The University of Southampton
University of Southampton Institutional Repository

Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure

Record type: Article

The effects of elevated CO2 were studied on the photosynthetic gas exchange behaviour and leaf physiology of two contrasting poplar (Populus) hybrids grown and treated in open top chambers (OTCs in Antwerp, Belgium) and in closed glasshouse cabinets (GHCs in Sussex, UK). The CO2 concentrations used in the OTCs were ambient and ambient +350 µmol mol–1 while in the GHCs they were c. 360 µmol mol–1 versus 719 µmol mol–1. Measurements of photosynthetic gas exchange were made for euramerican and interamerican poplar hybrids in combination with measurements of dark respiration rate and Rubisco activity. Significant differences in the leaf anatomy and structure (leaf mass per area and chlorophyll content) were observed between the leaves grown in the OTCs and those grown in the GHCs. Elevated CO2 stimulated net photosynthesis in the poplar hybrids after 1 month in the GHCs and after 4 months in the OTCs, and there was no evidence of downward acclimation (or down-regulation) of photosynthesis when the plants in the two treatments were measured in their growth CO2 concentration. There was also no evidence of down-regulation of Rubisco activity and there were even examples of increases in Rubisco activity. Rubisco exerted a strong control over the light-saturated rate of photosynthesis, which was demonstrated by the close agreement between observed net photosynthetic rates and those that were predicted from Rubisco activities and Michaelis-Menten kinetics. After 17 months in elevated CO2 in the OTCs there was a significant loss of Rubisco activity for one of the hybrid clones, i.e. Beaupré, but not for clone Robusta. The effect of the CO2 measurement concentration (i.e. the short-term treatment effect) on net photosynthesis was always larger than the effect of the growth concentration in both the OTCs or GHCs (i.e. the longterm growth CO2 effect), with one exception. For the interamerican hybrid Beaupré dark respiration rates in the OTCs were not significantly affected by the elevated CO2 concentrations. The results suggest that for rapidly growing tree species, such as poplars, there is little evidence for downward acclimation of photosynthesis when plants are exposed to elevated CO2 for up to 4 months; longer term exposure reveals loss of Rubisco activity.

PDF Photosynthetic_acclimation_to_elevated_co2_in_poplar.pdf - Version of Record
Restricted to Repository staff only
Download (1MB)

Citation

Ceulemans, R., Taylor, G., Bosac, C., Wilkins, D. and Besford, R.T. (1997) Photosynthetic acclimation to elevated CO2 in poplar grown in glasshouse cabinets or in open top chambers depends on duration of exposure Journal of Experimental Botany, 48, (9), pp. 1681-1689. (doi:10.1093/jxb/48.9.1681).

More information

Published date: 1997

Identifiers

Local EPrints ID: 159921
URI: http://eprints.soton.ac.uk/id/eprint/159921
ISSN: 0022-0957
PURE UUID: 342dea16-b394-4485-b0b2-e794a946a128

Catalogue record

Date deposited: 08 Jul 2010 10:23
Last modified: 18 Jul 2017 12:36

Export record

Altmetrics

Contributors

Author: R. Ceulemans
Author: G. Taylor
Author: C. Bosac
Author: D. Wilkins
Author: R.T. Besford

University divisions


Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×