E-05 2.36E-06
CC GO:0005792 microsome 7.19E-07 1.53E-07 4.84E-05 1.07E-05
CC GO:0005777 peroxisome 8.28E-07 9.55E-08 5.21E-05 7.20E-06
MF GO:0004497 monooxygenase activity 9.81E-07 2.72E-07 5.73E-05 1.61E-05
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 8.77E-06 1.24E-06 4.14E-04 6.01E-05
MF GO:0008061 chitin Binding 1.57E-05 2.94E-06 6.43E-04 1.29E-04
MF GO:0020037 heme Binding 3.22E-05 9.99E-06 1.24E-03 3.70E-04
MF GO:0005506 iron ion Binding 1.85E-04 7.28E-05 6.21E-03 2.29E-03
BP GO:0006118 electron transport 2.17E-04 1.04E-04 7.18E-03 3.17E-03
CC GO:0005764 lysosome 2.59E-04 3.04E-05 8.14E-03 1.02E-03
MF GO:0004035 alkaline phosphatase activity 8.54E-04 6.13E-05 2.48E-02 1.96E-03
MF GO:0004558 alpha-glucosidase activity 8.74E-04 9.39E-05 2.50E-02 2.90E-03
MF GO:0004867 serine-type endopeptidase inhibitor activity 8.93E-04 2.52E-04 2.51E-02 7.00E-03
BP G0:0051189 prosthetic group metabolic process 1.08E-03 3.15E-04 3.01E-02 8.37TE-03
MF GO:0005344 oxygen transporter activity 1.23E-03 5.30E-05 3.31E-02 1.72E-03
BP G0O:0008202 steroid metabolic process 1.38E-03 5.80E-04 3.65E-02 1.39E-02
MF GO:0004806 triacylglycerol lipase activity 1.57E-03 2.99E-04 4.01E-02 8.06E-03
MF GO:0042708 elastase activity 2.64E-03 2.83E-04 6.31E-02 7.74E-03
BP GO:0001501 skeletal development 4.00E-03 6.53E-04 9.08E-02 1.54E-02
BP G0O:0006013 mannose metabolic process 4.50E-03 3.76E-04 1.01E-01 9.86E-03
MF GO:0004559 alpha-mannosidase activity 4.88E-03 4.17E-04 1.06E-01 1.03E-02
MF GO:0008970 phospholipase Al activity 4.88E-03 4.17E-04 1.06E-01 1.03E-02
BP GO:0006032 chitin catabolic process 5.67E-03 7.86E-04 1.15E-01 1.65E-02
MF GO:0004568 chitinase activity 6.22E-03 8.83E-04 1.25E-01 1.83E-02
MF GO:0004179 membrane alanyl aminopeptidase activity 8.23E-03 1.62E-03 1.59E-01 3.07E-02
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 1.45E-02 4.00E-03 2.60E-01 6.74E-02
BP GO:0008652 amino acid biosynthetic process 1.52E-02 5.70E-03 2.70E-01 9.11E-02
MF GO:0009055 electron carrier activity 1.67E-02 9.04E-03 2.84E-01 1.29E-01
MF GO:0005319 lipid transporter activity 2.14E-02 4.50E-03 3.51E-01 7.38E-02
MF GO:0008533 astacin activity 2.52E-02 2.66E-03 4.03E-01 4.78E-02
BP G0O:0005992 trehalose biosynthetic process 2.65E-02 9.21E-04 4.15E-01 1.87E-02
MF GO:0019204 nucleotide phosphatase activity 2.66E-02 7.15E-03 4.15E-01 1.10E-01
MF GO:0004182 carboxypeptidase A activity 2.73E-02 6.19E-03 4.17E-01 9.65E-02
MF GO:0016401 palmitoyl-CoA oxidase activity 2.76E-02 9.82E-04 4.17E-01 1.97E-02
MF GO:0016490 structural constituent of peritrophic membrane 3.33E-02 6.27E-03 4.83E-01 9.70E-02
BP GO:0006800 oxygen and reactive oxygen species metabolic process 4.19E-02 1.43E-02 5.98E-01 1.71E-01
MF GO:0005529 sugar Binding 4.63E-02 1.62E-02 6.43E-01 1.87E-01
BP G0:0048066 pigmentation during development 4.64E-02 1.77E-02 6.43E-01 2.00E-01
BP G0:0042049 cell acyl-CoA homeostasis 4.96E-02 3.41E-03 6.68E-01 5.96E-02
Bin s15

BP GO:0006508 proteolysis 2.41E-19 8.85E-20 7.61E-17 2.79E-17
MF GO:0004295 trypsin activity 4.88E-08 8.53E-09 4.36E-06 7.68E-07
CC GO:0005792 microsome 7.17E-08 1.30E-08 5.65E-06 1.07E-06
MF GO:0004263 chymotrypsin activity 1.14E-07 5.86E-09 8.41E-06 5.53E-07
MF GO:0004497 monooxygenase activity 1.16E-07 2.86E-08 8.41E-06 2.08E-06
CC GO:0005777 peroxisome 3.73E-07 4.06E-08 2.07E-05 2.74E-06
BP G0O:0006869 lipid transport 1.55E-06 2.99E-07 7.32E-05 1.49E-05
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MF GO:0008061 chitin Binding 3.34E-06 5.44E-07 1.44E-04 2.39E-05
MF GO:0020037 heme Binding 5.83E-06 1.61E-06 2.34E-04 6.35E-05
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 7.45E-06 1.07E-06 2.87E-04 4.61E-05
MF GO:0005506 iron ion Binding 7.98E-05 3.00E-05 2.69E-03 9.46E-04
CC GO:0005764 lysosome 2.11E-04 2.46E-05 6.63E-03 8.16E-04
MF GO:0004867 serine-type endopeptidase inhibitor activity 3.07E-04 7.72E-05 9.50E-03 2.27E-03
BP G0O:0008202 steroid metabolic process 3.18E-04 1.20E-04 9.70E-03 3.44E-03
MF GO:0004558 alpha-glucosidase activity 4.26E-04 3.97E-05 1.26E-02 1.23E-03
MF GO:0004035 alkaline phosphatase activity 4.59E-04 2.86E-05 1.33E-02 9.15E-04
BP GO:0051189 prosthetic group metabolic process 5.34E-04 1.44E-04 1.53E-02 4.01E-03
MF GO:0005344 oxygen transporter activity 7.38E-04 2.76E-05 2.08E-02 8.98E-04
MF GO:0004806 triacylglycerol lipase activity 8.90E-04 1.56E-04 2.44E-02 4.26E-03
BP GO:0006118 electron transport 1.19E-03 6.36E-04 3.18E-02 1.35E-02
MF GO:0042708 elastase activity 1.45E-03 1.35E-04 3.71E-02 3.80E-03
BP GO:0006013 mannose metabolic process 2.73E-03 1.97E-04 6.44E-02 5.32E-03
MF GO:0004559 alpha-mannosidase activity 2.99E-03 2.22E-04 6.88E-02 5.90E-03
BP GO:0001501 skeletal development 3.79E-03 6.30E-04 8.62E-02 1.35E-02
MF GO:0004179 membrane alanyl aminopeptidase activity 4.28E-03 7.31E-04 9.13E-02 1.46E-02
BP G0O:0006032 chitin catabolic process 4.54E-03 6.11E-04 9.13E-02 1.33E-02
MF GO:0008970 phospholipase Al activity 5.01E-03 4.63E-04 9.84E-02 1.12E-02
MF GO:0004568 chitinase activity 5.05E-03 6.97E-04 9.84E-02 1.44E-02
MF GO:0019204 nucleotide phosphatase activity 8.54E-03 2.05E-03 1.57E-01 3.72E-02
CC G0:0043190 ATP-Binding cassette (ABC) transporter complex 8.99E-03 2.28E-03 1.63E-01 3.98E-02
BP GO:0008652 amino acid biosynthetic process 9.79E-03 3.47E-03 1.74E-01 5.66E-02
MF GO:0004182 carboxypeptidase A activity 1.61E-02 3.19E-03 2.65E-01 5.24E-02
MF GO:0008533 astacin activity 1.76 E-02 1.61E-03 2.86E-01 2.99E-02
BP GO:0005992 trehalose biosynthetic process 2.04E-02 6.12E-04 3.19E-01 1.33E-02
MF GO:0016401 palmitoyl-CoA oxidase activity 2.14E-02 6.59E-04 3.30E-01 1.38E-02
MF GO:0016490 structural constituent of peritrophic membrane 2.15E-02 3.52E-03 3.30E-01 5.69E-02
MF GO:0005319 lipid transporter activity 3.09E-02 7.43E-03 4.49E-01 1.00E-01
MF GO:0005529 sugar Binding 3.29E-02 1.07E-02 4.71E-01 1.32E-01
MF GO:0008431 vitamin E Binding 3.70E-02 5.04E-03 5.12E-01 7.94E-02
BP G0O:0048066 pigmentation during development 3.77TE-02 1.39E-02 5.13E-01 1.60E-01
MF GO:0050809 diazepam Binding 4.03E-02 2.46E-03 5.33E-01 4.20E-02
MF GO:0009055 electron carrier activity 4.08E-02 2.42E-02 5.35E-01 2.25E-01
BP GO:0006800 oxygen and reactive oxygen species metabolic process 4.33E-02 1.51E-02 5.61E-01 1.72E-01
MF GO:0004364 glutathione transferase activity 4.77E-02 1.52E-02 6.06E-01 1.73E-01
Bin ul

Bin u2

Bin u3

Bin u4

CC GO:0005792 microsome 2.15E-03 1.21E-04 2.65E-01 2.12E-02
BP G0O:0006869 lipid transport 2.69E-03 2.85E-04 2.65E-01 2.68E-02
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 3.24E-02 5.21E-03 7.79E-01 1.17E-01
BP G0O:0008202 steroid metabolic process 3.59E-02 6.05E-03 8.35E-01 1.18E-01
MF GO:0004095 carnitine O-palmitoyltransferase activity 3.99E-02 4.13E-04 8.44E-01 2.88E-02
Bin u5

BP G0O:0006869 lipid transport 1.54E-04 1.56E-05 1.97E-02 2.33E-03
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CC GO:0005777 peroxisome 5.48E-04 3.52E-05 4.10E-02 3.51E-03
MF GO:0004497 monooxygenase activity 6.37E-03 8.43E-04 2.59E-01 2.91E-02
MF GO:0020037 heme Binding 7.21E-03 9.91E-04 2.59E-01 3.17E-02
CC GO:0005792 microsome 1.37E-02 1.55E-03 4.17E-01 4.35E-02
BP GO:0006118 electron transport 2.94E-02 1.12E-02 7.33E-01 1.55E-01
BP GO:0006633 fatty acid biosynthetic process 4.59E-02 4.58E-03 9.47E-01 8.56E-02
Bin u6

CC GO:0005777 peroxisome 1.03E-06 5.35E-08 1.47E-04 1.25E-05
BP G0O:0006869 lipid transport 1.44E-04 1.79E-05 1.10E-02 1.36E-03
MF GO:0020037 heme Binding 2.18E-04 2.90E-05 1.46E-02 1.94E-03
MF GO:0005506 iron ion Binding 3.40E-04 6.74E-05 1.94E-02 3.25E-03
CC GO:0005792 microsome 1.00E-03 1.12E-04 4.38E-02 4.73E-03
MF GO:0004497 monooxygenase activity 1.26E-03 1.91E-04 5.34E-02 7.03E-03
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 2.19E-03 3.73E-04 7.32E-02 1.06E-02
BP GO:0006633 fatty acid biosynthetic process 2.78E-03 2.75E-04 7.91E-02 8.69E-03
MF GO:0016401 palmitoyl-CoA oxidase activity 3.28E-03 3.79E-05 8.31E-02 2.27E-03
BP G0O:0006118 electron transport 4.85E-03 1.78E-03 1.17E-01 3.69E-02
BP G0O:0008202 steroid metabolic process 1.04E-02 2.50E-03 2.04E-01 4.46E-02
BP G0O:0006635 fatty acid beta-oxidation 1.61E-02 1.85E-03 2.97E-01 3.70E-02
MF GO:0004364 glutathione transferase activity 1.78E-02 2.12E-03 3.22E-01 3.95E-02
BP GO:0006800 oxygen and reactive oxygen species metabolic process 3.65E-02 5.90E-03 6.12E-01 8.45E-02
MF GO:0009055 electron carrier activity 3.82E-02 1.50E-02 6.24E-01 1.66E-01
BP GO:0006098 pentose-phosphate shunt 3.94E-02 3.44E-03 6.24E-01 5.36E-02
Bin u7

CC GO:0005777 peroxisome 4.49E-07 2.64E-08 8.10E-05 4.76E-06
BP GO:0006869 lipid transport 1.65E-05 2.07E-06 1.39E-03 1.87E-04
MF GO:0020037 heme Binding 3.82E-05 5.38E-06 2.41E-03 3.11E-04
MF GO:0005506 iron ion Binding 5.33E-04 1.24E-04 2.04E-02 3.97E-03
CC GO:0005792 microsome 7.12E-04 9.56E-05 2.57E-02 3.77E-03
MF GO:0004497 monooxygenase activity 1.06E-03 1.85E-04 3.51E-02 5.19E-03
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 1.84E-03 3.57E-04 5.66E-02 9.02E-03
BP GO:0006032 chitin catabolic process 2.63E-03 1.29E-04 6.79E-02 3.97E-03
MF GO:0004568 chitinase activity 2.86E-03 1.44E-04 7.22E-02 4.33E-03
MF GO:0016401 palmitoyl-CoA oxidase activity 4.46E-03 6.02E-05 1.08E-01 2.62E-03
BP GO:0006633 fatty acid biosynthetic process 5.01E-03 5.83E-04 1.09E-01 1.34E-02
BP GO:0006118 electron transport 5.36E-03 2.17E-03 1.15E-01 3.75E-02
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 6.73E-03 8.58E-04 1.42E-01 1.84E-02
MF GO:0004364 glutathione transferase activity 8.07E-03 1.09E-03 1.62E-01 2.30E-02
BP G0:0008202 steroid metabolic process 8.58E-03 2.26E-03 1.64E-01 3.85E-02
MF GO:0008061 chitin Binding 1.56E-02 1.71E-03 2.74E-01 3.08E-02
BP G0O:0006635 fatty acid beta-oxidation 2.90E-02 4.17E-03 4.43E-01 6.55E-02
CC G0:0043190 ATP-Binding cassette (ABC) transporter complex 4.15E-02 7.07E-03 5.97E-01 9.30E-02
MF GO:0008010 structural constituent of chitin-based larval cuticle 4.58E-02 4.24E-03 6.35E-01 6.55E-02
MF GO:0009055 electron carrier activity 4.85E-02 2.11E-02 6.58E-01 2.10E-01
Bin u8

CC GO:0005777 peroxisome 1.02E-06 6.78E-08 1.00E-04 7.14E-06
BP G0O:0006869 lipid transport 1.26E-06 1.51E-07 1.15E-04 1.38E-05
MF GO:0020037 heme Binding 2.08E-06 3.00E-07 1.59E-04 2.41E-05
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MF GO:0004497 monooxygenase activity 5.76E-05 9.75E-06 3.04E-03 4.95E-04
CC GO:0005792 microsome 7.93E-05 1.08E-05 3.68E-03 5.09E-04
MF GO:0005506 iron ion Binding 8.07E-05 1.91E-05 3.68E-03 8.25E-04
BP GO:0008202 steroid metabolic process 2.88E-04 6.72E-05 1.13E-02 2.05E-03
BP GO:0006032 chitin catabolic process 5.25E-04 2.74E-05 1.63E-02 9.62E-04
MF GO:0004568 chitinase activity 6.22E-04 3.40E-05 1.88E-02 1.13E-03
MF GO:0008061 chitin Binding 6.32E-04 5.73E-05 1.88E-02 1.82E-03
BP GO:0006118 electron transport 7.19E-04 2.73E-04 2.10E-02 7.06E-03
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 1.02E-03 2.03E-04 2.73E-02 5.46E-03
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 2.25E-03 2.87E-04 5.22E-02 7.15E-03
MF GO:0016401 palmitoyl-CoA oxidase activity 5.62E-03 8.54E-05 1.18E-01 2.54E-03
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 9.74E-03 1.42E-03 1.96E-01 2.82E-02
BP GO:0006633 fatty acid biosynthetic process 1.04E-02 1.51E-03 2.00E-01 2.87E-02
MF GO:0009055 electron carrier activity 1.28E-02 5.21E-03 2.36E-01 7.84E-02
MF GO:0004364 glutathione transferase activity 1.67E-02 2.83E-03 2.98E-01 4.67E-02
MF GO:0016885 ligase activity; forming carbon-carbon bonds 1.77E-02 7.99E-04 3.04E-01 1.74E-02
BP G0:0048066 pigmentation during development 2.20E-02 4.11E-03 3.55E-01 6.40E-02
MF GO:0005319 lipid transporter activity 2.59E-02 3.46E-03 4.03E-01 5.57TE-02
BP GO:0006800 oxygen and reactive oxygen species metabolic process 2.83E-02 5.73E-03 4.30E-01 8.01E-02
MF GO:0016229 steroid dehydrogenase activity 3.50E-02 2.62E-03 5.02E-01 4.43E-02
MF GO:0015020 glucuronosyltransferase activity 4.21E-02 6.98E-03 5.84E-01 9.04E-02
BP GO:0006635 fatty acid beta-oxidation 4.34E-02 7.32E-03 5.94E-01 9.12E-02
Bin u9

CC GO:0005777 peroxisome 4.39E-08 2.84E-09 4.88E-06 3.42E-07
BP GO:0006869 lipid transport 2.20E-06 3.09E-07 1.44E-04 2.24E-05
MF GO:0020037 heme Binding 2.84E-06 5.03E-07 1.64E-04 2.84E-05
MF GO:0008061 chitin Binding 6.21E-06 4.97E-07 3.23E-04 2.84E-05
MF GO:0005506 iron ion Binding 9.91E-06 2.43E-06 4.77E-04 1.10E-04
MF GO:0004497 monooxygenase activity 1.54E-05 2.98E-06 6.76E-04 1.27E-04
CC GO0:0005792 microsome 4.20E-05 6.89E-06 1.68E-03 2.77E-04
BP GO:0006118 electron transport 2.40E-04 9.55E-05 8.08E-03 2.60E-03
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 9.08E-04 1.98E-04 2.85E-02 4.85E-03
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 9.82E-04 1.31E-04 3.02E-02 3.47E-03
BP GO:0008202 steroid metabolic process 1.11E-03 3.25E-04 3.03E-02 7.57TE-03
BP GO:0006032 chitin catabolic process 1.13E-03 7.28E-05 3.03E-02 2.06E-03
BP GO:0006800 oxygen and reactive oxygen species metabolic process 1.20E-03 2.07E-04 3.15E-02 4.99E-03
MF GO:0004568 chitinase activity 1.25E-03 8.29E-05 3.18E-02 2.30E-03
MF GO:0004867 serine-type endopeptidase inhibitor activity 1.69E-03 3.12E-04 4.08E-02 7.38E-03
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 4.99E-03 7.96E-04 1.05E-01 1.62E-02
BP G0:0048066 pigmentation during development 5.17E-03 1.01E-03 1.05E-01 2.00E-02
BP GO:0005992 trehalose biosynthetic process 7.68E-03 1.37E-04 1.42E-01 3.48E-03
MF GO:0016401 palmitoyl-CoA oxidase activity 8.10E-03 1.49E-04 1.48E-01 3.71E-03
MF GO:0009055 electron carrier activity 8.20E-03 3.53E-03 1.48E-01 5.21E-02
MF GO:0004364 glutathione transferase activity 1.06E-02 2.00E-03 1.80E-01 3.56E-02
MF GO:0005319 lipid transporter activity 1.06E-02 1.49E-03 1.80E-01 2.80E-02
MF GO:0019203 carbohydrate phosphatase activity 1.56E-02 5.72E-04 2.48E-01 1.23E-02
BP GO:0006635 fatty acid beta-oxidation 1.74E-02 2.92E-03 2.70E-01 4.40E-02
BP GO:0006633 fatty acid biosynthetic process 2.06E-02 3.67E-03 3.11E-01 5.25E-02
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BP G0O:0046483 heterocycle metabolic process 2.20E-02 8.72E-03 3.28E-01 1.00E-01
MF GO:0016885 ligase activity; forming carbon-carbon bonds 2.51E-02 1.37E-03 3.63E-01 2.65E-02
MF GO:0015020 glucuronosyltransferase activity 2.65E-02 5.11E-03 3.79E-01 6.84E-02
MF GO:0003995 acyl-CoA dehydrogenase activity 2.83E-02 3.82E-03 3.94E-01 5.36E-02
MF GO:0016209 antioxidant activity 3.08E-02 6.25E-03 4.23E-01 8.21E-02
BP G0O:0006012 galactose metabolic process 3.46E-02 2.44E-03 4.59E-01 4.20E-02
BP GO:0006508 proteolysis 3.73E-02 2.36E-02 4.90E-01 2.07E-01
BP G0O:0019731 antibacterial humoral response 4.22E-02 9.61E-03 5.40E-01 1.08E-01
BP GO:0006725 aromatic compound metabolic process 4.30E-02 1.91E-02 5.46E-01 1.78E-01
MF GO:0016408 C-acyltransferase activity 4.92E-02 4.44E-03 6.11E-01 6.17E-02
Bin ul0

CC GO:0005777 peroxisome 1.85E-07 1.41E-08 1.67E-05 1.28E-06
MF GO:0004497 monooxygenase activity 4.01E-07 7.36E-08 3.18E-05 5.95E-06
CC GO:0005792 microsome 1.23E-06 1.86E-07 7.78E-05 1.19E-05
MF GO:0020037 heme Binding 1.40E-06 2.67E-07 7.78E-05 1.47E-05
MF GO:0004867 serine-type endopeptidase inhibitor activity 1.41E-06 1.83E-07 7.78E-05 1.19E-05
MF GO:0005506 iron ion Binding 7.24E-06 1.89E-06 3.53E-04 8.94E-05
BP GO:0006869 lipid transport 1.15E-05 1.92E-06 5.20E-04 8.94E-05
MF GO:0008061 chitin Binding 2.16E-05 2.09E-06 8.73E-04 9.45E-05
BP G0O:0006118 electron transport 3.01E-05 1.16E-05 1.16E-03 4.36E-04
BP GO:0008202 steroid metabolic process 5.55E-04 1.68E-04 1.81E-02 5.15E-03
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 2.25E-03 3.56E-04 6.09E-02 8.81E-03
BP GO:0006800 oxygen and reactive oxygen species metabolic process 2.30E-03 4.44E-04 6.09E-02 1.07E-02
BP GO:0006032 chitin catabolic process 2.59E-03 2.17E-04 6.12E-02 5.65E-03
MF GO:0004568 chitinase activity 2.88E-03 2.49E-04 6.60E-02 6.37E-03
BP GO:0006508 proteolysis 3.17E-03 1.82E-03 7.06E-02 3.40E-02
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 3.55E-03 9.562E-04 7.67TE-02 1.98E-02
MF GO:0009055 electron carrier activity 7.15E-03 3.21E-03 1.39E-01 4.81E-02
BP GO:0051189 prosthetic group metabolic process 8.86E-03 1.94E-03 1.68E-01 3.40E-02
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 9.12E-03 1.68E-03 1.71E-01 3.24E-02
BP GO:0005992 trehalose biosynthetic process 9.56E-03 1.92E-04 1.75E-01 5.65E-03
MF GO:0016401 palmitoyl-CoA oxidase activity 1.01E-02 2.09E-04 1.83E-01 5.65E-03
BP GO:0048066 pigmentation during development 1.37E-02 3.34E-03 2.34E-01 4.81E-02
MF GO:0005344 oxygen transporter activity 1.95E-02 8.00E-04 3.07E-01 1.73E-02
MF GO:0019203 carbohydrate phosphatase activity 1.95E-02 8.00E-04 3.07E-01 1.73E-02
MF GO:0004364 glutathione transferase activity 1.95E-02 4.33E-03 3.07E-01 5.84E-02
BP GO:0006635 fatty acid beta-oxidation 2.52E-02 4.73E-03 3.91E-01 6.27E-02
MF GO:0005319 lipid transporter activity 2.77E-02 5.35E-03 4.12E-01 6.91E-02
BP G0:0046483 heterocycle metabolic process 2.80E-02 1.21E-02 4.12E-01 1.20E-01
BP GO:0006725 aromatic compound metabolic process 2.85E-02 1.29E-02 4.12E-01 1.26E-01
MF GO:0004246 peptidyl-dipeptidase A activity 3.12E-02 1.91E-03 4.35E-01 3.40E-02
MF GO:0016885 ligase activity; forming carbon-carbon bonds 3.12E-02 1.91E-03 4.35E-01 3.40E-02
BP G0:0042445 hormone metabolic process 3.563E-02 5.18E-03 4.84E-01 6.74E-02
MF GO:0003995 acyl-CoA dehydrogenase activity 3.80E-02 5.74E-03 5.05E-01 7.29E-02
MF GO:0015020 glucuronosyltransferase activity 3.81E-02 8.24E-03 5.05E-01 9.89E-02
BP GO:0006633 fatty acid biosynthetic process 4.02E-02 8.90E-03 5.20E-01 1.02E-01
BP GO:0006012 galactose metabolic process 4.26E-02 3.36E-03 5.46E-01 4.81E-02
CC GO0O:0005604 basement membrane 4.36E-02 7.28E-03 5.46E-01 8.89E-02
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MF GO:0016209 antioxidant activity 4.40E-02 1.00E-02 5.46E-01 1.06E-01
Bin ull

MF GO:0004497 monooxygenase activity 7.92E-09 1.38E-09 1.30E-06 2.84E-07
CC GO0:0005792 microsome 2.97E-08 4.19E-09 3.25E-06 4.30E-07
MF GO:0020037 heme Binding 9.62E-08 1.78E-08 7.17E-06 1.46E-06
MF GO:0005506 iron ion Binding 3.65E-07 9.08E-08 2.24E-05 5.32E-06
CC GO:0005777 peroxisome 3.69E-07 3.04E-08 2.24E-05 1.99E-06
BP GO:0006118 electron transport 4.54E-06 1.70E-06 2.13E-04 7.55E-05
MF GO:0008061 chitin Binding 5.67E-06 5.33E-07 2.59E-04 2.65E-05
MF GO:0004867 serine-type endopeptidase inhibitor activity 7.06E-06 1.09E-06 3.13E-04 4.97E-05
BP GO:0006869 lipid transport 2.26E-05 4.05E-06 9.29E-04 1.66E-04
BP GO0:0008202 steroid metabolic process 6.21E-05 1.76 E-05 2.49E-03 6.86E-04
MF GO:0009055 electron carrier activity 1.93E-03 8.22E-04 5.86E-02 1.87E-02
MF GO:0005344 oxygen transporter activity 2.32E-03 7.75E-05 6.53E-02 2.49E-03
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 3.21E-03 5.44E-04 7.77E-02 1.33E-02
BP GO:0006032 chitin catabolic process 3.30E-03 2.96E-04 7.77TE-02 7.72E-03
MF GO:0004568 chitinase activity 3.72E-03 3.45E-04 8.28E-02 8.84E-03
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 4.08E-03 7.61E-04 8.93E-02 1.78E-02
BP GO:0006800 oxygen and reactive oxygen species metabolic process 4.74E-03 1.05E-03 9.98E-02 2.31E-02
BP G0:0051189 prosthetic group metabolic process 5.58E-03 1.28E-03 1.14E-01 2.65E-02
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 5.63E-03 1.62E-03 1.14E-01 3.17E-02
BP GO:0006508 proteolysis 6.09E-03 3.69E-03 1.22E-01 5.70E-02
CC GO0:0005615 extracellular space 8.70E-03 6.85E-04 1.66E-01 1.63E-02
BP GO:0005992 trehalose biosynthetic process 1.09E-02 2.34E-04 1.99E-01 6.86E-03
MF GO:0016401 palmitoyl-CoA oxidase activity 1.16E-02 2.58E-04 2.09E-01 7.42E-03
BP GO:0008652 amino acid biosynthetic process 1.48E-02 4.65E-03 2.59E-01 6.35E-02
MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 1.98E-02 3.36E-03 3.12E-01 5.70E-02
BP G0O:0048066 pigmentation during development 2.40E-02 6.64E-03 3.58E-01 8.45E-02
MF GO:0016646 oxidoreductase activity; acting on the CH-NH group ... 2.87E-02 3.76E-03 4.25E-01 5.70E-02
MF GO:0004364 glutathione transferase activity 2.96E-02 7.34E-03 4.27E-01 9.07E-02
BP GO:0006635 fatty acid beta-oxidation 3.13E-02 6.27E-03 4.42E-01 8.04E-02
MF GO:0005319 lipid transporter activity 3.47E-02 7.18E-03 4.82E-01 8.99E-02
MF GO:0004246 peptidyl-dipeptidase A activity 3.55E-02 2.34E-03 4.82E-01 4.27E-02
MF GO:0016885 ligase activity; forming carbon-carbon bonds 3.55E-02 2.34E-03 4.82E-01 4.27E-02
MF GO:0019203 carbohydrate phosphatase activity 3.55E-02 2.34E-03 4.82E-01 4.27E-02
MF GO:0008010 structural constituent of chitin-based larval cuticle 3.66E-02 5.35E-03 4.92E-01 7.14E-02
BP GO:0009063 amino acid catabolic process 4.19E-02 1.34E-02 5.46E-01 1.39E-01
MF GO:0003995 acyl-CoA dehydrogenase activity 4.53E-02 7.35E-03 5.86E-01 9.07E-02
BP GO:0006012 galactose metabolic process 4.81E-02 4.07E-03 6.12E-01 5.70E-02
Bin ul2

MF GO:0004497 monooxygenase activity 2.45E-09 4.39E-10 4.71E-07 1.13E-07
CC GO:0005792 microsome 1.41E-08 2.03E-09 1.53E-06 2.34E-07
MF GO:0020037 heme Binding 7.35E-08 1.40E-08 6.95E-06 1.28E-06
MF GO:0005506 iron ion Binding 3.92E-07 1.01E-07 2.71E-05 5.84E-06
CC GO:0005777 peroxisome 7.34E-07 6.60E-08 4.24E-05 4.24E-06
MF GO:0008061 chitin Binding 1.96E-06 1.88E-07 9.70E-05 1.02E-05
BP GO:0006118 electron transport 2.72E-06 1.03E-06 1.31E-04 4.94E-05
BP GO:0006869 lipid transport 9.75E-06 1.73E-06 4.33E-04 7.90E-05
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MF GO:0004867 serine-type endopeptidase inhibitor activity 2.38E-05 4.23E-06 1.03E-03 1.83E-04
BP GO:0008202 steroid metabolic process 5.73E-05 1.68E-05 2.16E-03 6.18E-04
MF GO:0005344 oxygen transporter activity 2.58E-04 7.24E-06 8.93E-03 2.98E-04
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 1.09E-03 1.84E-04 3.36E-02 5.69E-03
MF GO:0009055 electron carrier activity 1.90E-03 8.28E-04 5.31E-02 1.86E-02
BP G0O:0006032 chitin catabolic process 3.79E-03 3.563E-04 9.11E-02 8.87E-03
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 3.97E-03 7.04E-04 9.28E-02 1.67E-02
BP GO:0006508 proteolysis 4.12E-03 2.49E-03 9.38E-02 4.44E-02
MF GO:0004568 chitinase activity 4.34E-03 4.21E-04 9.76E-02 1.03E-02
BP GO:0006800 oxygen and reactive oxygen species metabolic process 5.83E-03 1.34E-03 1.22E-01 2.88E-02
BP G0O:0008652 amino acid biosynthetic process 6.61E-03 1.96E-03 1.35E-01 3.79E-02
BP GO:0051189 prosthetic group metabolic process 8.00E-03 1.97E-03 1.56E-01 3.79E-02
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 8.41E-03 2.58E-03 1.62E-01 4.49E-02
BP GO:0005992 trehalose biosynthetic process 1.17E-02 2.62E-04 2.14E-01 7.68E-03
BP GO:0048066 pigmentation during development 1.23E-02 3.32E-03 2.22E-01 5.37TE-02
MF GO:0016401 palmitoyl-CoA oxidase activity 1.26E-02 2.93E-04 2.25E-01 8.32E-03
CC GO:0005615 extracellular space 1.30E-02 1.23E-03 2.25E-01 2.66E-02
MF GO:0005044 scavenger receptor activity 2.28E-02 4.04E-03 3.50E-01 5.76E-02
MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 2.28E-02 4.04E-03 3.50E-01 5.76E-02
MF GO:0016490 structural constituent of peritrophic membrane 2.45E-02 2.94E-03 3.70E-01 4.81E-02
BP G0O:0009063 amino acid catabolic process 2.83E-02 9.17E-03 4.19E-01 1.06E-01
MF GO:0016646 oxidoreductase activity; acting on the CH-NH group ... 3.21E-02 4.38E-03 4.68E-01 5.76E-02
MF GO:0004364 glutathione transferase activity 3.48E-02 9.00E-03 4.93E-01 1.05E-01
BP GO:0006635 fatty acid beta-oxidation 3.52E-02 7.34E-03 4.93E-01 8.88E-02
BP GO:0017143 insecticide metabolic process 3.58E-02 2.37E-03 4.93E-01 4.28E-02
MF GO:0004246 peptidyl-dipeptidase A activity 3.85E-02 2.65E-03 5.12E-01 4.49E-02
MF GO:0016885 ligase activity; forming carbon-carbon bonds 3.85E-02 2.65E-03 5.12E-01 4.49E-02
MF GO:0019203 carbohydrate phosphatase activity 3.85E-02 2.65E-03 5.12E-01 4.49E-02
MF GO:0005319 lipid transporter activity 3.97E-02 8.58E-03 5.25E-01 1.00E-01
MF GO:0008010 structural constituent of chitin-based larval cuticle 4.08E-02 6.23E-03 5.35E-01 7.67E-02
Bin ul3

MF GO:0004497 monooxygenase activity 2.33E-09 4.34E-10 4.61E-07 9.69E-08
CC GO:0005792 microsome 9.20E-09 1.37E-09 1.03E-06 1.63E-07
MF GO:0020037 heme Binding 6.32E-08 1.25E-08 5.64E-06 1.12E-06
MF GO:0005506 iron ion Binding 4.31E-07 1.16E-07 3.20E-05 8.24E-06
CC GO:0005777 peroxisome 1.66E-06 1.65E-07 9.32E-05 1.05E-05
BP GO:0006118 electron transport 3.61E-06 1.40E-06 1.90E-04 6.94E-05
BP GO:0006869 lipid transport 4.21E-06 7.45E-07 2.15E-04 3.80E-05
MF GO:0008061 chitin Binding 6.01E-06 6.74E-07 2.90E-04 3.54E-05
MF GO:0004867 serine-type endopeptidase inhibitor activity 4.19E-05 7.92E-06 1.70E-03 3.21E-04
BP G0O:0008202 steroid metabolic process 1.51E-04 4.78E-05 5.28E-03 1.65E-03
MF GO:0005344 oxygen transporter activity 2.92E-04 8.48E-06 9.66E-03 3.36E-04
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 3.17E-04 4.81E-05 1.03E-02 1.65E-03
BP GO:0051189 prosthetic group metabolic process 5.60E-04 1.23E-04 1.65E-02 3.33E-03
BP GO:0008652 amino acid biosynthetic process 9.12E-04 2.36E-04 2.62E-02 5.92E-03
BP GO:0006032 chitin catabolic process 1.02E-03 9.41E-05 2.67E-02 2.75E-03
MF GO:0004568 chitinase activity 1.20E-03 1.15E-04 3.05E-02 3.16E-03
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 1.43E-03 2.54E-04 3.46E-02 6.30E-03
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BP GO:0006508 proteolysis 1.59E-03 9.36E-04 3.73E-02 1.90E-02
MF GO:0009055 electron carrier activity 1.70E-03 7.51E-04 3.95E-02 1.56E-02
BP GO:0048066 pigmentation during development 5.49E-03 1.42E-03 1.09E-01 2.69E-02
BP GO:0006800 oxygen and reactive oxygen species metabolic process 7.01E-03 1.67E-03 1.36E-01 3.14E-02
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 1.16E-02 3.75E-03 2.09E-01 6.14E-02
BP G0O:0005992 trehalose biosynthetic process 1.25E-02 2.90E-04 2.21E-01 6.89E-03
MF GO:0016401 palmitoyl-CoA oxidase activity 1.34E-02 3.22E-04 2.35E-01 7.57TE-03
BP G0O:0009063 amino acid catabolic process 1.58E-02 4.97E-03 2.70E-01 6.68E-02
CC GO:0005615 extracellular space 1.95E-02 2.20E-03 3.16E-01 3.89E-02
MF GO:0005044 scavenger receptor activity 2.53E-02 4.64E-03 3.94E-01 6.68E-02
MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 2.53E-02 4.64E-03 3.94E-01 6.68E-02
MF GO:0016490 structural constituent of peritrophic membrane 2.67E-02 3.31E-03 4.11E-01 5.52E-02
MF GO:0005529 sugar Binding 2.93E-02 7.18E-03 4.47E-01 9.15E-02
MF GO:0016646 oxidoreductase activity; acting on the CH-NH group ... 3.49E-02 4.92E-03 5.19E-01 6.68E-02
BP GO:0006725 aromatic compound metabolic process 3.78E-02 1.89E-02 5.57TE-01 1.97E-01
MF GO:0004364 glutathione transferase activity 3.92E-02 1.05E-02 5.69E-01 1.24E-01
BP GO0:0006635 fatty acid beta-oxidation 3.92E-02 8.44E-03 5.69E-01 1.05E-01
MF GO:0004246 peptidyl-dipeptidase A activity 4.08E-02 2.90E-03 5.69E-01 4.93E-02
MF GO:0016885 ligase activity; forming carbon-carbon bonds 4.08E-02 2.90E-03 5.69E-01 4.93E-02
MF GO:0019203 carbohydrate phosphatase activity 4.08E-02 2.90E-03 5.69E-01 4.93E-02
MF GO:0005319 lipid transporter activity 4.39E-02 9.80E-03 6.02E-01 1.17E-01
MF GO:0008010 structural constituent of chitin-based larval cuticle 4.42E-02 6.99E-03 6.02E-01 8.98E-02
Bin ul4

MF GO:0004497 monooxygenase activity 3.70E-08 8.09E-09 4.29E-06 9.38E-07
CC GO:0005792 microsome 7.77E-08 1.35E-08 7.59E-06 1.31E-06
MF GO:0020037 heme Binding 8.98E-07 2.13E-07 5.96E-05 1.27E-05
CC GO:0005777 peroxisome 1.23E-06 1.36E-07 7.36E-05 9.31E-06
MF GO:0008061 chitin Binding 4.95E-06 6.19E-07 2.55E-04 3.19E-05
MF GO:0005506 iron ion Binding 6.41E-06 2.02E-06 3.22E-04 9.61E-05
BP G0O:0006869 lipid transport 1.04E-05 1.99E-06 4.93E-04 9.61E-05
MF GO:0004867 serine-type endopeptidase inhibitor activity 3.00E-05 5.90E-06 1.33E-03 2.67E-04
BP GO:0006118 electron transport 6.45E-05 2.88E-05 2.72E-03 1.11E-03
BP G0:0051189 prosthetic group metabolic process 9.86E-05 2.06E-05 3.81E-03 8.48E-04
BP GO:0006508 proteolysis 1.29E-04 7.19E-05 4.90E-03 2.47E-03
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.64E-04 2.57E-05 5.97E-03 1.04E-03
MF GO:0005344 oxygen transporter activity 3.97E-04 1.25E-05 1.25E-02 5.53E-04
BP GO:0008202 steroid metabolic process 8.75E-04 3.24E-04 2.58E-02 8.46E-03
BP GO:0008652 amino acid biosynthetic process 1.71E-03 4.79E-04 4.61E-02 1.11E-02
BP GO:0006032 chitin catabolic process 2.12E-03 2.38E-04 5.10E-02 6.49E-03
MF GO:0004568 chitinase activity 2.50E-03 2.93E-04 5.96E-02 7.76E-03
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 2.86E-03 5.76 E-04 6.72E-02 1.29E-02
MF GO:0005529 sugar Binding 5.36E-03 1.19E-03 1.17E-01 2.51E-02
MF GO:0009055 electron carrier activity 7.97E-03 4.01E-03 1.63E-01 6.76E-02
BP GO:0006800 oxygen and reactive oxygen species metabolic process 1.05E-02 2.72E-03 2.06E-01 5.21E-02
BP G0:0048066 pigmentation during development 1.15E-02 3.38E-03 2.22E-01 6.26E-02
MF GO:0004295 trypsin activity 1.24E-02 3.70E-03 2.38E-01 6.29E-02
BP GO:0005992 trehalose biosynthetic process 1.45E-02 3.65E-04 2.65E-01 9.14E-03
MF GO:0016401 palmitoyl-CoA oxidase activity 1.57E-02 4.08E-04 2.74E-01 9.76E-03
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CC GO:0005764 lysosome 1.62E-02 2.59E-03 2.76E-01 5.01E-02
MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 2.32E-02 8.45E-03 3.74E-01 1.11E-01
MF GO:0008431 vitamin E Binding 2.43E-02 2.81E-03 3.89E-01 5.32E-02
BP G0:0009063 amino acid catabolic process 2.67E-02 9.30E-03 4.24E-01 1.19E-01
CC GO0:0016021 integral to membrane 3.04E-02 2.20E-02 4.62E-01 2.15E-01
CC GO:0005615 extracellular space 3.14E-02 4.33E-03 4.73E-01 7.11E-02
MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 3.27E-02 6.49E-03 4.84E-01 8.90E-02
MF GO:0016490 structural constituent of peritrophic membrane 3.28E-02 4.41E-03 4.84E-01 7.11E-02
MF GO:0005549 odorant Binding 3.66E-02 1.11E-02 5.31E-01 1.33E-01
MF GO:0005044 scavenger receptor activity 3.97E-02 8.45E-03 5.67TE-01 1.11E-01
MF GO:0042626 ATPase activity; coupled to transmembrane movement ... 4.15E-02 2.09E-02 5.79E-01 2.06E-01
MF GO:0016646 oxidoreductase activity; acting on the CH-NH group ... 4.27E-02 6.52E-03 5.87E-01 8.90E-02
MF GO:0004246 peptidyl-dipeptidase A activity 4.72E-02 3.64E-03 6.26E-01 6.26E-02
MF GO:0016885 ligase activity; forming carbon-carbon bonds 4.72E-02 3.64E-03 6.26E-01 6.26E-02
MF GO:0019203 carbohydrate phosphatase activity 4.72E-02 3.64E-03 6.26E-01 6.26E-02
MF GO:0042708 elastase activity 4.72E-02 3.64E-03 6.26E-01 6.26E-02
Bin ulb

BP GO:0006508 proteolysis 3.18E-14 1.26E-14 8.53E-12 3.38E-12
MF GO:0004497 monooxygenase activity 9.06E-08 2.15E-08 7.09E-06 1.68E-06
CC GO0:0005792 microsome 1.56E-07 2.85E-08 1.09E-05 1.98E-06
BP GO:0006869 lipid transport 5.13E-07 9.11E-08 2.92E-05 5.35E-06
CC GO:0005777 peroxisome 1.42E-06 1.59E-07 7.39E-05 8.53E-06
MF GO:0004295 trypsin activity 3.12E-06 6.04E-07 1.44E-04 2.91E-05
MF GO:0020037 heme Binding 5.50E-06 1.47E-06 2.30E-04 6.01E-05
MF GO:0008061 chitin Binding 6.24E-06 1.00E-06 2.55E-04 4.28E-05
MF GO:0005506 iron ion Binding 5.03E-05 1.80E-05 1.93E-03 6.76E-04
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 7.50E-05 1.18E-05 2.76E-03 4.50E-04
MF GO:0004867 serine-type endopeptidase inhibitor activity 9.50E-05 2.10E-05 3.32E-03 7.44E-04
BP GO:0008202 steroid metabolic process 2.56E-04 9.29E-05 8.43E-03 3.01E-03
BP GO:0006118 electron transport 4.41E-04 2.20E-04 1.40E-02 6.36E-03
MF GO:0005344 oxygen transporter activity 5.57E-04 1.93E-05 1.71E-02 7.09E-04
BP G0O:0051189 prosthetic group metabolic process 6.52E-04 1.70E-04 1.94E-02 5.24E-03
MF GO:0004179 membrane alanyl aminopeptidase activity 2.18E-03 3.19E-04 5.59E-02 8.80E-03
BP GO:0006032 chitin catabolic process 3.23E-03 4.00E-04 7.21E-02 9.62E-03
MF GO:0004568 chitinase activity 3.68E-03 4.71E-04 8.03E-02 1.09E-02
CC GO:0005764 lysosome 4.61E-03 6.76E-04 9.60E-02 1.46E-02
BP GO:0008652 amino acid biosynthetic process 5.51E-03 1.81E-03 1.12E-01 3.39E-02
CC GO0:0043190 ATP-Binding cassette (ABC) transporter complex 7.06E-03 1.71E-03 1.43E-01 3.24E-02
MF GO:0005529 sugar Binding 1.23E-02 3.25E-03 2.29E-01 5.70E-02
MF GO:0004035 alkaline phosphatase activity 1.44E-02 1.23E-03 2.57TE-01 2.45E-02
MF GO:0004263 chymotrypsin activity 1.44E-02 1.23E-03 2.57TE-01 2.45E-02
MF GO:0042708 elastase activity 1.44E-02 1.23E-03 2.57E-01 2.45E-02
MF GO:0016490 structural constituent of peritrophic membrane 1.68E-02 2.55E-03 2.87E-01 4.56E-02
BP GO:0005992 trehalose biosynthetic process 1.75E-02 4.85E-04 2.93E-01 1.10E-02
MF GO:0016401 palmitoyl-CoA oxidase activity 1.86E-02 5.30E-04 3.08E-01 1.18E-02
MF GO:0005319 lipid transporter activity 2.33E-02 5.21E-03 3.71E-01 8.15E-02
BP GO:0048066 pigmentation during development 2.51E-02 8.55E-03 3.94E-01 1.07E-01
BP GO:0006800 oxygen and reactive oxygen species metabolic process 2.64E-02 8.25E-03 3.98E-01 1.05E-01
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MF GO:0009055 electron carrier activity

MF GO:0004558 alpha-glucosidase activity

MF GO:0008431 vitamin E Binding

MF GO:0050809 diazepam Binding

MF GO:0004364 glutathione transferase activity

MF GO:0016811 hydrolase activity; acting on carbon-nitrogen ...
BP GO:0001501 skeletal development

MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ...
BP G0O:0009063 amino acid catabolic process

CC GO:0005615 extracellular space

2.76E-02

3.06E-02

3.06E-02

3.51E-02

3.52E-02

3.69E-02

3.93E-02

4.32E-02

4.81E-02

4.92E-02

1.56E-02

3.87E-03

3.87E-03

1.99E-03

1.05E-02

1.36E-02

8.26E-03

9.36E-03

1.88E-02

8.36E-03

4.08E-01

4.45E-01

4.45E-01

4.86E-01

4.86E-01

5.02E-01

5.31E-01

5.67E-01

6.14E-01

6.24E-01

1.65E-01

6.54E-02

6.54E-02

3.63E-02

1.24E-01

1.48E-01

1.05E-01

1.13E-01

1.83E-01

1.06E-01
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Appendix D

Additional results from Chapter 6

Table D.1: Supplementary data for Chapter 2.2.2. GO terms that are over-represented in
the up-/downregulated genes with a q value < 0.05 are shown, whereas the q values were
estimated from the EASE scores. The column ’frequency’ indicates the number of tissue
specificity bins the GO term was found to be significant in. We expect 33 x 0.05 = 1.65
false positive GO terms in this list.

GO term frequency
BP GO:0001501 skeletal development 2
BP GO:0006013 mannose metabolic process 1
BP GO:0006032 chitin catabolic process 3
BP GO:0006118 electron transport 14
BP GO:0006508 proteolysis 20
BP GO:0006800 oxygen and reactive oxygen species metabolic process 1
BP GO:0006869 lipid transport 19
BP GO:0008202 steroid metabolic process 11
BP GO:0008652 amino acid biosynthetic process 3
BP GO:0051189 prosthetic group metabolic process 6
CC GO:0005764 lysosome 12
CC GO:0005777 peroxisome 18
CC GO:0005792 microsome 17
CC GO0:0042600 chorion 1
CC GO0:0043190 ATP-binding cassette (ABC) transporter complex 2
MF GO:0004035 alkaline phosphatase activity 3
MF GO:0004263 chymotrypsin activity 16
MF GO:0004295 trypsin activity 18
MF GO:0004497 monooxygenase activity 15
MF GO0O:0004558 alpha-glucosidase activity 6
MF GO:0004559 alpha-mannosidase activity 1
MF GO:0004568 chitinase activity 3
MF GO:0004806 triacylglycerol lipase activity 5
MF GO:0004867 serine-type endopeptidase inhibitor activity 10
MF GO:0005213 structural constituent of chorion 1
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MF GO:0005344 oxygen transporter activity 7
MF GO:0005506 iron ion binding 14
MF GO:0008061 chitin binding 14
MF GO:0009055 electron carrier activity 1
MF GO:0016616 oxidoreductase activity; acting on .. 2
MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 12
MF GO:0020037 heme binding 15
MF GO:0042708 elastase activity 2

Table D.2: Supplementary data for Chapter 2.2.2. GO terms that are over-represented in
the up-/downregulated genes with a q value < 0.05 are shown, whereas the q values were
estimated from the Fisher p values. The column ’frequency’ indicates the number of tissue
specificity bins the GO term was found to be significant in. We expect 77*0.05 = 3.85 false
positive GO terms in this list.

GO term frequency
BP GO:0001501 skeletal development 15
BP GO:0001708 cell fate specification 1
BP GO:0005992 trehalose biosynthetic process 12
BP GO:0006012 galactose metabolic process 2
BP G0O:0006013 mannose metabolic process 11
BP GO:0006032 chitin catabolic process 13
BP GO:0006118 electron transport 16
BP GO:0006508 proteolysis 22
BP GO:0006633 fatty acid biosynthetic process 3
BP GO:0006635 fatty acid beta-oxidation 2
BP GO:0006665 sphingolipid metabolic process 3
BP GO:0006800 oxygen and reactive oxygen species metabolic process 5
BP GO:0006869 lipid transport 21
BP GO:0007306 eggshell chorion formation 7
BP G0O:0008202 steroid metabolic process 13
BP GO:0008286 insulin receptor signaling pathway 2
BP GO:0008652 amino acid biosynthetic process 9
BP G0O:0010004 gastrulation involving germ band extension 1
BP G0:0017143 insecticide metabolic process 1
BP G0:0031887 lipid particle transport along microtubule 3
BP GO:0035152 regulation of tube architecture; open tracheal system 2
BP G0O:0042049 cell acyl-CoA homeostasis 1
BP G0:0042594 response to starvation 16
BP GO:0046112 nucleobase biosynthetic process 9
BP G0O:0048066 pigmentation during development 3
BP GO:0051189 prosthetic group metabolic process 10
CC GO:0005615 extracellular space 3
CC GO0O:0005764 lysosome 16
CC GO:0005777 peroxisome 18
Continued on next page
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cC

CcC

cC

cC

CcC

GO:0005792
G0O:0042600
G0O:0043190
G0O:0044452
G0O:0055029
G0:0000062
GO:0003676
GO:0003899
G0:0004035
G0O:0004095
GO:0004179
GO:0004182
G0O:0004246
G0O:0004263
GO:0004295
G0:0004364
G0O:0004497
GO:0004558
GO:0004559
G0O:0004568
G0O:0004806
GO:0004867
G0O:0004888
GO:0005158
GO0:0005160
GO:0005213
G0O:0005319
GO0:0005344
G0O:0005506
G0O:0005529
G0O:0008010
GO:0008061
G0O:0008336
G0:0008533
GO:0008970
GO:0009055
G0O:0016229
GO0:0016401
G0:0016490
GO:0016616
GO:0016799
G0:0016885
G0O:0019203
G0:0019204
G0:0020037
G0O:0042708

G0O:0050809

microsome

chorion

ATP-binding cassette (ABC) transporter complex
nucleolar part

nuclear DNA-directed RNA polymerase complex
acyl-CoA binding

nucleic acid binding

DNA-directed RNA polymerase activity
alkaline phosphatase activity

carnitine O-palmitoyltransferase activity
membrane alanyl aminopeptidase activity
carboxypeptidase A activity
peptidyl-dipeptidase A activity

chymotrypsin activity

trypsin activity

glutathione transferase activity

monooxygenase activity

alpha-glucosidase activity

alpha-mannosidase activity

chitinase activity

triacylglycerol lipase activity

serine-type endopeptidase inhibitor activity
transmembrane receptor activity

insulin receptor binding

transforming growth factor beta receptor binding
structural constituent of chorion

lipid transporter activity

oxygen transporter activity

iron ion binding

sugar binding

structural constituent of chitin-based larval cuticle
chitin binding

gamma-butyrobetaine dioxygenase activity
astacin activity

phospholipase Al activity

electron carrier activity

steroid dehydrogenase activity

palmitoyl-CoA oxidase activity

structural constituent of peritrophic membrane

oxidoreductase activity; acting on the CH-OH group of donors; NAD ..

hydrolase activity; hydrolyzing N-glycosyl compounds
ligase activity; forming carbon-carbon bonds
carbohydrate phosphatase activity

nucleotide phosphatase activity

heme binding

elastase activity

diazepam binding

22

17

10

10

16

17

18

19

13

13

16

13

17

15

15
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Glossary

a-helix A coiled secondary structure of a polypeptide chain formed by hydrogen

bonding between amino acids separated by 3.6 residues. 9

(-sheet Two or more polypeptide chains that run alongside each other and are
linked in a regular manner by hydrogen bonds between the main chain C=0
and N-H groups. The R-groups (side chains) of neighbouring residues point in

opposite directions; 3-sheets can be parallel, anti-parallel or mixed. 9

319 helix A rare type of secondary structure found in proteins. The amino acids in
are arranged in a right-handed helical structure. Each amino acid corresponds

to a 120° turn in the helix. 10, 54

acceptor (finite state) A finite state acceptor is an Finite State Machine (FSM)

with no outputs. 151

alternative splicing The generation of different mRNAs by varying the pattern of

pre-mRNA splicing. 6

amino acid The subunits from which proteins are assembled. Each amino acid
consists of an amino functional group, and a carboxyl acid group, and differs

from other amino acids by the composition of an R group. 5

angstrom (A) A unit of measure. One angstrom is 1071° metres. Often used to
indicate structural similarity between two proteins (see RMSD. A similarity

below 3 angstroms indicates a strong structural similarity. 33, 207
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Area Under the Curve (AUC) An indication of the diagnostic accuracy of a
ROC curve. AUC values closer to 1 indicate the method reliably distinguishes
among the positive and the negative class, whereas values at 0.5 indicate that

the predictor is no better than random. 27, 82

ArrayExpress A public repository for transcriptomics data (http://www.ebi.ac.

uk/microarray-as/ae/). 123
asparagine One of the 20 most common natural amino acids on earth. 96

ASTRAL The ASTRAL compendium provides databases and tools useful for
analysing protein structures and their sequences. It is partially derived from

the SCOP and the PDB databases. 54

bases The molecular building blocks of mRNA and RNA. These include adenine
(A), cytosine (C), guanine (G), thymine (T), and (in RNA only) uracil (U). In
mRNA, A attaches only to T, and C attaches only to G. In RNA, A attaches

only to U, and C attaches only to G. 5

bioinformatics The merging field of biology, computer science and information
technology with the goal of revealing new insights and principles in biology
through the analysis of biological data using computers, machine learning and

statistical techniques. 19

bit A binary digit, or the amount of information required to distinguish between

two equally likely possibilities or choices. 23

BLAST Commonly used algorithm for searching databases for similar sequences.

33, 206

blastoderm A stage of insect embryogenesis in which a layer of nuclei or cells

around the embryo surround an internal mass of yolk. 39
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boxplot A graph summarising the distribution of a set of data values. 30

cis-regulatory A site on a DNA molecule that functions as a binding site for a
sequence-specific DNA binding protein. The term cis indicates that protein

binding to this site affects only nearby DNA sequences on the same molecule.

17
classification Assigning a class to a measurement. 19
coding sequence (CDS) The combination of exons on a gene. 6

codon The basic unit of the genetic code; one of the 64 nucleotide triplets that code

for an amino acid or stop sequence. 5

coiled coil Stable rodlike quaternary protein structure formed by two or three «
helices interacting with each other. Coiled coils are commonly found in fibrous

proteins and transcription factors. 9

CpG island A stretch of DNA in which the frequency of the dinucleotide CG

sequence is higher than in other DNA regions. 15, 43

curse of dimensionality The name given to algorithmic challenges posed by high-
dimensional spaces necessary to map data with many features, in which the
resulting exponential growth in hypervolumes means that the data inevitably

will be distributed ever more sparsely. 23

cytoskeleton The internal scaffolding of cells. 14, 42

Dahomey A frequently used fruit fly stock that was originally collected in Dahomey;,
West Africa. 123

differentially expressed A gene is differentially expressed when its expression

values under two or more conditions are statistically significantly different. 123
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DNA (deoxyribonucleic acid) DNA is the carrier of genetic information. It
consists of a sequence of hundreds of millions of nucleotides that code for

proteins. 5, 199, 200, 202, 206

DINA methylation A natural regulatory process in the cell, which controls gene

activity via the attachment of a methyl group to DNA. 15

domain Compact, globular regions of proteins that are the basic units of tertiary

structure. 19, 41

dot-product An operation with two vectors that results in a scalar quantity. Also

known as scalar or inner product. 20

downregulated gene A gene which has been observed to have lower expression
(lower mRNA levels) in one sample compared to another sample (here wild-type

fruit fly). 123

Drosophila melanogaster (D. melanogaster) A species of fruit fly commonly

used as model organism in biology. 2

DSSP A database and program of secondary structure assignments for all protein

entries in the PDB. 10, 54

E value (Expectation value) The number of different alignments with scores
equivalent to or better than the observed score that are expected to occur in a
database search by chance. The lower the E value, the more significant the

score. 35

EMBOSS The European Molecular Biology Open Software Suite. EMBOSS is a
free Open Source software analysis package specially developed for the needs

of the molecular biology user community. 84

enhancer A short regulatory DNA sequence that increases the level of expression

of a gene. 17
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enzyme A protein that functions as a catalyst. 16, 42

ester Any of a class of organic compounds that react with water to produce alcohols

and organic or inorganic acids. 201

esterase An enzyme that splits esters into an acid and an alcohol in a chemical
reaction with water called hydrolysis. A wide range of different esterases
exist that differ in their substrate specificity, their protein structure, and their

biological function. 112
exon A segment of a gene that contains a coding sequence. 5, 199, 203, 208
expression breadth The number of tissues in which a gene is expressed. 102, 114

extracellular matrix A network in an animal tissue which provides support to

cells. 42

false positive rate The proportion of negative examples that are predicted positive.

25

feature The measurements which represent the data. Here, used as input for SVMs.

37, 204

Finite State Machine (FSM) A machine which can be totally described by a
finite set of states, it being in one these at any one time, plus a set of rules

which determine when it moves from one state to another. 197, 209

FlyBase A database for fruit fly genetics and molecular biology (http://flybase.

org/). 123

fold change A way of describing now much larger or smaller one number is compared

with another. 123, 126, 147

gcrma A background correction method that corrects for unspecific binding due to

high GC content in the probe sets of on Affymetrix GeneChips. 84
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GenAge A curated database of genes related to ageing (http://genomics.senescence.

info/genes/). 123
gene A segment of mRNA that encodes a polypeptide chain or an RNA molecule. 1

gene expression The process by which DNA is translated into RNAs or proteins.

39

Gene Ontology (GO) A controlled vocabulary of terms relating to molecular
function, biological process, or cellular components. It allows scientists to use
consistent terminology when describing the roles of genes and proteins in cells.

41, 123

genetic code The correspondence between nucleotide triplets and amino acids in

proteins. 5

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) A housckeeping gene

that codes for an enzyme involved in glycolysis. 14

glycolysis The cellular degradation of the simple sugar glucose to yield ATP as an

energy source. 14, 93

GNF The Genomics Institute of the Novartis Research Foundation. 75

hairpin A structural motif involving two 3 strands that look like a hairpin. A

special case of a turn. 10

hemoglobin An oxygen-binding protein that and carries oxygen it from the lungs

to the tissues. 33

heterozygote Heterozygous refers to having inherited different forms of a particular
gene from each parent. A heterozygous genotype stands in contrast to a ho-
mozygous genotype, where an individual inherits identical forms of a particular

gene from each parent. 123
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hidden Markov model (HMM) A statistical model for an ordered sequence of

variables. 33

housekeeping gene A constitutive gene that is transcribed at a relatively constant
level across many or all known conditions. The housekeeping gene’s products
are typically needed for maintenance of the cell. It is generally assumed that
their expression is unaffected by experimental conditions. Examples include

actin and GAPDH. 13, 41
hydrophilic Having a strong affinity for water. 9

hydrophobic Lacking affinity for water. 9

in situ hybridization (ISH) A method that is used to label specific sequences
of nucleic acids in cells or chromosomes. Commonly used to identify mRNA
expression in tissues or whole organisms. ISH detects the formation of nucleic
acid hybrid molecules between the target nucleic acid and a labelled probe that

contains a complementary sequence. 14, 39

Insulin and Insulin-like growth factor signaling (IIS) A conserved signaling
pathway from insects to humans. Growth factors, released after feeding, (insulin
and insulin-like growth factor, IGF-1) stimulate receptors of this pathway and
promote cellular and oraganismal anabolic growth. The IIS pathway is central

to regulation of life span, metabolism, and the stress response. 123

intron A noncoding sequence that interrupts exons in a gene. 5

k-nearest neighbour A classification method that classifies an instance by calcu-
lating the distances between the instances and instances in the training data
set. Then it assigns the instance to the class that is most common among its

k-nearest neighbours, where k is an integer. 33
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ligand A substance that is able to bind to another biomolecule (substrat/receptor)
by means of intermolecular forces to form a complex by altering its chemical

conformation (three-dimensional shape). 42

loess normalisation A computationally intensive method in which a polynomial
regression is fitted to each point in the data and more weight is given to data
nearer the point of interest. It is often applied to hybridization array data to

remove differences in global signal intensity among data sets. 84

machine learning Computational approaches to learn new knowledge on the basis

of observed examples. 1, 3

messenger RNA (mRNA) An RNA molecule that is complementary to one of
the mRNA strands of a gene. It serves as a template for protein synthesis. 6,

197, 198, 200, 201, 203-210

methyl group A functional group consisting of one carbon and three hydrogen

atoms: -CHjz. 200

microarray Microarrays are used for analysing the expression of thousands of genes

simultaneously. 3, 39

mitochondrial electron transport chain A collective term describing the mito-
chondrial enzymes that are needed to generate the electron and proton 'gradient’

that is used to generate ATP. 49

multi-view learning In a multi-view problem, one can partition the domain’s

features in subsets that are sufficient for learning the target concept. 155

myoglobin A protein occurring widely in muscle tissue as an oxygen carrier. It

acts as an emergency oxygen store. 33
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Naive Bayes A supervised classification algorithm that uses the Bayes rule to
compute the fit between a new observation and some previously observed data.
Bayes’ rule expresses the conditional probability of the event A given the event
B in terms of the conditional probability of the event B given the event A. 40,
92

neural network An analytic technique modelled after the processes of learning in
the cognitive system and the neurological functions of the brain. A neural
network is capable of predicting new observations from other observations after

learning from existing data. 12

nuclear matrix The dense fibrillar network lying on the inner side of the nuclear

membrane. 17, 43

nucleus The center of a cell, where the mRNA is contained. 17

null mutation A mutation that results in the complete loss of function of a gene

product. 48, 123

oxidative stress Physiological stress on the body that is caused by the cumula-
tive damage done by free radicals inadequately neutralized by antioxidants.

Oxidative stress is held to be associated with ageing. 136

p value The probability, if the test statistic really were distributed as it would be
under the null hypothesis, of observing a test statistic as extreme as, or more
extreme than the one actually observed. The smaller the p value, the more
strongly the test rejects the null hypothesis, that is, the hypothesis being tested.
A value of 0.05 is a common significance level to which p values are compared.

28

paralogous genes Two genes at different chromosomal locations in the same or-

ganism that have structural similarities indicating that they derived from
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a common ancestral gene and have since diverged from the parent copy by
mutation. The genes encoding myoglobin and hemoglobin are considered to be

ancient paralogs. 111

PDB (Protein Data Bank) A repository for the three-dimensional structural
data of proteins. 12, 33, 54, 198, 200

phosphodiester bond A bond between two sugar groups and a phosphate group.
Such bonds form the sugar-phosphate-sugar backbone of mRNA and RNA. 16

pi helix ( 7 helix) A type of secondary structure that is common in membrane

proteins. 10, 54
polysome Complex of ribosomes for simultaneous translation of mRNA. 18
pre-mRNA The unspliced mRNA that contains all exons and introns. 197

probe A labeled, single-stranded DNA or RNA molecule of specific base sequence,
that is used to detect the complementary base sequence by hybridization.
At Affymetrix, probe refers to unlabeled oligonucleotides synthesized on a

GeneChip probe array. 14, 15
probeset ID The Affymetrix probe-set identificator. 123

profile A table that lists the frequencies of each amino acid in each position of
protein sequence. Frequencies are calculated from multiple alignments of

sequences containing a domain of interest. 36, 38
promoter Area of DNA that regulates gene expression. 7, 15

protein A large molecule composed of amino acids. Proteins are required for the
structure, function, and regulation of the body cells, tissues and organs. 1, 2,

202
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PSI-BLAST (Position-Specific Iterated BLAST) An improved BLAST algo-
rithm. 12, 36

quantiles The quantile of a distribution of values is a number xp such that a
proportion p of the population values are less than or equal to xp. For example,
the 25th percentile of a variable is a value (xp) such that 25% (p) of the values

of the variable fall below that value. 84

Receiver Operating Characteristic (ROC) curve A ROC curve is a general-
ization of the set of potential combinations of sensitivity and specificity possible
for predictors. A ROC curve is a plot of the true positive rate (sensitivity)
against the false positive rate (1-specificity) for the different possible cut-points

of a diagnostic test. 25, 198, 210

receptor A molecule or surface in a cell that recognizes and binds to a specific

messenger molecule, leading to a biological response. 42

regression Predicting the value of random variable y from measurement x. Regres-
sion generalizes classification since y can be any quantity, including a class
index. Many classification algorithms can be understood as thresholding the

output of a regression. 29

remote homology Evolutionary relationship between two proteins that do not

display high sequence similarity. 1

ribosome A ribosome is a cellular structure made of RNA and protein that serves
as the site for protein synthesis in the cell. The ribosome reads the sequence of
the mRNA and translates the sequence of RNA bases into a sequence of amino

acids. 6, 18, 41, 207

ribosome density Refers to the average number of ribosome bound per unit length

of coding sequence. 18
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ribosome occupancy The fraction of a given gene’s transcripts associated with

ribosomes. 18

RMSD (Root Mean Square Deviation) Measurement for protein structure sim-
ilarity. Measured in angstroms. A similarity below 3 angstroms indicatesa

strong structural similarity. 33, 197

RNA (Ribonucleic acid) A molecule similar to mRNA but single-stranded. An
RNA strand has a backbone made of alternating sugar and phosphate groups.
Attached to each sugar is one of four bases—adenine (A), uracil (U), cytosine
(C), or guanine (G). Different types of RNA exist: messenger RNA (mRNA),
ribosomal RNA (rRNA), and transfer RNA (tRNA). Some small RNAs have
been found to be involved in regulating gene expression. 5, 198, 201, 202,

204-209

RNA-Seq The use of high-throughput sequencing technologies to sequence cDNA

in order to get information about a sample’s RNA content. 15, 148

Scaffold/Matrix Attachment Regions (S/MAR) Regulatory mRNA elements
of the eukaryotic genome. These elements coordinate the expression of gene
loci. Attachment of a genomic segment to the nuclear matrix places a gene
in close proximity to its transcription factor, providing an essential step to

expression. 43

SCOP (Structural Classification of Proteins) A structural classification of pro

teins database for the investigation of sequences and structures. 19, 33, 54,

198

secondary structure The structure of a protein created by the formation of hy-

drogen bonds between amino acids. See « helix and 3 sheet. 197

208



Glossary

semi-supervised learning A class of machine learning techniques that make use

of both labeled and unlabeled data for training. 156
sensitivity See true positive rate. 206
simple sequence repeats (SSR) Tandem iterations of short oligonucleotides. 17

Smith-Waterman algorithm An algorithm to perform pairwise sequence align-

ments. 33

specificity The proportion of negatives in a binary classification test which are

correctly identified. 206

splicing The process by which introns, non-coding regions, are excised out of the
premature mRNA transcript and exons, coding regions, are joined together to

generate mature mRNA. 5

Support vector machine (SVM) A learning algorithm that performs binary or

multi-class supervised classification tasks. 2, 19
Swiss-Prot A curated protein sequence database. 35

synonymous codon usage Codons that are translated into the same amino acid.

42

t-test A statistical test that is used to find out if there is a significant difference

between the means (averages) of two different groups. 58, 210

TATA box A DNA consensus sequence found in the promoters of many eukaryotic

gene at about -25 nucleotides of the transcription start site. 43

transcription The process of copying information from mRNA into new strands of

mRNA. 5
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transcription factor A protein that binds to regulatory regions and helps control

gene expression. 42, 208

Transcription factor binding sites (TFBS) Short sequence segments (=10 bp)
located near genes’ transcription start sites and are recognized by respective

transcription factors for gene regulation. 125, 139

transducer (finite state) A finite state transducer is a Finite State Machine (FSM)

with both input and outputs. 151

TRANSFAC The TRANSFAC database contains data on transcription factors,

their experimentelly-proven binding sites, and regulated genes. 125

transfer RNA (tRNA) A small RNA molecule that participates in protein syn-
thesis. Each tRNA molecule has a trinucleotide region called the anticodon
and a region for attaching a specific amino acid. During translation, each time
an amino acid is added to the growing protein, a tRNA molecule forms base
pairs with its complementary sequence on the mRNA molecule, ensuring that

the appropriate amino acid is inserted into the protein. 6, 207
translation The synthesis of a polypeptide chain from an mRNA template. 6

true positive rate The percentage of instances with a particular value that are

correctly identified as positive by a test. 25

turn A type of secondary structure. Often responsible for sharp bends and twists

in other secondary structures. 10

UniProtKB (Universal Protein Knowledgebase) A repository for the collec-
tion of functional information on proteins, with accurate, consistent and rich

annotation (http://www.uniprot.org/). 7, 33
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upregulated gene A gene which has been observed to have higher expression (lower
mRNA levels) in one sample compared to another sample (here wild-type fruit

fly). 123

vertical averaging A method to combine several ROC curves. Vertical averaging
takes vertical samples of the ROC curves for fixed FP rates and averages the

corresponding TP rates. 26, 82

Weighted Finite State Machine (WFSM) See FSM. A weight (transition prob-

ability) is encoded in the machine. 69, 150

Wilcoxon test An alternative to the t-test for dependent samples. It is designed

to test a hypothesis about the median of a population distribution. 58
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