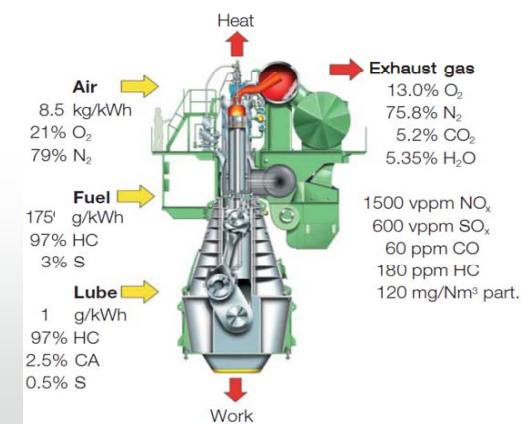


Development of Hybrid Diesel - Electric Propulsion System for Ships

Reducing fuel consumption and emissions,
optimizing propulsion, making greener
shipping

Eleftherios K. Dedes, Dominic Hudson, Stephen Turnock
ed3go9@soton.ac.uk
MTPC 10-11 June 2010

What is exhaust pollution from ships?


Typical exhaust pollution
(production of smoke) due to
transient engine loading in
slow vessel speeds

Contents of the presentation

- What is pollution and basic diesel engine operation aspects
- World wide adopted methods for emission calculation
- Activity monitoring of vessels – Method of daily reports
- Data editing – Statistical analysis
- Development of hybrid technology
- Economical assessment
- Conclusions and discussion

2

Energy flow and emissions in 2-stroke:

4

World wide adopted methods for emission calculation

In relevant literature, 2 globally adopted methods are used:

- Top - Down method
 - Relies on world marine fuel sales
 - Wide spread of doubt due to unreliable statistics
- Bottom – Up or “Activity Based” method
 - More accurate method
 - Takes into account:
 - Ship movements
 - Ship characteristics
 - Corresponding fuel consumption figures
 - Emission factors

5

Activity monitoring of vessels – Method of daily reports

Typical table containing information regarding the voyage, weather, main engine and auxiliary engine loading and propeller operation

Ship Speed:	Knots	14.84	14.46	14
Slip:	-	6.9P	2.4N	0.4N
Engine RPM:	RPM	114.8	116.8	115.3
Load of Engine:	% MCR	0.7530	0.8416	0.8233
Activity Time	Hours	9.5	24	24
	Wind	Abeam 4	Abeam 4	Ahead 5
Weather Type:	condition	Moderate	Moderate	Rough
	Current	abeam	abeam	Ahead
Distance Covered:	sea miles	140.98	347.04	336
Daily Consumption:	tonnes	14.5	41.6	40

6

Activity monitoring of vessels – Method of daily reports

Typical table containing information regarding the voyage, weather, main engine and auxiliary engine loading and propeller operation

Auxiliary Engine	Number in Op.	2	3	2
Operational Time:	hours	4 + 9.5	24 + 11 + 6	24 + 10
Total Output	kW	630	710	580
Fuel Type:	HFO			
Daily Consumption:	tonnes	3	3	3
Load Indicator -		66	70	70
Fuel Admission Lever				
		64	68	68
T/C RPM		13200	13800	13600

7

Data Editing and Statistical Analysis

- Interpolation using the shop test of each engine with the parameters:
 - Fuel Admission lever (rack position of injection pumps)
 - Load indicator (desired engine loading)
 - T/C Rotational speed
- Calculating the difference from the point of low emission and low consumption using the following equation:

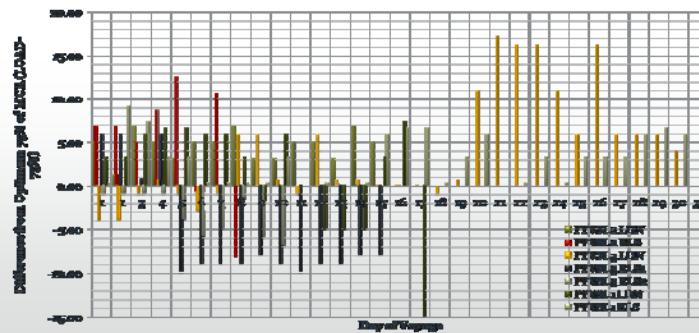
$$Load_{extra_i} = x_i - 0.75$$

– MAN B&W 7S50MC-C optimum point is at 75% of M.C.R.

8

Data Editing and Statistical Analysis

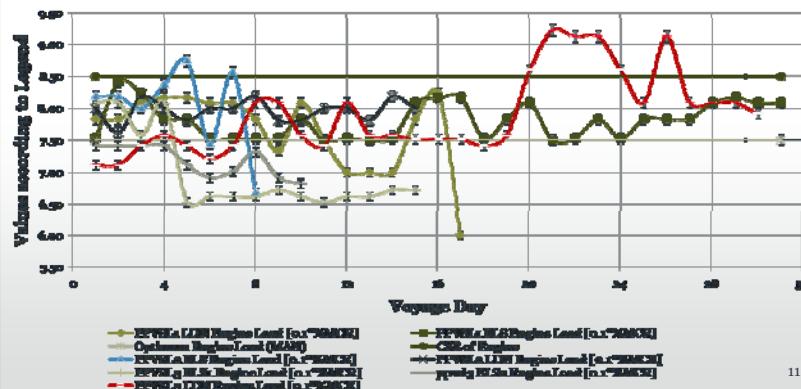
- Calculation of extra energy required or not from optimum


$$Energy_{extra} = \sum_{i=1}^n Load_{extra_i} \cdot MCR \cdot time_i$$

- If the value is positive (+) more energy is required. Engine is more loaded for constant RPM
- If the value is negative (-) less energy is required. Ship's speed is increased

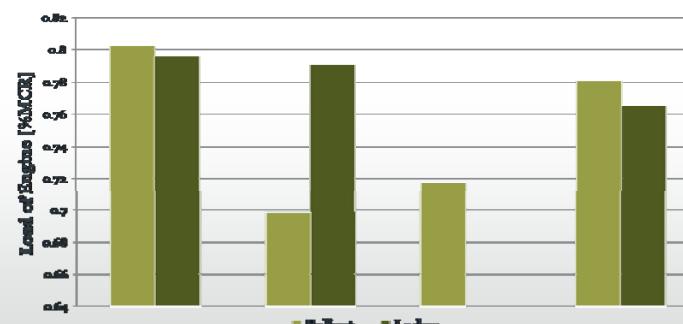
9

Engine loading difference from optimum


- 0.0 is considered to be the optimum point (75% for these engines)

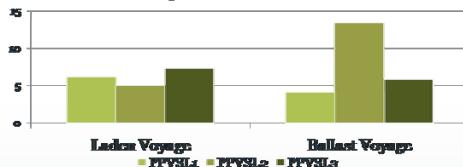
10

Engine loading variance during voyage


- Laden and Ballast condition

11

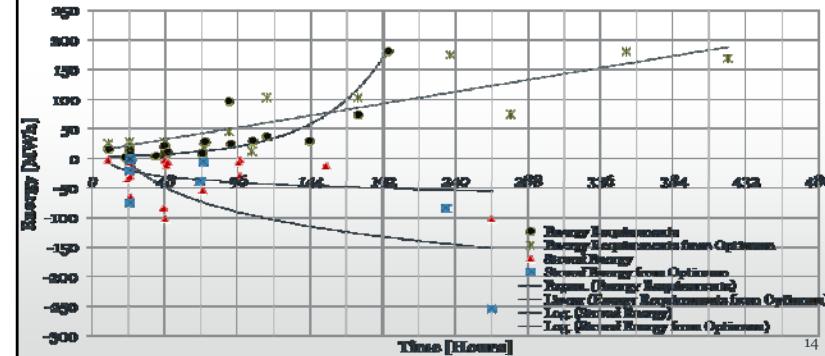
Analysis the previous chart shows (1/2):


- Mean values of engine loading during voyages

12

Analysis of the previous chart shows (2/2):

- Standard deviation (σ) from optimum



- As a result (for $\sigma = 7\%$)
 - At least 75% of values will drop into the range of 61% - 89%
 - At least 89% of values will drop into the range of 51% - 96%
- As a result, taking into account the following graphs, sizing of the storage medium can be performed

13

Extra or less energy requirements and regression application

- From optimum loading point and from voyage's mean point

14

Hybrid Technology

Why hybrid and All Electric Ship?

- Uncouples propeller and Diesel engine
- Better energy flow and management (electricity)
- Exploits better the thermal efficiency of the engine(s)
- Electric motors adapt RPM → optimization in selection of propeller
- Exploits greener means of energy, like solar
- Load levelling → transient load removal
- Application in low steaming by switching off generator sets
- Stored energy can achieve locally zero emission ships

16

Battery Selection, Energy: 40MWh

- Key Features:
 - Weight and capacity
 - Discharging rate
 - Cost

Energy density and required added weight per battery type (Linden, 2000)

Type	Wh/kg	Cost [\$/kg]	Req. tons
Lead Acid	35	3.15	1142.9
Vanadium - Bromine	50	15	800.0
Silver Cadmium	70	-	571.4
Zinc - Bromine	70	-	571.4
Sodium/nickel chloride	115	12.65	347.8
Lithium Ion	150	90	266.7

17

Battery Selection, Energy: 40MWh

- Sodium Nickel Chloride (Zebra®) Battery
 - Already developed by Rolls Royce
 - High energy density per available kWh
 - Lightweight compared to Lead Acid (~40% of weight)
 - Good discharging rate profile
 - Low maintenance cost
 - Tested in marine environment
 - Lower Cost than (VBr-RFB) → Potential to drop more

18

Diesel Generator Selection

- 3 scenarios of proposed sizing (before optimization algorithms)
 - 6 Identical generators
 - 2 generators to cover the 60% of MCR, 4 more to reach 100% of MCR
 - Scenario 1 but the output reduced until 90%
- Reminder that:
 - Engines operate at 85% of MCR optimum point
 - Generator efficiency 95%- 97%
- Increase in overall MCR of Diesel Generators

19

Fuel Savings

- If the system was in placed, judging from consumption reports from voyages, the potential fuel savings are the following:

Fuel Savings per Voyage		
Vessel	Fuel Savings	Energy NET
PPVSL1	99 tonnes	82.2 MWh
PPVSL2	70 tonnes	180.4 MWh
PPVSL3	294 tonnes	133.2 MWh

Vessel	Charging Fuel	Final F. Savings
PPVSL1	0.86 tonnes/Day	5.0 tonnes/Day
PPVSL2	2.00 tonnes/Day	2.3 tonnes/Day
PPVSL3	0.76 tonnes/Day	8.7 tonnes/Day

20

Emission Reduction:

- Related only to fuel oil consumption:
- Potential to decrease more with optimum operation

Emission reduction per day

Vessel	Pollutant	Savings [tonnes/Day]
PPVSL1	CO ₂	15.76
	NO _x	0.43
	SO _x	0.30
PPVSL2	CO ₂	7.42
	NO _x	0.20
	SO _x	0.14
PPVSL3	CO ₂	27.6
	NO _x	0.76
	SO _x	0.40

21

Economic feasibility

- Internal Rate of Return of Investment as criterion
- 40% direct payment, 60% bank loan
- 8% fixed bank interest
- 10% increase in fuel price per year

$$\sum_{j=0}^n \frac{FS_j}{(1 + IRR)^j} = Cost_{hybrid} + \sum_{j=1}^n \frac{C_j}{(1 + IRR)^j}$$

Internal Rate of Return of each scenario

Storage	Scenario	IRR
ZEBRA®	2	20.7%
Vanadium	2	4.3%
Vanadium	3	4.4%

22

Conclusions and Discussion

Conclusions

- Hybrid is economically feasible
- Lower temperatures inside the cylinder drop more NOx
- ZEBRA® battery is a potential solution along with redox flow cell batteries
- Local zero emissions is possible to achieve
- Increase in overall efficiency ~ 15%
- Improved selection of propellers
- Improved design of stern hull form, flow optimization, better trim

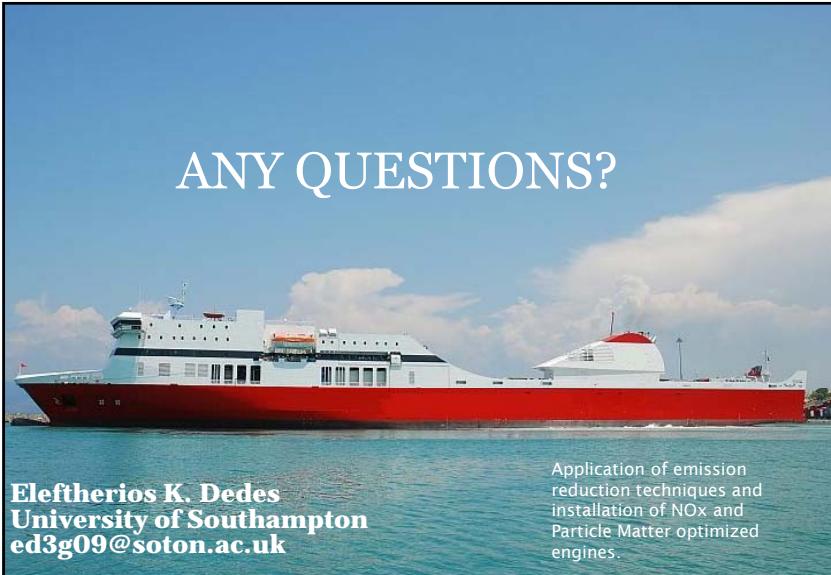
24

Future planned work

- Simulation and optimization algorithms
- Diesel Generator sets → Scenarios of number and type
- Expansion to the whole fleet of Bulkers
- Selection of Electric Motors
- Alternatives for electric charging
- Sustainable “green technology”
- Investigation of Hybrid Nuclear propulsion

25

Acknowledgments


The speaker wish to thank Foundation Propondis for the economical support of the PhD project and the maritime corporation which provided the data, especially superintendent engineers Mr. A. Giantsis, Mr. P. Triantafyllos and Mr. G. Gavrilis.

FOUNDATION
PROPONDIS

26

ANY QUESTIONS?

