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ABSTRACT

FACULTY OF ENGINEERING, SCIENCE & MATHEMATICS

SCHOOL OF ELECTRONICS & COMPUTER SCIENCE

Doctor of Philosophy

EXPLOITING GENE EXPRESSION AND PROTEIN DATA FOR

PREDICTING REMOTE HOMOLOGY AND TISSUE SPECIFICITY

by Daniela Christine Wieser

In this thesis I describe my investigations of applying machine learning methods
to high throughput experimental and predicted biological data. The importance of
such analysis as a means of making inferences about biological functions is widely
acknowledged in the bioinformatics community. Specifically, this work makes three
novel contributions based on the systematic analysis of publicly archived data of
protein sequences, three dimensional structures, gene expression and functional
annotations: (a) remote homology detection based on amino acid sequences and
secondary structures; (b) the analysis of tissue-specific gene expression for predictive
signals in the sequence and secondary structure of the resulting protein product; and
(c) a study of ageing in the fruit fly, a commonly used model organism, in which
tissue specific and whole-organism gene expression changes are contrasted.

In the problem of remote homology detection, a kernel-based method that com-
bines pairwise alignment scores of amino acid sequences and secondary structures is
shown to improve the prediction accuracies in a benchmark task defined using the
Structural Classification of Proteins (SCOP) database. While the task of predicting
SCOP superfamilies should be regarded as an easy one, with not much room for
performance improvement, it is still widely accepted as the gold standard due to
careful manual annotation by experts in the subject of protein evolution.

A similar method is introduced to investigate whether tissue specificity of gene
expression is correlated with the sequence and secondary structure of the resulting
protein product. An information theoretic approach is adopted for sorting fruit fly
and mouse genes according to their tissue specificity based on gene expression data.
A classifier is then trained to predict the degree of specificity for these genes. The
study concludes that the tissue specificity of gene expression is correlated with the
sequence, and to a certain extent, with the secondary structure of the gene’s protein
product.

The sorted list of genes introduced in the previous chapter is used to investigate
the tissue specificity of transcript profiles obtained from a study of ageing in the fruit
fly. The same list is utilised to investigate how filtering tissue-restricted genes affects
gene set enrichment analysis in the ageing study, and to examine the specificity of
age-associated genes identified in the literature. The conclusion drawn in this chapter
is that categorisation of genes according to their tissue specificity using Shannon’s
information theory is useful for the interpretation of whole-fly gene expression data.
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Chapter 1

Motivation and Outline

1.1 Motivation for this work

The widespread use of high-throughput technologies in molecular biology has led

to a wealth of publicly available data on genes and proteins (Flicek et al., 2010;

The UniProt Consortium, 2010). However, the interrelationships of these genes

and proteins are as yet poorly understood and are further complicated by the

immense amount of data available, making manual characterisation by experts

unfeasible. The general aim of this PhD work was to use machine learning techniques

to detect biological relationships hidden in both gene and in protein data, and to

make inferences based on these relationships. Even though this thesis and the work

presented in it are my own and has been generated by me as the result of my own

original research, I will use ’we’ throughout the document, since for most parts of

the thesis other people were involved, as stated in the acknowledgements.

The first problem that we approached concerned remote homology detection of

proteins. The motivation for this work was that distant evolutionary relationships

between proteins with low amino acid sequence similarity are difficult to recognise

by computational methods. Consequently, many sequences obtained from large-scale

sequencing projects cannot be assigned to any known proteins or families despite
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1.1 Motivation for this work

being evolutionarily related. Various sequence-based methods have been developed

to predict remote homology of proteins. Some of these methods have been modified

to make use of the better conserved secondary structure to boost sensitivity. Our

motivation was to develop a kernel-based remote homology detection method that

allows for a combination of sequence and secondary structure similarity scores in a

discriminative approach. This work is described in detail in the chapter ”Remote

Homology Detection Using a Kernel Method that Combines Sequence and Secondary

Structure Similarity Scores”.

Building on this work we developed a similar method to investigate tissue speci-

ficity of gene expression. Tissue specificity of gene expression is important for a

number of studies, but is often difficult to determine by experimental methods. This

leads to many genes being uncharacterised in terms of the tissues in which they

are expressed. Various gene properties have been shown to be different between

tissue-restricted and housekeeping genes. The motivation for this part of the thesis

was to investigate whether tissue specificity of gene expression is also correlated

with the sequence and secondary structure of the resulting protein product , and

whether this information can be used to predict gene tissue specificity. For this, we

used an information theoretic approach to sort fruit fly and mouse genes according

to their tissue specificity. The method is based on an adaptation of Shannon’s

information theory to the transcriptome framework. We then trained support vector

machine (SVM) classifiers to predict classes of genes that display various degrees of

tissue specificity. This work is detailed in the chapter ”Tissue Specificity of Gene

Expression is Correlated with the Sequence and Secondary Structure of Resulting

Protein Product”. When we use the term gene specificity we refer to gene tissue

specificity throughout this thesis.

Related to this work we investigated in the final part of this thesis the tissue-

specific contribution to whole-body RNA transcript profiles in the fruit fly Drosophila

melanogaster . The fruit fly is widely used to investigate mechanisms underlying
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1.2 Outline of this thesis

diverse biological processes, including development, metabolism, neurobiology and

ageing. Whole-body RNA microarray profiling has been applied to monitor gene

expression changes in various conditions related to these mechanisms. However, there

is little information concerning the capacity of microarrays to capture tissue-specific

effects of these processes in whole-fly samples. Building on the work described in

the previous chapter we used the sorted list of fly genes to investigate transcript

profiles obtained from a study of ageing in the adult fly in terms of tissue specificity.

The sorted list of genes was also used to investigate how filtering tissue-specific

genes affects gene set enrichment analysis in the ageing study, and to study the

tissue specificity of age-associated genes from the literature. This work is detailed

in the chapter ”Analysis of the Tissue-Specific Contribution to Whole-Body RNA

Transcript Profiles in Drosophila Melanogaster”.

1.2 Outline of this thesis

This thesis is structured as follows:

• Chapter 2 provides background information on biological entities, microarray

technology, machine learning techniques and statistical methods relevant or

used in this work.

• Chapter 3 introduces the three topics investigated in this work, and summarises

relevant literature.

• Chapter 4 presents the detailed methods used in the first project examined in

this thesis, i.e. the prediction of protein remote homologoues. Results are also

presented for this project and a discussion is included.

• Chapter 5 provides detailed methods for the work done on prediction of tissue

specificity, as well as results and discussion.

3



1.2 Outline of this thesis

• Chapter 6 details the methods used to examine whole-body transcript profiles

in the fruit fly and presents the results and discussion of this chapter.

• Chapter 7 presents final conclusions by summarising the contributions of this

thesis and discusses directions for future work.
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Chapter 2

Background and Methods

This chapter gives a brief overview of biological terms that are relevant for this work

and describes them in a general manner. Associated technologies to obtain data

related to these terms are explained if they have direct relevance to this work. The

statistical methods and associated evaluation metrics used are also introduced.

2.1 Biological background

2.1.1 From DNA to RNA to proteins

Deoxyribonucleic acid (DNA) stores the genetic information that enables cells to

reproduce and perform their functions. It consists of two strands of nucleotide bases.

There are four types of bases: Adenine (A), Guanine (G), Cytosine (C) and Thymine

(T). It is the sequence of these four nucleotide bases that encodes information on how

to build a protein. This information is read using the genetic code, which specifies

the sequence of the amino acids within proteins, whereas three nucleotides (codon)

code for one amino acid. The code is read by copying stretches of DNA into the

related ribonucleic acid (RNA), in a process called transcription (Figure 2.1a). The

precursor messenger RNA (pre-mRNA) molecule contains two types of segments in

eukaryotes, exons and introns, the latter of which is removed during splicing. This

5



2.1 Biological background

process enables the construction of alternate products. The combination of the coding

regions of all these exons is called the coding sequence (CDS). The complementary

or copy DNA, cDNA, is a DNA molecule usually obtained by a reverse transcription

of an mRNA molecule. Spliced RNA sequences are referred to as messenger RNA

(mRNA) that consists of an open reading frame (ORF) and untranslated regions

(UTRs). UTR refers to either of two sections on each side of a coding sequence on

a strand of mRNA. The ends of mRNA strands are called the 5’ (five prime) and

3’ (three prime) ends. If the UTR is found on the 5’ side, it is called the 5’ UTR,

or if it is found on the 3’ side, it is called the 3’ UTR. The proteins are built based

upon the ORF in the RNA in a process called translation. The mRNA is processed

by a ribosome, which, with the aid of transfer RNA (tRNA), strings together the

prescribed amino aids of the protein. An mRNA may or may not cover the complete

coding sequence of a gene (alternative splicing). The resulting product of this process,

proteins, are large polymers required for the structure, function, and regulation of

the body’s cells, tissues, and organs. They are made of 20 common amino acids (see

Figure 2.2). Throughout this work the amino acid alphabet is used to refer to the

amino acids. The amino acid alphabet is a twenty-character alphabet consisting of

the characters A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W and Y, each

representing one of the 20 amino acids coded for by DNA. Amino acids contain an

carbon that is connected to an amino (NH3) group, a carboxyl group (COOH), and

a variable side group (R). Amino acids bind together via peptide bonds, which occur

between the amino and carboxyl groups of adjacent amino acids.

Protein structures

Proteins have four levels of structure: primary, secondary, tertiary and quaternary.

Figure 2.3a depicts a primary protein sequence, which is simply a string of letters

each of which represents one of the 20 amino acids. The order in which the amino

acids appear in this sequence is important because it largely determines the structure
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2.1 Biological background

Figure 2.1: From DNA to RNA to proteins. Schematic view of gene transcription
and translation (from http://commons.wikimedia.org/wiki/File:Gene2-plain.svg).
DNA is transcribed into pre-mRNA. Introns, and sometimes exons, are removed from
the pre-mRNA during splicing, resulting in a mRNA molecule. The mRNA molecule is
translated into a protein product. Enhancers are regulatory regions that increase the
level of expression of a gene. Promoters are another type of regulatory regions in DNA
sequences.

of a protein that in turn determines its function. Alteration to this order may result in

the loss of function of the protein. Normally proteins range from 10 to 10,000 amino

acids. The largest protein is Titin which consists of 34,350 amino acids. Titin is a key

component in the assembly and functioning of vertebrate muscles. The UniProtKB

(The UniProt Consortium, 2010) is a public repository for the collection of primary

amino acid sequences alongside functional information. UniProtKB/Swiss-Prot, the

manually curated section of UniProtKB, contains 514,789 sequence entries comprising

181,163,771 amino acids. The remainder, UniProtKB/TrEMBL, contains 10,376,872

sequence entries comprising 3,344,735,583 amino acids (release 57.14, February 2010).

The majority of these sequences were predicted from the DNA sequences, while ≈

26% of sequences in Swiss-Prot have experimental evidence at either the transcript

or protein level.

The surrounding chemical environment, which is composed of water and other

solvents at different concentrations and temperatures, and the amino acid side chains,

determine the way in which these are arranged in space relative to each other. The
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2.1 Biological background

Figure 2.2: Amino Acids. Grouped table of the twenty common eukaryotic amino acids’
structures, nomenclature, and their side groups’ pKa’s and charge at pH 7.4. The pH is
a measure of the acidity or basicity of a solution while pKa indicates the acid or basic
properties of an amino acid. A pKa < 2 means strong acid, pKa > 2 but < 7 means
weak acid, pKa > 7 but < 10 means weak basic and pKa > 10 means strong basic.
The figure also includes an additional amino acid, Selenocysteine. However, none of the
protein sequences used in this work contained this amino acid. The figure is taken from
http://upload.wikimedia.org/wikipedia/commons/0/0f/Amino_acids.png
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2.1 Biological background

secondary structure of proteins is defined by the conformation of the polypeptide

and the hydrogen bonding between the carbonyl oxygen atoms and amide atoms in

the peptide bonds. Hydrogen bonds are well established and their role in secondary

structure architecture and protein folding has been studied extensively (Baker and

Hubbard, 1984; Jeffrey and Saenger, 1991; McDonald and Thornton, 1994).

The basic secondary structures that form are known as α-helices, β-sheets and

turns; these are also known as basic secondary structures. In addition, there

are random coils. Random coils are highly flexible portions of a polypeptide chain

that have no fixed three-dimensional structure. On average, 60% of a protein exists

as α-helices and β-sheets. The remainder of the molecule is in coils and turns

(Lodish et al., 2007). The protein domains used in Chapter 4.1.1 consist of 31%

α-helices and 25% β-sheets as assigned by the DSSP program (Kabsch and Sander,

1983a). The PSIPRED program (Jones, 1999a) predicted a similar average secondary

structure content for these protein domains, namely 32% α-helices and 24 % β-sheets.

Following explanations on α-helices and β-sheets have been adapted from Lodish

et al. (2007).

An α-helix contains 3.6 amino acids per turn. The helix is stabilised by hydrogen

bonding between the backbone carbonyl of one amino acid and the backbone NH

of the amino acid four residues away. All main chain amino and carboxyl groups

are hydrogen bonded, and the R groups stick out from the structure in a spiral

arrangement. This structure is very stable but flexible, and it is often seen in parts

of a protein that need to bend or move. There are both hydrophilic and hydrophobic

helices, depending on the characteristics of the side chains of the amino acids. The

former is often found on protein surfaces, whereas the latter tend to be buried

within the core of the folded protein. The amino acid proline is usually not found in

α-helices. A specialised form of an α-helix is called a coiled coil, a rodlike quaternary

protein structure formed by two or three α-helices interacting with each other.

In a β-sheet, two or more strands of amino acids are involved. These line up
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2.1 Biological background

to form a pleated like structure that tends to be rigid and less flexible than alpha

helices. Each strand is made up of five to eight residues. Hydrogen bonding in the

β-sheet occurs between backbone atoms in separate, but adjacent, β-strands. These

distinct β-strands may be either within a single polypeptide chain, with short or

long loops between the β-strand segments, or on different polypeptide chains. In

some proteins, β-sheets form the floor of a binding pocket or a hydrophobic core;

in other proteins embedded in membranes the β-sheets curve around and form a

hydrophilic central pore through which ions and small molecules may flow.

Turns are usually related to proline and glycine, which are common and small

amino acids and are often responsible for sharp bends and twists in α-helices and

hairpins in β-sheets. They are composed of four residues and located on the surface

of a protein.

By knowing which spatial geometry neighbouring amino acids adopt when they

bind together it is possible to determine which secondary structure a protein may have.

The DSSP (Define Secondary Structure of Proteins) algorithm is a standard method

for assigning secondary structure to the amino acids of a protein where atomic-

resolution coordinates are available (Kabsch and Sander, 1983a). The assignment

is based on the detection of hydrogen-bonds defined by an electrostatic criterion.

Secondary structure elements are then assigned according to characteristic hydrogen-

bond patterns. DSSP defines eight types of secondary structure depending on the

pattern of hydrogen bonds: H = α-helix, B = residue in isolated β-bridge, E =

extended strand, participates in β ladder, G = 3 helix (310 helix), I = 5 helix (pi helix),

T = hydrogen bonded turn, S = bend, and L = loop or other. STRIDE (Structural

identification) is another algorithm for the assignment of protein secondary structure

elements given the atomic coordinates of the protein (Frishman and Argos, 1995).

In addition to the hydrogen bond criteria used by the DSSP algorithm, the STRIDE

assignment criteria also include dihedral angles. The assignment of STRIDE is close

to the one done by DSSP (95% of identity). DSSP remains the most widely-used
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2.1 Biological background

program for secondary structure assignment, and is used in this thesis.

For proteins where no crystal structure is available methods have been developed

to predict secondary structure elements from the amino acid sequence. These

methods typically define three states: α-helix, β-strand and others. The performance

of predictions of secondary structure are measured via the 3-state accuracy, also

termed the Q3 score. The Q3 score is the percent of residues for which a method’s

predicted secondary structure is correct.

The first secondary structure prediction methods were introduced around 30

years ago. Early secondary structure prediction methods have a Q3 score of 50-60%

(Kabsch and Sander, 1983b). The most well-known methods include the Chou-

Fasman (Chou and Fasman, 1978) and GOR methods (Garnier et al., 1978). These

considered single amino acid statistics and are based on the observation that different

amino acids have different preferences in adopting secondary structure elements.

Later approaches of secondary structure prediction incorporated local dependencies

i.e. the neighbouring amino acids (Bowie et al., 1991; Holley and Karplus, 1989;

Levin et al., 1986; Nishikawa and Ooi, 1986; Qian and Sejnowski, 1988; Yi and

Lander, 1993). These methods achieved Q3 scores above 60%.

The performance of prediction programs was further boosted through the inclusion

of evolutionary information into the methods (Hua and Sun, 2001; Kloczkowski et al.,

2002; Pollastri et al., 2002; Salamov and Solovyev, 1995; Zvelebil et al., 1987).

Conservation evident in multiple sequence alignments of homologs can reveal which

amino acids are functionally or structurally important. For instance, surface-exposed

loop regions that are not important functionally tend to be part of non-conserved

regions in sequence alignments. Including evolutionary conservation knowledge led

to the first program to surpass 70% (Rost and Sander, 1993).

Further improvement came from better remote homology detection or HMMs and

larger sequence databases. The PSIPRED program (Jones, 1999a) is an example of

a secondary structure prediction program in this category. It consists of feed-forward
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neural networks which perform an analysis on output obtained from PSI-BLAST

and achieved a Q3 score of around 77%. Jpred is a secondary structure prediction

server that provides α-helix, β-strand and coil predictions (Cole et al., 2008) with

a Q3 score of 81.5%. It is also based on multiple sequence alignments and neural

networks. Another method whose Q3 score is given as above 80% is called PROTEUS

(Montgomerie et al., 2006). PROTEUS exploits the information that is available in

the protein structure databases. The accuracy of current protein secondary structure

prediction methods can be assessed for example in EVA (Eyrich et al., 2001), which

automatically analyses protein secondary structure prediction servers.

In Chapter 4 we develop a classification method that integrates primary and

secondary structures (assigned by DSSP and predicted by PSIPRED) of proteins to

predict membership of protein families. Primary and secondary protein structures

are also used to predict tissue specificity of gene expression in Chapter 5. Tissue

specificity of gene expression is clarified in the next subsection. However, first the

terms tertiary and quaternary protein structure are clarified.

Once the process of protein synthesis is completed, the protein takes its final shape.

This stable form of the protein is known as the tertiary structure (Figure 2.3c).

Each protein ultimately folds into a three dimensional shape with a distinct inside

and outside. The interior of a protein molecule contains mainly hydrophobic amino

acids, which tend to cluster and exclude water. By contrast, the exterior of a protein

molecule is largely composed of hydrophilic amino acids, which are charged or able

to H-bond with water. The Protein Data Bank (PDB) is a public repository for the

threedimensional structural data of proteins (Weissig and Bourne, 2002). It contained

63,559 structures in February 2010. For most proteins that have been identified to

date, only the primary sequence is available in public databases. Since the function

of a protein is determined through its three-dimensional structure, computational

methods have been developed that aim to predict the three-dimensional structure for

these proteins from sequence, and detect similarities to proteins with known structures.
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An important community effort is CASP (Critical Assessment of Techniques for

Protein Structure Prediction) that takes place every two years since 1994 to assess

predictions to monitor progress in this direction (Moult et al., 2009).

The quaternary structure is the arrangement of multiple folded protein

molecules in a multi-subunit complex (Figure 2.3d).

Figure 2.3: Protein conformations. The architecture of proteins at four levels of organsiation
is shown: a) primary b) secondary c) tertiary d) quartenary

2.1.2 Tissue specificity of gene expression

In multicellular organisms some genes are expressed and translated to proteins in

essentially all tissues, whereas others are expressed predominantly in only one or a

few tissues. Housekeeping genes are constitutively expressed in all tissues to maintain

cellular functions. It is often assumed that housekeeping genes are expressed at

the same level in all cells and tissues, but there are some variances, in particular

during cell growth and organism development. Human cells have several hundreds of
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housekeeping genes, but the exact number is unclear. An example for a housekeeping

gene is GAPDH (glyceraldehyde 3-phosphate dehydrogenase) that codes for an

enzyme that is vital to glycolysis. Another important housekeeping gene is albumin,

which assists in transporting compounds throughout the body. Several housekeeping

genes code for structural proteins that make up the cytoskeleton such as beta-actin

and tubulin. Others code for subunits of the ribosome. Examples of genes that are

expressed in a tissue specific manner include various transcription factors and germ

line transcripts. A specific example is the the glycoprotein hormone alpha subunit

that is produced only in certain cell types of the anterior pituitary and placenta, but

not in lungs or skin.

RNA in situ hybridization (ISH) can be used to identify the spatial pattern of

expression of a particular mRNA. The probe is labelled, either radioactively or by

chemically attaching a fluorochrome. A tissue is soaked in a solution of single-stranded

probes under conditions that allow the probe to hybridize to complementary RNA

sequences in the cells. Unhybridized probes are then removed. Radioactive probes are

detected by autoradiography. Fluorochrome is detected by fluorescence microscopy.

Another technology frequently used to investigate tissue specific expression are

microarrays. These are explained in the following paragraph.

2.1.3 Microarray technology

Although all of the cells in a living organism contain identical genetic material, every

cell shows a different gene expression profile. Studying which genes are active and

which are inactive in different cell types helps to understand both how these cells

function normally and how they are affected when various genes do not perform

properly. With the development of microarray technology, scientists can examine

how active thousands of genes are at any given time. A DNA microarray consists of

an arrayed series of thousands of microscopic spots of DNA oligonucleotides each

containing picomoles of a specific DNA sequence. This can be a short section of a gene
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or other DNA element that are used as probes to hybridize a cDNA. Probe-target

hybridization is usually detected and quantified by fluorescence-based detection of

fluorophore-labeled targets to determine relative abundance of nucleic acid sequences

in the target. In standard microarrays, the probes are attached to a solid surface

by a covalent bond to a chemical matrix. The solid surface can be glass or a silicon

chip. Affymetrix GeneChip arrays are commonly used. In this technology each gene

is typically represented by a set of 11-20 pairs of probes.

Next-generation sequencing (NGS) platforms, that are a relatively new develop-

ment, also allow transcriptional profiling (RNA-Seq). Microarrays as described above

are expected to be superseded by RNA-Seq in the next couple of years. They provide

a more precise measurement of levels of transcripts and are often more cost-effective

(Wang et al., 2009c).

In this thesis, we used Affymetrix GeneChip array data from the fruit fly and

the mouse to investigate tissue specificity of gene expression. In future, similar data

based on RNA-Seq may become available that could further refine the methods and

results of Chapter 5 and 6 due to advances in technologies.

2.1.4 Sites, regions and modifications in DNA sequences

Following definitions and explanations on sites, regions and modifications in DNA

sequences are relevant for Chapter 5.

DNA methylation and CpG islands

After DNA replication, several modifications occur in the DNA, and methylation

is one such post-synthesis modification. DNA methylation has been implicated

with a number of biological processes including regulation of imprinted genes, X

chromosome inactivation, and tumor suppressor gene silencing in cancerous cells.

DNA methylation usually occurs in the CpG islands, a CG rich region (cytosine

followed by guanine), upstream of the promoter region. The letter p signifies that the
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C and G are connected by a phosphodiester bond. In humans, DNA methylation is

carried out by a group of enzymes called DNA methyltransferases. DNA methylation

systems are well-characterised in vertebrates, but methylation in the fruit fly and

other invertebrates remains controversial (Wang et al., 2006). CpG islands are

often located around the promoters of housekeeping genes or other genes frequently

expressed in a cell. At these locations, the CG sequence is not methylated. By

contrast, the CG sequences in inactive genes are usually methylated to suppress their

expression. The methylated cytosine may be converted to thymine by accidental

deamination. The cytosine to thymine mutation can be corrected only by an inefficient

repair mechanism. Hence, over evolutionary time scales, the methylated CG sequence

will be converted to the TG (thymine followed by guanine) sequence. This explains

the deficiency of the CG sequence in inactive genes.

The ratio of observed to expected CpGs can be used to predict methylated and

unmethylated genomic regions (Equation 2.1).

CpG[o/e] =
frequency of observed CpG

frequency of expected CpG
=

frequency of observed CpG

frequency of C× frequency of G
(2.1)

A number of relationships were found between the occurrence or location of

CpG islands and the extent of tissue-specific expression of the associated genes (e.g.

Elango et al. (2009); Gardiner-Garden and Frommer (1987); Schug et al. (2005)).

These are reviewed in Chapter 3.2. In Chapter 5 we revisit and investigate the

occurrence of CpG islands in the fruit fly and in the mouse.

Scaffold matrix attachment region

Scaffold matrix attachment regions (S/MARs) are genomic elements thought to

delineate the structural and functional organisation of the eukaryotic genome. Origi-

nally, S/MARs were identified through their ability to bind to the nuclear matrix

16



2.1 Biological background

(i.e. the network of fibres found throughout the inside of a cell nucleus). Binding

is dispersed over a region of several hundred base pairs. These elements are found

flanking a gene or a small cluster of genes and are located often in the vicinity of

cis-regulatory sequences. This has led to the suggestion that they contribute to

higher order regulation of transcription by defining boundaries of independently

controlled chromatin domains. S/MARs may act as boundary elements for enhancers,

restricting their long range effect to only the promoters that are located in the same

chromatin domain.

A study on chromatin compactness showed that putative S/MARs were more

abundant upstream of tissue-specific genes than upstream of housekeeping genes.

S/MARs attach themselves to the nuclear matrix and help the formation of chromatin

loops. Tissue-specific genes appear to have less accessible and more compact DNA in

their promoter regions, and hence more S/MAR sequences (Ganapathi et al., 2005).

S/MAR sites are identified in Chapter 5 and used to help to discriminate between

tissue-specific and broadly expressed fruit fly and mouse genes.

Simple sequence repeats

Simple sequence repeats (SSRs) in DNA sequences are composed of tandem iterations

of short oligonucleotides. For example, CGG CGG CGG is a repeat because CGG is

repeated three times. The number of repeated copies can also be fractional as in

CCCCA CCCCA CCCC. SSRs have been shown to differ between housekeeping and

tissue-specific genes in human and mouse in the 5’-UTR region and other genomic

regions (Lawson and Zhang, 2008). In this thesis SSRs were computed for the 5’UTR

regions for the fruit fly and mouse genes investigated in Chapter 5. Compared to

the work above we not only determined the SSRs for the most broadly expressed

and tissue-specific genes, but we also determined them for genes with mid-range

pattern of expression. The mreps (Kolpakov et al., 2003) program is a software for

identifying serial repeats in DNA sequences used in this work. In particular we make
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use of the periods and exponents identified by mreps and use them as attributes in

the classification models trained to predict tissue-specific genes. The period of the

repeat describes the length of a repeated string while the exponent describes the

number of repeated copies. For example, the period and exponent of CGG CGG are

3 and 2 respectively.

2.1.5 Polysomes

As mentioned earlier, ribosomes read the sequence of messenger RNAs and assemble

proteins out of amino acids bound to tRNAs. The simultaneous translation of a

single mRNA molecule by multiple ribosomes increases the overall rate at which cells

an synthesise a protein. Complexes containing several ribosomes are referred to as

polyribosomes or polysomes. Simultaneous translation of a single mRNA molecule

is observable in electron micrographs and by sedimentation analysis. Two numbers

of importance related to simultaneous translation are the ribosome occupancy and

ribosome density. Ribosome occupancy refers to the fraction of a given gene’s

transcripts associated with ribosomes while ribosome density refers to the average

number of ribosomes bound per unit length of coding sequence.

In Chapter 5 we use ribosomal occupancy data for Drosophila melanogaster to

investigate the relationship between ribosomal occupancy and tissue specificity.

2.1.6 Ageing

Ageing is often described as the accumulation of damage to macromolecules, cells,

tissues and organs over time. Understanding and characterising the genetic effects on

ageing is an ongoing effort, but with the advent of high-throughput sequencing and

microarray technologies this task is greatly facilitated. A central step in unraveling

the mechanisms involved is to record differences during ageing by comparing gene

expression profiles of old animals with young animals. Genetic alterations and
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environmental interventions in the laboratory to extend lifespan include reducing

insulin/IGF-like signaling via mutations, dietary restriction, and reducing stress or

temperature (Partridge, 2008). Bioinformatics methods to analyse these data and

suggest novel biological hypotheses include profiling of changes in gene expression,

evolutionary considerations, or finding orthologues via sequence similarity. In Chapter

6 we investigate how filtering tissue-specific genes from whole-fly gene expression

data can help to find more subtle connections to ageing in the fruit fly.

2.2 Computational methods and tools

In the following section we will describe the machine learning methods and evaluation

measures used throughout this thesis.

2.2.1 Support vector machines

Support vector machines (SVMs) are widely used to solve data classification prob-

lems (Vapnik, 1999). Their flexible structure allows the modeling of diverse sources

of data. Further, they are able to deal with high-dimensional and large data-sets,

making SVMs a popular choice for application in bioinformatics. In Chapter 4 and 5,

SVMs are used for discriminating protein domains belonging to SCOP superfamilies

and to predict classes of tissue specificity for fruit fly and mouse genes. In the

following, some basic principles and background information on SVMs are given.

SVM models are trained from a set of positively and negatively labeled training

vectors. The trained model can be used to classify new unlabeled test samples. SVM

learns the model by mapping the input training samples x1, ..., xn into a feature space

and seeking a hyperplane in this space which separates the two types of examples

with the largest possible margin. If the training set is not linearly separable, SVM

finds a hyperplane, which optimises a trade-off between good classification and large

margin. Kernel functions can also be used to train non-linear classifiers. The two
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key concepts of SVMs, large margin separation and kernel functions, are explained

below.

Large margin separation

Figure 2.4a shows a simple example of linear separable data. The stars and circles

can be separated by drawing a straight line so that the circles (negative points) lie

on one side of the line and the stars (positive points) on the other side. Large margin

separation draws the line so that it is as far away as possible from the points in

both data sets (Figure 2.4b). For large margin separation, not the exact location

but only the similarity of the data points to each other is important. Similarity of

two feature vectors can be computed by the dot-product also known as the scalar or

inner product between the corresponding feature vectors (Equation 2.2, as explained

below).

Let x denote a vector with M components xj, j=1,...,M, i.e. a point in an

M -dimensional vector space. The notation xi will denote the ith vector in a data

set {(xi, yi)n
i=1} where yi is the label associated with xi and n is the number of

examples.

〈w, x〉 =
M∑

j=1

wj × xj (2.2)

A linear classifier is based on a linear discriminant function of the form

y(x) = w × x + b (2.3)

The discriminant function y(x) assigns a score for the input x, and is used to

decide how to classify it. The vector w is known as the weight vector, and the scalar

b is called the bias. In two dimensions, the points satisfying the equation 〈w, x〉

= 0 correspond to a line through the origin in the two-dimensional classifier. In a

three-dimensional classifier the line is substituted by a plane, and in an n-dimensional
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a) Linear Separation b) Maximum Margin Separation

c) Nonlinear boundary d) Kernel mapping

Figure 2.4: Support vector machine classification - key concepts. Panel a shows
a possible hyperplane that separate the data points (positive and negative instances
displayed as stars and circles) in two dimensions. Panel b shows the optimal hyperplane,
the maximum margin boundary, which separates the positive from the negative instances.
Panel c shows a non-linear boundary. Panel d maps the input data from Panel c to a
separable problem using a kernel function in a higher dimensional feature space.

21



2.2 Computational methods and tools

classifier by a hyperplane. The bias translates the hyperplane with respect to the

origin. The hyperplane divides the space into two half spaces according to the sign

of y(x), that indicates on which side of the hyperplane a point is located. If y(x)>0,

then one decides for the positive class, otherwise for the negative.

Kernel methods

In machine learning, the kernel trick is a method for using a linear classifier algorithm

to solve a non-linear problem (Figure 2.4c) by mapping the original non-linear

observations into a higher-dimensional space, where the linear classifier is subsequently

used; this makes a linear classification in the new space equivalent to non-linear

classification in the original space (Figure 2.4d).

The resulting algorithm is formally similar, except that every dot product is

replaced by a non-linear kernel function. The two commonly used families of kernels

are polynomial kernels and radial basis functions (RBF). These are the two kernels

of choice in Chapter 4 and 5.

Implementation

All computational results presented in this thesis were generated using one of two

implementations of SVMs. First, we used the freely available SVM-light package

(Joachims, 1999) implemented in Java for the work on protein remote homology

detection. Second, we used R’s implementation in the package e1071 for the work

on predicting tissue-specific classes. The reasons for using these different software

packages was simply a switch from the Java to the R programming language due to

the multitude of packages available for microarray data analysis for the latter.

2.2.2 Forward feature selection

SVMs generally aim at maximising predictive accuracy, ignoring the important

issues of validation and interpretation of discovered knowledge which can lead to
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new insights and hypotheses which are biologically meaningful and advance the

understanding of domain knowledge by biologists. Knowing which features led to a

prediction increases the confidence of the biologist in the system’s predictions, leading

to new insights about the data and the formulation of new biological hypotheses,

and detecting errors in the data (Freitas et al., 2010). Decision trees and models

are examples of systems that are immediately interpretable. In Chapter 5 we use

forward feature selection (FFS) (Miller, 1990) to extract the feature with highest

discriminative power in SVMs. Feature selection is the technique of selecting a

subset of relevant features for building robust learning models. By removing most

irrelevant and redundant features from the data, feature selection helps improve the

performance of learning models by alleviating the effect of the curse of dimensionality,

enhancing generalisation capability, speeding up learning process, and improving

model interpretability. In forward feature selection one adds the best feature at each

round of classification.

2.2.3 Shannon entropy

The Shannon entropy was introduced by Claude E. Shannon in his seminal paper A

Mathematical Theory of Communication (Shannon, 1948). It measures the degree

of uncertainty for a given variable in a system. The entropy is calculated as a

product of probability and the logarithm of probability for each possible state of

the targeted variable. Suppose we have the discrete probability distribution p(xi),

for the probability of events xi for ’i’ in [1..N], i.e., p(xi) is a discrete probability

distribution with N states. Then, the Shannon entropy is defined as:

H(X) = −
∑

x

P (x) log2[P (x)] (2.4)

bits, where P(x) is the probability that X is in the state x, and Plog2P is defined

as 0 if P=0. H is maximal when all states occur at equal probability. The minimum
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is taken on if one state occurs at probability 1, the others being ”forbidden”; then

H=0 holds. One of the original usages (Shannon, 1948) for Shannon entropy was

the measure of information conveyed on average for symbols in a given language,

but it has been generalised and applied to many fields in bioinformatics to quantify

information content (Herman and Schneider, 1992; Loewenstern and Yianilos, 1999;

Ritchie et al., 2008; Schmitt and Herzel, 1997; Schneider, 2000; Strait and Dewey,

1996).

Schug et al. (2005) demonstrated the effectiveness of using Shannon information

entropy for ranking genes according to their tissue specificity ranging from tissue-

specific to ubiquitous expression. This approach was validated using gene expression

data from human and mouse, demonstrating that most genes show statistically

significant tissue-dependent variations in expression levels. An investigation of the

promoter regions of tissue-specific and ubiquitously expressed genes revealed distinct

DNA motifs for these classes. Kadota et al. (2006) extend this method to account for

the fact that entropy alone can only measure the overall tissue-specificity of a gene,

but it does not explain to which tissue a gene is specific to. Shannon’s entropy was

also used to define and estimate the diversity and specialisation of transcriptomes

and gene specificity in human data (Martinez and Reyes-Valdes, 2008). We use a

similar approach as in the latter paper to define gene specificities in fruit fly and

mouse data, as detailed in Chapter 5.1.2.

A toy example is given in the following to further assist the reader with under-

standing the entropy measurement used in this work. Let us assume there is a mouse,

and there are 64 different tissues or organs in the mouse. Let us further assume that

there is exactly one gene expressed in one tissue, for instance in tissue number five.

According to the probability distribution, the chance that the gene is expressed is

the same in each of the tissues i.e., 1
64=0.015625. The task is to guess in which tissue

the gene is expressed by asking questions with yes and no answers. One strategy

that always leads to the answer using a minimal number of questions is to divide
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the search space. For example, the first question one would ask is: ”Is the tissue

number we are looking for < 32?”. If it is, one can go on to ask if the number is

< 16, and then < 8, and so on until the search space is narrowed down and the

right answer is reached. If the total number of tissues is 64, one will always find

the right answer by asking exactly six questions. And that is the basic principle of

Shannon entropy. It can be computed by taking the negative binary logarithm of the

probability that the gene is expressed in a tissue (here: -log2(
1
64)=6). In cases were

the gene is expressed in several tissues, the average of all cases is computed using

Equation 2.4. In Chapter 5.1.2 the average frequency of a gene among tissues is also

taken into account for normalisation purposes.

2.2.4 Performance measures

Receiver Operating Characteristic (ROC) curves

To evaluate classifier performance in Chapter 4 we use receiver operating characteristic

(ROC) curves, which show the true positive rates (TPR) on the y-axis over the full

range of false positive rates (FPR) on the x-axis. The distribution of the test results

of a classifier often overlaps, as shown in Figure 2.5. For every possible threshold

value that is selected to discriminate between the two classes, there will be some

cases with the positive class correctly classified as positive (TP = true positive

fraction), but some cases within the positive class will be classified negative (FN =

false negative fraction). On the other hand, some cases in the negative class will be

correctly classified as negative (TN = true negative fraction), but some cases will be

classified as positive (FP = false positive fraction).

In a ROC curve the true positive rate (sensitivity (recall), Equation 2.5) is

plotted in function of the false positive rate (1-specificity; see Equation 2.6 for

specificity) for different threshold values. Each point on the ROC plot represents a

sensitivity/specificity pair corresponding to a particular decision threshold. A test
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with perfect discrimination has a ROC plot that passes through the upper left corner

(100% sensitivity, 100% specificity). Therefore the closer the ROC plot is to the

upper left corner, the higher the overall accuracy of the test (Zweig and Campbell,

1993).

sensitivity (recall) =
TP

TP + FN
(2.5)

specificity =
TN

TN + FP
(2.6)

precision =
TP

TP + FP
(2.7)

It is possible to average the curves from several runs. In Chapter 4 we use vertical

averaging to combine the results of several benchmark sets. Vertical averaging takes

vertical samples of the ROC curves for fixed FP rates and averages the corresponding

TP rates.

Another measure of accuracy that is frequently used by biologists is precision.

Precision is defined as the ratio of true positives over the sum of true positives plus

false positives (Equation 2.7). If there are no false positives, the precision is 100%.

In a typical analysis, there is a trade-off between recall and precision. A combined

measure of these two numbers is accuracy, which is defined as the ratio of true

positive plus true negative cases over the total number of cases. Precision/recall

curves are presented in Chapter 4. We mainly use ROC curves to measure the

performance of the classifiers, as used by other work to which we compared our

results (De Ferrari and Aitken, 2006; Handstad et al., 2007).

Area Under the ROC curve (AUC)

An ROC curve is a two-dimensional depiction of classifier performance. To compare

classifiers it is often useful to reduce ROC performance to a single scalar value
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Figure 2.5: Receiver Operating Characteristic (ROC). Panel a shows an overlap of
the distribution of the test results of a classification problem. Panel b shows an example
ROC curve. The dashed line in the latter panel represent the result of a random classifier.

representing expected performance. A common method is to calculate the area

under the ROC curve, abbreviated AUC. AUCs are used in Chapter 4 and 5 to

compare classifier performance. The AUC quantifies the quality of the classifier, and

a larger value indicates better performance. The AUC is equal to the probability that

a classifier will rank a randomly chosen positive instance higher than a randomly

chosen negative one. Values range from 0 to 1.

Fisher ratio

In Chapter 5 the Fisher ratio is used to select the most discriminant amino acid

that separates tissue-specific from broadly expressed genes. The Fisher ratio is a

measure of class distinction which reflects the difference between classes relative to

the standard deviation within the classes. It is calculated as:

Fisher’s ratio =
(m1 −m2)2

v1 + v2
(2.8)

where m1, and m2 are the means of class 1 and class 2, and v1, and v2 the variances.

Tighter classes have smaller variances. The difference between the means should be

higher and the standard deviation of each class should be lower for linearly separable
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cases. Fisher ratio provides an insight of how much two classes are separable. The

higher the score the more separable are the two classes.

p value

P values are used in Chapter 4 and 6 to indicate the significance of a particular result,

and are explained in a generic manner below. A p value describes the probability

that a particular result, or a result more extreme than the result observed, could have

occurred by chance, if the null hypothesis were true. The null hypothesis typically

proposes a general or default position, such as that there is no relationship between

two quantities, or that there is no difference between a treatment and the control.

The lower the p value, the less likely the null hypothesis, so the more significant the

result. Commonly used thresholds for rejecting a null hypothesis are p values < 0.05

or < 0.01, corresponding to a 5% or 1% chance respectively of an outcome at least

that extreme. The threshold is often represented by the Greek letter α (alpha).

False discovery rate (FDR) control and q value

The false discovery rate (FDR) is often used in multiple hypotheses testing to

correct for multiple comparisons. In a list of rejected hypotheses, the FDR controls

the expected proportion of incorrectly rejected null hypotheses. The FDR can be

considered as the expected false positive rate. For instance, if 1000 functional terms

were over-represented in a comparison, and a maximum FDR for these observations

was 0.10, then 100 of these observations would be expected to be false positives. The

q value (Storey, 2003) of an hypothesis test measures the minimum FDR that is

obtained when calling that test significant. In Chapter 6 we estimate q values for

each functional term found to be over-represented in sets of genes.
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Student’s t-test

In Chapter 4, a paired t-test is used to test if the differences in classifier performances

were significant when predicting remote homologues. The paired t-test provides an

hypothesis test of the difference between population means for a pair of random

samples whose differences are approximately normally distributed. The test statistic

is calculated as:

t =
ȳA − ȳB√

s2
A/nA + s2

B/nB

(2.9)

variance = s2 =

∑
(y − ȳ)2

n− 1
(2.10)

ȳA and ȳB are the means of the two samples A and B, s2
A and s2

B are their

variances, and n is the number of elements in the two samples.

Standard linear regression

Linear regression refers to any approach to modelling the relationship between two

variables, such that the model depends linearly on the unknown parameter to be

estimated from the data. Such a model is called a linear model. Linear models are

used in Chapter 4 and 5 to describe the relationship between gene specificity and

other variables (Equation 2.11). The R function lm which stands for ’Linear Model’

was used for this purpose.

y = a + bx (2.11)

Correlation coefficient

A widely-used type of correlation coefficient is Pearson r. The correlation coefficient

determines the extent to which values of two variables are proportional to each other

i.e. linearly related. The correlation is high if it can be approximated by a straight

line sloped upwards or downwards. This line is called the regression line or least
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Figure 2.6: Corrleation coefficient example. The three extreme cases are shown were
there is perfect positive correlation, no correlation and perfect negative correlation between
two variables.

squares line, because it is determined such that the sum of the squared distances of

all the data points from the line is the lowest possible. The Pearson product moment

correlation coefficient for two variables x and y is calculated as follows:

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
(2.12)

where x̄ and ȳ are the mean of x and y respectively.

The statistic r ranges from -1, through 0, to 1 where -1 corresponds to perfect

negative correlation, 0 to no correlation, and 1 to perfect positive correlation (Fig-

ure 2.6). The closer the coefficients are to +1.0 or –1.0, the greater is the strength of

the linear relationship.

The correlation coefficient r are used in Chapter 5 and 6 of this work to quantify

the strength as well as direction of relationships of several variables e.g. between

tissue specificity of gene expression and sequence length or mean expression signal.

Boxplots

Boxplots are used throughout the document (e.g. Figure 4.4), and rather than to

explain them each time individually, they are explained in a generic form here. In

boxplots, the box itself contains the central 50% of the data. The upper edge of the

box indicates the 75th percentile of the data set, and the lower edge indicates the
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2.2 Computational methods and tools

25th percentile. The range of the middle two quartiles is known as the inter-quartile

range, with the lines within the boxes representing the median data values. The ends

of the vertical lines signify the minimum and maximum data values, unless outliers

are present in which case the vertical lines extend to a maximum of 1.5 times the

inter-quartile range. The points outside the ends of the vertical lines are outliers.
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Chapter 3

Introduction and Literature

Review

3.1 Remote homology detection

The following paragraphs explain the motivation that led to the first main project

pursued during the course of this PhD study entitled ”Remote Homology Detection

Using a Kernel Method that Combines Sequence and Secondary Structure Similarity

Scores”. Relevant literature related to this topic is reviewed, and the method is

introduced. More detailed methods, results and discussion are given in Chapter 4.

The motivation for this project originated from the observation that protein

sequences are being accumulated in public data repositories at an exponential rate.

The number of proteins, however, for which a three-dimensional atomic structure has

been determined and for which the biochemical function has been experimentally

verified, is comparatively low (Berman et al., 2010; The UniProt Consortium, 2010).

To make matters worse, metagenomics projects swamp the scientific community

with even more sequences: for example, 6.12 million proteins from the Global Ocean

Sampling Expedition were published recently and await characterisation (Rusch

et al., 2007). Machine learning and data-driven statistical modelling techniques
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3.1 Remote homology detection

are being developed in order to assist characterisation; these techniques aim to

predict structural, functional and evolutionary relationships between these proteins

automatically (Friedberg, 2006). Generally, distinctions are made between instance-

based learning, and generative and discriminative methods. Instance-based learning

methods typically classify an unknown sequence based on the nearest training

sequences in a database of known proteins. An example is the k-nearest neighbour

algorithm (Shakhnarovich et al., 2005), which is often used in conjunction with the

pairwise alignment algorithms Smith-Waterman (Smith and Waterman, 1981) or

BLAST (Altschul et al., 1990).

A widely used generative approach is the hidden Markov model (Durbin, 1998)

that characterises the likelihood of a given biological sequence being generated by

a statistical model. Decision trees (Quinlan, 1990) and SVMs (Vapnik, 1999) are

discriminative approaches. They train a classification model to distinguish a group

of proteins, which has some property of interest (positive examples) from a set that

is known not to have this property (negative examples) (Kretschmann et al., 2001;

Liao and Noble, 2003).

Of the above-mentioned methods, instance-based learning is the simplest. It

is efficient in detecting homologues if sequence similarity is close. Much of the

challenge in making predictions from amino acid sequences, however, arises from

the fact that a higher degree of variability can accumulate at the sequence level

than at the atomic structure level during evolution; i.e. multiple sequences can

give rise to similar structures (Chothia and Lesk, 1986). An example is shown

for the SCOP (Murzin et al., 1995) domain pair d1emy (myoglobin) and d1it2a

(hagfish hemoglobin) in Figure 3.1. The sequence identity between these domains is

only 16.4 per cent, while their structural similarity is close which is indicated by a

RMSD of structure alignments of only 1.667 Å(angstrom) with 688 atoms aligned.

According to the protein data bank (PDB)(Berman, 2008) classification they are

both concerned with Oxygen transport and according to the UniProtKB (Wu et al.,

33



3.1 Remote homology detection
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Figure 3.1: Alignments of (a) sequence, (b & c) secondary and (d) tertiary structures
of proteins d1emy (myoglobin) and d1it2a (hagfish hemoglobin) from the SCOP family
a.1.1.2 (globins). Bold symbols and the pipe symbols indicate an alignment match between
two columns. Colon and period symbols indicate conservative and semi-conservative
substitutions, respectively. While there is a close structural similarity between these
proteins, their sequence alignment is poor. The secondary structures, both true and
predicted, show close similarities. Chapter 4 of this thesis exploits this observation by
augmenting sequence similarities with predicted secondary structures. The alignment was
created using the JAligner software.
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3.1 Remote homology detection

2006) they share the Swiss-Prot keywords Heme, Iron, Metal-binding and Oxygen

transport. Sequence-based methods are not very efficient in detecting this similarity.

A BLAST query against UniProtKB Release 14.5 using the accession number P02186

(d1emy) returns the protein Q7SID0 (d1it2a) with an E value of 0.067. This is

above the E values 10−4 to 10−30 that are often used as a threshold for confident

function assignment (Cai et al., 2006; Engelhardt et al., 2005; Gopal et al., 2001;

Martin et al., 2004; The Arabidopsis Initiative, 2000). Approaches to detecting

such similarities are called remote homology detection methods. Generally, remote

homology detection methods use a generative or discriminative model, because these

models are able to detect subtle sequence similarities. One approach, which combines

generative and discriminative models, is the work of Jaakkola and Haussler. They

showed how score functions derived from a generative model of positive examples

can be used in a discriminative setting (Jaakkola et al., 2000); their method is known

as the Fisher kernels. Recent research suggests that the best-performing methods

are discriminative. In this category several techniques use protein sequences to

train SVM classifiers. For instance, Liao and Noble introduced an SVM method,

called SVM-pairwise, which uses Smith-Waterman similarity scores (Liao and Noble,

2003). Each sequence is represented as a vector of the pairwise sequence-similarities

scores to all the sequences of the training set. SVM-pairwise was shown to perform

better than the above-mentioned Fisher kernel method. Other alignment-based

methods include the LA-kernel (Saigo et al., 2004) and SVM-SW (Rangwala and

Karypis, 2005). Instead of representing the sequences as a vector of features these

methods directly calculate the kernels using an explicit protein similarity measure.

Leslie and colleagues introduced several string kernels for use with SVMs (Leslie

et al., 2002, 2004): spectrum, mismatch and profile kernels. These kernels measure

sequence similarity based on shared occurrences of fixed-length patterns in the data.

More recently, the GPkernel (Handstad et al., 2007) was introduced. The GPkernel

is a motif kernel based on discrete sequence motifs where the motifs are evolved
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3.1 Remote homology detection

using genetic programming. The GPkernel method achieved better results than

the SVM-pairwise method, the mismatch kernel and a PSI-BLAST (Altschul et al.,

1997) based approach. The methods mentioned in the last paragraph primarily use

amino acid sequence information to train the classifiers. It is known that sequences

which are distantly related but which have similar functions also tend to have highly

conserved patterns of secondary structures (Russell and Barton, 1994). Several

researchers have demonstrated that the prediction performance of remote homology

detection (and fold recognition) methods can be improved by incorporating secondary

structure information. Wallqvist et al. (2000), for instance, report an increase in

sensitivity of their fold-recognition method after modifying the Smith-Waterman

algorithm to consider an alignment of both amino acid and secondary structure

elements. Ginalski et al. (2003) have shown that the addition of predicted secondary

structures to conventional sequence profiles is able to boost the sensitivity of profile-

profile comparison methods for sequence similarity searches. The technique described

in the latter paper is known from fold recognition algorithms, for example (Jones,

1999b; Shi et al., 2001). Chung and Yona present a method for classifying protein

families into superfamilies (Chung and Yona, 2004). The authors use statistical

models of protein families in the form of profiles and augment the profiles with

structural information. The authors note that true structure performs significantly

better. Secondary structure element alignments methods (SSEA) have been shown

to provide a rapid prediction of the fold for given sequences and have also been

applied to the related problem of novel fold detection (McGuffin and Jones, 2002;

McGuffin et al., 2001). DomSSEA is a modified form of this method that uses

predicted secondary structure to predict continuous domains (Marsden et al., 2002).

HHsearch (Soding, 2005) is a program based on profile hidden Markov models that

augments the sequence profiles with secondary structure.

These and similar studies have indicated that the incorporation of secondary struc-

ture information, even if predicted, can increase sensitivity of a protein comparison
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model. While these studies, which have been covering instance-based and generative

learning systems, are clearly important, it is also important to investigate discrim-

inative approaches since it has been pointed out that discriminative approaches

generally outperform instance-based methods in remote homology detection. One

approach that uses secondary structures in a discriminative setting was introduced

in (Hou et al., 2004). Their SVM-I-sites method encodes structure information

into feature vectors after comparing sequence profiles to the I-sites library of local

structural motifs (Bystroff and Baker, 1998); it achieves a comparable performance

to the sequence-based SVM-pairwise method. One limitation of this method is that

it uses secondary structures only, thus disregarding potentially useful information

that is encoded in the amino acid sequence. A method that was tested for using

both kinds of information in a discriminative setting is the previously mentioned

profile kernel. The authors report that secondary structure profiles can help the

profile kernel achieve better performance. The prediction performance of a classifier

that uses the secondary structures alone, however, was not investigated. The results

were calculated for the entire SCOP database but not for its respective classes. Our

approach is also based on combining sequence and secondary structures in a discrim-

inative setting. Instead of using string kernels based on shared occurrences of fixed

length patterns, we exploit the performance improvement gained by using a kernel

that measures similarity based on all-against-all Smith-Waterman similarity scores.

We calculated Smith-Waterman similarity scores from sequences, from observed

secondary structures and from predicted secondary structures; the sets of scores

were fed into SVM classifiers separately and in combination. Further, we carried

out score re-weighting experiments in which more influence was given to either the

sequence or secondary structure similarity scores. We compare our method with the

sequence-based SVM-pairwise method and with the mean achieved by the GPkernel

method. We show that a complementary classifier is superior to these sequence-only

based methods overall, for the different SCOP classes and for the majority of the
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families participating in the benchmark. We note that it has been reported before

that remote homology detection is improved by integrating secondary structures. The

difference to most other works lies in the use of SVMs and kernels thus investigating

performance in a discriminative setting in contrast to instance-based and genera-

tive models. This work has been published in 2009 (Wieser and Niranjan, 2009).

Since the publication of our paper another method was developed that combines

sequence and secondary structure information (Wang et al., 2009a). This method

complements profile-profile comparison with various structure- and function-related

patterns revealed by multiple sequence alignments. The resulting tool, PROCAIN

(Wang et al., 2009b), improves homology detection and alignment quality beyond

the range of other tools, e.g. COMPASS, a tool for comparison of multiple protein

alignments (Sadreyev and Grishin, 2003). In another recent paper, Dobson et al.

(2009) showed that machine learning approaches to predicting SCOP categories can

be improved by performing a sequence enrichment step that exploits unannotated

sequences within genomic sequence databases. Margelevicius and Venclovas (2010)

presented a new homology detection method based on sequence profile-profile com-

parison that integrated position-dependent gap penalties. Evaluation results showed

that at the level of protein domains the method compared favorably to other tested

methods including HHsearch, COMPASS and PSI-BLAST.

Methods and results of this study are detailed in Chapter 4. Next the remaining

research problems addressed in this thesis are introduced.

3.2 Tissue specificity of gene expression

A similar method as used in the remote homology detection problem was developed

to investigate whether tissue specificity of gene expression is correlated with the

sequence and secondary structure of the resulting protein product. The motivation

for this is described in the following paragraphs, and a corresponding literature
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review is also included.

Virtually all of the cells in multi-cellular organisms are genetically identical, i.e.,

they carry the same DNA. Different cells take on different roles by activating only

parts of the DNA they carry. Cell fate changes are accompanied by gene expression

changes and consequently, gene expression varies widely amongst cell types and

tissues. Capturing these differences is important for a number of studies including

developmental and disease or age-related studies. For instance, the success of gene

manipulation experiments designed to extend lifespan often depends on the tissue

in which the gene is deleted or over-expressed (Broughton and Partridge, 2009).

Knowledge of tissue specificity of gene expression can help in targeting the correct

tissue in which the pathway to be manipulated has the desired function. The tissue-

specific genes can be used as a targeting agent in order to reach a particular tissue

or organ. A complete knowledge of the tissue specificity of gene expression in model

organisms is desirable for the study of ageing and other biological processes.

Various experimental techniques have been developed to identify tissue-specific

gene expression signatures. Microarray analysis (Brown and Botstein, 1999) and in

situ hybridization (Jones and Robertson, 1970; Tautz and Pfeifle, 1989) are the most

commonly used techniques for the study of spatial patterns of mRNA expression. For

instance, high-density microarrays have been used to interrogate the gene expression

of the vast majority of protein-encoding genes in 79 human and 61 mouse tissues (Su

et al., 2004). A digital atlas containing the expression patterns of around 20,000 genes

in the adult mouse brain also exists (Lein et al., 2007). These data were generated

using ISH (see Chapter 2.1.2). FlyAtlas is a microarray-based atlas of gene expression

in multiple adult tissues in the fruit fly. It currently provides gene expression profiles

for 17 adult tissues (Chintapalli et al., 2007). Image-based data from hundreds of

Drosophila blastoderm embryos has been used to build a model ”virtual embryo”

that captures the average spatial expression patterns for 95 genes (Fowlkes et al.,

2008). An atlas of gene expression patterns during fruit fly embryogenesis has been
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assembled based on ISH (Tomancak et al., 2007). About 40% of the genes with

detectable expression showed tissue-restricted expression in this study. The Berkeley

Drosophila Genome Project (BDGP; http://www.fruitfly.org) is a further resource

for tissue-specific data in the fruit fly.

However, experimental data is not always available for all organisms, and our

knowledge of tissue-specific expression is incomplete. Experimental techniques have

their limitations. For example, microarray studies depend on the ability to isolate

mRNA from a particular tissue, which requires dissection of the animal. Frequently

this is a formidable task. In the case of worms, this is barely feasible and, in the case

of flies, it is laborious and time-consuming to obtain sufficient tissue for analysis.

Clean tissue separation is critical. In higher organisms, such as humans and mice,

the sheer number of different cell types, organs and tissues make it difficult to obtain

a complete picture of genes that are truly expressed in a tissue-specific fashion.

In contrast to microarray or other similar assays, ISH does not require dissection.

However, the drawback to ISH is that it is not quantitative (Wilcox, 1993). In

addition, parameters such as genetic variability, nutritional state, pathogen exposure

and effects of the isolation procedure add to the complexity of obtaining accurate

and complete tissue-specific measurements. Another limitation is the cost, which

limits the number of tissues that can be profiled. If, for example, a cost of £350

per array is assumed (data taken from http://affy.arabidopsis.info/costs.html

in February 2010), then the sampling of 60 mouse tissues, with 4 replicates each,

results in a total cost of £84,000.

Thus, because of lack of suitable experimental techniques, difficulties with dis-

secting, high costs and time demands to dissect and investigate each and every tissue

in many organisms, tissue-specific information is frequently lacking.

There have been efforts to use computational models to predict tissue specificity.

For instance, De Ferrari and Aitken (2006) trained a Naive Bayes classifier, based on

physical and functional characteristics of genes, to discriminate tissue-specific from
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housekeeping genes. The input features included cDNA length, CDS length, number

of exons, measures of chromatin compactness, percent of GO terms for the gene that

match with a housekeeping GO terms list, and percent of GO terms for the gene

that match with a tissue-specific GO terms list. Their classifier achieved a 90%, 93%

and 97% success rate in classification of human, mouse and fruit fly housekeeping

genes. The performance of the classifiers was good. However, it should be noted

that including classifier attributes that are based on functional characteristics (here

GO terms) lead to at least two issues. First, it is known that there are functional

differences between tissue-specific and housekeeping genes. One of the housekeeping

GO terms used by the authors is ”GO:0005840 ribosome”. Ribosomes are the

components of cells that make proteins from amino acids and thus they are present

in every single cell and tissue. Labelling genes that are annotated with this GO

term as housekeeping genes is therefore a simple task. Second, many of the GO

terms have been transferred automatically via computational methods and are thus

predicted themselves. Basing a prediction method on the outcome of another one is

generally not practical because errors can be easily propagated. Features such as the

cDNA length, CDS length and number of exons are better suited to be used with a

classifier since they are directly observed from the genomic sequence.

In the first part of this thesis, we investigated how combining sequence and

secondary structures in a discriminative setting affects the ability of support vec-

tor machines to discriminate protein domains. Here, we use a similar method to

investigate if tissue specificity of gene expression is correlated with the sequence

and secondary structure of the resulting protein product. We are also interested in

knowing to what extent this information can be used to predict tissue specificity of

genes computationally. Our interest in pursuing this question stems mainly from the

observations discussed in the next paragraph.

First, housekeeping genes are known to evolve, on average, more slowly than

tissue-specific genes (Hastings, 1996; Larracuente et al., 2008; Zhang and Li, 2004; Zhu
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et al., 2008). The hypothesis is that broadly expressed genes are subjected to greater

negative selection pressure because they must function in a more diverse biochemical

environment than do narrowly expressed genes. Substitution rates at nonsynonymous

sites show strong negative correlation with tissue distribution breadth. Conversely,

silent substitution rates do not vary with expression pattern, even in ubiquitously

expressed genes (Duret and Mouchiroud, 2000). Genes selectively expressed in one

human tissue can often be discriminated from genes expressed in another tissue

purely on the basis of their synonymous codon usage (Plotkin et al., 2004). Gene

expression has also been shown to evolve faster in narrowly expressed, compared to

broadly expressed, genes (Yang et al., 2005).

Second, the types of proteins encoded by housekeeping and tissue specific genes

differ. A mouse study established a relationship between the domains encoded

by a gene and its degree of tissue specificity (Lehner and Fraser, 2004). Many

protein domains in both tissue-specific or widely expressed genes were enriched.

The authors found that genes that encoded domains associated with receptors,

ligands and extracellular matrix proteins or in DNA- or nucleic acid- binding proteins

were expressed in significantly fewer tissues than were other genes. In contrast,

genes encoding protein domains that functioned in protein degradation, in the

cytoskeleton or in RNA-binding, were expressed significantly more widely than were

other genes. Another study showed that proteins with a universal distribution tend

to be predominantly enzymes and transporters, while the tissue-specific forms are

dominated by regulatory proteins such as transcription factors (Freilich et al., 2005,

2006).

Third, the two classes showed several different genomic features. For example,

human housekeeping genes were found to be more compact and shorter than other

genes (Eisenberg and Levanon, 2003). The average length for introns, exons, 3’UTR

and 5’UTR was shorter for housekeeping genes than for tissue-specific genes. In a

human and mouse study (Schug et al., 2005), most tissue-specific genes were found
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to typically contain a TATA box, but no CpG island, and they often coded for

extracellular proteins. In contrast, the widely-distributed (i.e. least tissue-specific)

genes frequently contained CpG islands and often coded for nuclear or mitochondrial

proteins. The genes in the class that had no CpG island or TATA box were commonly

mid-specificity genes that coded for membrane proteins. Sp1, a binding site for

selected ubiquitous transcription factors, was found to be a weak indicator of less-

specific expression. YY1 binding sites, also binding sites for ubiquitous transcription

factors were strongly associated with the least-specific genes. Several other studies

also observed a relationship between the occurrence of CpG content or CpG islands

and tissue specificity of genes in various organisms (Elango et al., 2009; Foret et al.,

2009; Gardiner-Garden and Frommer, 1987). However, a different study on human

genes showed that the majority of tissue-specific genes possessed neither CpG islands

nor TATA boxes in their core promoters (Zhu et al., 2008).

A study on chromatin compactness showed that putative Scaffold/Matrix At-

tachment Regions (S/MAR) were more abundant upstream of tissue-specific genes

than upstream of housekeeping genes. S/MARs attach themselves to the nuclear

matrix and help the formation of chromatin loops. Tissue-specific genes appear to

have less accessible and more compact DNA in their promoter regions, and hence

more S/MAR sequences (Ganapathi et al., 2005).

In human, the use of SVMs allowed the identification of DNA hexamers that

discriminate tissue-specific gene promoters or regulatory regions from those that are

not tissue-specific (Rao et al., 2007). It was also shown that housekeeping and tissue-

specific genes in human and mouse differ in simple sequence repeats (SSR) in the

5’-UTR region (Lawson and Zhang, 2008). SSR densities in 5’-UTRs in housekeeping

genes were about 1.7 times higher than those in tissue-specific genes. Other regions,

i.e., introns, coding exons, 3’-UTRs and upstream regions, also contained different,

but less obvious, SSRs.

Recently, the correlation of tissue specificity with genomic structure, phyletic age,
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evolutionary rate and promoter architecture of human genes was re-evaluated. Again,

housekeeping genes were found to be less compact and older than tissue-specific

genes. It was confirmed that they evolved more slowly in terms of both coding and

core promoter sequences. Housekeeping genes primarily use CpG-dependent core

promoters, whereas the majority of tissue-specific genes possess neither CpG-islands

nor TATA-boxes in their core promoters (Zhu et al., 2008). A study in the nematode

worm, Caenorhabditis elegans, showed that gene expression data from whole-animal

microarray data can be used to predict tissue specificity of genes (Chikina et al.,

2009). The authors leveraged existing whole-animal C. elegans microarray data to

generate predictions of tissue-specific gene expression and experimentally validated

these predictions. SVMs were used to build a predictive model of tissue-specific

microarray profiles. The SVMs automatically identified expression patterns that

separated genes expressed in a particular tissue from other genes (e.g., neuronal

and non-neuronal genes). Their predictions reached a precision of 90% for all of the

major tissues of the worm (intestine, hypodermis, muscle, neurons, and pharynx)

except germ line. This study concentrated on genes expressed in a particular tissue,

but housekeeping genes were not considered.

Lastly, in Saccharomyces cerevisiae, a correlation was found between the expres-

sion level of a gene and the amino acid composition of its protein (Raghava and

Han, 2005). The authors analysed 3,468 S. cerevisiae genes. Some amino acid

residues were observed to have significant positive correlation, while other residues

had negative correlation with the expression level of genes. A significant negative

correlation was also found between length and gene expression.

Combining these observations, we speculate that the amino acid content may differ

among those genes that show different tissue specificity. The ability to successfully

predict whether a given gene is a housekeeping or tissue-specific gene would add to

the understanding of tissue specificity and how it arises.

We investigate the use of sequence and secondary structure information with
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SVMs to discriminate between tissue-specific and broadly expressed genes. We

determined the amino acid sequences and secondary structures in proteins that

varied in their tissue specificities and then used the sequences and structures to

calculate Smith-Waterman similarity scores. The sets of scores were fed into SVM

classifiers, both separately and in combination. We also investigate the effects of

combining these attributes with genomic features such as lengths of various genomic

regions on the performance of the classifier. We also examine whether a relationship

exists between ribosomal occupancy and tissue specificity.

We apply our definition to microarray-based expression data for fruit fly genes

and then validate and contrast these results with similar data derived from mouse

genes. We concentrate on the fruit fly, Drosophila melanogaster, because it is the least

studied organism (Table 3.1) for which good data have recently become available.

For the fruit fly, we used a data set that contains the expressions of a large number

of genes in 17 fruit fly tissues (Chintapalli et al., 2007). For the mouse, we used a

data set that contains the expression data of a large number of genes in 61 mouse

tissues (Su et al., 2004). These data sets allowed a detailed examination of the

relationship between tissue expression of genes and their related protein products.

We found that tissue specificity of gene expression is correlated with the sequence

and secondary structure of the resulting protein products, and that this specificity

can be predicted to a certain extent in both the fruit fly and the mouse. Simple

amino acid counts perform almost as well as using Smith-Waterman similarity scores.

Integrating secondary structure does not improve upon prediction performance, but

still results in performance that is better than random. Combining amino acid

percentages with other attributes, such as cDNA length, CDS length, 5’UTR length,

further improves the classifier performance.

The experiments performed and results related to this topic are detailed in

Chapter 5.
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Table 3.1: Computational studies on tissue specificity. The table summarises previ-
ously published work that investigated housekeeping (HK) or tissue-specific (TS) genes.
TF= transcription factor.

Author,Year Species Nr. of genes used Short description

Eisenberg and Levanon
(2003)

human
575 HK genes
5404 non-HK genes

Lengths of genomic regions were stud-
ied. HK genes were found to be shorter
+ more compact compared to other
genes.

Schug et al. (2005)
human
mouse

ranked list of genes
human:
12,626 probesets (8,571 genes)
mouse:
12,655 probesets (7870 genes)

Shannon’s entropy was used to rank
genes according to their tissue speci-
ficity. Investigation of correlation be-
tween TS and base composition of pro-
moters, CpG islands + TF motifs.

Ganapathi et al. (2005) human
525 HK genes
532 TS genes

Investigation of the differences in the
chromatin features (S/MAR regions)
between the two groups of genes.

De Ferrari and Aitken
(2006)

human
mouse
fruit fly

human:
76 HK genes (103 transcripts)
326 TS genes (580 transcripts)
mouse:
93 HK genes (113 transcripts)
286 TS genes (564 transcripts)
fruit fly:
40 HK genes (80 transcripts)
193 TS genes (412 transcripts)

A Naive Bayes classifier was trained to
discriminate between the two classes
based on: cDNA +CDS lengths, num-
ber of exons, S/MAR regions, Poly(dA-
dT) + (CCGNN)2–5 motifs, and per-
centage of GO terms.

Rao et al. (2007) human
2273 non-TS
1817 TS

SVMs were trained to discriminate TS
genes from those that are not TS based
on 6-mers in the promoter regions.

Lawson and Zhang
(2008)

human
mouse

human:
1914 HK genes
275 TS genes
mouse:
1597 HK genes
890 TS genes

Investigation of differences of SSRs be-
tween HK and TS genes.

Zhu et al. (2008) human
885 TS genes
3140 HK genes

Correlation of tissue specificity with ge-
nomic structure, phyletic age, evolu-
tionary rate + promoter architecture
was re-evaluated.

Chikina et al. (2009) worm
2872 genes expressed in
one or more tissues

Predictions of TS gene expression in
various tissues using SVMs based on
expression profiles (e.g. brain vs non-
brain).

This study
fruit fly
mouse

fruit fly:
11,804 genes (15,560 tran-
scripts)
mouse:
21,900 genes (11,355 tran-
scripts)
ranked lists of genes

Discriminating TS from HK genes
(with various degrees) based on se-
quences, secondary structures + ge-
nomic features (cDNA, CDS, 5’UTR,
3’UTR and protein length, CpG is-
lands and content, SSRs).

46



3.3 Whole-fly body gene expression data and the ageing fruit fly

3.3 Whole-fly body gene expression data and the

ageing fruit fly

The sorted list of genes introduced above was also used to investigate the tissue

specificity of transcript profiles obtained from a study of ageing in the fruit fly. The

motivation for this is detailed in the next paragraphs, alongside a literature review

on relevant topics.

Small invertebrate model organisms such as the nematode worm and the fruit

fly are widely used to investigate mechanisms underlying diverse biological pro-

cesses, including development, metabolism, neurobiology and ageing. Whole genome

transcript profiles have become an important tool in such investigations, to direct

attention to candidate genes and processes for targeting in subsequent experimental

analysis. Because of the small size of these organisms and the difficulties of dissecting

specific tissues for analysis, molecular methods have been developed to isolate RNA

from specific tissues (Chalfie et al., 1994; Jin and Lloyd, 1997). However, these

methods have their own technical limitations (Jin and Lloyd, 1997; Klebes et al.,

2002), and RNA expression-profiling is still often applied to RNA extracted from

whole organisms or from body parts of heterogeneous tissue composition (Girardot

et al., 2006; Kim et al., 2005; Landis et al., 2004; Magwire, 2007; Pletcher et al.,

2005). It would therefore be helpful if bioinformatics methods could be developed to

extract tissue-specific information from these whole body expression profiles. We

have developed such a method for the fruit fly and we have applied the method to

RNA transcript profiles obtained from studies of ageing in the adult fly.

The fruit fly has been much employed to unravel mechanisms of ageing and to

identify genes that may have a functional role in it (McElwee et al., 2007; Partridge,

2008; Piper and Bartke, 2008; Piper and Partridge, 2007; Pletcher et al., 2005;

Skorupa et al., 2008). More than 80 genes whose manipulation increases or decreases

lifespan, or alters the phenotypic ageing process, have been identified (de Magalhães
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and Toussaint, 2004; Kaeberlein et al., 2002). For instance, null mutation of chico,

a gene that codes for the single fly insulin receptor substrate, has been found to

extend lifespan up to 48% in females (Clancy et al., 2001), while fly mutants for

methuselah displayed approximately a 35% increase in average lifespan (Lin et al.,

1998). It is well established that the insulin/insulin-like growth factor signaling

(IIS) pathway is central to regulation of lifespan in various organisms (Bartke,

2008; Clancy et al., 2001; Cowen, 2001; Holzenberger et al., 2003; Tissenbaum and

Ruvkun, 1998). Fat and neuronal tissues appear to be of particular importance

for lifespan extension via lowered IIS (Broughton and Partridge, 2009). However,

the exact signalling mechanisms and biochemical changes by which this, and other

evolutionarily conserved pathways such as TOR (target of rapamycin) signalling

(Greer and Brunet, 2008), promote longevity in various tissues are not yet fully

understood.

Gene expression profiling has been a useful method for identifying candidate

processes for lifespan-extension by reduced IIS and other interventions (Cao et al.,

2001; Fu et al., 2006; Hong et al., 2008; Kim et al., 2005; Landis et al., 2004;

Magwire, 2007; McElwee et al., 2006, 2007; Miller, 2009; Park and Prolla, 2005;

Pletcher et al., 2005; Thompson et al., 2009; Zahn et al., 2006). Identifying groups

of genes that are differentially expressed in long-lived nematode worms (McElwee

et al., 2006; Miller, 2009; Thompson et al., 2009) and in flies (Kim et al., 2005;

Landis et al., 2004; Magwire, 2007; McElwee et al., 2007; Pletcher et al., 2005) has

been implicated, for example, with enhanced stress resistance (Miller, 2009) and

xenobiotic metabolism (McElwee et al., 2007). However, accurate identification and

interpretation of differentially expressed genes have been limited by several factors.

Gene expression profiles vary among tissues, and expression of a significant fraction of

the genome is highly tissue-specific in the adult fly (Chintapalli et al., 2007; Whitehead

and Crawford, 2006) and worm (Hunt-Newbury et al., 2007). Many ageing-related

changes can be associated with changes in tissue-specific gene expression, while there
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also may be a common set of genes that change equivalently in different tissues

(Cao et al., 2001; Girardot et al., 2006; Kayo et al., 2001; Lee et al., 2000, 2002;

Park and Prolla, 2005; Pattison et al., 2003; Rodwell et al., 2004; Welle et al., 2003;

Zhan et al., 2007). For example, genes that make up the mitochondrial electron

transport chain appear to decrease in expression with age in multiple tissues (Zahn

et al., 2006). In contrast, the effects of ageing are particularly pronounced in the

brain, where a reduction in synaptic density has been observed in various organisms

(Girardot et al., 2006; Hong et al., 2008). The age-related genes in a fruit fly study

in seven tissues at six adult life stages showed tissue-specific patterns (Zhan et al.,

2007). However, the authors also identified overlaps of the age-related functional

groups among tissues. The seven tissues for which genome-wide expression profiles

were measured were the brain, thoracic muscle, gut, malpighian tubule, accessory

gland, testis and abdominal adipose tissue. In each tissue hundreds of age-related

differentially expressed genes were found. Less than 10% of them in each tissue were

in common with any other tissue. Similarly, less than 20% of the biological processes

enriched with the age-related genes were in common between any two tissues.

Ideally, to capture and interpret both specific and common transcriptional re-

sponses during the ageing process and as a result of interventions that extend lifespan,

the animal should be dissected into several tissues before gene expression is profiled.

The trade-off is that, in the case of worms, this is barely feasible and, in the case

of flies, it is laborious and time-consuming to obtain sufficient tissue for analysis.

Consequently, whole flies (Landis et al., 2004; Magwire, 2007; Pletcher et al., 2005),

or tissues that are technically easy to separate from the fly body such as the head

and thorax (Girardot et al., 2006; Kim et al., 2005) are frequently used. While it is

known that a significant fraction of the genome will be missed or under-represented

in whole-fly samples (Chintapalli et al., 2007) and that tissue-specific expression

may be inadequately captured, there is little information concerning the capacity of

microarrays to capture tissue-specific effects of ageing in whole-fly samples. To date,
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knowledge of tissue specificity of differentially expressed genes is often insufficiently

considered in the subsequent data analysis.

We describe a computational approach, which partitions genes according to their

tissue specificity, that can be used to address some of the above shortcomings and

clarify tissue-specific fly transcripts and gene expression in the ageing fly, and in

general. Based on an information theoretical approach, we investigate how to utilise

FlyAtlas (Chintapalli et al., 2007), a microarray-based atlas of gene expression in

multiple adult tissues, to delineate tissue-specific from ubiquitous expression in

whole-fly experiments. We begin by taking the sorted list of fruit fly genes according

to their degree of tissue specificity introduced in the previous chapter, obtained from

the FlyAtlas gene expression profiles. We then use the defined tissue specificity to

determine the capacity of Affymetrix high-density oligonucleotide whole-genome

micro arrays to capture tissue-specific age-associated changes in whole-fly samples.

Importantly, we find that genes with tissue-specific expression are associated with

higher fold-changes amongst significantly differentially expressed genes and a lower

mean expression signal indicating that changes in tissue-specific expression might

be easier to detect using whole-fly arrays. We also describe how filtering genes

with tissue-specific expression from data from a whole-fly ageing experiment affects

data analysis and the derivation of meaningful information from the data. The

significance of several age-related GO terms was increased after removing tissue-

specific differentially expressed genes. This is due to a bias in GO annotation

towards broadly expressed genes, and to differences in function of broadly and

tissue-specifically expressed genes. This study is complemented by an analysis of

the tissue specificity of age-associated genes in the fly. We found that most known

age-associated genes are broadly expressed.

The investigations concerning this study are described more fully in Chapter 6.
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Chapter 4

Remote Homology Detection

Using a Kernel Method that

Combines Sequence and Secondary

Structure Similarity Scores

Below, we explain the experiments performed to investigate the ability of our method

to predict protein remote homologues and present and the discuss the results.

4.1 Methods

4.1.1 Benchmark sets

All the experiments are based on protein domains retrieved from the manually

curated SCOP database (Murzin et al., 1995). SCOP classifies proteins with known

structures hierarchically into classes, folds, superfamilies and families based on

their evolutionary relationships and structural or functional similarities. Figure

4.1 shows a schematic representation of the SCOP hierarchy. The top level places

domains with similar secondary structure elements in classes. Examples include
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4.1 Methods

All α protein and All β proteins. All the available classes are summarised in

Table 4.1. The second level assigns the domains belonging to a class to different

folds, depending on the topology of their secondary-structure elements. A fold

is divided up into superfamilies. Domains sharing the same superfamily have a

probable common evolutionary origin, which is usually suggested by their structural

and functional features. The superfamilies are further divided up into families of

domains with sequence identity > 30%, or domains with very similar functions and

structures. Domain pairs belonging to the same superfamily, but to different families

are considered to be remote homologues. The benchmarks used in this work were

those defined previously to test the performance of the GPkernel (Handstad et al.,

2007). Figure 4.1 also shows a schematic representation of the benchmark set. Briefly,

domains belonging to one family constitute the positive test set. Domains inside the

same superfamily but of different families form the positive training set. Negative

training and test domains are taken from outside the superfamily. The negative test

set consists of one random family from each of the other superfamilies while the

negative training set is composed of the rest of the families in these superfamilies.

A total of 102 classification tasks were carried out, each positive training set holds

at least ten domains and each positive test set holds at least ten domains (4,019

domains were used in total).

Table 4.1: Available SCOP classes. Classes a, b, c, d and g were used in the benchmarks.

Symbol Description

a α-helical domains

b β-sheet domains

c α/β domains which consist of β-α-β structural units
or motifs that form mainly parallel β-sheets

d α+β domains formed by independent α-helices and
mainly antiparallel β-sheets

e multi-domain proteins

f membrane and cell surface proteins and peptides (not
including those involved in the immune system)

g small proteins

h coiled-coil proteins

i low-resolution protein structures

j peptides and fragments

k designed proteins of non-natural sequence
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Figure 4.1: Schematic representation of the SCOP hierarchy and setup of the benchmark
set. Domains belonging to one family constitute the positive test set. Domains inside the
same superfamily but of different families form the positive training set. Negative training
and test domains are taken from outside the superfamily.
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4.1 Methods

4.1.2 Data preparation

The data preparation steps are illustrated in Figure 4.2, and further explained below.

The SCOP domains were downloaded from the ASTRAL database (Chandonia et al.,

2004) (SCOP version 1.67; < 95% identity) and supplemented with observed and

predicted secondary structures. The definition of secondary structure of proteins

(DSSP) programme (Kabsch and Sander, 1983a) was executed in order to assign an

observed secondary structure to each domain included in the benchmark. The DSSP

sequences were calculated from PDB entries; PDB-style files were also downloaded

from the ASTRAL database. As mentioned earlier, the DSSP distinguishes between

eight secondary structure states,namely H = α-helix, B = residue in isolated β-bridge,

E = extended strand, participates in β ladder, G = 3 helix (310 helix), I = 5 helix

(pi helix), T = hydrogen bonded turn, S = bend. The PSIPRED programme (Jones,

1999a), version 2.5, was executed in order to retrieve predicted secondary structures

for the domains participating in the benchmark. NCBI Toolkit Version 6.1 and

blast-2.2.15 were installed and used with PSIPRED. PSIPRED also requires the

installation of a sequence database for which we compiled UniProtKB/Swiss-Prot.

The latter was filtered to remove low-complexity regions (repetative short fragments),

transmembrane regions, and coiled-coil segments, using the pfilt programme that

is included in PSIPRED. The E value threshold for the blastpgp programme used

for PSIPRED was 0.001; otherwise default values were used throughout. The

PSIPRED programme distinguishes between three secondary structure states, i.e.

H = Helix, E = Strand, C = Others. All-against-all pairwise similarity scores were

calculated using the JAligner software (Moustafa, 2007), with gap opening and gap

extension penalties of 10.0 and 0.5, respectively. JAligner is an open source Java

implementation of the Smith-Waterman algorithm for performing local sequence

alignments. Here, it was employed to compute alignments between two proteins

based on their amino acid or secondary structure symbols. The alignments were

scored so that comparatively high scores were given to highly similar alignment
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4.1 Methods

Table 4.2: Scores for different alignment situations. The sequences are toy examples. Scores
have been computed using the JAligner software as explained in the methods.

Sequence 1 Sequence 1 score comment

YYYY AAAA 0 Unrelated sequences (short)

YYYYYYYYYYYY AAAAAAAAAAAA 0 Unrelated sequences (long)

YYYYYY AAA 0 Unrelated sequences (different length)

VDAA VDAD 14 similar sequences (short)

VDAA VDAA 18 identical sequences (short)

VDAAVAKVC VDAAVA 26 identical sequences (different length)

VDAAVAKVC VDADVAKVD 29 similar sequences (long)

VDAAVAKVC VDAAVAKVC 44 identical sequences (long)

regions and low scores otherwise. The raw score for an alignment is calculated by

summing the scores for each aligned position and the scores for gaps. The similarity

matrices used for the sequence alignments and for the secondary structure alignments

were BLOSUM62 and IDENTITY, respectively. The JAligner software uses the

affine gap penalty model, which charges the score -a for the existence of a gap, and

the score -b for each residue in the gap. A gap of k residues thus receives a total

score of -(a+bk) while a gap of length 1 receives the score -(a+b). Table 4.2 shows

some examples that demonstrate how the scores vary for sequences with different

similarities. The score increases with the length for alignments of identical sequences.

The scores were not normalised for length, so if A is longer than B, then A aligned

with A has a higher score than B aligned with B. The scores (base-ten logarithm)

were then used to assemble the SVM input vectors, as described below.

4.1.3 SVM training

We trained six types of SVMs to identify proteins belonging to a superfamily in

the SCOP database. We refer to them as SVM-pairwise+, SVM-pairwise (AA),

SVM-pairwise (DSSP), SVM-pairwise (PSIPRED), SVM-pairwise (AA+DSSP) and

SVM-pairwise (AA+PSIPRED). AA indicates that the method uses amino acid

sequence information, while DSSP and PSIPRED indicate the use of secondary

structure information and the type of secondary structure assignment program used.
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Figure 4.2: Data preparation workflow. A total number of 102 benchmark sets were
prepared. Sequence and secondary structure alignment scores were calculated for each of
the 4019 protein domains participating in the benchmark sets.
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SVM-pairwise+ is a simplified version of SVM-pairwise (AA) that uses a subset of

the all-against-all pairwise similarity scores only (see below). The distance metrics

used when combining sequence and secondary structure similarity scores are as given

in Equation 4.1:

d(i, j) = αd(si, sj) + (1− α)d(ssi, ssj) (4.1)

The similarity between protein i and protein j is measured by summing their

sequence similarity score calculated from the sequences si and sj and their secondary

structure similarity score calculated from the secondary structures ssi and ssj. Setting

α to its extreme values of one and zero give classifiers that are based purely on

sequence alignment scores and secondary structure alignment scores, respectively.

The range of i is over both positive and negative training-sequences. In SVM-

pairwise+ the range of j is over the positive training-sequences only, while for all

other methods scores are computed by computing alignments over both positive and

negative training-sequences. The LIBSVM library (Chih-Chung and Chih-Jen, 2001)

was employed to train and test the classifiers using a Radial Basis Function (RBF)

kernel for binary classification. Default settings were used for the kernel parameters

C and gamma. These were 1 and 1/k respectively where k equals the number of

attributes in the input data. The RBF kernel was used because it performed better

than the other kernel types available in LIBSVM, all of which were tested using

default settings. It is possible that sensitivity can be further boosted if the kernel

parameters are systematically optimised. However scarcity of the training-data

makes tuning the parameters difficult. The positive classes, for instance, contain

only 30 instances on average; to tune parameters properly yet another validation set

is needed, which would reduce the amount of data that is available for estimating the

SVM parameters. We took the base-ten logarithm of all values of the input feature

vector. The feature vectors were normalised before training and a linear scaling
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4.2 Results and discussion

applied to range between -1 and 1. The output of the SVM is a discriminant score

that was used to rank the members of the test set.

4.1.4 Other methods

The areas under the curves (AUCs) were computed using the R package ROCR (Sing

et al., 2005). The same package was used to calculate the average ROC curves

in Figure 4.4 (vertical averaging). Following Handstad et al. (2007) we compared

the significance of the performance differences between the methods by means of p

values. We used two-sided paired t-tests, with a confidence interval of 0.95. Thus, p

≤ 0.025 implies a significant difference between the two methods. Using the more

conservative Wilcoxon test resulted in the same conclusions (results not reported).

4.2 Results and discussion

4.2.1 Overall performance

The results of the experiments are generally in agreement with the expectation that a

method that combines sequence and structure-similarity scores into one kernel should

significantly increase the classifier’s performance: the SVM-pairwise (AA+DSSP),

SVM-pairwise (AA+PSIPRED) methods performed best over all (Figure 4.3, Figure

4.4). The latter methods gave the highest medians - 0.981 and 0.977 (Table 4.4),

and show the smallest inter-quartile range after excluding extreme values, i.e. the

dispersion of the AUCs is small. The low p values of 0.0007 and 0.0009 suggest

that these methods performed significantly better than the sequence-based method

(Table 4.3). The averaged ROC curves (Figure 4.4) demonstrate that these classifiers

mostly achieve higher or equal true positive rates for arbitrary thresholds of the

false positive rate than classifiers that are based on sequence or secondary structure

similarity scores only. These two methods also achieve higher precision for arbitrary
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Figure 4.3: Boxplots comparing the performance of six methods. The methods were
tested for their ability to predict SCOP superfamily memberships. Performance was
measured as AUC (area under the ROC curve). The methods that combine sequence
and secondary structure similarity scores - SVM-pairwise (AA+DSSP) and SVM-pairwise
(AA+PSIPRED) - showed the highest median AUCs.

thresholds of the recall rate (black straight and green dotted line in Figure 4.5).

The two methods which use secondary structures only - SVM-pairwise (DSSP)

and SVM-pairwise (PSIPRED) - showed similar performances (p value: 0.838);

their medians were 0.938 and 0.934 respectively. This indicates that the secondary

structures predicted by the PSIPRED programme were useful for improving the

detection of remote homologues. The sequence-based SVM-pairwise (AA) method

achieved a higher mean than the method using secondary structures only, but again

the difference is not significant (p values: 0.9416 and 0.9799). The comparison of

SVM-pairwise (AA) with SVM-pairwise+ accords with previous observations made

by Liao and Noble (2003), where the former performs slightly better than the latter.

Figure 4.4 shows the relative performance of the classifiers at a relatively low false

positive rate of 0.05. The corresponding mean (averaged over 102 families for each

method) true positive rates were 0.70, 0,70, 0.65, 0.60, 0,60 and 0.48 for SVM-

pairwise (AA+DSSP), SVM-pairwise (AA+PSIPRED), SVM-pairwise (AA), SVM-

pairwise (DSSP), SVM-pairwise (PSIPRED) and SVM-pairwise+ respectively. The
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4.2 Results and discussion

corresponding median true positive rates were 0.86, 0.84, 0.75, 0.62, 0.64 and 0.45 for

SVM-pairwise (AA+DSSP), SVM-pairwise (AA+PSIPRED), SVM-pairwise (AA),

SVM-pairwise (DSSP), SVM-pairwise (PSIPRED) and SVM-pairwise+ respectively.

We also calculated the mean and median true positive rates for a false positive rate

of 0.01. The resulting means were 0.58, 0.58, 0.53, 0.39 and 0.35 and the medians

were 0.66, 0.67, 0.61, 0.35 and 0.26 (reported in the method order as above). Our

methods performed better than recently published results for this data set. The

GPkernel, for instance, achieved a mean 0.902. The best performing method in their

study was the LA-kernel that achieved a mean of 0.919 (Table 4.4).

4.2.2 Performance for SCOP classes

Table 4.5 shows the same results divided into the different SCOP classes. The classes

participating in the benchmark were: All α proteins, All β proteins, α and β proteins

(a/b), α and β proteins (a+b) and Small proteins. The medians and means achieved

by SVM-pairwise (AA+DSSP) and SVM-pairwise (AA+PSIPRED) were the highest

for all classes. In particular, domains belonging to the classes All β proteins and

α and β proteins (a+b) are generally classified more easily by these methods. For

example, the median and mean achieved by SVM-pairwise (AA+DSSP) for the class

All β proteins were 0.963 and 0.900, respectively; the medians calculated by the

other methods ranged from 0.817 to 0.920 and their means ranged from 0.782 to

0.891. The fact that the mean is only slightly higher than the means calculated

by some of the other methods is largely due to two outlier families (Figure 4.6)

which cause the overall mean to drop: b.40.2.1 Bacterial AB5 toxins, B-subunits and

b.40.2.2 Superantigen toxins, N-terminal domain; this is further discussed in the next

section. SVM-pairwise (AA+DSSP) also calculated the highest median and mean

for all the other SCOP classes. Note that domains belonging to the class e: Small

proteins are assigned easily by using the sequence-based method; SVM-pairwise

(AA) achieved a median of 0.995 and mean of 0.991. Therefore the improvement of
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4.2 Results and discussion

Table 4.3: P values indicating the significance of different AUCs. A p value < 0.025
suggests that the difference is significant.

SVM-pairwise SVM-pairwise p-value

method 1 method 2

AA PSIPRED 0.9799

AA DSSP 0.9416

AA AA+DSSP 0.0007

AA AA+PSIPRED 0.0009

AA+DSSP AA+PSIPRED 0.5214

DSSP PSIPRED 0.8381

SVM-pairwise (AA+DSSP) over this method is only slight. Another reason could be

that the secondary structure element L (Loops and irregular elements), as defined

by the DSSP, is the most frequent element in this class. Proteins belonging to this

class might be less structured, and therefore, the method might benefit less from

the structural annotations in this case. It can be concluded that the complementary

methods showed better performances over all and in each individual SCOP class.

The two classes All β proteins and α and β proteins (a+b) benefit the most by using

sequence and secondary structures.

4.2.3 Performance for constituent families

To establish whether the hypothesis that SVM-pairwise (AA+DSSP) performs better

than SVM-pairwise (AA) is universal across all 102 families, a family-centric version

of the data was plotted (Figure 4.6). The majority of the families - the dots in the

plot that have a positive value on the x-axis - display a classification improvement, or

show equal performance. A performance improvement of ≥ 0.1 was observed for the

families: Hemoglobin I (a.1.1.2 ); Phycocyanin-like phycobilisome proteins (a.1.1.3 );

Ferritin (a.25.1.1 ); Galectin (animal S-lectin) (b.29.1.3 ); Pepsin-like (b.50.1.2 );

Pleckstrin-homology domain (b.55.1.1 ); DnaQ-like 3’-5’ exonuclease (c.55.3.5 ); Bac-

terial dinuclear zinc exopeptidases (c.56.5.4 ); and Transferrin (c.94.1.2 ). Discordant

families with a performance drop of ≥ 0.1 are: Bacterial AB5 toxins, B-subunits
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4.2 Results and discussion

(b.40.2.1 ); and Superantigen toxins, N-terminal domain (b.40.2.2 ). We account for

the lower performance of SVM-pairwise (AA+DSSP) with two explanations. First,

it is possible that there is similarity in the secondary structures, but that the Smith-

Waterman algorithm cannot capture this similarity using the IDENTITY matrix.

In order to check this hypothesis, we applied a spectrum kernel which measures

secondary structure similarity based on shared occurrences of fixed-length patterns

in the data. Surprisingly, domains belonging to Bacterial AB5 toxins, B-subunits

(b.40.2.1 ) can be predicted easily by using such a spectrum kernel. A spectrum

kernel with pattern length of 9, 11 and 13 achieved an AUC of 0.983. The AUC

calculated by SVM-pairwise (AA+DSSP) was 0.473 only. However, overall this

method is not very efficient; it achieved a median of 0.827 and a mean of 0.797 only,

and was therefore not longer included in the results and discussions. The second

explanation is that there is no structural similarity, but that the proteins are grouped

for functional reasons. An investigation of Swiss-Prot keywords in the respective

families shows that the keyword Toxin is over-represented. Toxins vary greatly in

purpose and mechanism, and can be highly complex; presumably this makes them

difficult to predict. Intuitively, it is expected that families for which the sequence

similarity scores are relatively low and the secondary structure similarity scores are

relatively high, benefit most from the usage of SVM-pairwise (AA+DSSP). This

hypothesis can be confirmed in several cases; for instance, Hemoglobin I (a.1.1.2 ),

Phycocyanin-like phycobilisome proteins (a.1.1.3 ), and Ferritin (a.25.1.1 ). However,

it is not universally true; for example, Pepsin-like (b.50.1.2 ) also benefits despite a

high level of sequence similarity.

4.2.4 SCOP benchmarks - weighting kernels

We use a weighted sum of two alignment scores to integrate information: the first

representing sequence similarity and the second representing secondary structure

similarity (Equation 4.1). The results discussed in the previous sections are based
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Figure 4.6: Scatterplots showing the relationship between improvement in homology
detection and similarity scores. Each of the 102 points in the scatter diagram corresponds
to a domain family. A performance increase was observed for all families that are located
to the right of the dashed line. Those families for which the performance difference between
amino acid sequence based methods and a complementary method (x-axes) is greater than
0.1 are shown as circles, the areas of which are proportional to the numbers of protein
domains in them. The y-axes show the discrepancy of average similarity scores between
the domains in the positive and the negative test sets.
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4.2 Results and discussion

on experiments that used equal weight on both sets of scores, i.e. α = 0.5. Table 4.5

shows the variation in prediction performance of SVM-pairwise (AA+DSSP) with α,

the differential weighting. We carried out evaluations for only for the highlighted

families in Figure 4.6, i.e. those families that showed a performance difference of

≥ 0.1 compared to SVM-pairwise (AA). It was found that Hemoglobin I (a.1.1.2 )

domains can be predicted more easily by using the complementary classifier. The

AUCs gradually increase with the weight given to the secondary structure similarity

scores; they range from 0.688 to 0.967. The effect of setting different α values

for this family is further illustrated in Figure 4.7. Similar to a.1.1.2, the AUCs

for the families Phycocyanin-like phycobilisome proteins (a.1.1.3 ), DnaQ-like 3’-

5’ exonuclease (c.55.3.5 ) and Transferrin (c.94.1.2 ) also increase with the weight

given on the secondary structure similarity scores; they range from 0.644 to 0.988,

from 0.549 to 0.947 and from 0.691 to 0.948 respectively. The performance does

not always increase if the highest weight is given to the secondary structure score.

Pepsin-like (b.50.1.2 ), for instance, reaches the maximum AUC with an α value of

0.5, i.e. if equal weight is set to sequence and to secondary structure. We observed

previously that proteins belonging to Bacterial AB5 toxins, B-subunits (b.40.2.1 )

and Superantigen toxins, N-terminal domain (b.40.2.2 ) are less clearly attributed

using the complementary classifier. Weighting the kernels did not result in a clear

improvement of performance, indicating that this family is generally difficult to

predict.

From this study it is difficult to conclude which weight should be given to the

sequence and to the secondary structure similarity scores. However, it is clear

intuitively that there is overlapping information in the two scores used in this work -

both sequences and secondary structures describe the same protein. Investigating

how sequences and their corresponding secondary structures may be combined more

effectively in ways other than summing their independently derived alignment scores
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Figure 4.7: Variation in pairwise similarity scores - computed from sequence and predicted
secondary structure alignments- plotted as intensities for three different values of α, on a
subset of the data i.e. from the training set domains corresponding to the family a.1.1.2
(globins). All 31 positive examples and a subset (40) of negative examples are shown. The
top left corners correspond to the target (positive) class of examples, where sequence (and
structure) similarities are high because these are proteins from the same SCOP family.
With predicted secondary structures only (α = 0), structural correlations within a family
decrease, but similarities across proteins from the negative class almost disappear (high
blue). When combining these sources of information (α = 0.6), we see that the scores of
alignment to the negative class can be suppressed, while maintaining high similarities for
proteins within the target family.
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Table 4.5: AUCs calculated by weighting. Setting α to its extreme values of one and zero
give classifiers that are based purely on sequence alignment scores and secondary structure
alignment scores respectively.

α a.1.1.2 a.1.1.3 a.25.1.1 b.29.1.3 b.40.2.1 b.40.2.2 b.50.1.2 b.55.1.1 c.55.3.5 c.56.5.4 c.94.1.2

1.0 0.688 0.644 0.831 0.723 0.628 0.706 0.793 0.811 0.549 0.601 0.691

0.9 0.764 0.737 0.916 0.782 0.595 0.629 0.809 0.846 0.581 0.627 0.733

0.8 0.822 0.809 0.962 0.829 0.569 0.582 0.853 0.890 0.586 0.632 0.757

0.7 0.865 0.865 0.980 0.864 0.532 0.435 0.882 0.925 0.604 0.656 0.761

0.6 0.893 0.902 0.994 0.895 0.510 0.435 0.900 0.957 0.667 0.684 0.780

0.5 0.915 0.935 0.999 0.918 0.475 0.483 0.907 0.977 0.732 0.703 0.812

0.4 0.925 0.962 1.000 0.932 0.574 0.536 0.899 0.987 0.758 0.736 0.858

0.3 0.929 0.973 1.000 0.944 0.606 0.594 0.889 0.989 0.768 0.781 0.883

0.2 0.933 0.982 1.000 0.950 0.646 0.602 0.893 0.990 0.750 0.845 0.902

0.1 0.940 0.986 1.000 0.950 0.706 0.606 0.841 0.985 0.813 0.892 0.924

0.0 0.967 0.988 0.999 0.938 0.597 0.600 0.898 0.966 0.947 0.888 0.948

could extend this work. For example, secondary structures can be used to guide a

sequence alignment algorithm in order to get a more biologically relevant alignment,

in particular when sequence similarity is low. It has been demonstrated, for instance,

that sequence alignments can be improved by limiting the number of gaps in the

regions of secondary structures (Barton and Sternberg, 1987; Gerstein and Levitt,

1996; Lesk et al., 1986). Yet the Smith-Waterman alignment algorithm used in

this work disregards this knowledge. The algorithm also disregards the fact that

mismatches between residues become, in principle, more likely if they correspond to

the same secondary structure. Chapter 7 expands on this issue and gives directions

on how secondary structures could help to guide sequence alignments using weighted

finite state machines (WFSMs)(Cortes and Mohri, 2005). Other ideas for improving

this work includes the use cross validation to set an optimal value for α, monitoring

performance on a hold-out subset of the training data. In the results reported here

on SCOP domains, we did not pursue this due to scarcity of data. Chapter 7 adds

some further critical evaluation of this work.

4.2.5 Comparison to PSI-BLAST

Handstad et al. (2007) used the same benchmark set as we did in this study. The

authors also tested a PSI-BLAST based approach, which is briefly reviewed in the

following. The authors first created a multiple sequence alignment of the positive
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training set. This alignment was given as input to PSI-BLAST, which was then

run for 1 iteration against the test set using standard parameter values. The E

values of the resulting alignments were used to rank the test set. An average ROC

score of 0.575 was reported for the superfamily benchmark, as compared to scores

of 0.797-0.919 for the SVM based methods tested in this study. An important

issue with the PSI-BLAST based approach described above is the relatively small

amount of labelled data used. Through iterative heuristic alignment, PSI-BLAST

can leverage unlabeled data from a large sequence database to obtain a much richer

profile representation of each sequence, but in the method used by Handstad et al.

(2007) only the 4,019 protein domains from SCOP were utilised. It is conceivable

that had they performed an iterative search against all the sequences in UniProtKB,

for example, the search might have found matches outside SCOP via which remote

homologous in the test set could have been linked. Alternatively one could also start

with the test sequences as starting point for the search rather than with the training

sequences, and check if their superfamilies can be successfully detected.

We implemented an improved version of PSI-BLAST that is more sensitive in

detecting remote homologous. For this we downloaded and installed PSI-BLAST

version ncbi-blast-2.2.23. We also downloaded UniProtKB release 2010 06 including

the SwissProt and TrEMBL databases comprising 517,100 and 10,867,798 sequence

entries, respectively. The UniProt sequences were combined with the 4,019 SCOP

benchmark domains, resulting in 11,388,917 sequences. We generated a combined

BLAST database using the makeblastdb command. This database was then searched

with each positive test sequence available in the benchmark set using an iterative

PSI-BLAST search. There were 3,128 positive test sequences in total. Default values

were used for running PSI-PLAST (Matrix: BLOSUM62; gap existence penalty: 11

gap extension penalty: 1). The results were recorded and after the 10th iteration (or

at the point of convergence which happened earlier in few cases) we checked which

SCOP domains were detected with E values < 10. Appendix A shows the resulting
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hits for one of the families. i.e. family ’a.1.1.2’. All hits are listed, except hits to

members of the same family as the query family.

We report the recall rate of such a PSI-BLAST based method for various E value

thresholds based on the following method. For each query sequence, we recorded the

superfamily of the best hit. We counted a true positive if it matched the superfamily

of the query sequence, and a false negative otherwise. Figure 4.8 shows the recall

rate that was achieved for various E value cut-offs. If all hits are taken into account

a recall rate of 0.57 is achieved. If a more restrictive E value cut-off of 0.01 or 0.0001

are used, the recall rate drops to 0.54 and 0.51, respectively. The effect of further

reducing the E value cut-off on the recall rate is illustrated in Figure 4.8. Additional

experiments would have to be performed to determine which E value cut-off should

be used to detect similarities to remote homologues. Even though it is unclear how

to count the false positives in such a method, it is obvious that restrictive cut-offs

yield the fewest false positives, improving precision, but reducing the recall rate. A

direct comparison to the family-based discrimination methods above is difficult since

the method described is not a classification approach in which positive and negative

classes were predicted in a rank-based manner. In Chapter 4.2.1 we reported a true

positive rate (recall) of 0.58 at a false positive rate of 0.01 for the two best performing

methods of SVM-pairwise(AA+DSSP) and SVM-pairwise(AA+PSIPRED). If we

assume an equally low false positive rate for the PSI-BLAST result, taking into

account all hits up to an E value threshold of 10, then this method achieves a similar

recall rate of 0.57.
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Figure 4.8: The recall (sensitivity) of the PSI-BLAST based method is shown for various
E value cut-offs. For each of the 3,128 query sequences, we recorded the superfamily of the
best BLAST hit outside the query family. We counted a true positive if this superfamily
matched the superfamily of the query sequence, and a false negative otherwise.
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Chapter 5

Tissue Specificity of Gene

Expression is Correlated with the

Sequence and Secondary Structure

of Resulting Protein Product

The successful prediction of protein remote homologues through combining sequence

and secondary structure similarity scores in a discriminative setting prompted us

to investigate a similar method to predict tissue specificity of gene expression, as

introduced in Chapter 3.2. Two data sets were prepared for this purpose. These are

explained in the following paragraphs, followed by other methods and the results

and discussion of this topic.
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5.1 Methods

5.1.1 Data collection

5.1.1.1 Fruit fly

Pre-processed data files were downloaded from the FlyAtlas website (Chintapalli

et al., 2007). The data consist of probe expression levels using Drosophila Genome 2.0

Arrays. This comprises whole-fly data, and data from 17 tissues dissected from the

adult fruit fly. The tissues investigated are the brain, head, eye, thoracicoabdominal

ganglion, crop, midgut, hindgut, ovary, testis, accessory gland, carcass, heart, salivary

gland, tubule, fat body, spermatheca mated and spermatheca virgin. Genes that

were not expressed in any of the tissues were removed from the data set, leaving

14,171 present probe sets. A gene was considered expressed if it was called present

in at least 3 of the 4 replicates. The 14,171 Affymetrix IDs were mapped to 11,804

FlyBase gene IDs. For this, all individual probes were mapped against all known

and predicted transcripts of the Drosophila melanogaster genome release version

5.4. Probes that mapped to more than one gene in the genome and probes that did

not map to any known or predicted gene in the genome were excluded from further

analysis.

Protein sequences for the 11,804 present genes were downloaded from the Ensembl

database (Ensembl 55, BDGP5.4). These are uniquely identified via the FlyBase

transcript IDs. In total, 8,598 FlyBase gene IDs could be mapped to exactly one

FlyBase transcript ID, while 3,206 IDs were mapped to more than one transcript,

resulting in a total of 18,133 protein sequences. If several transcripts IDs mapped to

the same sequence, one of the transcripts was removed, resulting in 15,560 unique

sequences for the final data set.

The PSIPRED programme (Jones, 1999a), version 2.61, was executed in order

to retrieve predicted secondary structures for the proteins participating in the

experiment. NCBI Toolkit and Blast (blast-2.2.18) (Altschul et al., 1990) were
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installed and used with PSIPRED. The PSIPRED programme also requires the

installation of a sequence database for which we compiled UniProtKB/Swiss-Prot

(version 14.9) (The UniProt Consortium, 2010). As before, the latter was filtered

to remove low-complexity regions, transmembrane regions, and coiled-coil segments,

using the pfilt programme that is included in PSIPRED. The E value threshold for

the blastpgp programme used for PSIPRED was 0.001; otherwise default values were

used throughout. The PSIPRED programme distinguishes between three secondary

structure states, i.e., H = Helix, E = Strand and C = Others.

The number of exons, the cDNA, CDS, 5’UTR length and 3’UTR length were

downloaded from the Ensembl BioMart for each transcript.

5.1.1.2 Mouse

The GNF mouse expression atlas (Su et al., 2004) was downloaded from its website

(http://biogps.gnf.org/downloads/). The GEO code for this data set is GSE1133. We

also downloaded the chip annotation file from the same site (GEO platform accession:

GPL1073). Affy IDs were mapped to Entrez Gene GeneIDs. Rows where an affy ID

corresponded to none or several GeneIDs were disregarded. Rows that corresponded

to the same GeneIDs were merged and the mean value taken. This resulted in a data

set with 21,900 genes. Protein sequences corresponding to these IDs were downloaded

from UniProtKB using a Java library named UniProtJAPI (Patient et al., 2008),

whereas fragments were excluded. The final data set consisted of 11,356 genes. If

several Entrez Gene GeneIDs mapped to the same sequence, one of the genes was

removed, resulting in 11,352 unique sequences for the final data set used for the SVM

training.

As above, PSIPRED was executed to predict secondary structures for each protein

sequence.

This downloaded set comprised data from 61 mouse tissues. The tissues included

B220 B cells, CD4 T cells, CD8 T cells, adipose tissue, adrenalgland, amygdala,
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bladder, blastocysts, bone, bonemarrow, brown fat, cerebellum, cerebral cortex,

digits, dorsal root ganglia, dorsal striatum, embryo day 10.5, embryo day 6.5, embryo

day 7.5, embryo day 8.5, embryo day 9.5, epidermis, fertilized egg, frontal cortex,

heart, hippocampus, hypothalamus, kidney, large intestine, liver, lung, lymph node,

mammary gland, medial olfactory epithelium, olfactory bulb, oocyte, ovary, pancreas,

pituitary, placenta, preoptic, prostate, retina, salivary gland, skeletal muscle, small

intestine, snout epidermis, spinal cord lower, spinal cord upper, spleen, stomach,

substantia nigra, testis, thymus, thyroid, tongue, trachea, trigeminal, umbilical cord,

uterus and the vomeralnasal organ.

The number of exons, the cDNA, CDS, 5’UTR length and 3’UTR length were

downloaded from the Ensembl BioMart for each Entrez Gene GeneID.

5.1.2 Ranking genes according to their tissue specificity

We calculated the degree of tissue specificity for each of the 11,804 fruit fly genes

and 21,900 mouse genes by measuring the degree by which a given gene’s expression

profile differed from a ubiquitous expression profile. We used the gene specificity

index Si to measure the tissue specificity of each gene. The formula used to calculate

the gene specificity is based on an adaptation of Shannon’s information theory to the

transcriptome framework, as described in Martinez et al. (Martinez and Reyes-Valdes,

2008). First, the gene expression profiles were converted into frequency matrices

by calculating the relative frequency pij for the ith gene (i = 1,2, ..., g) in the jth

tissue (j = 1, 2, ..., t). The average frequency pi of the ith gene among tissues of an

organism is defined by

pi =
1

t

t∑

j=1

pij (5.1)

Si =
1

t

(
t∑

j=1

pij

pi
log2

pij

pi

)
(5.2)

76



5.1 Methods

Ci = log2
t

i
(5.3)

where t is the number of tissues examined in each organism (Equation 5.1). The

gene specificity then is defined as the information that its expression provides about

the identity of the source tissue (Equation 5.2).

The Si values range from 0 to log2(t), with higher values indicating higher tissue

specificities. A minimum of 0 is achieved if the gene is expressed at the same level

in all tissues, and the maximum of log2(17) = 4.09 in the fruit fly, and log2(61) =

5.93 in the mouse, is achieved if the gene is expressed in only one tissue. Examples

of Si values for genes with various expression patterns are shown in Figure 5.1. We

used Equation 5.3 to define 17 bins for the fruit fly and 61 bins for the mouse, with

each bin defining a group of genes with a certain degree of tissue specificity. Bin Ci

(i = 1,2, ... , t) defines the central Si value associated with a group of genes. The

differences between two Ci values of two neighbouring bins were divided in half so

that the upper 50% of Si values was attributed to the first bin and the lower 50%

to the second bin. Figure 5.2 summarises how many genes were attributed to the

respective bins in both organisms. Note that bin 1 contains genes that are expressed

in one tissue only, whereas bin 17 in the fruit fly, and bin 61 in the mouse, contain

genes that are expressed in all tissues. Note also that the distribution to the bins

could have been done differently. For example, we could have chosen to distribute an

equal number of genes to each bin. We used the formula above because it separates

the data into the bins observed after visual inspection of the gene-specificity against

the mean expression signal. Using this formula results in a class imbalance for some

of the bins. For some of the experiments, we chose the n-top an n-bottom genes from

the sorted list of gene specificities, in order to reduce dependency on this imbalance.

For evaluation purposes we compared and contrasted the ranked gene list cal-

culated using Shannon’s information theory with the gene list published in Suppl.
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Figure 5.1: Example gene specificities. The gene specificity values (legend boxes) are
shown for 4 fruit fly genes with various expression profiles in 17 tissues. Genes with a
ubiquitous expression profile have gene specificity values close to 0, while genes with specific
profiles have gene specificity values close to 4. (a. = accessory , t. = thoracicoabdominal ,
sp.= spermatheca)

78



5.1 Methods

tables S1 and S2 of FlyAtlas to address the differences and similarities of these gene

lists. S1 lists 45 highly specific genes, with the five top ranking genes included for

each tissue. These represent genes present in all four replicates in that tissue and

absent in all four replicates everywhere else. The genes also have the highest signals

possible compared with other tissues. Similarly, a list of 50 genes was published in S2

containing genes that are ubiquitously expressed. For this, the mean expression value

for each tissue and the standard deviation of all means were calculated for each probe

set. The resulting standard deviations were divided by the mean of all means. The

resulting list was sorted and the top 50 genes were selected. The Shannon’s entropy

method is largely in agreement with the selection procedure explained above (median

Si for S1= 3.825, median Si for S2= 0.049), except for some genes that are classified

highly tissue-specific by FlyAtlas but show a midrange pattern of expression by the

method used in this work ( Si < 2 for: FBgn0029090, FBgn0033419, FBgn0033702,

FBgn0038526, FBgn0052815 ). These correspond to lowly expressed genes that are

detected in only one tissue using present/absent counts. An important advantage

of using Shannon’s entropy formula is that it also considers potential biases in the

expression levels across the tissues that express the gene (Schug et al., 2005). The Si

value for the disparate genes is relatively low because the expression levels measured

for these genes are similar in most tissues. Another important advantage of using

Shannon’s entropy formula is that it not only clearly separates the tissue-specific from

ubiquitously expressed genes, but also allows us to distinguish between genes that

show mid-range expression. Furthermore, using a single measurement for defining

gene specificity makes it easier to globally analyse and inspect the properties of

genes assigned to a specific category. Thus, the ranked gene list presented here is

more detailed than previously presented, and a clearly defined statistical framework

is used that has previously been proven valuable. The bins containing genes with

various degrees of tissue specificity overlap with previously identified categories for

tissue-specific (De Ferrari and Aitken, 2006) and housekeeping genes (Farre et al.,
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2007). Many significantly upregulated terms in the ubiquitous bins relate to genes

whose products are involved in RNA processing. Overall, the tissue-specific genes

have a more varied set of functions.

5.1.3 Sequence alignments and similarity scores

All-against-all pairwise similarity scores were calculated using the R package Biostrings

(Pages et al., 2009), with default gap opening and gap extension penalties of 10.0

and 4, respectively. The Smith-Waterman algorithm for performing local sequence

alignments was chosen in the settings. The software was employed to compute

alignments between two proteins, based on their amino acid or secondary struc-

ture symbols. The alignments were scored so that comparatively high scores were

given to highly similar alignment regions and low scores were given otherwise.

The similarity matrices used for the sequence alignments and for the secondary

structure alignments were BLOSUM62 and IDENTITY, respectively. The scores

were then used to assemble the SVM input vectors. Note that computing all-

against-all sequence alignments is computationally expensive. For the mouse, we

computed 2 ∗ (11,356×11,356
2 + 11,356

2 ) = 128, 970, 092 alignments while we computed

2 ∗ (18,133∗18,133
2 + 18,133

2 ) = 328, 823, 820 alignments alignments for the fruit fly.

5.1.4 SVM training

The R package e1071 (Dimitriadou et al., 2009) was employed to train and test the

classifiers, using a polynomial kernel for binary classification. Model parameters were

chosen by searching possible values and identifying those that minimised prediction

errors on the training data. The polynomial kernel was used because it performed

slightly better than did the other kernel types available in e1071 (linear, sigmoid,

rbf) when tested on a small subset of the data.

The models were trained 100 times on a randomly selected 90% of the data and
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A) Fruit fly B) MouseSheet3

Page 4

Min Max

1 3.59 4.09 624 703 676

2 2.79 3.59 1008 1166 1129

3 2.29 2.79 529 645 612

4 1.93 2.29 498 714 657

5 1.63 1.93 430 635 556

6 1.39 1.63 416 620 542

7 1.18 1.39 418 683 603

8 1.00 1.18 495 739 639

9 0.84 1.00 482 830 687

10 0.70 0.84 486 843 716

11 0.57 0.70 589 984 840

12 0.44 0.57 685 1251 1020

13 0.33 0.44 928 1558 1309

14 0.23 0.33 1247 2192 1801

15 0.13 0.23 1560 2501 2058

16 0.04 0.13 1359 1994 1658

17 0.00 0.04 50 75 57

all 1-17 0.00 4.09 11804 18133 15560

a) Bin 

Name

b) Gene specificity value

 (S
i
) c) Number 

of genes

d) Number

 of Proteins

(all)

e) Number

 of Proteins

(unique)

T
is

su
e-

sp
ec

if
ic
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y
 i

n
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se

s 
 !

Sheet5

Page 6

Min Max

1 5.43 5.93 72 39 39

2 4.64 5.43 212 121 121

3 4.14 4.64 184 109 109

4 3.77 4.14 160 97 97

5 3.48 3.77 159 95 95

6 3.23 3.48 159 98 97

7 3.03 3.23 129 79 79

8 2.85 3.03 136 83 83

9 2.68 2.85 127 71 71

10 2.54 2.68 141 92 92

11 2.41 2.54 134 79 79

12 2.29 2.41 137 74 74

13 2.18 2.29 144 83 83

14 2.07 2.18 118 66 66

15 1.98 2.07 154 85 85

16 1.89 1.98 148 88 88

17 1.80 1.89 136 82 82

18 1.72 1.80 148 86 86

19 1.65 1.72 137 73 73

20 1.57 1.65 141 79 79

21 1.50 1.57 138 85 85

22 1.44 1.50 150 83 83

23 1.38 1.44 128 70 70

24 1.32 1.38 147 96 96

25 1.26 1.32 152 90 90

26 1.20 1.26 132 77 77

27 1.15 1.20 141 76 76

28 1.10 1.15 151 80 80

29 1.05 1.10 170 96 96

30 1.00 1.05 184 113 113

31 0.95 1.00 148 92 92

32 0.91 0.95 172 94 94

33 0.86 0.91 173 100 100

34 0.82 0.86 189 115 115

35 0.78 0.82 184 95 95

36 0.74 0.78 176 92 92

37 0.70 0.74 204 134 134

38 0.66 0.70 177 105 105

39 0.63 0.66 204 113 113

40 0.59 0.63 218 132 132

41 0.56 0.59 234 143 143

42 0.52 0.56 263 140 140

43 0.49 0.52 262 151 151

44 0.46 0.49 308 181 181

45 0.42 0.46 297 168 168

46 0.39 0.42 318 180 180

47 0.36 0.39 343 197 197

48 0.33 0.36 340 204 204

49 0.30 0.33 412 220 220

50 0.27 0.30 454 268 268

51 0.24 0.27 501 289 289

52 0.22 0.24 516 277 277

53 0.19 0.22 592 347 347

54 0.16 0.19 742 394 394

55 0.14 0.16 824 423 423

56 0.11 0.14 1042 537 537

57 0.09 0.11 1358 635 635

58 0.06 0.09 2131 971 971

59 0.04 0.06 3514 1458 1458

60 0.01 0.04 1235 556 556

61 0.00 0.01 0 0 0

all 1-61 0.00 5.93 21900 11356 11355

a) Bin

Name

b) Gene specificity value

 (S
i
) c) Number 

Genes

d) Number 

Proteins

e) Number 

Proteins 

(unique)

T
is

su
e-

sp
ec

if
ic

it
y

 i
n

cr
ea

se
s 

 !

C)

C10 = log2

_  17

10 = 0.77

C11 = log2
_  17

11
= 0.63

Bin10lower = 0.77 +
2

0.77 - 0.92
= 0.70

Equation 5.3}

Example bin calculation:

upper/lower threshold for bin 10

D)
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Figure 5.2: Splitting fruit fly and mouse genes into bins according to their tissue
specificity values (Si). The genes are grouped into 17 (fruit fly) and 61 (mouse) different
bins as described in the methods section using Equation 5.3. Tissue specificity is highest
for bin 1 and lowest for bin 17 (fruit fly) and bin 61 (mouse). a) Bin names used in
the manuscript b) The Si cutoffs used to assemble the respective bins c) The number of
FlyAtlas genes assigned to the bins d) The number of proteins assigned to the bins e) The
unique number of proteins assigned to the bins (for the mouse these numbers are almost
identical with the numbers in d). A) Fruit fly B) Mouse C) Example on how the upper Si

threshold for bin 10 was calculated for the fruit fly D) Boxplots showing the gene specificity
distribution of all genes in both organisms.
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performance was tested on the remaining 10% of the data. The resulting ROC curves

for each run were combined using vertical averaging.

5.1.5 SVM input vectors

The SVM input vectors assembled are described in the following subsections. Their

predictive performances were compared using mean AUCs which are given a a later

section.

5.1.5.1 Composition of amino acid residues

Each protein in the training data set of proteins was characterised by a vector (i = 1,

..., 21) representing the amino acid composition, together with a positive or negative

label for discriminating the two different groups (e.g. tissue-specific and broadly

expressed genes). The vector had 20 elements for the amino acid composition since

there are 20 possible amino acids. Amino acid composition is defined as the ratio

between the number of occurrences of a specific amino acid residue and the total

number of residues in a protein.

5.1.5.2 Composition of secondary structure symbols

Each protein in the training data set of proteins was characterised by a vector (i =

1, ..., 4) representing the secondary structure element composition, together with a

positive or negative discrimination label. The vector had 3 elements for the secondary

structure composition since there are 3 states predicted by PSIPRED. Secondary

structure composition is defined as the ratio between the number of occurrences of a

specific secondary structure state and the total number of residues in a protein.

5.1.5.3 Smith-Waterman similarity scores

Each protein in the training data set of n proteins was characterised by a vector (i

= 1, ..., n+1) representing the Smith-Waterman similarity scores computed against
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all other proteins in the training data set, together with a positive or negative

discrimination label.

The sequence based classifier was trained on sequence similarity scores, while

the secondary structure based classifier was trained on secondary structure sequence

similarity scores. For the combined classifier, each protein in the training data set

of n proteins was characterised by a vector (i = 1, ..., 2× n+1) representing the

Smith-Waterman similarity scores computed against all other proteins in the training

data set, using both the amino acid sequences and secondary structure sequences,

together with a positive or negative discrimination label.

5.1.5.4 Genomic features

Each protein in the training data set of proteins was characterised by a vector

representing the genomic features, together with a positive or negative discrimination

label.

The attributes used for each transcript were: 1. protein length (log), 2. number

of exons, 3. presence of S/MAR in the 5’ region (binary), 4. presence of S/MAR in

the 3’ region (binary), 5. cDNA length (log), 6. CDS length (log), 7. 5’UTR length

(log), 8. 3’UTR length (log), 9. the number of CpG islands, 10. the CpG content

and 11. the mreps period and the mreps exponent.

If a value was not available for a transcript, it was set to 0.

5.1.5.5 Combined input vector

The attributes used for each transcript were as described above for the genomic

features. In addition, the percentage of each of the 20 amino acids was used.

5.1.6 Other methods

The areas under the curves (AUCs) were computed using the R package ROCR (Sing

et al., 2005). The same package was used to calculate the average ROC curves based
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on vertical averaging.

SSRs were computed using the mreps program (Kolpakov et al., 2003) for the

5’UTRs. A minimum length of 10 was required for the sequence repeats, otherwise

default values were used. A Java program was written to parse the mreps output.

The mreps period and exponent were used in the SVMs.

The program newcpgreport was used to detect CpG islands in the sequences

1,000 bp upstream of the transcription start sites. Default settings were used, i.e.,

the window size was 100, the shift increment was 1, the minimum length 200,

the minimum ratio between observed and expected CpG content was 0.6, and the

minimum percentage 50%. A Java program was written to parse the number of CpG

islands in each sequence.

The CpG bias of a sequence is defined as the ratio of the observed frequency of

CpG dinucleotides divided by their expected frequency (Equation 2.1). The expected

number of CpG dinucleotides is the product of the frequency of C and G nucleotides

in a given sequence. A Java program was written to calculate the number of CpG

dinucleotides.

Genomic features, such as cDNA length, etc., were downloaded from Ensembl

using BioMart.

The EMBOSS program marscan was executed to find MAR/SAR sites in nucleic

sequences (here 1,500 upstream). A Java program was written to extract the number

of MAR sites identified.

All Affymetrix arrays taken from Zid et al. (2009) were normalised using gcrma

background correction to correct for non-specific binding, followed by a quantiles

and loess normalisation using the corresponding Bioconductor packages.
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5.2 Results

5.2.1 Prediction performances

Prediction performances for all classifiers tested are summarised in Tables 5.4-5.7.

Median AUCs are presented in Tables 5.4 and 5.6 while mean AUCs are presented

in Tables 5.5 and 5.7. The mean AUCs are presented with a confidence interval to

give an indication of unreliability.

5.2.1.1 Protein sequence-based classifier

First, we studied the ability of SVMs to discriminate the various tissue specificities

of 17 groups of fruit fly genes and 61 groups of mouse genes, based on the amino

acid content of their protein products. Columns 3 in tables 5.4 and 5.6 summarise

the AUCs obtained for discriminating the tissue-specific bin 1 from bins 1-17 in the

fruit fly, and bins 1-61 in the mouse, based on frequency counts of amino acids in

the transcripts. All groups of genes with various tissue specificity showed better than

random predictions (AUCs fruit fly = 0.541-0.795, AUCs mouse = 0.596-0.942). The

discriminating power increased with the bin number, i.e., the negative training set

number, in most cases (black dots in Figure 5.3). In the fruit fly, the performance

was best for discriminating bin 1 and bin 14 (AUC= 0.795), and worst for genes

belonging to the same bin i.e., bin 1 (AUC= 0.541). In the mouse, the performance

was best for discriminating bin 1 and bin 41 (AUC= 0.942), and worst for genes

belonging to the same bin i.e. bin 1 (AUC= 0.596).

Next, we investigated whether the use of Smith-Waterman sequence similarity

scores, rather than simple amino acid counts, improves the ability of the SVMs to

discriminate between tissue-specific and broadly expressed genes. Pairwise mean

homologies within and between tissue specificity bins are presented for both organisms

in Figures B.1, B.2 and B.3 (Appendix B).

Overall, the classifiers using Smith-Waterman similarity scores had more discrimi-
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Figure 5.3: Discriminating tissue-specific genes from broadly expressed genes in
the fruit fly and in the mouse. Prediction performances of SVMs for discriminating
tissue-specific genes (bin 1 ) from tissue-specific and broadly expressed genes (bins 1-17
in the fruit fly and bins 1-61 in the mouse) based on sequences, predicted secondary
structures and genomic features. The prediction performances were measured as median
AUC averaged over 100 runs. AA% and SS% indicate that the input vector for the SVM
contained amino acid percentages and the secondary structure symbol percentages for each
gene. AA is based on Smith-Waterman similarity scores of the protein sequences, SS is
based on Smith-Waterman similarity scores of the secondary structures and AA+SS is a
combination of the latter two. GF indicates that genomic features where used to assemble
the input vector. a) results for the fruit fly b) results for the mouse.
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native power than did the classifiers based on the amino acid content (blue and black

dots in Figure 5.3). We observed an increase of 3.2% and 4.1% in the mean AUCs

for the fruit fly and mouse, respectively. A total of 15 out of the 17 benchmarks

showed higher AUCs using this method in the fruit fly (Table 5.4) while we observed

an improvement in 46 out of 60 benchmarks in the mouse (Table 5.6). However, the

additional benefits of these became negligible when compared to the computational

expense added by calculating all-versus-all Smith-Waterman similarity scores. For

this reason, in many of the classifiers below, we used only the amino acid counts.

Because the distribution of genes to groups using Equation 5.3 results in an

imbalance in the number of genes attributed to classes, we looked for a different way

to build the test and training sets. To do this, we used the ordered list of genes

and took the most tissue-specific and most broadly expressed genes, starting with

at least 30 in the positive and negative training sets, up to 5,000 transcripts (i.e.,

10,000 in total if considering both groups). We ran classifiers for different numbers

of genes, and determined the best classifier using amino acid counts.

Figures 5.4a and c summarise the results of these experiments for both organisms.

It shows that the prediction performance decreases with the number of genes added

to the training sets. This was not surprising since intuitively it should be more

difficult to discriminate genes that have more similar gene specificity values. The

best discriminative power was found if the 60 most specific genes were compared to

the 60 most broadly expressed genes in the fruit fly (AUC = 0.833), while 30 was

the best number of genes in the mouse (AUC=1). Figure B.4 lists the gene names

and descriptions for the 30 most tissue-specific and 30 most broadly expressed genes

responsible for the AUC=1 result in the mouse. There is an increased occurrence

of ’olfactory receptor genes’ in the list of broadly expressed genes (5 genes), while

several instances of the ’kallikrein 1-related peptidase’ (5 genes), ’crystallin’ (2 genes)

and ’carcinoembryonic antigen-related cell adhesion molecule’ (2 genes) might bias

the list of tissue-specific genes. Figure B.5 presents the amino acid contents of these
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genes. These were used as input for the classifier that achieved the AUC=1 result. It

is not immediately obvious which amino acids separated clearly between the classes,

even though some tendencies are apparent. For example, the amino acid asparagine

(N) appears to be more frequent in the list of tissue-specific genes. A more detailed

analysis of amino acid content in the different classes is presented below. Figures

B.6 and B.7 present the all-against-all sequence similarity scores calculated for these

60 genes.

We were also interested in the prediction performance of a model that is trained

on genes from one of the two organisms and tested on the other. Figure 5.5a shows

the results of a model that was built using mouse genes, and tested on fly genes

while Figure 5.5b shows the results after swapping the organisms. The classifier that

was trained on mouse genes and tested on fly genes performed best when 65 genes

were used to train and test the model (AUC of 0.711). In contrast, the classifier that

was trained on fly genes and tested on mouse genes performed best when 15 genes

were used to train and test the model (AUC of 0.751). The models trained on mouse

genes overall performed better (median AUC = 0.596) than the models trained on

fly genes (median AUC = 0.537) when averaged over all benchmark sets tested (99

benchmark sets in which the number of genes ranged from 15 to 500).

5.2.1.2 Secondary structure-based classifier

The classifier based on secondary structure symbols was generally poor. The average

AUCs were 0.515 and 0.604 for the fruit fly and mouse, respectively. Again, the full

results are given in tables 5.4, 5.6 and Figure 5.3 (green dots). The use of secondary

structure similarity scores as input vectors for the SVMs resulted in an increase in

AUCs compared to those obtained using the secondary structure symbols alone (see

red dots in Figure 5.3). The average AUCs were 0.674 and 0.751 for the fruit fly and

mouse, respectively. Compared to the classifiers using amino acid similarity scores,

no performance improvement could by gained for any of the benchmarks in either
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Figure 5.4: Relationship between the number of genes in the training set and
the prediction performance. The n-top and n-bottom genes from the ordered list of
genes, according to their gene specificities, were used as positive and negative training
sets. The x-axes indicate how many genes have been used in the positive and the negative
training set. The prediction performance is plotted in the y-axis and is measured as median
AUC averaged over 100 runs. The classifiers were based on a+b) Amino acid percentage.
c+d) secondary structure symbol percentage.
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Figure 5.5: Relationship between the number of genes in the training set and
the prediction performance. The n-top and n-bottom genes from the ordered list of
genes, according to their gene specificities, were used as positive and negative training
sets. The x-axes indicate how many genes have been used in the positive and the negative
training set. The prediction performance is plotted in the y-axis and is measured as AUC.
The classifiers were trained on a) mouse genes (tested on fly genes) b) fly genes (tested on
mouse genes).
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organism.

We investigated how the prediction performance changes with the number of

genes attributed to the positive and negative training sets taken from the bottom

and top of the ordered list of gene specificities. Figures 5.4b and d summarise the

results of these experiments for both organisms. Prediction performance decreases

with the number of genes added to the training sets. For the secondary structure

similarity scores, the best number of genes was 30 for the fruit fly (AUC = 0.889)

and 60 for the mouse (AUC = 0.778).

5.2.1.3 Combined sequence and secondary structure-based classifier

Combining sequence and structure similarity scores did not increase the performance

of the sequence based classifier (yellow dots in Figure 5.3). In the fruit fly, none of

the benchmark showed any performance improvement, except if genes belonging to

bin 1 were tested against themselves, which was likely to represent a random effect.

In the mouse, only 7 out of the 60 benchmark could be improved (bin 1 against bins

2, 6, 9, 10, 18, 22 and 24 ).

5.2.1.4 Classifier based on genomic features

Next, we investigated the influence on classifier performance of other features that

had previously been found to discriminate between tissue-specific and housekeeping

genes in human, mouse and, to some extent, fruit fly samples. The prediction

performances for the bin experiments ranged from 0.579-0.849 in the fruit fly and

0.477-0.927 in the mouse. The performance of this classifier was roughly in the range

of the classifier that used amino acid percentages (brown dots in Figure 5.3).

5.2.1.5 Combining sequence-based classifier with genomic features

We also investigated if combining amino acid percentages and the genomic features

results in an improvement in the classifier performance. The prediction performances
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for the bin experiments ranged from 0.473-0.925 in the fruit fly and 0.569-0.968 in

the mouse. In the fruit fly, this was the best classifier tested for all benchmarks,

while in the mouse, it was the best classifier for 41 groups of the 61 groups tested

(brown dots in Figure 5.3). This amounts to a 13.86% and 6.32% increase in average

AUCs for the fruit fly and mouse, respectively, if compared to the classifier based on

amino acid percentages only, and to a 5.69% and 9.25% increase compared to the

classifiers based on genomic features only.

5.2.2 Relation to other work

De Ferrari and Aitken (2006) trained a Naive Bayes classifier to discriminate between

housekeeping and tissue-specific genes in human, mouse and fruit fly data. We

downloaded the supplementary material for the fruit fly and mouse experiments from

this study to compare the data set with ours and test our SVM method on these data.

For the fruit fly, data for 20,016 transcripts were downloaded. Of these, 80 were

labelled housekeeping while 412 were labelled tissue-specific. A Naive Bayes classifier

was trained by the authors of the study to classify transcripts in the benchmark sets

and also the remaining transcripts. The resulting probabilities, for a transcript to be

housekeeping, were included in the supplementary data files. First, we examined the

gene specificity of the training examples. The median gene specificity values for the

80 housekeeping and 412 tissue-specific transcripts, using the Si values calculated

from the FlyAtlas data, were 0.082 and 0.400, respectively (Figure 5.6a, first two

boxes). While the housekeeping genes have low gene specificity values indicating

broad expression, the genes labelled tissue-specific in this study, show a mid-range

pattern of expression rather than a clear tissue-specific expression. The tissue-specific

genes were originally identified by mapping homologues to human tissue-specific

genes that in turn have been identified by various sources. Our data shows, that these

appear not to be truly tissue-specifically expressed in the fruit fly. For instance, the

gene FBgn0003071 (Phosphofructokinase; mapped to the transcripts CG4001-RA,
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CG4001-RB, CG4001-RC) that is involved in glycolysis, is expressed in all tissues

examined by FlyAtlas, yet the transcripts were used as tissue-specific examples in

the work above. It should be noted that our gene specificity values are based on

genes, while the authors worked with gene transcripts. However, the gene has three

annotated transcripts and it is unlikely that all three of them are tissue-specific

transcripts.

Second, we investigated the gene specificity values for transcripts that were

predicted to be housekeeping or tissue-specific (Figure 5.6a, boxes 2-10). Several

thresholds were used to identify the class for a transcript (ranging from 50% to 95%

probability). Housekeeping genes could be reliably identified using a probability

threshold > 90%. However, below that threshold many genes with restricted expres-

sion were predicted to be housekeeping. Tissue-specific genes could not be identified

reliably at all thresholds used according to the gene specificity values Si calculated

from FlyAtlas. However, it should be noted that the downloaded supplementary data

was partly inconsistent with the published paper. For instance, 3,410 transcripts were

predicted to be housekeeping using a probability threshold >50% in the main paper,

while in the supplementary data only 1,081 transcript were labelled housekeeping

when using the same threshold. It was unclear which data was the correct one.

Similar results were observed for the mouse (Figure 5.6b). The housekeeping

transcripts had low Si values, while the tissue-specific genes showed midrange patterns

of expression. Many outliers were present when investigating the gene specificities of

the predicted class labels. Again, there was an inconsistency with the downloaded

data. The lines in the downloaded data set for the mouse did not add up to the

numbers presented in the paper, and is incomplete. Therefore only the fruit fly data

set was further investigated in the following for which all the training examples were

available for download.

We mapped the 80 housekeeping and 412 tissue-specific transcripts from the

fruit fly data set to the sequence data and genomic features defined in previous
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paragraphs. Out of the 412 tissue-specific transcripts only 392 transcripts could

be mapped to these data, hence a few training data examples were lost during the

mapping. Next, we trained several SVMs to discriminate between the two classes

of genes. Figure 5.7 shows the prediction performance of several SVM classifiers

trained on three different sets of features: (1) on the amino acid counts in the protein

sequences as explained in chapter 5.1.5.1 (2) on the amino acid counts in the protein

sequences and various genomic features as explained in chapter 5.1.5.4 (3) on the

features used by De Ferrari and Aitken (2006) (reviewed in chapter 3.2), excluding

the percentage of GO terms. As explained before, we do not think that functional

characteristics should be used to train the classifier and therefore were re-trained the

classifier without that information and used it for comparison reasons. The figure

also indicates the performance of the Naive Bayes classifier on the same data-set as

reported by the authors using the full set of features (4). We compared the TPR at a

constant FPR of 20% of all four classifiers. The TPRs were 85%, 93%, 62% and 77%

for classifier 1-4, respectively. The SVM classifier based on amino acid percentages

and genomic features performed best.

5.2.3 Additional information on features that discriminate

between the classes

5.2.3.1 Amino acids with best discriminative power

Some amino acids are not independent and do not provide any additional advantage

when evaluated together. A forward feature selection (Miller, 1990) was used to

select the amino acid combinations which gave most discriminative power between

the test set and the training set for the 250 most tissue-specific and 250 most

ubiquitously expressed genes. The number 250 was chosen because we felt it was

a good compromise between the number of genes in the training and test sets

and the computational expense, as well as the degree of tissue specificity, which
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Figure 5.6: Gene specificity of housekeeping (HK) and tissue-specific (TS) genes
(transcripts) defined by De Ferrari and Aitken (2006). The first two boxes in each
figure correspond to the genes (transcripts) in the training-set. All other boxes show the
gene specificities of transcripts predicted to be HK or TS by the Naive Bayes classifier at
various probability thresholds.
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FlyAtlas: TS Genes vs U (ferrarirScores ! SW)
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Figure 5.7: Prediction performance compared with published work. Our classifier
based on amino acid counts and/or genomic features was applied on the fruit fly data used
by De Ferrari and Aitken (2006). In this, 80 housekeeping transcripts were discriminated
from 412 tissue-specific transcripts. The green star indicates the performance of the Naive
Bayes classifier on the data set. The other curves represent the performances of SVMs
trained in this work. The SVMs were trained on (1) amino acid percentages in the sequences
(AA%), (2) amino acid percentages combined with genomic features (AA%+GF) and (3)
the genomic features used by DeFerrari and Aitken, excluding the percentage of GO terms.

becomes less clean as more genes are added to the training set. Forward selection

was started from the single amino acid that discriminated best between the classes

according to the Fisher’s ratio test (Equation 2.8). This test is based on the ratio

of between-class variance to within-class variance. It evaluates how well a single

amino acid is correlated with the separation between classes. We then built all of

the two-dimensional feature subsets that include the amino acid already selected

from the first step and finds the best one. This process was continued, building

n-dimensional feature subsets until the subset reached a size of 20. We used AUCs

for the selection criteria in this work. This procedure of attribute selection has been

termed a greedy approach. A disadvantage of using this selection approach is that if

two features have similar discriminative power, only one of them will be selected and

appear important in the results.

Using this method, the amino acid N (asparagine) discriminated best between the

two groups in both organisms in a 1-dimensional classifier, with asparagine being more
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frequent in tissue-specific genes than in broadly expressed genes (Figure 5.8). The

medians for the broadly expressed genes were 4.12 and 2.88 and for the tissue-specific

genes were 5.0 and 4.22 for the fruit fly and mouse, respectively. The robustness was

investigated by evaluating which amino acids discriminated between the groups for

n number of tissue-specific and broadly expressed genes, where n ranged from 30 to

1,000. In the fruit fly, asparagine was the best discriminator in 518 cases, followed

by cysteine in 350 cases, leucine and proline in 51 cases and glutamine in one case.

In the mouse, asparagine was the best discriminator in 549 cases, and leucine in 422

cases (5.9).

a) Fruit fly b) Mouse
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Figure 5.8: Density distribution of asparagine in the 250 most tissue-specific and the
250 most broadly expressed protein transcripts for the a) fruit fly and b) mouse.

Next, 19 two-dimensional classifiers were trained for finding the best combination

of two amino acids, i.e., between asparagine and the other 19 amino acids. The pair of

amino acids that achieved the highest AUC was recorded. This process was repeated

100 times to prevent situations where a well-scoring feature set might be found by

chance. For the fly, the amino acid pair N+A (asparagine and alanine) performed

best, while for the mouse the amino acid pair N+E (asparagine and glutamic acid)

achieved the highest AUC (Figure 5.10). Similarly, the best combinations of 3-20

amino acids were determined. Table 5.1 lists the best combinations of features. In
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Table 5.1: AUCs calculated for n-dimensional classifiers. The 250 genes with the lowest
gene specificity value (broadly expressed) were compared with the 250 genes with the
highest gene specificity value (tissue-specific expression). The column in grey indicates
the amino acid combination that results in best performance. Classifiers were trained 100
times.

Amino Acid Combination AUCs

Fly (Drosophila melanogaster)

N 0.640

N+A 0.732

N+A+C 0.705

N+A+C+P 0.730

N+A+C+P+S 0.756

N+A+C+P+S+R 0.755

N+A+C+P+S+R+Q 0.754

N+A+C+P+S+R+Q+I 0.769

N+A+C+P+S+R+Q+I+F 0.776

N+A+C+P+S+R+Q+I+F+Y 0.773

N+A+C+P+S+R+Q+I+F+Y+K 0.771

N+A+C+P+S+R+Q+I+F+Y+K+V 0.770

N+A+C+P+S+R+Q+I+F+Y+K+V+M 0.768

N+A+C+P+S+R+Q+I+F+Y+K+V+M+W 0.769

N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D 0.773

N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D+A 0.763

N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D+A+L 0.774

N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D+A+L+T 0.774

N+A+C+P+S+R+Q+I+F+Y+K+V+M+W+D+A+L+T+G 0.772

all 20 amino acids 0.764

Mouse (Mus Musculus)

N 0.732

N+E 0.781

N+E+K 0.795

N+E+K+A 0.810

N+E+K+A+H 0.823

N+E+K+A+H+C 0.834

N+E+K+A+H+C+W 0.833

N+E+K+A+H+C+W+L 0.827

N+E+K+A+H+C+W+L+V 0.836

N+E+K+A+H+C+W+L+V+Q 0.831

N+E+K+A+H+C+W+L+V+Q +R 0.835

N+E+K+A+H+C+W+L+V+Q +R+G 0.855

N+E+K+A+H+C+W+L+V+Q +R+G+T 0.851

N+E+K+A+H+C+W+L+V+Q +R+G+T+M 0.858

N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P 0.851

N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P+F 0.858

N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P+F+ S 0.849

N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P+F+ S +I 0.848

N+E+K+A+H+C+W+L+V+Q +R+G+T+M +P+F+ S +I +Y 0.843

all 20 amino acids 0.837
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a) Fruit fly b) Mouse
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Asparagine (N)

Leucine (L)

Figure 5.9: Best discriminating amino acids in 1-dimensional classifiers. Fisher’s
ratio versus the number of genes used for positive and negative training-sets. Fisher’s
ratios are shown for only those amino acids that had the highest discrimination power for
at least one of the benchmark sets. a) fruit fly and b) mouse.

the fruit fly, the residue combination N+A+C+P+S+R+Q+I+F led to the best

prediction performance (AUC= 0.776), while in the mouse, the residue combination

N+E+K+A+H+C+W+L+V+Q +R+G+T+M (+P+F) led to the best prediction

performance (AUC= 0.858).

5.2.3.2 Secondary structure elements with the best discriminative power

Forward feature selection was also used to select the secondary structure element

combinations which gave most discrimination between the test set and the training

set for the 250 most specific and ubiquitously expressed genes. C was the best

secondary structure character for a 1-dimensional classifier, with an AUC=0.620 in

the fruit fly, while E results in the best performance in the mouse, with an AUC

=0.904 (Table 5.2). The overall C content was higher for the tissue-specific genes

than for the broadly expressed genes (48.15 and 42.71) in the fruit fly and in the

mouse (49.33 and 44.11). To investigate the robustness, we also checked which

secondary structure elements best discriminated between the groups for n number of

tissue-specific and broadly expressed genes, where n ranged from 30 to 1,000. In the
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a) Fruit fly b) Mouse

Figure 5.10: Distribution of asparagine (N) and alanine (A)/glutamic acid (E) in
the 250 most tissue-specific (ts) and the 250 most broadly expressed (hk) protein transcripts
for the a) fruit fly and b) mouse.

Table 5.2: AUCs calculated for n-dimensional classifiers. The 250 genes with the lowest
gene specificity value (broadly expressed) were compared with the 250 genes with the
highest gene specificity value (tissue-specific expression).

Secondary Structure Elements AUCs Secondary Structure Elements AUCs

Fly Fly Mouse Mouse

C 0.620 E 0.904

C+E 0.621 E+H 0.683

C+E+H 0.612 E+H+C 0.686

fruit fly, C was the best discriminator in 967 cases, followed by H in 4 cases. In the

mouse, E was the best discriminator in 292 cases, and H in 679 cases (5.11).

Next, we analysed some features individually that have been shown to differ

between tissue specific and housekeeping genes:

5.2.3.3 Sequence lengths

Housekeeping genes were observed to be shorter in human data (Eisenberg and

Levanon, 2003). We did not find any correlation between sequence length and tissue

specificity in the fruit fly and mouse data used in this work. Figure 5.12 shows the

protein sequence lengths for each gene in the two data sets versus tissue specificity.

There is no immediate obvious correlation between protein sequence length and gene
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Figure 5.11: Best discriminating secondary structure elements in 1-dimensional
classifiers. Fisher’s ratio versus the number of genes used for positive and negative
training-sets. Fisher’s ratios are shown for the three secondary structure elements predicted
by PSIPRED. a) fruit fly and b) mouse.

specificity. The correlation coefficients r were -0.108 and -0.065 for the fruit fly and

mouse, respectively.

We also tested if a linear correlation existed between tissue specificity and cDNA,

3’UTR length, 5’UTR length and CDS length. Again, no clear linear relationship

was found. For the mouse, the highest correlation was found for the 3’UTRs that

had a correlation coefficient of -0.137. The other correlation coefficients were -0.07,

-0.107 and -0.078 for CDS, cDNA and 5’ UTR lengths respectively. Similarly, the

highest correlation was found for the 3’UTR length for the fly genes (r=-0.126). The

other correlation coefficients were -0.111, -0.150 and -0.116 for CDS, cDNA and 5’

UTR lengths, respectively.

5.2.3.4 CpG islands and predicting the methylation status of transcrip-

tion units

A correlation between the occurrence of CpG islands, and thus DNA methylation,

in housekeeping and tissue-specific genes has been investigated in a comprehensive

mouse data set (Schug et al., 2005). Limited DNA methylation was observed in the
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5.2 Results
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Figure 5.12: Protein sequence lengths versus tissue specificity. There was little
evidence for any relationship between sequence length and tissue specificity in the fruit
fly (15,560 sequences) and mouse data set (11,805 sequences). The correlation coefficients
were -0.108 for the fruit fly and -0.065 for the mouse.

fruit fly (Lyko et al., 2000; Wang et al., 2006), but to the best of our knowledge

there was no study that investigated a possible correlation between the expression

breadth and DNA methylation in the fruit fly. We investigated the FlyAtlas data set

for this purpose. We also investigated the mouse data set for such a correlation to

confirm or negate previous observations.

We plotted the fraction of promoters with CpG islands against the gene specificity

value for both organisms (Figure 5.13). In the fruit fly, the CpG islands appeared to

be randomly distributed for genes with various tissue specificity (r = 0.212), while in

the mouse there was a clear negative correlation between the fraction of promoters

with CpG islands and tissue specificity (r = 0.922). This negative correlation has

been shown previously in human and mouse genes (Schug et al., 2005).

Next, we investigated the ratio of observed to expected CpGs (Equation 2.1) in

the fruit fly and mouse sequences to predict methylated and unmethylated genomic

regions. Figure 5.14 shows the frequency of all annotated protein coding genes in

the fruit fly for which tissue specificity information is available, with CpG [o/e]

102



5.2 Results

a) Fruit fly b) Mouse
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Figure 5.13: Frequency of CpG islands in fruit fly and mouse promoter regions.
The fraction of promoters with CpG islands, as identified by the newcpgreport program,
is plotted against the gene specificity value. The variable r in the legends indicates the
correlation coefficient between the two variables.

frequencies between 0 and 2. For comparison, the contrasting distribution of all

protein coding genes in the mouse is shown in panel b. In the fruit fly, most genes

have a value around 1.0. Genes with a value < 0.7 represent CpG deficient genes.

These are the genes that are expected to be methylated; these are very few compared

to the number in the mouse. Again, this is in agreement with previous observations

that there is limited DNA methylation in the fruit fly (Lyko et al., 2000; Wang et al.,

2006). For both organisms, the density curves for broadly expressed genes are shifted

towards the right when compared with the density curves for the tissue-specific genes.

Although this signal was weak in the fruit fly data set, this indicated that the broadly

expressed genes are less frequently methylated and agrees with previous observations

that housekeeping genes are not methylated (Foret et al., 2009).

To further assess the difference in CpG [o/e] frequencies between ubiquitous

and tissue-specific transcripts, we compared these two categories. We observed an

even distribution of the CpG-deficient genes (CpG [o/e] < 0.7) across varying gene

specificity values. For both organisms, CpG-deficient genes cover all levels of tissue

specificity (Figure 5.15). CpG over-represented genes are more commonly broadly
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a) Fruit fly b) Mouse
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Figure 5.14: Distribution of CpG bias in the fruit fly and mouse. The 100 most
tissue-specific and 100 most broadly expressed genes are plotted as well as the distribution
for all genes.
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Figure 5.15: Gene specificities for CpG deficient (CpG [o/e] < 0.7) genes and CpG
overrepresented genes (CpG [o/e] > 1.0).

5.2.3.5 Simple sequence repeats (SSR)

We contrasted the occurrence of SSRs in the 5’UTR region of housekeeping and

tissue-specific genes to see if there are any distinguishable differences between the

two classes of genes. The percentage of genes with SSR was higher for broadly

expressed genes in both organisms (Figure 5.16). This is in agreement with previous
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observations in human and mouse studies (Lawson and Zhang, 2008) where SSR

densities in 5’-UTRs in housekeeping genes have been shown to be higher than in

tissue-specific genes. Our results confirmed this and also showed that this trend was

repeated in the fruit fly.
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Figure 5.16: Percentage of tissue-specific and broadly expressed genes with
SSRs. The x-axis indicates the number of tissue specific genes or broadly expressed genes
investigated, and the y-axis indicates the percentage of the genes in which SSRs were
identified. Unique indicates that transcripts with > 1 SSRs were counted once only, while
all indicates that these transcripts were counted several times.

5.2.3.6 S/MAR

The promoter regions (1,500 upstream and downstream of TSS) of the transcripts

were scanned for S/MAR regions using the EMBOSS marscan program. We noted

the presence or absence of S/MAR regions in a transcript; however, when two regions

were identified in a transcript, this information was disregarded. This allowed us to

work with binary data. Start and end position of the regions were also discarded in

this study.

For the fly, 4,260 S/MAR regions were identified in the upstream regions pertaining

to 3,846 unique transcript IDs. These were mapped back to 2,644 FlyBase gene

IDs. A total of 3,311 S/MAR regions were identified in the downstream regions
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pertaining to 2,962 unique transcript IDs. These were mapped back to 2,073 FlyBase

gene IDs. For the mouse, 1,119 S/MAR regions were identified in the upstream

regions pertaining to 1,058 unique Ensembl transcript IDs. These were mapped back

to 1,053 EntrezGene gene IDs. In downstream regions 1,319 S/MAR regions were

identified, pertaining to 1,250 unique transcript IDs. These were mapped back to

1,211 EntrezGene gene IDs.

No differences were immediately obvious between tissue-specific and broadly

expressed genes. The tissue specificity of the genes with S/MAR region was sim-

ilar to all genes (Figure 5.17). In human, it was shown that S/MARs are more

abundant in the 5’ regions of tissue specific genes as compared to the housekeeping

genes (Ganapathi et al., 2005) but we did not confirmed this here.
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Figure 5.17: Tissue specificity of genes with S/MAR regions in the a) fruit fly
and b) mouse. Boxplots are shown for all genes in which a S/MAR region was identified
by the marscan program in the upstream regions, for all genes in which a S/MAR regions
was identified by the marscan program in the downstream regions, and for all genes.

5.2.3.7 Ribosomal occupancy

Lastly, we investigated whether ribosomal occupancy is also correlated with tissue

specificity in the fruit fly.

We looked at two data sets to determine any possible association between riboso-

mal occupancy and tissue specificity. The first data set was taken from a study on
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5.2 Results

mRNA translational control during early Drosophila embryogenesis (Qin et al., 2007)

and concerns embryo data. In this study, sucrose polysomal gradient analyses and

GeneChip analysis were used to investigate post-transcriptional regulation during

Drosophila early embryonic development during the first 10 hours after egg-laying.

The conclusion of the study was that genes involved in some biological processes are

co-regulated at the translational level at certain developmental stages. Figure 5.18

shows the ribosomal loading for genes that were found to be expressed in the adult

fruit fly. The plot shows tissue specificity (adult fruit fly data) versus occupancy

(embryo data) at different embryonic stages. The occupancy spread ranged from 20-

100% for all levels of tissue specificity, but was centred towards 60% for tissue-specific

genes. The figures are somewhat biased because there are more broadly expressed

genes than tissue-specific genes. The same trend was seen, but was somewhat clearer,

when the genes were restricted to the 100 most tissue-specific and 100 most broadly

expressed genes (Figure 5.18, Panel b+c).

The second data set was taken from a study of lifespan extension in adult flies

upon a yeast restricted diet (Zid et al., 2009). In this study, sucrose polysomal

gradient analyses and GeneChip analysis were used to investigate the effects of

dietary restriction on Drosophila lifespan. The experiment consisted of 12 arrays;

these included 6 arrays under normal conditions and 6 under dietary restriction.

Under each condition, 3 arrays with high ribosomal loading and 3 arrays with low

ribosomal loading (< 5 ribosomes) were prepared. Originally, these data were used

to see translational differences between two conditions. In the present study, we only

used the 6 arrays under normal conditions.

After normalisation and background correction, we looked at the differences in

mean expression values between high and low ribosomal loading for the genes that

showed a significant difference between the high and low fractions under normal

conditions (1,011 probe sets, p<0.001, ANOVA analysis). We plotted the 100 most

tissue-specific versus the 100 most broadly expressed genes (Figure 5.19). Overall,
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a)

b)

c)
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Figure 5.18: Ribosomal occupancy in the fruit fly using embryo data at different
embryonic stages. Ribosomal occupancy, which is defined as the percentage of polysomal
associated mRNAs for individual transcripts, is shown on the y-axes. Three major
developmental stages of fruit fly embryogenesis are investigated: 0-2 hours, 4-6 hours and
8-10 hours after egg layinga) Ribosomal occupancy is plotted versus gene specificity. b+c)
Ribosomal occupancy is shown for the 100 most broadly expressed genes and 100 most
tissue-specific genes.
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5.3 Discussion

the difference in mean expression signals between high and low ribosomal loading was

higher for the tissue-specific genes. This indicates that there was a greater variation

in translational regulation for tissue-specific genes. This was expected since most

housekeeping genes are required at a relatively constant level, while it is assumed

that this is less critical for many tissue-specific genes.
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Figure 5.19: Ribosomal occupancy. Difference between low ribosomal loading and high
ribosomal loading in adult flies for the 60 most broadly expressed and 60 most tissue-specific
fruit fly genes.

5.3 Discussion

Several genomic features are known to differ between tissue-specific and housekeeping

genes. In this work, we have investigated the tissue specificity of gene expression and

its possible relationship with the sequence and secondary structure of the resulting

protein product. The approach used here was to adopt an information theoretic

approach to sort genes in FlyAtlas, and in the mouse GNF data set, according to their

tissue specificity. Based on their gene specificity values, the genes were distributed

to several groups that were then used to build positive and negative training sets

for SVMs used to predict gene specificity. Our primary interest was in the sequence
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5.3 Discussion

and predicted secondary structure, but we also considered other genomic features

that have been previously implicated in discrimination of these two gene classes.

The results obtained were clearly not random, and the classification performance

was good for the sequence based classifier. Therefore, these computational studies

confirmed the expectation, in both the fruit fly and the mouse, that amino acid

sequences are different for genes with various degrees of tissue specificity. In most

benchmark sets, the classifiers using Smith-Waterman similarity scores had more

discriminative power than did the classifiers based on the amino acid contents. This

suggests that there is additional discriminative power in the order of the amino acids.

The performance of the classifier was not further improved by integrating secondary

structure similarity information indicating that, in the investigated data set, there

was not additional discriminative power in the predicted secondary structure.

The fruit fly was chosen as a primary organism because its tissues have been

less well studied than human and mouse tissues in terms of their gene specificities

(Table 3.1). The recent availability of FlyAtlas made it possible to revisit some

of the features that have been associated with tissue specificity and housekeeping

properties of human and mouse genes in much more detail in the fruit fly than was

previously possible. We also tested our method on mouse data to confirm the results

we saw in the fruit fly data and to investigate the range of applicability of the method

based on sequence and/or secondary structures. Due to difficulties with mapping the

GNF probe set IDs to protein sequences for the human data set, we did not further

investigate the method on human genes. The human data set contained 44,760 probe

sets, but annotation was available for only 22,558 of these probe sets. Only 8,282

probe sets (5,850 unique ones) out of the 22,558 are mapped to an EntrezGene ID in

the annotation file provided by GNF. Only 25% of the remaining probe sets could

be mapped to a protein sequence in UniProtKB, the majority of which corresponded

to ubiquitously expressed genes. Hence, there were no good training data available

for tissue-specific genes in the human data set. The mouse GNF probe set data used
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5.3 Discussion

in this work was also mapped to protein sequences via their EntrezGene IDs. A

more complete set might be obtained by mapping the probe sets to FlyBase (FBpp)

protein IDs and then to extract the corresponding protein sequences from Ensembl.

One of the problems encountered in this study was the question of how to divide

the genes into groups of certain tissue specificity. Depending on how one defines

tissue specificity, genes may be divided differently. For instance, a gene may be

considered tissue-specific if it is expressed in exactly one tissue only. However, for

other cases, one might consider genes to be tissue-specific if they are expressed in,

for example, 10% of the tissues. We had to decide how to distribute the genes to

bins and the method chosen resulted in an imbalance in training sets for positive

and negative training examples. To circumvent the problem of imbalance for the

positive and negative training examples, we performed further experiments that

included the same number of positive and negative examples. However, the question

of how to best assemble the training sets remains. Another problem in this work

was that microarray data are noisy and that the low resolution of microarrays can

be a problem. Genes with low expression may in fact be broadly expressed, but they

may be below the detection threshold limits of the microarray technologies used in

this work.

Another difficulty was the presence of several transcripts for one gene, which

occurred in especially in the fruit fly data set. Even though transcripts with the same

amino acid sequences were removed from the data set, a bias might be introduced by

those transcripts that are highly similar. One way of circumventing this problem is to

remove genes with several transcripts altogether. However, this would reduce the fruit

fly data set by almost 30%. Another possibility is to take the mean of the amino acid

percentages and similarity scores for two transcripts. The problem with this strategy

is that some of the transcripts were highly diverse, and thus it would be better to

include them both, but separately. Similarly, paralogous genes that may have high

sequence or structural similarity might introduce another bias. Additional study is
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Table 5.3: Paralogous genes. A total number of 18 genes were extracted from the
FlyMine (Lyne et al., 2007) database, that were found to be paralogous genes to the gene
FBgn0000024. The table lists the genes alongside their gene specificity values. In the gene
name column, NA indicates that no gene name was available for that gene.

FlyBase gene gene symbol gene name Si

FBgn0000326 clt cricklet 0.17

FBgn0001114 Glt Glutactin 1.19

FBgn0001987 Gli Gliotactin 0.48

FBgn0015568 alpha-Est1 alpha-Esterase-1 0.69

FBgn0015569 alpha-Est10 alpha-Esterase-10 0.70

FBgn0015570 alpha-Est2 alpha-Esterase-2 1.49

FBgn0015571 alpha-Est3 alpha-Esterase-3 0.64

FBgn0015572 alpha-Est4 alpha-Esterase-4 0.51

FBgn0015574 alpha-Est6 alpha-Esterase-6 2.14

FBgn0015575 alpha-Est7 alpha-Esterase-7 0.75

FBgn0015576 alpha-Est8 alpha-Esterase-8 0.45

FBgn0015577 alpha-Est9 alpha-Esterase-9 0.49

FBgn0027584 CG4757 NA 1.35

FBgn0032131 CG3841 NA 3.17

FBgn0033943 CG12869 NA 0.24

FBgn0034736 CG6018 NA 1.03

FBgn0037090 CG7529 NA 0.70

FBgn0039084 CG10175 NA 1.32

required to determine if paralogous genes typically display the same tissue specificity.

If so, they should be removed from the data set. As a preliminary test we investigated

the paralogous genes of the broadly expressed gene ’FBgn0000024 (Acetylcholine

esterase)’ regarding their ranges of tissue specificity. The gene specificity values for

the 18 paralogous genes range from 0.17 to 3.17 indicating varying degrees of tissue

specificity for these genes (Table 5.3).

The amino acid residue, asparagine, was found to discriminate best between

the 250 most tissue-specific genes and broadly expressed genes in both the fruit

fly and the mouse data, in a 1-dimensional classifier. Asparagine was, on average,

more frequently found in tissue-specific genes than in broadly expressed genes.

Deamidation of asparagine residues is one of the most common post-translational

modifications and results in protein degradation. During the process of deamidation,

the asparagine residue is converted to aspartate. The biological properties of the

mutated proteins differ from those of the original material, due to this conversion.

One hypothesis is that broadly expressed genes must be more stable because they
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often have housekeeping function and therefore must be expressed at a relatively

constant level across many or all known conditions. Deamidation of glutamine

residues can also occur but does so at a much lower rate. Glutamine did not appear

to have additional discriminative power in the feature selection process. However, as

mentioned earlier, a disadvantage of greedy forward selection is that if two attributes

are equally good discriminators then only one of them will appear on top of the list.

The feature selection process showed that not all amino acids are different between

the two classes of transcripts. For the fly a combination of 9 amino acids led to

the best performance while 14 amino acids were required for the mouse to get

best performance. All amino acids additionally added resulted in a decrease of

performance, indicating that they have no discriminative power. Adding more

features can increase the noise, and hence the decrease of performance may be

observed. There is a certain risk of overfitting when selecting the best discriminating

features using a greedy forward selection approach, and the results are likely to be

less reliable for higher dimesions.

In general, the predicted performance, based on secondary structure elements

was poor. The secondary structure element C (Others) was found to discriminate

best between the 250 most tissue-specific genes and broadly expressed genes in

the fruit fly, in a 1-dimensional classifier. In the mouse, the element E (extended

strand) was the better discriminator for these two groups. However, care should be

taken when drawing conclusions from this, since many of the benchmark sets showed

classifier performance that was not much better than random, when based only on

the secondary structure elements.

We applied and compared the performance of the SVM classifier based on

amino acid percentages in the sequence combined with various genomic features

to a previously used data set for the fruit fly (De Ferrari and Aitken, 2006). The

performance of the SVM classifier compared favourably with that of De Ferrari and

Aitken (2006). One difficulty with comparing the two works was the discrepancy
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between results reported in the paper, and provided with the supplementary data

files. Another difficulty arose due to the fact that our gene specificity values were

base on genes, whereas the authors worked with transcripts. It is possible, that some

of the genes have transcript with distinct tissue specificity, but our measurement

based on the FlyAtlas data does not capture this.

When compared to previous studies, we observed a discrepancy in the correlation

between expression breadth and sequence length in this fruit fly and mouse study.

According to our results, there is no obvious correlation between sequence length and

tissue specificity. We did not find that protein sequences and various genomic regions

are shorter for housekeeping genes. This may be due to the definition of housekeeping

genes. The broadly expressed genes investigated here might not necessarily all have

housekeeping functions.

We observed a good correlation between the frequency of CpG islands in the

mouse promoter regions and gene specificity. However, in the fruit fly, no correlation

was found. This is in agreement with our expectation, since Drosophila is not known

to have DNA methylation.

Because of the flexible structure of the SVM classifier, additional attributes can be

easily added: either attributes already studied or newly discovered ones. For instance,

in addition to the amino acid composition, the amino acid pair compositions could be

integrated. In addition, transcription factor binding sites that are discovered de-novo

or via database searches could also be incorporated. The ribosomal occupancy data

investigated here could also be integrated in the SVMs.

Considering the success in discriminating tissue-specific and broadly expressed

genes within an organism, future work might include the prediction of tissue specificity

of genes in other model organisms. For instance, the worm, C. elegans is a popular

model organism, but tissue-specific information is only available for part of its genome.

The fruit fly and mouse models trained in this work could potentially be used to infer

tissue specificity for these worm data. However, we did not follow this up during
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the course of this PhD study due to time limitation. We showed, however, that a

classifier trained on mouse genes and tested on fly genes, or vice versa, performed

better than random in experiments using between 15 and 500 genes to train and

test the model. Systematically optimising the number of genes in the training and

test sets is expected to further increase the prediction performance since the 100

most tissue-specific genes in the mouse are not directly comparable to the 100 most

tissue-specific genes in the fly.
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5.3 Discussion

Table 5.6: Median AUCs calculated for different classifiers discriminating genes with various
tissue specificity in the mouse. Genes assigned to bin 1 are tissue-specific and constitute the
positive training set, while genes belonging to one of the other bins constitute the negative
training set. Tissue specificity decreases with the bin number. AA% and SS% indicate that
the input vector for the SVM contained amino acid percentages and the secondary structure
symbol percentages for each gene. AA scores is based on Smith-Waterman similarity scores
of the protein sequences, SS scores is based on Smith-Waterman similarity scores of the
secondary structures and AA+SS scores is a combination of the latter two. The attributes
of the SVM based on genomic features were protein sequence length, cds length, cDNA
length, 5’UTR length, 3’UTR length, upstream marscan results, downstream marscan results,
number of exons, number of CpG islands and the CpG content.

Neg. Median AUCs

Class AA AA SS SS AA+SS genomic AA % + gen−

Bin % scores % scores scores features omic features

ti
ss

u
e

sp
e
c
ifi

c
it
y

in
c
re

a
se

s
→

1 0.625 0.500 0.500 0.500 0.500 0.500 0.667

2 0.596 0.577 0.490 0.500 0.596 0.477 0.569

3 0.659 0.761 0.545 0.636 0.705 0.625 0.733

4 0.650 0.700 0.650 0.612 0.700 0.540 0.680

5 0.750 0.875 0.525 0.700 0.812 0.683 0.850

6 0.775 0.788 0.625 0.712 0.800 0.580 0.800

7 0.750 0.844 0.625 0.688 0.812 0.689 0.800

8 0.722 0.806 0.667 0.722 0.736 0.667 0.733

9 0.719 0.875 0.688 0.750 0.906 0.625 0.775

10 0.750 0.750 0.638 0.738 0.775 0.800 0.836

11 0.719 0.875 0.469 0.688 0.859 0.778 0.900

12 0.766 0.812 0.688 0.641 0.797 0.744 0.844

13 0.736 0.833 0.639 0.750 0.778 0.760 0.840

14 0.821 0.857 0.643 0.786 0.839 0.771 0.857

15 0.778 0.778 0.694 0.694 0.778 0.820 0.840

16 0.847 0.833 0.639 0.792 0.806 0.815 0.923

17 0.861 0.889 0.611 0.750 0.861 0.840 0.920

18 0.833 0.861 0.667 0.819 0.889 0.780 0.800

19 0.812 0.906 0.688 0.812 0.875 0.800 0.925

20 0.844 0.906 0.656 0.766 0.844 0.811 0.889

21 0.875 0.944 0.694 0.792 0.889 0.867 0.889

22 0.861 0.875 0.681 0.778 0.889 0.880 0.890

23 0.750 0.786 0.607 0.643 0.714 0.850 0.850

24 0.875 0.825 0.612 0.750 0.850 0.825 0.933

25 0.806 0.861 0.583 0.681 0.806 0.800 0.900

26 0.875 0.938 0.688 0.812 0.906 0.822 0.900

27 0.844 0.844 0.719 0.734 0.812 0.889 0.889

28 0.875 0.938 0.750 0.812 0.891 0.860 0.920

29 0.875 0.900 0.725 0.825 0.875 0.850 0.883

30 0.865 0.875 0.719 0.781 0.833 0.885 0.938

31 0.900 0.900 0.575 0.750 0.875 0.873 0.909

32 0.875 0.900 0.675 0.775 0.850 0.800 0.900

33 0.788 0.875 0.650 0.725 0.812 0.818 0.864

34 0.833 0.917 0.677 0.812 0.896 0.893 0.933

Continued on next page
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5.3 Discussion

Table 5.6 – continued from previous page

Neg. Median AUCs

Class AA AA SS SS AA+SS genomic AA % + gen−

bin % scores % scores scores features omic features

35 0.875 0.850 0.675 0.750 0.812 0.900 0.950

36 0.875 0.900 0.600 0.825 0.900 0.891 0.945

37 0.884 0.893 0.607 0.786 0.839 0.912 0.950

38 0.841 0.898 0.636 0.773 0.841 0.846 0.923

39 0.875 0.917 0.615 0.781 0.896 0.923 0.892

40 0.929 0.946 0.688 0.857 0.929 0.893 0.947

41 0.942 0.917 0.717 0.833 0.883 0.912 0.938

42 0.839 0.875 0.455 0.759 0.839 0.825 0.900

43 0.891 0.922 0.570 0.766 0.844 0.894 0.944

44 0.875 0.921 0.441 0.776 0.855 0.900 0.927

45 0.897 0.912 0.669 0.809 0.882 0.927 0.968

46 0.847 0.917 0.618 0.757 0.861 0.910 0.933

47 0.881 0.900 0.531 0.750 0.875 0.892 0.933

ti
ss

u
e

sp
e
c
ifi

c
it
y

in
c
re

a
se

s
→

48 0.905 0.893 0.571 0.738 0.821 0.904 0.961

49 0.938 0.926 0.670 0.761 0.915 0.881 0.944

50 0.889 0.944 0.569 0.778 0.894 0.906 0.941

51 0.901 0.914 0.647 0.823 0.862 0.837 0.941

52 0.929 0.893 0.464 0.763 0.857 0.903 0.942

53 0.882 0.929 0.464 0.771 0.879 0.837 0.937

54 0.884 0.925 0.619 0.756 0.844 0.884 0.942

55 0.890 0.913 0.480 0.770 0.866 0.774 0.932

56 0.907 0.928 0.470 0.819 0.898 0.865 0.943

57 0.904 0.939 0.465 0.760 0.891 0.843 0.951

58 0.901 0.885 0.500 0.767 0.849 0.796 0.947

59 0.855 0.902 0.473 0.777 0.865 0.785 0.934

60 0.893 0.958 0.335 0.835 0.906 0.837 0.956
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5.3 Discussion

Table 5.7: Mean AUCs calculated for different classifiers discriminating genes with various
tissue specificity in the mouse. The mean AUCs are averaged over 100 runs and are given with
a confidence interval (±1.96×standard error). Genes assigned to bin 1 are tissue-specific
and constitute the positive training set, while genes belonging to one of the other bins
constitute the negative training set. Tissue specificity decreases with the bin number. AA%
and SS% indicate that the input vector for the SVM contained amino acid percentages and
the secondary structure symbol percentages for each gene. AA scores is based on Smith-
Waterman similarity scores of the protein sequences, SS scores is based on Smith-Waterman
similarity scores of the secondary structures and AA+SS scores is a combination of the
latter two. The attributes of the SVM based on genomic features were protein sequence
length, cds length, cDNA length, 5’UTR length, 3’UTR length, upstream marscan results,
downstream marscan results, number of exons, number of CpG islands and the CpG content.

Neg. Median AUCs

Class AA AA SS SS AA+SS genomic AA % + gen−

Bin % scores % scores scores features omic features
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ss
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e

sp
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ifi
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y

in
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a
se

s
→

1 0.638±0.055 0.502±0.057 0.382±0.059 0.552±0.057 0.530±0.061 0.427±0.053 0.608±0.049

2 0.597±0.027 0.585±0.029 0.490±0.035 0.508±0.037 0.605±0.033 0.478±0.029 0.574±0.027

3 0.667±0.031 0.755±0.027 0.546±0.031 0.627±0.031 0.701±0.031 0.605±0.029 0.727±0.025

4 0.656±0.031 0.700±0.031 0.644±0.025 0.618±0.033 0.690±0.031 0.541±0.027 0.659±0.027

5 0.744±0.029 0.851±0.022 0.526±0.033 0.687±0.031 0.781±0.027 0.693±0.024 0.826±0.022

6 0.745±0.029 0.793±0.024 0.614±0.033 0.709±0.031 0.798±0.025 0.578±0.025 0.776±0.024

7 0.733±0.027 0.812±0.025 0.610±0.041 0.696±0.029 0.795±0.027 0.681±0.024 0.783±0.024

8 0.698±0.029 0.751±0.033 0.672±0.039 0.704±0.031 0.723±0.031 0.656±0.031 0.735±0.022

9 0.710±0.029 0.870±0.022 0.694±0.037 0.743±0.033 0.870±0.024 0.632±0.029 0.765±0.022

10 0.728±0.027 0.738±0.027 0.622±0.041 0.739±0.027 0.755±0.027 0.788±0.024 0.828±0.022

11 0.711±0.031 0.857±0.022 0.502±0.037 0.659±0.031 0.827±0.027 0.770±0.024 0.867±0.024

12 0.769±0.027 0.783±0.029 0.650±0.039 0.664±0.035 0.797±0.027 0.725±0.027 0.810±0.024

13 0.716±0.029 0.816±0.029 0.615±0.033 0.730±0.033 0.769±0.033 0.750±0.025 0.829±0.020

14 0.795±0.031 0.850±0.024 0.638±0.039 0.797±0.031 0.820±0.027 0.769±0.025 0.827±0.025

15 0.763±0.027 0.754±0.031 0.668±0.037 0.675±0.033 0.744±0.035 0.796±0.022 0.831±0.022

16 0.829±0.027 0.817±0.024 0.641±0.035 0.758±0.033 0.786±0.027 0.820±0.020 0.909±0.014

17 0.850±0.024 0.855±0.022 0.600±0.033 0.734±0.031 0.828±0.027 0.823±0.020 0.892±0.020

18 0.815±0.024 0.837±0.024 0.674±0.033 0.802±0.027 0.878±0.020 0.778±0.022 0.795±0.024

19 0.808±0.025 0.894±0.020 0.689±0.035 0.792±0.031 0.840±0.027 0.798±0.024 0.886±0.022

20 0.829±0.024 0.861±0.024 0.658±0.035 0.758±0.029 0.826±0.025 0.785±0.024 0.881±0.020

21 0.848±0.024 0.910±0.022 0.658±0.035 0.780±0.029 0.854±0.024 0.853±0.022 0.870±0.020

22 0.844±0.024 0.859±0.022 0.667±0.037 0.770±0.031 0.866±0.024 0.871±0.018 0.871±0.018

23 0.724±0.029 0.795±0.027 0.597±0.031 0.652±0.037 0.686±0.031 0.83±0.0220 0.832±0.024

24 0.862±0.022 0.814±0.024 0.618±0.031 0.742±0.031 0.820±0.025 0.812±0.020 0.910±0.016

25 0.809±0.025 0.843±0.025 0.609±0.041 0.681±0.033 0.778±0.025 0.777±0.024 0.886±0.020

26 0.858±0.022 0.929±0.014 0.671±0.035 0.812±0.025 0.892±0.018 0.819±0.022 0.888±0.018

27 0.847±0.022 0.845±0.022 0.688±0.033 0.730±0.029 0.814±0.025 0.864±0.020 0.870±0.018

28 0.852±0.022 0.906±0.020 0.713±0.033 0.795±0.029 0.870±0.022 0.839±0.018 0.903±0.016

29 0.866±0.022 0.884±0.018 0.698±0.031 0.808±0.027 0.844±0.024 0.831±0.020 0.876±0.016

30 0.845±0.024 0.872±0.018 0.687±0.037 0.750±0.033 0.825±0.022 0.883±0.014 0.927±0.014

31 0.867±0.020 0.875±0.024 0.588±0.035 0.743±0.031 0.846±0.024 0.848±0.020 0.897±0.016

32 0.842±0.025 0.875±0.020 0.674±0.039 0.782±0.027 0.851±0.024 0.800±0.022 0.891±0.018

Continued on next page
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5.3 Discussion

Table 5.7 – continued from previous page

Neg. Median AUCs

Class AA AA SS SS AA+SS genomic AA % + gen−

bin % scores % scores scores features omic features

33 0.785±0.024 0.867±0.018 0.674±0.033 0.718±0.029 0.804±0.027 0.798±0.022 0.863±0.018

34 0.822±0.024 0.899±0.020 0.661±0.035 0.795±0.027 0.876±0.020 0.885±0.016 0.911±0.014

35 0.871±0.020 0.838±0.022 0.670±0.033 0.730±0.031 0.797±0.025 0.879±0.018 0.930±0.012

36 0.866±0.020 0.873±0.022 0.612±0.033 0.814±0.025 0.876±0.024 0.894±0.014 0.927±0.014

37 0.875±0.020 0.877±0.020 0.605±0.033 0.771±0.025 0.829±0.025 0.907±0.012 0.929±0.014

38 0.821±0.024 0.885±0.018 0.630±0.039 0.768±0.029 0.843±0.024 0.824±0.022 0.911±0.016

39 0.871±0.020 0.901±0.020 0.616±0.035 0.769±0.027 0.862±0.024 0.913±0.014 0.888±0.016

40 0.894±0.020 0.921±0.018 0.676±0.035 0.840±0.025 0.887±0.022 0.876±0.016 0.932±0.012

41 0.905±0.020 0.900±0.020 0.676±0.037 0.808±0.025 0.859±0.020 0.894±0.014 0.917±0.014

42 0.819±0.022 0.857±0.024 0.461±0.035 0.738±0.029 0.807±0.029 0.813±0.018 0.890±0.014

43 0.875±0.020 0.894±0.016 0.555±0.039 0.756±0.027 0.825±0.025 0.879±0.018 0.929±0.012

44 0.854±0.022 0.896±0.020 0.447±0.035 0.766±0.033 0.857±0.020 0.881±0.018 0.918±0.014

45 0.865±0.022 0.906±0.016 0.656±0.035 0.798±0.024 0.859±0.020 0.920±0.012 0.950±0.012

46 0.829±0.024 0.889±0.020 0.618±0.043 0.754±0.029 0.828±0.024 0.902±0.012 0.922±0.012

47 0.855±0.024 0.879±0.018 0.534±0.039 0.751±0.027 0.847±0.024 0.858±0.020 0.918±0.014

48 0.890±0.018 0.879±0.022 0.557±0.039 0.745±0.027 0.809±0.024 0.881±0.016 0.954±0.008
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48 0.890±0.018 0.879±0.022 0.557±0.039 0.745±0.027 0.809±0.024 0.881±0.016 0.954±0.008

49 0.891±0.022 0.909±0.014 0.647±0.035 0.756±0.029 0.879±0.022 0.853±0.020 0.935±0.010

50 0.855±0.022 0.924±0.016 0.570±0.037 0.787±0.025 0.856±0.025 0.883±0.018 0.920±0.016

51 0.871±0.018 0.892±0.016 0.633±0.033 0.798±0.024 0.836±0.024 0.814±0.020 0.923±0.012

52 0.887±0.020 0.882±0.016 0.449±0.035 0.769±0.025 0.848±0.022 0.890±0.014 0.928±0.012

53 0.852±0.024 0.909±0.016 0.445±0.035 0.765±0.029 0.848±0.024 0.822±0.020 0.921±0.012

54 0.855±0.024 0.890±0.022 0.584±0.035 0.758±0.027 0.821±0.025 0.871±0.014 0.918±0.016

55 0.873±0.020 0.896±0.018 0.496±0.031 0.763±0.029 0.854±0.020 0.759±0.022 0.909±0.016

56 0.881±0.020 0.902±0.016 0.494±0.039 0.771±0.031 0.868±0.022 0.837±0.020 0.924±0.012

57 0.878±0.018 0.926±0.012 0.467±0.041 0.768±0.027 0.858±0.022 0.837±0.016 0.922±0.016

58 0.883±0.020 0.874±0.018 0.480±0.039 0.750±0.029 0.823±0.024 0.790±0.020 0.919±0.014

59 0.825±0.027 0.900±0.014 0.482±0.039 0.759±0.029 0.845±0.020 0.776±0.024 0.925±0.014

60 0.873±0.020 0.945±0.010 0.369±0.039 0.826±0.024 0.885±0.018 0.819±0.018 0.940±0.012
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Chapter 6

Analysis of the Tissue-Specific

Contribution to Whole-Body RNA

Transcript Profiles in Drosophila

Melanogaster

The ordered list of genes for fruit fly genes introduced in the previous chapter is

used in the following to analyse the capacity of whole-body microarrays to detect

tissue-specific expression in the ageing fly and in general. The tissue specificity

of age-associated genes is also investigated. The chapter starts by describing the

methods used, and presents the results and a discussion of the results.

6.1 Methods

6.1.1 Ranking genes according to their tissue specificity

The same method was applied to rank genes according to their tissue specificity as

in Chapter 5.1.
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6.1 Methods

6.1.2 Whole-fruit fly gene expression data

An ageing experiment was used to investigate the tissue-specific contribution to

whole-body RNA transcript profiles, and to investigate the tissue specificity of age-

associated genes. Data on whole-genome Drosophila melanogaster gene expression for

the aged fly were previously described (McElwee et al., 2007). In this study, wild-type

(Dahomey) and long-lived chico1/+ heterozygotes were compared. Chico1/+ is a

null mutation in the fly insulin receptor substrate in the insulin/insulin-like growth

factor-1 signalling (Insulin and Insulin-like growth factor signaling (IIS)) pathway, a

pathway central to ageing. We used Supplementary data file 9 of this study, which

contains the results from the statistical analysis including probeset IDs, gene IDs,

mean expression signals, fold changes and the results of the statistical analysis. The

list was used to determine differentially expressed genes (q < 0.1). This identified

1,169 differentially expressed genes (893 upregulated gene, 276 downregulated gene

in chico1/+ ). FlyBase gene IDs were mapped to Gene Ontology (GO) IDs version

1.107 (Ashburner et al., 2000).

Data for other whole-fly experiments, again based on Drosophila Genome 2.0

Arrays, were downloaded from ArrayExpress (Parkinson et al., 2007). For all six

datasets (E-GEOD-7763, E-GEOD-5404, E-GEOD-8775, E-MEXP-1594 (208), E-

MEXP-1594 (301), E-GEOD-7614), raw data (cel files) were normalised, using eight

different normalisation routines following the method used in McElwee et al. (2007).

6.1.3 Age-associated genes

A list of 46 fly genes that have been shown to extend lifespan was downloaded from

GenAge (de Magalhães and Toussaint, 2004) to investigate their degree of tissue

specificity.

Lists of age-related genes in seven tissues have been collected from a microarray

study on 15-60 days old flies (Zhan et al., 2007).
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6.1 Methods

6.1.4 Others

For functional overrepresentation analysis, we used a modified Fisher’s exact test.

We re-implemented the EASE (Expression Analysis Systematic Explorer) software

(Hosack et al., 2003; Huang da et al., 2007) in R. EASE calculates over-representation

with respect to the total number of genes assayed and annotated within each system

(here Gene Ontology annotations). We used all genes available in Supplementary

data file 9 from (McElwee et al., 2007) as background sequences. For the filtering

experiments, tissue-specific genes were removed from both the set of differentially

expressed genes and the full set of background sequences. We used the EASE score to

determine the significance of categories. The EASE score is a conservative adjustment

to the Fisher exact probability that favours more frequent categories (Hosack et al.,

2003) over less frequent categories. The EASE score is calculated by removing

one gene within the given category from the list and calculating the Fisher exact

probability for that category. This process is exemplified in the following. Assume

a list of 200 genes is differentially expressed from a population of 12,000 genes. If

there is only one gene in the population in a rare category, e.g. ”Rare function”, and

that gene happens to appear on the list of 200 genes, the Fisher exact test would

deem that category significant (p = 0.016). Similarly, the Fisher exact test would

consider a more common category, ”More common function”, with 765 members in

the population and 20 members on the list, as slightly less significant (p = 0.017).

From the biological perspective, a category based on the presence of a single gene

is rarely interesting. If the single gene is a false positive, then the significance of

the corresponding category is false. The EASE scores for these combinations are p

= 1 and p = 0.030 for categories ”Rare function” and for category ”More common

function”, respectively. Thus, the EASE score eliminates the significance of the

infrequent category while only slightly penalising the significance of the more global

theme. The EASE score penalises the significance of categories supported by fewer

genes and favours more robust categories compared to the Fisher exact probability.
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6.1 Methods

Linear regression to measure the correlation between mean expression signal and

tissue specificity was performed using the R programming language (R, 2009).

Clover (Frith et al., 2004) was used for motif detection. We used experimentally

verified transcription factor binding sites (TFBS) from TRANSFAC (2007) (Matys

et al., 2003) to scan the fruit fly promoter sequences (846 motifs in total). The

promoter sequences (1000 bp from the transcription start sites) were extracted from

Ensembl using BioMart (Durinck et al., 2005), a data integration system for large

scale querying of biological data. Clover compares each motif to the given sequence

set, and calculates a raw score that quantifies the degree of the motif’s presence

in the test sequences. The present genes on the microarray served as background

DNA sequences. The Clover algorithm repeatedly extracts random fragments of the

background sequences (here we used 1000 randomisations), matched by length to

the target sequences, calculates a raw score for each set of fragments and uses these

to estimate a p value. The proportion of times that the raw score of a fragment set

exceeds or equals the raw score of the target set, e.g. 0.01, is taken as the p value.

Thus the p value indicates the probability of obtaining a raw score of this size or

greater merely by chance, computed using background sequence sets. For each motif,

a separate p value was calculated. In this work we considered motifs with a score >

15 and a p value < 0.01 to be over-represented in the given gene lists. We did not

consider under-represented motifs.

We tested whether each motif from a library of 846 is significantly overrepresented

in a given sequence set. That means that it is likely that a few motifs will have p

values more significant than 0.01 merely by chance. However, all the p values in

this study were obtained by performing 1,000 randomisations, and motifs with p

values < 0.01 and score > 15 are listed. Amongst the 90 overrepresented motifs we

found 45 motifs with a p value of zero, i.e. the raw scores were never equalled in

1,000 randomisations, which is highly unlikely to occur by chance. We also find more

motifs with p values < 0.01 than expected by chance. On average we would expect
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6.2 Results and discussion

to get a false positive result about once every 100 times the test is used (1/0.01).

This translates to 622 false positives (0.01× 72 groups × 864 motifs). A total of

2,355 motifs has been found at a p value < 0.01, whereas a total of 330 of these were

unique motifs. These were further reduced to a final number of 90 motifs by taking

into account only those motifs with a score > 15. Thus, we are confident that the

majority of motif predictions made here are not merely due to chance.

6.2 Results and discussion
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Figure 6.1: Tissue specificity of genes in the fruit fly. The boxplots show the average
gene specificity of genes expressed in at least one of the FlyAtlas tissues (box 1), of all
differentially expressed genes identified in a longevity experiment (box 2) and genes with a
log2 fold change > 2 identified in this longevity experiment (box 3), of genes that have been
shown to extend lifespan in the adult fruit fly (box 4), of genes that have been associated
with ageing in various tissues (boxes 5-11).

We downloaded gene expression profiles for 17 tissues from FlyAtlas. For each
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6.2 Results and discussion

gene that could be detected in at least one of these tissues (11,804 fruit fly genes)

we calculated a gene specificity index Si by measuring the degree by which its gene

expression profile differs from a ubiquitous expression profile in which the same

expression levels is observed for all tissues (Chapter 5). In this data set a minimum

Si value of 0.014 was achieved, and a maximum of 4.09. The median Si value of

0.580 indicates that the majority of genes in this data set are broadly expressed

(Figure 6.1, Box 1). We grouped the genes with variable tissue specificity into bins

using Formula 5.3 as detailed in the previous chapter. Each bin defines a group of

genes with a certain degree of tissue specificity (Figure 6.6).

6.2.1 Applying tissue-specific information to whole body ex-

pression profiles
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Figure 6.2: Tissue specificity of differentially expressed genes in chico1/+. a)
Volcano plot of log2 fold changes versus significance of differential expression. The 2,000
genes with the lowest (black dots) and highest (yellow dots) gene specificity values are
plotted. The dotted horizontal line marks the threshold of p value = log (0.1) = 2.3 above
which genes were considered differentially expressed in chico1/+. b) The relationship
between gene specificity and mean expression signal measured for these genes in the whole-
fly longevity experiment. Each gene is plotted with the specificity value calculated from
the FlyAtlas tissue data (X-axis) versus the mean expression value for that particular gene
in the wild type and chico1/+ whole-fly samples (Y-axis). Note the decrease of the average
expression amplitude with increasing gene specificity. Blue dots indicate downregulation
while red dots indicate upregulation in the long-lived animals (log2 fold change > 0).
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6.2 Results and discussion

To investigate the capacity of whole body expression profiles to capture the

tissue-specific contributions regarding age-associated changes, we used data from a

previously published longevity study (McElwee et al., 2007), which included data in

which wild-type (Dahomey) and long-lived chico1/+ heterozygotes were compared.

In this study, evolutionary conservation of regulated longevity assurance mechanisms

was investigated using microarray data from long-lived mutant worms, mice with

lowered IIS and a long-lived IIS mutant in flies (chico1/+ heterozygotes). The whole

fly gene expression data set was downloaded together with a set of 1,169 differentially

expressed genes identified in the chico1/+ flies.

We determined the average tissue specificity of these differentially expressed genes

using the gene specificity values calculated from the FlyAtlas data (Figure 6.1, Box

2). The tissue specificity of differentially expressed age-associated genes covers the

possible range. We found, however, that, in this experiment, tissue-specific genes are

associated with higher fold changes between wild type and long-lived flies (Figure

6.1 Box 3, Figure 6.2). The median Si value of all differentially expressed genes was

1.17 while it increased to 2.22 if only significantly differentially expressed genes with

a log2 fold change > 1 were considered.

At least three explanations could account for these higher fold changes. First,

we expect the absolute quantities of mRNA to be lower for tissue-specific genes

than for broadly expressed genes. Lowly expressed genes are often associated with

high variances and will tend to exceed higher fold change cut-offs (Mutch et al.,

2002). The Cyber-T software (Baldi and Long, 2001) used to detect the differentially

expressed genes in this experiment penalises lowly expressed genes and, thus, many

changes in tissue-specific expression with low fold changes might not be reported by

this method. A test for association and a simple linear regression were performed

on the data to determine if there was a significant relationship between the gene

specificity value (Si) and the mean expression signal (S) in this data (Figure 6.2b).

There was evidence that Si negatively correlated with S, with a Pearson’s product
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6.2 Results and discussion

moment correlation coefficient r of -0.39. The t-statistic for the slope was significant

at the 0.05 critical alpha level, p < 2.2×10−16; 15.2% of the variability in mean

expression signals could be explained by the gene specificity value (r2 = 0.152). Thus,

we rejected the null hypothesis and concluded that there was a negative significant

relationship between the gene specificity values and the mean expression signals.

This indicates that tissue-specific genes overall display a lower mean expression signal

than broadly expressed genes in this sample. To investigate if this trend was specific

for this experiment, or if this is generally observed, we tested if we could find a

similar correlation in other whole-fly experiments (Ayroles et al., 2009; Chintapalli

et al., 2007; Edwards et al., 2006; Magwire, 2007; Morozova et al., 2007). All data

sets examined showed a negative correlation between tissue specificity and mean

expression signal (Figure 6.3: -0.323 < r < -0.143).

The observation that gene expression signals correlate with the tissue specificity of

genes is compatible with the previous findings that gene expression level and breadth

are positively correlated in human data (Eisenberg and Levanon, 2003; Lercher et al.,

2002; Reverter et al., 2008; Vinogradov, 2004; Zhu et al., 2008). However, it is

not compatible with a later study on human and mouse data where virtually no

correlation was found between expression level and tissue specificity (Liao and Zhang,

2006). The lower mean expression signal for tissue-specific genes partially explains

the higher fold changes for tissue-specific differentially expressed genes. However,

the many points deviating from the regression line (r2 = 0.152) indicate that there

might be further reasons for the bias in fold changes, since not all tissue-specific

genes display low expression signals and vice versa.

A second possible explanation for the bias in fold changes is that changes in

tissue-specific expression might be easier to detect in whole-fly samples by microarray

technologies: the resulting data for each gene on an array represents the sum of

signals from every tissue and cell-type present in the sample. Thus, a change of the

expression level of a constitutively expressed gene in one tissue can be compensated
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Figure 6.3: The relationship between gene specificity and mean expression signal.
The relationship between gene specificity and mean expression signal measured in various
whole-fly experiments. E-GEOD is the accession number for the respective experiment
in ArrayExpress. The variables r in the legends indicate the values of the correlation
coefficient. The data were extracted from studies of (1) whole-fly wildtype data, (2)
aggressive behavior in fruit flies (3) lifespan extension (4+5) different Drosophila lines and
(6) alcohol sensitivity in the fruit fly.
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by changes in the opposite direction in one of the other tissues resulting in overall

lower fold changes. In order to validate this a data set would be required that provides

similar information to the FlyAtlas data set but with the additional dimension of

ageing added. A comprehensive data set was not available at the time of writing, but

we investigated another ageing data set that was performed on whole-body, thorax

and head to see if the direction of up-/downregulation of genes is the same in different

tissues (Girardot et al., 2006). The expression levels of about two-third of the genes

(3,034 out of 4,503 genes) changed in the same direction in the head, thorax and

whole-body data while the remaining genes change in opposite directions (Figure

6.4). Note that this data set is based on Affymetrix Drosgenome 1 and therefore

not fully comparable to the other data sets used in this study. Another study (Zhan

et al., 2007) found 16 genes that were consistently differentially expressed with age

amongst several tissues. The expression levels of all but one of these genes was

upregulated in some tissues, and downregulated in other tissues (Figure 6.4).

The third explanation is that tissue-specific genes change their expression more

with age. Indeed it was recently suggested that it is possible that genes with lower

maximum expression levels might be changing to a larger degree with age (Hong et al.,

2008). Again, a tissue-specific gene expression atlas with the additional dimension of

ageing added may help to validate this hypothesis.

6.2.2 Filtering tissue-specific age-associated transcripts be-

fore enrichment analysis increases the significance of

age-associated gene ontology terms

The usefulness of enrichment-based analysis greatly depends on the quality of the

functional annotation associated with the input genes. False positive and false

negative annotation errors in the GO database can adversely affect performance. In

this data set, only 60% of the differentially expressed genes could be associated with
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Figure 6.4: Up-/downregulation of age-responsive genes in fruit fly body parts.
Green and red indicate up- and downregulation respectively in old flies (15-60 days old
flies) compared to young flies (3 days old flies). a) 4,503 genes which have been identified
as responsive in various ageing experiments. The figure shows the up-/downregulation
of these genes in three body parts: whole body, head or thorax. b) 16 genes that were
differentially expressed with age in at least 3 tissues according to spatial transcriptional
profiles of aging in 7 tissues.
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Figure 6.5: GO annotation distribution. Percentage of fruit fly genes in the data
set that are annotated with GO annotation. The coverage is comparatively low for
tissue-specific genes in bin 1.

one or more GO annotations. Tissue-specific genes are generally less well annotated

than ubiquitously expressed genes (Figure 6.5).

The bias in functional annotation towards richer annotation for broadly expressed

genes may have important repercussions on the conclusions drawn from an enrichment

analysis study. Important connections to processes of interest, here ageing, may be

missed just because of missing annotations associated with the data set. For instance,

most of the 55 genes that are annotated with the term determination of adult lifespan

in the full data set are broadly expressed (median Si = 0.29) but it is unknown

how many false negative annotations are associated with the data set. Removing

tissue-specific genes from the data set before enrichment analysis may, thus, alter

the significance of age-related terms associated with the differentially expressed

genes. The results of such an analysis are reported in the following. Functional

differences in tissue-specific and broadly expressed differentially expressed genes are

also established.

The entire set of differentially expressed genes in chico1/+ (819 up, 237 down)
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6.2 Results and discussion

was divided into 17 groups based on their degree of tissue specificity (Figure 6.6).

We then searched for over-represented GO terms (Ashburner et al., 2000) in each

list of genes, and combinations thereof (48 bins: s1-s15, 1-17, u1-u15, all), using

gene-annotation enrichment analysis. Note that only 1,070 of the 1,169 differentially

expressed genes (92%) could be associated with a gene specificity value. As a result

99 genes could not be assigned to any of the filtered bins, but they are part of the all

bin. Thus it is not surprising that some GO terms could be detected by investigating

the full set of genes only. For instance, the full set of differentially expressed genes was

required to detect the terms insulin receptor binding and transforming growth factor

beta receptor signaling pathway. The gene chico that was mutated in this ageing

study encodes an insulin receptor substrate that functions in an insulin/insulin-like

growth factor (IGF) signaling pathway, and this accords with the over-representation

of these terms.

We found 111 over-represented GO (81 up, 30 down) terms associated with one

or more of the 48 groups of genes. Seven of these categories (2 up, 5 down) could

only be identified using the full set of differentially expressed genes (bin all), but in

none of the other groups (bins s1-s15, 1-17, u1-u15 ). Conversely, 43 categories (11

down, 32 up) were identified in one or more of the filtered groups, but not in the

full set of differentially expressed genes. Most of these categories were found after

filtering tissue-specific genes (32 terms), some of them were found after removing

broadly expressed genes (6 terms), and a few have been found in both of these groups

(3 terms). Six GO terms could be detected if any of the 17 groups were tested alone

(bins 1-17 ), the other GO terms required a combination of groups of genes (bins

u1-u15, s1-s15 ).

The upregulated terms that were significant only after removing tissue-specific

genes from the set of differentially expressed genes include various terms related

to metabolism (e.g. hormone metabolic process and galactose metabolic process)

and oxidoreductase activity (e.g. antioxidant activity and oxidoreductase activity).
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Sheet3

Page 3

a) Name b) Clusters

d) Number of genes

Min Max All Down Up Down  (FC 2) Up   (FC 2)

1 1 3.59 4.09 624 3 70 0 43

2 2 2.79 3.59 1008 19 100 2 49

3 3 2.29 2.79 529 10 80 0 35

4 4 1.93 2.29 498 7 48 2 14

5 5 1.63 1.93 430 14 44 1 17

6 6 1.39 1.63 416 9 54 3 15

7 7 1.18 1.39 418 15 58 1 13

⓵ 8 8 1 1.18 495 15 86 1 13

9 9 0.84 1 482 11 50 0 11

10 10 0.7 0.84 486 10 47 0 6

11 11 0.57 0.7 589 17 50 3 7

12 12 0.44 0.57 685 16 41 2 6

13 13 0.33 0.44 928 20 41 0 6

14 14 0.23 0.33 1247 29 29 2 3

15 15 0.13 0.23 1560 26 23 3 8

16 16 0.04 0.13 1359 19 9 2 0

17 17 0 0.04 50 0 0 0 0

s1 1-2 2.79 4.09 1632 22 170 2 92

s2 1-3 2.29 4.09 2161 32 250 2 127

s3 1-4 1.93 4.09 2659 39 298 4 141

s4 1-5 1.63 4.09 3089 53 342 5 158

s5 1-6 1.39 4.09 3505 62 396 8 173

s6 1-7 1.18 4.09 3923 77 454 9 186

⓶ s7 1-8 1 4.09 4418 92 540 10 199

s8 1-9 0.84 4.09 4900 103 590 10 210

s9 1-10 0.7 4.09 5386 113 637 10 216

s10 1-11 0.57 4.09 5975 130 687 13 223

s11 1-12 0.44 4.09 6660 146 728 15 229

s12 1-13 0.33 4.09 7588 166 769 15 235

s13 1-14 0.23 4.09 8835 195 798 17 238

s14 1-15 0.13 4.09 10395 221 821 20 246

s15 1-16 0.04 4.09 11754 240 830 22 246

u1 16-17 0 0.13 1409 19 9 2 0

u2 15-17 0 0.23 2969 45 32 5 8

u3 14-17 0 0.33 4216 74 61 7 11

u4 13-17 0 0.44 5144 94 102 7 17

u5 12-17 0 0.57 !"#$ 110 143 9 23

u6 11-17 0 0.7 6418 127 193 12 30

⓷ u7 10-17 0 0.84 6904 137 240 12 36

u8 9-17 0 1 7386 148 290 12 47

u9 8-17 0 1.18 7881 163 376 13 60

u10 7-17 0 1.39 8299 178 434 14 73

u11 6-17 0 1.63 8715 187 488 17 88

u12 5-17 0 1.93 9145 201 532 18 105

u13 4-17 0 2.29 9643 208 580 20 119

u14 3-17 0 2.79 10172 218 660 20 154

u15 2-17 0 3.59 11180 237 760 22 203

all 1-17 0 4.09 11804 240 830 22 246

c) Gene specificity value
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Table 1: Splitting 11,804 fly genes into clusters according to their tissue-specificity values (Si). The genes are clustered in

3 ways. (1) Into 17 different clusters as described in the methods section using Equation 3. Tissue-specificity is highest for

cluster 1 and lowest for cluster 17. (2) Combining clusters defined in (1) starting from the most tissue-specific genes (s1-s15).

(3) Combining clusters defined in (1) starting from the least tissue-specific genes (u1-u15). a) Cluster names used in the

manuscript b) Indicates which clusters are combined for the analysis c) The Si cutoffs used to assemble the respective clusters

d) The total number of FlyAtlas genes assigned to the clusters and the numbers of up- and downregulated genes in the ageing

experiment studied. FC 2 indicates that a fold-change cutoff of log2 > 1 was used.

Supplementary Figure 1. Splitting 11,804 fly genes into clusters according to their tissue-specificity 

values S
i
. The genes are clustered in 3 ways. (1) Into 17 different clusters as described in the methods section 

using Equation 3. Tissue-specificity is highest for cluster 1 and lowest for cluster 17. (2) Combining clusters 

defined in (1) starting from the most tissue-specific genes (s1-s15). (3) Combining clusters defined in (1) starting 

from the least tissue-specific genes (u1-u15). a) Cluster names used in the manuscript b) Indicates which 

clusters are combined for the analysis c) The S
i
 cutoffs used to assemble the respective clusters d) The total 

number of FlyAtlas genes assigned to the clusters and the numbers of up- and downregulated genes in the 

ageing experiment studied. FC 2 indicates that a fold-change cutoff of log2 > 1 was used.

Figure 6.6: Splitting 11,804 fruit fly genes into bins according to their tissue
specificity values (Si). The genes are bined in 3 ways. (1) Into 17 different bins as
described in the methods section using Equation 5.3. tissue specificity is highest for
bin 1 and lowest for bin 17. (2) Combining bins defined in (1) starting from the most
tissue-specific genes (s1-s15 ). (3) Combining bins defined in (1) starting from the least
tissue-specific genes (u1-u15 ). a) bin names used in the manuscript b) Indicates which
bins are combined for the analysis c) The Si cut-offs used to assemble the respective bins
d) The total number of FlyAtlas genes assigned to the bins and the numbers of up- and
downregulated genes in the ageing experiment studied. FC 2 indicates that a fold change
cut-off of log2 > 1 was used.
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Ageing is known to influence certain key metabolic processes (Curtis et al., 2005) and,

thus, the over-representation of these terms is not surprising. The over-representation

of the terms related to oxidoreductase activity (e.g. oxidoreductase activity, acting

on the CH-NH group of donors, NAD or NADP as acceptor and steroid dehyodro-

genase activity) and the term antioxidant activity is in agreement with previous

observations that possible determinants of the enhanced life maintenance include

increased resistance to oxidative stress provided by a shift to a highly reducing

redox status (Houthoofd et al., 2002). Some of the tissue-specific groups of genes

were also associated with terms related to oxidative activity and metabolism. One

mechanism involved in the defense of oxidative products is the family of glutathione

transferases (Martinez-Lara et al., 2003). This is reflected by an overrepresentation of

the term gluthatione transferase activity in the upregulated set of genes, for primarily

ubiquitously expressed ones. The latter term is significant for the all group and

several of the bins (all, u6-u13 and u15 : p < 0.05).

The downregulated terms that were significant only after removing tissue-specific

genes from the set of differentially expressed genes include the terms determination

of adult lifespan (bins u4 and u5 : p < 0.05, all : p = 0.148) and protein kinase

activity. Conversely, the terms eggshell chorion formation, cell proliferation, skeletal

muscle fiber development, response to other organism were significant after removing

broadly expressed genes.

In addition to the detection of age-associated GO terms after filtering tissue-

specific and/or broadly expressed genes, the significance of some terms was increased

after filtering. We were able to associate the term response to starvation with the

downregulated set of primarily broadly expressed genes (all, s13-s15 and u4-u15 : p

< 0.007; u4-u15 < all). It is known that nutritional factors can exert major effects

on ageing and interact with experimentally induced mutations that induce longevity.

There is evidence that the chico mutation, analysed in this work, is involved in

the same mechanisms as dietary restriction (Piper and Bartke, 2008), and this is
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in agreement with the overrepresentation of this term. In the fruit fly, starvation

promotes the mobilisation of glycogen and lipid stores in response to increases in

circulating adipokinetic hormone (Djawdan et al., 1998; Kim and Rulifson, 2004). In

our data set, this is reflected by an upregulation of monosaccharide, polysaccharide,

lipid and carbohydrate biosyntetic processes (e.g. trehalose biosynthetic process, lipid

transporter activity and carbohydrate phosphatase activity). Again, the significance

of some of these terms was increased after filtering tissue-specific genes, although

they were significant in the full set of differentially expressed genes too.

Thus our specificity analysis reveals functional bins which have previously been

implicated in ageing encouraging us to believe that this approach is useful and pow-

erful. We conclude that filtering tissue-specific genes prior to annotation enrichment

analysis helps to find more subtle connections to ageing. The tissue-specific and

ubiquitous bins represent different and complementary sets of genes, which can and

should be studied for their expression during the ageing process taken together and

separately. Note that the tissue-specific differentially expressed genes are predom-

inantly midgut specific genes (68% for genes with an Si value > 2.80). Thus, the

GO terms over-represented in the tissue-specific groups are dominated by midgut

specific terms.

It should be noted that in the approach used to detect significant GO terms

each term was statistically tested independently. An important issue which arises

is the effect of multiple testing on power. Each time we statistically test a term

with a statistical test, we incur the risk of a false positive. It is standard practice in

bioinformatics to use a p value threshold of 0.05 for the decision as to whether a term

is significant or not. This p value is the probability of getting a false positive result,

so on average we would expect to get a false positive result about once every 20

times the test is used (1/0.05). In the above experiment we tested 2,439 GO terms.

This translates to 122 false positives (0.05 * 2,439 tests). The total number of terms

that were significant was 333 (before parent nodes were removed from the result list).
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It has to be assumed that approximately one third of the results are false positives,

even though this calculation is conservative, as it ignores correlations between genes.

Choosing a stricter EASE score cut-off to select significant GO terms might yield

a lower false positive result. We used a relatively tolerant EASE score because we

did not want to miss terms that have potential association to ageing. To further

investigate multiple testing issues we used Storey’s q value calculation to formally

assess the false discovery rate (FDR) using the corresponding R package (Dabney

et al., 2010). The software, which we used with default values, takes a list of p values

resulting from the simultaneous testing of many hypotheses and estimates their q

values by using characteristics of the p value distribution. The q values, for the

111 GO terms that were deemed to be significant earlier, are reported in Tables C.1

and C.2 (Appendix C). They were first estimated from the EASE scores, and then

also from the original Fisher p values. Choosing a q value of 0.05 means that we

should expect 5% of all the terms with q value less than this to be false positives.

Of the list presented in Appendix C we find 33 such GO terms if the q values are

estimated from the EASE scores, while we find 77 if the q values are estimated from

the Fisher p values. These are reported in Tables D.1 and D.2 (Appendix D). We

expect 33*0.05= 1.65 and 77*0.05 = 3.85 false positives, respectively. When deciding

on a cut-off or threshold value, we can now do this from the point of view of how

many false positives will this result have rather than choosing an arbitrary cut-off.

Another possibility to address the multiple testing issues here would be to reduce

the number of GO categories tested. A slim version of GO could be created that is

specific to ageing and contains a reduced number of categories. Another possibility

would be to exclude highly over- or underrepresented terms in the background gene

set.
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6.2.3 DNA motifs associated with tissue-specific and broadly

expressed age-associated genes
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Figure 5: Overrepresented TFBS. Transcripton Factor binding sites which are significantly over-represented in genes show-

ing differential expression between wild-type and long-lived fly mutant. Several GATA regulatory motifs are enriched in the

promoter regions of age-regulated genes for both tissue-specific and broadly expressed genes. Other motifs are primarily found

in promoter regions of age-regulated genes that are tissue-specific (e.g. NFKB_Q6_01) or broadly expressed (e.g. MYC_Q2). 

Figure 6.7: Overrepresented TFBS. Transcription factor binding sites, which are
significantly over-represented in genes showing differential expression between wild type
and long-lived fruit fly mutant. Several GATA regulatory motifs are enriched in the
promoter regions of age-regulated genes for both tissue-specific and broadly expressed
genes. Other motifs are primarily found in promoter regions of age-regulated genes that
are tissue-specific (e.g. NFKB Q6 01) or broadly expressed (e.g. MYC Q2).

Differentially expressed genes often share a number of TFBS located upstream

of the transcriptional start site, implying that they might be regulated by similar

transcription factors that regulate a group of genes involved in a similar cellular

function. In the previous section, it was shown that differentially expressed genes

identified on whole-fly experiments capture both common and tissue-specific responses

to ageing. These may or may not involve the same transcription regulatory machinery.

We applied Clover (Frith et al., 2004), a program for identifying functional sites

in DNA sequences, to the promoter sequences of genes associated with extension

of lifespan. As before the entire set of differentially expressed genes was divided

into 17 groups based on their degree of tissue specificity. We then searched for

over-represented functional sites in each list of genes, and combinations thereof. A

total of 90 TFBS were identified. Of these, one TFBS could only be detected using
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the full set of differentially expressed genes (up: HNF) while 56 additional potential

TFBS were detected using the filtered sets of genes. For instance FOXO1 01 was

identified in ubiquitously expressed down-regulated genes (u2, u3 ) but not in the

full set of down-regulated genes. This is interesting because the FOXO transcription

factor is implicated in animal ageing (Greer and Brunet, 2008).

The data further suggests that tissue-specific and broadly expressed age-modulated

genes share some TFBS (Figure 6.7). For example processes involving the GATA

family of transcription factors appear to be shared across genes including all levels

of tissue specificity. In flies GATA factors have a central role in heart specification

(Qian and Bodmer, 2009), and they are also implicated in insect innate immune

response (Bettencourt and Ip, 2004). In the worm several GATA transcription factors

were found to be responsible for age regulation of several genes (Budovskaya et al.,

2008). Our data shows that the GATA transcription factors can be linked to age

regulation of tissue-specific and broadly expressed genes in the fruit fly. An example

for a TFBS that was primarily associated with the tissue-specific age-regulated genes

is NFKB Q6 01. The NF-kB system is the master regulator of the innate immunity,

an ancient signaling pathway found in both insects and vertebrates. Recent studies

have revealed that several key regulators of aging in budding yeast and C. elegans

models, regulate the efficiency of NF-kB signaling and the level of inflammatory

responses (Salminen et al., 2008). Our data suggests a tissue-specific involvement

of the NF-kB regulator in ageing for the adult fruit fly. A TFBS for MYC, which

has been linked to ageing-related genes (Grandori et al., 2003; Wu et al., 1999) in

human, was primarily found in the set of broadly expressed genes (down-regulation).

6.2.4 Age-associated genes

A total of 46 lifespan extending mutations are known for the fruit fly so far (de Mag-

alhães and Toussaint, 2004). Little is known about the overall tissue specificity of

these genes, i.e., whether these genes primarily perform housekeeping or tissue-specific
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functions. To address this question we scrutinised the ordered set of fruit fly genes for

46 fruit fly genes previously highlighted to be lifespan extending. Figure 6.1, Box 4,

shows that most of these genes are ubiquitously expressed. The gene with the highest

gene specificity value was FBgn0029752 (Thioredoxin T, Si=3.88), an evolutionarily

conserved antioxidant and molecular chaperone whose over-expression in neurons

was associated with lifespan extension of 15% in the fruit fly (Umeda-Kameyama

et al., 2007). This gene is highly expressed in the testis, but in none of the other

adult tissues provided with the current FlyAtlas data set. An example of a gene with

a midrange pattern of expression is FBgn0037324 (Odorant receptor 83b, Si=1.33).

Loss-of-function mutation of FBgn0037324 that is expressed in the brain, head and

eye resulted in olfactory defects, altered adult metabolism, enhanced stress resistance

and life-extension of up to 56% in the fruit fly (Libert et al., 2007). The gene with the

most ubiquitous expression was FBgn0086768 (Protein-L-isoaspartate (D-aspartate)

O-methyltransferase). This gene is involved in protein repair mechanisms. Overex-

pression of this gene extended lifespan in flies by 32-39% under certain conditions

(Chavous et al., 2001).

We found that most currently known age-associated genes in the fruit fly are

ubiquitously expressed (median Si=0.28). It is possible, however, that longevity-

associated pathways involve far more tissue-specific genes than Figure 6.1 indicates

since tissue-specific genes are less well studied (Figure 6.5). An investigation of

age-associated genes in several fruit fly body parts (Zhan et al., 2007) also showed

that most of the genes are broadly expressed, but that some of the genes are highly

specific (Figure 6.1, Boxes 5-11). The authors of the study state that only 3% to

10% of age-related genes in any given tissue overlapped with those in any other

tissue. This lack of overlap across genelists is partly explained by the tissue-specific

age-related genes in each tissue, that by definition have low chances to overlap with

the genes from another tissue. Again, the ordered list of fruit fly genes according to

their tissue specificity could be used to remove genes with a certain tissue specificity
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from the tissue lists.
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Chapter 7

Final Remarks and Future Work

7.1 Conclusions

In this thesis I described my investigations of applying machine learning methods

to high throughput experimental and predicted biological data. This work made

three novel contributions based on the systematic analysis of publicly archived data

of protein sequences, three dimensional structures, gene expression and functional

annotations: (a) remote homology detection based on amino acid sequences and

secondary structures; (b) the analysis of tissue-specific gene expression for predictive

signals in the sequence and secondary structure of the resulting protein product; and

(c) a study of ageing in the fruit fly, a commonly used model organism, in which

tissue specific and whole-organism gene expression changes are contrasted. The

conclusions of these studies are summarised in the following, and future directions

are given subsequently.
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7.1.1 Remote homology detection using a kernel method

that combines sequence and secondary structure sim-

ilarity scores

In the first part of this thesis, we have developed a kernel-based remote homology

detection method that allows for a combination of sequence and secondary structure

similarity scores. We studied its performance to predict superfamily membership

as defined by the SCOP database. We showed that a kernel method that combines

sequence similarity scores with predicted secondary structure similarity scores per-

forms similar to a classifier that uses scores calculated from sequences and true

secondary structures, but performs better than a sequence-only based classifier and

achieved a better mean than recently published results on the same data-set i.e.

the GPkernel which in turn was compared to other methods such as SVM-pairwise

method, the mismatch kernel and a PSI-BLAST based approach. Our method can

be tuned to re-weight the influence of the scores, and it is widely applicable because

alignment scores and secondary structures are readily computable. We note several

important points about this work. First of all, we note that the observation that

secondary structures provide complementary information to amino acid sequence is

not new; in fact, as stated in the chapter 3.1, this has been shown by many other

researchers. The difference to most other works lies in the use of SVMs and kernels

thus investigating performance in a discriminative setting in contrast to instance-

based and generative models - which has not yet been done in a comprehensive study.

Even though it is known that secondary structures can improve remote homology

detection methods, many recent methods do not use this kind of information. Thus,

we hope this work gives a refreshing view on this issue and will encourage others

to integrate secondary structures in their methods. Further we note that we have

used the SCOP database, driven by the need to compare our results with previously

published results. The manual annotations in SCOP, particularly at the higher levels
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of the hierarchy, do indeed use knowledge of secondary structures as an important

source of information. Secondary structure assignment algorithms are all trained

on the relatively small set of proteins for which structures have been determined,

and SCOP domains are a subset of these. While the inevitable bias arising from

these facts does not negate our conclusion, caution must be exercised in how far

one might generalise our findings. The performance increases we see are small, and,

in problems posed on the SCOP database we are operating at very high levels of

accuracy. Still, for comparisons against other work and for reliabilities of annotation

we needed to work with this database. In future work, we suggest to move away from

this and to formulate sequence classification problems using other databases. Finally

we note that the SVMs used in this work were trained to solve two-class problems.

To be able to classify new proteins, which are not part of the benchmark sets, the

method needs to be extended to solve multi-class problems. One of the most widely

used approaches to solve multi-class problems is the one-against-all classification, in

which a new instance is tested against all binary SVMs (102 for the SCOP version

used here), and the classifier which outputs the largest score is chosen. In this work

our intention was to explore if secondary structure inclusion can increase classifier

performance - to establish this, in comparison to already published work, we limited

the experiments to solving two-class problems, and performance of new instances

has yet to be determined.

7.1.2 Tissue specificity of gene expression is correlated with

the sequence and secondary structure of resulting pro-

tein product

The second part of this thesis concerns an investigation of the predictability of

gene specificity based on the amino acid content associated with gene protein

products, their predicted secondary structures and various genomic features in the
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fruit fly Drosophila melanogaster and the mouse Mus Musculus. Gene specificity

can be predicted at better than random rates using all classifiers tested on most

benchmark sets suggesting the existence of useful signals at these levels. The

classifier based on amino acid percentages combined with genomic features performed

best overall. It also compared favourably with a classifier previously published

(De Ferrari and Aitken, 2006). We conclude that tissue specificity of gene expression is

correlated with the sequence and secondary structure of the resulting protein product.

Shannon’s information theory provides a clearly defined statistical framework that

has previously been proven valuable in several genomic applications. Here, we

applied it to mouse and fruit fly expression profiles to obtain lists of genes ordered

according to their tissue specificity and used it to investigate tissue specificity in

these organisms. We concentrated on the fruit fly because it is the least studied

organism (Table 3.1) for which good data have recently become available. Further

studies are required to investigate if there is an evolutionary conserved correlation of

amino acid sequences and tissue specificity, and if such a correlation could be used

to predict this information for less well studied organisms. We found that the amino

acid asparagine discriminated best between broadly expressed and tissue specific

genes in both the fruit fly and the mouse and it would be interesting to follow up this

finding in future studies. We showed that a classifier trained on mouse and tested on

fly genes, or vice versa, performed better than random on a number of benchmark

sets. The number of genes used in these benchmarks can be systematically optimised

to further improve performance. There are several other areas for improvement and

future research to extend this work. Recent technological advances that allow faster

and cheaper DNA sequencing and transcriptional profiling (RNA-Seq) are likely to

produce high-quality data that could be used to refine many of the approaches used

in this work (Wang et al., 2009c). For instance, RNA-Seq provides a better estimate

of absolute expression level (Fu et al., 2009) that in turn give a better estimate of

true tissue-specificity. This thesis has taken some steps in the development of a
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computational method which can serve as a stable platform for further research on

tissue-specificity when large scale RNA-Seq data becomes available.

7.1.3 Analysis of the tissue-specific contribution to whole

body RNA transcript profiles in Drosophila Melanogaster

Finally we used the same computational approach as above to partition genes

according to their tissue specificity in the fruit fly and used it to clarify tissue-

specific fly transcripts and gene expression in the ageing fly, and in general. Based

on an information theoretical approach, we investigated how to utilise FlyAtlas,

a microarray-based atlas of gene expression in multiple adult tissues, to delineate

tissue-specific from ubiquitous expression in whole-fly experiments. We began by

taking the sorted list of fruit fly genes according to their degree of tissue specificity

introduced in the previous chapter, obtained from the FlyAtlas gene expression

profiles. We then used the defined tissue specificity to determine the capacity of

Affymetrix high-density oligonucleotide whole-genome microarrays to capture tissue-

specific age-associated changes in whole-fly samples. Importantly, we found that

genes with tissue-specific expression are associated with higher fold changes amongst

significantly differentially expressed genes and a lower mean expression signal. This

indicates that changes in tissue-specific expression might be easier to detect than

expression changes of broadly expressed genes when using whole-fly arrays. We

also described how filtering genes with tissue-specific expression from data from a

whole-fly ageing experiment affects data analysis and the derivation of meaningful

information from the data. The significance of several age-related GO terms was

increased after removing tissue-specific differentially expressed genes. This is due to a

bias in GO annotation towards broadly expressed genes, and to differences in function

of broadly and tissue-specifically expressed genes. This study was complemented

by an analysis of the tissue specificity of age-associated genes in the fly. We found

147



7.2 Future directions

that most known age-associated genes are broadly expressed. As before, the future

availability of RNA-Seq data is expected to be useful to validate some of the results

of this work.

7.2 Future directions

Ideas for extensions of this work are given in the following paragraphs.

7.2.1 Joint alignments

In Chapters 4 and 5 we used a joint sequence and secondary structure approach

to predict remote homology and tissue specificity. Future work could include the

development of a method that better captures the relationship between sequence and

secondary structure. A joint alignment between these two entities might be a step in

this direction. Several previous studies have examined the improvement of pairwise

sequence alignments by incorporating secondary structure information. In particular,

it has been demonstrated that sequence alignments can be improved by limiting the

number of gaps in the regions of secondary structures (Barton and Sternberg, 1987;

Gerstein and Levitt, 1996; Lesk et al., 1986). In these studies it has been shown that

positions in an alignment that correspond to α-helices or β-strands are less likely to

be affected by gaps. These studies demonstrated on overall improvement in alignment

accuracy by limiting the number of gaps in regions of secondary structures, but they

focused on a small number of model proteins. For instance, Barton and Sternberg

(1987) considered five pairs of structurally homologous proteins, while Lesk et al.

(1986) looked at proteins within the globin and serine proteinase families. Gerstein

and Levitt (1996) also investigated a small number of proteins.

Multiple sequence alignments have also been shown to be improved by making

use of secondary structures (Elofsson, 2002). For example, von Ohsen et al. (2004)

combine amino acid profile-profile scores with weighted secondary structure profile-
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profile scores to compute the final alignment score. They build a frequency profile for

the target sequence over the amino acid alphabet and over the three-state secondary

structure alphabet using the PSIPRED program. A secondary structure similarity

matrix (Kawabata and Nishikawa, 2000) is used to compute the secondary structure

profile-profile scoring term while the BLOSUM62 matrix is used to compute the amino

acid profile-profile score. The authors use this profile–profile alignment approach

in their software termed Arby which is a server for protein structure prediction

based on its sequence. According to the CAFASP3 experiment (Critical Assessment

of Fully Automated Structure Prediction), the server is one of the most sensitive

methods for predicting the structure of single domain proteins. Chung and Yona

(2004) also showed that integration of primary and secondary structure information

can substantially improve detection of relationships between remotely related protein

families. Their method augments sequence profile columns using PSIPRED secondary

structure predictions and assesses statistical similarity using information theoretical

principles.

Another example where a similar method is used is PRALINE which is a multi-

ple sequence alignment toolbox that integrates homology-extended and secondary

structure information (Simossis and Heringa, 2005). PRALINE makes a profile-

profile alignment with PSI-BLAST profiles used as templates. The profile can be

complemented with a secondary structure prediction in an attempt to improve the

alignment accuracy. A choice of seven different secondary structure prediction pro-

grams is provided that can be used individually or in combination as a consensus for

integrating structural information into the alignment process. A different scoring

scheme is used for profile positions with matching secondary structure elements than

for positions that show mismatching residues. The authors report that the use of

the secondary structure information significantly improves the PRALINE alignment

quality.

The above mentioned methods make use of secondary structures to guide the
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alignments. Alignment methods that integrate three-dimensional structure have also

been developed. For instance, the 3D-Coffee (Poirot et al., 2004) method, or its newer

version named Expresso (Armougom et al., 2006) make use of PDB structures to

assemble a structure-based multiple sequence alignment. Providing the appropriate

structural information is available, Expresso is significantly more accurate than

regular homology based methods and its alignments are often indistinguishable

from reference structure based alignments. FUGUE (Shi et al., 2001) is a program

for recognising distant homologues by sequence-structure comparison. It utilises

environment-specific substitution tables and structure-dependent gap penalties, where

scores for amino acid matching and insertions or deletions are evaluated depending

on the local environment of each amino acid residue in a known structure. Given

a query sequence, FUGUE scans a database of structural profiles, calculates the

sequence-structure compatibility scores and produces a list of potential homologues

and alignments. JOY (Mizuguchi et al., 1998a) is a program for annotating protein

sequence alignments with three dimensional structural features. It was developed to

help understand the conservation of amino acids in their specific local environments.

HOMSTRAD (HOMologous STRucture Alignment Database) (de Bakker et al., 2001;

Mizuguchi et al., 1998b; Stebbings and Mizuguchi, 2004) is a database of multiple

alignments, created using the three dimensional structure as a guide (Mizuguchi

et al., 1998a). The alignments are annotated with JOY in a format that represents

the local structural environment of each amino acid residue.

Even though some automatic methods are available that incorporate secondary

structure information in alignments, the most frequently used alignment methods do

not use this kind of information. We think there might be further improvements to

the works mentioned above, and hence we started to investigate how weighted finite

state machines (WFSMs) could be used to create such a method.

In the following a possible approach is detailed that could be used to generate

such an alignment. The approach was developed during the course of this PhD study,
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but since a complete study is missing, this is given as an idea for future directions

rather than an own chapter.

WSFMs, or more specifically weighted finite-state acceptors and transducers, are

generic devices for modelling sequences of symbols. On an abstract level, acceptors

represent a sequence of input symbols, while transducers encode a mapping between

input and output sequences. Weights such as match or mismatch probability can be

assigned to each transition. Regular expressions and HMMs, which are used for a wide

range of applications in bioinformatics, are specialised cases of WFSMs. In this pre-

liminary study, WFSM were trained to perform pairwise sequence alignments guided

by secondary structure knowledge. The AT&T FSM library was used (Mehryar,

1997), which has been successfully applied to many natural language-processing

tasks (Mohri et al., 2002) and also to some bioinformatics problems (Cortes et al.,

2004). A conclusive, peer-reviewed publication on this software package in sequence

analysis applications is, to the best of our knowledge, not available. The library and

its potential to model sequence related algorithms was introduced in the tutorial

’Weighted Finite-State Transducers in Computational Biology’ at the 13th Annual

International Conference on Intelligent Systems for Molecular Biology (Cortes and

Mohri, 2005).

WFSM were used to calculate an alignment which allows for the combination of

the sequences and their corresponding secondary structures. Specifically we used

acceptors to model sequences and secondary structures. We used transducers to

define weights from one amino acid to another and from amino acids to secondary

structure elements. Figure 7.1a, demonstrates how a standard sequence alignment

can be calculated using WFSMs. The user provides two input sequences and weights

for amino acid matches, mismatches and gaps. These inputs are represented by two

unweighted acceptors (S1, S2) and one weighted transducer (T). Their graphical

representation is shown in Figure 7.1. A high weight in T indicates that this transition

is likely to occur and vice versa. For example, a transition from A:A (-0.13) is more
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likely than the introduction of a gap, A:e (-3). In order to calculate an alignment,

the above FSMs are composed. Composing FSMs means taking the output from

the one FSM and to match it with the input of another FSM. For example, the

first output of (S1) is an A. It matches all three inputs of (T), i.e. A:A, A:S, A:V.

The resulting transition consists of the input of the first FSM and the output of the

second FSM; i.e. composing of (S1) and (T) results in transitions: A:A, A:S, A:V.

The resulting, temporary FSM, represents all transitions between the given sequence

and an unknown sequence, which are, in principle, possible. This intermediate FSM,

is further composed with (S2). The same procedure is done for all the other states.

A:e introduces a gap in S1. Gaps can be introduced in S2 as well, but the example

is greatly simplified. The resulting WFSM defines all possible paths between the

two sequences. The path with the highest weight, is the most likely one and it is

selected as the alignment.

Figure 7.1b illustrates how the same principles can be used to calculate an

integrated alignment. The algorithm stays the same, the difference lies in the input

that the user gives to the program. More precisely six WFSMs are composed in the

following order

S1 ◦ T1 ◦ SS1 ◦ T2 ◦ SS2 ◦ T3 ◦ T4 ◦ S2 (7.1)

S1 and S2 in the equation above represent the amino acid sequence of protein

1 and 2 respectively. SS1 and SS2 represent the secondary structure sequence of

protein 1 and 2 respectively. T1 defines transition weights from an amino acid symbol

to a secondary structure symbol. T2 represents transition weights from one secondary

structure element to another. T3 defines transition weights from a secondary structure

element to an amino acid. T4 defines transition weights between amino acids. The

user provides sequence and secondary structure, as well as four files which define

transitions probabilities or weights between amino acids and secondary structure. If
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a lot of weight is given to matching secondary structure, the resulting alignment is

different to the alignment shown in Figure 7.1a.

Figure 7.2 shows an real world example of such an integrated alignment.
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Figure 7.1: Schematic view of weighted finite state machines used for pairwise
alignments. The sequences S1, S2, SS1 and SS2 are modeled as acceptors. The ”weight”
files in the figure define transition probabilities between one amino acid residue or secondary
structure symbol to the next. Weighted transducers (T) are used to connect two sequences
depending on the defined transition probabilities. a) WFSMs are used to align two
sequences S1 and S2. b) Joint sequence and secondary structure alignment. WFSMs are
used to align two sequences S1 and S2 and two secondary structure sequences SS1 and
SS2. The method was named SEAL.

7.2.2 Predicting tissue specificity for other organisms

Considering the success of discriminating tissue-specific and broadly expressed genes

within organism, future work might include the prediction of tissue specificity of genes
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a) Global Sequence Alignment (EMBOSS)

P02186       ---------LLLHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHLGGGGG
             ---------GLSDGEWELVLKTWGKVEADIPGHGETVFVRLFTGHPETLE
                       | ||      | | |              |     |
Q7SID0       PIIDQGPLPTLTDGDKKAINKIWPKIYKEYEQYSLNILLRFLKCFPQAQA
             LLLLSSSLLLLLHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHLGGGGG

P02186       GLTTTTTLLSHHHHHTLHHHHHHHHHHHHHHHHHHHTTTLLH---HHHHH
             KFDKFKHLKTEGEMKASEDLKKQGVTVLTALGGILKKKGHHE---AEIQP
              | ||   |           | | |        |       |
Q7SID0       SFPKFSTKKS--NLEQDPEVKHQAVVIFNKVNEIINSMDNQEEIIKSLKD
             GLTTTTTLLS--LGGGLHHHHHHHHHHHHHHHHHHTTTTLHHHHHHHHHH

P02186       HHHHHHHTSLLLHHHHHHHHHHHHHHHHHHSTTTSLHHHHHHHHHHHHHH
             LAQSHATKHKIPIKYLEFISDAIIHVLQSKHPAEFGADAQGAMKKALELF
             | | | |  |         |               ||           |
Q7SID0       LSQKHKTVFKVDSIWFKELSSIFVSTIDG------GAEFEKLFSIICILL
             HHHHHHHTSLLLTTHHHHHHHHHHHHTTL------LHHHHHHHHHHHHHH

P02186       HHHHHHHHHHTTSLL
             RNDIAAKYKELGFQG
             |           
Q7SID0       RSAY-----------
             HTTL-----------

b) Sequence/Secondary Structure Alignment

P02186       L---------LLHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHLGGGGG
             G---------LSDGEWELVLKTWGKVEADIPGHGETVFVRLFTGHPETLE
                       | ||      | | |              |     |
Q7SID0       PIIDQGPLPTLTDGDKKAINKIWPKIYKEYEQYSLNILLRFLKCFPQAQA
             LLLLSSSLLLLLHHHHHHHHHHHHHHHTTHHHHHHHHHHHHHHHLGGGGG

P02186       GLTTTTTLLSHHHHHTLHHHHHHHHHHHHHHHHHHHTTTL---LHHHHHH
             KFDKFKHLKTEGEMKASEDLKKQGVTVLTALGGILKKKGH---HEAEIQP
              | ||   |   |       | | |        |         
Q7SID0       SFPKFSTKKSNLE--QDPEVKHQAVVIFNKVNEIINSMDNQEEIIKSLKD
             GLTTTTTLLSLGG--GLHHHHHHHHHHHHHHHHHHTTTTLHHHHHHHHHH

P02186       HHHHHHHTSLLLHHHHHHHHHHHHHHHHHHSTTTSLHHHHHHHHHHHHHH
             LAQSHATKHKIPIKYLEFISDAIIHVLQSKHPAEFGADAQGAMKKALELF
             | | | |  |         |               ||          
Q7SID0       LSQKHKTVFKVDSIWFKELSSIFVST------IDGGAE---------FEK
             HHHHHHHTSLLLTTHHHHHHHHHHHH------TTLLHH---------HHH

P02186       HHHHHHHHHHTTSLL
             RNDIAAKYKELGFQG
                |  
Q7SID0       LFSIICILLRSA--Y
             HHHHHHHHHHTT--L

Figure 7.2: Sequence alignment alone and augmented with secondary structure.
First graphic shows a standard sequence alignment. A secondary structure element is
attributed to each amino acid. The grey boxes highlight areas where there is a mismatch
of secondary structure elements. The algorithm employed to create the second graphic uses
secondary structure information. If we search in UniProtKB for P02186 (MYG ELEMA)
for relevant hits using BLAST, we could not find Q7SID0 (GLBF1 EPTBU) within a
significant E value 10−05 despite high simiarity in their secondary structure sequence (see
Chapter 3.1 where these proteins are discussed further). The pipe symbols indicate an
alignment match between two columns.
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7.2 Future directions

in other model organisms. For instance the worm, C. elegans, is a popular model

organism, but tissue-specific information is only available for part of its genome.

Despite the variety of techniques available and the number of studies performed

thus far, our understanding of tissue-specific expression in C. elegans is not yet

complete; most genes have not been analysed at the single-gene level, nor under

diverse conditions and developmental stages (Chikina et al., 2009). The fruit fly and

mouse models trained in this work could potentially be used to infer tissue specificity

for these worm data. In Chapter 5 we described how the amino acid asparagine was

the best discriminator between tissue-specific and broadly expressed genes. It would

be interesting to investigate this in other organisms, to see this is an evolutionary

conserved signal.

7.2.3 Multi-view learning

In Chapter 4 and 5, prediction models have been built that include all the variables

available, without taking into consideration that the data sets were comprised of

multiple feature sets from diverse domains often referred to as views. Consider the

collection of protein domains belonging to a particular superfamily used in Chapter

4. The available information about the protein domains can be organised in the

following two views: the sequence alignment scores and the secondary structure

alignment scores. It is of great interest to develop a model that provides insight

into the underlying relationship amongst these two views, potentially identifying

interactions between them, and also to assess their predictive capabilities. In Chapter

4, we investigated how giving different weights to the two views affects the classifier

performance that allowed to investigate how complementary sequence and secondary

structure information were in this problem. A technique that can further help

to answer the above questions, and also improve predictive performance, is multi-

view learning. Multi-view learning methods have been shown to be advantagous

to learning with only a single view (Blum and Mitchell, 1998), especially in cases
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7.2 Future directions

were the weakness of one view complements the strength of the other. Multi-view

learning methods exploit view redundancy to learn from partially labeled data. In

the multi-view learning paradigm, the input variable is partitioned into two different

views X1 and X2 and there is a target variable Y of interest. The underlying

assumption is that either view alone is sufficient to predict the target Y accurately.

This provides a natural semi-supervised learning setting in which unlabeled data can

be used to eliminate hypothesis from either view, whose predictions tend to disagree

with predictions based on the other view. Multi-view learning has been applied in

bioinformatics (Culp et al., 2009; Scheffer and Krogel, 2004; Yamanishi et al., 2004),

and could be exploited on the problems of remote homology detection and prediction

of tissue specificity to both increase accuracy and gain a better understanding of the

interrelationships of the data.
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Appendix A

PSI-BLAST output (a.1.1.2)

In the following we report the results of the PSI-BLAST experiment discussed in

Chapter 4.2.5 for all the 68 positive test sequences in the benchmark set for the

SCOP family a.1.1.2. The lines starting with Query= indicate which family member

was used for the PSI-BLAST search. Subsequent lines show all PSI-BLAST hits to

SCOP domains outside the query family a.1.1.2. The numbers at the end of the

lines represent the PSI-BLAST scores and E values, respectively. For the evaluation

in Chapter 4.2.5, only the first (best) hit were considered. For the test sequences

below a total of 66 true positives and a total of 2 negatives were counted if all hits

are considered independent of the E value.

Query= d1jl7a_ a.1.1.2 (A:) Glycera globin (Marine bloodworm (Glyceradibranchiata))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.0 0.17

lcl|d1h10a_ d1h10a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 27.6 8.8

Query= d1vhba_ a.1.1.2 (A:) Bacterial dimeric hemoglobin (Vitreoscillastercoraria)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.1 0.093

lcl|d1rtxa_ d1rtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 27.9 6.2

Query= d2gdm__ a.1.1.2 (-) Leghemoglobin Yellow lupin (Lupinus luteus)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 42.7 2e-04

Query= d2hbg__ a.1.1.2 (-) Glycera globin (Marine bloodworm (Glyceradibranchiata))

Query= d1gcvb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Houndshark (Mustelusgriseus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 30.6 1.1

Query= d1cg5b_ a.1.1.2 (B:) Hemoglobin, beta-chain (Cartilaginous fishakaei (Dasyatis akajei))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.2 0.35

Query= d1a4fa_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Bar-headed goose(Anser indicus))
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lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.4 0.15

Query= d1spgb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Teleost fish(Leiostomus xanthurus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 30.1 1.7

Query= d1hlm__ a.1.1.2 (-) Hemoglobin, different isoforms (Sea cucumber(Caudina (Molpadia) arenicola))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 39.3 0.003

lcl|d1h10a_ d1h10a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 27.7 7.8

Query= d1or4a_ a.1.1.2 (A:) Heme-based aerotactic transducer HemAT, sensordomain (Bacillus subtilis)

lcl|d1ngka_ d1ngka_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 60.3 1e-09

lcl|d1rtxa_ d1rtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 57.6 8e-09

lcl|d1idra_ d1idra_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 53.3 2e-07

lcl|d1dlwa_ d1dlwa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 47.9 8e-06

lcl|d1dlya_ d1dlya_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 46.0 3e-05

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.1 0.43

Query= d1g08a_ a.1.1.2 (A:) Hemoglobin, alpha-chain Cow (Bos taurus)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.4 4.9

Query= d1d8ua_ a.1.1.2 (A:) Non-symbiotic plant hemoglobin (Rice (Oryzasativa))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 41.2 7e-04

Query= d1mbs__ a.1.1.2 (-) Myoglobin Common seal (Phoca vitulina)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 38.1 0.007

Query= d1h97a_ a.1.1.2 (A:) Trematode hemoglobin/myoglobin (Paramphistomumepiclitum)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 45.3 4e-05

lcl|d1ql3a_ d1ql3a_ a.3.1.1 (A:) Cytochrome c552 (Paracoccus den... 32.6 0.24

Query= d1mba__ a.1.1.2 (-) Myoglobin Sea hare (Aplysia limacina)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 42.3 3e-04

Query= d1hdsa_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Deer (Odocoileusvirginianus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.6 0.22

Query= d1a4fb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Bar-headed goose(Anser indicus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.7 0.26

Query= d1a9we_ a.1.1.2 (E:) Hemoglobin, beta-chain (Human (Homo sapiens),embryonic gower II)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.2 0.096

Query= d1cqxa1 a.1.1.2 (A:1-150) Flavohemoglobin, N-terminal domain(Alcaligenes eutrophus)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.9 0.22

lcl|d1rtxa_ d1rtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 32.5 0.26

lcl|d1h10a_ d1h10a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 27.5 8.6

Query= d1uc3a_ a.1.1.2 (A:) Lamprey globin (River lamprey (Lampetrafluviatilis))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 30.7 0.91

lcl|d1rtxa_ d1rtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 30.3 1.4

Query= d1a6m__ a.1.1.2 (-) Myoglobin Sperm whale (Physeter catodon)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.9 0.37

Query= d1hbra_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Chicken (Gallusgallus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.4 0.064

Query= d1v75b_ a.1.1.2 (B:) Hemoglobin, beta-chain (Aldabra giant tortoise(Geochelone gigantea))
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lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 35.7 0.027

Query= d1fhja_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Maned wolf(Chrysocyon brachyurus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 39.5 0.002

Query= d1gjna_ a.1.1.2 (A:) Myoglobin Horse (Equus caballus)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.1 0.68

Query= d1cg5a_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Cartilaginous fishakaei (Dasyatis akajei))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.3 0.15

Query= d1jl6a_ a.1.1.2 (A:) Glycera globin (Marine bloodworm (Glyceradibranchiata))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.4 0.63

lcl|d1h10a_ d1h10a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 27.6 7.7

Query= d1fsla_ a.1.1.2 (A:) Leghemoglobin (Soybean (Glycine max), isoformA)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.0 0.19

Query= d3sdha_ a.1.1.2 (A:) Hemoglobin I (Ark clam (Scapharcainaequivalvis))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 39.2 0.003

lcl|d1rtxa_ d1rtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 28.0 5.7

Query= d2mm1__ a.1.1.2 (-) Myoglobin Human (Homo sapiens)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 35.3 0.044

Query= d1irda_ a.1.1.2 (A:) Hemoglobin, alpha-chain Human (Homo sapiens)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.5 0.13

Query= d1hdsb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Deer (Odocoileusvirginianus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.0 0.69

Query= d1emy__ a.1.1.2 (-) Myoglobin Asian elephant (Elephas maximus)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.3 0.33

Query= d2lhb__ a.1.1.2 (-) Lamprey globin (Sea lamprey (Petromyzonmarinus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.2 0.34

lcl|d1rtxa_ d1rtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 28.7 3.4

Query= d1hlb__ a.1.1.2 (-) Hemoglobin, different isoforms (Sea cucumber(Caudina (Molpadia) arenicola))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 37.6 0.009

Query= d1eca__ a.1.1.2 (-) Erythrocruorin (Midge (Chironomus thummithummi), fraction III)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.6 0.054

Query= d1hbrb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Chicken (Gallusgallus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 36.5 0.014

Query= d1lht__ a.1.1.2 (-) Myoglobin (Loggerhead sea turtle (Carettacaretta))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.2 0.66

Query= d1ch4a_ a.1.1.2 (A:) Chimeric hemoglobin beta-alpha (Synthetic,based on Homo sapiens sequence)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.4 0.13

Query= d1it2a_ a.1.1.2 (A:) Hagfish hemoglobin (Inshore hagfish(Eptatretus burgeri))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 45.7 3e-05

lcl|d1rtxa_ d1rtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 29.9 1.7

Query= d1qpwa_ a.1.1.2 (A:) Hemoglobin, alpha-chain Pig (Sus scrofa)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.9 3.1

Query= d1gvha1 a.1.1.2 (A:1-146) Flavohemoglobin, N-terminal domain(Escherichia coli)
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lcl|d1rtxa_ d1rtxa_ a.1.1.1 (A:) Protozoan/bacterial hemoglobin ... 30.3 1.1

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.8 3.9

lcl|d1fmja_ d1fmja_ c.37.1.5 (A:) Retinol dehydratase (Fall army... 28.4 4.9

Query= d1g08b_ a.1.1.2 (B:) Hemoglobin, beta-chain Cow (Bos taurus)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 36.4 0.016

Query= d1irdb_ a.1.1.2 (B:) Hemoglobin, beta-chain Human (Homo sapiens)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 37.5 0.008

Query= d1mwca_ a.1.1.2 (A:) Myoglobin Pig (Sus scrofa)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.1 0.097

Query= d1iwha_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Horse (Equuscaballus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 36.1 0.024

Query= d1ew6a_ a.1.1.2 (A:) Dehaloperoxidase (Marine worm (Amphitriteornata))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 45.0 4e-05

Query= d1v75a_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Aldabra gianttortoise (Geochelone gigantea))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.2 0.076

Query= d1jebb_ a.1.1.2 (B:) Hemoglobin, beta-chain Mouse (Mus musculus)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.8 3.1

Query= d1la6b_ a.1.1.2 (B:) Hemoglobin, beta-chain (Fish (Trematomusnewnesi))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 28.8 3.8

Query= d1itha_ a.1.1.2 (A:) Hemoglobin Innkeeper worm (Urechis caupo)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.6 0.066

Query= d1i3da_ a.1.1.2 (A:) Hemoglobin, beta-chain (Human fetus (Homosapiens), gamma-chain)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.4 0.14

Query= d1jeba_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Human (Homo sapiens),zeta isoform)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.1 0.093

Query= d1b0b__ a.1.1.2 (-) Hemoglobin I Clam (Lucina pectinata)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.1 0.093

Query= d1gcva_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Houndshark (Mustelusgriseus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 36.1 0.024

lcl|d1h10a_ d1h10a_ b.55.1.1 (A:) Rac-alpha serine/threonine kin... 30.3 1.3

Query= d1myt__ a.1.1.2 (-) Myoglobin Yellowfin tuna (Thunnus albacares)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 37.6 0.008

Query= d1outa_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Trout (Oncorhynchusmykiss))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.2 0.35

Query= d1oj6a_ a.1.1.2 (A:) Neuroglobin Human (Homo sapiens)

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.7 0.25

Query= d1qpwb_ a.1.1.2 (B:) Hemoglobin, beta-chain Pig (Sus scrofa)

Query= d1scta_ a.1.1.2 (A:) Hemoglobin I (Ark clam (Scapharcainaequivalvis))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.6 0.061

Query= d1s5xb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Emerald rockcod(Pagothenia bernacchii))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 30.3 1.3

Query= d1spga_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Teleost fish(Leiostomus xanthurus))
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lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.9 0.056

Query= d1ash__ a.1.1.2 (-) Ascaris hemoglobin, domain 1 (Pig roundworm(Ascaris suum))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 34.2 0.085

Query= d1sctb_ a.1.1.2 (B:) Hemoglobin I (Ark clam (Scapharcainaequivalvis))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 39.2 0.003

Query= d1iwhb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Horse (Equuscaballus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 31.8 0.45

Query= d1fhjb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Maned wolf (Chrysocyonbrachyurus))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 33.4 0.16

Query= d1outb_ a.1.1.2 (B:) Hemoglobin, beta-chain (Trout (Oncorhynchusmykiss))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 32.7 0.24

Query= d1la6a_ a.1.1.2 (A:) Hemoglobin, alpha-chain (Antarctic fish(Trematomus newnesi))

lcl|d1kr7a_ d1kr7a_ a.1.1.4 (A:) Nerve tissue mini-hemoglobin (n... 35.3 0.035
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Appendix B

Additional figures and information

on Chapter 5

Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

1 34.6 31.5 31.7 32.2 32.5 32.5 32.4 32.4 32.7 32.8 32.9 33.2 33.1 32.9 32.3 31.3 31.0

2 31.5 33.9 32.2 32.7 33.0 33.1 33.0 33.0 33.2 33.3 33.4 33.7 33.7 33.5 32.9 31.8 31.5

3 31.7 32.2 37.3 33.4 33.7 33.8 33.7 33.8 33.9 34.0 34.1 34.4 34.3 34.1 33.4 32.3 31.9

4 32.2 32.7 33.4 39.7 34.6 34.8 34.7 34.6 34.8 34.9 35.0 35.3 35.3 35.1 34.3 33.0 32.4

5 32.5 33.0 33.7 34.6 41.3 35.0 34.9 35.0 35.2 35.3 35.4 35.7 35.7 35.5 34.6 33.3 32.9

6 32.5 33.1 33.8 34.8 35.0 42.1 35.1 35.1 35.3 35.4 35.5 35.7 35.8 35.5 34.7 33.4 32.8

7 32.4 33.0 33.7 34.7 34.9 35.1 42.2 35.0 35.2 35.3 35.5 35.8 35.8 35.5 34.7 33.4 32.8

8 32.4 33.0 33.8 34.6 35.0 35.1 35.0 41.6 35.4 35.5 35.5 35.9 35.9 35.6 34.7 33.4 32.9

9 32.7 33.2 33.9 34.8 35.2 35.3 35.2 35.4 41.7 35.7 35.8 36.2 36.1 35.8 35.0 33.6 32.9

10 32.8 33.3 34.0 34.9 35.3 35.4 35.3 35.5 35.7 41.9 35.8 36.2 36.3 36.0 35.1 33.8 33.0

11 32.9 33.4 34.1 35.0 35.4 35.5 35.5 35.5 35.8 35.8 41.2 36.4 36.5 36.2 35.3 33.9 33.2

12 33.2 33.7 34.4 35.3 35.7 35.7 35.8 35.9 36.2 36.2 36.4 41.6 36.9 36.6 35.7 34.3 33.5

13 33.1 33.7 34.3 35.3 35.7 35.8 35.8 35.9 36.1 36.3 36.5 36.9 40.6 36.8 35.9 34.4 33.5

14 32.9 33.5 34.1 35.1 35.5 35.5 35.5 35.6 35.8 36.0 36.2 36.6 36.8 39.1 35.6 34.2 33.5

15 32.3 32.9 33.4 34.3 34.6 34.7 34.7 34.7 35.0 35.1 35.3 35.7 35.9 35.6 36.6 33.6 32.9

16 31.3 31.8 32.3 33.0 33.3 33.4 33.4 33.4 33.6 33.8 33.9 34.3 34.4 34.2 33.6 34.2 32.1

17 31.0 31.5 31.9 32.4 32.9 32.8 32.8 32.9 32.9 33.0 33.2 33.5 33.5 33.5 32.9 32.1 87.7

Figure B.1: Mean similarity scores within and across bins (fruit fly). The mean
Smith-Waterman similarity scores resulting from pairwise alignments between genes as-
signed to the same and different bins are shown. Bin 1 contains the most tissue-specific
genes while bin 17 contains the most broadly expressed genes. Tissue specificity increases
with the bin number. The mean values are highest within the bins, however these also
contain scores resulting from self-alignments.
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Bin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1 90.0 39.5 33.4 34.3 33.1 32.3 35.1 31.6 31.7 32.9 31.2 32.6 32.2 31.9 32.8 32.0 32.4 33.1 31.6 32.3 32.7 31.8 33.7 32.7 32.6 32.0 33.1 31.8 32.1 32.4 33.1

2 39.5 52.6 34.6 32.9 34.0 33.5 34.1 32.5 33.4 33.4 32.2 32.9 33.0 32.6 33.0 32.9 33.3 33.2 32.5 32.9 33.8 32.7 33.2 33.1 33.1 33.5 32.9 32.6 32.9 32.9 33.6

3 33.4 34.6 53.2 34.1 34.9 34.9 33.8 32.7 32.8 33.7 32.5 33.9 33.8 32.8 33.0 33.1 34.0 33.6 33.2 33.5 34.1 33.3 33.2 33.7 33.6 34.1 33.2 33.5 33.2 33.3 33.9

4 34.3 32.9 34.1 55.7 34.2 32.9 34.2 32.3 32.5 33.1 32.0 32.6 33.4 32.7 33.3 32.7 33.9 33.7 32.8 33.1 33.8 33.1 32.7 32.8 32.9 33.5 33.3 33.0 33.3 33.6 33.6

5 33.1 34.0 34.9 34.2 58.3 34.9 34.1 32.7 33.1 34.4 33.0 34.3 34.0 32.9 33.5 33.8 34.7 33.6 33.2 34.1 34.1 33.6 33.4 33.7 33.9 33.8 33.5 33.3 33.9 33.6 33.9

6 32.3 33.5 34.9 32.9 34.9 56.2 34.1 33.5 33.3 34.6 32.4 34.1 33.9 33.6 33.1 33.4 34.7 34.0 33.0 33.8 33.8 33.3 32.9 33.8 34.0 33.8 33.4 33.4 33.4 33.6 34.0

7 35.1 34.1 33.8 34.2 34.1 34.1 66.1 32.7 33.1 34.3 32.7 33.3 33.4 33.7 34.2 33.9 35.0 34.3 33.9 33.8 34.4 33.8 33.8 33.9 34.1 34.2 34.3 33.9 33.8 34.0 34.8

8 31.6 32.5 32.7 32.3 32.7 33.5 32.7 57.5 32.5 33.2 32.1 32.4 32.6 32.7 32.5 33.5 33.5 33.4 32.9 33.6 33.7 33.1 32.8 33.0 33.2 33.4 33.4 33.1 33.3 33.3 33.7

9 31.7 33.4 32.8 32.5 33.1 33.3 33.1 32.5 64.6 33.9 32.6 33.4 35.2 34.0 33.3 33.7 34.0 33.9 33.9 34.7 35.6 33.8 33.7 33.8 33.5 34.3 33.6 33.8 34.0 34.1 34.7

10 32.9 33.4 33.7 33.1 34.4 34.6 34.3 33.2 33.9 61.5 33.1 34.1 33.8 34.5 34.3 34.7 34.4 34.9 33.9 34.3 34.6 34.4 33.6 34.0 34.1 34.3 34.9 33.9 34.2 34.6 34.5

11 31.2 32.2 32.5 32.0 33.0 32.4 32.7 32.1 32.6 33.1 60.1 33.3 33.4 33.4 33.4 33.4 33.7 33.9 33.6 33.8 34.5 33.6 33.2 34.1 33.5 34.0 33.9 33.7 33.5 34.3 33.8

12 32.6 32.9 33.9 32.6 34.3 34.1 33.3 32.4 33.4 34.1 33.3 66.3 34.4 34.0 33.5 33.6 34.2 35.2 34.4 34.9 34.8 34.5 33.7 34.7 34.0 35.4 34.4 34.1 34.3 34.5 35.0

13 32.2 33.0 33.8 33.4 34.0 33.9 33.4 32.6 35.2 33.8 33.4 34.4 62.7 34.1 34.1 33.7 34.1 34.4 34.0 34.4 35.0 33.9 34.3 34.0 33.9 35.1 34.4 34.4 34.5 34.7 34.7

14 31.9 32.6 32.8 32.7 32.9 33.6 33.7 32.7 34.0 34.5 33.4 34.0 34.1 75.9 34.0 34.0 34.4 34.8 34.3 34.3 35.2 34.2 33.7 34.1 34.0 34.9 34.3 34.1 34.9 35.3 34.9

15 32.8 33.0 33.0 33.3 33.5 33.1 34.2 32.5 33.3 34.3 33.4 33.5 34.1 34.0 60.8 33.7 34.1 34.3 34.1 34.3 34.8 34.6 33.8 34.0 33.9 35.3 34.2 34.1 34.6 34.3 34.5

16 32.0 32.9 33.1 32.6 33.8 33.4 33.9 33.5 33.7 34.7 33.4 33.6 33.7 34.0 33.7 60.9 34.4 34.4 34.2 34.5 34.9 34.8 33.7 34.5 34.4 34.9 34.5 34.2 34.3 34.6 35.0

17 32.4 33.3 34.0 33.9 34.7 34.7 35.0 33.5 34.0 34.4 33.7 34.2 34.1 34.4 34.1 34.4 75.2 35.0 34.7 35.0 35.7 35.3 34.2 34.8 35.1 35.3 35.1 34.8 35.1 35.2 35.5

18 33.1 33.2 33.6 33.7 33.6 34.0 34.3 33.4 33.9 34.9 33.9 35.2 34.4 34.8 34.3 34.4 35.0 68.8 34.9 35.6 35.7 36.7 34.3 35.0 34.9 35.7 35.3 35.1 35.5 35.8 35.7

19 31.7 32.5 33.2 32.8 33.2 33.0 33.9 32.9 33.9 33.9 33.6 34.4 34.0 34.3 34.1 34.2 34.7 34.9 71.1 34.7 35.3 35.0 34.1 34.7 34.6 35.3 35.2 34.7 34.5 35.0 35.5

20 32.3 32.9 33.5 33.1 34.1 33.8 33.8 33.6 34.7 34.3 33.8 34.9 34.4 34.3 34.3 34.5 35.0 35.6 34.7 69.6 35.6 35.2 34.3 34.8 34.8 35.6 35.1 35.2 35.2 35.3 35.4

21 32.7 33.8 34.1 33.8 34.1 33.8 34.4 33.7 35.6 34.6 34.5 34.8 35.0 35.2 34.8 34.9 35.7 35.7 35.3 35.6 76.5 35.6 35.1 35.6 35.3 36.7 35.7 35.7 35.9 35.9 36.1

22 31.8 32.7 33.3 33.1 33.6 33.3 33.8 33.1 33.8 34.4 33.6 34.5 33.9 34.2 34.6 34.8 35.3 36.7 35.0 35.2 35.6 70.0 34.2 34.8 34.6 35.3 34.9 34.8 35.0 35.5 36.0

23 33.7 33.2 33.2 32.7 33.4 32.9 33.8 32.8 33.7 33.6 33.2 33.7 34.3 33.7 33.8 33.7 34.2 34.3 34.1 34.3 35.1 34.2 71.5 34.2 34.2 35.2 34.4 34.3 34.4 34.5 34.9

24 32.7 33.1 33.7 32.8 33.7 33.8 33.9 33.0 33.8 34.0 34.1 34.7 34.0 34.1 34.0 34.5 34.8 35.0 34.7 34.8 35.6 34.8 34.2 62.4 34.8 35.4 35.0 34.9 35.3 35.2 35.2

25 32.6 33.1 33.6 32.9 33.9 34.0 34.1 33.2 33.5 34.1 33.5 34.0 33.9 34.0 33.9 34.4 35.1 34.9 34.6 34.8 35.3 34.6 34.2 34.8 64.0 35.3 35.1 34.8 35.2 34.9 35.7

26 32.0 33.5 34.1 33.5 33.8 33.8 34.2 33.4 34.3 34.3 34.0 35.4 35.1 34.9 35.3 34.9 35.3 35.7 35.3 35.6 36.7 35.3 35.2 35.4 35.3 79.8 35.6 35.7 35.8 35.7 36.2

27 33.1 32.9 33.2 33.3 33.5 33.4 34.3 33.4 33.6 34.9 33.9 34.4 34.4 34.3 34.2 34.5 35.1 35.3 35.2 35.1 35.7 34.9 34.4 35.0 34.8 35.6 78.6 35.2 35.2 35.6 35.8

28 31.8 32.6 33.5 33.0 33.3 33.4 33.9 33.1 33.8 33.9 33.7 34.1 34.4 34.1 34.1 34.2 34.8 35.1 34.7 35.2 35.7 34.8 34.3 34.9 34.8 35.7 35.2 71.4 35.3 36.2 35.6

29 32.1 32.9 33.2 33.3 33.9 33.4 33.8 33.3 34.0 34.2 33.5 34.3 34.5 34.9 34.6 34.3 35.1 35.5 34.5 35.2 35.9 35.0 34.4 35.3 35.0 35.8 35.2 35.3 66.3 35.6 35.8

30 32.4 32.9 33.3 33.6 33.6 33.6 34.0 33.3 34.1 34.6 34.1 34.5 34.9 35.3 34.3 34.6 35.2 35.8 35.0 35.3 35.9 35.5 34.5 35.2 34.9 35.7 35.6 36.2 35.6 64.4 36.0

31 32.6 33.6 33.7 33.4 33.7 33.8 34.6 33.4 34.1 34.3 33.8 34.8 34.5 34.6 34.3 34.8 35.2 35.5 36.1 35.2 35.9 35.8 34.6 35.2 35.4 36.2 35.6 35.4 35.6 35.6 68.7

32 32.5 33.2 33.4 33.3 33.2 33.5 33.7 33.2 33.6 34.0 33.8 34.2 34.5 35.2 33.9 33.9 34.5 34.8 34.5 35.1 35.3 34.7 34.1 34.6 34.4 35.8 35.0 35.4 34.7 35.5 35.5

33 32.0 32.5 32.9 32.8 33.1 33.3 33.3 32.8 33.5 33.5 33.1 33.7 33.7 33.7 33.4 33.9 34.5 34.6 34.5 34.6 34.9 34.7 34.4 34.4 34.4 35.1 34.7 34.6 34.7 35.0 35.0

34 32.1 33.4 33.6 33.5 34.1 34.0 34.6 33.7 34.1 34.3 33.9 34.2 34.4 34.4 34.5 34.9 35.3 35.2 35.1 35.4 35.9 35.0 34.5 35.1 35.2 36.1 35.4 35.3 35.5 35.6 35.7

35 32.0 32.9 33.4 33.4 33.5 33.6 34.0 33.4 34.0 34.1 33.9 34.1 34.5 34.7 34.3 34.6 34.8 35.0 35.3 35.2 35.7 34.8 34.4 34.9 35.1 36.0 35.5 35.4 34.9 35.5 36.0

36 32.0 33.2 33.6 33.7 34.2 33.9 34.3 33.5 33.9 34.6 34.4 34.8 34.9 34.8 34.4 34.5 35.7 35.5 34.9 35.5 36.0 34.8 34.8 35.5 34.8 35.6 35.5 35.3 35.4 35.6 35.9

37 32.2 33.1 33.6 33.5 33.6 33.7 34.0 33.2 34.0 34.4 33.8 34.6 34.5 34.8 34.7 34.6 35.1 35.4 35.2 35.5 35.7 35.6 34.6 35.2 35.0 36.3 35.2 35.3 35.8 35.6 36.1

38 31.3 32.3 32.7 32.6 33.0 32.9 33.7 32.7 33.5 33.7 33.3 33.8 33.8 34.6 33.7 34.1 34.4 34.4 34.4 34.7 35.1 34.2 34.1 34.6 34.0 35.4 34.9 34.4 34.7 35.0 35.5

39 32.1 33.0 33.7 33.8 34.6 33.9 34.4 33.5 34.3 34.5 33.8 34.8 34.4 35.4 34.3 34.5 35.5 35.5 35.0 35.6 35.7 34.9 34.7 34.9 34.9 35.6 35.5 35.1 36.2 35.8 35.7

40 32.1 33.3 33.3 33.2 33.8 33.5 34.2 33.4 34.1 34.2 33.9 34.8 34.4 34.3 34.2 34.7 35.1 35.2 35.0 35.3 35.7 35.3 34.5 35.5 35.0 35.7 35.8 35.5 35.7 35.7 35.6

41 32.2 33.2 33.5 33.4 33.8 34.0 34.2 33.5 34.6 34.5 34.2 34.5 34.5 34.6 34.6 34.9 35.4 35.6 35.2 35.3 36.5 35.6 34.7 35.4 35.3 36.0 36.0 35.3 35.7 35.9 36.2

42 31.3 32.2 32.8 32.5 33.0 32.8 33.2 32.4 33.1 33.3 33.1 33.4 33.4 33.6 33.5 33.8 34.1 34.5 34.1 34.4 34.9 34.6 33.6 34.3 34.1 35.1 34.4 34.5 34.8 34.7 34.7

43 32.4 33.6 33.6 33.6 34.1 34.0 34.3 33.6 34.6 34.5 34.0 34.4 34.5 34.8 34.5 34.8 35.5 35.5 35.5 35.4 36.3 35.5 35.0 35.5 35.1 36.2 35.5 35.5 35.6 35.9 36.1

44 32.0 32.9 33.2 33.2 33.5 33.3 33.9 33.0 34.0 34.0 33.8 34.1 34.3 34.1 34.1 34.3 34.8 35.2 35.1 34.9 35.8 34.9 34.7 34.9 34.6 35.5 35.0 35.1 35.1 35.4 35.5

45 32.2 33.0 33.3 33.0 33.5 33.5 34.0 33.1 33.8 34.2 34.0 34.0 34.2 34.2 34.4 34.3 34.8 35.0 35.1 34.8 35.6 35.1 34.5 35.4 34.7 35.6 35.3 35.1 35.4 35.3 35.4

46 31.6 32.5 33.0 33.0 33.4 33.2 33.9 33.2 33.6 33.9 33.7 34.1 34.0 34.4 33.9 34.3 34.7 34.9 35.0 34.9 35.4 34.7 34.3 34.6 34.7 35.5 35.6 35.1 34.9 35.2 35.4

47 32.2 33.0 33.5 34.0 33.6 33.4 34.2 33.2 34.1 34.1 33.8 34.1 34.6 34.6 34.3 34.8 35.0 35.1 35.0 35.0 35.6 35.2 34.4 34.9 35.0 35.6 35.0 35.2 35.3 35.6 35.6

48 32.4 33.1 33.7 33.4 33.9 34.0 34.0 33.3 34.4 34.1 33.9 34.3 35.2 34.4 34.3 34.7 35.2 35.1 35.1 35.2 35.9 35.1 34.9 35.2 34.8 35.8 35.6 35.2 35.4 35.6 35.7

49 31.9 32.7 33.1 33.3 33.4 33.2 33.8 33.0 33.9 33.9 33.8 34.1 34.3 34.5 34.1 34.4 34.9 34.9 35.1 35.0 35.7 34.9 34.5 34.9 34.5 35.8 36.2 35.1 35.2 35.7 35.6

50 31.8 32.8 33.2 33.0 33.5 33.3 33.8 33.0 33.7 33.9 33.9 34.3 34.2 34.2 34.0 34.3 35.1 34.9 34.9 35.1 35.6 35.0 34.4 34.9 34.5 35.7 35.0 34.9 35.0 35.2 35.4

51 31.6 32.5 32.9 32.8 33.3 33.0 33.4 32.8 33.5 33.7 33.4 33.9 33.8 33.9 33.7 33.9 34.8 34.7 34.4 34.8 35.4 34.6 34.2 34.5 34.3 35.6 34.7 34.9 35.2 35.0 35.1

52 31.8 32.7 33.1 33.2 33.5 33.5 33.8 33.2 33.9 34.0 33.7 34.1 34.4 34.3 34.4 34.3 35.1 35.1 34.7 35.0 35.7 34.9 34.4 34.8 34.5 35.8 35.1 35.1 35.2 35.5 35.8

53 31.7 32.7 33.1 33.0 33.4 33.2 33.8 33.0 33.8 33.9 33.6 34.1 34.2 34.2 33.9 34.3 34.8 35.0 34.8 35.0 35.6 35.0 34.3 35.0 34.6 36.0 35.0 35.0 35.7 35.4 35.5

54 31.9 33.0 33.3 33.2 33.5 33.5 33.9 33.1 33.9 34.0 33.6 34.1 34.2 34.6 34.0 34.1 34.9 35.0 34.8 34.9 35.7 35.1 34.4 34.8 34.6 35.5 35.1 35.2 35.3 35.4 35.4

55 31.6 32.4 32.8 32.9 33.1 32.9 33.4 32.6 33.7 33.7 33.4 33.7 33.9 33.9 33.6 33.9 34.6 34.7 34.4 34.7 35.6 34.6 33.9 34.5 34.2 35.2 34.7 34.8 35.1 35.1 35.1

56 32.1 32.9 33.3 33.3 33.5 33.5 33.9 33.3 34.5 34.2 33.9 34.1 34.3 34.3 34.1 34.4 35.1 35.1 35.2 35.3 35.7 35.2 34.4 35.1 34.8 35.7 35.4 35.3 35.7 36.2 35.9

57 31.5 32.4 32.8 33.0 33.1 33.1 33.4 32.8 34.2 33.7 33.3 33.7 33.9 33.9 33.7 33.9 34.6 34.6 34.4 34.7 35.3 34.5 34.1 34.5 34.2 35.3 34.7 34.7 35.5 35.6 35.4

58 31.6 32.7 32.8 33.1 33.1 33.0 33.3 32.7 34.4 33.7 33.3 33.6 33.7 33.9 33.4 33.7 34.4 34.3 34.2 34.4 35.1 34.4 33.7 34.3 34.2 35.1 34.4 34.5 35.5 35.4 35.4

59 31.5 32.2 32.5 33.1 32.8 32.7 33.1 32.5 34.6 33.6 33.0 33.4 33.5 33.6 33.3 33.5 34.2 34.1 34.0 34.4 34.8 34.4 33.7 34.3 33.8 34.8 34.2 34.3 35.7 35.6 35.4

60 31.3 32.0 32.2 33.1 32.5 32.4 32.9 32.4 34.8 33.4 32.8 33.1 33.3 33.4 32.9 33.2 33.8 33.7 33.5 34.1 34.4 34.1 33.2 33.8 33.4 34.3 34.0 33.8 35.4 35.5 35.3

Figure B.2: Mean similarity scores within and across groups (mouse part 1). The
mean Smith-Waterman similarity scores resulting from pairwise alignments between genes
assigned to the same and different bins are shown. Bin 1 contains the most tissue-specific
genes while bin 60 contains the most broadly expressed genes. Tissue specificity increases
with the bin number. Scores resulting from self-alignments were not considered in the
calculation of the mean values. The table is continued on the next page. The mean values
are highest within the bins, however these also contain scores resulting from self-alignments.
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Bin 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60

1 32.5 32.0 32.1 32.0 32.0 32.2 31.3 32.1 32.1 32.2 31.3 32.4 32.0 32.1 31.6 32.2 32.4 31.9 31.8 31.6 31.8 31.7 31.9 31.5 32.0 31.6 31.6 31.6 31.3

2 33.2 32.5 33.4 32.9 33.2 33.1 32.3 33.0 33.3 33.2 32.2 33.6 32.9 33.0 32.5 32.9 33.1 32.7 32.9 32.5 32.8 32.7 33.0 32.4 32.9 32.4 32.4 32.3 32.0

3 33.4 32.9 33.6 33.4 33.6 33.6 32.7 33.7 33.3 33.5 32.8 33.6 33.2 33.3 33.0 33.5 33.7 33.1 33.2 32.9 33.1 33.1 33.3 32.9 33.3 32.9 32.8 32.5 32.2

4 33.3 32.8 33.5 33.4 33.7 33.5 32.6 33.8 33.2 33.4 32.5 33.6 33.2 33.0 33.0 34.0 33.4 33.3 33.0 32.8 33.2 33.0 33.2 32.9 33.3 33.1 33.2 33.1 33.1

5 33.2 33.1 34.1 33.5 34.2 33.6 33.0 34.6 33.8 33.8 33.0 34.1 33.5 33.5 33.4 33.6 33.9 33.4 33.5 33.3 33.5 33.4 33.5 33.0 33.5 33.1 33.1 32.8 32.5

6 33.5 33.3 34.0 33.6 33.9 33.7 32.9 33.7 33.5 34.0 32.8 34.0 33.3 33.5 33.2 33.4 34.0 33.2 33.3 33.0 33.6 33.3 33.7 32.9 33.5 33.1 33.0 32.8 32.4

7 33.7 33.3 34.1 34.0 34.3 34.0 33.5 34.4 34.2 34.2 33.2 34.3 33.9 34.0 33.9 34.2 34.0 33.8 33.8 33.4 34.1 33.8 33.9 33.4 33.9 33.7 33.3 33.1 32.9

8 33.2 32.8 33.7 33.4 34.0 33.2 32.7 33.5 33.4 33.5 32.4 33.6 33.0 33.1 33.2 33.2 33.3 33.0 33.0 32.8 33.2 33.0 33.1 32.6 33.3 32.8 32.8 32.5 32.4

9 33.6 33.5 34.1 34.0 33.9 34.0 33.5 34.3 34.1 34.6 33.1 34.6 34.0 33.8 33.6 34.1 34.4 34.0 33.7 33.5 33.9 34.0 33.9 33.7 34.5 34.2 34.4 34.6 34.8

10 34.0 33.5 34.3 34.1 34.6 34.4 33.7 34.5 34.2 34.5 33.3 34.5 34.0 34.2 33.9 34.1 34.1 33.9 33.9 33.7 34.0 33.9 34.0 33.7 34.2 33.7 33.7 33.6 33.4

11 33.8 33.1 34.0 33.9 34.4 33.8 33.3 33.8 33.9 34.2 33.1 34.0 33.8 34.0 33.7 33.8 33.9 33.8 33.9 33.4 33.7 33.6 33.6 33.4 33.9 33.4 33.2 33.1 32.8

12 34.2 33.7 34.2 34.1 34.8 34.6 33.8 34.8 34.8 34.5 33.4 34.4 34.1 34.0 34.1 34.1 34.3 34.1 34.3 33.9 34.1 34.1 34.1 33.7 34.1 33.9 33.6 33.4 33.1

13 34.5 33.7 34.4 34.5 34.9 34.5 33.8 34.4 34.4 34.5 33.4 34.5 34.3 34.2 34.0 34.6 35.2 34.3 34.2 33.8 34.4 34.2 34.2 33.8 34.3 33.9 33.7 33.6 33.3

14 35.2 33.7 34.4 34.7 34.8 34.8 34.6 34.7 34.3 34.6 33.6 34.8 34.1 34.2 34.4 34.6 34.4 34.5 34.2 33.9 34.3 34.2 34.6 33.9 34.3 34.0 33.9 33.7 33.4

15 33.9 33.4 34.5 34.3 34.4 34.7 33.7 34.3 34.2 34.6 33.5 34.5 34.1 34.4 33.9 34.3 34.3 34.1 34.0 33.7 34.1 33.9 34.0 33.6 34.1 33.7 33.5 33.3 33.0

16 33.9 33.9 34.9 34.6 34.5 34.6 34.1 34.5 34.7 34.9 33.8 34.8 34.4 34.3 34.3 35.0 34.6 34.4 34.3 33.9 34.3 34.3 34.1 33.9 34.4 34.0 33.7 33.5 33.3

17 34.5 34.5 35.3 34.8 35.7 35.1 34.4 35.5 35.1 35.4 34.1 35.5 34.8 34.8 34.7 35.0 35.2 34.9 35.1 34.8 35.2 34.8 34.9 34.6 35.1 34.8 34.4 34.2 33.9

18 34.8 34.6 35.2 35.0 35.5 35.4 34.4 35.5 35.2 35.6 34.5 35.5 35.2 35.0 34.9 35.1 35.1 34.9 34.9 34.7 35.1 35.0 35.0 34.9 35.1 34.7 34.3 34.2 33.8

19 34.5 34.5 35.1 35.3 34.9 35.2 34.4 35.0 35.0 35.2 34.1 35.5 35.1 35.1 35.0 35.0 35.1 35.1 34.9 34.4 34.7 34.8 34.8 34.4 35.1 34.6 34.2 34.1 33.5

20 35.1 34.6 35.6 35.2 35.5 35.5 34.7 35.6 35.3 35.3 34.4 35.4 34.9 35.0 34.9 35.0 35.2 35.0 35.1 34.8 35.0 35.0 34.9 34.7 35.1 34.7 34.5 34.5 34.1

21 35.3 34.9 35.9 35.7 36.0 36.0 35.1 35.7 35.7 36.5 34.9 36.3 35.8 35.6 35.4 35.6 35.9 35.7 35.6 35.4 35.8 35.6 35.7 35.4 35.7 35.2 35.1 34.8 34.4

22 34.7 34.7 35.0 34.8 34.8 35.6 34.2 34.9 35.3 35.6 34.6 35.5 34.9 35.1 34.7 35.2 35.1 34.9 35.0 34.6 35.0 34.9 35.1 34.5 35.2 34.7 34.4 34.5 33.9

23 34.1 34.4 34.5 34.4 34.8 34.6 34.1 34.7 34.5 34.7 33.6 35.0 34.7 34.5 34.2 34.4 34.8 34.5 34.4 34.2 34.4 34.3 34.3 33.9 34.4 34.0 33.7 33.7 33.2

24 34.6 34.4 35.1 34.9 35.6 35.2 34.6 34.9 35.5 35.4 34.3 35.5 34.9 35.4 34.6 34.9 35.2 34.9 34.9 34.5 34.9 35.1 34.8 34.5 35.0 34.6 34.4 34.2 33.8

25 34.4 34.4 35.2 35.1 34.8 35.0 34.0 34.9 35.0 35.3 34.1 35.1 34.6 34.7 34.7 35.0 34.8 34.5 34.5 34.3 34.6 34.6 34.6 34.2 34.8 34.2 34.2 33.9 33.5

26 35.8 35.1 36.1 36.0 35.6 36.3 35.4 35.6 35.7 35.8 35.1 36.2 35.5 35.6 35.5 35.6 35.8 35.8 35.7 35.6 35.7 35.9 35.5 35.2 35.7 35.3 35.2 34.9 34.4

27 35.0 34.7 35.4 35.5 35.5 35.2 34.9 35.5 35.1 36.0 34.4 35.5 35.0 35.3 35.6 35.0 35.6 35.3 35.0 34.7 35.2 35.0 35.1 34.7 35.4 34.7 34.5 34.3 34.0

28 35.4 34.6 35.3 35.4 35.3 35.3 34.4 35.1 35.5 35.3 34.5 35.5 35.1 35.4 35.1 35.2 35.2 35.1 34.9 34.9 35.1 35.0 35.2 34.8 35.2 34.9 34.5 34.3 33.8

29 34.7 34.6 35.5 34.9 35.4 35.8 34.7 36.2 35.7 35.7 34.8 35.6 35.1 35.4 34.9 35.3 35.4 35.3 35.0 35.2 35.4 35.7 35.3 35.1 35.7 35.5 35.6 35.6 35.4

30 35.5 35.0 35.6 35.5 35.6 35.6 35.0 35.8 35.7 35.9 34.7 35.9 35.4 35.3 35.2 35.6 35.6 35.8 35.2 35.0 35.5 35.5 35.5 35.1 35.9 35.6 35.5 35.6 35.5

31 35.3 34.8 35.3 36.0 35.4 35.8 35.1 35.6 35.4 36.0 34.6 35.9 35.4 35.2 35.4 35.5 35.5 35.5 35.4 35.0 35.6 35.4 35.3 35.0 35.8 35.5 35.3 35.4 35.3

32 64.1 34.6 35.1 34.9 34.9 34.9 34.8 35.2 34.9 35.5 34.2 35.0 34.9 34.9 34.8 34.9 35.3 35.1 35.1 34.4 35.1 34.9 35.2 34.7 35.9 35.8 35.7 36.2 36.6

33 34.6 61.3 34.7 34.6 34.5 35.0 34.2 35.1 34.8 35.2 33.8 35.2 34.5 34.5 34.4 34.6 34.8 35.0 35.1 34.2 34.6 34.5 34.6 34.4 35.0 34.7 34.6 34.9 34.8

34 35.1 34.7 63.1 35.3 35.5 36.6 35.0 35.5 35.5 35.7 34.8 36.1 35.5 35.7 35.4 35.5 35.8 35.5 35.3 35.3 35.3 35.8 35.5 35.3 35.6 35.4 35.1 34.9 34.4

35 34.9 34.6 35.3 69.1 35.1 35.3 34.8 35.3 35.2 35.5 34.6 35.4 35.6 35.2 35.0 35.3 35.5 35.1 35.1 35.0 35.2 35.0 35.0 34.6 35.3 34.7 34.5 34.2 33.8

36 34.9 34.5 35.5 35.1 72.0 35.6 35.0 35.8 35.3 35.9 34.3 35.5 35.7 35.3 35.4 35.6 35.7 35.3 35.5 35.2 35.4 35.3 35.3 34.9 35.5 35.0 34.7 34.5 34.2

37 34.9 35.0 36.6 35.3 35.6 58.7 35.1 35.5 35.8 35.9 34.9 35.9 35.3 35.6 35.3 35.5 35.6 35.6 35.5 35.2 35.5 35.8 35.5 35.4 36.0 35.8 35.7 35.7 35.4

38 35.0 34.2 35.0 34.8 35.0 35.1 60.1 35.3 34.7 35.8 34.0 35.3 34.7 34.8 34.9 35.0 35.0 35.3 35.0 34.6 35.1 35.1 35.1 34.8 36.2 36.1 36.3 36.9 37.4

39 35.2 35.1 35.5 35.3 35.8 35.5 35.3 65.0 35.9 36.0 34.7 35.7 35.5 35.2 35.4 35.6 35.6 35.6 35.5 35.1 35.7 35.4 35.5 35.5 36.2 36.1 36.1 36.6 36.6

40 34.9 34.8 35.5 35.2 35.3 35.8 34.7 35.9 57.3 35.6 34.6 35.8 35.5 35.3 35.5 35.6 35.5 35.3 35.4 34.9 35.2 35.4 35.1 34.9 35.3 35.0 34.7 34.4 34.0

41 35.5 35.2 35.7 35.5 35.9 35.9 35.8 36.0 35.6 58.9 35.0 36.0 35.6 35.7 35.6 35.6 36.0 36.3 35.8 35.3 35.8 35.6 35.8 35.6 36.8 36.6 36.9 37.6 38.2

42 34.2 33.8 34.8 34.6 34.3 34.9 34.0 34.7 34.6 35.0 51.1 34.9 34.6 34.7 34.2 34.6 34.9 34.5 34.5 34.3 34.5 34.7 34.5 34.5 34.9 34.7 34.5 34.5 34.4

43 35.0 35.2 36.2 35.4 35.5 35.9 35.3 35.7 35.8 36.0 34.9 56.4 35.5 35.7 35.3 35.7 35.9 35.6 35.5 35.4 35.6 35.8 35.7 35.3 35.6 35.5 35.0 35.0 34.3

44 34.9 34.5 35.5 35.6 35.7 35.3 34.7 35.5 35.5 35.6 34.6 35.5 51.6 35.4 34.9 35.4 35.5 35.2 35.1 34.8 35.3 35.1 35.2 34.9 35.5 35.0 34.8 34.8 34.6

45 34.9 34.5 35.7 35.2 35.3 35.6 34.8 35.2 35.3 35.7 34.7 35.7 35.5 51.7 35.1 35.4 35.5 35.3 35.2 35.0 35.2 35.5 35.3 35.0 35.6 35.2 34.8 34.7 34.3

46 34.8 34.4 35.4 35.0 35.4 35.3 34.9 35.4 35.5 35.6 34.2 35.3 34.9 35.3 50.0 35.2 35.2 35.2 35.0 34.8 35.2 35.2 35.1 34.7 35.4 35.0 34.8 34.8 34.5

47 34.9 34.6 35.5 35.3 35.6 35.5 34.8 35.6 35.6 35.6 34.6 35.7 35.4 35.4 35.2 51.5 35.6 35.4 35.2 35.0 35.4 35.4 35.5 35.1 35.7 35.6 35.4 35.4 35.3

48 35.3 34.8 35.8 35.5 35.7 35.6 35.1 35.6 35.5 36.0 34.9 35.9 35.5 35.5 35.2 35.6 50.5 35.8 35.6 35.3 35.6 35.9 35.6 35.4 35.9 35.8 35.5 35.5 35.4

49 35.1 35.0 35.5 35.1 35.3 35.6 35.3 35.6 35.2 36.3 34.5 35.6 35.2 35.3 35.2 35.4 35.8 48.2 35.6 35.2 35.6 35.7 35.7 35.6 36.9 36.8 37.0 37.9 38.5

50 35.1 35.1 35.3 35.1 35.7 35.5 35.0 35.5 35.4 35.8 34.5 35.5 35.1 35.2 35.0 35.2 35.6 35.6 46.6 35.0 35.4 35.4 35.4 35.0 35.9 35.5 35.4 35.6 35.5

51 34.4 34.2 35.3 35.0 35.2 35.2 34.6 35.1 34.9 35.3 34.3 35.4 34.8 35.1 34.8 35.0 35.3 35.2 35.0 44.4 35.1 35.4 35.2 35.1 35.6 35.4 35.2 35.3 35.0

52 35.0 34.6 35.3 35.2 35.4 35.4 35.1 35.7 35.2 35.8 34.4 35.6 35.2 35.2 35.0 35.4 35.6 35.6 35.4 35.0 46.4 35.4 35.6 35.2 36.3 36.0 36.0 36.3 36.4

53 34.9 34.5 35.7 35.0 35.3 35.8 35.1 35.4 35.4 35.6 34.7 35.8 35.1 35.5 35.2 35.4 35.8 35.7 35.4 35.5 35.5 44.2 35.8 35.7 36.4 36.3 36.2 36.5 36.4

54 35.3 34.6 35.5 35.0 35.3 35.5 35.1 35.5 35.2 35.8 34.5 35.7 35.2 35.3 35.1 35.5 35.7 35.7 35.4 35.2 35.6 35.8 43.7 35.6 36.7 36.5 36.5 37.2 37.4

55 34.7 34.3 35.3 34.6 35.2 35.4 34.9 35.4 34.9 35.6 34.5 35.3 34.9 35.0 34.6 35.1 35.4 35.6 35.1 35.2 35.3 35.9 35.6 41.9 36.8 36.9 37.2 38.1 38.8

56 35.9 35.1 35.6 35.3 35.5 36.0 36.2 36.3 35.3 36.8 34.9 35.6 35.5 35.6 35.4 35.7 35.9 36.9 35.9 35.5 36.3 36.5 36.8 36.8 44.9 39.9 40.9 43.1 45.5

57 35.6 34.7 35.4 34.9 35.0 35.7 36.1 36.1 34.9 36.6 34.6 35.5 35.0 35.1 35.0 35.5 35.7 36.7 35.5 35.4 36.0 36.2 36.5 36.9 39.9 45.1 42.0 44.8 47.8

58 35.7 34.7 35.1 34.5 34.7 35.6 36.2 36.1 34.7 36.9 34.5 35.1 34.9 34.8 34.8 35.4 35.5 37.0 35.4 35.2 35.9 36.2 36.5 37.2 40.9 42.1 46.6 47.6 51.8

59 36.2 34.8 34.9 34.2 34.6 35.6 36.9 36.5 34.4 37.5 34.5 34.8 34.9 34.6 34.7 35.4 35.5 37.8 35.6 35.2 36.2 36.5 37.1 38.1 43.1 44.8 47.6 54.5 58.8

60 36.5 34.7 34.4 33.8 34.3 35.3 37.4 36.6 33.9 38.2 34.4 34.3 34.6 34.2 34.5 35.4 35.4 38.4 35.4 35.0 36.4 36.4 37.4 38.8 45.4 47.7 51.8 58.8 71.7

Figure B.3: Mean similarity scores within and across groups (mouse part 2). The
mean Smith-Waterman similarity scores resulting from pairwise alignments between genes
assigned to the same and different bins are shown. Bin 1 contains the most tissue-specific
genes while bin 60 contains the most broadly expressed genes. Tissue specificity increases
with the bin number. The table is a continuation of the table on the previous page and
includes mean scores for bins 32-60.
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EntrezGene.ID MGI.Description MGI.symbol y

11705 anti-Mullerian hormone Amh 0

14082 Fas (TNFRSF6)-associated via death domain Fadd 0

18322 olfactory receptor 24 Olfr24 0

18324 olfactory receptor 26 Olfr26 0

22034 TNF receptor-associated factor 6 Traf6 0

22420 wingless-related MMTV integration site 6 Wnt6 0

22793 zyxin Zyx 0

50505 excision repair cross-complementing rodent repair deficiency; complementation group 4 Ercc4 0

67418 peptidylprolyl isomerase (cyclophilin)-like 4 Ppil4 0

67441 isochorismatase domain containing 2b Isoc2b 0

68205 ubiquitin related modifier 1 homolog (S. cerevisiae) Urm1 0

69020 zinc finger protein 707 Zfp707 0

70844 RIKEN cDNA 4921508M14 4921508M14Rik 0

93896 glucagon-like peptide 2 receptor Glp2r 0

104831 protein tyrosine phosphatase; non-receptor type 23 Ptpn23 0

107305 vacuolar protein sorting 37C (yeast) Vps37c 0

109359 family with sequence similarity 175; member B Fam175b 0

214292 predicted 52 Gm52 0

224640 LEM domain containing 2 Lemd2 0

227357 espin-like Espnl 0

235406 sorting nexin 33 Snx33 0

238057 growth differentiation factor 7 Gdf7 0

258302 olfactory receptor 420 Olfr420 0

258607 olfactory receptor 971 Olfr971 0

259021 olfactory receptor 1054 Olfr1054 0

272411 UDP-GlcNAc:betaGal beta-1;3-N-acetylglucosaminyltransferase 6 (core 3 synthase) B3gnt6 0

319481 WD repeat domain 59 Wdr59 0

338371 RIKEN cDNA A730011L01 A730011L01Rik 0

353155 gap junction protein; delta 3 Gjd3 0

545276 galactose-3-O-sulfotransferase 3 Gal3st3 0

11699 alpha 1 microglobulin/bikunin Ambp 1

12957 crystallin; beta A1 Cryba1 1

12965 crystallin; gamma B Crygb 1

12990 casein alpha s1 Csn1s1 1

12991 casein beta Csn2 1

13648 kallikrein 1-related peptidase b9 Klk1b9 1

14473 group specific component Gc 1

14840 germ cell-specific 1 Gsg1 1

15458 hemopexin Hpx 1

16613 kallikrein 1-related peptidase b11 Klk1b11 1

16615 kallikrein 1-related peptidase b16 Klk1b16 1

16622 kallikrein 1-related peptidase b5 Klk1b5 1

17695 beta-microseminoprotein Msmb 1

17842 major urinary protein 3 Mup3 1

18048 kallikrein 1-related pepidase b4 Klk1b4 1

20389 surfactant associated protein C Sftpc 1

20714 serine (or cysteine) peptidase inhibitor; clade A; member 3K Serpina3k 1

22373 whey acidic protein Wap 1

57426 androgen-binding protein eta Apbh 1

66392 prolactin family 2; subfamily b; member 1 Prl2b1 1

66996 carcinoembryonic antigen-related cell adhesion molecule 11 Ceacam11 1

67315 carcinoembryonic antigen-related cell adhesion molecule 12 Ceacam12 1

74188 prolactin family 8; subfamily a; member 81 Prl8a8 1

77055 keratin 76 Krt76 1

84543 seminal vesicle antigen-like 2 Sval2 1

100470 L-amino acid oxidase 1 Lao1 1

104002 cathepsin Q Ctsq 1

109820 progastricsin (pepsinogen C) Pgc 1

114871 pregnancy-specific glycoprotein 28 Psg28 1

233090 androgen binding protein zeta Abpz 1

Figure B.4: List of mouse genes with broad and tissue-specific expression. The 30
top/bottom genes are shown that led to a prediction performance of AUC=1 as described
in Chapter 5.2.1.1. The values 0 and 1 in the ’y’ column indicate broad (green) and
tissue-specific (orange) expression, respectively. Data were mapped using Ensembl 58.
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Ap Cp Dp Ep Fp Gp Hp Ip Kp Lp Mp Np Pp Qp Rp Sp Tp Vp Wp Yp y

11705 10.65 2.17 3.25 6.32 1.99 8.66 1.62 1.26 0.72 16.97 1.26 2.35 10.11 5.05 6.86 6.32 6.14 5.23 1.81 1.26 0

14082 7.32 1.46 6.83 9.76 2.44 4.88 1.46 0.98 6.34 16.10 1.95 3.41 2.93 2.44 8.78 9.76 3.41 8.29 0.98 0.49 0

18322 6.71 4.15 2.88 1.60 6.39 3.83 3.19 7.99 4.47 12.46 4.47 3.51 5.11 0.96 3.51 8.95 6.71 8.63 0.32 4.15 0

18324 5.19 3.25 1.30 1.95 8.12 5.52 2.60 7.14 3.90 15.26 3.90 4.22 3.57 1.30 2.27 10.71 5.19 10.06 0.00 4.55 0

22034 6.23 6.04 4.53 7.92 3.58 4.91 3.96 5.28 4.34 8.87 3.40 4.15 5.66 6.23 6.23 6.42 4.53 4.91 0.38 2.45 0

22420 10.16 6.87 4.40 4.67 3.30 9.89 3.02 1.10 2.47 11.26 1.37 1.92 6.87 4.12 10.99 6.32 3.57 5.49 1.92 0.27 0

22793 8.16 4.08 3.90 5.67 3.55 6.03 2.13 2.13 5.14 5.50 1.77 2.13 18.97 8.69 3.19 6.38 4.26 6.38 0.18 1.77 0

50505 7.28 1.99 4.86 8.61 3.64 4.97 2.32 4.19 6.29 13.02 1.32 3.20 5.08 3.42 7.40 6.73 5.52 6.51 0.66 2.98 0

67418 3.25 1.83 8.94 10.98 4.27 5.69 2.64 5.89 11.38 5.69 1.42 3.46 4.47 3.46 6.30 6.30 4.47 5.28 0.61 3.66 0

67441 6.67 1.90 3.81 5.24 3.81 6.19 1.90 5.24 5.71 16.19 3.81 1.43 5.71 8.57 4.29 7.62 4.29 6.67 0.00 0.95 0

68205 4.95 0.99 7.92 7.92 3.96 9.90 1.98 6.93 5.94 16.83 0.99 2.97 4.95 5.94 2.97 2.97 0.99 6.93 2.97 0.99 0

69020 4.73 6.21 2.96 6.80 5.33 9.17 5.92 2.37 7.40 8.28 0.89 2.66 4.14 5.33 10.95 6.51 5.03 2.07 1.78 1.48 0

70844 4.11 4.11 2.74 3.42 9.59 6.85 2.74 2.74 3.42 13.70 2.05 3.42 5.48 4.11 6.16 8.22 6.16 4.79 2.05 4.11 0

93896 4.88 2.73 2.54 5.47 6.45 6.05 3.52 3.71 5.08 15.04 1.76 3.32 3.52 3.52 5.66 8.59 5.27 6.05 3.52 3.32 0

104831 8.92 0.89 4.08 6.21 2.48 5.67 2.96 2.48 4.49 11.17 2.19 2.13 12.88 7.98 4.79 7.03 4.26 6.32 0.53 2.54 0

107305 5.68 0.28 1.99 8.81 2.27 7.95 0.85 1.14 3.41 10.23 1.99 1.42 19.89 7.67 5.40 7.10 4.55 4.83 0.57 3.98 0

109359 6.02 0.96 5.06 7.95 4.58 4.10 2.89 4.34 4.34 6.51 1.69 5.06 5.30 6.99 6.51 13.73 4.58 5.30 0.24 3.86 0

214292 5.83 3.08 3.08 3.08 4.54 4.54 2.59 5.67 2.27 12.97 1.78 3.73 8.10 4.70 4.86 12.16 6.81 4.86 2.11 3.24 0

224640 9.98 1.57 5.09 8.02 2.35 6.85 1.76 2.94 4.11 11.55 1.76 1.96 7.44 2.54 10.96 8.22 3.13 4.70 3.13 1.96 0

227357 10.95 2.29 5.57 7.26 2.89 9.25 3.78 1.99 2.39 12.44 1.89 1.39 8.66 4.68 7.06 6.27 4.18 4.38 1.59 1.09 0

235406 6.27 0.87 6.62 6.45 5.92 7.49 4.01 3.66 5.57 8.54 3.48 2.96 5.05 5.92 6.10 8.19 3.83 4.70 1.22 3.14 0

238057 15.18 2.39 4.77 4.77 2.39 14.10 2.39 2.17 1.30 9.33 1.08 1.52 6.51 2.17 10.85 7.59 3.69 4.99 1.52 1.30 0

258302 7.79 4.05 1.87 3.12 8.41 4.36 3.12 10.90 2.18 12.15 3.12 2.49 4.05 1.87 3.74 8.10 7.17 6.85 1.56 3.12 0

258607 3.91 2.93 1.30 3.26 7.17 4.23 2.61 9.12 3.91 16.61 4.23 4.23 3.91 1.30 1.95 11.40 5.86 6.84 0.33 4.89 0

259021 4.49 2.56 3.21 2.56 7.05 3.53 2.24 11.86 3.21 15.38 4.17 3.85 3.53 1.92 3.53 8.33 5.45 7.69 0.64 4.81 0

272411 8.44 2.30 3.58 4.35 5.63 5.88 4.35 1.28 2.30 13.81 1.79 2.30 8.18 5.63 7.42 7.16 3.58 7.67 1.53 2.81 0

319481 6.25 3.02 5.65 5.14 3.93 5.54 3.23 3.53 4.74 8.47 1.51 3.93 6.15 4.84 6.55 9.98 5.65 6.75 2.32 2.82 0

338371 6.27 2.35 5.49 6.27 2.75 9.80 3.53 3.14 4.31 10.98 1.18 1.57 8.63 7.45 7.45 5.88 2.75 8.24 0.78 1.18 0

353155 11.51 3.60 3.24 4.32 5.40 8.27 2.88 2.16 1.80 14.03 1.08 0.36 9.35 3.96 7.19 6.83 2.52 7.19 1.44 2.88 0

545276 10.90 1.86 3.71 5.57 4.41 3.94 3.25 3.02 2.78 12.30 2.55 2.78 8.58 3.94 10.90 5.57 4.41 4.64 1.16 3.71 0

11699 6.02 4.58 4.01 8.02 3.44 8.88 1.72 5.73 5.73 8.60 1.72 4.01 3.72 4.30 5.16 7.45 6.59 4.01 1.43 4.87 1

12957 3.72 3.72 3.26 8.37 4.19 7.91 3.26 6.98 4.19 3.72 3.26 4.65 4.65 7.91 5.58 7.44 5.12 2.79 4.19 5.12 1

12965 1.71 5.14 6.86 5.71 6.29 7.43 2.29 3.43 1.71 6.29 4.57 2.86 3.43 5.71 10.86 9.14 2.29 3.43 2.29 8.57 1

12990 10.54 0.64 2.56 5.43 4.47 0.00 1.92 2.88 4.15 11.50 3.83 4.79 5.75 16.93 2.56 10.86 3.19 4.47 0.64 2.88 1

12991 7.79 0.87 1.73 4.76 3.46 0.87 2.60 4.76 3.90 14.72 1.73 3.46 9.09 12.99 0.87 10.82 4.76 9.52 0.00 1.30 1

13648 5.75 3.83 5.36 5.36 3.07 8.81 3.45 4.60 8.05 11.11 1.53 4.98 6.13 1.92 3.07 6.13 5.36 5.75 1.92 3.83 1

14473 6.30 5.88 4.20 9.24 4.20 2.73 1.47 2.52 7.14 10.92 2.94 3.36 5.67 4.62 3.99 9.24 7.56 4.62 0.00 3.36 1

14840 7.72 3.70 2.78 6.17 5.56 5.86 2.47 2.78 3.40 12.04 3.70 2.47 5.25 5.56 3.70 10.49 6.79 4.63 2.47 2.47 1

15458 6.96 2.83 5.22 4.57 4.57 8.70 3.26 2.61 4.57 8.48 0.87 4.13 7.39 2.61 5.65 9.13 5.43 5.65 3.91 3.48 1

16613 4.98 3.83 5.75 3.83 2.68 8.43 3.07 5.75 6.90 9.96 2.68 5.36 8.05 3.07 2.30 5.75 5.75 6.90 2.68 2.30 1

16615 4.98 4.21 6.51 4.21 3.83 8.05 1.53 4.98 7.28 11.49 3.07 4.21 7.66 3.45 1.53 5.75 5.36 7.28 2.68 1.92 1

16622 6.13 3.83 7.66 3.83 3.83 8.05 2.68 5.75 6.90 9.96 2.30 5.75 7.66 3.07 1.53 5.36 4.60 6.13 2.68 2.30 1

17695 5.31 8.85 8.85 3.54 3.54 2.65 1.77 3.54 7.08 5.31 4.42 7.96 4.42 1.77 3.54 7.96 8.85 5.31 3.54 1.77 1

17842 4.35 2.72 4.35 13.59 4.89 4.35 2.72 9.24 5.98 12.50 3.80 6.52 1.09 1.63 3.80 5.43 4.89 3.80 0.54 3.80 1

18048 5.08 3.91 7.81 5.86 2.73 6.64 2.73 4.30 5.47 10.94 2.73 5.08 8.20 3.52 1.95 6.64 5.47 5.08 2.73 3.13 1

20389 7.25 2.07 3.63 6.22 2.59 6.74 2.07 5.18 4.66 10.88 4.66 0.52 7.25 3.11 4.66 9.84 5.70 8.81 0.00 4.15 1

20714 7.89 0.72 5.26 8.13 5.74 4.78 1.91 6.46 6.94 11.24 3.59 4.31 4.07 5.26 2.63 6.22 6.46 5.74 0.48 2.15 1

22373 5.22 11.19 1.49 6.72 2.24 5.97 0.00 5.97 3.73 8.21 5.22 5.97 8.21 5.22 2.99 7.46 5.97 7.46 0.75 0.00 1

57426 6.45 4.30 5.38 11.83 3.23 6.45 2.15 6.45 9.68 13.98 1.08 3.23 4.30 0.00 1.08 3.23 8.60 5.38 0.00 3.23 1

66392 4.82 2.19 4.39 6.14 3.95 2.63 1.32 3.95 4.82 12.72 3.51 5.70 1.32 4.82 4.82 11.84 10.09 6.58 1.32 3.07 1

66996 4.29 1.65 4.62 3.63 2.64 4.62 3.30 6.27 5.61 12.87 1.32 4.95 5.28 3.96 3.63 9.90 9.57 7.26 2.31 2.31 1

67315 3.33 1.67 4.33 4.67 3.67 5.33 2.67 5.67 5.33 11.67 3.67 5.00 4.67 5.00 4.67 9.33 7.00 7.67 1.67 3.00 1

74188 5.39 2.49 2.90 7.47 6.22 2.07 2.90 7.47 7.47 13.28 2.07 4.15 4.15 2.90 5.39 9.54 5.81 3.32 2.07 2.90 1

77055 6.23 1.52 4.04 6.57 3.87 13.30 0.67 3.87 5.89 7.91 2.02 3.54 1.35 6.73 5.72 16.16 3.70 4.88 0.17 1.85 1

84543 6.25 3.47 3.47 4.17 3.47 3.47 1.39 6.25 6.94 9.03 4.86 6.25 5.56 5.56 0.00 8.33 6.25 9.72 1.39 4.17 1

100470 7.65 1.53 4.40 4.78 3.44 7.27 2.87 5.93 7.07 10.52 1.91 3.25 4.59 3.25 4.97 8.60 6.31 6.12 1.15 4.40 1

104002 6.12 2.33 3.79 5.83 4.08 9.33 1.46 4.66 5.54 7.58 2.62 7.58 4.66 2.04 5.25 6.41 4.96 7.29 3.50 4.96 1

109820 4.34 1.79 3.57 5.10 4.85 11.48 0.77 4.08 2.81 11.22 2.81 3.83 4.59 6.89 1.53 9.95 6.12 6.63 1.53 6.12 1

114871 4.45 1.69 2.75 5.30 3.18 5.72 2.54 4.66 4.03 11.86 1.91 4.66 3.39 4.66 5.93 9.11 9.32 8.47 1.69 4.66 1

233090 7.14 2.68 1.79 8.93 4.46 7.14 2.68 6.25 8.04 13.39 1.79 0.89 3.57 5.36 0.89 6.25 8.04 4.46 0.89 5.36 1
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Figure B.5: Amino acid matrix for mouse genes with broad and tissue-specific
expression. The amino acid matrix is shown for the 30 top/bottom genes that led to a
prediction performance of AUC=1 as described in Chapter 5.2.1.1. The values 0 and 1 in
the ’y’ column indicate broad (green) and tissue-specific (orange) expression, respectively.
The amino acid content is given as percentage (Xp) where X represents the amino acid.
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66392 33 27 29 31 34 28 25 30 35 26 31 31 33 28 23 28 31 26 26 28 27 24 25 26 1154 30 27 116 50 27
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67418 43 40 37 33 31 24 33 31 36 29 40 35 35 34 31 27 31 30 27 38 34 29 41 35 2613 34 33 36 29 34

67441 45 32 32 38 29 29 28 31 30 26 32 33 40 39 30 33 26 22 34 30 30 26 36 39 34 1049 23 27 24 30

68205 30 26 26 26 27 27 26 30 25 28 32 29 25 27 27 26 27 26 23 28 25 29 30 27 33 23 531 26 26 26

69020 40 26 29 37 32 28 23 30 48 33 34 40 45 33 32 29 26 26 28 35 32 25 34 36 36 27 26 1895 24 33

70844 36 27 30 31 25 25 28 28 26 41 42 34 31 27 36 27 26 29 35 30 22 28 33 34 29 24 26 24 796 32
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Figure B.6: Sequence similarities within groups. All-against-all sequence similarity
scores within the classes are shown. The 30 top/bottom genes are listed that led to a
prediction performance of AUC=1 as described in Chapter 5.2.1.1. Note that these scores
were not used for the classifier achieving the AUC of 1, but the amino acid contents
presented in Figure B.5 instead. The presented scores wore log normalised before used
in any of the classifiers. Yellow cells flag alignment scores > 100. A) All-against-scores
for the 30 most tissue-specific mouse genes B) All-against-scores for the 30 most broadly
expressed mouse genes.
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Figure B.7: Sequence similarities across groups. Sequence similarity scores across the
classes are shown. The 30 top/bottom genes are listed that led to a prediction performance
of AUC=1 as described in Chapter 5.2.1.1. Note that these scores were not used for the
classifier achieving the AUC of 1, but the amino acid contents presented in Figure B.5
instead. The presented scores wore log normalised before used in any of the classifiers.
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Appendix C

Q values for GO terms discussed

in Chapter 6

Table C.1: Supplementary data for Chapter 2.2.2 (downregulated categories). Overrep-
resented GO terms in the tissue specificity bins, or their combinations, are shown. Four
different scores are presented: (1) EASE score (2) p values resulting from Fisher’s exact test
(3) q values estimated from the EASE scores (4) q values estimated from the p values in (2).
All terms reported achieve an EASE score < 0.05. BP= Biological Process; CC=Cellular
Component; MF=Molecular Function.

GO term (1) (2) (3) (4)

EASE Fisher’s q value q value

score p value using (1) using (2)

Bin all

BP GO:0010004 gastrulation involving germ band extension 4.50E-04 4.13E-05 1.44E-01 4.91E-03

BP GO:0042594 response to starvation 4.82E-04 1.22E-05 1.44E-01 4.33E-03

CC GO:0042600 chorion 8.37E-04 5.84E-05 1.55E-01 5.20E-03

MF GO:0005213 structural constituent of chorion 1.04E-03 3.81E-05 1.55E-01 4.91E-03

BP GO:0001708 cell fate specification 2.43E-03 4.30E-04 3.03E-01 2.78E-02

MF GO:0003899 DNA-directed RNA polymerase activity 4.81E-03 5.83E-04 5.38E-01 3.19E-02

BP GO:0008286 insulin receptor signaling pathway 7.81E-03 6.81E-04 6.18E-01 3.40E-02

BP GO:0046112 nucleobase biosynthetic process 8.53E-03 2.86E-04 6.28E-01 2.07E-02

BP GO:0009888 tissue development 1.03E-02 4.87E-03 6.28E-01 8.66E-02

MF GO:0005160 transforming growth factor beta receptor binding 1.47E-02 7.16E-04 7.94E-01 3.40E-02

MF GO:0005158 insulin receptor binding 1.86E-02 1.05E-03 9.48E-01 3.99E-02

MF GO:0003676 nucleic acid binding 1.94E-02 1.38E-02 9.48E-01 1.42E-01

BP GO:0007219 Notch signaling pathway 2.10E-02 4.01E-03 9.48E-01 7.51E-02

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 2.15E-02 2.84E-03 9.48E-01 6.12E-02

CC GO:0044452 nucleolar part 2.70E-02 1.91E-03 1.00E+00 5.05E-02

BP GO:0007179 transforming growth factor beta receptor signaling pathway 3.38E-02 5.39E-03 1.00E+00 9.12E-02

BP GO:0000915 cytokinesis; contractile ring formation 3.40E-02 2.81E-03 1.00E+00 6.12E-02
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CC GO:0005886 plasma membrane 4.10E-02 2.42E-02 1.00E+00 1.42E-01

BP GO:0045793 positive regulation of cell size 4.55E-02 4.49E-03 1.00E+00 8.19E-02

Bin 1

BP GO:0007306 eggshell chorion formation 2.52E-02 4.27E-04 1.11E-01 1.80E-03

MF GO:0005213 structural constituent of chorion 4.76E-02 1.15E-03 1.11E-01 2.65E-03

CC GO:0042600 chorion 4.92E-02 1.64E-03 1.11E-01 2.65E-03

Bin 2

CC GO:0042600 chorion 4.97E-02 5.67E-03 1.00E+00 8.84E-02

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

Bin 8

Bin 9

Bin 10

MF GO:0004888 transmembrane receptor activity 3.53E-02 4.07E-03 1.00E+00 4.17E-02

Bin 11

Bin 12

Bin 13

CC GO:0005886 plasma membrane 2.14E-02 4.98E-03 1.00E+00 5.38E-02

MF GO:0004672 protein kinase activity 3.84E-02 7.26E-03 1.00E+00 5.38E-02

Bin 14

Bin 15

MF GO:0003676 nucleic acid binding 3.40E-02 1.67E-02 1.00E+00 1.20E-01

BP GO:0000915 cytokinesis; contractile ring formation 3.68E-02 3.63E-04 1.00E+00 2.36E-02

Bin 16

BP GO:0031887 lipid particle transport along microtubule 3.07E-02 2.58E-04 1.00E+00 1.59E-02

BP GO:0035152 regulation of tube architecture; open tracheal system 4.58E-02 7.67E-04 1.00E+00 2.36E-02

Bin s1

CC GO:0042600 chorion 5.76E-04 4.21E-05 4.42E-02 1.97E-03

MF GO:0005213 structural constituent of chorion 6.20E-04 2.16E-05 4.42E-02 1.97E-03

BP GO:0007306 eggshell chorion formation 1.40E-03 7.01E-05 7.49E-02 2.46E-03

Bin s2

MF GO:0005213 structural constituent of chorion 7.37E-04 2.55E-05 5.05E-02 2.98E-03

CC GO:0042600 chorion 9.74E-04 7.60E-05 5.05E-02 2.98E-03

BP GO:0007306 eggshell chorion formation 3.86E-03 2.76E-04 1.37E-01 7.71E-03

Bin s3

MF GO:0005213 structural constituent of chorion 6.41E-04 2.06E-05 7.87E-02 4.10E-03

CC GO:0042600 chorion 7.20E-04 4.99E-05 7.87E-02 4.10E-03

BP GO:0007306 eggshell chorion formation 4.15E-03 3.01E-04 1.86E-01 1.06E-02

Bin s4

CC GO:0042600 chorion 6.05E-04 3.93E-05 7.75E-02 2.99E-03

MF GO:0005213 structural constituent of chorion 6.43E-04 2.04E-05 7.75E-02 2.99E-03

BP GO:0007306 eggshell chorion formation 8.22E-03 7.79E-04 3.96E-01 2.38E-02

Bin s5
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CC GO:0042600 chorion 5.26E-04 3.24E-05 9.34E-02 3.59E-03

MF GO:0005213 structural constituent of chorion 7.35E-04 2.40E-05 9.79E-02 3.59E-03

BP GO:0007306 eggshell chorion formation 9.33E-03 9.14E-04 4.15E-01 3.50E-02

Bin s6

CC GO:0042600 chorion 4.75E-04 2.82E-05 1.27E-01 3.21E-03

MF GO:0005213 structural constituent of chorion 8.67E-04 2.96E-05 1.27E-01 3.21E-03

BP GO:0007306 eggshell chorion formation 9.59E-03 9.41E-04 5.61E-01 4.28E-02

Bin s7

CC GO:0042600 chorion 8.24E-04 5.71E-05 1.95E-01 6.06E-03

MF GO:0005213 structural constituent of chorion 1.05E-03 3.83E-05 1.95E-01 6.06E-03

BP GO:0007306 eggshell chorion formation 1.51E-02 1.75E-03 7.00E-01 6.20E-02

Bin s8

CC GO:0042600 chorion 8.43E-04 5.95E-05 1.78E-01 7.76E-03

MF GO:0005213 structural constituent of chorion 9.47E-04 3.30E-05 1.78E-01 7.76E-03

BP GO:0007306 eggshell chorion formation 1.83E-02 2.29E-03 1.00E+00 8.13E-02

BP GO:0008283 cell proliferation 4.94E-02 1.54E-02 1.00E+00 1.98E-01

Bin s9

CC GO:0042600 chorion 8.54E-04 6.11E-05 2.34E-01 8.79E-03

MF GO:0005213 structural constituent of chorion 8.73E-04 2.94E-05 2.34E-01 8.79E-03

BP GO:0007306 eggshell chorion formation 2.47E-02 3.49E-03 1.00E+00 1.25E-01

Bin s10

CC GO:0042600 chorion 9.79E-04 7.21E-05 3.23E-01 1.06E-02

MF GO:0005213 structural constituent of chorion 1.05E-03 3.76E-05 3.23E-01 1.06E-02

BP GO:0007306 eggshell chorion formation 3.48E-02 5.63E-03 1.00E+00 1.55E-01

Bin s11

CC GO:0042600 chorion 8.11E-04 5.65E-05 3.80E-01 8.96E-03

MF GO:0005213 structural constituent of chorion 1.05E-03 3.74E-05 3.80E-01 8.96E-03

BP GO:0007306 eggshell chorion formation 3.89E-02 6.59E-03 1.00E+00 1.66E-01

Bin s12

CC GO:0042600 chorion 8.37E-04 5.85E-05 4.98E-01 9.02E-03

MF GO:0005213 structural constituent of chorion 1.49E-03 6.29E-05 5.92E-01 9.02E-03

BP GO:0009888 tissue development 3.93E-02 1.94E-02 1.00E+00 1.37E-01

BP GO:0051707 response to other organism 4.67E-02 1.41E-02 1.00E+00 1.37E-01

Bin s13

CC GO:0042600 chorion 6.93E-04 4.58E-05 4.21E-01 8.11E-03

MF GO:0005213 structural constituent of chorion 1.26E-03 4.99E-05 4.21E-01 8.11E-03

BP GO:0042594 response to starvation 6.54E-03 1.76E-04 1.00E+00 2.04E-02

BP GO:0046112 nucleobase biosynthetic process 9.64E-03 3.45E-04 1.00E+00 2.55E-02

CC GO:0044452 nucleolar part 9.99E-03 3.67E-04 1.00E+00 2.55E-02

MF GO:0003899 DNA-directed RNA polymerase activity 4.29E-02 4.08E-03 1.00E+00 1.17E-01

BP GO:0048741 skeletal muscle fiber development 4.69E-02 8.57E-03 1.00E+00 1.31E-01

Bin s14

CC GO:0042600 chorion 6.63E-04 4.31E-05 3.10E-01 6.32E-03

MF GO:0003899 DNA-directed RNA polymerase activity 1.07E-03 8.08E-05 3.18E-01 9.44E-03

MF GO:0005213 structural constituent of chorion 1.14E-03 4.33E-05 3.18E-01 6.32E-03

BP GO:0042594 response to starvation 5.97E-03 1.53E-04 9.14E-01 1.49E-02
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CC GO:0055029 nuclear DNA-directed RNA polymerase complex 6.53E-03 5.27E-04 9.14E-01 3.08E-02

BP GO:0046112 nucleobase biosynthetic process 8.81E-03 3.01E-04 1.00E+00 2.51E-02

MF GO:0003676 nucleic acid binding 2.04E-02 1.40E-02 1.00E+00 1.49E-01

CC GO:0044452 nucleolar part 2.22E-02 1.39E-03 1.00E+00 6.77E-02

CC GO:0005886 plasma membrane 3.29E-02 1.88E-02 1.00E+00 1.49E-01

Bin s15

BP GO:0042594 response to starvation 4.42E-04 1.09E-05 1.99E-01 4.43E-03

CC GO:0042600 chorion 5.43E-04 3.34E-05 1.99E-01 4.43E-03

MF GO:0005213 structural constituent of chorion 9.77E-04 3.53E-05 2.85E-01 4.43E-03

MF GO:0003899 DNA-directed RNA polymerase activity 4.48E-03 5.32E-04 8.22E-01 4.18E-02

BP GO:0046112 nucleobase biosynthetic process 8.06E-03 2.62E-04 1.00E+00 2.75E-02

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.89E-02 2.38E-03 1.00E+00 7.86E-02

MF GO:0003676 nucleic acid binding 2.09E-02 1.48E-02 1.00E+00 1.35E-01

CC GO:0044452 nucleolar part 2.46E-02 1.67E-03 1.00E+00 7.68E-02

CC GO:0005886 plasma membrane 3.52E-02 2.01E-02 1.00E+00 1.35E-01

BP GO:0045793 positive regulation of cell size 4.31E-02 4.14E-03 1.00E+00 1.18E-01

Bin u1

BP GO:0031887 lipid particle transport along microtubule 2.96E-02 2.40E-04 1.00E+00 1.46E-02

BP GO:0035152 regulation of tube architecture; open tracheal system 4.42E-02 7.14E-04 1.00E+00 2.17E-02

Bin u2

MF GO:0003676 nucleic acid binding 3.24E-02 1.85E-02 1.00E+00 4.51E-02

BP GO:0031887 lipid particle transport along microtubule 3.45E-02 3.11E-04 1.00E+00 2.37E-02

Bin u3

Bin u4

BP GO:0042594 response to starvation 3.89E-03 8.10E-05 1.00E+00 1.37E-02

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.09E-02 1.13E-03 1.00E+00 5.24E-02

MF GO:0003899 DNA-directed RNA polymerase activity 1.10E-02 1.16E-03 1.00E+00 5.24E-02

BP GO:0008340 determination of adult life span 3.28E-02 5.31E-03 1.00E+00 9.31E-02

MF GO:0003676 nucleic acid binding 3.90E-02 2.57E-02 1.00E+00 1.08E-01

CC GO:0005886 plasma membrane 3.92E-02 1.62E-02 1.00E+00 9.31E-02

MF GO:0004672 protein kinase activity 4.57E-02 1.61E-02 1.00E+00 9.31E-02

Bin u5

BP GO:0042594 response to starvation 1.56E-04 2.45E-06 7.77E-02 4.56E-04

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.19E-02 1.28E-03 1.00E+00 3.98E-02

MF GO:0003899 DNA-directed RNA polymerase activity 1.42E-02 1.64E-03 1.00E+00 4.69E-02

CC GO:0044452 nucleolar part 1.79E-02 1.03E-03 1.00E+00 3.98E-02

BP GO:0008286 insulin receptor signaling pathway 2.00E-02 1.24E-03 1.00E+00 3.98E-02

BP GO:0045793 positive regulation of cell size 2.77E-02 2.09E-03 1.00E+00 5.51E-02

BP GO:0001558 regulation of cell growth 4.10E-02 3.92E-03 1.00E+00 7.81E-02

BP GO:0008340 determination of adult life span 4.70E-02 8.78E-03 1.00E+00 7.81E-02

MF GO:0003676 nucleic acid binding 4.94E-02 3.40E-02 1.00E+00 1.06E-01

Bin u6

BP GO:0042594 response to starvation 1.94E-04 3.27E-06 1.10E-01 6.87E-04

MF GO:0003899 DNA-directed RNA polymerase activity 2.46E-03 2.48E-04 5.89E-01 1.82E-02

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.40E-02 1.59E-03 1.00E+00 4.88E-02

CC GO:0044452 nucleolar part 2.00E-02 1.22E-03 1.00E+00 4.88E-02
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MF GO:0003676 nucleic acid binding 2.63E-02 1.79E-02 1.00E+00 8.19E-02

BP GO:0008286 insulin receptor signaling pathway 2.72E-02 2.00E-03 1.00E+00 5.68E-02

BP GO:0045793 positive regulation of cell size 3.16E-02 2.56E-03 1.00E+00 6.74E-02

Bin u7

BP GO:0042594 response to starvation 1.94E-04 3.26E-06 1.15E-01 8.15E-04

MF GO:0003899 DNA-directed RNA polymerase activity 2.43E-03 2.44E-04 7.23E-01 1.82E-02

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.31E-02 1.46E-03 1.00E+00 4.81E-02

CC GO:0044452 nucleolar part 1.91E-02 1.14E-03 1.00E+00 4.81E-02

CC GO:0005886 plasma membrane 2.00E-02 9.19E-03 1.00E+00 8.03E-02

BP GO:0008286 insulin receptor signaling pathway 2.71E-02 2.00E-03 1.00E+00 6.12E-02

MF GO:0003676 nucleic acid binding 3.50E-02 2.44E-02 1.00E+00 8.64E-02

BP GO:0045793 positive regulation of cell size 3.64E-02 3.20E-03 1.00E+00 7.62E-02

Bin u8

BP GO:0042594 response to starvation 1.93E-04 3.24E-06 1.15E-01 9.66E-04

MF GO:0003899 DNA-directed RNA polymerase activity 2.40E-03 2.40E-04 7.18E-01 2.01E-02

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.26E-02 1.37E-03 1.00E+00 5.21E-02

CC GO:0044452 nucleolar part 1.85E-02 1.09E-03 1.00E+00 5.21E-02

MF GO:0003676 nucleic acid binding 2.42E-02 1.66E-02 1.00E+00 9.27E-02

BP GO:0008286 insulin receptor signaling pathway 2.70E-02 1.98E-03 1.00E+00 6.73E-02

CC GO:0005886 plasma membrane 3.11E-02 1.52E-02 1.00E+00 9.27E-02

BP GO:0045793 positive regulation of cell size 3.62E-02 3.18E-03 1.00E+00 8.88E-02

BP GO:0007219 Notch signaling pathway 4.29E-02 7.64E-03 1.00E+00 9.27E-02

Bin u9

BP GO:0042594 response to starvation 2.30E-04 4.09E-06 1.47E-01 2.05E-03

MF GO:0003899 DNA-directed RNA polymerase activity 3.22E-03 3.49E-04 9.92E-01 3.46E-02

BP GO:0046112 nucleobase biosynthetic process 5.08E-03 1.20E-04 9.92E-01 2.01E-02

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.45E-02 1.66E-03 1.00E+00 5.95E-02

CC GO:0044452 nucleolar part 2.05E-02 1.26E-03 1.00E+00 5.95E-02

BP GO:0008286 insulin receptor signaling pathway 3.01E-02 2.34E-03 1.00E+00 7.83E-02

MF GO:0003676 nucleic acid binding 3.13E-02 2.20E-02 1.00E+00 1.05E-01

BP GO:0051707 response to other organism 3.70E-02 1.05E-02 1.00E+00 1.05E-01

BP GO:0045793 positive regulation of cell size 4.03E-02 3.75E-03 1.00E+00 1.04E-01

Bin u10

BP GO:0042594 response to starvation 2.34E-04 4.20E-06 1.55E-01 2.41E-03

MF GO:0003899 DNA-directed RNA polymerase activity 3.51E-03 3.89E-04 1.00E+00 4.05E-02

BP GO:0046112 nucleobase biosynthetic process 7.60E-03 2.41E-04 1.00E+00 4.05E-02

MF GO:0003676 nucleic acid binding 9.49E-03 6.38E-03 1.00E+00 1.24E-01

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.47E-02 1.69E-03 1.00E+00 6.93E-02

CC GO:0044452 nucleolar part 2.07E-02 1.28E-03 1.00E+00 6.93E-02

BP GO:0008286 insulin receptor signaling pathway 3.05E-02 2.39E-03 1.00E+00 9.11E-02

BP GO:0045793 positive regulation of cell size 4.08E-02 3.81E-03 1.00E+00 1.24E-01

Bin u11

BP GO:0042594 response to starvation 4.19E-04 1.01E-05 2.84E-01 3.07E-03

MF GO:0003899 DNA-directed RNA polymerase activity 3.68E-03 4.13E-04 9.97E-01 4.95E-02

BP GO:0046112 nucleobase biosynthetic process 7.79E-03 2.50E-04 1.00E+00 3.78E-02

MF GO:0003676 nucleic acid binding 1.16E-02 7.89E-03 1.00E+00 1.32E-01
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CC GO:0005886 plasma membrane 1.21E-02 5.95E-03 1.00E+00 1.32E-01

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.49E-02 1.72E-03 1.00E+00 6.96E-02

CC GO:0044452 nucleolar part 2.08E-02 1.29E-03 1.00E+00 6.96E-02

BP GO:0008286 insulin receptor signaling pathway 3.13E-02 2.47E-03 1.00E+00 8.33E-02

BP GO:0045793 positive regulation of cell size 4.18E-02 3.95E-03 1.00E+00 1.14E-01

Bin u12

BP GO:0042594 response to starvation 4.15E-04 9.99E-06 2.85E-01 2.83E-03

MF GO:0003899 DNA-directed RNA polymerase activity 4.20E-03 4.91E-04 9.61E-01 5.56E-02

BP GO:0046112 nucleobase biosynthetic process 7.74E-03 2.47E-04 1.00E+00 4.67E-02

MF GO:0003676 nucleic acid binding 1.12E-02 7.66E-03 1.00E+00 1.26E-01

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.51E-02 1.76E-03 1.00E+00 6.65E-02

CC GO:0005886 plasma membrane 1.98E-02 1.03E-02 1.00E+00 1.26E-01

CC GO:0044452 nucleolar part 2.11E-02 1.32E-03 1.00E+00 6.65E-02

BP GO:0008286 insulin receptor signaling pathway 3.11E-02 2.45E-03 1.00E+00 7.72E-02

BP GO:0007283 spermatogenesis 3.42E-02 9.48E-03 1.00E+00 1.26E-01

BP GO:0045793 positive regulation of cell size 4.15E-02 3.91E-03 1.00E+00 1.11E-01

Bin u13

BP GO:0042594 response to starvation 4.09E-04 9.79E-06 2.84E-01 3.08E-03

MF GO:0003899 DNA-directed RNA polymerase activity 4.12E-03 4.79E-04 1.00E+00 5.89E-02

BP GO:0046112 nucleobase biosynthetic process 7.66E-03 2.43E-04 1.00E+00 4.79E-02

MF GO:0003676 nucleic acid binding 9.40E-03 6.39E-03 1.00E+00 1.28E-01

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.55E-02 1.81E-03 1.00E+00 7.13E-02

CC GO:0044452 nucleolar part 2.14E-02 1.35E-03 1.00E+00 7.13E-02

BP GO:0009888 tissue development 3.50E-02 1.75E-02 1.00E+00 1.28E-01

CC GO:0005886 plasma membrane 3.98E-02 2.23E-02 1.00E+00 1.28E-01

BP GO:0008286 insulin receptor signaling pathway 4.11E-02 3.85E-03 1.00E+00 1.26E-01

BP GO:0045793 positive regulation of cell size 4.11E-02 3.85E-03 1.00E+00 1.26E-01

BP GO:0007283 spermatogenesis 4.23E-02 1.24E-02 1.00E+00 1.28E-01

Bin u14

BP GO:0042594 response to starvation 4.19E-04 1.01E-05 2.97E-01 3.77E-03

MF GO:0003899 DNA-directed RNA polymerase activity 4.22E-03 4.93E-04 1.00E+00 7.44E-02

BP GO:0046112 nucleobase biosynthetic process 7.78E-03 2.49E-04 1.00E+00 5.01E-02

MF GO:0003676 nucleic acid binding 1.02E-02 6.99E-03 1.00E+00 1.33E-01

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.65E-02 1.98E-03 1.00E+00 7.96E-02

CC GO:0044452 nucleolar part 2.24E-02 1.44E-03 1.00E+00 7.96E-02

CC GO:0005886 plasma membrane 3.04E-02 1.68E-02 1.00E+00 1.33E-01

BP GO:0009888 tissue development 4.13E-02 2.11E-02 1.00E+00 1.33E-01

BP GO:0045793 positive regulation of cell size 4.17E-02 3.94E-03 1.00E+00 1.33E-01

BP GO:0008286 insulin receptor signaling pathway 4.74E-02 4.84E-03 1.00E+00 1.33E-01

Bin u15

BP GO:0042594 response to starvation 4.43E-04 1.09E-05 3.25E-01 5.14E-03

MF GO:0003899 DNA-directed RNA polymerase activity 4.40E-03 5.20E-04 1.00E+00 7.86E-02

BP GO:0046112 nucleobase biosynthetic process 8.07E-03 2.63E-04 1.00E+00 5.30E-02

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 1.85E-02 2.30E-03 1.00E+00 9.93E-02

MF GO:0003676 nucleic acid binding 1.88E-02 1.32E-02 1.00E+00 1.38E-01

CC GO:0044452 nucleolar part 2.42E-02 1.62E-03 1.00E+00 9.93E-02
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CC GO:0005886 plasma membrane 3.35E-02 1.91E-02 1.00E+00 1.38E-01

CC GO:0042600 chorion 4.00E-02 3.66E-03 1.00E+00 1.23E-01

BP GO:0045793 positive regulation of cell size 4.32E-02 4.15E-03 1.00E+00 1.27E-01

Table C.2: Supplementary data for Chapter 2.2.2 (upregulated categories). Overrepresented
GO terms in the tissue specificity bins, or their combinations, are shown. Four different
scores are presented: (1) EASE score (2) p values resulting from Fisher’s exact test (3) q
values estimated from the EASE scores (4) q values estimated from the p values in (2).
All terms reported achieve an EASE score < 0.05. BP= Biological Process; CC=Cellular
Component; MF=Molecular Function.

GO term (1) (2) (3) (4)

EASE Fisher’s q value q value

score p value using (1) using (2)

Bin all

BP GO:0006508 proteolysis 1.90E-20 6.90E-21 6.05E-18 2.20E-18

CC GO:0005792 microsome 4.79E-09 8.10E-10 5.39E-07 9.12E-08

MF GO:0004263 chymotrypsin activity 3.75E-08 2.08E-09 3.02E-06 2.09E-07

MF GO:0004497 monooxygenase activity 3.79E-08 9.41E-09 3.02E-06 7.50E-07

MF GO:0004295 trypsin activity 6.43E-08 1.22E-08 4.57E-06 9.31E-07

BP GO:0006869 lipid transport 5.27E-07 9.87E-08 2.72E-05 5.11E-06

CC GO:0005777 peroxisome 5.68E-07 6.49E-08 2.74E-05 3.88E-06

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.69E-06 2.28E-07 7.72E-05 1.09E-05

MF GO:0020037 heme Binding 1.91E-06 5.27E-07 8.19E-05 2.15E-05

MF GO:0008061 chitin Binding 2.33E-06 3.98E-07 9.49E-05 1.75E-05

CC GO:0005764 lysosome 3.66E-05 3.83E-06 1.23E-03 1.38E-04

MF GO:0005506 iron ion Binding 4.47E-05 1.69E-05 1.45E-03 5.39E-04

BP GO:0051189 prosthetic group metabolic process 2.11E-04 5.48E-05 6.42E-03 1.59E-03

BP GO:0008202 steroid metabolic process 2.83E-04 1.09E-04 8.33E-03 2.97E-03

BP GO:0006118 electron transport 3.28E-04 1.68E-04 9.53E-03 4.39E-03

BP GO:0006013 mannose metabolic process 4.07E-04 2.46E-05 1.16E-02 7.73E-04

MF GO:0004558 alpha-glucosidase activity 4.37E-04 4.09E-05 1.23E-02 1.22E-03

MF GO:0004559 alpha-mannosidase activity 4.70E-04 2.94E-05 1.30E-02 9.06E-04

MF GO:0004867 serine-type endopeptidase inhibitor activity 7.08E-04 1.98E-04 1.88E-02 5.04E-03

MF GO:0004035 alkaline phosphatase activity 8.72E-04 6.80E-05 2.26E-02 1.91E-03

MF GO:0004806 triacylglycerol lipase activity 9.19E-04 1.62E-04 2.35E-02 4.30E-03

MF GO:0042708 elastase activity 1.48E-03 1.38E-04 3.64E-02 3.73E-03

MF GO:0005344 oxygen transporter activity 1.63E-03 9.16E-05 3.84E-02 2.54E-03

MF GO:0008010 structural constituent of chitin-based larval cuticle 4.39E-03 7.53E-04 9.76E-02 1.57E-02

MF GO:0008970 phospholipase A1 activity 5.10E-03 4.73E-04 1.08E-01 1.11E-02

MF GO:0004179 membrane alanyl aminopeptidase activity 5.81E-03 1.07E-03 1.15E-01 1.97E-02

MF GO:0004182 carboxypeptidase A activity 5.81E-03 1.07E-03 1.15E-01 1.97E-02

BP GO:0006032 chitin catabolic process 6.31E-03 9.40E-04 1.17E-01 1.82E-02

BP GO:0001501 skeletal development 6.51E-03 1.24E-03 1.19E-01 2.20E-02
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MF GO:0004568 chitinase activity 7.18E-03 1.11E-03 1.29E-01 1.98E-02

MF GO:0016490 structural constituent of peritrophic membrane 7.18E-03 1.11E-03 1.29E-01 1.98E-02

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 1.06E-02 2.77E-03 1.81E-01 4.61E-02

MF GO:0050809 diazepam Binding 1.09E-02 7.57E-04 1.83E-01 1.57E-02

BP GO:0008652 amino acid biosynthetic process 1.10E-02 3.98E-03 1.83E-01 6.24E-02

MF GO:0019204 nucleotide phosphatase activity 1.29E-02 3.40E-03 2.13E-01 5.42E-02

BP GO:0042049 cell acyl-CoA homeostasis 1.64E-02 1.46E-03 2.58E-01 2.57E-02

MF GO:0000062 acyl-CoA Binding 1.78E-02 1.64E-03 2.76E-01 2.83E-02

MF GO:0004364 glutathione transferase activity 1.84E-02 5.23E-03 2.79E-01 7.88E-02

BP GO:0005992 trehalose biosynthetic process 2.03E-02 6.10E-04 3.04E-01 1.34E-02

MF GO:0008336 gamma-butyrobetaine dioxygenase activity 2.16E-02 6.68E-04 3.17E-01 1.44E-02

MF GO:0016401 palmitoyl-CoA oxidase activity 2.16E-02 6.68E-04 3.17E-01 1.44E-02

MF GO:0009055 electron carrier activity 2.18E-02 1.25E-02 3.17E-01 1.48E-01

MF GO:0008533 astacin activity 2.67E-02 3.06E-03 3.78E-01 5.01E-02

MF GO:0005319 lipid transporter activity 3.15E-02 7.61E-03 4.36E-01 9.97E-02

MF GO:0008431 vitamin E Binding 3.74E-02 5.13E-03 5.01E-01 7.79E-02

MF GO:0005549 odorant Binding 3.84E-02 1.52E-02 5.02E-01 1.74E-01

MF GO:0005529 sugar Binding 3.85E-02 1.30E-02 5.02E-01 1.51E-01

BP GO:0048066 pigmentation during development 4.20E-02 1.58E-02 5.36E-01 1.76E-01

BP GO:0006800 oxygen and reactive oxygen species metabolic process 4.86E-02 1.74E-02 6.01E-01 1.87E-01

Bin 1

BP GO:0006508 proteolysis 2.06E-02 1.01E-02 3.91E-01 1.40E-01

Bin 2

BP GO:0006508 proteolysis 2.40E-13 4.56E-14 3.30E-11 6.28E-12

MF GO:0004295 trypsin activity 2.04E-03 2.60E-04 3.30E-02 4.21E-03

Bin 3

Bin 4

Bin 5

Bin 6

Bin 7

MF GO:0004867 serine-type endopeptidase inhibitor activity 4.64E-03 2.09E-04 5.79E-01 2.61E-02

Bin 8

Bin 9

Bin 10

Bin 11

MF GO:0005506 iron ion Binding 2.99E-03 3.54E-04 9.17E-01 7.59E-02

CC GO:0005777 peroxisome 2.28E-02 7.77E-04 1.00E+00 8.34E-02

Bin 12

CC GO:0005777 peroxisome 1.93E-02 8.48E-04 9.65E-01 1.31E-01

BP GO:0006118 electron transport 2.66E-02 5.42E-03 9.65E-01 2.13E-01

Bin 13

CC GO:0005792 microsome 4.78E-02 4.71E-03 1.00E+00 2.04E-01

CC GO:0031966 mitochondrial membrane 4.78E-02 4.71E-03 1.00E+00 2.04E-01

Bin 14

Bin 15

Bin 16

Bin s1
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BP GO:0006508 proteolysis 2.55E-14 6.55E-15 1.98E-12 4.77E-13

MF GO:0004295 trypsin activity 2.69E-04 3.74E-05 5.44E-03 7.59E-04

MF GO:0004263 chymotrypsin activity 9.87E-04 1.31E-04 1.80E-02 2.27E-03

MF GO:0004806 triacylglycerol lipase activity 1.40E-03 6.60E-05 2.42E-02 1.27E-03

MF GO:0004035 alkaline phosphatase activity 1.64E-02 1.07E-03 2.14E-01 1.69E-02

MF GO:0019204 nucleotide phosphatase activity 1.64E-02 1.07E-03 2.14E-01 1.69E-02

BP GO:0001501 skeletal development 1.83E-02 1.23E-03 2.14E-01 1.85E-02

Bin s2

BP GO:0006508 proteolysis 2.67E-15 7.15E-16 5.38E-13 1.44E-13

MF GO:0004295 trypsin activity 3.71E-05 5.45E-06 1.40E-03 2.36E-04

MF GO:0004263 chymotrypsin activity 1.59E-03 2.47E-04 4.81E-02 7.86E-03

MF GO:0004806 triacylglycerol lipase activity 8.36E-03 1.10E-03 2.02E-01 2.75E-02

MF GO:0019204 nucleotide phosphatase activity 1.11E-02 1.13E-03 2.50E-01 2.75E-02

CC GO:0005764 lysosome 2.42E-02 2.02E-03 4.19E-01 4.36E-02

MF GO:0004035 alkaline phosphatase activity 3.38E-02 4.08E-03 5.11E-01 6.86E-02

BP GO:0007498 mesoderm development 3.42E-02 9.17E-03 5.11E-01 1.32E-01

BP GO:0001501 skeletal development 3.53E-02 4.32E-03 5.11E-01 7.06E-02

MF GO:0008970 phospholipase A1 activity 4.69E-02 3.53E-03 6.38E-01 6.40E-02

Bin s3

BP GO:0006508 proteolysis 3.69E-18 8.99E-19 8.88E-16 2.16E-16

MF GO:0004295 trypsin activity 4.77E-07 5.12E-08 2.46E-05 3.08E-06

MF GO:0004263 chymotrypsin activity 4.88E-04 6.26E-05 1.94E-02 2.66E-03

MF GO:0004806 triacylglycerol lipase activity 3.73E-03 4.05E-04 9.74E-02 1.08E-02

CC GO:0005764 lysosome 3.78E-03 2.31E-04 9.74E-02 6.96E-03

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.23E-02 1.55E-03 2.78E-01 3.73E-02

MF GO:0004035 alkaline phosphatase activity 1.96E-02 1.96E-03 3.66E-01 4.29E-02

BP GO:0001501 skeletal development 2.00E-02 2.02E-03 3.66E-01 4.29E-02

MF GO:0019204 nucleotide phosphatase activity 2.31E-02 3.84E-03 3.97E-01 7.29E-02

MF GO:0008533 astacin activity 3.06E-02 1.91E-03 4.89E-01 4.29E-02

BP GO:0006013 mannose metabolic process 3.11E-02 1.95E-03 4.89E-01 4.29E-02

MF GO:0004558 alpha-glucosidase activity 3.83E-02 5.70E-03 5.65E-01 9.52E-02

Bin s4

BP GO:0006508 proteolysis 3.42E-19 8.28E-20 1.43E-16 3.46E-17

MF GO:0004295 trypsin activity 1.04E-06 1.32E-07 6.24E-05 9.19E-06

MF GO:0004263 chymotrypsin activity 2.85E-04 3.35E-05 1.08E-02 1.33E-03

MF GO:0004806 triacylglycerol lipase activity 1.60E-03 1.87E-04 4.94E-02 6.00E-03

CC GO:0005764 lysosome 2.94E-03 1.67E-04 8.20E-02 5.57E-03

BP GO:0001501 skeletal development 3.66E-03 2.77E-04 9.87E-02 8.27E-03

MF GO:0004035 alkaline phosphatase activity 4.05E-03 3.15E-04 1.06E-01 9.07E-03

MF GO:0004558 alpha-glucosidase activity 9.10E-03 1.05E-03 1.90E-01 2.51E-02

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 9.10E-03 1.05E-03 1.90E-01 2.51E-02

MF GO:0019204 nucleotide phosphatase activity 9.96E-03 1.64E-03 2.03E-01 3.44E-02

BP GO:0006013 mannose metabolic process 2.36E-02 1.33E-03 4.30E-01 2.99E-02

BP GO:0006665 sphingolipid metabolic process 2.36E-02 1.33E-03 4.30E-01 2.99E-02

MF GO:0008533 astacin activity 2.52E-02 1.45E-03 4.48E-01 3.18E-02

BP GO:0006869 lipid transport 2.80E-02 3.74E-03 4.78E-01 6.80E-02

MF GO:0008970 phospholipase A1 activity 3.02E-02 4.14E-03 5.05E-01 7.36E-02

Bin s5
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BP GO:0006508 proteolysis 6.64E-18 1.76E-18 2.18E-15 5.78E-16

MF GO:0004295 trypsin activity 5.63E-06 9.04E-07 3.69E-04 6.35E-05

CC GO:0005764 lysosome 8.65E-05 3.57E-06 4.25E-03 1.95E-04

MF GO:0004263 chymotrypsin activity 2.16E-04 2.43E-05 9.65E-03 1.09E-03

MF GO:0004806 triacylglycerol lipase activity 2.59E-03 3.61E-04 7.96E-02 1.18E-02

BP GO:0001501 skeletal development 3.03E-03 2.18E-04 9.02E-02 7.94E-03

MF GO:0004035 alkaline phosphatase activity 3.44E-03 2.56E-04 9.95E-02 8.97E-03

MF GO:0004558 alpha-glucosidase activity 7.77E-03 8.61E-04 2.01E-01 2.42E-02

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 7.77E-03 8.61E-04 2.01E-01 2.42E-02

MF GO:0019204 nucleotide phosphatase activity 1.41E-02 2.65E-03 3.46E-01 6.21E-02

BP GO:0006013 mannose metabolic process 2.10E-02 1.12E-03 4.70E-01 2.98E-02

BP GO:0006665 sphingolipid metabolic process 2.10E-02 1.12E-03 4.70E-01 2.98E-02

MF GO:0008533 astacin activity 2.27E-02 1.25E-03 4.86E-01 3.15E-02

BP GO:0006869 lipid transport 2.43E-02 3.09E-03 5.07E-01 6.89E-02

MF GO:0008970 phospholipase A1 activity 4.56E-02 7.91E-03 8.79E-01 1.52E-01

MF GO:0004559 alpha-mannosidase activity 4.90E-02 5.32E-03 9.26E-01 1.14E-01

Bin s6

BP GO:0006508 proteolysis 9.88E-19 2.77E-19 5.69E-16 1.59E-16

MF GO:0004295 trypsin activity 1.12E-05 1.94E-06 8.31E-04 1.68E-04

MF GO:0004263 chymotrypsin activity 6.09E-05 6.27E-06 3.69E-03 4.01E-04

CC GO:0005764 lysosome 2.79E-04 1.78E-05 1.53E-02 1.02E-03

BP GO:0001501 skeletal development 7.31E-04 4.54E-05 3.51E-02 2.38E-03

MF GO:0004806 triacylglycerol lipase activity 2.64E-03 3.68E-04 9.81E-02 1.46E-02

MF GO:0004035 alkaline phosphatase activity 3.48E-03 2.59E-04 1.25E-01 1.11E-02

CC GO:0005792 microsome 4.63E-03 1.05E-03 1.48E-01 3.37E-02

MF GO:0004558 alpha-glucosidase activity 7.87E-03 8.72E-04 2.38E-01 3.05E-02

BP GO:0008652 amino acid biosynthetic process 1.24E-02 2.27E-03 3.49E-01 6.39E-02

MF GO:0019204 nucleotide phosphatase activity 1.43E-02 2.69E-03 3.91E-01 7.38E-02

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.50E-02 2.20E-03 4.02E-01 6.34E-02

BP GO:0006665 sphingolipid metabolic process 2.11E-02 1.13E-03 4.99E-01 3.51E-02

MF GO:0004497 monooxygenase activity 2.12E-02 8.25E-03 4.99E-01 1.70E-01

MF GO:0008533 astacin activity 2.29E-02 1.26E-03 5.17E-01 3.73E-02

BP GO:0006013 mannose metabolic process 4.57E-02 4.82E-03 9.46E-01 1.18E-01

MF GO:0008970 phospholipase A1 activity 4.60E-02 7.98E-03 9.46E-01 1.70E-01

Bin s7

BP GO:0006508 proteolysis 3.06E-18 9.53E-19 3.87E-15 1.21E-15

MF GO:0004295 trypsin activity 6.92E-05 1.60E-05 4.57E-03 1.01E-03

MF GO:0004263 chymotrypsin activity 7.23E-05 7.60E-06 4.57E-03 5.06E-04

CC GO:0005764 lysosome 3.44E-04 2.27E-05 1.81E-02 1.31E-03

BP GO:0001501 skeletal development 8.36E-04 5.34E-05 4.06E-02 2.94E-03

BP GO:0008652 amino acid biosynthetic process 2.67E-03 4.61E-04 1.13E-01 2.01E-02

MF GO:0004035 alkaline phosphatase activity 3.79E-03 2.88E-04 1.45E-01 1.30E-02

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 5.02E-03 6.51E-04 1.81E-01 2.65E-02

MF GO:0004806 triacylglycerol lipase activity 5.35E-03 9.10E-04 1.88E-01 3.39E-02

CC GO:0005792 microsome 7.23E-03 2.19E-03 2.23E-01 6.74E-02

MF GO:0004558 alpha-glucosidase activity 8.53E-03 9.65E-04 2.45E-01 3.47E-02

MF GO:0019204 nucleotide phosphatase activity 1.56E-02 3.00E-03 4.03E-01 9.04E-02

MF GO:0004497 monooxygenase activity 2.02E-02 8.78E-03 4.81E-01 1.54E-01
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MF GO:0004867 serine-type endopeptidase inhibitor activity 2.05E-02 6.43E-03 4.81E-01 1.35E-01

MF GO:0005344 oxygen transporter activity 2.41E-02 1.35E-03 5.25E-01 4.50E-02

MF GO:0008533 astacin activity 2.41E-02 1.35E-03 5.25E-01 4.50E-02

BP GO:0006869 lipid transport 3.89E-02 8.39E-03 7.02E-01 1.54E-01

BP GO:0006013 mannose metabolic process 4.86E-02 5.26E-03 7.81E-01 1.29E-01

BP GO:0006665 sphingolipid metabolic process 4.86E-02 5.26E-03 7.81E-01 1.29E-01

MF GO:0008970 phospholipase A1 activity 4.88E-02 8.63E-03 7.81E-01 1.54E-01

MF GO:0016490 structural constituent of peritrophic membrane 4.88E-02 8.63E-03 7.81E-01 1.54E-01

MF GO:0042708 elastase activity 4.88E-02 8.63E-03 7.81E-01 1.54E-01

Bin s8

BP GO:0006508 proteolysis 1.94E-19 6.07E-20 1.30E-16 4.08E-17

MF GO:0004295 trypsin activity 5.95E-06 1.29E-06 5.00E-04 1.16E-04

MF GO:0004263 chymotrypsin activity 9.76E-05 1.15E-05 6.56E-03 8.12E-04

CC GO:0005764 lysosome 5.25E-04 4.27E-05 2.82E-02 2.49E-03

MF GO:0004806 triacylglycerol lipase activity 1.18E-03 1.68E-04 5.88E-02 8.37E-03

BP GO:0001501 skeletal development 1.50E-03 1.33E-04 6.72E-02 6.86E-03

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 2.10E-03 2.79E-04 8.29E-02 1.25E-02

CC GO:0005792 microsome 2.71E-03 8.23E-04 9.86E-02 3.07E-02

BP GO:0008652 amino acid biosynthetic process 4.78E-03 9.78E-04 1.43E-01 3.31E-02

BP GO:0006869 lipid transport 5.51E-03 9.85E-04 1.54E-01 3.31E-02

MF GO:0004497 monooxygenase activity 6.05E-03 2.50E-03 1.56E-01 6.22E-02

MF GO:0004035 alkaline phosphatase activity 6.63E-03 7.01E-04 1.68E-01 2.94E-02

MF GO:0004867 serine-type endopeptidase inhibitor activity 1.15E-02 3.51E-03 2.49E-01 7.73E-02

MF GO:0008061 chitin Binding 1.15E-02 3.51E-03 2.49E-01 7.73E-02

MF GO:0004558 alpha-glucosidase activity 1.27E-02 1.78E-03 2.59E-01 4.75E-02

MF GO:0005344 oxygen transporter activity 2.05E-02 1.08E-03 3.88E-01 3.45E-02

MF GO:0042708 elastase activity 2.17E-02 3.78E-03 4.05E-01 8.19E-02

MF GO:0019204 nucleotide phosphatase activity 3.94E-02 1.05E-02 6.79E-01 1.66E-01

MF GO:0008970 phospholipase A1 activity 4.04E-02 6.70E-03 6.81E-01 1.13E-01

BP GO:0006013 mannose metabolic process 4.11E-02 4.13E-03 6.81E-01 8.55E-02

MF GO:0008533 astacin activity 4.44E-02 4.61E-03 7.19E-01 8.95E-02

MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 4.44E-02 4.61E-03 7.19E-01 8.95E-02

Bin s9

BP GO:0006508 proteolysis 2.98E-18 1.01E-18 1.40E-15 4.72E-16

MF GO:0004295 trypsin activity 1.16E-05 2.73E-06 8.59E-04 2.02E-04

MF GO:0004263 chymotrypsin activity 6.61E-05 7.37E-06 4.64E-03 5.18E-04

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.36E-04 1.76E-05 8.34E-03 1.08E-03

CC GO:0005764 lysosome 1.97E-04 1.72E-05 1.07E-02 1.08E-03

BP GO:0006869 lipid transport 1.22E-03 2.17E-04 4.19E-02 8.46E-03

MF GO:0004806 triacylglycerol lipase activity 1.59E-03 2.49E-04 5.18E-02 9.38E-03

CC GO:0005792 microsome 2.33E-03 7.35E-04 6.96E-02 2.07E-02

BP GO:0001501 skeletal development 2.61E-03 2.93E-04 7.55E-02 1.03E-02

MF GO:0004497 monooxygenase activity 4.43E-03 1.83E-03 1.17E-01 4.35E-02

BP GO:0008652 amino acid biosynthetic process 4.59E-03 1.08E-03 1.19E-01 2.80E-02

MF GO:0008061 chitin Binding 4.77E-03 1.36E-03 1.21E-01 3.41E-02

MF GO:0004035 alkaline phosphatase activity 5.43E-03 5.46E-04 1.34E-01 1.70E-02

BP GO:0006013 mannose metabolic process 9.17E-03 7.16E-04 2.05E-01 2.07E-02

MF GO:0004558 alpha-glucosidase activity 1.05E-02 1.40E-03 2.30E-01 3.41E-02
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MF GO:0005344 oxygen transporter activity 1.81E-02 9.02E-04 3.62E-01 2.39E-02

MF GO:0004559 alpha-mannosidase activity 2.01E-02 2.40E-03 3.82E-01 5.53E-02

BP GO:0051189 prosthetic group metabolic process 2.51E-02 9.66E-03 4.58E-01 1.58E-01

MF GO:0042708 elastase activity 2.85E-02 5.61E-03 5.13E-01 9.95E-02

MF GO:0019204 nucleotide phosphatase activity 3.23E-02 8.17E-03 5.61E-01 1.40E-01

MF GO:0008970 phospholipase A1 activity 3.48E-02 5.49E-03 5.73E-01 9.95E-02

MF GO:0004867 serine-type endopeptidase inhibitor activity 3.84E-02 1.51E-02 6.07E-01 2.18E-01

MF GO:0008533 astacin activity 3.94E-02 3.89E-03 6.08E-01 8.14E-02

MF GO:0016903 oxidoreductase activity; acting on the aldehyde . . . 3.94E-02 3.89E-03 6.08E-01 8.14E-02

Bin s10

BP GO:0006508 proteolysis 1.22E-17 4.34E-18 6.47E-15 2.29E-15

MF GO:0004295 trypsin activity 1.88E-05 4.67E-06 1.42E-03 3.52E-04

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 2.53E-05 3.38E-06 1.82E-03 2.98E-04

MF GO:0004263 chymotrypsin activity 4.30E-05 4.53E-06 2.62E-03 3.52E-04

CC GO:0005764 lysosome 1.62E-04 1.37E-05 7.55E-03 7.73E-04

CC GO:0005792 microsome 5.03E-04 1.48E-04 1.95E-02 5.32E-03

BP GO:0008652 amino acid biosynthetic process 5.93E-04 1.20E-04 2.14E-02 4.92E-03

BP GO:0006869 lipid transport 7.30E-04 1.36E-04 2.41E-02 5.15E-03

CC GO:0005777 peroxisome 9.52E-04 1.28E-04 2.93E-02 4.93E-03

MF GO:0008061 chitin Binding 1.77E-03 4.66E-04 5.10E-02 1.34E-02

MF GO:0004497 monooxygenase activity 2.18E-03 8.88E-04 5.85E-02 2.20E-02

MF GO:0004806 triacylglycerol lipase activity 3.17E-03 6.03E-04 7.98E-02 1.68E-02

BP GO:0001501 skeletal development 6.73E-03 1.06E-03 1.54E-01 2.49E-02

MF GO:0005506 iron ion Binding 7.03E-03 3.31E-03 1.57E-01 6.81E-02

BP GO:0006013 mannose metabolic process 7.75E-03 5.74E-04 1.71E-01 1.62E-02

MF GO:0004035 alkaline phosphatase activity 8.50E-03 1.07E-03 1.82E-01 2.49E-02

MF GO:0004558 alpha-glucosidase activity 8.50E-03 1.07E-03 1.82E-01 2.49E-02

BP GO:0006118 electron transport 1.22E-02 6.71E-03 2.42E-01 1.02E-01

MF GO:0020037 heme Binding 1.42E-02 6.37E-03 2.74E-01 1.00E-01

MF GO:0004559 alpha-mannosidase activity 1.69E-02 1.91E-03 3.05E-01 4.21E-02

BP GO:0006032 chitin catabolic process 2.15E-02 3.94E-03 3.60E-01 7.34E-02

MF GO:0004568 chitinase activity 2.34E-02 4.37E-03 3.82E-01 7.43E-02

MF GO:0042708 elastase activity 2.34E-02 4.37E-03 3.82E-01 7.43E-02

BP GO:0008202 steroid metabolic process 2.61E-02 1.31E-02 4.22E-01 1.85E-01

MF GO:0008970 phospholipase A1 activity 2.95E-02 4.41E-03 4.68E-01 7.43E-02

BP GO:0051189 prosthetic group metabolic process 3.35E-02 1.37E-02 5.16E-01 1.92E-01

MF GO:0004867 serine-type endopeptidase inhibitor activity 3.43E-02 1.47E-02 5.21E-01 2.01E-01

MF GO:0005344 oxygen transporter activity 3.45E-02 3.23E-03 5.21E-01 6.73E-02

Bin s11

BP GO:0006508 proteolysis 9.07E-17 3.38E-17 5.12E-14 1.90E-14

CC GO:0005777 peroxisome 1.03E-05 1.06E-06 8.30E-04 9.92E-05

MF GO:0004263 chymotrypsin activity 2.09E-05 2.00E-06 1.36E-03 1.70E-04

MF GO:0004295 trypsin activity 2.39E-05 6.20E-06 1.50E-03 3.89E-04

BP GO:0006869 lipid transport 5.17E-05 8.17E-06 2.86E-03 4.76E-04

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 6.45E-05 1.04E-05 3.22E-03 5.89E-04

CC GO:0005764 lysosome 2.02E-04 1.89E-05 8.77E-03 9.40E-04

MF GO:0004497 monooxygenase activity 8.99E-04 3.59E-04 2.98E-02 1.17E-02

CC GO:0005792 microsome 1.11E-03 3.59E-04 3.47E-02 1.17E-02
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MF GO:0004558 alpha-glucosidase activity 1.48E-03 1.47E-04 4.39E-02 5.78E-03

BP GO:0006118 electron transport 1.52E-03 7.58E-04 4.42E-02 2.00E-02

MF GO:0008061 chitin Binding 1.62E-03 4.61E-04 4.64E-02 1.35E-02

BP GO:0008652 amino acid biosynthetic process 1.95E-03 4.95E-04 5.51E-02 1.40E-02

MF GO:0004806 triacylglycerol lipase activity 4.40E-03 9.26E-04 1.14E-01 2.34E-02

BP GO:0001501 skeletal development 4.43E-03 6.39E-04 1.14E-01 1.74E-02

BP GO:0006013 mannose metabolic process 5.71E-03 3.86E-04 1.35E-01 1.23E-02

MF GO:0020037 heme Binding 5.74E-03 2.47E-03 1.35E-01 5.36E-02

MF GO:0005506 iron ion Binding 5.89E-03 2.80E-03 1.36E-01 5.85E-02

MF GO:0004035 alkaline phosphatase activity 5.97E-03 6.86E-04 1.36E-01 1.84E-02

MF GO:0005344 oxygen transporter activity 6.19E-03 4.28E-04 1.40E-01 1.29E-02

BP GO:0051189 prosthetic group metabolic process 8.86E-03 3.08E-03 1.85E-01 6.12E-02

MF GO:0004559 alpha-mannosidase activity 1.27E-02 1.31E-03 2.59E-01 3.17E-02

MF GO:0042708 elastase activity 1.68E-02 2.87E-03 3.23E-01 5.85E-02

MF GO:0008970 phospholipase A1 activity 2.24E-02 3.06E-03 4.03E-01 6.12E-02

BP GO:0006032 chitin catabolic process 2.32E-02 4.48E-03 4.03E-01 7.66E-02

MF GO:0004867 serine-type endopeptidase inhibitor activity 2.77E-02 1.15E-02 4.59E-01 1.73E-01

MF GO:0004568 chitinase activity 3.60E-02 8.11E-03 5.75E-01 1.29E-01

BP GO:0008202 steroid metabolic process 4.37E-02 2.35E-02 6.78E-01 2.83E-01

MF GO:0008533 astacin activity 4.92E-02 6.24E-03 7.50E-01 1.02E-01

Bin s12

BP GO:0006508 proteolysis 3.12E-17 1.17E-17 1.87E-14 7.00E-15

CC GO:0005777 peroxisome 9.47E-07 9.88E-08 9.47E-05 9.88E-06

MF GO:0004295 trypsin activity 6.80E-06 1.61E-06 5.32E-04 1.45E-04

MF GO:0004263 chymotrypsin activity 7.98E-06 6.79E-07 5.87E-04 6.43E-05

BP GO:0006869 lipid transport 2.63E-05 5.26E-06 1.43E-03 3.15E-04

CC GO:0005792 microsome 5.23E-05 1.45E-05 2.48E-03 6.88E-04

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 6.03E-05 1.01E-05 2.79E-03 5.34E-04

MF GO:0004497 monooxygenase activity 1.32E-04 4.79E-05 5.73E-03 1.96E-03

CC GO:0005764 lysosome 2.03E-04 1.99E-05 7.77E-03 8.95E-04

BP GO:0006118 electron transport 5.26E-04 2.57E-04 1.79E-02 7.97E-03

MF GO:0008061 chitin Binding 7.96E-04 2.10E-04 2.51E-02 6.87E-03

MF GO:0004558 alpha-glucosidase activity 8.32E-04 7.33E-05 2.58E-02 2.81E-03

MF GO:0020037 heme Binding 1.14E-03 4.46E-04 3.31E-02 1.25E-02

MF GO:0005506 iron ion Binding 1.84E-03 8.26E-04 5.10E-02 2.13E-02

MF GO:0004035 alkaline phosphatase activity 3.72E-03 3.80E-04 8.94E-02 1.14E-02

MF GO:0005344 oxygen transporter activity 4.17E-03 2.56E-04 9.88E-02 7.97E-03

MF GO:0004806 triacylglycerol lipase activity 4.67E-03 1.03E-03 1.08E-01 2.50E-02

MF GO:0004867 serine-type endopeptidase inhibitor activity 5.75E-03 2.00E-03 1.30E-01 4.23E-02

BP GO:0001501 skeletal development 6.72E-03 1.15E-03 1.49E-01 2.71E-02

BP GO:0051189 prosthetic group metabolic process 7.54E-03 2.59E-03 1.66E-01 5.13E-02

MF GO:0042708 elastase activity 1.08E-02 1.64E-03 2.28E-01 3.73E-02

BP GO:0008652 amino acid biosynthetic process 1.15E-02 3.97E-03 2.35E-01 7.60E-02

BP GO:0008202 steroid metabolic process 1.18E-02 5.82E-03 2.38E-01 9.62E-02

BP GO:0006013 mannose metabolic process 1.46E-02 1.74E-03 2.86E-01 3.89E-02

MF GO:0004559 alpha-mannosidase activity 1.55E-02 1.88E-03 2.94E-01 4.08E-02

MF GO:0008970 phospholipase A1 activity 1.55E-02 1.88E-03 2.94E-01 4.08E-02

BP GO:0006032 chitin catabolic process 2.22E-02 4.37E-03 3.77E-01 7.71E-02
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MF GO:0004568 chitinase activity 2.37E-02 4.76E-03 3.99E-01 8.16E-02

MF GO:0008533 astacin activity 3.72E-02 4.20E-03 5.77E-01 7.71E-02

MF GO:0009055 electron carrier activity 4.06E-02 2.30E-02 6.25E-01 2.49E-01

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 4.37E-02 1.34E-02 6.50E-01 1.89E-01

MF GO:0019204 nucleotide phosphatase activity 4.60E-02 1.37E-02 6.78E-01 1.90E-01

BP GO:0006635 fatty acid beta-oxidation 4.95E-02 1.01E-02 7.08E-01 1.49E-01

BP GO:0005992 trehalose biosynthetic process 4.96E-02 2.45E-03 7.08E-01 4.96E-02

Bin s13

BP GO:0006508 proteolysis 5.61E-19 2.02E-19 2.60E-16 9.33E-17

MF GO:0004295 trypsin activity 8.75E-07 1.80E-07 8.52E-05 1.59E-05

BP GO:0006869 lipid transport 9.72E-07 1.67E-07 9.00E-05 1.54E-05

CC GO:0005777 peroxisome 1.38E-06 1.61E-07 1.11E-04 1.54E-05

MF GO:0004263 chymotrypsin activity 1.95E-06 1.39E-07 1.38E-04 1.52E-05

CC GO:0005792 microsome 1.51E-05 3.82E-06 7.98E-04 2.02E-04

MF GO:0004497 monooxygenase activity 2.92E-05 9.66E-06 1.42E-03 4.47E-04

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 3.20E-05 5.14E-06 1.45E-03 2.51E-04

CC GO:0005764 lysosome 1.28E-04 1.21E-05 4.94E-03 5.21E-04

MF GO:0020037 heme Binding 3.07E-04 1.09E-04 1.01E-02 3.40E-03

MF GO:0008061 chitin Binding 3.19E-04 7.68E-05 1.03E-02 2.63E-03

MF GO:0004558 alpha-glucosidase activity 3.58E-04 2.66E-05 1.10E-02 1.07E-03

BP GO:0006118 electron transport 4.59E-04 2.25E-04 1.37E-02 6.60E-03

MF GO:0005506 iron ion Binding 8.68E-04 3.72E-04 2.51E-02 1.07E-02

MF GO:0004035 alkaline phosphatase activity 1.86E-03 1.60E-04 5.14E-02 4.87E-03

MF GO:0005344 oxygen transporter activity 2.34E-03 1.21E-04 6.10E-02 3.74E-03

MF GO:0004867 serine-type endopeptidase inhibitor activity 2.79E-03 8.96E-04 7.07E-02 2.18E-02

BP GO:0051189 prosthetic group metabolic process 2.92E-03 9.44E-04 7.10E-02 2.21E-02

MF GO:0004806 triacylglycerol lipase activity 3.41E-03 7.30E-04 8.10E-02 1.93E-02

BP GO:0001501 skeletal development 4.65E-03 7.53E-04 1.05E-01 1.94E-02

MF GO:0042708 elastase activity 5.58E-03 7.16E-04 1.24E-01 1.92E-02

BP GO:0008202 steroid metabolic process 6.98E-03 3.31E-03 1.54E-01 6.01E-02

BP GO:0006013 mannose metabolic process 8.46E-03 8.52E-04 1.82E-01 2.10E-02

MF GO:0004559 alpha-mannosidase activity 9.00E-03 9.23E-04 1.89E-01 2.19E-02

MF GO:0008970 phospholipase A1 activity 9.00E-03 9.23E-04 1.89E-01 2.19E-02

MF GO:0004179 membrane alanyl aminopeptidase activity 1.02E-02 2.05E-03 2.08E-01 3.91E-02

BP GO:0006032 chitin catabolic process 1.18E-02 1.97E-03 2.26E-01 3.85E-02

MF GO:0004568 chitinase activity 1.27E-02 2.16E-03 2.36E-01 4.08E-02

BP GO:0008652 amino acid biosynthetic process 1.36E-02 4.93E-03 2.47E-01 8.61E-02

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 1.54E-02 4.24E-03 2.74E-01 7.55E-02

MF GO:0009055 electron carrier activity 1.97E-02 1.06E-02 3.41E-01 1.57E-01

MF GO:0019204 nucleotide phosphatase activity 2.98E-02 8.03E-03 4.83E-01 1.23E-01

MF GO:0005319 lipid transporter activity 3.20E-02 7.39E-03 5.07E-01 1.16E-01

BP GO:0006800 oxygen and reactive oxygen species metabolic process 3.61E-02 1.17E-02 5.52E-01 1.71E-01

BP GO:0005992 trehalose biosynthetic process 3.70E-02 1.55E-03 5.52E-01 3.30E-02

MF GO:0016401 palmitoyl-CoA oxidase activity 3.82E-02 1.63E-03 5.66E-01 3.43E-02

MF GO:0008533 astacin activity 3.94E-02 4.99E-03 5.79E-01 8.63E-02

Bin s14

BP GO:0006508 proteolysis 9.85E-20 3.52E-20 3.10E-17 1.11E-17

MF GO:0004295 trypsin activity 2.26E-07 4.33E-08 2.03E-05 3.71E-06
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BP GO:0006869 lipid transport 4.01E-07 6.62E-08 3.22E-05 5.43E-06

MF GO:0004263 chymotrypsin activity 4.01E-07 2.38E-08 3.22E-05 2.36E-06

CC GO:0005792 microsome 7.19E-07 1.53E-07 4.84E-05 1.07E-05

CC GO:0005777 peroxisome 8.28E-07 9.55E-08 5.21E-05 7.20E-06

MF GO:0004497 monooxygenase activity 9.81E-07 2.72E-07 5.73E-05 1.61E-05

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 8.77E-06 1.24E-06 4.14E-04 6.01E-05

MF GO:0008061 chitin Binding 1.57E-05 2.94E-06 6.43E-04 1.29E-04

MF GO:0020037 heme Binding 3.22E-05 9.99E-06 1.24E-03 3.70E-04

MF GO:0005506 iron ion Binding 1.85E-04 7.28E-05 6.21E-03 2.29E-03

BP GO:0006118 electron transport 2.17E-04 1.04E-04 7.18E-03 3.17E-03

CC GO:0005764 lysosome 2.59E-04 3.04E-05 8.14E-03 1.02E-03

MF GO:0004035 alkaline phosphatase activity 8.54E-04 6.13E-05 2.48E-02 1.96E-03

MF GO:0004558 alpha-glucosidase activity 8.74E-04 9.39E-05 2.50E-02 2.90E-03

MF GO:0004867 serine-type endopeptidase inhibitor activity 8.93E-04 2.52E-04 2.51E-02 7.00E-03

BP GO:0051189 prosthetic group metabolic process 1.08E-03 3.15E-04 3.01E-02 8.37E-03

MF GO:0005344 oxygen transporter activity 1.23E-03 5.30E-05 3.31E-02 1.72E-03

BP GO:0008202 steroid metabolic process 1.38E-03 5.80E-04 3.65E-02 1.39E-02

MF GO:0004806 triacylglycerol lipase activity 1.57E-03 2.99E-04 4.01E-02 8.06E-03

MF GO:0042708 elastase activity 2.64E-03 2.83E-04 6.31E-02 7.74E-03

BP GO:0001501 skeletal development 4.00E-03 6.53E-04 9.08E-02 1.54E-02

BP GO:0006013 mannose metabolic process 4.50E-03 3.76E-04 1.01E-01 9.86E-03

MF GO:0004559 alpha-mannosidase activity 4.88E-03 4.17E-04 1.06E-01 1.03E-02

MF GO:0008970 phospholipase A1 activity 4.88E-03 4.17E-04 1.06E-01 1.03E-02

BP GO:0006032 chitin catabolic process 5.67E-03 7.86E-04 1.15E-01 1.65E-02

MF GO:0004568 chitinase activity 6.22E-03 8.83E-04 1.25E-01 1.83E-02

MF GO:0004179 membrane alanyl aminopeptidase activity 8.23E-03 1.62E-03 1.59E-01 3.07E-02

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 1.45E-02 4.00E-03 2.60E-01 6.74E-02

BP GO:0008652 amino acid biosynthetic process 1.52E-02 5.70E-03 2.70E-01 9.11E-02

MF GO:0009055 electron carrier activity 1.67E-02 9.04E-03 2.84E-01 1.29E-01

MF GO:0005319 lipid transporter activity 2.14E-02 4.50E-03 3.51E-01 7.38E-02

MF GO:0008533 astacin activity 2.52E-02 2.66E-03 4.03E-01 4.78E-02

BP GO:0005992 trehalose biosynthetic process 2.65E-02 9.21E-04 4.15E-01 1.87E-02

MF GO:0019204 nucleotide phosphatase activity 2.66E-02 7.15E-03 4.15E-01 1.10E-01

MF GO:0004182 carboxypeptidase A activity 2.73E-02 6.19E-03 4.17E-01 9.65E-02

MF GO:0016401 palmitoyl-CoA oxidase activity 2.76E-02 9.82E-04 4.17E-01 1.97E-02

MF GO:0016490 structural constituent of peritrophic membrane 3.33E-02 6.27E-03 4.83E-01 9.70E-02

BP GO:0006800 oxygen and reactive oxygen species metabolic process 4.19E-02 1.43E-02 5.98E-01 1.71E-01

MF GO:0005529 sugar Binding 4.63E-02 1.62E-02 6.43E-01 1.87E-01

BP GO:0048066 pigmentation during development 4.64E-02 1.77E-02 6.43E-01 2.00E-01

BP GO:0042049 cell acyl-CoA homeostasis 4.96E-02 3.41E-03 6.68E-01 5.96E-02

Bin s15

BP GO:0006508 proteolysis 2.41E-19 8.85E-20 7.61E-17 2.79E-17

MF GO:0004295 trypsin activity 4.88E-08 8.53E-09 4.36E-06 7.68E-07

CC GO:0005792 microsome 7.17E-08 1.30E-08 5.65E-06 1.07E-06

MF GO:0004263 chymotrypsin activity 1.14E-07 5.86E-09 8.41E-06 5.53E-07

MF GO:0004497 monooxygenase activity 1.16E-07 2.86E-08 8.41E-06 2.08E-06

CC GO:0005777 peroxisome 3.73E-07 4.06E-08 2.07E-05 2.74E-06

BP GO:0006869 lipid transport 1.55E-06 2.99E-07 7.32E-05 1.49E-05
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MF GO:0008061 chitin Binding 3.34E-06 5.44E-07 1.44E-04 2.39E-05

MF GO:0020037 heme Binding 5.83E-06 1.61E-06 2.34E-04 6.35E-05

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 7.45E-06 1.07E-06 2.87E-04 4.61E-05

MF GO:0005506 iron ion Binding 7.98E-05 3.00E-05 2.69E-03 9.46E-04

CC GO:0005764 lysosome 2.11E-04 2.46E-05 6.63E-03 8.16E-04

MF GO:0004867 serine-type endopeptidase inhibitor activity 3.07E-04 7.72E-05 9.50E-03 2.27E-03

BP GO:0008202 steroid metabolic process 3.18E-04 1.20E-04 9.70E-03 3.44E-03

MF GO:0004558 alpha-glucosidase activity 4.26E-04 3.97E-05 1.26E-02 1.23E-03

MF GO:0004035 alkaline phosphatase activity 4.59E-04 2.86E-05 1.33E-02 9.15E-04

BP GO:0051189 prosthetic group metabolic process 5.34E-04 1.44E-04 1.53E-02 4.01E-03

MF GO:0005344 oxygen transporter activity 7.38E-04 2.76E-05 2.08E-02 8.98E-04

MF GO:0004806 triacylglycerol lipase activity 8.90E-04 1.56E-04 2.44E-02 4.26E-03

BP GO:0006118 electron transport 1.19E-03 6.36E-04 3.18E-02 1.35E-02

MF GO:0042708 elastase activity 1.45E-03 1.35E-04 3.71E-02 3.80E-03

BP GO:0006013 mannose metabolic process 2.73E-03 1.97E-04 6.44E-02 5.32E-03

MF GO:0004559 alpha-mannosidase activity 2.99E-03 2.22E-04 6.88E-02 5.90E-03

BP GO:0001501 skeletal development 3.79E-03 6.30E-04 8.62E-02 1.35E-02

MF GO:0004179 membrane alanyl aminopeptidase activity 4.28E-03 7.31E-04 9.13E-02 1.46E-02

BP GO:0006032 chitin catabolic process 4.54E-03 6.11E-04 9.13E-02 1.33E-02

MF GO:0008970 phospholipase A1 activity 5.01E-03 4.63E-04 9.84E-02 1.12E-02

MF GO:0004568 chitinase activity 5.05E-03 6.97E-04 9.84E-02 1.44E-02

MF GO:0019204 nucleotide phosphatase activity 8.54E-03 2.05E-03 1.57E-01 3.72E-02

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 8.99E-03 2.28E-03 1.63E-01 3.98E-02

BP GO:0008652 amino acid biosynthetic process 9.79E-03 3.47E-03 1.74E-01 5.66E-02

MF GO:0004182 carboxypeptidase A activity 1.61E-02 3.19E-03 2.65E-01 5.24E-02

MF GO:0008533 astacin activity 1.76E-02 1.61E-03 2.86E-01 2.99E-02

BP GO:0005992 trehalose biosynthetic process 2.04E-02 6.12E-04 3.19E-01 1.33E-02

MF GO:0016401 palmitoyl-CoA oxidase activity 2.14E-02 6.59E-04 3.30E-01 1.38E-02

MF GO:0016490 structural constituent of peritrophic membrane 2.15E-02 3.52E-03 3.30E-01 5.69E-02

MF GO:0005319 lipid transporter activity 3.09E-02 7.43E-03 4.49E-01 1.00E-01

MF GO:0005529 sugar Binding 3.29E-02 1.07E-02 4.71E-01 1.32E-01

MF GO:0008431 vitamin E Binding 3.70E-02 5.04E-03 5.12E-01 7.94E-02

BP GO:0048066 pigmentation during development 3.77E-02 1.39E-02 5.13E-01 1.60E-01

MF GO:0050809 diazepam Binding 4.03E-02 2.46E-03 5.33E-01 4.20E-02

MF GO:0009055 electron carrier activity 4.08E-02 2.42E-02 5.35E-01 2.25E-01

BP GO:0006800 oxygen and reactive oxygen species metabolic process 4.33E-02 1.51E-02 5.61E-01 1.72E-01

MF GO:0004364 glutathione transferase activity 4.77E-02 1.52E-02 6.06E-01 1.73E-01

Bin u1

Bin u2

Bin u3

Bin u4

CC GO:0005792 microsome 2.15E-03 1.21E-04 2.65E-01 2.12E-02

BP GO:0006869 lipid transport 2.69E-03 2.85E-04 2.65E-01 2.68E-02

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 3.24E-02 5.21E-03 7.79E-01 1.17E-01

BP GO:0008202 steroid metabolic process 3.59E-02 6.05E-03 8.35E-01 1.18E-01

MF GO:0004095 carnitine O-palmitoyltransferase activity 3.99E-02 4.13E-04 8.44E-01 2.88E-02

Bin u5

BP GO:0006869 lipid transport 1.54E-04 1.56E-05 1.97E-02 2.33E-03
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CC GO:0005777 peroxisome 5.48E-04 3.52E-05 4.10E-02 3.51E-03

MF GO:0004497 monooxygenase activity 6.37E-03 8.43E-04 2.59E-01 2.91E-02

MF GO:0020037 heme Binding 7.21E-03 9.91E-04 2.59E-01 3.17E-02

CC GO:0005792 microsome 1.37E-02 1.55E-03 4.17E-01 4.35E-02

BP GO:0006118 electron transport 2.94E-02 1.12E-02 7.33E-01 1.55E-01

BP GO:0006633 fatty acid biosynthetic process 4.59E-02 4.58E-03 9.47E-01 8.56E-02

Bin u6

CC GO:0005777 peroxisome 1.03E-06 5.35E-08 1.47E-04 1.25E-05

BP GO:0006869 lipid transport 1.44E-04 1.79E-05 1.10E-02 1.36E-03

MF GO:0020037 heme Binding 2.18E-04 2.90E-05 1.46E-02 1.94E-03

MF GO:0005506 iron ion Binding 3.40E-04 6.74E-05 1.94E-02 3.25E-03

CC GO:0005792 microsome 1.00E-03 1.12E-04 4.38E-02 4.73E-03

MF GO:0004497 monooxygenase activity 1.26E-03 1.91E-04 5.34E-02 7.03E-03

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 2.19E-03 3.73E-04 7.32E-02 1.06E-02

BP GO:0006633 fatty acid biosynthetic process 2.78E-03 2.75E-04 7.91E-02 8.69E-03

MF GO:0016401 palmitoyl-CoA oxidase activity 3.28E-03 3.79E-05 8.31E-02 2.27E-03

BP GO:0006118 electron transport 4.85E-03 1.78E-03 1.17E-01 3.69E-02

BP GO:0008202 steroid metabolic process 1.04E-02 2.50E-03 2.04E-01 4.46E-02

BP GO:0006635 fatty acid beta-oxidation 1.61E-02 1.85E-03 2.97E-01 3.70E-02

MF GO:0004364 glutathione transferase activity 1.78E-02 2.12E-03 3.22E-01 3.95E-02

BP GO:0006800 oxygen and reactive oxygen species metabolic process 3.65E-02 5.90E-03 6.12E-01 8.45E-02

MF GO:0009055 electron carrier activity 3.82E-02 1.50E-02 6.24E-01 1.66E-01

BP GO:0006098 pentose-phosphate shunt 3.94E-02 3.44E-03 6.24E-01 5.36E-02

Bin u7

CC GO:0005777 peroxisome 4.49E-07 2.64E-08 8.10E-05 4.76E-06

BP GO:0006869 lipid transport 1.65E-05 2.07E-06 1.39E-03 1.87E-04

MF GO:0020037 heme Binding 3.82E-05 5.38E-06 2.41E-03 3.11E-04

MF GO:0005506 iron ion Binding 5.33E-04 1.24E-04 2.04E-02 3.97E-03

CC GO:0005792 microsome 7.12E-04 9.56E-05 2.57E-02 3.77E-03

MF GO:0004497 monooxygenase activity 1.06E-03 1.85E-04 3.51E-02 5.19E-03

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 1.84E-03 3.57E-04 5.66E-02 9.02E-03

BP GO:0006032 chitin catabolic process 2.63E-03 1.29E-04 6.79E-02 3.97E-03

MF GO:0004568 chitinase activity 2.86E-03 1.44E-04 7.22E-02 4.33E-03

MF GO:0016401 palmitoyl-CoA oxidase activity 4.46E-03 6.02E-05 1.08E-01 2.62E-03

BP GO:0006633 fatty acid biosynthetic process 5.01E-03 5.83E-04 1.09E-01 1.34E-02

BP GO:0006118 electron transport 5.36E-03 2.17E-03 1.15E-01 3.75E-02

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 6.73E-03 8.58E-04 1.42E-01 1.84E-02

MF GO:0004364 glutathione transferase activity 8.07E-03 1.09E-03 1.62E-01 2.30E-02

BP GO:0008202 steroid metabolic process 8.58E-03 2.26E-03 1.64E-01 3.85E-02

MF GO:0008061 chitin Binding 1.56E-02 1.71E-03 2.74E-01 3.08E-02

BP GO:0006635 fatty acid beta-oxidation 2.90E-02 4.17E-03 4.43E-01 6.55E-02

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 4.15E-02 7.07E-03 5.97E-01 9.30E-02

MF GO:0008010 structural constituent of chitin-based larval cuticle 4.58E-02 4.24E-03 6.35E-01 6.55E-02

MF GO:0009055 electron carrier activity 4.85E-02 2.11E-02 6.58E-01 2.10E-01

Bin u8

CC GO:0005777 peroxisome 1.02E-06 6.78E-08 1.00E-04 7.14E-06

BP GO:0006869 lipid transport 1.26E-06 1.51E-07 1.15E-04 1.38E-05

MF GO:0020037 heme Binding 2.08E-06 3.00E-07 1.59E-04 2.41E-05
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MF GO:0004497 monooxygenase activity 5.76E-05 9.75E-06 3.04E-03 4.95E-04

CC GO:0005792 microsome 7.93E-05 1.08E-05 3.68E-03 5.09E-04

MF GO:0005506 iron ion Binding 8.07E-05 1.91E-05 3.68E-03 8.25E-04

BP GO:0008202 steroid metabolic process 2.88E-04 6.72E-05 1.13E-02 2.05E-03

BP GO:0006032 chitin catabolic process 5.25E-04 2.74E-05 1.63E-02 9.62E-04

MF GO:0004568 chitinase activity 6.22E-04 3.40E-05 1.88E-02 1.13E-03

MF GO:0008061 chitin Binding 6.32E-04 5.73E-05 1.88E-02 1.82E-03

BP GO:0006118 electron transport 7.19E-04 2.73E-04 2.10E-02 7.06E-03

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 1.02E-03 2.03E-04 2.73E-02 5.46E-03

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 2.25E-03 2.87E-04 5.22E-02 7.15E-03

MF GO:0016401 palmitoyl-CoA oxidase activity 5.62E-03 8.54E-05 1.18E-01 2.54E-03

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 9.74E-03 1.42E-03 1.96E-01 2.82E-02

BP GO:0006633 fatty acid biosynthetic process 1.04E-02 1.51E-03 2.00E-01 2.87E-02

MF GO:0009055 electron carrier activity 1.28E-02 5.21E-03 2.36E-01 7.84E-02

MF GO:0004364 glutathione transferase activity 1.67E-02 2.83E-03 2.98E-01 4.67E-02

MF GO:0016885 ligase activity; forming carbon-carbon bonds 1.77E-02 7.99E-04 3.04E-01 1.74E-02

BP GO:0048066 pigmentation during development 2.20E-02 4.11E-03 3.55E-01 6.40E-02

MF GO:0005319 lipid transporter activity 2.59E-02 3.46E-03 4.03E-01 5.57E-02

BP GO:0006800 oxygen and reactive oxygen species metabolic process 2.83E-02 5.73E-03 4.30E-01 8.01E-02

MF GO:0016229 steroid dehydrogenase activity 3.50E-02 2.62E-03 5.02E-01 4.43E-02

MF GO:0015020 glucuronosyltransferase activity 4.21E-02 6.98E-03 5.84E-01 9.04E-02

BP GO:0006635 fatty acid beta-oxidation 4.34E-02 7.32E-03 5.94E-01 9.12E-02

Bin u9

CC GO:0005777 peroxisome 4.39E-08 2.84E-09 4.88E-06 3.42E-07

BP GO:0006869 lipid transport 2.20E-06 3.09E-07 1.44E-04 2.24E-05

MF GO:0020037 heme Binding 2.84E-06 5.03E-07 1.64E-04 2.84E-05

MF GO:0008061 chitin Binding 6.21E-06 4.97E-07 3.23E-04 2.84E-05

MF GO:0005506 iron ion Binding 9.91E-06 2.43E-06 4.77E-04 1.10E-04

MF GO:0004497 monooxygenase activity 1.54E-05 2.98E-06 6.76E-04 1.27E-04

CC GO:0005792 microsome 4.20E-05 6.89E-06 1.68E-03 2.77E-04

BP GO:0006118 electron transport 2.40E-04 9.55E-05 8.08E-03 2.60E-03

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 9.08E-04 1.98E-04 2.85E-02 4.85E-03

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 9.82E-04 1.31E-04 3.02E-02 3.47E-03

BP GO:0008202 steroid metabolic process 1.11E-03 3.25E-04 3.03E-02 7.57E-03

BP GO:0006032 chitin catabolic process 1.13E-03 7.28E-05 3.03E-02 2.06E-03

BP GO:0006800 oxygen and reactive oxygen species metabolic process 1.20E-03 2.07E-04 3.15E-02 4.99E-03

MF GO:0004568 chitinase activity 1.25E-03 8.29E-05 3.18E-02 2.30E-03

MF GO:0004867 serine-type endopeptidase inhibitor activity 1.69E-03 3.12E-04 4.08E-02 7.38E-03

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 4.99E-03 7.96E-04 1.05E-01 1.62E-02

BP GO:0048066 pigmentation during development 5.17E-03 1.01E-03 1.05E-01 2.00E-02

BP GO:0005992 trehalose biosynthetic process 7.68E-03 1.37E-04 1.42E-01 3.48E-03

MF GO:0016401 palmitoyl-CoA oxidase activity 8.10E-03 1.49E-04 1.48E-01 3.71E-03

MF GO:0009055 electron carrier activity 8.20E-03 3.53E-03 1.48E-01 5.21E-02

MF GO:0004364 glutathione transferase activity 1.06E-02 2.00E-03 1.80E-01 3.56E-02

MF GO:0005319 lipid transporter activity 1.06E-02 1.49E-03 1.80E-01 2.80E-02

MF GO:0019203 carbohydrate phosphatase activity 1.56E-02 5.72E-04 2.48E-01 1.23E-02

BP GO:0006635 fatty acid beta-oxidation 1.74E-02 2.92E-03 2.70E-01 4.40E-02

BP GO:0006633 fatty acid biosynthetic process 2.06E-02 3.67E-03 3.11E-01 5.25E-02
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BP GO:0046483 heterocycle metabolic process 2.20E-02 8.72E-03 3.28E-01 1.00E-01

MF GO:0016885 ligase activity; forming carbon-carbon bonds 2.51E-02 1.37E-03 3.63E-01 2.65E-02

MF GO:0015020 glucuronosyltransferase activity 2.65E-02 5.11E-03 3.79E-01 6.84E-02

MF GO:0003995 acyl-CoA dehydrogenase activity 2.83E-02 3.82E-03 3.94E-01 5.36E-02

MF GO:0016209 antioxidant activity 3.08E-02 6.25E-03 4.23E-01 8.21E-02

BP GO:0006012 galactose metabolic process 3.46E-02 2.44E-03 4.59E-01 4.20E-02

BP GO:0006508 proteolysis 3.73E-02 2.36E-02 4.90E-01 2.07E-01

BP GO:0019731 antibacterial humoral response 4.22E-02 9.61E-03 5.40E-01 1.08E-01

BP GO:0006725 aromatic compound metabolic process 4.30E-02 1.91E-02 5.46E-01 1.78E-01

MF GO:0016408 C-acyltransferase activity 4.92E-02 4.44E-03 6.11E-01 6.17E-02

Bin u10

CC GO:0005777 peroxisome 1.85E-07 1.41E-08 1.67E-05 1.28E-06

MF GO:0004497 monooxygenase activity 4.01E-07 7.36E-08 3.18E-05 5.95E-06

CC GO:0005792 microsome 1.23E-06 1.86E-07 7.78E-05 1.19E-05

MF GO:0020037 heme Binding 1.40E-06 2.67E-07 7.78E-05 1.47E-05

MF GO:0004867 serine-type endopeptidase inhibitor activity 1.41E-06 1.83E-07 7.78E-05 1.19E-05

MF GO:0005506 iron ion Binding 7.24E-06 1.89E-06 3.53E-04 8.94E-05

BP GO:0006869 lipid transport 1.15E-05 1.92E-06 5.20E-04 8.94E-05

MF GO:0008061 chitin Binding 2.16E-05 2.09E-06 8.73E-04 9.45E-05

BP GO:0006118 electron transport 3.01E-05 1.16E-05 1.16E-03 4.36E-04

BP GO:0008202 steroid metabolic process 5.55E-04 1.68E-04 1.81E-02 5.15E-03

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 2.25E-03 3.56E-04 6.09E-02 8.81E-03

BP GO:0006800 oxygen and reactive oxygen species metabolic process 2.30E-03 4.44E-04 6.09E-02 1.07E-02

BP GO:0006032 chitin catabolic process 2.59E-03 2.17E-04 6.12E-02 5.65E-03

MF GO:0004568 chitinase activity 2.88E-03 2.49E-04 6.60E-02 6.37E-03

BP GO:0006508 proteolysis 3.17E-03 1.82E-03 7.06E-02 3.40E-02

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 3.55E-03 9.52E-04 7.67E-02 1.98E-02

MF GO:0009055 electron carrier activity 7.15E-03 3.21E-03 1.39E-01 4.81E-02

BP GO:0051189 prosthetic group metabolic process 8.86E-03 1.94E-03 1.68E-01 3.40E-02

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 9.12E-03 1.68E-03 1.71E-01 3.24E-02

BP GO:0005992 trehalose biosynthetic process 9.56E-03 1.92E-04 1.75E-01 5.65E-03

MF GO:0016401 palmitoyl-CoA oxidase activity 1.01E-02 2.09E-04 1.83E-01 5.65E-03

BP GO:0048066 pigmentation during development 1.37E-02 3.34E-03 2.34E-01 4.81E-02

MF GO:0005344 oxygen transporter activity 1.95E-02 8.00E-04 3.07E-01 1.73E-02

MF GO:0019203 carbohydrate phosphatase activity 1.95E-02 8.00E-04 3.07E-01 1.73E-02

MF GO:0004364 glutathione transferase activity 1.95E-02 4.33E-03 3.07E-01 5.84E-02

BP GO:0006635 fatty acid beta-oxidation 2.52E-02 4.73E-03 3.91E-01 6.27E-02

MF GO:0005319 lipid transporter activity 2.77E-02 5.35E-03 4.12E-01 6.91E-02

BP GO:0046483 heterocycle metabolic process 2.80E-02 1.21E-02 4.12E-01 1.20E-01

BP GO:0006725 aromatic compound metabolic process 2.85E-02 1.29E-02 4.12E-01 1.26E-01

MF GO:0004246 peptidyl-dipeptidase A activity 3.12E-02 1.91E-03 4.35E-01 3.40E-02

MF GO:0016885 ligase activity; forming carbon-carbon bonds 3.12E-02 1.91E-03 4.35E-01 3.40E-02

BP GO:0042445 hormone metabolic process 3.53E-02 5.18E-03 4.84E-01 6.74E-02

MF GO:0003995 acyl-CoA dehydrogenase activity 3.80E-02 5.74E-03 5.05E-01 7.29E-02

MF GO:0015020 glucuronosyltransferase activity 3.81E-02 8.24E-03 5.05E-01 9.89E-02

BP GO:0006633 fatty acid biosynthetic process 4.02E-02 8.90E-03 5.20E-01 1.02E-01

BP GO:0006012 galactose metabolic process 4.26E-02 3.36E-03 5.46E-01 4.81E-02

CC GO:0005604 basement membrane 4.36E-02 7.28E-03 5.46E-01 8.89E-02
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MF GO:0016209 antioxidant activity 4.40E-02 1.00E-02 5.46E-01 1.06E-01

Bin u11

MF GO:0004497 monooxygenase activity 7.92E-09 1.38E-09 1.30E-06 2.84E-07

CC GO:0005792 microsome 2.97E-08 4.19E-09 3.25E-06 4.30E-07

MF GO:0020037 heme Binding 9.62E-08 1.78E-08 7.17E-06 1.46E-06

MF GO:0005506 iron ion Binding 3.65E-07 9.08E-08 2.24E-05 5.32E-06

CC GO:0005777 peroxisome 3.69E-07 3.04E-08 2.24E-05 1.99E-06

BP GO:0006118 electron transport 4.54E-06 1.70E-06 2.13E-04 7.55E-05

MF GO:0008061 chitin Binding 5.67E-06 5.33E-07 2.59E-04 2.65E-05

MF GO:0004867 serine-type endopeptidase inhibitor activity 7.06E-06 1.09E-06 3.13E-04 4.97E-05

BP GO:0006869 lipid transport 2.26E-05 4.05E-06 9.29E-04 1.66E-04

BP GO:0008202 steroid metabolic process 6.21E-05 1.76E-05 2.49E-03 6.86E-04

MF GO:0009055 electron carrier activity 1.93E-03 8.22E-04 5.86E-02 1.87E-02

MF GO:0005344 oxygen transporter activity 2.32E-03 7.75E-05 6.53E-02 2.49E-03

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 3.21E-03 5.44E-04 7.77E-02 1.33E-02

BP GO:0006032 chitin catabolic process 3.30E-03 2.96E-04 7.77E-02 7.72E-03

MF GO:0004568 chitinase activity 3.72E-03 3.45E-04 8.28E-02 8.84E-03

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 4.08E-03 7.61E-04 8.93E-02 1.78E-02

BP GO:0006800 oxygen and reactive oxygen species metabolic process 4.74E-03 1.05E-03 9.98E-02 2.31E-02

BP GO:0051189 prosthetic group metabolic process 5.58E-03 1.28E-03 1.14E-01 2.65E-02

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 5.63E-03 1.62E-03 1.14E-01 3.17E-02

BP GO:0006508 proteolysis 6.09E-03 3.69E-03 1.22E-01 5.70E-02

CC GO:0005615 extracellular space 8.70E-03 6.85E-04 1.66E-01 1.63E-02

BP GO:0005992 trehalose biosynthetic process 1.09E-02 2.34E-04 1.99E-01 6.86E-03

MF GO:0016401 palmitoyl-CoA oxidase activity 1.16E-02 2.58E-04 2.09E-01 7.42E-03

BP GO:0008652 amino acid biosynthetic process 1.48E-02 4.65E-03 2.59E-01 6.35E-02

MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 1.98E-02 3.36E-03 3.12E-01 5.70E-02

BP GO:0048066 pigmentation during development 2.40E-02 6.64E-03 3.58E-01 8.45E-02

MF GO:0016646 oxidoreductase activity; acting on the CH-NH group ... 2.87E-02 3.76E-03 4.25E-01 5.70E-02

MF GO:0004364 glutathione transferase activity 2.96E-02 7.34E-03 4.27E-01 9.07E-02

BP GO:0006635 fatty acid beta-oxidation 3.13E-02 6.27E-03 4.42E-01 8.04E-02

MF GO:0005319 lipid transporter activity 3.47E-02 7.18E-03 4.82E-01 8.99E-02

MF GO:0004246 peptidyl-dipeptidase A activity 3.55E-02 2.34E-03 4.82E-01 4.27E-02

MF GO:0016885 ligase activity; forming carbon-carbon bonds 3.55E-02 2.34E-03 4.82E-01 4.27E-02

MF GO:0019203 carbohydrate phosphatase activity 3.55E-02 2.34E-03 4.82E-01 4.27E-02

MF GO:0008010 structural constituent of chitin-based larval cuticle 3.66E-02 5.35E-03 4.92E-01 7.14E-02

BP GO:0009063 amino acid catabolic process 4.19E-02 1.34E-02 5.46E-01 1.39E-01

MF GO:0003995 acyl-CoA dehydrogenase activity 4.53E-02 7.35E-03 5.86E-01 9.07E-02

BP GO:0006012 galactose metabolic process 4.81E-02 4.07E-03 6.12E-01 5.70E-02

Bin u12

MF GO:0004497 monooxygenase activity 2.45E-09 4.39E-10 4.71E-07 1.13E-07

CC GO:0005792 microsome 1.41E-08 2.03E-09 1.53E-06 2.34E-07

MF GO:0020037 heme Binding 7.35E-08 1.40E-08 6.95E-06 1.28E-06

MF GO:0005506 iron ion Binding 3.92E-07 1.01E-07 2.71E-05 5.84E-06

CC GO:0005777 peroxisome 7.34E-07 6.60E-08 4.24E-05 4.24E-06

MF GO:0008061 chitin Binding 1.96E-06 1.88E-07 9.70E-05 1.02E-05

BP GO:0006118 electron transport 2.72E-06 1.03E-06 1.31E-04 4.94E-05

BP GO:0006869 lipid transport 9.75E-06 1.73E-06 4.33E-04 7.90E-05
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MF GO:0004867 serine-type endopeptidase inhibitor activity 2.38E-05 4.23E-06 1.03E-03 1.83E-04

BP GO:0008202 steroid metabolic process 5.73E-05 1.68E-05 2.16E-03 6.18E-04

MF GO:0005344 oxygen transporter activity 2.58E-04 7.24E-06 8.93E-03 2.98E-04

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 1.09E-03 1.84E-04 3.36E-02 5.69E-03

MF GO:0009055 electron carrier activity 1.90E-03 8.28E-04 5.31E-02 1.86E-02

BP GO:0006032 chitin catabolic process 3.79E-03 3.53E-04 9.11E-02 8.87E-03

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 3.97E-03 7.04E-04 9.28E-02 1.67E-02

BP GO:0006508 proteolysis 4.12E-03 2.49E-03 9.38E-02 4.44E-02

MF GO:0004568 chitinase activity 4.34E-03 4.21E-04 9.76E-02 1.03E-02

BP GO:0006800 oxygen and reactive oxygen species metabolic process 5.83E-03 1.34E-03 1.22E-01 2.88E-02

BP GO:0008652 amino acid biosynthetic process 6.61E-03 1.96E-03 1.35E-01 3.79E-02

BP GO:0051189 prosthetic group metabolic process 8.00E-03 1.97E-03 1.56E-01 3.79E-02

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 8.41E-03 2.58E-03 1.62E-01 4.49E-02

BP GO:0005992 trehalose biosynthetic process 1.17E-02 2.62E-04 2.14E-01 7.68E-03

BP GO:0048066 pigmentation during development 1.23E-02 3.32E-03 2.22E-01 5.37E-02

MF GO:0016401 palmitoyl-CoA oxidase activity 1.26E-02 2.93E-04 2.25E-01 8.32E-03

CC GO:0005615 extracellular space 1.30E-02 1.23E-03 2.25E-01 2.66E-02

MF GO:0005044 scavenger receptor activity 2.28E-02 4.04E-03 3.50E-01 5.76E-02

MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 2.28E-02 4.04E-03 3.50E-01 5.76E-02

MF GO:0016490 structural constituent of peritrophic membrane 2.45E-02 2.94E-03 3.70E-01 4.81E-02

BP GO:0009063 amino acid catabolic process 2.83E-02 9.17E-03 4.19E-01 1.06E-01

MF GO:0016646 oxidoreductase activity; acting on the CH-NH group ... 3.21E-02 4.38E-03 4.68E-01 5.76E-02

MF GO:0004364 glutathione transferase activity 3.48E-02 9.00E-03 4.93E-01 1.05E-01

BP GO:0006635 fatty acid beta-oxidation 3.52E-02 7.34E-03 4.93E-01 8.88E-02

BP GO:0017143 insecticide metabolic process 3.58E-02 2.37E-03 4.93E-01 4.28E-02

MF GO:0004246 peptidyl-dipeptidase A activity 3.85E-02 2.65E-03 5.12E-01 4.49E-02

MF GO:0016885 ligase activity; forming carbon-carbon bonds 3.85E-02 2.65E-03 5.12E-01 4.49E-02

MF GO:0019203 carbohydrate phosphatase activity 3.85E-02 2.65E-03 5.12E-01 4.49E-02

MF GO:0005319 lipid transporter activity 3.97E-02 8.58E-03 5.25E-01 1.00E-01

MF GO:0008010 structural constituent of chitin-based larval cuticle 4.08E-02 6.23E-03 5.35E-01 7.67E-02

Bin u13

MF GO:0004497 monooxygenase activity 2.33E-09 4.34E-10 4.61E-07 9.69E-08

CC GO:0005792 microsome 9.20E-09 1.37E-09 1.03E-06 1.63E-07

MF GO:0020037 heme Binding 6.32E-08 1.25E-08 5.64E-06 1.12E-06

MF GO:0005506 iron ion Binding 4.31E-07 1.16E-07 3.20E-05 8.24E-06

CC GO:0005777 peroxisome 1.66E-06 1.65E-07 9.32E-05 1.05E-05

BP GO:0006118 electron transport 3.61E-06 1.40E-06 1.90E-04 6.94E-05

BP GO:0006869 lipid transport 4.21E-06 7.45E-07 2.15E-04 3.80E-05

MF GO:0008061 chitin Binding 6.01E-06 6.74E-07 2.90E-04 3.54E-05

MF GO:0004867 serine-type endopeptidase inhibitor activity 4.19E-05 7.92E-06 1.70E-03 3.21E-04

BP GO:0008202 steroid metabolic process 1.51E-04 4.78E-05 5.28E-03 1.65E-03

MF GO:0005344 oxygen transporter activity 2.92E-04 8.48E-06 9.66E-03 3.36E-04

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 3.17E-04 4.81E-05 1.03E-02 1.65E-03

BP GO:0051189 prosthetic group metabolic process 5.60E-04 1.23E-04 1.65E-02 3.33E-03

BP GO:0008652 amino acid biosynthetic process 9.12E-04 2.36E-04 2.62E-02 5.92E-03

BP GO:0006032 chitin catabolic process 1.02E-03 9.41E-05 2.67E-02 2.75E-03

MF GO:0004568 chitinase activity 1.20E-03 1.15E-04 3.05E-02 3.16E-03

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 1.43E-03 2.54E-04 3.46E-02 6.30E-03
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BP GO:0006508 proteolysis 1.59E-03 9.36E-04 3.73E-02 1.90E-02

MF GO:0009055 electron carrier activity 1.70E-03 7.51E-04 3.95E-02 1.56E-02

BP GO:0048066 pigmentation during development 5.49E-03 1.42E-03 1.09E-01 2.69E-02

BP GO:0006800 oxygen and reactive oxygen species metabolic process 7.01E-03 1.67E-03 1.36E-01 3.14E-02

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 1.16E-02 3.75E-03 2.09E-01 6.14E-02

BP GO:0005992 trehalose biosynthetic process 1.25E-02 2.90E-04 2.21E-01 6.89E-03

MF GO:0016401 palmitoyl-CoA oxidase activity 1.34E-02 3.22E-04 2.35E-01 7.57E-03

BP GO:0009063 amino acid catabolic process 1.58E-02 4.97E-03 2.70E-01 6.68E-02

CC GO:0005615 extracellular space 1.95E-02 2.20E-03 3.16E-01 3.89E-02

MF GO:0005044 scavenger receptor activity 2.53E-02 4.64E-03 3.94E-01 6.68E-02

MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 2.53E-02 4.64E-03 3.94E-01 6.68E-02

MF GO:0016490 structural constituent of peritrophic membrane 2.67E-02 3.31E-03 4.11E-01 5.52E-02

MF GO:0005529 sugar Binding 2.93E-02 7.18E-03 4.47E-01 9.15E-02

MF GO:0016646 oxidoreductase activity; acting on the CH-NH group ... 3.49E-02 4.92E-03 5.19E-01 6.68E-02

BP GO:0006725 aromatic compound metabolic process 3.78E-02 1.89E-02 5.57E-01 1.97E-01

MF GO:0004364 glutathione transferase activity 3.92E-02 1.05E-02 5.69E-01 1.24E-01

BP GO:0006635 fatty acid beta-oxidation 3.92E-02 8.44E-03 5.69E-01 1.05E-01

MF GO:0004246 peptidyl-dipeptidase A activity 4.08E-02 2.90E-03 5.69E-01 4.93E-02

MF GO:0016885 ligase activity; forming carbon-carbon bonds 4.08E-02 2.90E-03 5.69E-01 4.93E-02

MF GO:0019203 carbohydrate phosphatase activity 4.08E-02 2.90E-03 5.69E-01 4.93E-02

MF GO:0005319 lipid transporter activity 4.39E-02 9.80E-03 6.02E-01 1.17E-01

MF GO:0008010 structural constituent of chitin-based larval cuticle 4.42E-02 6.99E-03 6.02E-01 8.98E-02

Bin u14

MF GO:0004497 monooxygenase activity 3.70E-08 8.09E-09 4.29E-06 9.38E-07

CC GO:0005792 microsome 7.77E-08 1.35E-08 7.59E-06 1.31E-06

MF GO:0020037 heme Binding 8.98E-07 2.13E-07 5.96E-05 1.27E-05

CC GO:0005777 peroxisome 1.23E-06 1.36E-07 7.36E-05 9.31E-06

MF GO:0008061 chitin Binding 4.95E-06 6.19E-07 2.55E-04 3.19E-05

MF GO:0005506 iron ion Binding 6.41E-06 2.02E-06 3.22E-04 9.61E-05

BP GO:0006869 lipid transport 1.04E-05 1.99E-06 4.93E-04 9.61E-05

MF GO:0004867 serine-type endopeptidase inhibitor activity 3.00E-05 5.90E-06 1.33E-03 2.67E-04

BP GO:0006118 electron transport 6.45E-05 2.88E-05 2.72E-03 1.11E-03

BP GO:0051189 prosthetic group metabolic process 9.86E-05 2.06E-05 3.81E-03 8.48E-04

BP GO:0006508 proteolysis 1.29E-04 7.19E-05 4.90E-03 2.47E-03

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 1.64E-04 2.57E-05 5.97E-03 1.04E-03

MF GO:0005344 oxygen transporter activity 3.97E-04 1.25E-05 1.25E-02 5.53E-04

BP GO:0008202 steroid metabolic process 8.75E-04 3.24E-04 2.58E-02 8.46E-03

BP GO:0008652 amino acid biosynthetic process 1.71E-03 4.79E-04 4.61E-02 1.11E-02

BP GO:0006032 chitin catabolic process 2.12E-03 2.38E-04 5.10E-02 6.49E-03

MF GO:0004568 chitinase activity 2.50E-03 2.93E-04 5.96E-02 7.76E-03

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 2.86E-03 5.76E-04 6.72E-02 1.29E-02

MF GO:0005529 sugar Binding 5.36E-03 1.19E-03 1.17E-01 2.51E-02

MF GO:0009055 electron carrier activity 7.97E-03 4.01E-03 1.63E-01 6.76E-02

BP GO:0006800 oxygen and reactive oxygen species metabolic process 1.05E-02 2.72E-03 2.06E-01 5.21E-02

BP GO:0048066 pigmentation during development 1.15E-02 3.38E-03 2.22E-01 6.26E-02

MF GO:0004295 trypsin activity 1.24E-02 3.70E-03 2.38E-01 6.29E-02

BP GO:0005992 trehalose biosynthetic process 1.45E-02 3.65E-04 2.65E-01 9.14E-03

MF GO:0016401 palmitoyl-CoA oxidase activity 1.57E-02 4.08E-04 2.74E-01 9.76E-03
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CC GO:0005764 lysosome 1.62E-02 2.59E-03 2.76E-01 5.01E-02

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group ... 2.32E-02 8.45E-03 3.74E-01 1.11E-01

MF GO:0008431 vitamin E Binding 2.43E-02 2.81E-03 3.89E-01 5.32E-02

BP GO:0009063 amino acid catabolic process 2.67E-02 9.30E-03 4.24E-01 1.19E-01

CC GO:0016021 integral to membrane 3.04E-02 2.20E-02 4.62E-01 2.15E-01

CC GO:0005615 extracellular space 3.14E-02 4.33E-03 4.73E-01 7.11E-02

MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 3.27E-02 6.49E-03 4.84E-01 8.90E-02

MF GO:0016490 structural constituent of peritrophic membrane 3.28E-02 4.41E-03 4.84E-01 7.11E-02

MF GO:0005549 odorant Binding 3.66E-02 1.11E-02 5.31E-01 1.33E-01

MF GO:0005044 scavenger receptor activity 3.97E-02 8.45E-03 5.67E-01 1.11E-01

MF GO:0042626 ATPase activity; coupled to transmembrane movement . . . 4.15E-02 2.09E-02 5.79E-01 2.06E-01

MF GO:0016646 oxidoreductase activity; acting on the CH-NH group ... 4.27E-02 6.52E-03 5.87E-01 8.90E-02

MF GO:0004246 peptidyl-dipeptidase A activity 4.72E-02 3.64E-03 6.26E-01 6.26E-02

MF GO:0016885 ligase activity; forming carbon-carbon bonds 4.72E-02 3.64E-03 6.26E-01 6.26E-02

MF GO:0019203 carbohydrate phosphatase activity 4.72E-02 3.64E-03 6.26E-01 6.26E-02

MF GO:0042708 elastase activity 4.72E-02 3.64E-03 6.26E-01 6.26E-02

Bin u15

BP GO:0006508 proteolysis 3.18E-14 1.26E-14 8.53E-12 3.38E-12

MF GO:0004497 monooxygenase activity 9.06E-08 2.15E-08 7.09E-06 1.68E-06

CC GO:0005792 microsome 1.56E-07 2.85E-08 1.09E-05 1.98E-06

BP GO:0006869 lipid transport 5.13E-07 9.11E-08 2.92E-05 5.35E-06

CC GO:0005777 peroxisome 1.42E-06 1.59E-07 7.39E-05 8.53E-06

MF GO:0004295 trypsin activity 3.12E-06 6.04E-07 1.44E-04 2.91E-05

MF GO:0020037 heme Binding 5.50E-06 1.47E-06 2.30E-04 6.01E-05

MF GO:0008061 chitin Binding 6.24E-06 1.00E-06 2.55E-04 4.28E-05

MF GO:0005506 iron ion Binding 5.03E-05 1.80E-05 1.93E-03 6.76E-04

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 7.50E-05 1.18E-05 2.76E-03 4.50E-04

MF GO:0004867 serine-type endopeptidase inhibitor activity 9.50E-05 2.10E-05 3.32E-03 7.44E-04

BP GO:0008202 steroid metabolic process 2.56E-04 9.29E-05 8.43E-03 3.01E-03

BP GO:0006118 electron transport 4.41E-04 2.20E-04 1.40E-02 6.36E-03

MF GO:0005344 oxygen transporter activity 5.57E-04 1.93E-05 1.71E-02 7.09E-04

BP GO:0051189 prosthetic group metabolic process 6.52E-04 1.70E-04 1.94E-02 5.24E-03

MF GO:0004179 membrane alanyl aminopeptidase activity 2.18E-03 3.19E-04 5.59E-02 8.80E-03

BP GO:0006032 chitin catabolic process 3.23E-03 4.00E-04 7.21E-02 9.62E-03

MF GO:0004568 chitinase activity 3.68E-03 4.71E-04 8.03E-02 1.09E-02

CC GO:0005764 lysosome 4.61E-03 6.76E-04 9.60E-02 1.46E-02

BP GO:0008652 amino acid biosynthetic process 5.51E-03 1.81E-03 1.12E-01 3.39E-02

CC GO:0043190 ATP-Binding cassette (ABC) transporter complex 7.06E-03 1.71E-03 1.43E-01 3.24E-02

MF GO:0005529 sugar Binding 1.23E-02 3.25E-03 2.29E-01 5.70E-02

MF GO:0004035 alkaline phosphatase activity 1.44E-02 1.23E-03 2.57E-01 2.45E-02

MF GO:0004263 chymotrypsin activity 1.44E-02 1.23E-03 2.57E-01 2.45E-02

MF GO:0042708 elastase activity 1.44E-02 1.23E-03 2.57E-01 2.45E-02

MF GO:0016490 structural constituent of peritrophic membrane 1.68E-02 2.55E-03 2.87E-01 4.56E-02

BP GO:0005992 trehalose biosynthetic process 1.75E-02 4.85E-04 2.93E-01 1.10E-02

MF GO:0016401 palmitoyl-CoA oxidase activity 1.86E-02 5.30E-04 3.08E-01 1.18E-02

MF GO:0005319 lipid transporter activity 2.33E-02 5.21E-03 3.71E-01 8.15E-02

BP GO:0048066 pigmentation during development 2.51E-02 8.55E-03 3.94E-01 1.07E-01

BP GO:0006800 oxygen and reactive oxygen species metabolic process 2.64E-02 8.25E-03 3.98E-01 1.05E-01
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MF GO:0009055 electron carrier activity 2.76E-02 1.56E-02 4.08E-01 1.65E-01

MF GO:0004558 alpha-glucosidase activity 3.06E-02 3.87E-03 4.45E-01 6.54E-02

MF GO:0008431 vitamin E Binding 3.06E-02 3.87E-03 4.45E-01 6.54E-02

MF GO:0050809 diazepam Binding 3.51E-02 1.99E-03 4.86E-01 3.63E-02

MF GO:0004364 glutathione transferase activity 3.52E-02 1.05E-02 4.86E-01 1.24E-01

MF GO:0016811 hydrolase activity; acting on carbon-nitrogen . . . 3.69E-02 1.36E-02 5.02E-01 1.48E-01

BP GO:0001501 skeletal development 3.93E-02 8.26E-03 5.31E-01 1.05E-01

MF GO:0016814 hydrolase activity; acting on carbon-nitrogen ... 4.32E-02 9.36E-03 5.67E-01 1.13E-01

BP GO:0009063 amino acid catabolic process 4.81E-02 1.88E-02 6.14E-01 1.83E-01

CC GO:0005615 extracellular space 4.92E-02 8.36E-03 6.24E-01 1.06E-01
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Appendix D

Additional results from Chapter 6

Table D.1: Supplementary data for Chapter 2.2.2. GO terms that are over-represented in
the up-/downregulated genes with a q value < 0.05 are shown, whereas the q values were
estimated from the EASE scores. The column ’frequency’ indicates the number of tissue
specificity bins the GO term was found to be significant in. We expect 33 × 0.05 = 1.65
false positive GO terms in this list.

GO term frequency

BP GO:0001501 skeletal development 2

BP GO:0006013 mannose metabolic process 1

BP GO:0006032 chitin catabolic process 3

BP GO:0006118 electron transport 14

BP GO:0006508 proteolysis 20

BP GO:0006800 oxygen and reactive oxygen species metabolic process 1

BP GO:0006869 lipid transport 19

BP GO:0008202 steroid metabolic process 11

BP GO:0008652 amino acid biosynthetic process 3

BP GO:0051189 prosthetic group metabolic process 6

CC GO:0005764 lysosome 12

CC GO:0005777 peroxisome 18

CC GO:0005792 microsome 17

CC GO:0042600 chorion 1

CC GO:0043190 ATP-binding cassette (ABC) transporter complex 2

MF GO:0004035 alkaline phosphatase activity 3

MF GO:0004263 chymotrypsin activity 16

MF GO:0004295 trypsin activity 18

MF GO:0004497 monooxygenase activity 15

MF GO:0004558 alpha-glucosidase activity 6

MF GO:0004559 alpha-mannosidase activity 1

MF GO:0004568 chitinase activity 3

MF GO:0004806 triacylglycerol lipase activity 5

MF GO:0004867 serine-type endopeptidase inhibitor activity 10

MF GO:0005213 structural constituent of chorion 1

Continued on next page
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MF GO:0005344 oxygen transporter activity 7

MF GO:0005506 iron ion binding 14

MF GO:0008061 chitin binding 14

MF GO:0009055 electron carrier activity 1

MF GO:0016616 oxidoreductase activity; acting on .. 2

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 12

MF GO:0020037 heme binding 15

MF GO:0042708 elastase activity 2

Table D.2: Supplementary data for Chapter 2.2.2. GO terms that are over-represented in
the up-/downregulated genes with a q value < 0.05 are shown, whereas the q values were
estimated from the Fisher p values. The column ’frequency’ indicates the number of tissue
specificity bins the GO term was found to be significant in. We expect 77*0.05 = 3.85 false
positive GO terms in this list.

GO term frequency

BP GO:0001501 skeletal development 15

BP GO:0001708 cell fate specification 1

BP GO:0005992 trehalose biosynthetic process 12

BP GO:0006012 galactose metabolic process 2

BP GO:0006013 mannose metabolic process 11

BP GO:0006032 chitin catabolic process 13

BP GO:0006118 electron transport 16

BP GO:0006508 proteolysis 22

BP GO:0006633 fatty acid biosynthetic process 3

BP GO:0006635 fatty acid beta-oxidation 2

BP GO:0006665 sphingolipid metabolic process 3

BP GO:0006800 oxygen and reactive oxygen species metabolic process 5

BP GO:0006869 lipid transport 21

BP GO:0007306 eggshell chorion formation 7

BP GO:0008202 steroid metabolic process 13

BP GO:0008286 insulin receptor signaling pathway 2

BP GO:0008652 amino acid biosynthetic process 9

BP GO:0010004 gastrulation involving germ band extension 1

BP GO:0017143 insecticide metabolic process 1

BP GO:0031887 lipid particle transport along microtubule 3

BP GO:0035152 regulation of tube architecture; open tracheal system 2

BP GO:0042049 cell acyl-CoA homeostasis 1

BP GO:0042594 response to starvation 16

BP GO:0046112 nucleobase biosynthetic process 9

BP GO:0048066 pigmentation during development 3

BP GO:0051189 prosthetic group metabolic process 10

CC GO:0005615 extracellular space 3

CC GO:0005764 lysosome 16

CC GO:0005777 peroxisome 18
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CC GO:0005792 microsome 22

CC GO:0042600 chorion 17

CC GO:0043190 ATP-binding cassette (ABC) transporter complex 10

CC GO:0044452 nucleolar part 4

CC GO:0055029 nuclear DNA-directed RNA polymerase complex 4

MF GO:0000062 acyl-CoA binding 1

MF GO:0003676 nucleic acid binding 1

MF GO:0003899 DNA-directed RNA polymerase activity 10

MF GO:0004035 alkaline phosphatase activity 16

MF GO:0004095 carnitine O-palmitoyltransferase activity 1

MF GO:0004179 membrane alanyl aminopeptidase activity 5

MF GO:0004182 carboxypeptidase A activity 1

MF GO:0004246 peptidyl-dipeptidase A activity 4

MF GO:0004263 chymotrypsin activity 17

MF GO:0004295 trypsin activity 18

MF GO:0004364 glutathione transferase activity 4

MF GO:0004497 monooxygenase activity 19

MF GO:0004558 alpha-glucosidase activity 13

MF GO:0004559 alpha-mannosidase activity 7

MF GO:0004568 chitinase activity 13

MF GO:0004806 triacylglycerol lipase activity 16

MF GO:0004867 serine-type endopeptidase inhibitor activity 13

MF GO:0004888 transmembrane receptor activity 1

MF GO:0005158 insulin receptor binding 1

MF GO:0005160 transforming growth factor beta receptor binding 1

MF GO:0005213 structural constituent of chorion 17

MF GO:0005319 lipid transporter activity 1

MF GO:0005344 oxygen transporter activity 15

MF GO:0005506 iron ion binding 15

MF GO:0005529 sugar binding 1

MF GO:0008010 structural constituent of chitin-based larval cuticle 1

MF GO:0008061 chitin binding 17

MF GO:0008336 gamma-butyrobetaine dioxygenase activity 1

MF GO:0008533 astacin activity 7

MF GO:0008970 phospholipase A1 activity 5

MF GO:0009055 electron carrier activity 4

MF GO:0016229 steroid dehydrogenase activity 1

MF GO:0016401 palmitoyl-CoA oxidase activity 14

MF GO:0016490 structural constituent of peritrophic membrane 3

MF GO:0016616 oxidoreductase activity; acting on the CH-OH group of donors; NAD .. 7

MF GO:0016799 hydrolase activity; hydrolyzing N-glycosyl compounds 22

MF GO:0016885 ligase activity; forming carbon-carbon bonds 6

MF GO:0019203 carbohydrate phosphatase activity 5

MF GO:0019204 nucleotide phosphatase activity 4

MF GO:0020037 heme binding 16

MF GO:0042708 elastase activity 6

MF GO:0050809 diazepam binding 3
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Glossary

α-helix A coiled secondary structure of a polypeptide chain formed by hydrogen

bonding between amino acids separated by 3.6 residues. 9

β-sheet Two or more polypeptide chains that run alongside each other and are

linked in a regular manner by hydrogen bonds between the main chain C=O

and N-H groups. The R-groups (side chains) of neighbouring residues point in

opposite directions; β-sheets can be parallel, anti-parallel or mixed. 9

310 helix A rare type of secondary structure found in proteins. The amino acids in

are arranged in a right-handed helical structure. Each amino acid corresponds

to a 120◦ turn in the helix. 10, 54

acceptor (finite state) A finite state acceptor is an Finite State Machine (FSM)

with no outputs. 151

alternative splicing The generation of different mRNAs by varying the pattern of

pre-mRNA splicing. 6

amino acid The subunits from which proteins are assembled. Each amino acid

consists of an amino functional group, and a carboxyl acid group, and differs

from other amino acids by the composition of an R group. 5

angstrom (Å) A unit of measure. One angstrom is 10−10 metres. Often used to

indicate structural similarity between two proteins (see RMSD. A similarity

below 3 angstroms indicates a strong structural similarity. 33, 207
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Area Under the Curve (AUC) An indication of the diagnostic accuracy of a

ROC curve. AUC values closer to 1 indicate the method reliably distinguishes

among the positive and the negative class, whereas values at 0.5 indicate that

the predictor is no better than random. 27, 82

ArrayExpress A public repository for transcriptomics data (http://www.ebi.ac.

uk/microarray-as/ae/). 123

asparagine One of the 20 most common natural amino acids on earth. 96

ASTRAL The ASTRAL compendium provides databases and tools useful for

analysing protein structures and their sequences. It is partially derived from

the SCOP and the PDB databases. 54

bases The molecular building blocks of mRNA and RNA. These include adenine

(A), cytosine (C), guanine (G), thymine (T), and (in RNA only) uracil (U). In

mRNA, A attaches only to T, and C attaches only to G. In RNA, A attaches

only to U, and C attaches only to G. 5

bioinformatics The merging field of biology, computer science and information

technology with the goal of revealing new insights and principles in biology

through the analysis of biological data using computers, machine learning and

statistical techniques. 19

bit A binary digit, or the amount of information required to distinguish between

two equally likely possibilities or choices. 23

BLAST Commonly used algorithm for searching databases for similar sequences.

33, 206

blastoderm A stage of insect embryogenesis in which a layer of nuclei or cells

around the embryo surround an internal mass of yolk. 39
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boxplot A graph summarising the distribution of a set of data values. 30

cis-regulatory A site on a DNA molecule that functions as a binding site for a

sequence-specific DNA binding protein. The term cis indicates that protein

binding to this site affects only nearby DNA sequences on the same molecule.

17

classification Assigning a class to a measurement. 19

coding sequence (CDS) The combination of exons on a gene. 6

codon The basic unit of the genetic code; one of the 64 nucleotide triplets that code

for an amino acid or stop sequence. 5

coiled coil Stable rodlike quaternary protein structure formed by two or three α

helices interacting with each other. Coiled coils are commonly found in fibrous

proteins and transcription factors. 9

CpG island A stretch of DNA in which the frequency of the dinucleotide CG

sequence is higher than in other DNA regions. 15, 43

curse of dimensionality The name given to algorithmic challenges posed by high-

dimensional spaces necessary to map data with many features, in which the

resulting exponential growth in hypervolumes means that the data inevitably

will be distributed ever more sparsely. 23

cytoskeleton The internal scaffolding of cells. 14, 42

Dahomey A frequently used fruit fly stock that was originally collected in Dahomey,

West Africa. 123

differentially expressed A gene is differentially expressed when its expression

values under two or more conditions are statistically significantly different. 123
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DNA (deoxyribonucleic acid) DNA is the carrier of genetic information. It

consists of a sequence of hundreds of millions of nucleotides that code for

proteins. 5, 199, 200, 202, 206

DNA methylation A natural regulatory process in the cell, which controls gene

activity via the attachment of a methyl group to DNA. 15

domain Compact, globular regions of proteins that are the basic units of tertiary

structure. 19, 41

dot-product An operation with two vectors that results in a scalar quantity. Also

known as scalar or inner product. 20

downregulated gene A gene which has been observed to have lower expression

(lower mRNA levels) in one sample compared to another sample (here wild-type

fruit fly). 123

Drosophila melanogaster (D. melanogaster) A species of fruit fly commonly

used as model organism in biology. 2

DSSP A database and program of secondary structure assignments for all protein

entries in the PDB. 10, 54

E value (Expectation value) The number of different alignments with scores

equivalent to or better than the observed score that are expected to occur in a

database search by chance. The lower the E value, the more significant the

score. 35

EMBOSS The European Molecular Biology Open Software Suite. EMBOSS is a

free Open Source software analysis package specially developed for the needs

of the molecular biology user community. 84

enhancer A short regulatory DNA sequence that increases the level of expression

of a gene. 17
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enzyme A protein that functions as a catalyst. 16, 42

ester Any of a class of organic compounds that react with water to produce alcohols

and organic or inorganic acids. 201

esterase An enzyme that splits esters into an acid and an alcohol in a chemical

reaction with water called hydrolysis. A wide range of different esterases

exist that differ in their substrate specificity, their protein structure, and their

biological function. 112

exon A segment of a gene that contains a coding sequence. 5, 199, 203, 208

expression breadth The number of tissues in which a gene is expressed. 102, 114

extracellular matrix A network in an animal tissue which provides support to

cells. 42

false positive rate The proportion of negative examples that are predicted positive.

25

feature The measurements which represent the data. Here, used as input for SVMs.

37, 204

Finite State Machine (FSM) A machine which can be totally described by a

finite set of states, it being in one these at any one time, plus a set of rules

which determine when it moves from one state to another. 197, 209

FlyBase A database for fruit fly genetics and molecular biology (http://flybase.

org/). 123

fold change A way of describing now much larger or smaller one number is compared

with another. 123, 126, 147

gcrma A background correction method that corrects for unspecific binding due to

high GC content in the probe sets of on Affymetrix GeneChips. 84
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GenAge A curated database of genes related to ageing (http://genomics.senescence.

info/genes/). 123

gene A segment of mRNA that encodes a polypeptide chain or an RNA molecule. 1

gene expression The process by which DNA is translated into RNAs or proteins.

39

Gene Ontology (GO) A controlled vocabulary of terms relating to molecular

function, biological process, or cellular components. It allows scientists to use

consistent terminology when describing the roles of genes and proteins in cells.

41, 123

genetic code The correspondence between nucleotide triplets and amino acids in

proteins. 5

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) A housekeeping gene

that codes for an enzyme involved in glycolysis. 14

glycolysis The cellular degradation of the simple sugar glucose to yield ATP as an

energy source. 14, 93

GNF The Genomics Institute of the Novartis Research Foundation. 75

hairpin A structural motif involving two β strands that look like a hairpin. A

special case of a turn. 10

hemoglobin An oxygen-binding protein that and carries oxygen it from the lungs

to the tissues. 33

heterozygote Heterozygous refers to having inherited different forms of a particular

gene from each parent. A heterozygous genotype stands in contrast to a ho-

mozygous genotype, where an individual inherits identical forms of a particular

gene from each parent. 123
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hidden Markov model (HMM) A statistical model for an ordered sequence of

variables. 33

housekeeping gene A constitutive gene that is transcribed at a relatively constant

level across many or all known conditions. The housekeeping gene’s products

are typically needed for maintenance of the cell. It is generally assumed that

their expression is unaffected by experimental conditions. Examples include

actin and GAPDH. 13, 41

hydrophilic Having a strong affinity for water. 9

hydrophobic Lacking affinity for water. 9

in situ hybridization (ISH) A method that is used to label specific sequences

of nucleic acids in cells or chromosomes. Commonly used to identify mRNA

expression in tissues or whole organisms. ISH detects the formation of nucleic

acid hybrid molecules between the target nucleic acid and a labelled probe that

contains a complementary sequence. 14, 39

Insulin and Insulin-like growth factor signaling (IIS) A conserved signaling

pathway from insects to humans. Growth factors, released after feeding, (insulin

and insulin-like growth factor, IGF-1) stimulate receptors of this pathway and

promote cellular and oraganismal anabolic growth. The IIS pathway is central

to regulation of life span, metabolism, and the stress response. 123

intron A noncoding sequence that interrupts exons in a gene. 5

k-nearest neighbour A classification method that classifies an instance by calcu-

lating the distances between the instances and instances in the training data

set. Then it assigns the instance to the class that is most common among its

k-nearest neighbours, where k is an integer. 33
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ligand A substance that is able to bind to another biomolecule (substrat/receptor)

by means of intermolecular forces to form a complex by altering its chemical

conformation (three-dimensional shape). 42

loess normalisation A computationally intensive method in which a polynomial

regression is fitted to each point in the data and more weight is given to data

nearer the point of interest. It is often applied to hybridization array data to

remove differences in global signal intensity among data sets. 84

machine learning Computational approaches to learn new knowledge on the basis

of observed examples. 1, 3

messenger RNA (mRNA) An RNA molecule that is complementary to one of

the mRNA strands of a gene. It serves as a template for protein synthesis. 6,

197, 198, 200, 201, 203–210

methyl group A functional group consisting of one carbon and three hydrogen

atoms: -CH3. 200

microarray Microarrays are used for analysing the expression of thousands of genes

simultaneously. 3, 39

mitochondrial electron transport chain A collective term describing the mito-

chondrial enzymes that are needed to generate the electron and proton ’gradient’

that is used to generate ATP. 49

multi-view learning In a multi-view problem, one can partition the domain’s

features in subsets that are sufficient for learning the target concept. 155

myoglobin A protein occurring widely in muscle tissue as an oxygen carrier. It

acts as an emergency oxygen store. 33
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Naive Bayes A supervised classification algorithm that uses the Bayes rule to

compute the fit between a new observation and some previously observed data.

Bayes’ rule expresses the conditional probability of the event A given the event

B in terms of the conditional probability of the event B given the event A. 40,

92

neural network An analytic technique modelled after the processes of learning in

the cognitive system and the neurological functions of the brain. A neural

network is capable of predicting new observations from other observations after

learning from existing data. 12

nuclear matrix The dense fibrillar network lying on the inner side of the nuclear

membrane. 17, 43

nucleus The center of a cell, where the mRNA is contained. 17

null mutation A mutation that results in the complete loss of function of a gene

product. 48, 123

oxidative stress Physiological stress on the body that is caused by the cumula-

tive damage done by free radicals inadequately neutralized by antioxidants.

Oxidative stress is held to be associated with ageing. 136

p value The probability, if the test statistic really were distributed as it would be

under the null hypothesis, of observing a test statistic as extreme as, or more

extreme than the one actually observed. The smaller the p value, the more

strongly the test rejects the null hypothesis, that is, the hypothesis being tested.

A value of 0.05 is a common significance level to which p values are compared.

28

paralogous genes Two genes at different chromosomal locations in the same or-

ganism that have structural similarities indicating that they derived from
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a common ancestral gene and have since diverged from the parent copy by

mutation. The genes encoding myoglobin and hemoglobin are considered to be

ancient paralogs. 111

PDB (Protein Data Bank) A repository for the three-dimensional structural

data of proteins. 12, 33, 54, 198, 200

phosphodiester bond A bond between two sugar groups and a phosphate group.

Such bonds form the sugar-phosphate-sugar backbone of mRNA and RNA. 16

pi helix ( π helix) A type of secondary structure that is common in membrane

proteins. 10, 54

polysome Complex of ribosomes for simultaneous translation of mRNA. 18

pre-mRNA The unspliced mRNA that contains all exons and introns. 197

probe A labeled, single-stranded DNA or RNA molecule of specific base sequence,

that is used to detect the complementary base sequence by hybridization.

At Affymetrix, probe refers to unlabeled oligonucleotides synthesized on a

GeneChip probe array. 14, 15

probeset ID The Affymetrix probe-set identificator. 123

profile A table that lists the frequencies of each amino acid in each position of

protein sequence. Frequencies are calculated from multiple alignments of

sequences containing a domain of interest. 36, 38

promoter Area of DNA that regulates gene expression. 7, 15

protein A large molecule composed of amino acids. Proteins are required for the

structure, function, and regulation of the body cells, tissues and organs. 1, 2,

202
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PSI-BLAST (Position-Specific Iterated BLAST) An improved BLAST algo-

rithm. 12, 36

quantiles The quantile of a distribution of values is a number xp such that a

proportion p of the population values are less than or equal to xp. For example,

the 25th percentile of a variable is a value (xp) such that 25% (p) of the values

of the variable fall below that value. 84

Receiver Operating Characteristic (ROC) curve A ROC curve is a general-

ization of the set of potential combinations of sensitivity and specificity possible

for predictors. A ROC curve is a plot of the true positive rate (sensitivity)

against the false positive rate (1-specificity) for the different possible cut-points

of a diagnostic test. 25, 198, 210

receptor A molecule or surface in a cell that recognizes and binds to a specific

messenger molecule, leading to a biological response. 42

regression Predicting the value of random variable y from measurement x. Regres-

sion generalizes classification since y can be any quantity, including a class

index. Many classification algorithms can be understood as thresholding the

output of a regression. 29

remote homology Evolutionary relationship between two proteins that do not

display high sequence similarity. 1

ribosome A ribosome is a cellular structure made of RNA and protein that serves

as the site for protein synthesis in the cell. The ribosome reads the sequence of

the mRNA and translates the sequence of RNA bases into a sequence of amino

acids. 6, 18, 41, 207

ribosome density Refers to the average number of ribosome bound per unit length

of coding sequence. 18
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ribosome occupancy The fraction of a given gene’s transcripts associated with

ribosomes. 18

RMSD (Root Mean Square Deviation) Measurement for protein structure sim-

ilarity. Measured in angstroms. A similarity below 3 angstroms indicatesa

strong structural similarity. 33, 197

RNA (Ribonucleic acid) A molecule similar to mRNA but single-stranded. An

RNA strand has a backbone made of alternating sugar and phosphate groups.

Attached to each sugar is one of four bases–adenine (A), uracil (U), cytosine

(C), or guanine (G). Different types of RNA exist: messenger RNA (mRNA),

ribosomal RNA (rRNA), and transfer RNA (tRNA). Some small RNAs have

been found to be involved in regulating gene expression. 5, 198, 201, 202,

204–209

RNA-Seq The use of high-throughput sequencing technologies to sequence cDNA

in order to get information about a sample’s RNA content. 15, 148

Scaffold/Matrix Attachment Regions (S/MAR) Regulatory mRNA elements

of the eukaryotic genome. These elements coordinate the expression of gene

loci. Attachment of a genomic segment to the nuclear matrix places a gene

in close proximity to its transcription factor, providing an essential step to

expression. 43

SCOP (Structural Classification of Proteins) A structural classification of pro-

teins database for the investigation of sequences and structures. 19, 33, 54,

198

secondary structure The structure of a protein created by the formation of hy-

drogen bonds between amino acids. See α helix and β sheet. 197
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semi-supervised learning A class of machine learning techniques that make use

of both labeled and unlabeled data for training. 156

sensitivity See true positive rate. 206

simple sequence repeats (SSR) Tandem iterations of short oligonucleotides. 17

Smith-Waterman algorithm An algorithm to perform pairwise sequence align-

ments. 33

specificity The proportion of negatives in a binary classification test which are

correctly identified. 206

splicing The process by which introns, non-coding regions, are excised out of the

premature mRNA transcript and exons, coding regions, are joined together to

generate mature mRNA. 5

Support vector machine (SVM) A learning algorithm that performs binary or

multi-class supervised classification tasks. 2, 19

Swiss-Prot A curated protein sequence database. 35

synonymous codon usage Codons that are translated into the same amino acid.

42

t-test A statistical test that is used to find out if there is a significant difference

between the means (averages) of two different groups. 58, 210

TATA box A DNA consensus sequence found in the promoters of many eukaryotic

gene at about -25 nucleotides of the transcription start site. 43

transcription The process of copying information from mRNA into new strands of

mRNA. 5
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transcription factor A protein that binds to regulatory regions and helps control

gene expression. 42, 208

Transcription factor binding sites (TFBS) Short sequence segments (≈10 bp)

located near genes’ transcription start sites and are recognized by respective

transcription factors for gene regulation. 125, 139

transducer (finite state) A finite state transducer is a Finite State Machine (FSM)

with both input and outputs. 151

TRANSFAC The TRANSFAC database contains data on transcription factors,

their experimentelly-proven binding sites, and regulated genes. 125

transfer RNA (tRNA) A small RNA molecule that participates in protein syn-

thesis. Each tRNA molecule has a trinucleotide region called the anticodon

and a region for attaching a specific amino acid. During translation, each time

an amino acid is added to the growing protein, a tRNA molecule forms base

pairs with its complementary sequence on the mRNA molecule, ensuring that

the appropriate amino acid is inserted into the protein. 6, 207

translation The synthesis of a polypeptide chain from an mRNA template. 6

true positive rate The percentage of instances with a particular value that are

correctly identified as positive by a test. 25

turn A type of secondary structure. Often responsible for sharp bends and twists

in other secondary structures. 10

UniProtKB (Universal Protein Knowledgebase) A repository for the collec-

tion of functional information on proteins, with accurate, consistent and rich

annotation (http://www.uniprot.org/). 7, 33
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upregulated gene A gene which has been observed to have higher expression (lower

mRNA levels) in one sample compared to another sample (here wild-type fruit

fly). 123

vertical averaging A method to combine several ROC curves. Vertical averaging

takes vertical samples of the ROC curves for fixed FP rates and averages the

corresponding TP rates. 26, 82

Weighted Finite State Machine (WFSM) See FSM. A weight (transition prob-

ability) is encoded in the machine. 69, 150

Wilcoxon test An alternative to the t-test for dependent samples. It is designed

to test a hypothesis about the median of a population distribution. 58
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