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Abstract

In this report, an overview of research into context-awareness modelling is pre-
sented. We also give our approach to context-awareness modelling in the form
of a process calculus called C� (Context �). In this calculus, each process has
an explicit representation of its context in the form of (information, entity,

value) triples modelling the knowledge this process has about its environment.
A process equiped with a context representation is called an agent. Agents
make use of broadcast actions to exchange context information and make use
of conditions on their context to perform context-dependent behaviour.
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Chapter 1

Introduction

The advancement of computing in the last decade has led to an explosion in the
number of computing devices used. These devices are becoming smaller, mo-
bile, more powerful, and more interconnected. This trend is likely to continue
sparking a new era in computing where devices are embedded into the daily life
activities of people. The concept of communicating computing devices located
everywhere has been termed Ubiquitous Computing or Pervasive Computing.
Applications with a Ubiquitous Computing flavour have already emerged. Ex-
amples include wearable devices to collect medical data, the smart home, the
smart shirt [60], RFID tags, and the Autograph system [2].

Systems in industry are usually built in an adhoc manner, resolving prob-
lems only after they occur. Because of the large-scale networks of devices ubiq-
uitous computing entails, the complexity of the required systems (software and
hardware) is huge. Ubiquitous computers operate in highly distributed environ-
ments, share data, possess knowledge of their suroundings, and must work at
low power in a timely manner. Therefore, designing and building such systems
has to adhere to strict models to gurantee their safe and efficient operation.

The aim of the grand challenge of Science for Global Ubiquitous Computing
[39] is to analyse and understand how these highly distributed, highly dynamic
systems operate using theoretical models of computation. Examples of the prob-
lems tackled as part of this grand challenge are [48, 15]:

Space and mobility: a ubiquitous computing system can have components in
different locations. Locations as well as movement of components between
locations should be represented in any model of ubiquitous systems.

Hybrid systems: hybrid systems which are systems with both discrete and
continuous components are common in real world applications. Examples
of continuous components include sensor data and time.

Security and privacy: systems need to be designed with immunity against secu-
rity attacks in mind. Safe languages are required, which allow verification
of security using techniques such as model checking.
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1.1. Motivation Introduction

Stochastics: the incorporation of probabilistic modelling and numerical meth-
ods is important if many applications of ubiquitous computing are to be
considered.

Boundaries, resources, and trust: we need to model allocation and deallocation
of resources. Also, modelling of trust for the purposes of resource access
and resource sharing is essential.

Context-awareness: devices operating in ubiquitous environments need to adapt
to changing context such as location, collection of nearby people and ac-
cessible services. Context representation, access, and effects of context
change on a system are examples of issues to be considered.

Our main focus will be on the problem of context-awareness. However, other
issues such as space, mobility, resources, and privacy are also aspects of this
problem [61]. So, our work will, in addition, include dealing with these aspects.

1.1 Motivation

Definition 1.1.1 (Context). Any information that can be used to characterise
the situation of entities (i.e. whether a person, place or object) that are consid-
ered relevant to the interaction between a user and an application, including the
user and the application themeselves. Context is typically the location identity
and state of people, groups and computational and physical objects [23]

The issue of context-awareness in ubiquitous computing stems from the fact
that ubiquitous entities are aware of the environment they operate in. This
includes interactions with other entities, people, and any factors relevant to the
activities of the system. The result of this awareness is that the system can
reconfigure itself making its operation more efficient, reliable, and user friendly.

Some usage scenarios of context-aware systems include [10]:

Proactive triggering Applications record the context and trigger actions
according to this context. Contexts recorded in the past might be matched to
the current context triggering specific information to be displayed or actions
to be performed. This can be used in assistive technologies. For example, the
system can display food recipes depending the user’s health, doctor’s advice,
available ingredients, and so on.

Streamlining interaction Humans implicitly use context when they talk
to each other, which increases the conversation bandwidth. Humans can also
benefit from the use of contextual information in their interaction with comput-
ers. The design of user interfaces can be simplified by taking advantage of the
context the user is in.
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1.2. Problem Introduction

Memory for the past The ability to save contextual information and query
it at a later time can help users (especially those with weak memories) easily
remember past events. An example of such use is the memory prosthesis work
done at Xerox in 1994 [40].

Reminders for future contexts The user can attach a reminder to some
possible future context. For example, ‘when I meet person X, tell him...’.

1.2 Problem

In providing a model for context-awareness, a number of aspects should be
taken into account. These aspects are mostly the result of the heterogeneity,
unreliability, and sensitivity of context information. Examples of these aspects
include:

∙ Context representation: It is important to have a representation of
context that is general enough to cover most applications.

∙ Context access: How is contextual information accessed and modified?

∙ Privacy: The more an application knows about its context, the more
privacy is invaded. The user should be able to control the information
collected and restrict access to it.

∙ Rapid change of context: Some contextual information might change
rapidly (eg. location). A realistic model of context should take the capture
and use of such information into account.

∙ Reliability: It is almost always impossible to have exact information
about the context of an application. Probabilistic treatment of contextual
data is essential for the development of real world applications.

To better understand these aspects and be able to prove the correctness of
context-aware systems, a formal model is required. Therefore, our aim is to de-
sign a formal language that allows us to model and study context-aware systems.
Our research will initially focus on answering the following questions:

1. How can context be represented?

2. How is contextual information accessed?

3. How can we model the effects of context on the system’s behaviour?

Our vehicle in answering these questions will be the various process theories
such as the �-calculus, the ambient calculus, and bigraphical reactive systems.
These theories have proved very useful in studying mobile and ubiquitous sys-
tems at a high level of abstraction. Specifically, the following steps will be
followed to achieve our aim:
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1.2. Problem Introduction

1. Develop a process calculus for modelling context-awareness

2. Investigate the use of this calculus in modelling different context-aware
applications

3. Develop a modal logic to reason about properties of context-aware systems
such as privacy and reliability

Thesis layout

Chapter 2 gives an overview of a number of process theories as well as modal log-
ics. In chapter 3, research into informal and formal models of context-awareness
is reviewed. Chapter 4 presents a process calculus C� for context-awareness with
the aim of being a step towards a powerful model of context-awareness. Chapter
5 provides details of a logic based on the �-calculus to describe the properties of
context-aware systems. Finally, chapter 6 goes through an example use case to
demonstrate how the calculus and the logic are used in modelling. A conclusion
is given in chapter 7 together with future work.
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Chapter 2

Background

In this chapter some background on a number of theories for modelling mobile
and dynamic systems will be covered. We discuss some process algebraic the-
ories, which are used extensively in researching mobile systems. Section 2.1.1
talks about the �-calculus. The ambient calculus is introduced in section 2.1.2,
and Bigraphical Reactive Systems (BRSs) in section 2.1.3. In addition, a brief
discussion of modal logics, which are languages used to describe properties of
transition systems, will be given in section 2.2.

2.1 Mobility

Systems in the ubiquitous computing world are usually mobile in the sense that
their location, either physical or virtual, changes. Also, an important part of
context-aware systems is their ability to reconfigure their services according to
their current location and the location of important elements in the environment.
Because mobility is central to ubiquitous computing, being able to express it
and reason about it is essential.

A number of process calculi have been created to add the concept of mobility
to concurrent process languages. Two of the most important contributions have
been the �-calculus [49, 50] created by Milner, Parrow, and Walker, and the
ambient calculus [13] created by Cardelli and Gordon. In the next two sections
we introduce both calculi and give examples of their use.

2.1.1 The � calculus

The �-calculus is a language for the specification of concurrent processes where
the communication links between these processes change as they interact [53].
The movement of links in the virtual space of linked processes is the way mobility
is modelled in the �-calculus. Mobility is expressed by the movement of links
because the location of a process is determined by the links it has to other
processes in the virtual space of processes i.e. “your neighbours are those you
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2.1. Mobility Background

Server

Printer

Client
b

Server

Printer

Client
b

a

a

Figure 2.1: An example of link mobility

can talk to”[45]. The reason for adopting this meaning of mobility, as Milner
argues in [45], is that it makes the calculus economical, flexible, and moderately
simple.

To understand this treatment of mobility as movement of links between
processes, consider the example of a server controlling a printer and passing
access of the printer to a client process. Figure 2.1 shows links before and after
the interaction. The server process sends the communication link a to the client
process along channel b. If the only way to access the printer is through link
a, then we can say that the printer moves to the client. This interaction is
represented in the �-calculus using the transition

b̄⟨a⟩.S ∣ b(c).c̄⟨d⟩.P �−→ S ∣ ā⟨d⟩.P

The syntax of a �-calculus process expression is given in table 2.1. Both the
input action a(x) and restriction (�x)P bind the name x. Names are free in
all other occurrences. In the �-calculus there is no difference between channel
names and values. Channel names can be passed around in communication like
any other values (as in the previous example). The restriction (�x)P means
that the name x is local to process P . In other words, it cannot be used for
communication between P and its environment.

Structural congruence

Structural congruence equates processes that intuitively represent the same
thing just from looking at their syntactic definitions. The structural congru-
ence (relation ≡) of the �-calculus is shown in table 2.2.

2.1.2 Mobile Ambients

An ambient is a bounded place where computation happens. The concept of
an ambient is meant to be abstract in the sense that it can model not just a
physical location but also things like an administrative domain, a web page, and
a virtual address space [13].
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2.1. Mobility Background

Actions � ::= a(x) Input
ā⟨x⟩ Output
� Silent

Processes P ::= 0 Nil
�.P Prefix
P1 + P2 Sum
P1∣P2 Parallel
(�x)P Restriction
!P Replication

Table 2.1: Syntax of the �-calculus

P ≡ P{a/b} where a ∈ bn(P ) ∧ b /∈ fn(P )

P +Q ≡ Q+ P

P ∣0 ≡ P, P ∣Q ≡ Q∣P, P ∣(Q∣R) ≡ (P ∣Q)∣R
(�x)(P ∣Q) ≡ P ∣(�x)Q if x /∈ fn(P )

(�x)0 ≡ 0

(�x)(�y)P ≡ (�y)(�x)P

!P ≡ P ∣!P

Table 2.2: Structural congruence for the �-calculus
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2.1. Mobility Background

Capabilities M ::= in n Can enter n
out n Can exit n
open n Can open n

Processes P ::= (�n)P Restriction
0 Nil
P1∣P2 Parallel
!P Replication
n[P ] Ambient
M.P Capability
(x).P Input
⟨x⟩.P Output

Table 2.3: The ambient calculus syntax

Ambients can be nested to form sub-ambients. Mobility is modelled in terms
of ambients exiting parent ambients or entering sibling ambients. As ambients
only represent a boudary, the movement is determined by processes running
within the ambient. Opening a sibling ambient by disolving its boundary is
another feature of the ambient calculus. The syntax of an ambient process is
shown in table 2.3.

The ambient process out n.P tells its enclosing ambient to exit its parent
ambient n if this latter exists. This is modelled by the transition rule

n[m[out n.P ∣ Q] ∣ R]→ m[P ∣ Q] ∣ n[R]

which says that ambient m moves outside its parent n. Process R remains in
n after the move, while the contents of m move with it. The action out n is
consumed. Graphically, the transition can be represented as in the following
diagram:

out n.P ∣ Q ∣ R - P ∣ Q ∣ R

n

m m n

out n

For a list of transition rules for all actions, refer to [13]. As an example, consider
the process

m1[n[out m1.in m2.⟨M⟩] ∣ P ] ∣ m2[open n.(x).Q]

This can model a message M sent from one machine m1 to another m2 in
the network. The message is enclosed in the ambient n, which is dissolved by
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2.1. Mobility Background

r0

y0 y1

v2

v0

v1 v3

s0

s1

s2

x0 x1

y2

r1

Figure 2.2: Example of a bigraph[47]

processes running inside the second machine. The transitions performed are as
follows

m1[n[out m1.in m2.⟨M⟩] ∣ P ] ∣ m2[open n.(x).Q]

out m1−−−−−→ m1[P ] ∣ n[in m2.⟨M⟩] ∣ m2[open n.(x).Q]

in m2−−−−→ m1[P ] ∣ m2[n[⟨M⟩] ∣ open n.(x).Q]
open n−−−−→ m1[P ] ∣ m2[⟨M⟩ ∣ (x).Q]

�−→ m1[P ] ∣ m2[Q{x←M}]

The last transition is a communication between parallel processes running inside
m2 resulting from synchronisation between the output action ⟨M⟩ and the input
action (x). Process Q continues execution with the name x bound to message
M (signified by Q{x←M}).

Structural congruence

The structural congruence for the ambient calculus is defined in table 2.4.

2.1.3 Bigraphical Reactive Systems

Bigraphical reactive systems (BRSs) are a graphical model of mobile communi-
cating systems. The aim of this model is to unify previous models such as the
�-calculus and the ambient calculus [46].

A bigraph (figure 2.2) is a combination of two structures: a place graph
that is a forest and a link graph that is a hypergraph (figure 2.3). Both graphs
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2.1. Mobility Background

P ≡ P
P ≡ Q⇒ Q ≡ P
P ≡ Q,Q ≡ R⇒ P ≡ R
P ≡ Q⇒ (�n)P ≡ (�)Q

P ≡ Q⇒ P ∣R ≡ Q∣R
P ≡ Q⇒!P ≡!Q

P ≡ Q⇒ n[P ] ≡ n[Q]

P ≡ Q⇒M.P ≡M.Q

P ≡ Q⇒ (n).P ≡ (n).Q

(�n)(�m)P ≡ (�m)(�n)P

(�n)0 ≡ 0

(�n)(P ∣Q) ≡ P ∣(�n)Q if n /∈ fn(P )

(�n)(m[P ]) ≡ m[(�n)P ] if n ∕= m

P ∣0 ≡ P
P ∣Q ≡ Q∣P
(P ∣Q)∣R ≡ P ∣(Q∣R)

!0 ≡ 0

!(P ∣Q) ≡ !P ∣!Q
!P ≡ P ∣!P
!P ≡ !!P

Table 2.4: Structural congruence for the ambient calculus
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2.1. Mobility Background

Link graphPlace graph
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x0 x1
s2

r1

s1s0

v1

v0
v2

r0

y2
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y0

v1

y1

v2

v3

Figure 2.3: The place and link graphs of the bigraph in figure 2.2 [47]

B

C2
C3

A1 A2 A3

R2R1

C1

Figure 2.4: Modelling in bigraphs

have the same set of nodes ({v0, ..., v3} in the example). The place graph is a
representation of locality and is a result of the hierarchical structure of nodes
in the bigraph. The link graph gives a topographical representation of the links
between node ports in the bigraph. The sets of names xn and yn allow a bigraph
to be linked to other bigraphs [47].

As an example of the use of bigraphs in modelling systems, consider the
bigraph shown in figure 2.4. This bigraph models a building B containing two
rooms R. Inside the rooms, there are computers C and agents A. Each agent
has access to a computer. The computers C1 and C2 are connected through
a network local to the room, while C2 and C3 are connected through a wider
network.
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2.2. Modal logic Background

2.2 Modal logic

A modal logic is a logic with operators called modalities or modal operators for
handling concepts like it is necessary that and it is possible that. The name
modal comes from the fact that the operators express the mode or way the
truth of the rest of the proposition is to be interpreted[70, p. 5]. Other modal
operators can be defined such as it is known to be true that, it was once true
that, and it will be true that.

Modal logics are very useful in describing and reasoning about relational
structures. A relational structure is a tuple consisting of a non-empty set of
worlds (also called states or situations) W and a number of relations on this
set. Such structures are common in Computer Science and modal logics provide
a simple way of accessing the information contained in them as well as describing
their properties [6].

Labeled transition systems (LTSs) are a type of relational structure. An LTS
consists of a set of states W and relations Ra ⊆ W ×W for each a in the set
of labels A. If the relations of an LTS are restricted to being partial functions,
then the LTS is deterministic, otherwise it is non-deterministic[6]. LTSs are
representations of dynamic systems where W is the set of states of the system
and labels are actions or functions acting on the states. Using a modal logic,
we can describe properties of such systems. For example, it is possible to write
formulae like □ to mean “in all next states, proposition  is true” and ♢ to
mean “in some next state, proposition  is true”.

A general definition of a modal language can be formulated as follows.

Definition 2.2.1 (Modal Language). A modal language ML(�,Φ) is built from
a set of propositions Φ and a similarity type � = (O, �) where O is a set of modal
operators and � : O → ℕ is a function giving, for each modal operator, its arity
(number of arguments it can be applied to). The formulas of the modal language
are given by the following BNF

� := p ∣ ⊥ ∣ ¬� ∣ �1 ∨ �2 ∣ △(�1, . . . , ��(△))

Where p ranges over elements of Φ.

The basic modal language[6] has one unary modal operator (arity 1), often
refered to as diamond (♢).

For each modal operator we can define a dual operator in the same sense
that ∀ is the dual of ∃. The dual of the operator △(�1, . . . , �n) is defined as

△(�1, . . . , �n) = ¬△(¬�1, . . . ,¬�n)

The dual of the opeartor diamond (♢) is often refered to as box (□) and is
defined as □� = ¬♢¬�.

Many modal logics exist where different modal operators are used with dif-
ferent meanings. In the following sections, three examples of modal logics are
discussed.
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2.2. Modal logic Background

The modal logic K

The logic K named after Saul Kripke is a modal logic that can be used as a
foundation for a variety of logics. The symbols of K include ¬, ∨, ⊥, and the
modal operator □. The other propositional connectives such as→ (implication)
and ∧ can be derived from the main ones. The dual of □ is ♢ = ¬□¬. K has
the following axioms and rules which can be used to derive the valid formulas
in the logic [38, ch. 3]

(taut) all propositional tautologies

(dist) □('→  )→ □'→ □ 

(mp) from ','→  derive  

(nec) from  derive □ 

Kripke semantics

To give a semantics or meaning to modal logic K, Kripke invented a model based
on a graph structure.

Definition 2.2.2 (Kripke Model). A Kripke model ℳ of the basic modal lan-
guage is a triple (W,R,L) where W is a set whose elements are called worlds,
R ⊆ W ×W is a relation called the accessibility relation, and L : W → P(Φ)
is a labelling function giving for each world, the set of atomic propositions (a
subset of Φ) satisfied in it [70].

The semantics of modal logic K is then given by the satisfaction relation ∣=
defined as follows [38, ch. 3]

(W,R,L, x) ∣= p iff p ∈ L(x)

(W,R,L, x) ∕∣= ⊥

(W,R,L, x) ∣= '→  iff (W,R,L, x) ∣= '⇒ (W,R,L, x) ∣=  

(W,R,L, x) ∣= □' iff ∀y ∈W,xRy ⇒ (W,R,L, y) ∣= '

In general, the semantics of a modal language with n modalities is given by
a structure (W,R1, . . . , Rn) with one relation for each modality. A relation R
of a modality △ with arity k is a subset of

W ×W × ⋅ ⋅ ⋅ ×W︸ ︷︷ ︸
k + 1 times
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2.2. Modal logic Background

Hennessy Milner Logic (HML)

Hennessy Milner Logic is a modal logic for specifying the properties of processes
modelled as Labelled Transition Systems (LTSs). A LTS is described by a set
of states P and relations Ra ⊆ P × P for each a in the set of labels A. The
following BNF defines the syntax of formulas in HML where K is a set of labels
(a subset of A).

Φ ::= T ∣ F ∣ Φ1 ∧ Φ2 ∣ Φ1 ∨ Φ2 ∣ [K]Φ ∣ ⟨K⟩Φ

K can take the form {a, b, c} where a, b, and c are labels. We omit the curly
brackets when K appears inside [ ] and ⟨ ⟩ and write for example [a, b, c] instead
of [{a, b, c}].

Of particular interest are the two modalities [K]Φ and ⟨K⟩Φ. The first is
satisfied by a process P if every process it evolves to after performing a transition
in K has the property Φ. The second is the dual of the first and means that
a process Q exists to which P evolves after performing a transition in K. We
write P ∣= Φ to mean that process P has (satisfies) property Φ. It should be
noted that the negation of Φ denoted by ¬Φ can be defined inductively in HML.
This is because each connective and modality has its dual. For example,

¬T = F and ¬F = T

¬(Φ1 ∧ Φ2) = ¬Φ1 ∨ ¬Φ2

¬[K]Φ = ⟨K⟩¬Φ

Given a LTS (P, A, (Ra)a∈A), the satisfaction relation ∣= between processes
and properties is defined inductively on the structure of formulas. We write
P

a−→ P ′ to denote (P, P ′) ∈ Ra.

P ∣= T

P ∕∣= F

P ∣= Φ1 ∧ Φ2 iff P ∣= Φ1 and P ∣= Φ2

P ∣= Φ1 ∨ Φ2 iff P ∣= Φ1 or P ∣= Φ2

P ∣= [K]Φ iff ∀Q ∈ {P ′ : P
a−→ P ′ and a ∈ K}.Q ∣= Φ

P ∣= ⟨K⟩Φ iff ∃Q ∈ {P ′ : P
a−→ P ′ and a ∈ K}.Q ∣= Φ

Also, we define the abbreviations ⟨−⟩Φ and [−]Φ to mean ⟨A⟩Φ and [A]Φ re-
spectively where A is the set of all labels.

Modal �-calculus

HML cannot express recurring traits of processes but only local capabilities.
Properties such as “whenever a request is made, a reply will eventually be
sent back” and many other temporal logic properties cannot be expressed using
modalities [K] and ⟨K⟩ unless the system has a finite number of transitions.
The modal �-calculus extends HML by adding least and greatest fixed point
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operators. This provides the logic with more expressiveness which encompasses
that of many other logics including LTL (Linear-time Temporal Logic) , CTL
(Computation Tree Logic), and CTL* which captures both of the latter two [8].

The following formulas are added to the grammar defining HML to define
the syntax of �-calculus.

Φ ::= Z ∣ �Z.Φ ∣ �Z.Φ

The semantics of �-calculus is given on a LTS (P, A, (Ra)a∈A) where P is
the set of all processes (states) and A is the set of labels. the semantics is based
on a valuation function V , which interprets a variable Z as a set of processes E.
To interpret a formula containing free variables X,Y, Z, . . ., we need to know
the meaning of these variables. When the formula has no free variables (closed),
the valuation function is implicit (i.e does not have to be explicitly provided for
the interpretation of the formula). The satisfaction relation for the �-calculus
is given by the following rules in addition to the HML rules.

P ∣=V Z iff P ∈ V (Z)

P ∣=V �Z.Φ iff P ∈
∪
{E ⊆ P : E ⊆ ∥Φ∥V [E/Z]}

P ∣=V �Z.Φ iff P ∈
∩
{E ⊆ P : ∥Φ∥V [E/Z] ⊆ E}

Where ∥Φ∥V is the subset of P which satisfy Φ under valuation V . We omit V
from this notation when describing a property with no variables and write ∥Φ∥
to mean the set of all processes satisfying Φ.

A formula Φ(Z) containing variable Z can be viewed as a function f : 2P →
2P where 2P is the powerset of P i.e. the set of all subsets of P. The variable
Z is interpreted by a subset of the set of all processes P. Assuming the lattice
structure on 2P given by set inclusion and the monotonicity of f , we know by
Knaster-Tarski theorem that least and greatest fixed points exist for f . The
semantics of modality �Z.Φ(Z) is given as the greatest pre-fixed point of f
whereas the semantics of �Z.Φ(Z) is the least pre-fixed point1. The reason for
using these operators is to be able to give semantics to recursive formulas which
provide a way of expressing the usual temporal logic properties.

Informally, the least and greatest fixed points can be obtained by iteratively
applying the function f to the ∅ and the set of all processes P respectively. This
is equivalent to starting the equation X = Φ(X) with F (false) and T (true) to
find the least and greatest fixed points respectively.

For example2, the temporal property “Always Φ” or AGΦ in CTL can be
thought of as a property X such that if X is true then Φ is true and whenever
we move to the next state, X remains true. In other words, X satisfies the
modal equation:

X = Φ ∧ [−]X

1least and greatest fixed points conincide with the least and greatest pre-fixed points re-
spectively because of the monotonicity of f

2In the next two examples in this section, we assume Φ does not contain X or Z
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To find the greatest fixed point, we start with X = T . This gives the
following iterations.

∥Φ ∧ [−]T∥ i.e. ∥Φ∥
∥Φ ∧ [−]Φ∥
∥Φ ∧ [−](Φ ∧ [−]Φ)∥ i.e. ∥Φ ∧ [−]Φ ∧ [−][−]Φ∥
and so on . . .

We can easily see that with an infinite number of applications, this will give
the set of all processes for which Φ holds in all future states. This is exactly
what the property AGΦ describes. Therefore, the property above is equivalent
to the �-calculus property �Z.Φ∧ [−]Z. The least fixed point solution excludes
infinite processes.

Also, the temporal property “There exists a path on which Φ eventually
holds” (EFΦ in CTL) can be viewed as the recursive property “X holds if
either Φ holds now or X holds in one of the next states”. The recursive modal
equation expressing this property is:

X = Φ ∨ ⟨−⟩X
With similar reasoning to the first equation. We can find that the least fixed
point solution to this equation is:

∥Φ ∨ ⟨−⟩Φ ∨ ⟨−⟩⟨−⟩Φ ∨ . . .∥
which represents the solution we are looking for. Therefore, the CTL property
above is equivalent to the �-calculus property �Z.Φ∨ ⟨−⟩Z. The greatest fixed
point solution also includes processes that perform actions forever without ever
satisfying Φ.

To know which type of fixed point to use, a rule of thumb is that if we have
to apply a test a finite number of times then the least fixed point should be
used. Otherwise, the greatest fixed point should be used. For the first example
above, the greatest fixed point was the correct choice as we have to apply the
check S ∣= Φ for all states S of a process P to prove that P ∣= AGΦ which
could be infinite. However, in the second example, we need only apply the test
a finite number of times until we find a state S ∣= Φ. As a result, the least fixed
point was the appropriate choice in this case [8].

Summary

In this chapter a number of formal languages for modelling mobile and ubiqui-
tous systems were discussed. Usually, these languages do not provide high level
constructs which make modelling specific types of systems such as context-aware
ones easier. However, these languages represent a platform on which higher level
languages could be built. On the other hand, modal logics can be used to express
the properties of ubiquitous systems including context-aware ones. Examples of
modal logics for ubiquitous systems include [14] for the ambient calculus, [51]
for the �-calculus, and [19] for Bigraphical Reactive Systems.
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Chapter 3

Literature Review

In this chapter, we present an overview of research in context-awareness. A
number of formal and informal attempts at solving some of the issues of context-
awareness are discussed. The aim of this chapter is not to be a complete account
of the work done in this area, but a quick discussion of the design strategies
followed by the researchers. In particular, we focus on the problem of modelling
the different aspects of context-awareness such as the model of context used and
the way context information is accessed. Issues relating to implementation and
efficiency are not discussed.

Research in the theme of context-awareness has been active for over a decade
now. Some of the questions usually investigated in this field of research are:

1. How do we (efficiently) capture context from (low-powered) sensors with
limited capabilities? [17, 28, 18]

2. What constitute good applications of context-awareness? What applica-
tions can we develop to prove the usefulness of this technology? [37, 44,
31, 24]

3. What is context? What environmental information can be considered part
of context? [62, 22, 21]

4. What is a good way of designing context-aware systems? The aim here is
to reduce the complexity that plagues the development of such systems. A
number of APIs and middleware solutions have been developed to answer
this. Some of these are discussed in section 3.2.

5. How do we formally specify and verify context-aware systems? What
should a good model of context-awareness capture? Section 3.3 discusses
some of the models suggested in research.

6. How do we model context information? Taking into account that such
information will be exchanged between different parties and should scale
to describing low as well as high level information. Some of the models
suggested in literature are investigated in section 3.1
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Question 5 forms the central objective of our research. In this review we focus
on models of context (question 6), middleware and APIs developed (question
4), and the formal models of context-awareness (question 5).

3.1 Models of context

In context-aware systems, context is usually represented explicitly using some
concrete model. This model needs to take into account the following character-
istics of context information:

∙ Heterogeneity: context information is of many different types

∙ Distribution: it can be obtained from distributed sources, so it should
be aggregated

∙ Uncertainty: there is some doubt as to the correctness of the information

Popular choices for modelling context information are: key-value pairs, XML,
and logic-based models. In the next few sections we discuss each of these choices.

3.1.1 Key-value models

This is the simplest choice for modelling context-awareness. Many file formats
encode context information as meta-data using key-value pairs such as JPEG
(using the Exif format [25]). This model also forms part of many existing com-
munication protocols where information about clients and servers is exchanged
in message headers. An example is the HTTP protocol which transmits, as
part of a request for a web document, a header containing details of the client
sending the request. A HTTP header might look like this:

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.1)

Accept-Language: en-gb

Accept-Encoding: gzip, deflate

Host: www.yahoo.com

Referer: http://www.google.com/search?hl=en&q=yahoo

Another example of key-value models is the one used in the Active Badge project
[61] where context-triggered Unix commands are started with information about
the context (badge owner, owner’s office, . . . ) supplied as environment variables.
Key-value pair models are not good at modelling the relationships between
different elements of context information. For instance, modelling hierarchical
location is not straightforward.

3.1.2 XML models

A number of context models are based on RDF (Resource Description Frame-
work) [66], which can be encoded in XML or in other formats such as N-triples
[65]. RDF models information as triples of the form (subject, predicate, object).
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The subject denotes a resource or an entity and the predicate expresses a rela-
tionship between the subject and the object. As an example, the information
“Southampton has postcode SO” can be represented as a triple (Southampton,
has postcode, SO). This can be encoded in XML as follows:

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:terms="http://purl.org/dc/terms/">

<rdf:Description rdf:about="urn:cities:UK:Southampton">

<terms:alternative>SO</terms:alternative>

</rdf:Description>

</rdf:RDF>

The subject and predicate in RDF must have unique identifiers because RDF
data is meant to be exchanged between computers. The subject can be anony-
mous in that it has no name. The predicate can also be used as a subject
representing a relationship about which statements can be made.

Examples of context models based on RDF include UAProf (User Agent
Profile) [68] and CC/PP (Composite Capabilities/Preferences Profile) [67]. An-
other model is CSCP (Comprehensive Structured Context Profiles) [29], which
extends CC/PP by removing some of its restrictions (such as the two-level hi-
erarchy). The aim of these formats is to allow the content served to mobile
devices to be adapted based on the capabilities of these devices (eg. screen size
and platform). Other examples of XML-based context models include CCML
(Centaurus Capability Markup Language) [34] and ConteXtML [58].

3.1.3 Logic-based models

Context in logic systems is usually represented as a set of facts and inference
rules. Context in logic was considered mainly by researchers in AI such as
McCarthy in [43] and Buvac̆ in [11]. In general, facts are related to contexts
using a relation such as c′ : ist(c, p), which is taken to mean that proposition p
is true in context c and that this is asserted in an outer context c′. For example,
the assertion that “Holmes is a detective in the context of Sherlock Holmes
stories” is written as:

c0 : ist(contextof(“Sherlock Holmes stories”), “Holmes is a detective”)

Where c0 is the outer context [1].
A context c1 is said to be more general than another context c2 if c2 contains

all the information of c1 and possibly more [1]. This is written as c1 ≤ c2. An
assertion ist(c1, p) can be lifted to a context c2 if c1 ≤ c2. Some functions
usually defined on contexts are:

∙ value(c, t): returns the value of term t in context c. For example,

value(contextof(“football match”), “number of players”) = 11

∙ assuming(p, c): returns a context like c with proposition p assumed
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Summary

In this section, some examples of context models were briefly discussed. Other
models used in literature include: object-oriented, entity-relationship diagrams,
and ontology-based. The reader is referred to [64] for a discussion of these.

A model of context is concerned with the structure of context data, which
must be acquired in the first place. Acquisition of context data as well as its pre-
processing are usually performed by a software layer called a middleware. The
middleware abstracts the low level tasks of data collection and communication of
context information between software components. It also allows programming
context-aware applications using high-level constructs. The following section
discusses a number of middleware solutions that aim to simplify the creation of
context-aware applications.

3.2 Middleware approaches

Definition 3.2.1 (Middleware). A middleware is a general-purpose service that
sits between platforms and applications. By platform, we mean a set of low-level
services and processing elements defined by a processor architecture and and
Operating System’s API. [4]

A lot of research has been devoted to the creation of middleware architectures
to make it easier to create applications that react to changes in their context
and make use of information in their environment. The aim is to make the
development of such applications as transparent as possible, delegating the job of
capturing the right information, interpreting it, and executing the corresponding
task to the underlying middleware.

Programming languages are enriched with new syntax for specifying the type
of information required, conditions on such information, and the processes to
execute in case these conditions are satisfied.

Figure 3.1 represents a general structure of a context-awareness middleware.
The application registers interest in being notified of particular events or spec-
ifies which processes are executed in what conditions. The middleware gathers
data from sensors (physical or logical), performs some processing (aggregation,
reasoning,. . . ) to extract high level information from low level sensor data,
stores the data in some form of database, and notifies interested applications of
changes to the context.

The sensing element usually consists of multiple distributed sensing com-
ponents due to the distributed nature of context information [64]. A number
of middleware architectures (eg. EgoSpaces [33] and Fulcrum [7]) also consider
applications to be sensing elements. In other words, applications are providers
as well as consumers of context information as shown in figure 3.2.

Another approach to middleware design is to allow applications to issue
commands whose interpretation is left to the underlying middleware. The mid-
dleware then adapts to different contexts such as varying resources and services.
Therefore, applications don’t usually need to worry about context changes. For
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Figure 3.1: A general structure for a context-awareness middleware
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Figure 3.2: A middleware design where applications are context providers and
users
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instance, a print command can be interpreted as printing to the nearest printer
by the middleware.

This approach does not require applications to be reimplemented to make use
of context changes. However, it is more suitable in domain specific development
where the middleware is merely a way of separating the context-aware part of
an application and the context-unaware one. Examples of middleware designs
that follow this approach include: CARMEN [3] and Satin [69].

The first approach makes the middleware simple but forces the applications
to implement all the logic for adaptation. The second approach is not very
flexible but the application can be completely ignorant of changes in context.

A third approach might be considered where the adaptation is possible at
both the middleware and the application layers. Here, the middleware makes
some decisions on behalf of the applications and leaves others to the application.
MobiPADS [16] claims to follow such approach.

In the next sections, the following context-awareness middleware projects
are discussed:

∙ Context Toolkit [59]

∙ EgoSpaces [33]

∙ Active Spaces and the GAIA middleware [57]

∙ CARMEN [3]

∙ CASS (Context-Awareness Sub-Structure) [26]

∙ Fulcrum [7]

3.2.1 The Context Toolkit

The authors build a library of components called context widgets, which can
be used in monitoring the context. These components can then be used by
applications to adapt to changing context. The widgets can also be composed
to form other widgets in order to provide higher-level context information from
low level data. Widgets can be thought of as distributed services that make use
of a number of hardware or software sensors to monitor the context.

Applications can register their interest in being notified of changes to the
context in order to adapt to those changes. Figure 3.3 shows examples of context
widgets. The IdentityPresence widget monitors a specific location and notifies
interested applications about the arrival and departure of people. The Meeting

widget makes use of the Activity and IdentityPresence widgets to notify
interested applications when a meeting in a specific location has started or
finished based on the level of activity in that location and the number of people
present. The Context Toolkit implements both synchronous access of context
data (using attributes such as location, identity) and asynchronous (using
notifications).
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Activity

 location

 averageLevel

 timestamp

 activityChange(l,a,t)

IdentityPresence

 location

 identity

 timestamp

 personArrives(l,i,t)
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I

Figure 3.3: Example of widgets in the Context Toolkit [59]
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A context widget usually has one or more context generators denoted by G1
and G2 in figure 3.3 as well as one or more interpreters (denoted by I). The
generators are the source of raw context data, which can come from sensors
in a low-level format not suitable for use by applications. Interpreters, on the
other hand, provide tasks such as filtering uncertain data and abstracting to
higher-level information. For example, the interpreter of the Meeting widget
can decide that a meeting has started if the activity level is greater than 0.7
and two or more people are currently present in the room.

The Context Toolkit provides a good abstraction where context sensing is
hidden in the context widgets. This should make the development of context-
aware applications simpler. However, the toolkit requires a centralised registry
which is queried for available widgets and interpreters. This is a downside be-
cause in mobile environments, a centralised service cannot always be guaranteed
to exist. Other middleware architectures such as the Hydrogen project [30] and
EgoSpaces [33] try to be more peer-to-peer.

3.2.2 EgoSpaces

The aim of the EgoSpaces middleware is to make programming context-aware
systems simpler in mobile ad-hoc environments where the topology of the net-
work changes dynamically and unpredictably. An example of such network is
one forming on a motorway among vehicles in which a driver is warned if a
vehicle is approaching.

The middleware models the network as a collection of hosts. Each host
contains a collection of agents. Agents can migrate between hosts and each has
its own local tuple space, which is a collection of tuples. A tuple in EgoSpaces
is a set of triples of the form (name, type, value). Each host has a profile, which
is a private tuple used to hold the properties of the host. Properties of a host
representing a vehicle might include the vehicle’s type, speed, and direction.
This is specified, for instance, using the tuple:

<(vehicle_type, enumeration, car),

(direction, string, NORTH),

(speed, integer, 65)>

The basic concept in the middleware is that of a view. A view is a set of
tuples satisfying the view’s constraints. The concept is derived from database
theory where a view is a dynamic table that reflects the current result set of a
query. An agent specifies a view in EgoSpaces by providing constraints on hosts,
agents, and tuples. Constraints are specified using patterns where a pattern is
a set of triples of the form (name, type, constraint). For a tuple u to match
a pattern p, for every triple (n, t, v) in u and triple (n, t, c) in p, the value v
must satisfy the constraint c (i.e. c(v) = true). As an example, an agent might
specify a view which includes only vehicles travelling in the same direction and
at nearly the same speed as this agent’s host. The following pattern can be used
for this purpose:
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Figure 3.4: Example of a view in EgoSpaces[33]

<(direction, enumeration, =mydirection),

(speed, integer, < myspeed + 2),

(speed, integer, > myspeed - 2)>

An example of a constraint on agents might restrict the view to those agents
of type WeatℎerService. A constraint on tuples can for example restrict the
view to tuples with name location. Figure 3.4 shows a conceptual model of a
view as an enclosure of different tuples from different hosts. Hosts not matching
the view’s host constraints are drawn with dotted borders.

For efficiency reasons, the middleware also requires a constraint on the net-
work in the form of a distance D. A host is included in the search for matching
tuples only if its distance to the reference host is less than D. A distance between
two hosts is computed using a cost function provided by the application.

Applications using the middleware react to changes in context by first defin-
ing the views they are interested in and then performing view operations. Ex-
amples of view operations include:

∙ rdp(v, p): return a copy of a tuple satisfying the view v and pattern p. If
no such tuple exists return null.

∙ inp(v, p): same as rdp but also deletes the matched tuple.

∙ rdg(v, p): same as rdp but blocks until a matching tuple becomes available
instead of returning null.

∙ ing(v, p): same as rdg but also deletes the matched tuple.

3.2.3 GAIA

The basic concept in the GAIA middleware is that of an active space. An active
space is a physical space equipped with a virtual computational space consist-
ing of a GAIA process. This process manages movement of devices into and
out of the active space while mapping resources to applications automatically.
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The GAIA process allows applications to register their interest for context in-
formation and uses an event service to deliver high-level context (such as user
behaviour and activities) to interested applications. Context information is sup-
plied by context providers, a list of which is maintained using a registry accessible
to applications.

The GAIA middleware is built for restricted networked environments that
can be managed by centralised servers. This approach does not work well in
settings where no central control exists.

3.2.4 CARMEN

The middleware for context-aware resource management CARMEN [3] aims at
allowing services for wireless mobile devices to adapt the resources provided to
clients to the changing service provisioning context. This context includes the
client location, device capabilities, subscribed services, user preferences, and the
level of trust. The middleware allows the specification of the service adaptation
strategy through policies encoded in the Ponder policy specification language
[20]. The policies make use of device, user, and site profiles to determine the
context of the service and to specify which actions to perform in which contexts.
The following is an example (taken from [3]) of a policy for resource binding.
Resource binding is a mapping from names to resources. The binding should
change in case the device moves to a new location in which case a resource can
either be copied, moved, linked to, or a new binding to an equivalent resource
is created.

inst oblig ResourceMovement {

on DomainArrival(DeviceID, LocalityID);

subject s = DeviceID.getServingProxy();

target t = s.myContext;

do t.setAgentBindingType("resource movement");

when CARMEN.Monitoring.getFreeDiskSpace(DeviceID)

> threshold;

}

The above profile specifies that on the movement of the device with identity
DeviceID to a new locality LocalityID, the device’s resource binding strategy
should be one of moving resources on migration. This should be done only
when there is enough free disk space on the device as reported by CARMEN’s
monitoring process.

Specifying adaptation to context changes using meta-data, although simple,
might not give enough flexibility to the application because of the limited ex-
pressive power of the policy specification language. An approach where context
adaptation is allowed in the application logic as well as using meta-data would
allow more flexibility without compromising the simplicity of meta-data. Also,
CARMEN is not a general purpose context-awareness middleware but is specific
to wireless services.
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3.2.5 CASS

The CASS (Context-Awareness Sub-Structure) middleware aims at allowing
applications on mobile devices to react to changing context. The middleware
provides an abstraction of context sensing and generation of high-level context.
Applications specify their context dependent behaviour using a set of rules.
Sensors, which are hosts capable of providing raw context data, send context
data to a centralised server. The server abstracts the raw data and triggers the
rules whose conditions are satisfied.

The reliance on a central server is a downside of CASS as in a lot of mobile
applications, it is not guaranteed that such a server would exist in which case a
truly distributed solution is required.

3.2.6 Fulcrum

The Fulcrum middleware [7] allows agents to access context information using
event publishing and subscribing. An event consists of a set of elements of the
form (name, type, value). An agent wishing to receive notifications of events
subscribes to such events using filters each of which is a set of constraints of the
form (name, type, operator, value), where operator is a binary predicate.

The matching of filters and events is done by brokers, which are mediating
services provided by the middleware. Fulcrum also allows a subscriber (for
efficiency reasons) to subscribe for relationship events which are events linking
two or more other events, allowing an agent to be notified when a value of
some context information changes in a certain way with respect to some other
information. For example, an agent can choose to be notified when person x is
located within 10 meters of person y.

The approach of Fulcrum may seem similar to that of EgoSpaces as both
middleware approaches use similar representations of context information (tu-
ples). However, the exchange of this information is done differently. EgoSpaces
uses a shared-data model where tuples live in a virtual persistent data store
and are only removed explicitly by an agent. On the other hand, Fulcrum uses
a publish-subscribe model where events have a limited life time (the event is
discarded after being dispatched). The two approaches are discussed in more
detail in section 4.1.

Summary

Many middleware projects have been udertaken in research to allow the im-
plementation of context-aware applications. These middleware projects usually
include similar components for sensing, processing, storage, and serving of con-
text information. Some of the projects are aimed at specific application areas
such as adhoc networks (eg. EgoSpaces) and mobile services (eg. CARMEN)
while others aim to be more generic (eg. Context Toolkit).

A better understanding of these middleware approaches and their essential
features requires studying the problem of context-awareness from a formal point
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of view. This also equips the developer with a method for proving the properties
of context-aware systems such as security and privacy. This is important given
that these systems manipulate information about people’s daily life activities.

3.3 Formal models of context-awareness

A formal model consists of a syntax and formal semantics. One of the aims of
formal modelling is to capture the interpretation (or meaning) of a set of sys-
tems using the formal syntax and semantics. In the case of context-awareness,
we want to encode dynamic systems that react to changes in their environment
using a notation together with an associated meaning given using one or more
semantic theories such as operational, denotational, and categorical. It is im-
portant that the semantics capture the correct meaning of the system and that
the syntax used to encode the system is straightforward. By this we mean the
developer should be able to model a system with the minimum effort.

In this section, a number of attempts at formalising the concept of context-
awareness are presented together with their main features and drawbacks. In
particular, the following attempts will be discussed:

∙ Context Unity [55]

∙ Context Awareness Calculus (CAC) [71]

∙ The CONAWA calculus [36]

∙ Contextual Reactive Systems [9]

∙ Plato-graphical models [5]

3.3.1 Context Unity

Context Unity [55] is a formal model of context-awareness based on Mobile
Unity [56]. The authors define what they termed the context-aware paradigm
as a new design style that satisfies the following properties:

∙ Expensiveness: the design must take into account the fact that distant
entities in the environment can affect a system’s behaviour. In other
words, it should not place a limit on the extent of the system’s context.

∙ Specificity: the design must allow agents to specify what is part of their
context and should allow such specifications to be modified.

∙ Explicitness: an agent should have an explicit context associated with
it. In other words, what the agent views as context should be represented
concretely using some form of data-structure.

∙ Separability: building of the context must be done separately from the
rest of the system’s behaviour.
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∙ Transparency: maintenance of the agent’s context should be taken care
of by some underlying system (eg. a middleware). For this to be possible,
the context must be defined at an adequate level of abstraction.

These properties make a distinction between a system that adapts to its
environment and a system that follows the context-aware computing paradigm.
The authors try to build a formal model which can be used to specify systems
conforming to this design style. They also extend Mobile Unity’s Hoare-style
proof logic with a new rule to allow proving properties of these systems.

In Context Unity, a system consists of a community of interacting agents
each of which can provide context information and make use of information
provided by other agents in the system. The exchange of context information
is done through two types of variables:

1. exposed variables which are shared between agents and are used by an
agent to provide context information to other agents. Exposed variables
are declared using the syntax l!n : t where l is a local handle, n is a publicly
accessible name, and t is the type of the variable.

2. context variables which contain data from the exposed variables of other
agents and are used to acquire context information. Context variables are
declared using the syntax Q : t where Q is the name of the variable and t
is its type. Context variables are local to the agent.

A separate context specification is used to define the context variables based
on the desired properties of the exposed variables of other agents. Figure 3.5
shows an example of a Context Unity system with two agent types: Agent1 and
Agent2 (defined using Program sections). These declarations are instantiated
in the Components section where in this case two instances of Agent1 and one
instance of Agent2 are run in parallel. Agent1 declares two exposed variables:
id of type agent id, which stores a unique identifier for the agent and � which
stores the current location of the agent.

A context variable Q is declared as a set of agent ids. This context variable
can be restricted to hold the set of identifiers of only those agents located within
a predefined range. This is done in the context section, which specifies how
context variables change with respect to the exposed variables of other agents.
Context definitions ending with the word reactive are updated as soon as a
change in exposed variables happens and before any other non-reactive state-
ments.

The authors consider context-awareness as a design paradigm where the com-
munication between a system and its context is abstracted. This abstraction
allows the development of applications at a high-level without worrying about
the details of the communication taking place to update the context model. In
general, most middleware architectures and formal specifications seek a good
abstraction to the different aspects of context-awareness (context update, sens-
ing, context-dependency, inconsistency in context information, . . . ). However,
as mentioned at the beginning of this chapter, there are other problems to be
solved in this field of research.
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System AcquaintanceManagement
Program Agent1

declare
internal range : integer
exposed id ! agent id : agent id

� ! location : location
context Q : set of agent id

initially
range = 20

assign
definition of local behaviour

context
Q uses l!location in a

given ∣l − �∣ ≤ range
where Q becomes Q ∪ {a}
reactive

Q uses l!location in a
given ∣l − �∣ > range
where Q becomes Q− {a}
reactive

end
Program Agent2

declaration of Agent2 similarly to Agent1
end
Components

Agent1[new id], Agent1[new id],
Agent2[new id]

end AcquaintanceManagement

Figure 3.5: Example of an application in Context Unity [55]

It is important to note here that a context-aware system should not be
defined as one that conforms to the context-awareness design paradigm. In our
opinion, what determines that a system is context-aware is whether its behaviour
satisfies a given set of criteria. For example, a car agent is context-aware not
because it was designed by the developer using a particular methodology, but
because it behaves according to certain properties in certain situations. To call
this agent context-aware, we might consider it sufficient that it warns the driver
when another vehicle is approaching or we might require other properties in
addition.
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3.3.2 Context Awareness Calculus CAC

The Context Awareness Calculus [71] is an attempt to come up with a formal
model of context-awareness based on mobile ambients [12] and the join calculus
[27]. Ambients are extended with ambient definitions, which are rewrite rules
mapping so called atom processes to other processes as in:

a(x⟨ȳ⟩ ⊳ P )[. . . ∣ x⟨ȳ⟩ ∣ . . . ]

Whenever an atom x⟨ȳ⟩ appears inside the ambient a (inside the square brackets
[ and ]), it is translated or rewritten into process P . Ambient definitions are
used to represent context-dependency, where an atom has different meanings in
different ambients. As an example, consider the agent:

P
def
= app()[print⟨letter⟩]

and suppose this agent is executing in a setting where printing is done on a laser
printer. We can represent this using:

a(print⟨x⟩ ⊳ send⟨x, laser printer⟩)[P ]

Which makes a transition to:

a(print⟨x⟩ ⊳ send⟨x, laser printer⟩)[send⟨letter, laser printer⟩]

Replacing the atom print⟨letter⟩ in P with the send action in the rewrite rule
of ambient a. A substitution of variable x with the name letter was also done.
The same agent P will behave differently by printing to a inkjet printer if placed
in ambient b as follows:

b(print⟨x⟩ ⊳ send⟨x, inkjet printer⟩)[P ]

The substitution of variables for names when applying the rewrite rules
is the means by which agents communicate in CAC. This is achieved using
substitutions in a similar way to the join calculus. For instance, in the following
example:

c(x⟨z⟩ ∥ y⟨t⟩ ⊳ P ∥ Q)[a()[x⟨u⟩] ∣ b()[y⟨v⟩]]

The variable z (respectively t) binds any free occurrences of z (respectively t)
in both P and Q. So, the atoms x⟨u⟩ and y⟨v⟩ are rewritten into P{u/z, v/t}
and Q{u/z, v/t} respectively. This way, name u is communicated to agent b
(if z appears free in Q) and similarly name v is communicated to agent a (if t
appears free in P ).

The way context-awareness is modelled in CAC is by assuming that actions
are interpreted differently in different contexts. A context of an agent in CAC
is the nesting of ambient definitions giving a meaning to the atoms appearing in
this agent. This resembles a model of dynamic binding, where the components
of the system are loaded at run-time from the environment it is operating in. Al-
though this is a characteristic of context-aware systems, CAC does not directly
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model a context-aware system that makes choices based on its context. Instead,
CAC models a situation where agents have no awareness of their context as the
enclosing environment is what controls their context-aware behaviour. This way
of modelling context-awareness is similar to the approach discussed in section
3.2 that is taken by some middleware designs such as Satin [69]. In these de-
signs, context-adaptation is done at the middleware level, so the application is
largely unaware of changes in context.

Context change is not straightforward to represent in CAC. For example, we
can model a mobile phone running in a context where the user is in a meeting
as follows:

meeting(ring⟨⟩ ⊳ vibrate⟨⟩)[pℎone()[P ]]

To indicate that the context has changed, process P must either migrate to a
context with a different name say nomeeting, or change the definition part of
ambient pℎone. In the first case, the system should be modelled as containing
both ambients meeting and nomeeting as follows:

meeting(ring⟨⟩ ⊳ vibrate⟨⟩)[pℎone()[go(↑ nomeeting,Q)]] ∣
nomeeting(ring⟨⟩ ⊳ melody⟨⟩)[ ]

In the second case, P can be of the form: def(ring⟨⟩ ⊳ melody⟨⟩) in Q which,
after making a transition, changes the definition of ambient pℎone. In both
cases, the change is initiated by the process whereas in reality the context change
is usually outside the control of the system.

3.3.3 CONAWA Calculus

The CONAWA calculus [36] is another attempt to formally model context-
awareness. The context is modelled as a collection of trees each of which repre-
sents a type of context information. For example a tree can be used to represent
a hierarchy of locations while another one can be used for printer types as
in figure 3.6.

An entity in CONAWA models an agent as an ambient with pointers into
nodes in the context trees. This is used to indicate the current value of context
information for this entity. For example, in figure 3.6, P1 is an entity represent-
ing a printer of type Postscript Colour and located in the Emergency Room

of the Hospital. Syntacticly, the two context trees are written as:

Location: [ EmergencyRoom[#P1] | OperatingRoom[] ]

PrinterType: [ PS[Colour[#P1] | BW[]] ]

Whereas, the entity P1 is written for instance as:

P1: [out{Location}.in{Location}OperatingRoom]

The printer agent P1 changes its location by moving in the context trees using
the ambient capabilities in and out. Agents can move in more than one context
tree at once by specifying the names of trees to perform the capability on.
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Hospital

P1 (Entity)

Operating Room

Location (Context) PrinterType (Context)

PS

ColourEmergency Room BW

Figure 3.6: An example of trees represeting different types of context informa-
tion in the CONAWA calculus [36]

For example, out{Location&PrinterType} will move the pointer of the agent
outside of its current position in both the Location and PrinterType context
trees at once.

Trying to model some types of context information in CONAWA is not
straightforward. For example, context information that can take an infinite
number of values such as temperature is not feasibly representable as ambients.
To have an entity such as patient1 with a pointer to context information of
type temperature, one option is to have an infinite number of ambients each
of which representing a different temperature value. A change in the entity’s
temperature can then be modelled as exiting the current ambient and entering
the one representing the new value for temperature. Another option is to have
only one ambient representing the current value of temperature in which case
changing the temperature requires opening this ambient and creating a new one,
which is not possible in CONAWA. Also, changes to context information such
as temperature are outside the control of the application and therefore should
be sensed but not affected by the entity itself.

3.3.4 Contextual Reactive Systems

In [9], the authors generalise Reactive Systems [41] into what they call Contex-
tual Reactive Systems. In this generalisation, it is possible to specify as part of
the interaction rules the contexts in which these rules can be applied and the
contexts in which they cannot. A condition specifying when a rule is enabled
is called an enabler, whereas one specifying when a rule is disabled is called an
inhibitor. As an example, consider the following process expression consisting of
an agent trying to print a document and two printers, one of type laser ⟨pr : las⟩
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and the other of type inkjet ⟨pr : ink⟩:

⟨pr : las⟩ ∣ ⟨pr : ink⟩ ∣ print(txt).0

This expression has two possible transitions each of which creates a job for one
of the two available printers as follows:

⟨pr : las⟩ ∣ ⟨pr : ink⟩ ∣ print(txt).0→ ⟨pr : las⟩ ∣ ⟨pr : ink⟩ ∣ 0 ∣ ⟨job, txt, ink⟩
⟨pr : las⟩ ∣ ⟨pr : ink⟩ ∣ print(txt).0→ ⟨pr : las⟩ ∣ ⟨pr : ink⟩ ∣ 0 ∣ ⟨job, txt, las⟩

How do we specify that the agent prints to the inkjet printer only in case no
laser printer is available? This is not possible in conventional reactive systems.
In contextual reactive systems, however, we can specify that the first transition
can only occur in case the context (terms running in parallel) does not contain
a laser printer. This is done by writing:

{− ∣ ⟨v⟩.v ∕= pr : las}∗ print(txt).P ∣ ⟨pr : ink⟩ → P ∣ ⟨job, txt, las⟩ ∣ ⟨pr : ink⟩

Contextual reactive systems were used by the authors to model the LIME
coordination middleware [52]. Modelling applications using these reactive sys-
tems requires specifying different rules for different applications. We think it
would be easier to specify one set of rules which serves as the basis for a model
of context-awareness. Applications would then be modelled using this set of
rules.

3.3.5 Bigraphical Models of Context-Aware Systems

The authors in [5] discuss Plato-graphical models as a model of context-awareness.
A plato-graphical model consists of three bigraphical reactive systems C,P,A1.
C is called a context and models the environment of the system. P is the proxy
and is the system’s representation of its context. Sensing and affecting the envi-
ronment of the system is done only through the proxy. A represents the agents
or the computational component of the system. Definition 3.3.1 is a formal
definition of a plato-graphical model.

Definition 3.3.1 (Plato-graphical Model). A plato-graphical model is a triple
(C,P,A) of bigraphical reactive systems such that C ∪P ∪A is itself a bigraph-
ical reactive system and C ⊥ A2.[5]

As an example of how a context-aware system is represented using a plato-
graphical model, consider a print server that manages a collection of postscript
and raw printers3. A job is sent to a raw printer only if there is no postscript
printer in the collection of managed printers. The context C consists of nested
locations loc within which printers reside. In modelling C we need rules for

1See section 2.1.3 for a discussion of bigraphical reactive systems
2C ⊥ A means that the set of controls of C is disjoint from that of A. Controls are the

types of nodes in a bigraph
3Example taken from [5]
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adding new printers to the context, removing existing ones, and removing ser-
viced jobs. These rules are as follows:

loc(−0)→ loc(−0 ∣ /x.prtx(raw)) raw printer added

loc(−0)→ loc(−0 ∣ /x.prtx(ps)) postscript printer added

loc(−0 ∣ prtx(−1))→ loc(−0) ∣ x/ printer removed

prtx(datz ∣ −0)→ prtx(−0) ∣ z/ job serviced

The proxy P, on the other hand, tracks the list of known printers in tables
prts(raw) and prts(ps) and the list of pending jobs in jobs. It sends jobs to
postscript printers by default, but in case there is no postscript printer, it sends
the job to a raw one. The reaction rules are as follows:

jobs(docz ∣ −0) ∥ prtsy(ps) ∥ prty(ps)→
jobs(−0) ∥ prtsy(ps) ∥ prty(ps ∣ datz)

(3.1)

jobs(docz ∣ −0) ∥ /x.prtsx(ps) ∣ prtsy(raw) ∥ prty(raw)→
jobs(−0) ∥ /x.prtsx(ps) ∣ prtsy(raw) ∥ prty(raw ∣ datz)

(3.2)

/x.prtx(ps) ∥ prtsy(ps)→ prty(ps) ∥ prtsy(ps) (3.3)

/x.prtx(raw) ∥ prtsy(raw)→ prty(raw) ∥ prtsy(raw) (3.4)

Rule 3.1 represents printing to a postscript printer when one is known to exist.
Rule 3.2 models the case when no postscript printer is known to exist and at
least one raw printer exists. Finally, rules 3.3 and 3.4 model detecting new
printers and adding them to the list of known ones.

The agents part of the model A has only one rule, which allows adding new
jobs as follows:

jobs(−0)→ jobs(−0 ∣ /z.docz)
The essence of plato-graphical models is the separation of the context de-

pendent behaviour (the proxy P) from the context-independent one (the agents
part A). In fact, it is possible to model both the proxy and the agents parts as
one bigraph.

Plato-graphical models require the specification of different rules for each
context-aware application. We think that bigraphical reactive systems should
be used to specify calculi for context-awareness in the same way contextual
reactive systems were used in [9] to model middleware for context-awareness.
This should simplify the task of specifying context-aware systems by having one
set of rules representing the semantics of context-awareness.

Also, plato-graphical models do not take into account the interaction be-
tween context-aware systems. In other words, the theory does not model how
context information is exchanged between context-aware systems and how the
context model of each system is updated. In the print server example, it is not
clear how information about adding and removing printers would be obtained
and how a system that provides such information would interact with the print
server.
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3.4 Conclusion

In this chapter, various issues arising in research on context-aware systems were
discussed. In terms of how context information is represented, many middle-
ware approaches have taken RDF and XML as the format of choice. We share
this view mainly because XML and RDF have proved to be very useful in the
exchange of information between heterogeneous systems in addition to being
ubiquitous, platform-independent, and extensible. Although choosing a context
model is an important decision, the method by which context information is
exchanged between computational entities is equally important. A number of
approaches were discussed, which can be grouped into:

1. Publish-subscribe: agents subscribe to events representing changes in
context (eg. person x entered room y). Notifications are then sent to
subscribers to announce the occurrence of these events.

2. Shared data-based: agents share a data-structure (eg. tuple space) in
which information is stored by some agents and consumed by others.

Some of the issues not treated by these middleware approaches include:
privacy, uncertainty, and the varying quality of context information. Also, these
approaches lack any formal basis, which makes them unsuitable for reasoning
about the properties of context-aware systems.

A number of formal models of context-awareness were also presented. In
terms of how context information is represented, the CAC calculus uses pro-
cesses embedded in the rewrite rules. So, For example, the rule a⟨x⟩ ⊳ P can be
thought of as representing the current value of context information a⟨x⟩ using
the process P . The CONAWA calculus represents information as multiple trees
each having a different type. This explicit representation of context information
is in our opinion better than an implicit one using processes because our aim
is to model context-awareness at a high-level of abstraction in which informa-
tion plays a central role. As to the way information is updated, this is done
through migration of ambients in CAC and the manipulation of pointers to tree
nodes in CONAWA. In both of these methods, updates are not external to the
context-aware application. We argue that some context information is more in-
tuitive to think of as originating from some external entities. Examples include
temperature, nearby people, and physical location. Other types of information
(eg. screen resolution and font size) can be thought of as being controlled by
the application itself.

Overall, a need can be identified for high-level formal models where context
information and context update are represented explicitly in order to make the
task of modelling context-aware applications easier. In the next chapter, we aim
to address this need by giving a formal model in the form of a process calculus.
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Chapter 4

A Formal Model of
Context-Awareness

A context-aware system is usually defined as a system which reacts to changes
in its environment. This reaction should have the goal of providing the best
possible service to the user. Many people have researched context-aware systems
in practical scenarios. However, little attention has been paid to formalising
such a concept. A formalism of context-awareness will not just give us a better
understanding of what context-awareness is about, but will also provide us with
a tool to verify properties of context-aware systems. In this chapter, we describe
a model of context and context-awareness using a new process calculus based
on the �-calculus and called C� (Context Pi).

4.1 Design of C�

When trying to model context-awareness, the most important parts to model
are: context representation, how a context is updated, and how an agent reacts
to changes in its context. A representation of context is called a context model.
A number of context models were discussed in section 3.1. EgoSpaces (section
3.2.2) and Fulcrum (section 3.2.6) use sets of (name, type, value) triples as a
model of context. Whereas, Carmen (section 3.2.4) uses XML files to encode
device configurations and user preferences.

A context-aware application is usually not interested in all information about
its environment, but only in a subset of this information. Therefore, a method
is required for an application to specify which information is relevant to its
behaviour. We call this method a context specification. Using a context speci-
fication, a middleware can take care of updating the knowledge of applications.
This is done either by maintaining a data-structure holding context informa-
tion satisfying the context specification or by delivering events to applications
notifying them of the changes that have occurred. In EgoSpaces, a context
specification is called a view, whereas in Fulcrum, it is the set of filters used
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in subscribing to events. EgoSpaces maintains the set of tuples satisfying each
view1. In Fulcrum, notifications are sent to applications based on their sub-
scriptions. Applications might then want to store the current values of context
information in some form of data-structure.

Applications react to context changes by querying the data-structure main-
tained by the middleware (as in EgoSpaces) or by reacting to events. Reacting
to events could be either programmed as part of the behaviour of the application
or specified separately using (event, condition, action) rules. The former
approach is taken by Fulcrum and the Context Toolkit (section 3.2.1), while
the latter is taken by Carmen (where rules are called policies) and the Active
Badge system [61].

C� models context as (information, subject, value) triples. The un-
derlying model is graph-based and is similar to how RDF [42] represents infor-
mation using (subject, property, value) triples2. The main difference is
that in C� there is no support for anonymous (or blank) nodes and values can
be complex (eg. sets, lists, functions, . . . ). Also, unlike C�, RDF allows multi-
ple triples with the same subject and property. The model of context in C� is
also similar to the one used in EgoSpaces. The only difference is that, in this
latter, the subject of a tuple (name, type, value) is always the agent publish-
ing the information to the tuple space, which makes talking about properties of
properties difficult.

An agent in C� models a context-aware system, which specifies context infor-
mation it is interested in knowing and performs actions based on this informa-
tion. An agent in C� is composed of a context part C and a process part P . The
context part holds all the context information currently known to the agent. As
mentioned above, this information is modelled as triples (i, s, v). By including a
triple (i, s, v) in its context, an agent is specifying interest in receiving updates
to information i of subject s. So, a context in C� serves two purposes: the first
is to hold the current values of context information and the second is to spec-
ify which information the agent is interested in knowing. Section 4.2 formally
defines what a context is.

4.2 A model of context

In order to talk about awareness of a context in a formal way, we need to
formally define what a context is. The context of a particular agent is its view
of the physical and computational environments, which consists primarily of
identities, locations and activities as well as any other data elements such as
temperature and pressure. As a consequence, context data is of various types.
In particular, each context information element is usually attached to some
entity and is in most situations meaningless without a reference to the entity

1Actually, EgoSpaces only computes the set of tuples satisfying a view when a query is
performed on the view, but this is transparent to the application

2A property in RDF is called information in C�
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(subject) it describes. For example, the location information is only meaningful
if attached to an entity such as a person or a car.

Definition 4.2.1. A Context C is a partial function ℐ × S ⇀ V, where:

∙ ℐ is a set of context information names ranged over by i, i′, i′′, i1, i2, . . .
(eg. temperature)

∙ S is a set of entities or subjects of information names ranged over by
s, s′, s′′, s1, s2, . . . (eg. patient1)

∙ V is a set of values of context information ranged over by v, v′, v′′, v1, v2, . . .
(eg. 37)

with the property that ℐ ∪ S ⊆ V and ℐ ⊆ S.

Assuming ℐ ∪ S ⊆ V and ℐ ⊆ S gives the ability to describe multi-level prop-
erties (properties of properties) and to discover and refer to entities. For exam-
ple:

∙ (nearestPrinter, agent1, printer1) and (status, printer1, ready)

∙ (problem, car1, temperature), (temperature, car1, 100), and (unit,

temperature, celsius).

We associate with each element i of ℐ a type t and write elements of C as
triples (i : t, s, v) optionally omitting the type t when it can be inferred from
the value v. The value ⊥ ∈ V is reserved to indicate an unknown value for
information i of entity s.

A context (as defined above) represents a repository of the information cur-
rently known to an agent. The idea is that an agent is interested in observing
the values of some properties. These values are provided by other agents in
the environment who broadcast changes to interested agents. The following are
examples of elements of a context.

1. (location:Int, a1, 5)

2. (relativeloc:Agent→ Int, a1, {a2 7→ 10, a3 7→ 4})

3. (nearbyagents:ℙAgent, a1, {a2, a3})

4. (nearestPrinter:Printer, a1, p1)

5. (status:Status, p1, ready)

6. (colour:Int, car1, ⊥)

Triple 1 above defines the location of entity a1 as being 5. Whereas, triple 2
defines the location of this entity relative to the locations of other entities as
a function Agent → Int. Triple 6 says that the colour of car1 is currently
unknown by giving it the value ⊥.
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4.3 A calculus of context-awareness

In this section, the Calculus of context-awareness C� is discussed. We give
the syntax and semantics of the calculus as well as a number of examples. The
syntax is given in table 4.1. The calculus represents a context-aware application
as a network of agents executing in parallel. Agents can contain processes,
which are capable of performing two types of actions. The first type includes
the usual �-calculus (polyadic) input and output actions: a(ỹ) and a⟨x̃⟩ and the
silent action � .

The second type includes actions for manipulating contextual information.
A process performing action ⟨i, s, v⟩ announces to the environment that the
context information i of entity s has value v. The contexts of all agents in
the environment will be updated to reflect this new value. Action (i, s, x) is
performed by a process to query the value of (i, s) from its context. â⟨x⟩ is an
action that is interpreted according to a condition on the context. Whenever
â⟨x⟩ is to be performed, in presence of a process (�, â⟨y⟩, E) executing in parallel,
it is substituted with the action sequence E provided the context satisfies �. The
two actions reg(i, s, v) and dereg(i, s) manipulate the definition of the context
by adding respectively removing interest in receiving updates to the value of
context information (i, s).

We assume the existence of the following sets in addition to the sets ℐ,S,V
discussed above.

∙ a, b, c, ⋅ ⋅ ⋅ ∈ A: a countably infinite set of names, which includes the sets
ℐ and S i.e. ℐ ∪ S ⊆ A and is included in the set of values V (A ⊂ V).
So, elements of the two sets ℐ and S are also considered as names.

∙ x, y, z, ⋅ ⋅ ⋅ ∈ X : a countably infinite set of variables. Variables can be
substituted by any element of the set V.

∙ P,Q,R, ⋅ ⋅ ⋅ ∈ P: the set of all processes generated by the syntax.

∙ m,n, o, ⋅ ⋅ ⋅ ∈ G: the set of all agent terms generated by the syntax.

∙ M,N,O, ⋅ ⋅ ⋅ ∈ N : the set of all networks generated by the syntax.

∙ C,C ′, C1, ⋅ ⋅ ⋅ ∈ C: the set of all contexts.

The following definitions are also needed.

∙ We write ṽ and x̃ to stand for tuples of values v1, . . . , vn and variables
x1, . . . , xn respectively.

∙ The set of free names for process and network terms are given by the
function fn defined in table 4.2. The function n gives the set of all names
occurring in a term.

∙ If K and L are two process (or network) terms differing only by a substi-
tution of bound names, we say K is the �-conversion of L and vice versa.
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Table 4.1: Syntax of C�

Contexts:

C ::= [S] (Context)

S ::= (i, s, v), S (Element sequence)

∣ ∅ (Empty sequence)

Actions:

� ::= ⟨i, s, v⟩ (Publish context information)

∣ â⟨ṽ⟩ (Interpreted action)

∣ reg(i, s, v) (Register interest)

∣ dereg(i, s) (De-register interest)

∣ �
� ::= a⟨ṽ⟩ ∣ a(x̃) ∣ � (�-calculus actions)

E ::= �.E ∣ � (Action sequence)

Processes:

P ::= E.P (Prefix)

∣ P ∣P (Parallel composition)

∣ P + P (Choice)

∣ {x̃}.� ↪→ P (Conditional process)

∣ (�, â⟨x̃⟩, E) (Interpretation rule)

∣ !P (Replication)

∣ (�a)P (Restriction)

∣ P (x̃) (Process instantiation)

∣ 0 (nil Process)

Networks:

m ::= C ⊳ P (Agent)

M ::= m (Agent)

∣M ∥ N (Network parallel)

∣ (�i; s)M (Context information restriction)

∣ (�a)M (Network restriction)

∣M(x̃) (Network instantiation)

∣ 0 (Empty network)

Definitions:

P (x̃) = Q (Process Definition)

M(x̃) = N (Network Definition)

� ::= ⟨i, s, v⟩ ∣ �

 ::= reg(i, s, v) ∣ dereg(i, s)
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Table 4.2: Definition of free names in C�

Processes:

fn(P ∣ Q) = fn(P ) ∪ fn(Q) fn(⟨i, s, v⟩.P ) = {i, s} ∪ n(v) ∪ fn(P )

fn(P +Q) = fn(P ) ∪ fn(Q) fn(â⟨ṽ⟩.P ) = {a} ∪ n(ṽ) ∪ fn(P )

fn({x̃}.� ↪→ P ) = fn(P ) fn(reg(i, s, v).P ) = {i, s} ∪ n(v) ∪ fn(P )

fn((�, â⟨x̃⟩, E)) = fn(E)− {x̃} fn(dereg(i, s).P ) = fn(P )

fn(!P ) = fn(P ) fn(a⟨ṽ⟩.P ) = {a} ∪ n(ṽ) ∪ fn(P )

fn((�a)P ) = fn(P )− {a} fn(a(x̃).P ) = {a} ∪ (fn(P )− {x̃})

fn(0) = ∅

Networks:

fn(C ⊳ P ) = fn(P )

fn(M ∥ N) = fn(M) ∪ fn(N)

fn((�a)M) = fn(M)− {a}

fn((�i; s)M) = fn(M)

fn(0) = ∅

In this case, K and L are considered to be equivalent and we write K ≡ L
(the relation ≡ is called structural congruence and is discussed in section
4.3.1).

∙ We usually omit any trailing 0 (null) processes or networks. Therefore,
a(x).0 is written as a(x) and C ⊳ P ∥ 0 is written as C ⊳ P .

∙ A simple type system is assumed on variables and channels to ensure
values sent over channels have the correct number and type. We assume
that substitutions conform to this typing.

In C�, a system is composed of a number of agents running in parallel (a
network). An agent has the form C ⊳ P where C is the context and P is the
process term modelling the behaviour of the agent. In addition to being able to
perform the above actions, a process term can be:

∙ The parallel composition of two processes P ∣ Q. P and Q execute in
parallel and may communicate using input and output actions: a(x) and
a⟨v⟩.

∙ A non-deterministic choice between two processes P +Q. This represents
a process that can act as either P or Q.

∙ A conditional process {x̃}.� ↪→ P , which acts as P when inside an agent
whose context C satisfies property � for some substitution of variables
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x̃ (the syntax of condition � is discussed in section 4.4). Conditional
processes are used to query the context and perform context-dependent
behaviour. It should be noted here that variables {x̃} bind both � and P .
Also, the first action of P is only enabled when � is true in the context.
For example, the process:

{x}.(carsnear, agent1, ℎas(x)) ↪→ x⟨m⟩.P

models a system that sends message m to a car near agent1 only when
such car becomes available.

∙ An interpretation (�, â⟨x⟩, E), which allows a process â⟨v⟩.P (running in
parallel) to execute context-dependent behaviour by acting as E{v/x}.P
in case it is in a context satisfying �. These interpretation rules allow
the separation of the context-dependent behaviour of the agent from the
context-independent behaviour. Using interpretation rules, we can model
the second approach to the design of context-awareness middleware dis-
cussed in section 3.2. In other words, an agent can be split into a part
that is ignorant of the changes to context and another part that models
the context dependency using interpretation rules.

∙ A replicated process !P : used to model infinite executions. The process !P
can be thought of as generating an infinite number of copies of P running in
parallel. This allows, for instance, specifying services that (continuously)
handle requests on port a as processes of the form !a(x).Q.

Three types of restriction are used to give scopes to names:

1. Name restriction on processes as in (�a)P meaning that the name a is
local to the process P .

2. Name restriction on networks as in (�a)M indicating that a is local to the
network of agents M .

3. Context information restriction on networks as in (�i; s)M meaning that
information i about entity s is only exchanged between agents of M . This
allows specifying who gets access to context information in context-aware
systems.

It should be noted here that the restriction (�i; s)M is different from the restric-
tion of the two names i and s using (�i)(�s)M . The former is meant to disallow
the provision of context information from agents outside of the restriction even
though these agents possibly know about both names i and s. In other words,
names i and s are not private to the network M in (�i; s)M and neither actions
⟨i, s, v⟩ from outside M reach agents inside M , nor such actions from inside M
reach agents outside it.

Context information restriction allows the specification of trust between
agents. Two agents trust each other on some context information (i, s) if they
can exchange values for this information. In context-aware applications, context

46



4.3. A calculus of context-awareness A Formal Model of Context-Awareness

information is usually obtained from other systems that are trusted to supply
correct and accurate information. For example, we might want to specify that
a mobile device obtains location data from a specific location service.

4.3.1 Operational semantics

The semantics of C� is given in terms of the structural congruence relation ≡
defined in table 4.3 and the structural operational semantic rules in table 4.4.
The structural congruence relation is the smallest congruence satisfying the
rules in table 4.3. It is used to identify expressions having the same structure.
This allows the syntactic manipulation of terms when applying derivations and
therefore simplifies the presentation of the operational semantics.

Operational semantics is a method by which a meaning can be given to the
syntax of a formal language. A set of inference rules are defined over the possible
structures in the language to represent valid transformations (transitions) a term
can have in different execution contexts. The rules in table 4.4 define a Labelled
Transition System (LTS) on process and network terms. An LTS is a tuple
(K,ℒ,→), where K is the set of processes and networks, ℒ is a set of labels, and
→ is a relation K × ℒ × K. An element (K1, L,K2) of → is usually written as

K1
L−→ K2 to mean that the term K1 makes a transition L to term K2. This

can be inferred using the rules defining the LTS.
The purpose of function U : C × Act→ C (C is the set of all contexts) used

in the rules Ag Act1 and Ag Act2 is to update a context C ∈ C with the effects of
some action �. To define this function, we first give definitions to the operators
⊕, ⊖, and the context update C[(i, s) 7→ v]. The context defined by C⊕ (i, s, v)
is the same context as C with the element (i, s, v) added in case (i, s) /∈ dom(C).
In case (i, s) ∈ dom(C), the value of element (i, s) is updated to v. The context
C ⊖ (i, s) is the context C with element (i, s) subtracted from its domain. In
case (i, s) /∈ dom(C), C = C ⊖ (i, s). Finally, the context C[(i, s) 7→ v] is C
with the value of (i, s) updated to v. If (i, s) /∈ dom(C), then C[(i, s) 7→ v] = C.
Formally, the definitions are as follows:

C ⊕ (i, s, v) =

{
C ⊖ (i, s) ∪ {(i, s, v)} if (i, s) ∈ dom(C)

C ∪ {(i, s, v)} if (i, s) /∈ dom(C)
(4.1)

C ⊖ (i, s) = {(x, y, z) ∈ C ∣ x ∕= i ∨ y ∕= s} (4.2)

C[(i, s) 7→ v] =

{
C if (i, s) /∈ dom(C)

C ⊖ (i, s) ∪ {(i, s, v)} if (i, s) ∈ dom(C)
(4.3)

The function U is then defined as follows:

U(C,�) =

⎧⎨⎩
C ⊕ (i, s, v) if � = reg(i, s, v)

C ⊖ (i, s) if � = dereg(i, s)

C[(i, s) 7→ v] if � = ⟨i, s, v⟩
C otherwise

(4.4)
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Table 4.3: Structural congruence for C�

Processes:

If P is �-convertible to Q or vice versa, then P ≡ Q

P ∣ (Q ∣ R) ≡ (P ∣ Q) ∣ R

P ∣ Q ≡ Q ∣ P

P ∣ 0 ≡ P

P + (Q+R) ≡ (P +Q) +R

P +Q ≡ Q+ P

P + 0 ≡ P

(�a)0 ≡ 0

(�a)(�b)P ≡ (�b)(�a)P

P ∣ (�a)Q ≡ (�a)(P ∣ Q) if a /∈ fn(P )

P ≡ Q⇒ (�a)P ≡ (�a)Q

P ≡ P ′ ⇒ P ∣ Q ≡ P ′ ∣ Q

P (x̃) = Q⇒ P (ỹ) ≡ Q(ỹ/x̃)

Networks:

If M is �-convertible to N or vice versa, then M ≡ N

M ∥ (N ∥ O) ≡ (M ∥ N) ∥ O

M ∥ N ≡ N ∥M

M ∥ 0 ≡M

(�a)0 ≡ 0

(�a)(�b)M ≡ (�b)(�a)M

M ∥ (�a)N ≡ (�a)(M ∥ N) if a /∈ fn(M)

M ≡ N ⇒ (�a)M ≡ (�a)N

M ≡M ′ ⇒M ∥ N ≡M ′ ∥ N

M(x̃) = N ⇒M(ỹ) ≡ N(ỹ/x̃)
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The set of bound names in label � is given by bn(�). The only label with
bound names is a(x̃) in which x̃ are bound.

The rule Cond requires a process {x̃}.� ↪→ P to be in a context C satisfying
condition � for some substitution of x̃ before progressing. This is a method for
the agent to query its context and can therefore be used to adapt the agent’s
behaviour to its context. If the sequence x̃ is empty, the condition � is assumed
to be closed (no free variables) and the process is written as � ↪→ P for short.
The transition rule Cond in this special case becomes as follows:

C ⊳ P
�−→ C ′ ⊳ P ′ C ∣= �

C ⊳ � ↪→ P
�−→ C ′ ⊳ P ′

(Cond
−
)

For instance, a device “dev” that reveals patient information only in the surgery
can be written as:

C ⊳ (loc, dev,= surgery) ↪→ a⟨info⟩.P

The calculus is parameterised on the syntax of � and a satisfaction relation ∣=
is used to determine when a context C satisfies a condition �, writing this as
C ∣= �. An example of a notation and a satisfaction relation for conditions is
given in section 4.4.

Table 4.4: Operational semantics of C�

�.P
�−→ P

(Pref)
C ⊳ P

�−→ C′ ⊳ P ′ ∃ṽ.C ∣= �{ṽ/x̃}

C ⊳ {x̃}.� ↪→ P
�{ṽ/x̃}−−−−−→ C′ ⊳ P ′{ṽ/x̃}

(Cond)

P
�−→ P ′

!P
�−→ P ∣ !P

(Rep)

P
�−→ P ′ C′ = U(C, �)

C ⊳ P
�−→ C′ ⊳ P ′

(Ag Act1)
P


−→ P ′ C′ = U(C, 
)

C ⊳ P
�−→ C′ ⊳ P ′

(Ag Act2)

M
⟨i,s,v⟩−−−−→M ′ N

?(i,s,v)−−−−−→ N ′

M ∥ N ⟨i,s,v⟩−−−−→M ′ ∥ N ′
(Upd)

M
⟨i,s,v⟩−−−−→M ′ i′ ∕= i ∨ s′ ∕= s

(�i′; s′)M
⟨i,s,v⟩−−−−→ (�i′; s′)M ′

(Res Pub)

M
?(i,s,v)−−−−−→M ′ N

?(i,s,v)−−−−−→ N ′

M ∥ N ?(i,s,v)−−−−−→M ′ ∥ N ′
(Par Upd)

continued on the next page
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Table 4.4: Operational semantics of C�

M
?(i,s,v)−−−−−→M ′ i′ ∕= i ∨ s′ ∕= s

(�i′; s′)M
?(i,s,v)−−−−−→ (�i′; s′)M ′

(Res Upd)

(�i; s)M
?(i,s,v)−−−−−→ (�i; s)M

(No Upd)

C′ = C[(i, s) 7→ v]

C ⊳ P
?(i,s,v)−−−−−→ C′ ⊳ P

(Ctxt Upd)
K

�−→ K′ x /∈ n(�)

(�x)K
�−→ (�x)K′

(Res)

P
a⟨x̃⟩−−−→ P ′ Q

a(ỹ)−−−→ Q′

P ∣ Q �−→ P ′ ∣ Q′{x̃/ỹ}
(Proc Com)

M
a⟨ṽ⟩−−−→M ′ N

a(ỹ)−−−→ N ′

M ∥ N �−→M ′ ∥ N ′{ṽ/ỹ}
(Net Com)

C ∣= �

C ⊳ â⟨ṽ⟩.P ∣ (�, â⟨x̃⟩, E)
�−→ C ⊳ E{ṽ/x̃}.P ′ ∣ (�, â⟨x̃⟩, E)

(Interp)

P
�−→ P ′ dis(�,Q)

P ∣ Q �−→ P ′ ∣ Q
(Proc Par)

P
�−→ P ′

P +Q
�−→ P ′

(Sum)

M
�−→M ′ dis(�,N)

M ∥ N �−→M ′ ∥ N
(Net Par)

C ⊳ P
�−→ C′ ⊳ P ′ dis(�,Q)

C ⊳ P ∣ Q �−→ C′ ⊳ P ′ ∣ Q
(Ag Par)

C ⊳ P
�−→ C′ ⊳ P ′

C ⊳ P +Q
�−→ C′ ⊳ P ′

(Ag Sum)
K ≡ L �−→ L′ ≡ K′

K
�−→ K′

(Struct)

Note: K and L range over either P or N . dis(�,K)
def
= bn(�) ∩ fn(K) = ∅

The rule Ag Act1 allows a process to perform an action � that is either a �-
calculus action or the information broadcast action ⟨i, s, v⟩. These are the only
actions visible to other agents. All other actions performed by processes inside
an agent are observed by other agents in the network as � actions. The action
⟨i, s, v⟩ changes the context of the agent by updating the value of information
(i, s) to value v. � actions do not affect the context of the agent (see definition
4.4).

The rule Ag Act2 covers the actions reg and dereg, which are not visible
outside the agent. These actions update the context by adding or removing
triples according to definition 4.4. The action reg(i, s, v) registers interest in
receiving information (i, s), whereas dereg(i, s) removes interest in information
(i, s). The dereg action has no effect if (i, s) is not in the context. Action reg
requires the specification of an initial value for the information.
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Actions reg and dereg allow an agent to control the definition of its context,
which makes this definition dynamic. This is useful when the agent does not
know a priori which information it requires. The agent generally registers inter-
est in new information after performing some initial communication steps. For
example, the following agent receives the id of a user, then registers interest in
knowing the activity of this user.

C ⊳ a(userid).reg(activity, userid,⊥).P

The rules Upd, Par Upd, and Ctxt Upd specify how context information is pub-
lished. Publishing context information is done through broadcast communica-
tion resulting in the instantaneous update of the contexts of all agents running
in parallel. This approach is inspired by the Calculus of Broadcasting Systems
(CBS) of Prasad [54]. By publishing information, an agent also updates its
own context. This is covered by the rule Ag Act1. Rules Res Pub, Res Upd, and
No Upd disallow the publishing of context information (i, s) outside a network
M where this information is made private using (�i; s)M and also disallow any
updates to this information from agents outside the network M . As an example
of information publishing and restriction, let’s consider the transition3:

(�i; s)((�i′; s′)C1 ⊳ P1 ∥ C2 ⊳ P2) ∥ C3 ⊳ ⟨i′, s′, v⟩.P3

⟨i′,s′,v⟩−−−−−→
(�i; s)((�i′; s′)C1 ⊳ P1 ∥ C ′2 ⊳ P2) ∥ C ′3 ⊳ P3

with the assumptions that i ∕= i′ ∨ s ∕= s′, C ′2 = C2[(i′, s′) 7→ v], and C ′3 =
C3[(i′, s′) 7→ v]. An inference tree can be obtained by first applying the rule Upd

as follows:

(�i; s)((�i′; s′)C1 ⊳ P1 ∥ C2 ⊳ P2)

C3 ⊳ ⟨i′, s′, v⟩.P3
⟨i′,s′,v⟩−−−−−→ C ′3 ⊳ P3

?(i′,s′,v)−−−−−→

(�i, s)((�i′; s′)C1 ⊳ P1 ∥ C2 ⊳ P2)

(�i; s)((�i′; s′)C1 ⊳ P1 ∥ C2 ⊳ P2) ∥ C3 ⊳ ⟨i′, s′, v⟩.P3
⟨i′,s′,v⟩−−−−−→

(�i; s)((�i′; s′)C1 ⊳ P1 ∥ C ′2 ⊳ P2) ∥ C ′3 ⊳ P3

The transition on the left is obtained in a straightforward way from rules Pref

and Ag Act1. The transition on the right is inferred using the following instance
of rule Res Upd:

(�i′; s′)C1 ⊳ P1 ∥ C2 ⊳ P2
?(i′,s′,v)−−−−−→ (�i′; s′)C1 ⊳ P1 ∥ C ′2 ⊳ P2

(�i; s)((�i′; s′)C1 ⊳ P1 ∥ C2 ⊳ P2)
?(i′,s′,v)−−−−−→

(�i, s)((�i′; s′)C1 ⊳ P1 ∥ C2 ⊳ P2)

3We allow restriction to bind more tightly than ∥ and ∣
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Making use of the rule Par Upd, the transition in the premise of the above rule
is obtained as follows:

(�i′; s′)C1 ⊳ P1
?(i′,s′,v)−−−−−→ (�i′; s′)C1 ⊳ P1 C2 ⊳ P2

?(i′,s′,v)−−−−−→ C ′2 ⊳ P2

(�i′; s′)C1 ⊳ P1 ∥ C2 ⊳ P2
?(i′,s′,v)−−−−−→ (�i′; s′)C1 ⊳ P1 ∥ C ′2 ⊳ P2

The transition on the left is obtained through the base case No Upd, while the
one on the right is a straightforward application of the rule Ctxt Upd.

We can see in the above example that information (i′, s′) was delivered to
agents C2 ⊳ P2 and C3 ⊳ P3 without affecting the agent C1 ⊳ P1 in which this
information was made private using the restriction (�i′; s′).

The rule Net Com allows point to point channel communication between
agents. The rule Interp substitutes any interpreted action â⟨ṽ⟩ by a sequence
of actions E in case an interpretation rule (�, â⟨x̃⟩, E) exists in parallel. The
condition � of the interpretation rule must also be satisfied in the current con-
text of the enclosing agent for the substitution to occur. Interpretation rules
allow an agent to adapt to its context, but unlike the conditional expressions
� ↪→ P , they represent a way of separating context adaptation from the actual
behaviour of the context-aware application. For example, the following agent
prints to a postscript printer if one is available, otherwise it prints to a raw one.

C ⊳ ˆprint⟨file⟩.P ∣ (∃x.(type, x,= ps), ˆprint⟨x⟩, printps⟨x⟩) ∣
(∀x.¬(type, x,= ps) ∧ ∃x.(type, x,= raw), ˆprint⟨x⟩, printraw⟨x⟩)

Where ∃x.(type, x,= ps) is true only if the context C contains a triple whose
first element is “type” and whose value is equal to “ps”. ∀x.¬(type, x,= ps) is
true only if C cotains no triple whose first element is “type” and whose value
is equal to “ps”. Assuming the context C contains a triple (type, p1, ps), the
above agent could perform a � action to become:

C ⊳ printps⟨file⟩.P ∣ (∃x.(type, x,= ps), ˆprint⟨x⟩, printps⟨x⟩) ∣
(∀x.¬(type, x,= ps) ∧ ∃x.(type, x,= raw), ˆprint⟨x⟩, printraw⟨x⟩)

4.4 A logic for context

In this section, an example syntax and satisfaction relation are given for the
conditions � used in the process calculus.

Syntax

A syntax for the formulae � used in the process calculus can be defined as
follows:

� ::= (i : t, s,  t) ∣ ∃x̃.� ∣ ∀x̃.� ∣ � ∨ � ∣ � ∧ � ∣ �⇒ � ∣ T ∣ F ∣ ¬�
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We associate with each type t of context information a formula syntax  t. For
example, with the integer type Int, we associate the formula syntax:

 Int ::= > n ∣ < n ∣ = n ∣ ¬ Int

In particular, for each type t we have at least formulae “= v” and “¬ t” to
denote equivalence of values and negation of formulae.

We also associate a satisfaction relation ∣=t with each type t and formula
syntax  t. For the example of integers, we have:

v ∣=Int > n iff v > n

v ∣=Int < n iff v < n

v ∣=Int = n iff v = n

v ∣=Int ¬ Int iff v ∕∣=Int  Int

where the relation symbols >,<,= are the usual relations on integers.
We can define a formula syntax  L for lists of elements of type X as follows:

 L(X) ::= ℎead  X ∣ tail  L(X) ∣ = l ∣ ¬ L(X)

A syntax for lists of lists of elements of type X can defined by:

 LL(X) ::= ℎead  L(X) ∣ tail  LL(X) ∣ = ll ∣ ¬ LL(X)

A syntax for sets can be as follows:

 ℙ(X) ::= ℎas  X ∣ = v ∣ ¬ ℙ(X)

where “ℎas  X” means the set has an element (with type X) that satisfies  X .

Satisfaction relation ∣=
The satisfaction relation used in the semantics of the calculus is defined as
follows:

C ∣= (i : t, s,  t) iff ∃v ∈ V.(i : t, s, v) ∈ C ∧ v ∣=t  t

C ∣= ∀x̃.� iff ∀ṽ ∈ Vn.C ∣= �{ṽ/x̃}
C ∣= ∃x̃.� iff ∃ṽ ∈ Vn.C ∣= �{ṽ/x̃}

The definition of ∣= for the other types of formulae is straightforward.

4.5 Abbreviations

In this section, a number of abbreviations are defined to make writing examples
simpler.
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∙ Read:
(i, s, x).P ::= {x}.(i, s,= x) ↪→ P

This is a shorthand for reading the current value of context information
(i, s).

∙ Conditional read:

(i : t, s,  t ↷ x).P ::= {x}.(i, s,  t) ∧ (i, s,= x) ↪→ P

This allows reading the value of information i of entity s into variable x
only in case condition  t is satisfied on the value of the triple. The process
blocks until condition  t is satisfied.

∙ if-then-else:

{x̃}.� ↪→ P else Q ::= {x̃}.� ↪→ P + ∀x̃.¬� ↪→ Q

This means: behave as P in case � is true for some substitution of x, else
behave as Q.

∙ Wait for a change (z is fresh in P ):

(i, s,∼ x).P ::= (i, s, z).�.(i, s,¬ = z ↷ x).P

This means: wait for the value of (i, s) to change and set x to the new
value. The process blocks until there is at least one change in the value
of (i, s). After the statement (i, s,∼ x) completes, the agent knows there
has been at least one change in the value of (i, s).

4.6 Examples

Following is a list of examples of context-aware systems and how they are en-
coded in C�.

A driver is warned if an emergency vehicle is nearby

P
def
= (emer, car, = on) ↪→ ˆwarning⟨on⟩.(emer, car, = off) ↪→

ˆwarning⟨off⟩.P

car
def
= [(emer, car, off), (road, car,⊥)] ⊳

P ∣ ((road, car, = B), ˆwarning⟨x⟩, ⟨flasℎligℎt, car, x⟩) ∣
((road, car, = A), ˆwarning⟨x⟩, �)

The car agent waits for the emergency to have value “on”. When this occurs,
the driver is warned using the action ˆwarning⟨on⟩, which is an interpreted
action controlled by two interpretation rules. These rules determine how the
warning is issued depending on the type of road the car is currently in. After the
warning is enabled, the agent waits for the emergency to finish using a condition
(emer, car, = off) then turns the warning off.
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A device prints to the nearest printer

device
def
= [(nearestp, device,⊥)] ⊳

!print(x).p̂⟨x⟩ ∣ ((nearestp, device,¬ = ⊥), p̂⟨y⟩,
(nearestp, device, z).z⟨y⟩)

The device agent specifies interest in context information “nearestp”, which
holds the name of the printer nearest to this agent. This information could be
provided by some service (in the environment) that registers interest in knowing
the location of the device agent and continuously updates the value of the nearest
printer information. Printing is performed by sending the file to be printed
(received from a client through channel “print”) on the name of the printer
assuming this name represents a channel on which files can be sent to the printer.
This is again done using an interpretation rule, which requires printing to be
done only in a context where the nearest printer is known.

A mobile phone vibrates instead of ringing if the user is in a meeting

pℎone
def
= [(meeting, user, no)] ⊳

pℎone(x). ˆring⟨on⟩.(userpick(y). ˆring⟨off⟩ +

usercancel(y). ˆring⟨off⟩.x⟨voicemail⟩) ∣
((meeting, user, = yes), ˆring⟨x⟩, ⟨vibration, pℎone, x⟩) ∣
((meeting, user, = no), ˆring⟨x⟩, ⟨melody, pℎone, x⟩)

The pℎone agent receives a call on the channel pℎone then performs the action
ˆring which is interpreted depending on whether the user is in a meeting. After

the phone rings, it communicates with the user who can either pick up the call
or cancel it (using channels userpick and usercancel respectively). In both
cases, the phone stops ringing.

A mail client downloads new messages when a wireless connection is
detected

P
def
= (wireless, device,= on) ↪→ s⟨inbox⟩.wait⟨t⟩.P

Q
def
= (newmsgs, inbox,∼ x).display⟨x⟩.Q

client
def
= (� inbox)[(wireless, device, off), (newmsgs, inbox, [])] ⊳ P ∣ Q

server
def
= [ ] ⊳ !(� conn) s(x).db⟨conn⟩.conn⟨x⟩.

conn(msgs).⟨newmsgs, x,msgs⟩

The server process receives requests on channel s, retrieves the new messages
from its database and then updates the context of the client using the action
⟨newmsgs, inbox,msgs⟩. Process Q of the client updates the display when the
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value of newmsgs changes. On the other hand, process P issues a request
for new messages to the server then waits for time t before issuing the next
request. Notice that the name inbox is private to the client process but after
communication with the server, it becomes known to it as well.

A web-service performs a search for nearby attractions based on the
mobile device’s location

service
def
= [ ] ⊳ !s(c).reg(loc, c,⊥).reg(browser, c,⊥).

(loc, c,∼ x).(browser, c,∼ y).searcℎ⟨x, db⟩.db(result).style⟨y⟩.
style(xslfile).c⟨result⟩.c⟨xslfile⟩.dereg(loc, c).dereg(browser, c)

Initially, the service’s context is empty. A client device connects to the service
through channel s sending a (private) channel c. This channel is used by the
service to identify the context information specific to this client and is used by
the client to send context information to a specific service. Channel c can be
thought of as a session identifier. The service registers interest in being notified
about the location and web-browser of the device, waits for this information
to be updated and services the request. The service performs a search on the
database for attractions near the location of the device, retrieves the appropriate
style-sheet file for the type of browser and returns this file as well as the search
result to the client. Finally, the service removes interest in obtaining the client’s
browser and location information.

4.7 Behavioural equivalence

In this section, we give a definition of a bisimulation relation on the LTS defined
in table 4.4. As a general definition, a bisimulation is a symmetric binary
relation R on terms satisfying:

KRL and K
�−→ K ′ implies ∃L′. L �−→ L′ ∧K ′RL′

Informally, this means that if K can do some action �, then L can do the same
action and the resulting terms are in the same relation. We say two terms are
bisimilar if there exists a bisimulation relating them.

We define bisimulation over networks of agents and consider the set of ob-
servables to be the labels ⟨i, s, v⟩, a(x), a⟨v⟩, � , and ?(i, s, v). The definition is
as follows.

Definition 4.7.1 (Network bisimulation). A (strong) network bisimulation is

a symmetric binary relation R on agents such that MRN and M
o−→M ′ then:

1. if o = a(x̃) then ∃N ′.N a(ỹ)−−−→ N ′ ∧ ∀ṽ.M ′{ṽ/x̃}RN ′{ṽ/ỹ}

2. otherwise, ∃N ′. N o−→ N ′ ∧M ′RN ′
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Where o ::= ⟨i, s, v⟩ ∣ a(x) ∣ a⟨v⟩ ∣ ?(i, s, v) ∣ � .
We write M ∼n N to say that M and N are bisimilar.

Informally, two networks are considered to be equivalent if they provide
the same context information (using actions ⟨i, s, v⟩), are affected in the same
way by context changes (actions ?(i, s, v)), and encode the same communication
protocol (�-actions). This definition of bisimulation is strong because we do not
ignore � actions.

To see that the context update actions ?(i, s, v) are necessary for equivalence,
notice that omitting them from the above definition of bisimulation will cause
some problems. Specifically, the agent C⊳� ↪→ P would be considered equivalent
to the 0 network if C ∕∣= � as both are incapable of doing any observable action.
However, when placed in a network of other agents, the agent C ⊳ � ↪→ P can
have its context C updated causing the condition � to be satisfied and process
P enabled. A similar problem also occurs with interpretation rules.

Equivalence on processes could be defined in terms of network bisimulation.
Two processes P and Q can be considered equivalent with respect to some
specific context C or with respect to all contexts. In other words, two processes
P and Q are equivalent with respect to a context C if:

C ⊳ P ∼n C ⊳ Q

4.8 Limitations

Representation of structured values: Context in C� is represented as
triples of the form (i, s, v). This allows environmental information to be mod-
elled as a directed graph where s and v are nodes and i is an edge. This is
similar to how RDF models information. A useful feature of RDF is anonymous
or blank nodes, which allow one to represent structured values. For example,
the following set of triples represent the address of the staff member with id
exstaff:85740 [42]:

exstaff:85740 exterms:address _:johnaddress .

_:johnaddress exterms:street "1501 Grant Avenue" .

_:johnaddress exterms:city "Bedford" .

_:johnaddress exterms:state "Massachusetts" .

_:johnaddress exterms:postalCode "01730" .

This effectively says: let’s consider the address of the staff member with id
exstaff:85740 to be the private name _:johnaddress. This name has prop-
erties street, city, and so on. We can use this approach in C� to simplify the
representation of structured context information. So, instead of announcing the
following piece of information:

⟨address, staff85740, {street 7→ s, city 7→ c, . . . }⟩

an agent would use something like:

⟨(address, staff85740, �x), (street, x, s), . . . ⟩
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Expressiveness of context specifications: Agents specify what informa-
tion they are interested in by including a triple (i, s, v) in their context. After
that, this information is continuously updated. Often in applications, a more
powerful specification is required. For instance, an agent might want to know
the locations of all cars without specifying what all the cars are. This can be
accomplished by allowing simple pattern matching on context specifications as
in the agent:

[(location, ∗ : CAR)] ⊳ P

This approach is better then using a complex value to communicate the locations
of all cars as in:

[(locations, cars, {car1 7→ l1, car2 7→ l2, . . . })] ⊳ P

This is because context information can be updated using actions ⟨location, car1, l⟩
where the agent does not need to know about the existence of car1. In other
words, this new approach would give agents the ability to discover resources in
the environment.

Context information restriction: Another downside of C� is the fact that
context information restriction (�i; s)M is not dynamic. In other words, the
scope is specified initially and cannot be changed during run-time. A dynamic
scope is required in many applications. An example is when we want to model a
system which, based on some initial communication, decides which agents it can
accept context information from and which ones it can communicate information
to.

Interpretation rules: Interpretation rules can be created dynamically by
prefixing them with a number of actions as in:

�.�.(�, â⟨x⟩, E) ∣ â⟨v⟩.P

However, these rules cannot be discarded after being created. This is inflexible
because, in this case, the rules can only be used to modify the behaviour at a
global level. One way to solve this is to consider interpretation rules as actions
and not processes as in:

�.(�, â⟨x⟩, E).P ∣ â⟨v⟩.Q

This way, a rule can be discarded as soon as it is used. A rule with a global
effect could be written using replication as follows:

P ∣ !(�, â⟨x⟩, E).0

Communication: Communication in C� is possible between agents as well as
between processes using �-calculus input and output primitives. Two agents in
a network or two processes inside the same agent can exchange values through
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channel a if one performs an output action a⟨ṽ⟩ and the other an input action
a(x̃). However, a communication action performed by a process P inside agent
m can either synchronise with an action from another agent or with one from a
process running in parallel with P . This can be seen in the following network:

C ⊳ a(x).P ∣ a⟨v⟩.Q ∥ C ′ ⊳ a(x).R

which can perform a � to become:

C ⊳ P{v/x} ∣ Q ∥ C ′ ⊳ a(x).R

where communication happened between processes or:

C ⊳ a(x).P ∣ Q ∥ C ′ ⊳ R{v/x}

where communication happened between agents.
Part of the problem can be accounted for using restriction as follows:

C ⊳ (�a)(a(x).P ∣ a⟨v⟩.Q) ∥ C ′ ⊳ a(x).R

which makes channel a private to the process a(x).P ∣ a⟨v⟩.Q and therefore
disables the communication between agents. However, a process cannot choose
to send a value to (or receive a value from) an external agent without interfer-
ence from an internal process. A possible solution might be to specify external
communication explicitly using actions ↓a(x) and ↑a⟨v⟩, which synchronise only
with external agents.

Summary

In this chapter, a formal model of context-awareness was described. The model
is in the form of a process calculus where applications are represented as net-
works of agents running in parallel. An agent specifies the context information
it requires, which is used to adapt to the changing state of the environment.
The calculus has a number of limitations which can be addressed as part of
future research.
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Chapter 5

Context-Awareness Logic

In this chapter, we talk about a logic for expressing the properties of context-
aware systems. The logic is based on the �-calculus [63, ch.5] with modalities
for talking about context changes and the behaviour of the system in relation to
these changes. We start this chapter by justifying the choice of �-calculus based
logic. Section 5.2 then discusses the syntax of the logic. Section 5.3 details the
semantics. Section 5.4 describes some connectives derived from the main ones
in the logic. Finally, section (5.5) goes through some examples. The reader is
referred to [63, ch.5] for a good introduction to the �-calculus.

5.1 �-calculus based logic

The �-calculus, introduced in section 2.2, is a very powerful modal logic which
encompases many other logics such as LTL, CTL, and CTL∗. In attempting
to find a logic for context-awareness, it was decided to investigate the following
three options.

1. Extend HML (Hennessy Milner Logic).

2. Use a temporal logic such as LTL, CTL, or CTL∗.

3. Use �-calculus.

The first attempt was not successful as we found that most of the useful prop-
erties of context-aware systems involve describing recurring behaviour such as
“whenever an emergency vehicle is detected, the driver is warned”. This quickly
led to the second choice. Some progress was made in coming up with a LTL-
based context-awareness logic. However, expressing the semantics of the for-
mulas based on a LTS was awkward given that labelled transitions do not have
a natural correspondence to formulas in LTL (and CTL/CTL∗). Finally, the
mu-calculus was chosen because it extends HML with the ability to express
temporal properties and the fact that its semantics are based on a LTS model.
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In defining a logic for context-awareness, we extend the �-calculus with the
modality IN[�]. This modality allows linking states to context properties. This
means we can write properties like “The car is coloured” and give context-
awareness properties to systems such as “Whenever a non-coloured car enters
the paint shop, it will eventually become coloured”. Also, in many context-aware
systems, the fact that an action will possibly happen is not enough. We want
to guarantee that some action will be performed by a system given a number
of circumstances (context information). This is captured by a �-calculus macro
defined in our logic as wh�@ meaning that action � is guaranteed to happen
at some point in the future from a state which satisfies  .

No formal study was attempted to find the subset of the �-calculus adequate
for expressing context-awareness properties. Nonetheless, based on the examples
covered, we think that the LTL fragment of this powerful logic together with the
properties wh�@ and X (explained below) would be enough in most cases.

5.2 Syntax

 ::= Agent formula

IN[�] In context

∣ ⟨K⟩ Action

∣ Z Propositional variable

∣ �Z. Least fixed point

∣ ∃x. Existential quantification

∣  ∧  ′ Conjunction

∣ ¬ Negation

∣ tt True

� ::= Context formula

(i, s, �) Context element

∣ � ∧ �′ Conjunction

∣ ¬� Negation

∣ tt True

The syntax of the logical formulas is defined above. There are two types of
formulas describing agents and contexts. The idea is to link the behaviour of the
agent described in terms of agent formulas to the state of the context described
in terms of context formulas. The meaning of the formulas will be given in
section 5.3 using a satisfaction relation.

Following is a brief explanation of the non-trivial formulas in the syntax of
the logic.

∙ IN[�] indicates that the agent is currently in a context which satisfies �.
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∙ ⟨K⟩ the agent can perform an action in the set K and reduce to an agent
that satisfies  .

∙ The formula Z is satisfied by an agent if this agent is an element of V (Z).
V is a valuation function which maps each variable Z to the set of agents
satisfying this variable. Its purpose is similar to that of the valuation
function used in the semantics of first-order logic. To interpret a formula
containing free variables X,Y, Z, . . ., we need to know the meaning of these
variables. When the formula has no free variables (closed), the valuation
function is implicit (i.e does not have to be explicitly provided for the
interpretation of the formula).

∙ In �Z. , free occurrences of Z in  are bound by �Z. The formula �Z. 
is a recursive one which is satisfied by an agent if this latter satisfies
 {�Z. /Z}. It represents the least fixed point of the function  (Z). This
function must be monotonic to guarantee the existence of fixed points. To
guarantee monotonicity, it is enough to impose the syntactic restriction
that any variable in the scope of a fixed point operator must be preceded
by an even number of negations [63, ch.5]. Section 2.2 introduces the
�-calculus fixed point operators.

∙ ∃x. is the usual existential quantification over the set of values V where
a value v that makes  {v/x} satisfied is required for the formula to be
satisfied.

∙ (i, s, �) is satisfied by a context if this latter contains a triple (i, s, v) where
v satisfies �. The logic is parameterised on the definition of formulas for
values �. We make use of the definition in section 4.4 where � is named
 t.

5.3 Semantics

We model context-aware systems using a labelled transition system

M = (S,→: S × (A ∪ {u})× S, cont : S → C)

Where S is the global set of agents and A represents the set of observable actions
ranged over by a while u denotes the occurrence of a context update. We let
� range over the set A ∪ {u}. The relation → determines the possible labelled
transitions between the states, whereas the function cont gives for each state s
the context of the system in this state cont(s).

The formulas of the logic are interpreted with respect to a state s of a
transition system M . We write M, s ∣=  to mean that a state s of M satisfies
formula  . We usually omit M and write s ∣=  when M is clear from the
context. Table 5.1 defines the satisfaction relation ∣=. This latter is defined (as
is the case for the �-calculus [63]) relative to a valuation V which is used for
the interpretation of variables Z and recursive formulas �Z. .
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M, s ∣=V IN[�] iff cont(s) ∣=c �

M, s ∣=V ⟨K⟩ iff ∃s′, �. s �−→ s′ and � ∈ K and M, s′ ∣=V  

M, s ∣=V Z iff s ∈ V (Z)

M, s ∣=V �Z. iff s ∈
∩
{S ⊆ S. ∥ ∥V [S/Z]⊆ S}

M, s ∣=V ∃x. iff ∃v : V. M, s ∣=V  {v/x}
C ∣=c (i, s, �) iff ∃v : V. (i, s, v) ∈ C and v ∈∥�∥

Table 5.1: Definition of the satisfaction relation relative to valuation V

The property IN [�] is satisfied by state s representing an agent if the context
of this state (given by cont(s)) satisfies �. ⟨K⟩ is satisfied by a state s of the
transition system if there exists a transition from s to some state s′ labelled
with a label in K and s′ satisfies  .

The definition of satisfaction for �Z. basically says that s is a member of
the least fixed point which is defined as the intersection of prefixed points for
the function f [ ,Z] : 2S → 2S in turn defined as follows:

f [ ,Z](S)
def
= ∥ ∥V [S/Z]= {s ∈ S : s ∣=V [S/Z]  }

Where S is a subset of the set of all states S. ∥ ∥V represents the set of all
processes satisfying  under valuation V .

5.4 Derived Connectives

Following is a list of modalities and connectives derived from the main ones in
the previous section. Derived connectives are used later in examples.

 ∨  ′ = ¬(¬ ∧ ¬ ′)
 →  ′ = ¬ ∨  ′

� ∨ �′ = ¬(¬� ∧ ¬�′)
�→ �′ = ¬� ∨ �′

∀x. = ¬∃x.¬ 
�Z. = ¬�Z.¬ {¬Z/Z}
ev = �Z.( ∨ (⟨−⟩tt ∧ [−]Z))

al = �Z.( ∧ [−]Z)

wh�@ = �Z.(⟨−⟩tt ∧  ∧ [−�]Z) ∨ (⟨−⟩tt ∧ ¬ ∧ [−]Z)

X = �Z.([u]Z ∧ (⟨−u⟩tt→  ))

[K] = ¬⟨K⟩¬ 
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The first four connectives are the usual disjunction ∨ and implication → on
agent and context formulas. Universal quantification ∀x. and greatest fixed
point �Z. formulas are defined as duals of ∃x. and �Z. respectively. The
� modality is used to express safety properties whereas � is used to express
liveness. The modalities ev,al,wh are defined in terms of the modalities � and
� to have the following meanings:

∙ ev is short for “eventually” meaning that any maximal sequence of tran-
sitions starting with state s includes a state s′ satisfying  .

∙ al is short for “always” meaning that  is satisfied in every state reachable
from state s.

∙ wh is short for “will happen” meaning that every maximal sequence of
transitions starting with s includes a transition s′

�−→ s′′ (labelled with
action �) s.t. s′ satisfies  . Here, we take −� as the set A− � and − to
be the set of all actions A. So,

– ⟨−⟩tt means there is a next action.

– [−]Z means after any next action, Z holds.

– [−�]Z means after any next non-� action, Z holds.

– �Z.(⟨−⟩tt∧ ∧ [−�]Z)∨ (⟨−⟩tt∧¬ ∧ [−]Z) means if  holds, then
we continue looking at states after the non-� actions only. If  does
not hold, then we continue looking at the states following any action.

For example, if a
�−→ b and a

�−→ c then if a ∣=  , we continue with c
only. Otherwise, we continue with both b and c.

This modality is important when we want to guarantee the execution of
action � in the future.

The property wh�@ is not equivalent to ev(⟨�⟩tt ∧  ) as this latter only
captures the fact that action � must eventually become enabled and not that it
is part of every execution path. For example, if

a
�1−→ b

�2−→ c and b
�3−→ d

and if b ∣=  , then ev(⟨�3⟩tt ∧  ) is true because �3 is enabled in state b and

 holds in this state. However, �3 is not part of the path a
�1−→ b

�2−→ c. If
the above transitions represented a system, we cannot guarantee that �3 will
be performed in the future. The use of the formula wh�3@ achieves this
guarantee. In examples, we take wh� as an abbreviation for wh�@tt.

The property X means that after skipping all context updates u, the prop-
erty  is satisfied. This is useful when we want to talk about the next behaviour
of an agent ignoring updates to context. Finally, the property [K] is the dual
of ⟨K⟩ and means that after all next transitions labelled with a label in K
property  holds.
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5.5 Examples

A driver is warned if an emergency vehicle is nearby

This desirable characteristic might be captured by the property:

al (emergency→ whw⟨on⟩) (5.1)

which indicates that throughout the execution of the system in its context,
whenever the property emergency is satisfied, the system warns the driver at
some point in the future. The property emergency might be:

∃x.IN[(type, x,= emerveℎ) ∧ (emer, x,= on)]

Property 5.1 has a problem in that the system can warn the driver at a time
when no emergency vehicle is nearby. This is because the state of the context
can change at any point. We can try imposing the following property in addition
to 5.1:

al (⟨w⟨on⟩⟩tt→ emergency)

This ensures that the driver can never be warned in the context of no emer-
gency. However, the system is still allowed to respond with one warning for
several “non-emergency→emergency” changes in the context.

Figure 5.1 shows an example transition system where each state in the system
(s1, s2, . . . ) has a corresponding context represented by a circle. Black circles
denote emergency situations while white ones denote non-emergency situations.
In the execution paths starting with (s1, s2, s5, s6, s7, . . . ), a warning ‘W’ action
is not performed until the system had passed through two emergency contexts
(in states s2 and s6).

Although the driver eventually receives a warning whenever there is an emer-
gency, there is no guarantee that the number of warnings matches the number
of emergencies. There is also no guarantee that warnings come within a rea-
sonable amount of time. These are known limitations of the logic that could be
addressed in future work.

A device prints to the nearest printer

We can describe two properties of such a system as follows:

1. When the system receives a request to print file x, if the nearest printer
is y, then x should eventually be sent to y.

al ([print(x)](∃y.IN[(nearestp, d,= y)]→ wh y⟨x⟩))

2. Whenever the system sends a print job to printer y, y must be the current
nearest printer.

[print(x)]∃y.ev (⟨y⟨x⟩⟩tt ∧ IN[(nearestp, d,= y)])
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Figure 5.1: Part of a transition system for a context-aware driver warning system

The difference between the two properties is that in the first one the printer is
determined at the time of receiving the print request (print(x)) whereas in the
second it is determined at the time of performing the print action (sending the
file to the printer using action y⟨x⟩).

As the state of the context (value of nearest printer) can change at any
moment, the second property describes a more accurate context-aware system.

A mobile phone vibrates instead of ringing if the user is in a meeting

al (m→ [ring]ff)

Whenever the user is in a meeting (the system satisfies property m), the action
ring is not enabled. This is a safety condition. We are not guaranteed that the
phone will vibrate at all. For this, we need the following property:

al [call] ev ((⟨vib⟩tt ∧m) ∨ (⟨ring⟩tt ∧ ¬m))

Which ensures that, after receiving a call, the phone will eventually either vi-
brate when in a meeting or ring when not in a meeting.
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A mail client downloads new messages when a wireless connection is
detected

Whenever a wireless connection is detected (status of wireless connection changes
from off to on), the retrieval of new messages is initiated.

al (IN[woff]→ ([−](IN[won]→ wh retnew)))

A web-service performs a search for nearby attractions based on the
mobile device’s location

After receiving a request from a device d, eventually the service sends back to
d the list of attractions t nearest to the location l of d.

al [request(d)]ev ∃t, l.(⟨d⟨t⟩⟩tt ∧ IN[(loc, d, l) ∧ (attractions, l, t)])

Summary

In this chapter, a logic for context-awareness based on the �-calculus was given.
The logic includes powerful modalities for the description of the agent behaviour
which can be linked to the state of the context using a modality IN[�]. a number
of examples were given to show how the logic is used in modelling.

As future work, it will be interesting to investigate the link between the
context-awareness logic given in this chapter and the process calculus C� given
in chapter 4. In particular it will be helpful to know if two equivalent agents
in the calculus satisfy the same set of formulas in the logic and vice versa. We
can also enlarge the scope of the logic to talk about networks of agents using
a spatial modality ∥. This can be useful in describing a context-aware system
from a higher level point of view.
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Chapter 6

Case study: The BluScreen
System

In this chapter we demonstrate the use of the C� calculus and its associated logic
using an example of a ubiquitous computing system called BluScreen. BluScreen
[35] is a system created at the University of Southampton for managing adverts
shown on a public electronic display. It works by tracking the presence of
devices near the display using Bluetooth and deciding which advert to show
next depending on the exposure of the detected devices to each advert. To
maximise the exposure to adverts, each advert is associated with an advertising
agent which bids in an auction representing the right to display an advert in the
current advertising cycle (figure 6.1). In our version we assume that a screen
can have more than one advertising space allowing for more than one advert to
be displayed on a single screen.

The following properties could be used to describe this system.

1. For each advertising space sp, the advertising agent with the highest bid
on the auction of sp is allowed to advertise on sp.

2. If no (new) devices are currently nearby, the advertising agent does not
display any advert.

3. At the end of each advertising cycle, only one agent gets to advertise on
each advertising space.

4. An advertising agent cannot bid more than once in a cycle.

5. The bigger the number of new devices, the bigger the amount an agent
bids for an advertising space.

In our model, we simplify by assuming that agents place random amounts as
bids. In reality, a value function based on the number and value of nearby
devices is used to decide on the amount to bid. Therefore, the last property
is neither correct with random amounts nor with the value function. This is
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Figure 6.1: The BluScreen architecture

because an agent could choose to bid less in the presence of say two new devices
as opposed to one new device if the value of the two devices is less. For example,
an agent advertising a hotel in Paris might place more value on a device whose
owner is planning to visit Paris in the near future.

In modelling the BluScreen system, some shortcomings were found in the
calculus. For instance, process definitions taking parameters and recursive def-
initions did not exist in the calculus but were required in this case study. Also,
some notation is assumed in the case study that could easily be added to the
calculus. In particular, the actions ⟨i, s,+v⟩ and ⟨i, s,−v⟩ allow updating the
current value of some context information through addition or subtraction. The
behaviour is dependent on the type of the context information. In case it is a
set, + means set union and − means set subtraction. This could be extended
to any type of operation on context information.

BluScreen Model

Below, we model the BluScreen system using C�. To make the model more
readable, we use the following abbreviations:

∙ “if {x̃}.� tℎen P else Q” equivalent to {x̃}.� ↪→ P else Q

∙ “if {x̃}.� tℎen P” equivalent to {x̃}.� ↪→ P

We note that the expression P in “if {x̃}.� tℎen P” becomes enabled only when
{x̃}� becomes true.
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Advertiser

Ai(s, ad)
def
= [(start, i, no), (present, s, ∅), (auctions, s, ∅), (seenby, ad, ∅)] ⊳

(start, i,= yes).

if {x, y}.(present, s, ℎas(x)) ∧ (seenby, ad,¬ℎas(x))∧

(auctions, s, ℎas(y))

tℎen (�c)(

y⟨am, c⟩.c(sp).sp⟨ad⟩.(present, s, x).⟨seenby, ad,+x⟩

+

if (auctions, s,¬ℎas(y)) tℎen 0

)

Each advertising agent is parameterised on the cycle number i, the screen s,
and the advert it is associated with ad. The context of an advertising agent
includes the devices that have been detected around the screen (present, s)

and the history of device exposure to the advert (seenby,ad). In addition,
the context includes the current auctions available for advertising on screen s
(auctions,s). Agents know when to start bidding on auctions by the use of
the context information (start,i).

An advertising agent first checks whether any of the detected devices has
not been exposed to the advert and selects an auction for an advertising space
to show the advert on. After that, it bids on the selected auction. If successful,
the agent receives the name sp representing the channel on which to send the
advert to be shown on the screen.

Publisher

P i(sc, sp, au)
def
= (� maxbidder, maxbid, timer)

[(start, i, no), (timer, au, 10), (maxbidder, au,⊥), (maxbid, au, 0)]⊳

(start, i,= yes).⟨auctions, sc,+{au}⟩.Q(sc, sp, au) ∣ T (au)

Q(sc, sp, au)
def
= if (timer, au,< 0)

tℎen (maxbidder, au, x).x⟨sp⟩.⟨auctions, sc,−{au}⟩
else au(bid, c).

if (maxbid, au,< bid)

tℎen ⟨maxbidder, au, c⟩.⟨maxbid, au, bid⟩.Q(sc, sp, au))

else Q(sc, sp, au)

T (au)
def
= �.⟨timer, au,−1⟩.T (au)

Each advertising space is associated with a publishing agent. This agent an-
nounces an auction to advertising agents and determines the winner at the end
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Case study: The BluScreen System

of the auction. Therefore, it keeps track of the agent with the maximum bid
so far in its context (maxbidder,au). While the auction is active, the agent
accepts new bids, which are then compared to the current maximum bid and the
context updated accordingly. When the auction finishes, the publishing agent
sends the channel representing the advertising space to the winning advertising
agent. A process T keeps decrementing the value of timer. When this latter
reaches below 0, the auction is considered to have finished.

Device detection

Di(sc)
def
= [ ] ⊳ starti().⟨present, sc, ∅⟩.Ei(sc)

Ei(sc)
def
= findnext⟨t, f⟩.(
t(x).⟨present, sc,+{x}⟩.Ei(sc) + f().⟨start, i, yes⟩
)

The device detection agent scans for new devices around the screen and updates
the context information (present,s) to reflect the changes. At the start of each
cycle, the set of devices nearby the screen is reset using the action ⟨present, sc, ∅⟩,
then scanning is performed through communication on channel findnext. A
reply on channel t represents the detection of a new device, whereas a reply on
channel f represents the failure to find any new device.

System

Bn,m(sc)
def
= [ ] ⊳ start0⟨⟩ ∥ S0

n,m(sc)

Sin,m(sc)
def
= Di(sc) ∥

∏
j∈1..n

Ai(sc, adj) ∥
∏

j∈1..m

P i(sc, spj , auj) ∥

[ ] ⊳ sp1(x). . . . .spm(x).starti+1⟨⟩ ∥ Si+1
n,m(sc)

The BluScreen system is modelled by the network of agents Bn,m. This net-
work consists of an infinite number of networks Sin,m(sc) each of which mod-
els an advertising cycle. For each cycle, there is one device detection agent
Di(sc), n advertising agents (

∏
j∈1..nA

i(sc, adj)), and m publishing agents

(
∏
j∈1..m P

i(sc, spj , auj)) running in parallel. The notation
∏
j∈1..nAi is short

for A1 ∥ A2 ∥ ⋅ ⋅ ⋅ ∥ An. The agent [ ] ⊳ start0⟨⟩ kick starts the first cycle and
the agent [ ] ⊳ sp1(x). . . . .spm(x).starti+1⟨⟩ starts off the next cycle.

Properties

The following properties describe examples of the context-aware behaviour mod-
elled by agents in the BluScreen system.
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∙ In case no device is currently nearby, the advertising agent does not display
any advert.

Ai(s, ad) ∣= X(IN[(present, s,= ∅)]→ ∀x.al [x⟨ad⟩]ff)

∙ In case no new devices are currently nearby, the advertising agent does
not display any advert.

Ai(s, ad) ∣= X(IN[∀z.(present, s, ℎas(z))→ (seenby, ad, ℎas(z))]→ ∀x.al [x⟨ad⟩]ff)

∙ Only the advertising agent with the maximum bid for an auction gets to
advertise.

P (sc, sp, au) ∣= al (∀x.⟨x⟨sp⟩⟩tt→ IN[(maxbidder, au,= x)∧(timer, sc,= 0)])

Summary

The BluScreen system is a context-aware system built at the University of
Southampton. A collection of advertising agents represent adverts competing
for space on a public display. These agents place bids depending on whether
devices near the display have been exposed to their adverts before. We have
attempted to model this system using C�. We think that our model successfully
captures the essential elements of the context-aware behaviour in the BluScreen
system.
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Chapter 7

Conclusions

Entities in a ubiquitous computing environment must be aware of the context
in which they operate. This is achieved through the use of sensors that provide
the entity with appropriate data. Such data can be used by the system to
reconfigure itself and possibly change its strategy and goals. For example, a
mobile phone can change its profile to “silent” when entering a building where
mobile phones are not allowed.

Many of the applications of context-awareness involve dependable systems
which affect the daily life of users. Correctness of implementation is crucial
and failures can have disastrous consequences (eg. in health care and military).
Therefore, it is important to develop context-aware applications using a formal
framework allowing the verification of correctness and safety properties.

Our attempt at modelling context-awareness serves as a first step towards a
more powerful theory that takes into account many of the aspects of context-
aware systems. More work is required especially in the areas of behavioural
equivalence and property verification. Some further work is outlined in the next
section.

7.1 Future work

Equivalences

Behavioural equivalences are a very useful tool in proving properties of systems.
By checking that one agent is equivalent to another, we are asserting that they
are exchangeable in any network. An interesting problem is finding the minimum
subset C ′ of a context C for which C⊳P ∼ C ′⊳P . This can indicate the minimum
required information to achieve the desired behaviour. Another equivalence (on
processes) is P ∼� Q which means that under any context C satisfying property
�, processes P and Q are equivalent. In other words,

P ∼� Q if ∀C : C. C ∣= � implies C ⊳ P ∼ C ⊳ Q
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It would also be interesting to investigate the link between the context-
awareness logic and the process calculus C�. In particular it would be helpful
to know if two equivalent agents in the calculus satisfy the same set of formulas
in the logic and vice versa.

Privacy and reliability of context information

Privacy is the inability to discover or misuse the identity of the user. The Com-
mon Criteria [32] lists four aspects of privacy namely: anonymity, pseudonymity,
unlinkability, and unobservability.

Anonymity means that a piece of information cannot be attributed to the
identity of the person to which it belongs. In C�, this means that a process
does not differentiate between information (i, s, v) and (i, s′, v) for all s, s′. For
example, if system P behaves the same whether it knows (location, user1, r101)
or (location, user2, r101) where user2 is any user different from user1, then we
can say that the user is anonymous when in location r101. As an example, P
could be the following process, which switches the light on in case a person is
detected in location r101.

∃x.(location, x,= r101) ↪→ ligℎt⟨on⟩

Another view of anonymity is that information (i, s, v) is not differentiated from
(i, s, v′) for any values v, v′. For example, if an electronic voting system behaves
the same when (vote, p1, yes) and when (vote, p1, no), then we can say that the
vote of person p1 is anonymous.

Conclusion

Ubiquitous systems need to be aware of their surrounding context in order to
integrate seamlessly with the user’s tasks and environment. A system which has
context-dependent behaviour with the aim of providing useful functionality to
its user in different contexts is called a context-aware system.

In this thesis, we aimed to deliver a formal model of context-awareness that
would make the following concepts clearer.

1. How can context be represented?

2. How is contextual information accessed?

3. How can we model the effects of context on the system’s behaviour?

We think that we have achieved this objective by defining the new calculus C�
and a modal logic for context-awareness. We demonstrated this through various
examples and models. The main characteristics of C� include:

∙ Ability to model a system behaviour and how it affects and is affected by
its context.
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∙ Ability to define context-dependent behaviour using interpretation rules
as well as conditional terms. The interpretation rules define context-
dependency as an external effect whereas the conditional construct is in-
ternal to the process.

∙ Context information restriction can be used to define some degree of con-
text information privacy. This is because it limits the scope in which the
restricted information is accessible.

On the other hand, the modal logic for context-awareness has the following
features:

∙ A distinction between the state of a system and its context. We can
describe the properties of each part as well as the dependency between
them.

∙ Ability to express guaranteed execution of an action.

∙ Logic is based on �-calculus so it inherits its expressive power.

However, a lot of research remains to be done in this area some of which
was outlined in the previous section. We hope the research we have undertaken
and the results we have achieved will be of benefit to the context-awareness
and ubiquitous computing research communities. Further research can build
on our results by enhancing the logic and the calculus or implementing tools
to simulate the execution of models built using the calculus and validate them
using the logic.
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