The University of Southampton
University of Southampton Institutional Repository

The actions of chloride channel blockers, barbiturates and a benzodiazepine on Caenorhabditis elegans glutamate- and ivermectin-gated chloride channel subunits expressed in Xenopus oocytes

The actions of chloride channel blockers, barbiturates and a benzodiazepine on Caenorhabditis elegans glutamate- and ivermectin-gated chloride channel subunits expressed in Xenopus oocytes
The actions of chloride channel blockers, barbiturates and a benzodiazepine on Caenorhabditis elegans glutamate- and ivermectin-gated chloride channel subunits expressed in Xenopus oocytes
The pharmacology of Caenorhabditis elegans glutamate-gated chloride (GluCl) channels was determined by making intracellular voltage-clamp recordings from Xenopus oocytes expressing GluCl subunits. As previously reported (Cully et al. 1994), GluClalpha1beta responded to glutamate (in a picrotoxin sensitive manner) and ivermectin, while GluClbeta responded only to glutamate and GluClalpha1 only to ivermectin. This assay was used to further investigate the action of chloride channel compounds. The arylaminobenzoate, NPPB, reduced the action of glutamate on the heteromeric GluClalpha1beta channel (IC(50) 6.03 +/- 0.81 microM). The disulphonate stilbene, DNDS, blocked the effect of both glutamate and ivermectin on GluClalpha1beta channels, the action of glutamate on GluClbeta subunits, and the effect of ivermectin on GluClalpha1 subunits (IC(50)s 1.58-3.83 microM). Surprisingly, amobarbital and pentobarbital, otherwise known as positive allosteric modulators of ligand-gated chloride channels, acted as antagonists. Both compounds reduced the action of glutamate on the GluClalpha1beta heteromer (IC(50)s of 2.04 +/- 0.5 and 17.56 +/- 2.16 microM, respectively). Pentobarbital reduced the action of glutamate on the GluClbeta homomeric subunit with an IC(50) of 0.59 +/- 0.09 microM, while reducing the responses to ivermectin on both GluClalpha1beta and GluClalpha1 with IC(50)s of 8.7 +/- 0.5 and 12.9 +/- 2.5 microM, respectively. For all the antagonists, the mechanism is apparently non-competitive. The benzodiazepine, flurazepam had no apparent effect on these glutamate- and ivermectin-gated chloride channel subunits. Thus, arylaminobenzoates, disulphonate stilbenes, and barbiturates are non-competitive antagonists of C. elegans GluCl channels.

1354-2516
175-184
Bush, Elizabeth
1e125147-c9c5-4030-b7d7-953349ddf34f
Foreman, Richard
c3c1ed19-ec2a-431d-bb57-e3dfb86049a4
Walker, Robert J.
9368ac2d-f1e9-4bd9-a4b4-4a161c4aa140
Holden-Dye, Lindy
8032bf60-5db6-40cb-b71c-ddda9d212c8e
Bush, Elizabeth
1e125147-c9c5-4030-b7d7-953349ddf34f
Foreman, Richard
c3c1ed19-ec2a-431d-bb57-e3dfb86049a4
Walker, Robert J.
9368ac2d-f1e9-4bd9-a4b4-4a161c4aa140
Holden-Dye, Lindy
8032bf60-5db6-40cb-b71c-ddda9d212c8e

Bush, Elizabeth, Foreman, Richard, Walker, Robert J. and Holden-Dye, Lindy (2009) The actions of chloride channel blockers, barbiturates and a benzodiazepine on Caenorhabditis elegans glutamate- and ivermectin-gated chloride channel subunits expressed in Xenopus oocytes. Invertebrate Neuroscience, 9 (3-4), 175-184. (doi:10.1007/s10158-010-0096-8). (PMID:20224918)

Record type: Article

Abstract

The pharmacology of Caenorhabditis elegans glutamate-gated chloride (GluCl) channels was determined by making intracellular voltage-clamp recordings from Xenopus oocytes expressing GluCl subunits. As previously reported (Cully et al. 1994), GluClalpha1beta responded to glutamate (in a picrotoxin sensitive manner) and ivermectin, while GluClbeta responded only to glutamate and GluClalpha1 only to ivermectin. This assay was used to further investigate the action of chloride channel compounds. The arylaminobenzoate, NPPB, reduced the action of glutamate on the heteromeric GluClalpha1beta channel (IC(50) 6.03 +/- 0.81 microM). The disulphonate stilbene, DNDS, blocked the effect of both glutamate and ivermectin on GluClalpha1beta channels, the action of glutamate on GluClbeta subunits, and the effect of ivermectin on GluClalpha1 subunits (IC(50)s 1.58-3.83 microM). Surprisingly, amobarbital and pentobarbital, otherwise known as positive allosteric modulators of ligand-gated chloride channels, acted as antagonists. Both compounds reduced the action of glutamate on the GluClalpha1beta heteromer (IC(50)s of 2.04 +/- 0.5 and 17.56 +/- 2.16 microM, respectively). Pentobarbital reduced the action of glutamate on the GluClbeta homomeric subunit with an IC(50) of 0.59 +/- 0.09 microM, while reducing the responses to ivermectin on both GluClalpha1beta and GluClalpha1 with IC(50)s of 8.7 +/- 0.5 and 12.9 +/- 2.5 microM, respectively. For all the antagonists, the mechanism is apparently non-competitive. The benzodiazepine, flurazepam had no apparent effect on these glutamate- and ivermectin-gated chloride channel subunits. Thus, arylaminobenzoates, disulphonate stilbenes, and barbiturates are non-competitive antagonists of C. elegans GluCl channels.

Text
L.Holden-Dye_Invertebrate_neuroscience_2010.pdf - Version of Record
Download (444kB)

More information

Published date: 2009

Identifiers

Local EPrints ID: 159433
URI: https://eprints.soton.ac.uk/id/eprint/159433
ISSN: 1354-2516
PURE UUID: 5509fd62-4bac-4bc9-bd4a-26ae6896b48c
ORCID for Robert J. Walker: ORCID iD orcid.org/0000-0002-9031-7671
ORCID for Lindy Holden-Dye: ORCID iD orcid.org/0000-0002-9704-1217

Catalogue record

Date deposited: 30 Jun 2010 10:14
Last modified: 10 Oct 2019 00:40

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of https://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×