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A COMPUTATIONAL APPROACH TO 1-DIMENSIONAL

REPRESENTATIONS OF FINITE W -ALGEBRAS ASSOCIATED TO

SIMPLE LIE ALGEBRAS OF EXCEPTIONAL TYPE

by Glenn Ubly

Let g be a simple complex Lie algebra and let e be a nilpotent element of g. It

was conjectured by Premet in [P07i] that the finite W -algebra U(g, e) admits

a 1-dimensional representation, and further work [L10, P08] has reduced this

conjecture to the case where g is of exceptional type and e lies in a rigid

nilpotent orbit in g. Using the PBW-theorem for U(g, e) we give an algorithm

for determining a presentation for U(g, e) which allows us to determine the

1-dimensional representations for U(g, e). Implementing this algorithm in

GAP4 we verify the conjecture in the case that g is of type G2, F4 or E6.

Using a result of Premet in [P08], we can use these results to deduce that

reduced enveloping algebras of those types admit representations of minimal

dimension, and using the explicit presentations we can determine for which

characteristics this will hold. Further, we show that we can determine the

1-dimensional representations of U(g, e) from a smaller set of relations than

is required for a presentation. From calculating these sets of relations, we

show that in the case that g is of type E7 and e lies in any rigid nilpotent

orbit, or in the case that g is of type E8 and e lies in one of 14 (out of 17)

rigid nilpotent orbits, that U(g, e) admits a 1-dimensional representation.
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1

Introduction

The study of finite W -algebras begins in [DT93], and the definition used here

was first used by Premet in [P02]. For a complex semisimple Lie algebra g

with nilpotent element e, we associate the finite W -algebra U(g, e), an infinite

dimensional associative algebra. There has been a great deal of recent interest

in the representation theory of finite W -algebras. It was proved in [P07ii] that

U(g, e) always admits finite-dimensional representations. In an earlier paper

it was conjectured that U(g, e) always admits a representation of dimension 1

[P07i, Conjecture 3.1 (1)]. This was verified for g of classical type by Losev in

[L10]. Also, in [P08], Premet reduces the conjecture to the case that e lies in

a nilpotent orbit of g which does not arise by Lusztig–Spaltenstein induction,

i.e. a rigid nilpotent orbit of g. This thesis is a contribution to the completion

of a proof that U(g, e) admits a 1-dimensional representation.

The representation theory of finite W -algebras is closely connected to

the representation theory of reduced enveloping algebras, which are certain

quotients of the universal enveloping algebras of modular Lie algebras. Let k

be the algebraically closed field of characteristic p� 0, let gZ be the Chevalley

Z-form of g and let gk = gZ ⊗ k. The Kac–Weisfeiler conjecture, proved by

Premet in [P95], states that for ξ ∈ g∗
k
, any module of the reduced enveloping

algebra Uξ(gk) has dimension divisible by pdξ where dξ is half the dimension of

the coadjoint orbit of ξ. In [P08, Theorem 1.4], Premet proves that if U(g, e)

1



1. INTRODUCTION 2

admits a 1-dimensional representation then there exists a Uξ(gk)-module with

dimension pdξ . This makes use of a modular analogue U(gk, ek) of U(g, e).

Chapter 2 contains the necessary background on Lie algebras and nilpo-

tent orbits. In Chapter 3 we give the definition and construction of U(g, e)

and we state a PBW theorem which shows how we can obtain a presentation

for U(g, e). In Chapter 4 we give an algorithm for constructing a presenta-

tion for U(g, e). This takes a nilpotent element e ∈ g and gives an sl2-triple

(e, h, f) in g, and from this we can determine a set of generators and relations

for U(g, e) in terms of a carefully chosen ordered basis for g. In Chapter 5

we show how the presentation obtained by the methods of Chapter 4 can be

used to determine all 1-dimensional representations for U(g, e). We also show

that in many cases, we can determine the 1-dimensional representations from

a much smaller set of relations than is necessary for a presentation. We also

consider the implications for the representation theory of reduced enveloping

algebras. In Chapter 6 we give the results of the application of the algorithms

of Chapter 4 to U(g, e) where g is a simple Lie algebra of type G2, F4, E6 or

E7, and e lies in a rigid nilpotent orbit in g. We see that in these cases U(g, e)

admits either one or two 1-dimensional representations. For g of type G2, F4

or E6 and e in a rigid nilpotent orbit in g we have explicit presentations for

U(g, e), so we can see for which p we are able to define U(gk, ek) and hence

determine when Uξ(gk) (where ξ corresponds to ek under an identification of

gk with g∗
k
) has a module of dimension pdξ . We also give this for 5 of the 7

non-zero rigid nilpotent orbits in g of type E7. For the remaining 2 non-zero

rigid nilpotent orbits for type E7 and for 14 of the 17 non-zero rigid nilpotent

orbits for type E8 we are able to determine the 1-dimensional representations

but without further calculation we are not able to determine the condition

on p which allows us to draw conclusions about the associated reduced en-

veloping algebras. In Appendices A to F we give an implementation of the

algorithms of Chapter 4 in GAP4.

The code given in the appendices is available online at http://www.ruhr-

uni-bochum.de/ffm/Lehrstuehle/Lehrstuhl-VI/ubly-thesis.html.



2

Preliminaries

In this chapter we give the necessary definitions and results on Lie algebras.

The material here is standard and can be found in [H72], [S87], [CM93], [J62]

and [C93]. Let k denote a field.

2.1 Lie algebras – elementary definitions and

results

Definition 2.1.1. A Lie algebra over k is a vector space g over k with a

bilinear operation [· , ·] : g× g→ g satisfying for all x, y, z ∈ g:

1. [x, x] = 0,

2. [x, [y, z]] + [y, [x, z]] + [z, [x, y]] = 0.

For example, given any associative algebra A over k, we can take the

bracket to denote the commutator, i.e. [x, y] = xy−yx for x, y ∈ A. This can

easily be seen to satisfy the above axioms, thus defining a Lie algebra over k.

For the rest of this section, g denotes a finite-dimensional Lie algebra over

k. For x ∈ g write [x, g] for the set {[x, y] | y ∈ g}, and for a subset A ⊆ g

write [A, g] for {[x, y] | x ∈ A and y ∈ g}.

3



2. PRELIMINARIES 4

Definition 2.1.2. We call a subspace h ⊆ g a subalgebra of g if for all x, y ∈ h

we have [x, y] ∈ h.

Definition 2.1.3. Call a subspace a of a Lie algebra g an ideal of g if [x, y] ∈ a

for all x ∈ g and y ∈ a.

Definition 2.1.4. Call g abelian if [x, y] = 0 for all x, y ∈ g.

Definition 2.1.5. The centre of g is the set {x ∈ g | [x, y] = 0 for all y ∈ g}.

It is clear that the centre of g is an ideal of g.

Definition 2.1.6. For a subset (or element) A of g, the centralizer of A in g

is the set gA := {x ∈ g | [x,A] = 0}.

Definition 2.1.7. The normalizer of a subspace A of g is the set N(A) =

{x ∈ g | [x,A] ⊆ A}.

It is clear that the normalizer of a subspace of g is a subalgebra of g.

Definition 2.1.8. Let g, h be Lie algebras. A linear map φ : g→ h satisfying

φ([x, y]) = [φ(x), φ(y)] for all x, y ∈ g is a homomorphism of Lie algebras. If

the map φ is also a bijection, then φ is an isomorphism of Lie algebras. A

homomorphism g→ g is an endomorphism of g.

We denote by gln(k) the general linear Lie algebra; that is n×n matrices

with entries in k with the commutator [x, y] = xy−yx. More generally, write

gl(V ) for the Lie algebra of endomorphisms of V , a vector space over k.

Definition 2.1.9. We call a Lie algebra homomorphism g → gln(k) or g →
gl(V ) a representation of g.

Equivalently, given a representation φ : g → gl(V ), the action of g on V

by x.v = φ(x)(v) allows us to view V as a g-module. Note that the ideals of

g are precisely the kernels of homomorphisms from g.

Definition 2.1.10. We call g simple if g is non-abelian and contains no ideals

other than g and 0.
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For any element x in g, we define the map adx : g→ g by adx(y) = [x, y]

for all y ∈ g. The map adx is an endomorphism of g. Call this the adjoint

action of x on g. This gives a map ad : g → gl(g) which sends x ∈ g to

adx ∈ gl(g); call this the adjoint representation of g.

Definition 2.1.11. We call a linear map δ : g → g a derivation of g if it

satisfies the following for all a, b ∈ g:

δ([a, b]) = [δ(a), b] + [a, δ(b)].

We can easily see that for x ∈ g, adx is a derivation on g. The space of

derivations of g forms a Lie algebra with the commutator operation.

Definition 2.1.12. We call an element x ∈ g nilpotent if adx is a nilpo-

tent endomorphism of g. That is, if there is n > 0 such that (adx)n(g) =

[x, [x, · · · [x, g]]] = 0 (where there are n sets of brackets).

Definition 2.1.13. We define the derived series of g by putting g(0) = g and

for i ≥ 1, g(i) = [g(i−1), g(i−1)]. If there is some n ≥ 0 with g(n) = 0 then we

say g is solvable.

Definition 2.1.14. For a Lie algebra g, we call the unique maximal solvable

ideal the radical of g.

Definition 2.1.15. We call a Lie algebra g semisimple if its radical is 0.

Definition 2.1.16. We call a Lie algebra g reductive if the radical of g is

equal to the centre of g.

We immediately have that a simple Lie algebra is semisimple and that a

semisimple Lie algebra is reductive.

Definition 2.1.17. For a Lie algebra g, we define the lower central series

by putting g0 = g and for i ≥ 1, gi = [gi−1, g]. If there is some n ≥ 0 with

gn = 0 then we say g is nilpotent.
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Theorem 2.1.18 (Engel’s theorem). A Lie algebra g is nilpotent if and only

if each element of g is nilpotent.

For the remainder of this section, we assume that k has characteristic 0

and is algebraically closed.

Theorem 2.1.19 (Ado’s theorem). Each finite-dimensional Lie algebra g is

isomorphic to a subalgebra of gl(V ), for some finite-dimensional vector space

V .

Definition 2.1.20. We call an element x ∈ g semisimple if the endomor-

phism adx is diagonalizable.

We can write x ∈ g uniquely as a sum xs + xn where xs is semisimple, xn

is nilpotent and xs and xn commute. This is the Jordan–Chevalley decompo-

sition.

Let Tr(A) denote the trace of an endomorphism A of g.

Definition 2.1.21. We define the Killing form on g to be the map κ : g×g→
k given by

κ(x, y) = Tr(adx ad y)

for x, y ∈ g.

We note that as Tr(AB) = Tr(BA), the Killing form is symmetric and

we deduce that the Killing form is associative; that is for x, y, z ∈ g, we have

κ([x, y], z) = κ(x, [y, z]). The Killing form gives the following criterion for g

to be semisimple.

Theorem 2.1.22. A Lie algebra g is semisimple if and only if the Killing

form on g is non-degenerate.

Theorem 2.1.23. A Lie algebra g is semisimple if and only if it is a direct

sum of a finite set of ideals a1, . . . , am of g such that each ai is a simple Lie

algebra.
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To a Lie algebra over k (where k can be any field) we can associate an

infinite-dimensional associative algebra over k, containing k, called the uni-

versal enveloping algebra of g, denoted U(g). There is a natural equivalence

between the category of g-modules and the category of U(g)-modules. We

give the definition of U(g) in terms of a universal property, and then a more

explicit construction which is more useful for the remainder of this thesis.

Definition 2.1.24. For a Lie algebra g, the universal enveloping algebra

U = U(g) of g is an associative algebra with 1 with a map i : g → U

satisfying

i[x, y] = i(x)i(y)− i(y)i(x) (2.1.25)

such that given any U ′ and i′ : g → U ′ satisfying (2.1.25) there is a unique

homomorphism φ : U → U ′ with φ ◦ i = i′.

Given a Lie algebra g over k, we can construct the universal enveloping

algebra of g as follows. Let T (g) denote the tensor algebra of g, that is we

put T n(g) = g⊗n = g⊗ · · · ⊗ g (with n copies of g) with T 0(g) = k. Then the

tensor algebra is T (g) = ⊕i≥0T
i(g) with the natural associative multiplication

of elements of T (g): for u = u1⊗· · ·⊗um ∈ Tm(g) and v = v1⊗· · ·⊗vn ∈ T n(g)

we have u⊗ v = u1⊗· · ·⊗um⊗ v1⊗· · ·⊗ vn ∈ T n+m(g). Let I be the 2-sided

ideal of T (g) generated by the elements x ⊗ y − y ⊗ x − [x, y] for x, y ∈ g.

Then we can take U(g) to be the quotient T (g)/I. We write an element

x1 ⊗ · · · ⊗ xm + I of this quotient as x1 · · ·xm. Given an ordered basis of g

(which we do not require to be finite-dimensional here) we have a basis for

U(g) as follows.

Theorem 2.1.26 (Poincaré–Birkhoff–Witt). Let x1, x2, . . . be an ordered ba-

sis of g. Then the elements xi1 . . . xim where i1 ≤ · · · ≤ im, together with

1 ∈ k, form a basis of U(g).

We call such a basis a PBW-basis of U(g). Note that we can identify g

with T 1(g), and we do not distinguish in our notation between elements of g

and the corresponding elements in U(g).
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2.2 Root systems and the classification of

semisimple Lie algebras

We can classify semisimple Lie algebras in terms of their associated root

systems. In this section we define root systems in an abstract sense and then

show how root systems are used to classify semisimple Lie algebras.

Definition 2.2.1. For a Euclidean space E with standard inner product (· , ·),
a root system is a subset Φ of E satisfying the following:

• Φ is a finite set, spanning E and 0 6∈ Φ;

• for each α ∈ Φ the only multiples of α in Φ are ±α;

• for each α ∈ Φ there is a reflection sα such that sα(α) = −α and

sα(Φ) = Φ;

• if α, β ∈ Φ then 〈β, α〉 := 2 (α,β)
(α,α)

∈ Z.

Definition 2.2.2. For a root system Φ in a Euclidean space E there is a finite

subgroup W of isometries of E generated by the reflections sα for α ∈ Φ; call

this the Weyl group of Φ.

Definition 2.2.3. Let Φ,Φ′ be root systems in Euclidean spaces E, E ′ re-

spectively. An isomorphism of vector spaces φ : E → E ′ sending Φ to

Φ′ is an isomorphism of root systems if for any roots α, β ∈ Φ we have

〈α, β〉 = 〈φ(α), φ(β)〉.

Definition 2.2.4. The rank of a root system Φ ⊂ E is the dimension of the

Euclidean space E.

Given a root system Φ, we can choose a subset ∆ = {α1, . . . , αl} ⊂ Φ

(where l is the rank of Φ) such that ∆ spans E and each root β ∈ Φ can

be expressed as a finite sum β =
∑l

i=1 ciαi where either all coefficients ci

are non-negative integers (call such roots positive) or all coefficients ci are

non-positive integers (call such roots negative). We call the roots α1, . . . , αl
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simple roots. Denote by Φ+ the set of positive roots, and by Φ− = −Φ+ the

set of negative roots. We have Φ = Φ+ ∪ Φ−.

Definition 2.2.5. A root system Φ is called irreducible if it cannot be ex-

pressed as a union of 2 non-empty subsets: Φ = Φ1 ∪ Φ2, where each root in

Φ1 is orthogonal to each root in Φ2.

For a root system Φ of rank l with a set of simple roots {α1, . . . , αl}, we

define the Cartan matrix associated to Φ to be the l × l matrix with each

integer 〈αi, αj〉 in position (i, j). Note that any Cartan matrix is non-singular,

and is independent of the choice of simple roots, other than the order. The

Cartan matrix determines the root system up to isomorphism.

For a root system Φ we define the associated Dynkin diagram as follows.

Choose a set of simple roots α1, . . . , αl in Φ. To each αi we have a vertex

(which we also label αi) and we join vertices αi and αj with 〈αi, αj〉〈αj, αi〉
edges for i 6= j. In the case that the lengths of the roots αi and αj are not

equal we add an arrow to the edges joining vertices αi and αj in the direction

towards the vertex corresponding to the shorter root.

The Dynkin diagram associated to a root system Φ is connected if and

only if Φ is irreducible. We can uniquely decompose a root system Φ into a

union of pairwise orthogonal irreducible root systems. The classification of

irreducible root systems is therefore equivalent to the classification of con-

nected Dynkin diagrams. From geometrical consideration of the root systems

in the Euclidean space E, we can deduce the following.

Theorem 2.2.6. If Φ is an irreducible root system then its associated Dynkin

diagram is one of the following:
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Type An (n ≥ 1):

x x x x x x

Type Bn (n ≥ 2):

x x x x x x@@
��

Type Cn (n ≥ 3):

x x x x x x
@@
��

Type Dn (n ≥ 4):

x x x x
x

x
�
�
�

@
@
@

Type E6:

x x x x x
x
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Type E7: x
x x x x x x

Type E8:

x x x x x x x
x

Type F4: x x x x@@
��

Type G2:

x x
@@
��

We now describe how to associate a root system to a semisimple Lie

algebra g.

Definition 2.2.7. A Cartan subalgebra (CSA) of g is a nilpotent subalgebra

equal to its normalizer in g.

We have that Cartan subalgebras always exist for semisimple g. Let g be

a semisimple Lie algebra and let h be a Cartan subalgebra of g. Then the

dimension of h is the rank of g. We can decompose g as a direct sum of h and

the 1-dimensional h-modules {gα | α ∈ Φ}, where for x ∈ gα for some α, we
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have that the adjoint action of h ∈ h on x is scalar multiplication. We have

[h, x] = α(h)x

for h ∈ h and x ∈ gα. Thus α lies in h∗, the dual space of the Cartan

subalgebra. The set Φ of such α forms a root system in the Euclidean space

h∗ of dimension rank g. This root system is independent (up to isomorphism)

of the choice of Cartan subalgebra, so we may refer to the root system of

a semisimple Lie algebra without specifying a Cartan subalgebra. We have

the following classification of semisimple Lie algebras over k in terms of the

associated root systems and Dynkin diagrams.

Theorem 2.2.8.

• A semisimple Lie algebra is simple if and only if its root system is

irreducible.

• Two semisimple Lie algebras are isomorphic if and only if they have the

same Dynkin diagrams.

• Every root system is the root system of some semisimple Lie algebra.

2.3 Nilpotent orbits in semisimple g

The material in this section is contained mostly in [CM93]. Let g be a

semisimple Lie algebra over C, and let G be the adjoint group of g; that

is the connected component of the group of automorphisms of g. We have

that g is the Lie algebra of G. In this section we consider the G-orbits (re-

ferred to simply as orbits) in g. References to conjugacy of subalgebras of

g refer to the action of G. The action of G preserves the semisimplicity or

nilpotency of x ∈ g. We consider the semisimple and nilpotent orbits of G in

turn.

Theorem 2.3.1. Let h be a Cartan subalgebra of g with associated Weyl

group W . Then the set of semisimple orbits in g is parameterized by h/W .
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In particular, there are infinitely many semisimple orbits in g. We now

show that there are finitely many nilpotent orbits in g. The following the-

orem tells us that any non-zero nilpotent element in g lies in a subalgebra

isomorphic to sl2.

Theorem 2.3.2 (Jacobson–Morozov). [CM93, Theorem 3.3.1] Let e ∈ g be

nilpotent. Then there are elements h, f ∈ g such that [h, e] = 2e, [h, f ] = −2f

and [e, f ] = h.

If e, h, f ∈ g span a subalgebra isomorphic to sl2 then we say (e, h, f) is

an sl2-triple. The adjoint action of G on g can be naturally extended to an

action on sl2-triples in g. There is a bijection between the non-zero nilpotent

orbits in g and the G-orbits of sl2-triples. Given an sl2-triple (e, h, f), we can

decompose g into a direct sum of adh eigenspaces:

g =
⊕
j∈Z

g(j),

where

g(j) = {x ∈ g | [h, x] = jx}.

We call this the Dynkin grading of g associated to the sl2-triple (e, h, f).

Definition 2.3.3. The height of a nilpotent orbit in g corresponding to an

sl2-triple (e, h, f) is the maximum N such that in the associated Dynkin

grading g(N) 6= 0.

We can choose a Cartan subalgebra h in g which contains h. This deter-

mines a root system Φ for g. Choose a set ∆ ⊂ Φ of simple roots, and label

the vertex of the Dynkin diagram corresponding to each root α ∈ ∆ with the

value α(h). Each α(h) lies in {0, 1, 2}. This gives us the weighted Dynkin

diagram for the sl2-triple (e, h, f), or equivalently (by the bijection above)

for the nilpotent element e. For any g, the element 0 forms a nilpotent orbit.

The weighted Dynkin diagram for the zero orbit is obtained by labelling each

vertex with 0.

We have the following theorem.
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Theorem 2.3.4. The weighted Dynkin diagram of a nilpotent orbit O ⊂ g is

a complete invariant. That is, two orbits O,O′ are equal if and only if their

associated weighted Dynkin diagrams are equal.

Due to the range of values the labels can take, we immediately get an

upper bound of 3rank g on the number of weighted Dynkin diagrams, and

hence on the number of nilpotent orbits in g. This bound is not achieved by

any semisimple g.

We next show how the nilpotent orbits are classified in simple g. There is

a partial order on the nilpotent orbits of g given by the rule O ≥ O′ if O ⊇ O′,
where O denotes the Zariski closure of O. There are 4 canonical nilpotent

orbits in a simple Lie algebra g (which may coincide for small g) which are

determined by their position in the partial order. The zero orbit is the least

element in this partial order. There is a unique nilpotent orbit O 6= 0 with

O ≤ O′ for all orbits O′ 6= 0 in g. This is called the minimal orbit in g,

and is denoted Omin. There is a unique maximal nilpotent orbit, called the

regular orbit, denoted Oreg, and this has dimension dim(g)− rank(g). There

is a unique nilpotent orbit O 6= Oreg with O ≥ O′ for all nilpotent orbits

O′ 6= Oreg. This is called the subregular orbit in g, and is denoted Osubreg.

The subregular orbit has dimension dim(g)− rank(g)− 2.

We begin with the classical types. In each of the 4 families of simple

Lie algebras, the nilpotent orbits are parameterized by partitions of a pos-

itive integer which depends on the rank of g. We denote a partition of N

by a tuple [d1, . . . , dm] of non-negative integers in non-increasing order where∑m
i=1 di = N . We may assume any dq for q > m is zero. We call each di

in a partition a part, and if a part di is repeated ai times we may write daii
in the partition. The set of partitions of N is denoted by P(N). The domi-

nance ordering on partitions of N is a partial order defined by the following:

we have [a1, . . . , am] ≥ [b1, . . . , bm] if
∑q

i=1 ai ≥
∑q

i=1 bi for all q. In each of

the following cases, where we denote the orbits corresponding to the parti-

tions a = [a1, . . . , am], b = [b1, . . . , bm] by Oa and Ob respectively, we have

Oa ≥ Ob if and only if a ≥ b.
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Type An

For g = sln+1, the nilpotent orbits of g are in bijective correspondence with

P(n+ 1).

Type Bn

For g = so2n+1, the nilpotent orbits of g are in bijective correspondence with

the partitions in P(2n+ 1) in which even parts occur with even multiplicity.

Type Cn

For g = sp2n, the nilpotent orbits of g are in bijective correspondence with

the partitions in P(2n) in which odd parts occur with even multiplicity.

Type Dn

For g = so2n, the nilpotent orbits of g are in bijective correspondence with

the set of partitions in P(2n) in which even parts occur with even multiplicity

except that each partition with only even parts corresponds to two distinct

nilpotent orbits.

Exceptional type

For a simple Lie algebra g of type G2, F4, E6, E7 or E8 we do not have a neat

parameterization of the nilpotent orbits as in the case where g is of classical

type. We make use of Bala–Carter theory to classify the nilpotent orbits in

g of exceptional type. We require some further terminology.

Definition 2.3.5. A Borel subalgebra of g is a maximal solvable subalgebra

of g.

For example, if we fix a Cartan subalgebra h of g, with associated root

system Φ and a choice of simple roots ∆ ⊂ Φ determining a set of positive
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roots Φ+, then

b = h⊕
⊕
α∈Φ+

gα

is a Borel subalgebra of g. Any two Borel subalgebras of g are conjugate, so

in particular any Borel subalgebra is conjugate to b.

For a subset X of Φ we denote by 〈X〉 the root system generated by X.

Definition 2.3.6. A parabolic subalgebra of g is a subalgebra which contains

a Borel subalgebra.

A subset Ψ ⊆ ∆ gives an example of a parabolic subalgebra containing

the above Borel:

p = h⊕
⊕
α∈Φ+

−α∈〈Ψ〉

gα.

Such subsets of ∆ parameterize the parabolic subalgebras of g which contain

b. Thus for a simple Lie algebra g there are 2rank g conjugacy classes of

parabolic subalgebras of g.

Definition 2.3.7. The Levi decomposition of a parabolic subalgebra p of g is

p = l⊕ n, where n is the nilradical (i.e. the unique maximal nilpotent ideal)

of p and l is the corresponding Levi subalgebra of g.

Note that [l, l] is a semisimple Lie algebra. For the parabolic subalgebra

p above, the Levi decomposition is p = l⊕ n where

l = h⊕
⊕
α∈〈Ψ〉

gα

and

n =
⊕

α∈Φ+\(〈Ψ〉∩Φ+)

gα.

Definition 2.3.8. A parabolic subalgebra p of g with Levi decomposition

p = l⊕ n is called distinguished if dim l = dim(n/[n, n]).

We can now state the Bala–Carter Theorem [C93, Theorem 5.9.5], which

gives us a classification of the nilpotent orbits in a simple Lie algebra g.
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Theorem 2.3.9. There is a natural bijection between the nilpotent orbits in

g and conjugacy classes of pairs (l, pl) where l is a Levi subalgebra of g and

pl is a distinguished parabolic subalgebra of [l, l].

Given a nilpotent element e ∈ g, by Theorem 2.3.2 we have an sl2-triple

(e, h, f) and the resulting Dynkin grading g = ⊕j∈Zg(j). We take l to be

the minimal Levi subalgebra of g which contains e, and then the parabolic

subalgebra

pl =
⊕
j≥0

g(j) ∩ [l, l],

is distinguished in [l, l]. Then the conjugacy class of (l, pl) corresponds to the

nilpotent orbit containing e.

We label the nilpotent orbit corresponding to a pair (l, pl) as XN(ai),

where XN is the type of the Dynkin diagram associated to the semisimple Lie

algebra [l, l], and i is the number of simple roots of g which are roots of the

Levi factor of the parabolic subalgebra pl. We omit the part (ai) in the case

that i = 0. We must also distinguish the cases where we have isomorphic

but non-conjugate Levi subalgebras l. In the case that g has different root

lengths, then we distinguish the case with the shorter root length by X̃N .

If the Levi subalgebras l of g are isomorphic but non-conjugate and cannot

be distinguished by root lengths then if i = 0 we distinguish the labels with

either one or two primes (for example in type E7), and if i 6= 0 then we

write bi instead of ai for one label (for example in type E8). This labelling

is sufficient to distinguish all nilpotent orbits in g where g is a simple Lie

algebra of exceptional type. These are listed in [CM93, Chapter 8.4]. The

numbers of nilpotent orbits in g of type G2, F4, E6, E7 and E8 are 5, 16, 21,

45 and 70 respectively.

We now give a brief description of Lusztig–Spaltenstein induction on nilpo-

tent orbits [LS79]. Let g be a simple Lie algebra and let p ba a parabolic

subalgebra of g with Levi decomposition p = l ⊕ n. The Levi factor l is

reductive, so [l, l] is semisimple and the nilpotent elements (and orbits) of l

and [l, l] coincide. Let Ol be a nilpotent orbit in l under the action of the
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connected Levi subgroup L of G where Lie(L) = l. Then there is a unique

nilpotent orbit Og in g whose intersection with Ol + n is open and dense in

Ol + n. We say Og in induced from Ol, and write Og = Indg
p(Ol).

Definition 2.3.10. A nilpotent orbit Og is called rigid if there is no proper

parabolic subalgebra p of g such that we can obtain Og by induction from a

nilpotent orbit Ol in l where l is a Levi factor of p.

Rigid orbits turn out to be of particular significance for the representation

theory of finite W -algebras so for g of classical type we give a criterion in

terms of the associated partition for a nilpotent orbit to be rigid, and for g

of exceptional type we give explicit lists of the rigid nilpotent orbits, along

with their dimensions.

Type An

The only rigid nilpotent orbit in sln+1 is the zero orbit.

Type Bn

The rigid nilpotent orbits in so2n+1 are those whose partition [d1, . . . , dm] ∈
P(2n+ 1) satisfies di+1 ≤ di ≤ di+1 + 1 for i = 1, . . . ,m− 1, and no odd part

has multiplicity 2.

Type Cn

The rigid nilpotent orbits in sp2n are those whose partition [d1, . . . , dm] ∈
P(2n) satisfies di+1 ≤ di ≤ di+1 + 1 for i = 1, . . . ,m − 1, and no even part

has multiplicity 2.

Type Dn

The rigid nilpotent orbits in so2n are those whose partition [d1, . . . , dm] ∈
P(2n) satisfies di+1 ≤ di ≤ di+1 + 1 for i = 1, . . . ,m− 1, and no odd part has

multiplicity 2.
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Table 2.1: Rigid orbits for type G2.

Bala–Carter label Dynkin diagram Dimension

A1 0 1 6

Ã1 1 0 8

Table 2.2: Rigid orbits for type F4.

Bala–Carter label Dynkin diagram Dimension

A1 1 0 0 0 16

Ã1 0 0 0 1 22

A1 + Ã1 0 1 0 0 28

A2 + Ã1 0 0 1 0 34

Ã2 + A1 0 1 0 1 36

Table 2.3: Rigid orbits for type E6.

Bala–Carter label Dynkin diagram Dimension

A1 1 22

0 0 0 0 0

3A1 0 40

0 0 1 0 0

2A2 + A1 0 54

Continued on next page
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Table 2.3 – continued from previous page

Bala–Carter label Dynkin diagram Dimension

1 0 1 0 1

Table 2.4: Rigid orbits for type E7.

Bala–Carter label Dynkin diagram Dimension

A1 0 34

1 0 0 0 0 0

2A1 0 52

0 0 0 0 1 0

(3A1)′ 0 64

0 1 0 0 0 0

4A1 1 70

0 0 0 0 0 1

A2 + 2A1 0 82

0 0 1 0 0 0

2A2 + A1 0 90

0 1 0 0 1 0

(A3 + A1)′ 0 92

1 0 1 0 0 0
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Table 2.5: Rigid orbits for type E8.

Bala–Carter label Dynkin diagram Dimension

A1 0 58

0 0 0 0 0 0 1

2A1 0 92

1 0 0 0 0 0 0

3A1 0 112

0 0 0 0 0 1 0

4A1 1 128

0 0 0 0 0 0 0

A2 + A1 0 136

1 0 0 0 0 0 1

A2 + 2A1 0 146

0 0 0 0 1 0 0

A2 + 3A1 0 154

0 1 0 0 0 0 0

2A2 + A1 0 162

1 0 0 0 0 1 0

A3 + A1 0 164

0 0 0 0 1 0 1

2A2 + 2A1 0 168

0 0 0 1 0 0 0

A3 + 2A1 0 172

0 1 0 0 0 0 1

D4(a1) + A1 1 176

0 0 0 0 0 1 0

A3 + A2 + A1 0 182

0 0 1 0 0 0 0

Continued on next page
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Table 2.5 – continued from previous page

Bala–Carter label Dynkin diagram Dimension

2A3 0 188

1 0 0 1 0 0 0

A4 + A3 0 200

0 0 1 0 0 1 0

D5(a1) + A2 0 202

0 1 0 0 1 0 1

A5 + A1 0 202

1 0 1 0 0 0 1
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Finite W -algebras

Here we define the finite W -algebra associated to a nilpotent element e of the

Lie algebra g of G, a simple simply-connected algebraic group over C. We use

the definition given by Premet in [P02]. The definition used by de Boer and

Tjin [DT93] was shown in [D3HK] to be equivalent to that used here, and in

[L10], Losev uses a further definition in terms of Fedosov quantization [L10,

Subsection 2.2], which is shown to be equivalent [L10, Corollary 3.3].

3.1 Some definitions

Let e be a non-zero nilpotent element of g. By Theorem 2.3.2 we can choose

h and f such that (e, h, f) is an sl2-triple in g. We let (· , ·) denote the

form 1
κ(e,f)

κ(· , ·). This form is non-degenerate, symmetric and invariant –

properties inherited from κ. Define χ ∈ g∗ by χ(x) = (e, x) for x ∈ g.

The sl2-triple gives a decomposition of g into adh weight spaces:

g(j) = {x ∈ g | [h, x] = jx}

and the Dynkin grading on g = ⊕j∈Zg(j). Note that as g is finite-dimensional,

g(±j) = 0 for all large enough j.

Let t be a Cartan subalgebra of g containing h. Let Φ ⊂ t∗ be the root

23
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system of g with respect to t, and let Π ⊂ Φ be a set of simple roots. Write

ge for the centralizer of e in g, and let te = ge ∩ t.

We define a bilinear non-degenerate alternating form on g(−1) by

〈x, y〉 = (e, [x, y]).

These properties follow easily from the properties of the Killing form. It

follows that g(−1) has even dimension, and that we can choose a basis

z1, . . . , zs, z
′
1, . . . , z

′
s such that

〈z′i, z′j〉 = 0 = 〈zi, zj〉 and 〈z′i, zj〉 = δij

for all 1 ≤ i, j ≤ s, i.e. a Witt basis. Write g(−1)0 for the subspace spanned

by the z′i. Then g(−1)0 is a Lagrangian subspace of g(−1), that is a maximal

isotropic subspace with respect to the form 〈· , ·〉. One way to choose the Witt

basis is to make a choice of positive roots in the restricted root system Φe

[BG07], which is defined to be the set of roots in Φ restricted to te (excluding

those whose restriction to te is zero), and take the corresponding root vectors

in g(−1) to be z1, . . . , zs and the corresponding negative root vectors (possibly

scalar multiples) to be z′1, . . . , z
′
s. For our purposes here all that is required

is that g(−1)0 is Lagrangian. We define

m := g(−1)0 ⊕
⊕
i≤−2

g(i),

a nilpotent subalgebra of g. We consider the restriction of χ to m. We have

m ⊆ ⊕j≤−1g(j), so for x, y ∈ m, if we have either x or y in ⊕j≤−2g(j) then

[x, y] ∈ ⊕j≤−3g(j) and hence χ([x, y]) = 0. We therefore have

(e, [m,m]) = (e, [g(−1)0, g(−1)0])

= 〈g(−1)0, g(−1)0〉

= 0
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by the construction of g(−1)0. We can therefore extend the action of χ

to U(m), where for an element x = xi1 · · ·xik ∈ U(m) we have χ(x) =

χ(xi1) · · ·χ(xik). We denote the corresponding 1-dimensional U(m)-module

by Cχ. Let 1χ ∈ Cχ.

We define the induced module Qχ := Ind
U(g)
U(m) Cχ = U(g)⊗U(m) Cχ.

Definition 3.1.1. We now define the finite W -algebra associated to g and e

to be

U(g, e) := End U(g)(Qχ)op,

the opposite algebra of U(g)-module endomorphisms of Qχ.

Let Iχ be the left ideal of U(g) generated by all x−χ(x) for x ∈ m. We can

identify Qχ with the space of cosets U(g)/Iχ. There is an associative action

of g on U(g)/Iχ given by x(y+ Iχ) = xy+ Iχ for x ∈ g and y+ Iχ ∈ U(g)/Iχ.

The left ideal Iχ is stable under the action of ad x for x ∈ m so we can define

the adjoint action of m on U(g)/Iχ by adx(y + Iχ) = [x, y] + Iχ.

From Frobenius reciprocity we can identify U(g, e) with the space of U(m)-

module homomorphisms Cχ → Qχ. It follows that elements φ ∈ U(g, e) are

determined by the value φ(1χ) ∈ U(g)/Iχ, and also that we can identify

U(g, e) with the elements of Qχ for which the associative action of m is scalar

multiplication by χ(x) for x ∈ m. For x ∈ m and y + Iχ ∈ U(g)/Iχ we have

x(y + Iχ) = χ(x)y + Iχ

m

xy − yx+ Iχ = χ(x)y − yx+ Iχ

m

[x, y] + Iχ = y (χ(x)− x)︸ ︷︷ ︸
∈Iχ

+Iχ = Iχ.

We are therefore identifying U(g, e) with the subspace

{y + Iχ | [x, y] ∈ Iχ for all x ∈ m} (3.1.2)
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of U(g)/Iχ.

Composition of endomorphisms determined by φy(1χ) = y+Iχ and φy′(1χ) =

y′ + Iχ in U(g, e) is given by

(φy′φy)(u+ Iχ) = uyy′ + Iχ.

Expressed in terms of the above identification with the space of cosets (3.1.2),

this is

(y + Iχ) · (y′ + Iχ) = yy′ + Iχ,

which is the natural operation of multiplication of cosets. This justifies why

we take the opposite algebra of endomorphisms in Definition 3.1.1. From now

on we view U(g, e) as the subspace of U(g)/Iχ invariant under the adjoint

action of m.

It is straightforward to see that U(g, e) is closed under this multiplication

of cosets. For y1 + Iχ and y2 + Iχ in U(g, e) and x ∈ m we have

[x, y1y2] = (xy1 − y1x)y2 + y1(xy2 − y2x),

so to show that [x, y1y2] ∈ Iχ for all x ∈ m it is sufficient to show that

Iχy2 ⊆ Iχ. We have

(x− χ(x))y = yx− χ(x)y + [x, y]

= y(x− χ(x)) + [x, y] ∈ Iχ.

It is shown in [GG02] that we do not need to take a Lagrangian subspace of

g(−1) to be m∩g(−1). We can take any isotropic subspace a ⊂ g(−1), and let

a⊥ denote the subspace {x ∈ g(−1) | 〈x, a〉 for all a ∈ a}. Then we define I ′χ

to be the left ideal of U(g) generated by all x−χ(x) for x ∈ a⊕
⊕

j≤−2 g(j), and

we define Q′χ := U(g)/I ′χ. Then the space of elements of Q′χ invariant under

the adjoint action of a⊥⊕
⊕

j≤−2 g(j) is isomorphic to U(g, e). In particular,

we can take a = 0, so a⊥ = g(−1). This makes the procedure of finding a

suitably ordered basis of g significantly easier, but computationally, finding a
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presentation becomes harder, as we are looking for elements of a larger space

Q′χ invariant under the action of a larger subalgebra a⊥ ⊕
⊕

j≤−2 g(j).

We observe that by the conjugacy of sl2-triples [CM93, Chapter 3], the

isomorphism class of U(g, e) depends only on the nilpotent orbit of e and not

on the choices of f and h.

There is a natural embedding of U(g, e) in U(g). By (3.1.2) we see that

the image of the centre of the universal enveloping algebra, denoted Z(g),

is a subalgebra of U(g, e). From [K78] we have equality in the case that e

lies in the regular orbit in g. At the opposite end of the partial order on the

nilpotent orbits, if e = 0 then we can see that U(g, e) ∼= U(g). In the case

that e lies in the minimal orbit in g, there is a presentation of U(g, e) given

in [P07i, Theorem 6.1].

3.2 PBW-theorem

In order to give a PBW theorem for U(g, e), we need a filtration of U(g, e).

In order to define this filtration, we need to choose an ordered homogeneous

basis of g satisfying certain properties.

Let p be the parabolic subalgebra
⊕

j≥0 g(j) of g determined by our sl2-

triple. Then from [J04, Section 5.8] we know that ge ⊆ p. We choose a

homogeneous basis x1, . . . , xm of p such that x1, . . . , xd is a basis of ge. As

above, we can choose a basis z1, . . . , zs, z
′
1, . . . , z

′
s of g(−1) where z′1, . . . , z

′
s

span a Lagrangian subspace of g(−1) with respect to the form 〈· , ·〉. Let

xm+1, . . . , xm+s be z1, . . . , zs and let xm+s+1, . . . , xm+2s be z′1, . . . , z
′
s. In what

follows the choice for the remaining terms of the basis is made for reasons of

computational convenience. Note that f lies in kerχ|g(−2). We can choose a

basis of te-weight vectors of kerχ|g(−2), including f . We complete our basis

x1, . . . , xn including these elements.

We can make all of the above choices for the basis elements to be weight

vectors for te and eigenvectors for adh. For each i = 1, . . . , n, let ni ∈ Z be

such that xi ∈ g(ni) and let βi ∈ Φe be such that xi ∈ gβi .
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The tables in Chapter 6 show bases according to these specifications for

each non-zero nilpotent orbit in g of type G2, and for each non-zero rigid

nilpotent orbit for g of type F4, E6 and E7.

We have a basis of Qχ given by the set of cosets xa+Iχ = xa1
1 · · ·x

am+s

m+s +Iχ,

where a = (a1, . . . , am+s) ∈ Zm+s
≥0 . For a ∈ Zm+s

≥0 , we define

|a| =
m+s∑
i=1

ai and |a|e =
m+s∑
i=1

ai(ni + 2).

We say that xa + Iχ ∈ Qχ has Kazhdan degree |a|e. This restricts to U(g, e),

and we write FiU(g, e) for the span of all elements xa + Iχ ∈ U(g, e) where

|a|e ≤ i. Note that FiU(g, e) = 0 for all i < 0.

We now give the PBW-theorem for U(g, e). This combines [P02, Theorem

4.6] and [P07i, Lemma 2.2], written in terms of our interpretation of U(g, e)

as a subalgebra of U(g)/Iχ.

Theorem 3.2.1. Let x1, . . . , xn be a basis of g as described above. Then we

have the following:

1. There is a set of generators for U(g, e) given by

Θi =

xi +
∑

|a|e≤ni+2

λiax
a

+ Iχ,

for i = 1, . . . , d where the coefficients λia ∈ Q are zero when ad+1 =

· · · = am+s = 0, or if |a|e = ni + 2 and |a| = 1. The coefficients λia are

uniquely determined by the choice of ordered basis x1, . . . , xn of g and

the above vanishing conditions.

2. The Θi are weight vectors for te with weight βi.

3. The monomials Θa = Θa1
1 · · ·Θ

ad
d with a ∈ Zd

≥0 form a basis of U(g, e).

4. We have [Θi,Θj] ∈ Fni+nj+2U(g, e) for i, j = 1, . . . , d. Moreover, if
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[xi, xj] =
∑d

k=1 µ
k
ijxk in ge, then

[Θi,Θj] =
d∑

k=1

µkijΘk + qij(Θ1, . . . ,Θd) mod Fni+njU(g, e),

where qij is a polynomial with coefficients in Q, and zero constant and

linear terms.

The uniqueness claimed in part (1) follows from the proof of [P02, Theo-

rem 4.6], though is not given in the statement of that result. The conditions

on the coefficients λia can be given more clearly by stating that the expression

for Θk contains no term of Kazhdan degree greater than nk + 2, no term is in

U(ge) other than the leading term xk, and it contains no term xj (for j 6= k)

of Kazhdan degree equal to nk + 2.

Theorem 3.2.1 is fundamental to the methods described in Chapter 4 to

calculate presentations for U(g, e) and to deduce the existence of 1-dimensional

representations as in Chapter 5. From [P07ii, Lemma 4.1] we have that these

commutator relations are sufficient for a presentation of U(g, e). From the

anti-symmetry of the commutator, a full presentation of U(g, e) is given by

the
(
d
2

)
relations [Θi,Θj] = Fij(Θ1, . . . ,Θd) where d = dim(ge), (i > j) and

Fij is a polynomial in d indeterminates. We reduce the amount of relations

needed for a presentation in Section 5.3.



4

An algorithm for finding a

presentation of U(g, e)

For a nilpotent element e in a simple complex Lie algebra g, the finite W -

algebra U(g, e) depends, up to isomorphism, on the adjoint orbit of e. For g

of exceptional type, the nilpotent orbits are listed, along with the associated

weighted Dynkin diagrams, in [CM93, Ch. 8]. This chapter describes an

algorithm which takes as its input a weighted Dynkin diagram associated to

a nilpotent orbit O ⊂ g, and returns a presentation for the finite W -algebra

U(g, e) where e lies in O. The GAP4 implementation of this is detailed in

Appendices A to F.

4.1 Finding an sl2-triple

Let g, t, Φ and Π be as in Section 3.1. Let l denote the rank of g, and

Π = {α1, . . . , αl}. We can construct a Chevalley basis of g, {eα | α ∈ Φ} ∪
{hα = [eα, e−α] | α ∈ Π}. So we have a basis of t given by hi := hαi for

i = 1, . . . , l.

Let O be a nilpotent orbit in g. Write D = (D1, . . . , Dl) for the weights

on the nodes of the Dynkin diagram (with the order of nodes corresponding

to the order of simple roots in Π) for g associated to O. From D we have a

30
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decomposition Φ =
⋃
j∈Z Φ(j), where

Φ(j) = {
l∑

i=1

aiαi ∈ Φ |
l∑

i=1

aiDi = j}.

There is a unique element h ∈ t such that h is part of an sl2-triple corre-

sponding to the nilpotent orbit O. To find h =
∑l

j=1 λjhj we need values

of λj satisfying [
∑l

j=1 λjhj, αi] = Di for i = 1, . . . , l. This is equivalent to

finding a column vector λ such that Cλ = DT , where C is the Cartan matrix

corresponding to Π ⊂ Φ. Uniqueness follows as C is non-singular.

The element h determines the Dynkin grading g =
⊕

j∈Z g(j). Note that

the Dynkin grading coincides with the grading given by letting g(j) be the

span of the Chevalley basis elements {eα | α ∈ Φ(j)} for j 6= 0 and let g(0)

be the span of t and {eα | α ∈ Φ(0)}. We now require elements e and f in g

such that [h, e] = 2e, [h, f ] = −2f and [e, f ] = h. We can take e to be a sum

of eα for α ∈ Φ(2). We find this as follows.

Write Γj = {eα | α ∈ Φ(j)}. For a subset A ⊆ Γ2 let A′ = {e−α | eα ∈
A} ⊆ Γ−2. We require A ⊆ Γ2 such that h lies in the span of {

∑
eα∈A[eα, e−β] |

eβ ∈ A}. For such A we have coefficients aα for eα ∈ A satisfying h =∑
eβ∈A aβ

(∑
eα∈A[eα, e−β]

)
. Then we can take f =

∑
eβ∈A aβe−β. This gives

our sl2-triple (e, h, f). We can always make our choice of A ⊆ Γ2 so that the

aβ are positive integers.

Example 4.1.1. As an example, we take g to be the simple Lie algebra of

type F4, and we take the nilpotent orbit with Bala–Carter label Ã1 + A2.

We use the Chevalley basis b1, . . . , b52 for g given by GAP4, where we have

simple root vectors b1, . . . , b4, positive root vectors b1, . . . , b24 and negative

root vectors b25, . . . , b48. We have a basis for the Cartan subalgebra t given

by hi = b48+i = [bi, bi+24] for i = 1, . . . , 4. This orbit has weighted Dynkin

diagram:
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z z z z@@
��

0 0 1 0

With the order of simple roots used by GAP4 (note that this differs from

the order more commonly used, in Bourbaki [B07, Ch.4-6, Plate VII] and

elsewhere) we have D = (0, 0, 1, 0), and the Cartan matrix

C =


2 0 −1 0

0 2 0 −1

−1 0 2 −1

0 −1 −2 2

 .

We require λ1, . . . , λ4 satisfying
2 0 −1 0

0 2 0 −1

−1 0 2 −1

0 −1 −2 2



λ1

λ2

λ3

λ4

 =


0

0

1

0

 .

So we have h =
∑4

i=1 λibi+48 = 3b49 + 4b50 + 6b51 + 8b52. This gives the

following decomposition: g =
⊕
−4≤j≤4 g(j), where g(2) is spanned by Γ2 =

{b10, b12, b13, b14, b15, b16, b17, b18, b20}. By checking each subset of Γ2 directly,

we can check that for A ⊆ Γ2 to have h in the span of {
∑

eα∈A[eα, e−β] |
eβ ∈ A} to be one of {b14, b15, b16}, {b10, b17, b18}, {b13, b15, b17}, {b10, b14, b20},
{b12, b13, b20} or {b12, b16, b18}. Each of these gives an sl2-triple with all coef-

ficients in Z (though this will not always be the case), so we may choose to

take e = b14 + b15 + b16. We have h = [b14, b38] + 2[b15, b39] + 2[b16, b40], so we

get f = b38 + 2b39 + 2b40, and we easily verify that (e, h, f) is an sl2-triple in

g.
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4.2 Finding generators for U(g, e)

Given an sl2-triple (e, h, f) in our Lie algebra g, we have te = ge ∩ t, the

non-degenerate form (· , ·) = 1
κ(e,f)

κ(·, ·), the Dynkin grading for g, the map

χ(·) = (e, ·) and the alternating form 〈u, v〉 = (e, [u, v]) on g(−1). We can

determine an ordered basis of g according to the conditions of Section 3.2

such that each element in the basis is a weight vector for te and for h. This

defines the subalgebra m and the left ideal Iχ of U(g).

From Theorem 3.2.1, we determine the generators of U(g, e) by finding

for each i = 1, . . . , d the coefficients λia for each a such that |a|e ≤ ni + 2 and

λia can be non-zero by the conditions of Theorem 3.2.1(2). Let Ai ⊂ Zm+s
≥0 be

the set of all such a for Θi. We require that [x,Θi] = 0 + Iχ for all x ∈ m.

Let B be a subset of {xm+s+1, . . . , xn} such that B generates m. We take B

to be minimal in order to reduce the amount of computation required. For

each generator y ∈ B we calculate [y, xi +
∑

a∈Ai λ
i
ax

a + Iχ] = [y, xi + Iχ] +∑
a∈Ai λ

i
a[y, xa+Iχ] in U(g)/Iχ. This can be rewritten as

∑
0≤|b|e≤ni+2 qb({λia |

a ∈ Ai})xb + Iχ, where b ∈ Zm+s
≥0 , and qb is a linear polynomial in the

coefficients λia where a ∈ Ai. The condition that [y,Θi] ∈ Iχ is met by setting

each polynomial qb = 0 and solving. From Theorem 3.2.1(1) there is a unique

solution to this system of equations, which determines the generator Θi.

Example 4.2.1. Let g be the simple Lie algebra of type G2, with Chevalley

basis (given by GAP4) comprising b1, . . . , b6 positive root vectors with simple

short root vector b1 and simple long root vector b2; negative root vectors

b7, . . . , b12; and a Cartan subalgebra t spanned by b13 = [b1, b7] and b14 =

[b2, b8]. Let O denote the nilpotent orbit of g given by the weighted Dynkin

diagram

z z
@@
��

1 0

By Section 4.1 we have h = 2b13 + 3b14, and as g(2) is the span of b4, we must
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take e = b4 and f = b10. Then ge has dimension 6, and is spanned by the

elements b6, b5, b4, b2, b8, b14, with te spanned by the single element b14. We

complete a basis of p =
⊕

j≥0 g(j) with the elements b1, b3, b13. We divide

the Killing form by κ(e, f) = 24 for the form (· , ·). The subspace g(−1) is

spanned by b9 and b7, so we may append b9 to the basis, then take g(−1)0

to be Cb7, and complete the basis with b10 = f , b11, b12. This ordered basis

is given, with values for ni and βi in Table 6.3. We now relabel the basis

elements as x1, . . . , x14 in this order. We have that m is generated by the

set {x11, x12, x14}. We find the Ai by listing the monomials xa for which the

Kazhdan degree is at most the maximum of the ni + 2 (in this case the upper

bound is 5) and selecting the monomials xa where the conditions of Theorem

3.2.1(1) are satisfied, and label these (in some order) as A2
i , . . . , A

|Ai|+1
i , and

put A1
i = 1. Write λia = λij where Aji = xa. We have

A1 = {x8, x4x7, x4x10, x6x8, x8x9, x4x6x10, x4x9x10}.

We calculate [x11, x1 +
∑

a∈A1
λiax

a] = [x11, x1 +
∑

2≤j≤|A1|+1 λ
1
jA

j
1] and project

into U(g)/Iχ to give the condition

(−3λ1
5 + 2λ1

7)x4x6 + (−λ1
3 − 3λ1

6 + 2λ1
8)x4x9

+(−3λ1
2 + 2λ1

4 − 3λ1
5 − 2λ1

7 + 4λ1
8)x4 ∈ Iχ,

giving 3 linear polynomials in the coefficients λ1
j . We obtain the rest from

calculating [x12, x1 +
∑

2≤j≤|Ai|+1 λ
i
jA

j
i ] and [x14, x1 +

∑
2≤j≤|Ai|+1 λ

i
jA

j
i ] to get

the conditions

(−2λ1
3 + λ1

8)x4x10 + (−1 + λ1
6)x8 ∈ Iχ

and

(−2 + λ1
5)x6 + (−1 + λ1

6)x9 + (λ1
2 + λ1

3 + λ1
5 + λ1

6) ∈ Iχ.

Putting each of this set of 8 polynomials equal to zero yields the unique
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solution (λ1
2, . . . , λ

1
8) = (−4, 1,−4, 2, 1, 3, 2), giving

Θ1 = (x1 − 4x8 + x4x7 − 4x4x10 + 2x6x8 + x8x9 + 3x4x6x10

+2x4x9x10) + Iχ.

Similarly, to calculate Θ2 we have

A2 = {x7, x10, x3x10, x5x8, x6x7, x6x10, x7x9, x9x10, x4x5x10,

x2
6x10, x6x9x10, x8x

2
10, x

2
9x10, x4x

3
10},

and for k = 11, 12, 14 we calculate [xk, x2 +
∑

2≤j≤|A2|+1 λ
2
jA

j
2] and project

into U(g)/Iχ. For k = 11 this gives

(λ2
10 + 3λ2

13 + 6λ2
15)x4x

2
10 + (−3λ2

5 + 2λ2
10)x4x5 + (2λ2

11)x2
6

+(−λ2
6 + 2λ2

12)x6x9 + (−2λ2
4 + λ2

5 + 4λ2
13)x8x10 + (−λ2

8 + 2λ2
14)x2

9

+(−1 + 2λ2
4)x3 + (2λ2

7 − 4λ2
11 + 4λ2

12)x6

+(−λ2
2 − λ2

5 + λ2
6 + 2λ2

9 − 2λ2
12 + 8λ2

14)x9

+(2λ2
3 − 2λ2

7 + 4λ2
9 + 2λ2

11 − 4λ2
12 + 8λ2

14) ∈ Iχ;

for k = 12 we have

(−3λ2
4 − 2λ2

6 + λ2
12)x6x10 + (−2λ2

4 − 2λ2
8 + 2λ2

14)x9x10

+(λ2
1 + λ2

8)x7 + (−2λ2
2 + 2λ2

8 + λ2
9 + 8λ2

13 + λ2
14)x10 ∈ Iχ;

and for k = 14 we have

(−λ2
4 + λ2

13)x2
10 + (λ2

1 + λ2
5)x5 ∈ Iχ.

This set of 16 polynomials has a unique solution

(λ2
2, . . . , λ

2
15) = (2,−3, 1

2
,−1,−1, 1,−1, 5

2
,−3

2
, 0,−1

2
, 1

2
,−1

2
, 1

2
),
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so we have

Θ2 = (x2 + 2x7 − 3x10 + 1
2
x3x10 − x5x8 − x6x7 + x6x10 − x7x9 + 5

2
x9x10

−3
2
x4x5x10 − 1

2
x6x9x10 + 1

2
x8x

2
10 − 1

2
x2

9x10 + 1
2
x4x

3
10) + Iχ.

To determine Θ3, we have

A3 = {x9, x6x9, x8x10, x
2
9, x4x

2
10}.

The condition that [xk, x3 +
∑

2≤j≤|A3|+1 λ
3
jA

j
3] ∈ Iχ for k = 11, 12, 14 gives

us the following: for k = 11 we get

(−3λ3
4 + 4λ3

6)x4x10 + (−2 + 2λ3
4)x8 ∈ Iχ;

for k = 12 we get

(−3 + λ3
3)x6 + (−2 + 2λ3

5)x4x9 + (λ3
2 + 4λ3

4 + λ3
5)x9 ∈ Iχ;

and for k = 14 we get

(−1 + λ3
4)x10 ∈ Iχ.

From these 6 polynomials we have the unique solution

(λ3
2, . . . , λ

3
6) = (−5, 3, 1, 1, 3

4
),

so we have

Θ3 = (x3 − 5x9 + 3x6x9 + x8x10 + x2
9 + 3

4
x4x

2
10) + Iχ.

In determining Θ4, we find that A4 is empty, and we verify that [xk, x4] ∈
Iχ for k = 11, 12, 14. We therefore have Θ4 = x4 + Iχ.

We have A5 = {x2
10}, and [x11, x5 + λ5

2x
2
10 + Iχ] = (1 + 4λ5

2) + Iχ, so we

have λ5
2 = −1

4
and Θ5 = x5 − 1

4
x2

10 + Iχ. It is straightforward to check that

[xk,Θ5] ∈ Iχ for k = 12, 14.
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For the final generator, we see that A6 is empty, and [xk, x6] ∈ Iχ for

k = 11, 12, 14, so we have Θ6 = x6 +Iχ, and our set of generators is complete.

4.3 Finding relations for U(g, e)

Given a set of generators Θ1, . . . ,Θd of U(g, e) (where d = dim(ge)), we find

polynomials Fij for 1 ≤ i ≤ j ≤ d for which [Θi,Θj] = Fij(Θ1, . . . ,Θd) by the

following method. We write (Θ) for (Θ1, . . . ,Θd), and for i = 1, . . . , d write

Θi = ui + Iχ where ui ∈ U(g).

For generators Θi and Θj, we calculate [ui, uj] as an element of U(g) and

project into U(g)/Iχ. Recalling that [Θi,Θj] ∈ Fni+nj+2U(g, e), we get an

expression of the form

[Θi,Θj] =
∑

|a|e≤ni+nj+2

µi,ja x
a + Iχ,

with coefficients µi,ja ∈ Q. If all µi,ja = 0 then the generators Θi and Θj

commute and Fij = 0. Otherwise, we write the desired polynomial as a sum

of polynomials F k
ij homogeneous with respect to the Kazhdan degree:

Fij(Θ) =

ni+nj+2∑
k=0

F k
ij(Θ).

We find the F k
ij in decreasing order of k, from k = ni + nj + 2 to k = 0. Let

Ani+nj+2 be the set of all a such that µi,ja 6= 0, |a|e = ni+nj+2 and aq = 0 for

all q > d. If Ani+nj+2 is empty, then there is no a such that |a|e = ni +nj + 2

and µi,ja 6= 0. Otherwise there is some a with |a|e = ni + nj + 2, µi,ja 6= 0

and aq 6= 0 for some q > d, and so the term µi,ja x
a must occur in some term

µi,jb Θb in F ni+nj+2(Θ) (expressed as a coset in U(g)/Iχ) with b ∈ Zd
≥0 and

|b|e = ni+nj + 2, which appears in F
ni+nj+2
ij (Θ). So we have in F

ni+nj+2
ij (Θ)

a term µi,jb Θb 6= 0 with |b|e = ni + nj + 2, and bq = 0 for all q > d, and we

have that Ani+nj+2 is non-empty. We put F
ni+nj+2
ij (Θ) =

∑
a∈Ani+nj+2

µi,ja Θa.
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We have

[Θi,Θj]− F
ni+nj+2
ij (Θ) =

∑
|a|e≤ni+nj+1

µi,j,ni+nj+1
a xa + Iχ,

for some coefficients µ
i,j,ni+nj+1
a (which are not the same as the coefficients

µi,ja ). From the construction of the set Ani+nj+1 we can reduce the range of the

sum on the right. We now let Ani+nj+1 be the set of a such that µ
i,j,ni+nj+1
a 6=

0, |a|e = ni + nj + 1 and aq = 0 for all q > d, and write F
ni+nj+1
ij (Θ) =∑

a∈Ani+nj+1
µi,ja Θa. Given F

ni+nj+2
ij , F

ni+nj+1
ij , . . . , F k

ij, we have

[Θi,Θj]−
ni+nj+2∑
q=k

F q
ij(Θ) =

∑
|a|e≤k−1

µi,j,k−1
a xa + Iχ,

from which we define Ak−1 to be the set of a for which µi,j,k−1
a 6= 0, |a|e =

k − 1 and aq = 0 for all q > d, and we let F k−1
ij (Θ) =

∑
a∈Ak−1

µi,j,k−1
a Θa.

Inductively, this gives the polynomial Fij.

It follows from Theorem 3.2.1 parts (2) and (4) that the sets Ai above are

either empty for all even i or for all odd i, but this does not affect the above

process.

Example 4.3.1. Let g, e and U(g, e) be as in Example 4.2.1, with the set of

PBW generators Θ1, . . . ,Θ6. We find F1,2 as follows. Note that n1+n2+2 = 8.

We have

[Θ1,Θ2] = (−18− 3
2
x1x10 − 6x3 + 5x3x4x5 − 2x3x4x

2
10 + 11

2
x3x6 − 3x3x6x9

−x3x
2
6 − x3x8x10 + 4x3x9 − x3x

2
9 − 1

2
x2

3 + 33x4x5 − 69
2
x4x5x6

+15x4x5x6x9 + 9x4x5x
2
6 + 5x4x5x8x10 − 25x4x5x9 + 5x4x5x

2
9

−6x4x6x9x
2
10 + 21x4x6x

2
10 − 3x4x

2
6x

2
10 − 13

2
x4x7x10 − 2x4x8x

3
10

+10x4x9x
2
10 − 2x4x

2
9x

2
10 − 9x4x

2
10 + 6x2

4x5x
2
10 − 9

2
x2

4x
2
5 − 3

2
x2

4x
4
10

+42x6 − 3x6x8x9x10 + 23
2
x6x8x10 − 53x6x9 + 22x6x

2
9 − 3x6x

3
9

−30x2
6 − x2

6x8x10 + 26x2
6x9 − 11

2
x2

6x
2
9 + 6x3

6 − 3x3
6x9 − x7x8
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+15
2
x8x9x10 − x8x

2
9x10 − 15x8x10 − 1

2
x2

8x
2
10 + 30x9 − 37

2
x2

9 + 5x3
9

−1
2
x4

9) + Iχ.

From the terms in the above expression we get

{xa | a ∈ A8} = {x2
3, x3x

2
6, x3x4x5, x4x5x

2
6, x

2
4x

2
5},

and we have

F 8
1,2(Θ) =

∑
a∈A8

µ1,2,8
a Θa

= −1
2
Θ2

3 −Θ3Θ2
6 + 5Θ3Θ4Θ5 + 9Θ4Θ5Θ2

6 − 9
2
Θ2

4Θ2
5.

We subtract this polynomial from the commutator, to get:

[Θ1,Θ2]− F 8
1,2(Θ) = (−18− 6x3 + 7x3x6 + 93

4
x4x5 − 69

2
x4x5x6

+111
8
x4x6x

2
10 + 279

16
x4x

2
10 + 42x6 + 7x6x8x10 − 53x6x9

+7x6x
2
9 − 30x2

6 + 21x2
6x9 + 6x3

6 − 6x8x10 + 30x9

−6x2
9) + Iχ.

We can check that this expression has Kazhdan degree 6, and so A7 is empty

and F 7
1,2 = 0. We now find F 6

1,2. We have

{xa | a ∈ A6} = {x3x6, x
3
6, x4x5x6},

and so

F 6
1,2(Θ) =

∑
a∈A6

µ1,2,6
a Θa

= 7Θ3Θ6 + 6Θ3
6 − 69

2
Θ4Θ5Θ6.

Subtracting these polynomials from the commutator we get:
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[Θ1,Θ2]−
8∑

k=6

F k
1,2(Θ) = (18− 6x3 + 93

4
x4x5 − 165

16
x4x

2
10 + 42x6 − 18x6x9

−30x2
6 − 6x8x10 + 30x9 − 6x2

9) + Iχ.

As before, we have that A5 is empty so F 5
1,2 = 0. We now find F 4

1,2. We have

{xa | a ∈ A4} = {x3, x
2
6, x4x5},

and so

F 4
1,2(Θ) =

∑
a∈A4

µ1,2,4
a Θa

= −6Θ3 − 30Θ2
6 + 93

4
Θ4Θ5.

Subtracting further:

[Θ1,Θ2]−
8∑

k=4

F k
1,2(Θ) = (−18 + 42x6) + Iχ.

From this we easily see that F 3
1,2 = 0, F 2

1,2(Θ) = 42Θ6, F 1
1,2 = 0 and F 0

1,2(Θ) =

−18; we can verify that

[Θ1,Θ2]−
8∑

k=0

F k
1,2(Θ) ∈ Iχ,

so we have

F1,2(Θ) = −1
2
Θ2

3 −Θ3Θ2
6 + 5Θ3Θ4Θ5 + 9Θ4Θ5Θ2

6 − 9
2
Θ2

4Θ2
5 + 7Θ3Θ6

+6Θ3
6 − 69

2
Θ4Θ5Θ6 − 6Θ3 − 30Θ2

6 + 93
4

Θ4Θ5 + 42Θ6 − 18.
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We now find F1,3. We have

[Θ1,Θ3] = (−3x1 + 6x1x6 − 3x2x4 − 3
2
x3x4x10 + 3x4x5x8 + 9x4x6x7

+27
2
x4x6x9x10 − 27x4x6x10 + 18x4x

2
6x10 − 6x4x7 + 3x4x7x9

−3
2
x4x8x

2
10 − 15

2
x4x9x10 + 3

2
x4x

2
9x10 + 9x4x10 + 9

2
x2

4x5x10

−3
2
x2

4x
3
10 − 48x6x8 + 6x6x8x9 + 12x2

6x8 + 48x8 − 12x8x9) + Iχ.

We have n1 + n3 + 2 = 7, and

F 7
1,3(Θ) = −3Θ2Θ4 + 6Θ1Θ6.

We subtract this polynomial from the commutator, to get:

[Θ1,Θ3]− F 7
1,3(Θ) = (−3x1 − 9x4x6x10 − 3x4x7 − 6x4x9x10 + 12x4x10

−6x6x8 + 12x8 − 3x8x9) + Iχ.

We see that F 6
1,3 = 0 and F 5

1,3(Θ) = −3Θ1, and

[Θ1,Θ3]− F 7
1,3(Θ)− F 5

1,3(Θ) ∈ Iχ.

Thus F1,3(Θ) = −3Θ2Θ4 + 6Θ1Θ6 − 3Θ1. We now find F2,3. We have

[Θ2,Θ3] = (−3x1x5 + 3
4
x1x

2
10 + 12x2 − 6x2x6 − 3x3x6x10 + 3x3x10

−3x4x5x7 − 6x4x5x9x10 + 3x4x5x10 − 3
4
x4x6x

3
10 + 3

4
x4x7x

2
10

+3
2
x4x9x

3
10 − 6x4x

3
10 − 3x5x8 − 3x5x8x9 − 12x6x7 + 6x6x7x9

−3
2
x6x8x

2
10 − 18x6x9x10 + 3x6x

2
9x10 + 24x6x10 + 6x2

6x7

+3x2
6x9x10 − 6x2

6x10 + 9x7 − 3x7x9 + 3
4
x8x9x

2
10 + 15x9x10

−3x2
9x10 − 18x10) + Iχ,
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and so F 7
2,3(Θ) = −3Θ1Θ5 − 6Θ2Θ6. Subtracting, we get

[Θ2,Θ3]− F 7
2,3(Θ) = (12x2 + 6x3x10 − 18x4x5x10 + 6x4x

3
10 − 12x5x8

−12x6x7 − 6x6x9x10 + 12x6x10 + 24x7 − 12x7x9

+6x8x
2
10 + 30x9x10 − 6x2

9x10 − 36x10) + Iχ

= 12Θ2,

so F2,3(Θ) = −3Θ1Θ5−6Θ2Θ6 +12Θ2. We have [Θ1,Θ4] = 0, so F1,4(Θ) = 0.

Next,

[Θ2,Θ4] = (x1 + 3x4x6x10 + x4x7 + 2x4x9x10 − 4x4x10 + 2x6x8 − 4x8

+x8x9) + Iχ

= Θ1,

so F2,4(Θ) = Θ1. Next, we have

[Θ3,Θ4] = 15
2
x4 − 9x4x6 + Iχ,

so F 4
3,4(Θ) = −9Θ4Θ6, and

[Θ3,Θ4]− F 4
3,4(Θ) = 15

2
x4 + Iχ

= 15
4

Θ4,

so F3,4(Θ) = −9Θ4Θ6 + 15
2

Θ4. We also have

[Θ1,Θ5] = (x2 + 1
2
x3x10 − 3

2
x4x5x10 + 1

2
x4x

3
10 − x5x8 − x6x7 − 1

2
x6x9x10

+x6x10 + 2x7 − x7x9 + 1
2
x8x

2
10 + 5

2
x9x10 − 1

2
x2

9x10 − 3x10) + Iχ

= Θ2,

and we get F1,5(Θ) = Θ2. We have [Θ2,Θ5] = 0, so F2,5(Θ) = 0. Next, for
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F3,5 we have

[Θ3,Θ5] = (−51
2
x5 + 9x5x6 − 9

4
x6x

2
10 + 15

8
x2

10) + Iχ,

so F 4
3,5(Θ) = 9Θ5Θ6. Subtracting, we get

[Θ3,Θ5]− F 4
3,5(Θ) = (−51

2
x5 + 51

8
x2

10) + Iχ

= −51
2

Θ5,

which gives F3,5(Θ) = 9Θ5Θ6 − 51
2

Θ5. Next, we have

[Θ4,Θ5] = (x6 + 1
2
) + Iχ,

so F4,5(Θ) = Θ6 + 1
2
. We have

[Θ1,Θ6] = (−x1 − 3x4x6x10 − x4x7 − 2x4x9x10 + 4x4x10 − 2x6x8 + 4x8

−x8x9) + Iχ

= −Θ1,

and we have F1,6(Θ) = −Θ1. Next,

[Θ2,Θ6] = (x2 + 1
2
x3x10 − 3

2
x4x5x10 + 1

2
x4x

3
10 − x5x8 − x6x7 − 1

2
x6x9x10

+x6x10 + 2x7 − x7x9 + 1
2
x8x

2
10 + 5

2
x9x10 − 1

2
x2

9x10 − 3x10) + Iχ

= Θ2,

and F2,6(Θ) = Θ2. We have [Θ3,Θ6] = 0, so F3,6(Θ) = 0. Next, [Θ4,Θ6] =

−2x4 + Iχ = −2Θ4, so F4,6(Θ) = −2Θ4. Finally, we have [Θ5,Θ6] = (2x5 −
1
2
x2

10) + Iχ, so F5,6(Θ) = 2Θ5, completing the presentation for U(g, e).



5

One-dimensional

representations of U(g, e)

In [P07ii, Corollary 1.1] Premet proved the existence of finite-dimensional

representations for U(g, e), but the existence of 1-dimensional representations

(i.e. algebra homomorphisms U(g, e) → C) remains open. This is equivalent

to Conjecture 3.1(1) in [P07i], which conjectures the existence of an ideal

of codimension 1 in U(g, e). It was proved by Losev [L10, Theorem 1.2.3(1)]

that in the case that when g is classical U(g, e) always admits a 1-dimensional

representation.

Further progress was made towards a proof of the conjecture by Premet in

[P08, Theorem 1.1]. This states that the following condition is sufficient for

U(g, e) to admit a 1-dimensional representation. Let O ⊂ g be the nilpotent

orbit with e ∈ O. If there is a proper Levi subalgebra l of g with a nilpotent

orbit O0 ⊂ l such that O is induced from O0 and that for e0 ∈ O0, the finite

W -algebra U([l, l], e0) admits a 1-dimensional representation, then U(g, e) also

admits a 1-dimensional representation.

These two results reduce the conjecture to the finite number of cases where

g is of exceptional type and e lies in a rigid orbit of g. These orbits are given

in [S82] and listed in Section 2.3.

44
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5.1 Using a presentation

Given a presentation of U(g, e) as in Chapter 4, with generators Θ1, . . . ,Θd

for d = dim(ge) and relations Fij(Θ) = [Θi,Θj] for 1 ≤ i < j ≤ d, it

is straightforward to determine the 1-dimensional representations. A repre-

sentation ρ : U(g, e) → C is determined by the values ρ(Θi) taken at each

generator Θi. Given α1, . . . , αd ∈ C, the map ρ : U(g, e) → C is defined by

setting ρ(Θi) = αi and extending to sums, scalar multiplication and products

Θi1 · · ·Θim for 1 ≤ i1 ≤ · · · ≤ im ≤ d. This defines a 1-dimensional represen-

tation of U(g, e) if and only if Fij(α1, . . . , αd) = 0 for all 1 ≤ i < j ≤ d. So

the question of the existence of a 1-dimensional representation of U(g, e) is

answered by solving a set of rational polynomial equations.

Example 5.1.1. We return to the case where g is the simple Lie algebra of

type G2, and e ∈ g is a short root vector, as in Examples 4.2.1, 4.3.1 . We

recall the 12 non-zero values of Fij:

F1,2(Θ) = 5Θ3Θ4Θ5 − 1
2
Θ2

3 −Θ3Θ2
6 + 9Θ4Θ5Θ2

6 − 9
2
Θ2

4Θ2
5 + 7Θ3Θ6

−69
2

Θ4Θ5Θ6 + 6Θ3
6 − 6Θ3 + 93

4
Θ4Θ5 − 30Θ2

6 + 42Θ6 − 18

F1,3(Θ) = 6Θ1Θ6 − 3Θ2Θ4 − 3Θ1

F1,5(Θ) = Θ2

F1,6(Θ) = −Θ1

F2,3(Θ) = −3Θ1Θ5 − 6Θ2Θ6 + 12Θ2

F2,4(Θ) = Θ1

F2,6(Θ) = Θ2

F3,4(Θ) = −9Θ4Θ6 + 15
2

Θ4

F3,5(Θ) = 9Θ5Θ6 − 51
2

Θ5

F4,5(Θ) = 1
2

+ Θ6

F4,6(Θ) = −2Θ4

F5,6(Θ) = 2Θ5.
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We immediately see that for a 1-dimensional representation ρ of U(g, e) given

by ρ(Θi) = αi we must have αi = 0 for i = 1, 2, 4, 5 and α6 = −1
2
. Substituting

into the above, the only remaining non-zero polynomial is F1,2, and we have

−1
2
α2

3 − 39
4
α3 − 189

4
= 0.

Solving, we get α3 = −9 or α3 = −21
2

. We therefore have precisely two

distinct 1-dimensional representations of U(g, e), given by (Θ1, . . . ,Θ6) 7→
(0, 0,−9, 0, 0,−1

2
) and (Θ1, . . . ,Θ6) 7→ (0, 0,−21

2
, 0, 0,−1

2
) respectively.

5.2 Reduced enveloping algebras

We now consider a connection between finite W -algebras and the representa-

tion theory of modular Lie algebras.

Definition 5.2.1. [J62, Section V.7] A restricted Lie algebra of characteristic

p > 0 is a Lie algebra gk over a field k of characteristic p with a map a 7→ a[p]

such that for a, b ∈ gk and α ∈ k:

1. (αa)[p] = αpa[p],

2. (a+ b)[p] = a[p] + b[p] +
∑p−1

i=1 si(a, b), where isi(a, b) is the coefficient of

λi−1 in a(ad(λa+ b))p−1, and

3. [a, b[p]] = a(ad b)p.

Denote the universal enveloping algebra of a restricted Lie algebra gk by

U(gk). For ξ ∈ g∗k, let Jξ denote the 2-sided ideal of U(gk) generated by all

elements xp−x[p]−ξ(x)p for x ∈ gk. We define the reduced enveloping algebra

Uξ(gk) to be the quotient U(gk)/Jξ.

Let G and g be as in Chapter 3, with a nilpotent element e ∈ g, and let

gZ denote the Chevalley Z-form of g. Let k be the algebraic closure of the

finite field Fp for p� 0 (below we consider more precisely what restriction we

wish to place on p). Let gk = gZ ⊗ k, let Gk be the simple simply-connected
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algebraic group with Lie(Gk) = gk, and let ek = e⊗1 ∈ gk. We use the same

notation (· , ·) for the bilinear form on g as for its analogue on g∗
k
, and let

χ ∈ g∗
k

denote the (rescaled) map from g∗
k

to k corresponding to ek. Write

dχ = 1
2

dim(Gk · χ) for half of the dimension of the orbit of χ under the

coadjoint action of Gk on g∗
k
.

In this context, the Kac–Weisfeiler conjecture [KW71], proved by Premet

[P95] states that any irreducible representation of the reduced enveloping

algebra Uχ(gk) associated to χ ∈ g∗
k

has dimension divisible by pdχ . Given

this, it is natural to ask whether Uχ(gk) has representations with dimension

equal to pdχ . A sufficient condition for this in terms of the finite W -algebra

U(g, e) is given by Premet in [P08, Theorem 1.4], which we state here.

Theorem 5.2.2. If the finite W -algebra U(g, e) admits a 1-dimensional rep-

resentation then for an algebraically closed field k of sufficiently large char-

acteristic p, the reduced enveloping algebra Uχ(gk) has a simple module of

dimension pdχ.

Combined with the results of Premet [P08] and Losev [L10], this means

that the existence of a 1-dimensional representation for each finite W -algebra

U(g, e) where g is of exceptional type and e lies in a rigid nilpotent orbit

of g gives the existence of a representation of dimension pdχ for the associ-

ated reduced enveloping algebra Uχ(gk) provided the characteristic of k is

sufficiently large.

Premet’s proof of Theorem 5.2.2 uses a modular analogue of U(g, e), de-

fined over some k = Fp for p � 0. For this we need to repeat the construc-

tion of U(g, e) over Z[D−1], where D is a sufficiently large integer, to get

U(gZ[D−1], e) where we have chosen our sl2-triple from gZ. We first require

that the bad primes for g are invertible in Z[D−1], so our first candidate for

D is the product of those bad primes. In order that the rescaled Killing form

(· , ·) is defined over Z[D−1] we may need to increase D to ensure that κ(e, f)

is invertible in Z[D−1]. For example, if g is the simple Lie algebra of type E7,

and e lies in the orbit with Bala–Carter label (A3 +A1)′, then κ(e, f) = 396,

which has 11 as a factor, which is a good prime for g, and we must increase
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D accordingly. When we choose the basis, we require that the new structure

constants are invertible in Z[D−1], so we may need to increase D further at

this point. We also require that the coefficients λa in the expressions for the

generators Θ1, . . . ,Θd of U(g, e) lie in Z[D−1], so we may need to increase D

again. Similarly, we require that the commutator relations [Θi,Θj] = Fij(Θ)

have all coefficients in Z[D−1], so it is possible that D may need to be in-

creased here also.

To establish a lower bound on the characteristic p of k for Theorem 5.2.2

we require that D does not divide p, but we must also consider each of the

finite W -algebras U([l, l], e0), where l is a Levi subalgebra of g and e0 ∈ [l, l]

is rigid nilpotent. The Levi subalgebras we need to consider are classical,

and the nilpotent orbits can be listed using a partition classification found in

[CM93, Chapter 5.1] and sl2-triples and orbit representatives can be found

using the methods of [CM93, Chapter 5.2]. We require that there is a presen-

tation of U([l, l], e0) for which p does not divide any denominator, and that p

does not divide the (integer) value κl(e0, f0) where κl is the Killing form on l

and (e0, [e0, f0], f0) is an sl2-triple in l.

Example 5.2.3. We return to the case where g is the simple Lie algebra

of type G2, and e ∈ g is a short root vector in the orbit with Bala–Carter

label Ã1. The bad primes for g are 2 and 3, and κ(e, f) = 24. We have the

generators Θ1, . . . ,Θ6 from Example 4.2.1 and the relations Fij from Example

4.3.1 and we see that the denominators which occur are 2 and 4. We can

therefore define U(gZ[6−1], e), and we can take any prime p > 3 for Theorem

5.2.2.

We conclude that for k = Fp where p > 3, the reduced enveloping algebra

associated to a short root vector ek in gk has a simple module of dimension

p4, where 4 = 8
2

is half the dimension of the coadjoint orbit of χ in g∗
k
.
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5.3 Removing relations

The algorithms of Chapter 4 give a presentation of U(g, e) involving
(
d
2

)
relations, which allows us to determine the 1-dimensional representations. In

this section, we show that a presentation of U(g, e) can be given by fewer

relations, and that the task of determining the 1-dimensional representations

requires consideration of even fewer relations, thus significantly reducing the

amount of calculation required. The results given here appear in [GRU09,

Section 3].

Lemma 5.3.1. Suppose we have a basis for g as in Section 3.2 where ge

is generated by x1, . . . , xb for some b ≤ d. Then U(g, e) is generated by

Θ1, . . . ,Θb.

Proof. We may assume that the basis is chosen so that nb+1 ≤ · · · ≤ nd

and for k = b− 1, . . . , d that xk lies in the span of the elements x1, . . . , xk−1

and [xi, xj] for 1 ≤ i, j ≤ k − 1. Let W denote the subalgebra of U(g, e)

generated by Θ1, . . . ,Θb. It is sufficient to show that Θk lies in W for each

k = b+ 1, . . . , d.

Suppose we have shown Θb+1, . . . ,Θk−1 ∈ W . Then from our condition

on the ni we have that Fnk+1U(g, e) ⊆ W . We can express the basis element

xk ∈ ge in terms of x1, . . . , xk−1:

xk =
∑
i,j<k

νkij[xi, xj] +
∑
i<k

ρki xi,

for coefficients νkij, ρ
k
i ∈ Q. In the case that we have non-zero values for some

ρki , we can change the basis so that xk is replaced by xk −
∑

i<k ρ
k
i xi, and

we get xk =
∑

i,j<k ν
k
ij[xi, xj]. With this change, the new xk is still a weight

vector for adh and the action of te.

From Theorem 3.2.1(4) we can write∑
i,j<k

νkij[Θi,Θj] = Θk +Gk(Θ1, . . . ,Θk−1) +Hk(Θ1, . . . ,Θk−1)
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where Gk(Θ1, . . . ,Θk−1) =
∑

i,j<k qij(Θ1, . . . ,Θk−1) is a polynomial with co-

efficients in Q which lies in Fnk+2U(g, e) with zero constant and linear terms,

and Hk is a polynomial with coefficients in Q such that Hk(Θ1, . . . ,Θk−1) ∈
FnkU(g, e). We therefore have Hk(Θ1, . . . ,Θk−1) ∈ W . We can write

Gk(Θ1, . . . ,Θk−1) =
∑
|a|≥2

2≤|a|e<nk+1

µkaΘa1
1 · · ·Θ

ak−1

k−1

so we have thatGk(Θ1, . . . ,Θk−1) is a sum of products of elements of Fnk+1U(g, e)

along with Θ1, . . . ,Θb, and so Gk(Θ1, . . . ,Θk−1) ∈ W . We also know that each

commutator [Θi,Θj] lies in W , so Θk ∈ W as required.

Lemma 5.3.1 shows that not all generators Θ1, . . . ,Θd are necessary in

order to give a presentation of U(g, e), but if we just have Θ1, . . . ,Θb for b < d

then we no longer have a set of PBW generators. Incidentally, we get from

the proof of Lemma 5.3.1 an algorithm for finding the generators Θb+1, . . . ,Θd

which does not require us to determine the large list of monomials which may

occur in the expression for Θk given in Theorem 3.2.1(1).

Theorem 5.3.2. Suppose we have a generating set x1, . . . , xb of ge as in

Lemma 5.3.1. Then U(g, e) is generated by Θ1, . . . ,Θd subject only to the

relations

[Θi,Θj] = Fij(Θ1, . . . ,Θd) = Fij(Θ),

for i = 1, . . . , b and j = 1, . . . , d, where Fij is a polynomial with coefficients

in Q, and Fij(Θ) ∈ Fni+nj+2U(g, e).

Proof. The case that b = d is immediate from [P07ii, Lemma 4.1] and Theo-

rem 3.2.1(4). For b < d it is sufficient to show that the polynomials Fkl(Θ)

for k, l > b are determined by what we shall refer to as known polynomials

i.e. the polynomials Fij(Θ) where 1 ≤ i ≤ b and 1 ≤ j ≤ d.

We need to show that for k, l > b, we can calculate [Θk,Θl] = Fkl(Θ) in

terms of the known polynomials Fij. As in the proof of Lemma 5.3.1 we may
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assume that nb+1 ≤ · · · ≤ nd and for m = b − 1, . . . , d that xm lies in the

span of the elements [xi, xj] for 1 ≤ i, j ≤ m− 1. From the anti-symmetry of

the relations, we may assume k < l. We use induction on the order of the Fij

given first by nk + nl, then by k, and then by l. Assume that we have each

Fk′l′ if either: nk′ + nl′ < nk + nl; or if nk′ + nl′ = nk + nl and k′ < k; or if

nk′ + nl′ = nk + nl, k
′ = k and l′ < l. With polynomials Gk(Θ1, . . . ,Θk−1)

and Hk(Θ1, . . . ,Θk−1) and rational coefficients νkij as in the proof of Lemma

5.3.1, we can write

Θk =
∑
i,j<k

νkij[Θi,Θj]−Gk(Θ)−Hk(Θ).

For k, l > b we have

[Θk,Θl] =
∑
i,j<k

νkij[[Θi,Θj],Θl]− [Gk(Θ),Θl]− [Hk(Θ),Θl].

We show that terms on the right hand side can be expressed as polynomials

in Θ1, . . . ,Θd using the known polynomials. We know Gk(Θ) ∈ Fnk+2U(g, e)

with no constant or linear terms, and that Θl ∈ Fnl+2U(g, e), so we can apply

the Leibniz rule to [Gk(Θ),Θl], expressing it in terms of polynomials Fij(Θ)

polynomials Fij(Θ) given by the inductive hypothesis. We can therefore

express [Gk(Θ),Θl] in terms of the known polynomials. Similarly, Hk(Θ) ∈
FnkU(g, e) so we can apply the Leibniz rule and the inductive hypothesis to

express [Hk(Θ),Θl] in terms of the known polynomials as well.

Finally, we consider a term of the form [[Θi,Θj],Θl]. From the Jacobi

identity we have

[[Θi,Θj],Θl] = [Θi, [Θj,Θl]] + [[Θi,Θl],Θj]

= [Θi, Fjl(Θ)] + [Fil(Θ),Θj].

We know the polynomials Fil(Θ) and Fjl(Θ) from the inductive hypothe-

sis, and by applying the Leibniz rule and the inductive hypothesis again we
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express [[Θi,Θj],Θl], and hence [Θk,Θl] = Fkl(Θ) in terms of the known

polynomials.

In the following example, and also in the others for which the explicit

calculations are given below, the order of the basis is not in the form of Lemma

5.3.1 beginning with the generating set for ge, but instead is in decreasing

order of the Dynkin degree, but this does not impact upon Lemma 5.3.1 and

Theorem 5.3.2, except to simplify the notation used.

Example 5.3.3. Returning to the example of U(g, e) where g is of type G2

and e is a short root vector, with basis, generators and relations as in Example

4.3.1. We have that ge has dimension d = 6, and is generated by the elements

x2, x3, x4, x5 where x1 = [x2, x4] and x6 = [x4, x5]. Note that for most cases,

the minimal number of generators is significantly less than the dimension of

ge. To illustrate the above, we find F1,6(Θ) from the other relations. We have

[Θ1,Θ6] = [[Θ2,Θ4],Θ6]

= [Θ2, F4,6(Θ)] + [F2,6(Θ),Θ4]

= [Θ2,−2Θ4] + [Θ2,Θ4]

= −Θ1,

which agrees with our original calculation in Example 4.3.1.

Combining this with Section 5.1, we see that the 1-dimensional represen-

tations of U(g, e) are determined by the relations given by the polynomials

Fij for 1 ≤ i ≤ b and 1 ≤ j ≤ d where ge is generated by x1, . . . , xb. From

[P07i, Lemma 2.4], we have an embedding of te in U(g, e); we identify te with

its image under this embedding, and we have an adjoint action of te on U(g, e)

for which Θi in U(g, e) has te-weight βi. The following results show that in

order to determine the 1-dimensional representations of U(g, e), it is sufficient

to calculate a much smaller subset of the relations Fij.

Lemma 5.3.4. Let ρ : U(g, e) → C be a 1-dimensional representation of

U(g, e). Then ρ(Θi) = 0 for all i such that βi 6= 0.
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Proof. Let i be such that βi 6= 0. Then we can choose t ∈ te such that

βi(t) 6= 0. So we have

βi(t)ρ(Θi) = ρ(βi(t)Θi) = ρ([t,Θi]) = [ρ(t), ρ(Θi)] = 0,

and ρ(Θi) = 0 as required.

The following theorem shows that all 1-dimensional representations of

U(g, e) can be determined by calculating only the commutator relations [Θi,Θj]

when βi + βj = 0. For i = 1, . . . , d write

δi =

{
1 for βi = 0

0 for βi 6= 0

and write F ij(Tk | βk = 0) = Fij(δ1T1, . . . , δdTd) for the evaluation of the

polynomial Fij at Ti = 0 for βi 6= 0.

Theorem 5.3.5. The 1-dimensional representations of U(g, e) are in bijective

correspondence with solutions to the set of polynomial equations F ij(Tk | βk 6=
0) = 0 for 1 ≤ i ≤ b and 1 ≤ j ≤ d and βi + βj = 0. The solution

given by Tk = αk for each k with βk = 0 corresponds to the 1-dimensional

representation ρ determined by setting each ρ(Θk) = 0 for k with βk 6= 0 and

each ρ(Θk) = αk for k with βk = 0.

Proof. Given a representation ρ : U(g, e) → C, the values ρ(Θ1), . . . , ρ(Θd)

give a solution to all Fij, and by Lemma 5.3.4 this also is a solution to the

set of polynomials F ij with 1 ≤ i ≤ b and 1 ≤ j ≤ d.

Given a solution (αk | βk = 0) to the F ij, we need to show that there

is no Fij with 1 ≤ i ≤ b and 1 ≤ j ≤ d and βi + βj 6= 0 such that the

evaluation of Fij(T1, . . . , Td) at Tk = αk for βk = 0 and Tk = αk = 0 for

βk 6= 0 is non-zero. Suppose there are some i, j such that Fij(α1, . . . , αd) 6= 0.

Write Fij(Θ) =
∑
|a|e≤ni+nj+2 λ

ij
a Θa. Then there is some a = (a1, . . . , ad)
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with λija Θa 6= 0 and

λija
∏
ak 6=0

αakk 6= 0.

But then each αakk in the product is non-zero, and so for each k with ak 6= 0,

we have βk = 0. The polynomial Fij(Θ) is homogeneous with respect to

te-weight, so we must have βi + βj = 0, giving a contradiction.

The above results greatly facilitate the task of finding the 1-dimensional

representations for U(g, e), however without a full presentation of U(g, e) we

cannot yet establish a bound on p for Theorem 5.2.2, as there may be further

denominators appearing in the relations not calculated.

Example 5.3.6. Again we return to the case where g is simple of type G2

and e is a short root vector, and the generators and relations of U(g, e) are

as in Example 4.3.1. We have (β1, . . . , β6) = (1,−1, 0, 2,−2, 0), so for any

1-dimensional representation ρ we must have ρ(Θk) = 0 for k = 1, 2, 4, 5, and

to determine the 1-dimensional representations we need only calculate the

relations F1,2(Θ), F3,6(Θ) and F4,5(Θ). We have:

F 1,2(T3, T6) = −1
2
T3 − T3T

2
6 + 7T3T6 + 6T 3

6 − 6T3 − 30T 2
6 + 42T6 − 18

F 3,6(T3, T6) = 0

F 4,5(T3, T6) = 1
2

+ T6,

which give the same solutions as in Example 5.1.1.



6

Results for rigid nilpotent

orbits in exceptional Lie

algebras

In this chapter we show that for g of type G2, F4, E6 or E7, and e a rigid

nilpotent element of g the finite W -algebra U(g, e) admits either 1 or 2 1-

dimensional representations. In the case that g is of type G2, F4 or E6 we

also give a lower bound on the characteristic p of the field k for which the

reduced enveloping algebra Uχ(gk) admits a representation of dimension pdχ .

We give for each rigid nilpotent orbit for g of type G2, F4, E6 or E7 a basis

according to Section 3.2, an sl2-triple for that orbit and minimal generating

sets for the subalgebras ge and m.

6.1 Type G2

Here we calculate U(g, e) for g of type G2 and e lying in each of the 4 non-

zero nilpotent orbits (not just the rigid orbits). We summarize in Table 6.1

certain data for these orbits, including the number of 1-dimensional represen-

tations for U(g, e) in each case and the primes p for which we cannot define

U(gk, ek) for k of characteristic p and hence we cannot apply Theorem 5.2.2

55
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and conclude that Uχ(gk) admits a representation of dimension pdχ .

Table 6.1: Results for type G2.

Dynkin # 1-dim Bad primes

Orbit diagram κ(e, f) dim(ge) dim(te) reps for U(gk, ek)

A1 0 1 8 8 1 1 2, 3

Ã1 1 0 24 6 1 2 2, 3

G2(a1) 2 0 32 4 0 ∞ 2, 3

G2 2 2 224 2 0 ∞ 2, 3, 7

Below we give the full details of the presentation of each of the finite

W -algebras associated to the 4 non-zero nilpotent orbits in g. Note that in

order to make any conclusions about a lower bound for the characteristic

of the field in Theorem 5.2.2, we must consider a presentation of the finite

W -algebra associated to a rigid nilpotent element e0 in a Levi subalgebra

l of g. In this case, the only Levi subalgebra to consider is of type A1,

which contains precisely 1 non-zero nilpotent orbit (which is both minimal

and regular), and the associated finite W -algebra has a presentation where

the only denominators to occur are powers of 2, which is a bad prime for g.

Thus for rigid nilpotent e ∈ g we can apply Theorem 5.2.2 for p > 3.

6.1.1 The orbit A1

Here we consider the finite W -algebra associated to the minimal nilpotent

orbit in g, with Bala–Carter label A1, or equivalently, the orbit containing

a long root vector. In Table 6.2 we give our choice of basis x1, . . . , x14 of

g in terms of the inbuilt Chevalley basis b1, . . . , b14 in GAP4 for the simple

Lie algebra of type G2. We take our sl2-triple to be (e, h, f) = (b6, b13 +
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2b14, b12) = (x1, x8 + 2x9, x14). With this basis, a minimal generating set for

ge is {x5, x6, x7}. A minimal generating set for m is {x12, x13, x14}. The

subalgebra te is spanned by x8. We calculate κ(e, f) = 8.

Table 6.2: Basis for type G2, orbit A1.

ni βi

p
ge

x1 b6 2 0

x2 b2 1 −3

x3 b3 1 −1

x4 b4 1 1

x5 b5 1 3

x6 b1 0 2

x7 b7 0 −2

x8 b13 0 0

x9 b14 0 0

x10 b8 −1 3

x11 b9 −1 1

m

x12 b10 −1 −1

x13 b11 −1 −3

x14 b12 −2 0

Following the algorithm of Section 4.2, we calculate the following generators

for U(g, e):

Θ1 = (x1 + x2x10 + 1
3
x3x11 − 1

9
x7x

2
11 + x8x9 − 3x9 + x2

9) + Iχ

Θ2 = x2 + Iχ

Θ3 = (x3 − 2
3
x7x11) + Iχ

Θ4 = (x4 + x7x10 + 2
3
x8x11 + x9x11 − 5

3
x11) + Iχ
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Θ5 = (x5 − 1
3
x6x11 − x8x10 − x9x10 + 3x10 − 2

27
x3

11) + Iχ

Θ6 = (x6 + 1
3
x2

11) + Iχ

Θ7 = x7 + Iχ

Θ8 = x8 + Iχ.

And using the algorithm of Section 4.3 we calculate all commutators [Θi,Θj]

for 1 ≤ i < j ≤ 8:

[Θ1,Θ2] = −8Θ2 + 1
3
Θ3Θ7 + 2Θ2Θ8

[Θ1,Θ3] = −3Θ3 + 2
3
Θ4Θ7 + 2

3
Θ3Θ8 + Θ2Θ6

[Θ1,Θ4] = Θ5Θ7 − 2
3
Θ4Θ8 + 2

3
Θ3Θ6

[Θ1,Θ5] = Θ5 − 2Θ5Θ8 + 1
3
Θ4Θ6

[Θ1,Θ6] = 4
3
Θ6 −Θ6Θ8

[Θ1,Θ7] = −10
3

Θ7 + Θ7Θ8

[Θ1,Θ8] = 0

[Θ2,Θ3] = 2
3
Θ2

7

[Θ2,Θ4] = 2Θ7 − 2
3
Θ7Θ8

[Θ2,Θ5] = −2
9
−Θ1 + 1

3
Θ6Θ7

[Θ2,Θ6] = Θ3

[Θ2,Θ7] = 0

[Θ2,Θ8] = 3Θ2

[Θ3,Θ4] = 2− 2Θ8 + 3Θ1 + 2
3
Θ2

8 − 7
3
Θ6Θ7

[Θ3,Θ5] = −2
3
Θ6 + 2

3
Θ6Θ8

[Θ3,Θ6] = 2Θ4

[Θ3,Θ7] = 3Θ2

[Θ3,Θ8] = Θ3

[Θ4,Θ5] = 2
3
Θ2

6

[Θ4,Θ6] = 3Θ5
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[Θ4,Θ7] = 2Θ3

[Θ4,Θ8] = −Θ4

[Θ5,Θ6] = 0

[Θ5,Θ7] = Θ4

[Θ5,Θ8] = 3Θ5

[Θ6,Θ7] = −2 + Θ8

[Θ6,Θ8] = −2Θ6

[Θ7,Θ8] = 2Θ7.

Solving the associated set of polynomials we conclude that we have a unique

1-dimensional representation for U(g, e), defined by

Θ1 7→ −2
9

Θ8 7→ 2,

with Θi 7→ 0 for each other generator. Note that the existence of a 1-

dimensional representation in this case was known from [P07i] (as our orbit

is minimal), though to verify the details of the presentation given in [P07i,

Theorem 6.1] using these methods we would need to make a different choice

of basis (but still meeting the conditions of Section 3.2). We can observe that

the only denominators occurring in this presentation are powers of 3, which

is already excluded as it is a bad prime for g, so we may define U(gk, ek)

provided k has characteristic p > 3.

6.1.2 The orbit Ã1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label Ã1, or equivalently, the orbit containing a short root vector. In

Table 6.3 we give our choice of basis for g. The information given here is

repeated from the examples in Chapters 4 and 5. We take our sl2-triple to

be (e, h, f) = (b4, 2b13 + 3b14, b10) = (x3, 3x6 + 2x9, x12). With this basis, a
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minimal generating set for ge is {x2, x3, x4, x5}. A minimal generating set

for m is {x11, x12, x14}. The subalgebra te is spanned by x6. We calculate

κ(e, f) = 24.

Table 6.3: Basis for type G2, orbit Ã1.

ni βi

p

ge

x1 b6 3 1

x2 b5 3 −1

x3 b4 2 0

x4 b2 0 2

x5 b8 0 −2

x6 b14 0 0

x7 b1 1 −1

x8 b3 1 1

x9 b13 0 0

x10 b9 −1 −1

m

x11 b7 −1 −1

x12 b10 −2 0

x13 b11 −3 1

x14 b12 −3 −1

We calculate the generators:

Θ1 = (x1 + 3x4x6x10 + x4x7 + 2x4x9x10 − 4x4x10

+2x6x8 − 4x8 + x8x9) + Iχ

Θ2 = (x2 + 1
2
x3x10 − 3

2
x4x5x10 + 1

2
x4x

3
10 − x5x8 − x6x7

−1
2
x6x9x10 + x6x10 + 2x7 − x7x9 + 1

2
x8x

2
10

+5
2
x9x10 − 1

2
x2

9x10 − 3x10) + Iχ
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Θ3 = (x3 + 3
4
x4x

2
10 + 3x6x9 + x8x10 − 5x9 + x2

9) + Iχ

Θ4 = x4 + Iχ

Θ5 = (x5 − 1
4
x2

10) + Iχ

Θ6 = x6 + Iχ.

We calculate all non-zero commutators [Θi,Θj] for 1 ≤ i < j ≤ 6:

[Θ1,Θ2] = 5Θ3Θ4Θ5 − 1
2
Θ2

3 −Θ3Θ2
6 + 9Θ4Θ5Θ2

6

−9
2
Θ2

4Θ2
5 + 7Θ3Θ6 − 69

2
Θ4Θ5Θ6 + 6Θ3

6

−6Θ3 + 93
4

Θ4Θ5 − 30Θ2
6 + 42Θ6 − 18

[Θ1,Θ3] = 6Θ1Θ6 − 3Θ2Θ4 − 3Θ1

[Θ1,Θ5] = Θ2

[Θ1,Θ6] = −Θ1

[Θ2,Θ3] = −3Θ1Θ5 − 6Θ2Θ6 + 12Θ2

[Θ2,Θ4] = Θ1

[Θ2,Θ6] = Θ2

[Θ3,Θ4] = − 9Θ4Θ6 + 15
2

Θ4

[Θ3,Θ5] = 9Θ5Θ6 − 51
2

Θ5

[Θ4,Θ5] = 1
2

+ Θ6

[Θ4,Θ6] = −2Θ4

[Θ5,Θ6] = 2Θ5.

We have two 1-dimensional representations, given by

Θ3 7→ −9

Θ6 7→ −1
2

and
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Θ3 7→ −21
2

Θ6 7→ −1
2
,

with all other generators Θi 7→ 0. We can observe that the only denominators

occurring in this presentation are powers of 2, which is already excluded as it

is a bad prime for g, so we may define U(gk, ek) provided k has characteristic

p > 3.

6.1.3 The orbit G2(a1)

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label G2(a1), that is, the subregular orbit of g. In Table 6.4 we give

our choice of basis for g. We take our sl2-triple to be (e, h, f) = (b2 +b4, 2b13 +

4b14, b8 + b10) = (x1, x9, x10). With this basis, a minimal generating set for ge

is {x2, x3, x4}. A minimal generating set for m is {x10, x11, x12, x13}. The

subalgebra te is zero. We calculate κ(e, f) = 32.

Table 6.4: Basis for type G2, orbit G2(a1).

ni βi

p

ge

x1 b6 4

x2 b2 + b4 2

x3 b3 − 3b5 2

x4 b4 2

x5 b3 2

x6 b1 0

x7 b7 0

x8 b13 0

x9 b14 0

m
x10 b8 + b10 −2

x11 3b8 − b10 −2

Continued on next page
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Table 6.4 – continued from previous page

ni βi

m

x12 b9 −2

x13 b11 −2

x14 b12 −4

We calculate the generators:

Θ1 = (x1 + 4
3
x2x6 − 2

3
x2x7 − 2

3
x3x9 − 4

3
x4x6 + 4

3
x4x7 − 16

3
x5 + 4

3
x5x8

+8
3
x5x9 + 8

9
x6x

2
7 − 8

3
x6x8x9 + 8

3
x6x9 − 8

3
x6x

2
9 − 128

9
x7 + 64

9
x7x8

−8
3
x7x8x9 − 8

9
x7x

2
8 + 40

3
x7x9 − 8

3
x7x

2
9 − 8

27
x3

7) + Iχ

Θ2 = (x2 + 4
3
x6x7 − 20

3
x8 + 4x8x9 + 4

3
x2

8 − 12x9 + 4x2
9) + Iχ

Θ3 = (x3 − 4x6 + 4x6x8 + 4x6x9 + 20
3
x7 − 8

3
x7x8 − 4x7x9) + Iχ

Θ4 = (x4 + 4
3
x6x7 − 1

3
x2

7 − 20
3
x8 + 4x8x9 + 4

3
x2

8 − 9x9 + 3x2
9) + Iχ.

We calculate all non-zero commutators [Θi,Θj] for 1 ≤ i < j ≤ 6:

[Θ1,Θ3] = 128
3

Θ4 − 32Θ2 + 32
3

Θ2
4 + 2

3
Θ2

3 − 32
3

Θ2Θ4 + 2Θ2
2

[Θ1,Θ4] = 2Θ1 − 4
3
Θ3Θ4 + 4

3
Θ2Θ3

[Θ3,Θ4] = 4Θ3 + 3Θ1.

We have infinitely many 1-dimensional representations. The only denomina-

tors appearing in this presentation are powers of 3 which is already excluded

as it is a bad prime for g, so we may define U(gk, ek) provided k has charac-

teristic p > 3.

6.1.4 The orbit G2

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label G2, that is, the regular orbit of g. In Table 6.5 we give our choice
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of basis for g. We take our sl2-triple to be (e, h, f) = (b1+b2, 6b13+10b14, 6b7+

10b8) = (x2, 6x7 + 10x8, x9). With this basis, a minimal generating set for ge

is {x1, x2}. A minimal generating set for m is {x9, x10}. The subalgebra te

is zero. We calculate κ(e, f) = 224.

Table 6.5: Basis for type G2, orbit G2.

ni βi

p

ge
x1 b6 10

x2 b1 + b2 2

x3 b5 8

x4 b4 6

x5 b3 4

x6 b1 2

x7 b13 0

x8 b14 0

m

x9 6b7 + 10b8 −2

x10 b7 − 3b8 −2

x11 3b9 −4

x12 b10 −6

x13 b11 −8

x14 b12 −10

We calculate the generators:

Θ1 = (x1 − 28
3
x2x4 + 196x2x5 − 784

9
x2x5x7 − 392

3
x2x5x8 + 10976x2x6

−60368
9
x2x6x7 + 10976

3
x2x6x7x8 + 21952

27
x2x6x

2
7 − 38416

3
x2x6x8

+10976
3
x2x6x

2
8 − 784

9
x2x

2
6 − 178250240

81
x2x7 + 2458624x2x7x8

−7683200
9

x2x7x
2
8 + 307328

3
x2x7x

3
8 + 2458624

3
x2x

2
7 − 6146560

9
x2x

2
7x8
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+1536640
9

x2x
2
7x

2
8 − 12293120

81
x2x

3
7 + 2458624

27
x2x

3
7x8 + 1229312

81
x2x

4
7

−89125120
27

x2x8 + 1843968x2x
2
8 − 768320

3
x2x

3
8 + 109760

9
x2

2x7

−21952
3
x2

2x7x8 − 21952
9
x2

2x
2
7 + 54880

3
x2

2x8 − 5488x2
2x

2
8 − 98x3 + 28x3x7

+56x3x8 + 26656
27

x4 + 28
3
x4x6 − 9800

9
x4x7 + 784x4x7x8 + 784

3
x4x

2
7

−4312
3
x4x8 + 1568

3
x4x

2
8 − 268912

9
x5 + 1960

9
x5x6 − 392

9
x5x6x7 − 392

3
x5x6x8

+3150112
81

x5x7 − 455504
9

x5x7x8 + 142688
9

x5x7x
2
8 − 455504

27
x5x

2
7

+10976x5x
2
7x8 + 21952

9
x5x

3
7 + 1575056

27
x5x8 − 109760

3
x5x

2
8 + 21952

3
x5x

3
8

+7
3
x2

5 − 12293120
9

x6 + 183782144
81

x6x7 − 117399296
27

x6x7x8 + 24278912
9

x6x7x
2
8

−1536640
3

x6x7x
3
8 − 284585728

243
x6x

2
7 + 1536640x6x

2
7x8 − 12293120

27
x6x

2
7x

2
8

+21973952
81

x6x
3
7 − 1536640

9
x6x

3
7x8 − 614656

27
x6x

4
7 + 92813056

27
x6x8

−100803584
27

x6x
2
8 + 4456256

3
x6x

3
8 − 614656

3
x6x

4
8 + 1174432

81
x2

6 − 356720
27

x2
6x7

+76832
9
x2

6x7x8 + 71344
27

x2
6x

2
7 − 60368

3
x2

6x8 + 60368
9
x2

6x
2
8 + 1568

27
x3

6

+688414720
27

x7 + 808887296
9

x7x8 − 7650008576
81

x7x
2
8 + 17210368x7x

3
8

+8605184
9

x7x
4
8 + 4784482304

243
x2

7 − 3467889152
81

x2
7x8 + 4302592x2

7x
2
8

+43025920
9

x2
7x

3
8 − 4302592

9
x2

7x
4
8 − 5077058560

729
x3

7 − 68841472
27

x3
7x8

+456074752
81

x3
7x

2
8 − 8605184

9
x3

7x
3
8 − 189314048

243
x4

7 + 197919232
81

x4
7x8

−55933696
81

x4
7x

2
8 + 86051840

243
x5

7 − 17210368
81

x5
7x8 − 17210368

729
x6

7 + 344207360
9

x8

+2443872256
27

x2
8 − 68841472x3

8 + 34420736
3

x4
8) + Iχ

Θ2 = (x2 − 140
3
x7 + 28x7x8 + 28

3
x2

7 − 84x8 + 28x2
8) + Iχ.

These generators commute, and as we know, U(g, e) is isomorphic to Z(g),

the centre of U(g), in this case [K78]. We have infinitely many 1-dimensional

representations. The only denominators appearing in this presentation are

powers of 3 which is already excluded as it is a bad prime for g. We have that

7 divides κ(e, f), so we may define U(gk, ek) provided k has characteristic

p > 7.
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6.2 Type F4

Here we calculate U(g, e) for g of type F4 and e lying in each of the 5 non-

zero rigid nilpotent orbits. We summarize in Table 6.6 certain data for these

orbits, including the number of 1-dimensional representations for U(g, e) in

each case and the primes p for which we cannot define U(gk, ek) for k of

characteristic p.

Table 6.6: Results for type F4.

Dynkin # 1-dim Bad primes

Orbit diagram κ(e, f) dim(ge) dim(te) reps for U(gk, ek)

A1 1 0 0 0 18 36 3 1 2, 3

Ã1 0 0 0 1 36 30 3 1 2, 3

A1 + Ã1 0 1 0 0 54 24 2 1 2, 3

A2 + Ã1 0 0 1 0 108 18 1 1 2, 3

Ã2 + A1 0 1 0 1 162 16 1 2 2, 3

From here onwards, the generators are too many and/or have too many

terms to be written here, and so are omitted. Similarly, we omit the relations

which are not required in order to determine the 1-dimensional representa-

tions according to Theorem 5.3.5. This information will, however, be consid-

ered in any statements made regarding the lower bound on p for Theorem

5.2.2. The simple summands of the Levi subalgebras of g are of types A1,

A2, B2, B3 and C3. Calculation of presentations of the associated finite W -

algebras for rigid e shows that the only denominators which occur are powers

of 2 and the values of κ(e, f) which occur have prime factors 2, 3 and 5. Thus

for rigid nilpotent e ∈ g we can apply Theorem 5.2.2 for p > 5.
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6.2.1 The orbit A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label A1, that is, the minimal nilpotent orbit in g. In Table 6.7 we give

our choice of basis for g. We take our sl2-triple to be (e, h, f) = (b24, b49 +

2b50 + 2b51 + 3b52, b48) = (x1, x32 + 2x33 + 3x34 + 2x37, x52). With this basis,

a minimal generating set for ge is {x15, x16, x17, x18, x19, x20, x21}. A

minimal generating set for m is {x45, . . . , x52}. The subalgebra te has basis

{x32, x33, x34}. We calculate κ(e, f) = 18.

Table 6.7: Basis for type F4, orbit A1.

ni βi

p ge

x1 b24 2 (0, 0, 0)

x2 b2 1 (0, 0,−1)

x3 b6 1 (0,−2, 1)

x4 b9 1 (−1, 0, 0)

x5 b11 1 (1,−1, 0)

x6 b13 1 (−2, 2,−1)

x7 b14 1 (0, 1,−1)

x8 b16 1 (−2, 0, 1)

x9 b17 1 (0,−1, 1)

x10 b18 1 (2, 0,−1)

x11 b19 1 (−1, 1, 0)

x12 b20 1 (2,−2, 1)

x13 b21 1 (1, 0, 0)

x14 b22 1 (0, 2,−1)

x15 b23 1 (0, 0, 1)

x16 b1 0 (2,−1, 0)

x17 b25 0 (−2, 1, 0)

x18 b3 0 (−1, 2,−1)

Continued on next page
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Table 6.7 – continued from previous page

ni βi

p
ge

x19 b27 0 (1,−2, 1)

x20 b4 0 (0,−2, 2)

x21 b28 0 (0, 2,−2)

x22 b5 0 (1, 1,−1)

x23 b29 0 (−1,−1, 1)

x24 b7 0 (−1, 0, 1)

x25 b31 0 (1, 0,−1)

x26 b8 0 (1,−1, 1)

x27 b32 0 (−1, 1,−1)

x28 b10 0 (−2, 2, 0)

x29 b34 0 (2,−2, 0)

x30 b12 0 (0, 1, 0)

x31 b36 0 (0,−1, 0)

x32 b49 0 (0, 0, 0)

x33 b51 0 (0, 0, 0)

x34 b52 0 (0, 0, 0)

x35 b15 0 (2, 0, 0)

x36 b39 0 (−2, 0, 0)

x37 b50 0 (0, 0, 0)

x38 b26 −1 (0, 0, 1)

x39 b30 −1 (0, 2,−1)

x40 b33 −1 (1, 0, 0)

x41 b35 −1 (−1, 1, 0)

x42 b37 −1 (2,−2, 1)

x43 b38 −1 (0,−1, 1)

x44 b40 −1 (2, 0,−1)

m
x45 b47 −1 (0, 0,−1)

x46 b46 −1 (0,−2, 1)

Continued on next page
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Table 6.7 – continued from previous page

ni βi

m

x47 b45 −1 (−1, 0, 0)

x48 b43 −1 (1,−1, 0)

x49 b44 −1 (−2, 2,−1)

x50 b41 −1 (0, 1,−1)

x51 b42 −1 (−2, 0, 1)

x52 b48 −2 (0, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F20,21, F16,17, F10,19 and F2,15:

[Θ20,Θ21] = −1
2

+ Θ34

[Θ16,Θ17] = −2 + Θ32

[Θ18,Θ19] = Θ33

[Θ2,Θ15] = 6− 2Θ34 −Θ33 + Θ1 −Θ35Θ36 − 1
2
Θ30Θ31 −Θ28Θ29

−1
2
Θ26Θ27 − 1

2
Θ24Θ25 −Θ20Θ21.

We have one 1-dimensional representation, given by

Θ1 7→ −5

Θ32 7→ 2

Θ33 7→ 0

Θ34 7→ 1
2
,

with all other generators Θi 7→ 0. The denominators which appear in the

presentation of U(g, e) are all powers of 2, so we can define U(gk, ek) provided

k has characteristic p > 3. As in the case of the minimal orbit in g of type G2

above, the existence of the 1-dimensional representation for U(g, e) was known

from [P07i], however given the explicit presentation we can also establish the
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bound on the characteristic of p for the modular case.

6.2.2 The orbit Ã1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label Ã1, that is, the orbit containing a short root vector of g. In Table

6.8 we give our choice of basis for g. We take our sl2-triple to be (e, h, f) =

(b21, 2b49+2b50+3b51+4b52, b45) = (x4, 2x28+3x29+4x30+2x37, x49). With this

basis, a minimal generating set for ge is {x14, x15, x16, x17, x19, x22, x23, x25}.
A minimal generating set for m is {x42, . . . , x49}. The subalgebra te has basis

{x28, x29, x30}. We calculate κ(e, f) = 36.

Table 6.8: Basis for type F4, orbit Ã1.

ni βi

p ge

x1 b15 2 (−1, 0, 0)

x2 b18 2 (−1, 0, 1)

x3 b20 2 (0,−2, 1)

x4 b21 2 (0, 0, 0)

x5 b22 2 (0, 2,−1)

x6 b23 2 (−1, 0, 1)

x7 b24 2 (1, 0, 0)

x8 b1 1 (0,−1, 0)

x9 b5 1 (0, 1,−1)

x10 b8 1 (−1,−1, 1)

x11 b11 1 (1,−1, 0)

x12 b12 1 (−1, 1, 0)

x13 b14 1 (1, 1,−1)

x14 b17 1 (0,−1, 1)

x15 b19 1 (0, 1, 0)

x16 b2 0 (2, 0,−1)

Continued on next page
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Table 6.8 – continued from previous page

ni βi

p

ge

x17 b4 0 (−1,−2, 2)

x18 b6 0 (1,−2, 1)

x19 b10 0 (−1, 2, 0)

x20 b13 0 (1, 2,−1)

x21 b16 0 (0, 0, 1)

x22 b26 0 (−2, 0, 1)

x23 b28 0 (1, 2,−2)

x24 b30 0 (−1, 2,−1)

x25 b34 0 (1,−2, 0)

x26 b37 0 (−1,−2, 1)

x27 b40 0 (0, 0,−1)

x28 b50 0 (0, 0, 0)

x29 b51 0 (0, 0, 0)

x30 b52 0 (0, 0, 0)

x31 b3 0 (0, 2,−1)

x32 b7 0 (−1, 0, 1)

x33 b9 0 (1, 0, 0)

x34 b27 0 (0,−2, 1)

x35 b31 0 (1, 0,−1)

x36 b33 0 (−1, 0, 0)

x37 b49 0 (0, 0, 0)

x38 b25 −1 (0, 1, 0)

x39 b29 −1 (0,−1, 0)

x40 b32 −1 (1, 1,−1)

x41 b33 −1 (−1,−1, 0)

m

x42 b43 −1 (0,−1, 0)

x43 b41 −1 (0, 1,−1)

x44 b38 −1 (−1,−1, 1)

Continued on next page
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Table 6.8 – continued from previous page

ni βi

m

x45 b36 −1 (1,−1, 0)

x46 b39 −2 (1, 0, 0)

x47 b42 −2 (−1, 0, 1)

x48 b44 −2 (0, 2,−1)

x49 b45 −2 (0, 0, 0)

x50 b46 −2 (0,−2, 1)

x51 b47 −2 (1, 0,−1)

x52 b48 −2 (−1, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F19,25, F16,22, F17,23, F8,15, F9,14:

[Θ19,Θ25] = −1 + Θ30 + Θ29

[Θ16,Θ22] = Θ28

[Θ17,Θ23] = Θ30

[Θ8,Θ15] = −18 + 8Θ30 + 6Θ29 + 4Θ28 −Θ4 + 4Θ21Θ27 + 4Θ20Θ26

+4Θ19Θ25

[Θ9,Θ14] = 24− 12Θ30 − 14Θ29 − 6Θ28 + Θ4 + 4Θ29Θ30 + 2Θ2
29

+2Θ28Θ29 − 4Θ21Θ27 − 4Θ18Θ24 − 4Θ17Θ23.

We have one 1-dimensional representation given by

Θ4 7→ −12

Θ28 7→ 0

Θ29 7→ 1

Θ30 7→ 0,
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with all other generators Θi 7→ 0. The coefficients which appear in the pre-

sentation of U(g, e) are all integers, so we can define U(gk, ek) provided k has

characteristic p > 3.

6.2.3 The orbit A1 + Ã1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label A1 + Ã1. In Table 6.9 we give our choice of basis for g. We take

our sl2-triple to be (e, h, f) = (b17 + b22, 2b49 + 3b50 + 4b51 + 6b52, b41 + b46) =

(x4, 2x23 + 3x24 + 4x31 + 6x32, b48). With this basis, a minimal generating

set for ge is {x18, x19, x20, x21, x22}. A minimal generating set for m is

{x39, x40, x41, x42, x43, x44, x45, x46, x48, x49}. The subalgebra te has

basis {x23, x24}. We calculate κ(e, f) = 54.

Table 6.9: Basis for type F4, orbit A1 + Ã1.

ni βi

p ge

x1 b23 3 (0,−1)

x2 b24 3 (0, 1)

x3 b16 2 (−2, 0)

x4 b17 + b22 2 (0, 0)

x5 b19 2 (−1, 0)

x6 b20 2 (2, 0)

x7 b21 2 (1, 0)

x8 b22 2 (0, 0)

x9 b4 + 1
2
b12 1 (0,−1)

x10 b6 + 1
2
b14 1 (0, 1)

x11 b7 1 (−1,−1)

x12 b8 1 (1,−1)

x13 b9 1 (−1, 1)

x14 b10 1 (−2,−1)

Continued on next page
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Table 6.9 – continued from previous page

ni βi

p

ge

x15 b11 1 (1, 1)

x16 b13 1 (−2, 1)

x17 b15 1 (2,−1)

x18 b18 1 (2, 1)

x19 b2 0 (0, 2)

x20 b3 + b29 0 (−1, 0)

x21 b5 + b27 0 (1, 0)

x22 b26 0 (0,−2)

x23 b49 0 (0, 0)

x24 b50 0 (0, 0)

x25 b4 1 (0,−1)

x26 b6 1 (0, 1)

x27 b1 0 (2, 0)

x28 b3 0 (−1, 0)

x29 b5 0 (1, 0)

x30 b25 0 (−2, 0)

x31 b51 0 (0, 0)

x32 b52 0 (0, 0)

x33 b28 −1 (0, 1)

x34 b31 −1 (0, 1)

x35 b32 −1 (1, 1)

x36 b34 −1 (−1, 1)

x37 b36 −1 (2, 1)

x38 b37 −1 (2,−1)

m

x39 b38 −1 (0,−1)

x40 b30 −1 (0,−1)

x41 b35 −1 (−1,−1)

x42 b33 −1 (1,−1)

Continued on next page
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Table 6.9 – continued from previous page

ni βi

m

x43 b42 −1 (−2,−1)

x44 b39 −1 (−2, 1)

x45 b40 −2 (2, 0)

x46 b43 −2 (1, 0)

x47 b44 −2 (−2, 0)

x48 b41 + b46 −2 (0, 0)

x49 b41 − 2b46 −2 (0, 0)

x50 b45 −2 (−1, 0)

x51 b47 −3 (0, 1)

x52 b48 −3 (0,−1)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F19,22, F20,21, F5,21, F7,20, F14,18:

[Θ19,Θ22] = −2 + Θ24

[Θ20,Θ21] = 2−Θ23

[Θ5,Θ21] = 12− 9
2
Θ23 − 3Θ8 + Θ4 − 3Θ20Θ21

[Θ7,Θ20] = 24− 6Θ24 − 39
2

Θ23 + 3Θ8 −Θ4 + 3Θ23Θ24 + 3Θ2
23

[Θ14,Θ18] = −Θ8 + 3Θ19Θ22.

We have one 1-dimensional representation:

Θ4 7→ −3

Θ8 7→ 0

Θ23 7→ 2

Θ24 7→ 2,
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with all other generators Θi 7→ 0. The denominators which appear in the

presentation of U(g, e) are all powers of 2, so we can define U(gk, ek) provided

k has characteristic p > 3.

6.2.4 The orbit A2 + Ã1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label A2 + Ã1. In Table 6.10 we give our choice of basis for g. We take

our sl2-triple to be (e, h, f) = (b14 + b15 + b16, 3b49 + 4b50 + 6b51 + 8b52, b38 +

2b39 + 2b40) = (x6, 4x18 − x30 − 4x31 + 6x32, x47). With this basis, a minimal

generating set for ge is {x15, x16, x17}. A minimal generating set for m is

{x36, x37, x38, x39, x40, x41, x43, x45, x46, x47}. The subalgebra te is

spanned by x18. We calculate κ(e, f) = 108.

Table 6.10: Basis for type F4, orbit A2 + Ã1.

ni βi

p ge

x1 b22 4 −2

x2 b23 4 0

x3 b24 4 2

x4 b19 3 −1

x5 b21 3 1

x6 b14 + b15 + b16 2 0

x7 b14 2 0

x8 b10 2 −4

x9 b12 − 2b13 2 −2

x10 b17 − 2b18 2 2

x11 b20 2 4

x12 b3 1 −3

x13 b5 + b7 1 −1

x14 b8 − b9 1 1

Continued on next page
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Table 6.10 – continued from previous page

ni βi

p

ge

x15 b11 1 3

x16 b1 − 2b2 − b4 0 2

x17 b25 − b26 − 2b28 0 −2

x18 b49 + 2b50 + 2b52 0 0

x19 b12 0 −2

x20 b15 0 0

x21 b17 0 −2

x22 b5 0 −1

x23 b8 0 1

x24 b1 0 2

x25 b2 1 2

x26 b6 1 4

x27 b25 0 −2

x28 b26 0 −2

x29 b30 0 −4

x30 b49 0 0

x31 b50 0 0

x32 b51 0 0

x33 b27 −1 3

x34 b29 −1 1

x35 b31 −1 1

m

x36 b35 −1 −3

x37 b32 −1 −1

x38 b33 −1 −1

x39 b34 −2 4

x40 b36 −2 2

x41 b37 −2 2

x42 b41 −2 −2

Continued on next page
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Table 6.10 – continued from previous page

ni βi

m

x43 b42 −2 −2

x44 b44 −2 −4

x45 b38 − 2b29 −2 0

x46 b39 − b40 −2 0

x47 b38 + 2b39 + 2b46 −2 0

x48 b43 −3 1

x49 b45 −3 −1

x50 b46 −4 2

x51 b47 −4 0

x52 b48 −4 −2

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F16,17, F12,15, F10,17, F9,16, F1,16, F3,17:

[Θ16,Θ17] = −5
2

+ Θ18

[Θ12,Θ15] = −30 + 6Θ18 −Θ7

[Θ10,Θ17] = −84 + 18Θ18 − 6Θ7 + 2Θ6 + 6Θ16Θ17

[Θ9,Θ16] = −93
2

+ 3Θ18 − 6Θ7 + 2Θ6 + 6Θ16Θ17

[Θ1,Θ16] = 1557
4
− 333

4
Θ18 + 87

2
Θ7 + 3Θ6 + Θ2 + 9

2
Θ2

18 − 72Θ16Θ17

+6Θ12Θ15 + 3Θ9Θ16 − 6Θ7Θ18 + 9Θ16Θ17Θ18

[Θ3,Θ17] = −3321
2

+ 1305
2

Θ18 − 102Θ7 + 51Θ6 + Θ2 − 63Θ2
18 + 369Θ16Θ17

−3Θ13Θ14 − 3Θ12Θ15 + 3Θ10Θ17 + 3Θ9Θ16 + 18Θ7Θ18

−9Θ6Θ18 − 54Θ16Θ17Θ18.
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We have one 1-dimensional representation:

Θ2 7→ 1179
4

Θ6 7→ −51
2

Θ7 7→ −15

Θ18 7→ 5
2

with all other generators Θi 7→ 0. The denominators which appear in the

presentation of U(g, e) are all powers of 2, so we can define U(gk, ek) provided

k has characteristic p > 3.

6.2.5 The orbit Ã2 + A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label Ã2 +A1. In Table 6.11 we give our choice of basis for g. We take

our sl2-triple to be (e, h, f) = (b8 + b14 + b16, 4b49 + 5b50 + 7b51 + 10b52, 2b32 +

2b38+b40) = (x8,−7x16+4x28+12x29+10x30, x43). With this basis, a minimal

generating set for ge is {x7, x8, x13, x14, x15}. A minimal generating set for

m is {x35, x36, x37, x38, x41, x42, x43}. The subalgebra te is spanned by x16.

We calculate κ(e, f) = 162.

Table 6.11: Basis for type F4, orbit Ã2 + A1.

ni βi

p ge

x1 b23 5 −1

x2 b24 5 1

x3 b20 4 2

x4 b21 4 0

x5 b22 4 −2

x6 b15 + 1
2
b19 3 −1

x7 b17 − 2b18 3 1

Continued on next page
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Table 6.11 – continued from previous page

ni βi

p

ge

x8 b8 + b14 + b16 2 0

x9 b16 2 0

x10 b4 − b9 1 1

x11 b6 1 3

x12 b7 − b13 1 −1

x13 b16 1 −3

x14 b2 − b27 0 2

x15 b3 − b26 0 −2

x16 b50 − b51 0 0

x17 b15 3 −1

x18 b17 3 1

x19 b8 2 0

x20 b11 2 2

x21 b12 2 −2

x22 b1 1 1

x23 b4 1 1

x24 b5 1 −1

x25 b13 1 −1

x26 b2 0 2

x27 b3 0 −2

x28 b49 0 0

x29 b50 0 0

x30 b52 0 0

x31 b29 −1 1

x32 b30 −1 −3

x33 b31 −1 1

x34 b37 −1 1

m x35 b25 −1 −1

Continued on next page
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Table 6.11 – continued from previous page

ni βi

m

x36 b28 −1 3

x37 b33 −1 −1

x38 b34 −1 −1

x39 b35 −2 −2

x40 b36 −2 2

x41 b32 − b38 −2 0

x42 b38 − 2b40 −2 0

x43 2b32 + 2b38 + b40 −2 0

x44 b39 −3 1

x45 b41 −3 −1

x46 b42 −3 −1

x47 b43 −3 1

x48 b44 −4 −2

x49 b45 −4 0

x50 b46 −4 2

x51 b47 −5 1

x52 b48 −5 −1

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F14,15, F11,13, F8,16, F3,15, F7,12, F5,14, F8,9, F4,8,

F6,7, F1,7:

[Θ14,Θ15] = −Θ16

[Θ11,Θ13] = 38 + 18Θ16 + Θ9 + 3Θ14Θ15

[Θ8,Θ16] = 0

[Θ3,Θ15] = 441
2

+ 27
4

Θ16 − 36Θ9 + 33Θ8 + Θ4 − 27
4

Θ2
16 − 405

2
Θ14Θ15

+9
2
Θ11Θ13 − 9

2
Θ9Θ16 + 9

2
Θ8Θ16 − 81

2
Θ14Θ15Θ16
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[Θ7,Θ12] = 3663 + 2349Θ16 + 180Θ9 − 66Θ8 − 2Θ4 + 729
2

Θ2
16

+1242Θ14Θ15 + 18Θ11Θ13 − 9Θ10Θ12 + 27Θ9Θ16 − 12Θ8Θ16

+216Θ14Θ15Θ16

[Θ5,Θ14] = −441
2
− 1728Θ16 + 36Θ9 − 33Θ8 −Θ4 − 702Θ2

16 − 1863
2

Θ14Θ15

−9
2
Θ11Θ13 + 9

2
Θ9Θ16 − 9

2
Θ8Θ16 − 81Θ3

16 − 243Θ14Θ15Θ16

[Θ8,Θ9] = 0

[Θ4,Θ8] = 0

[Θ6,Θ7] = 248751
4

+ 52245Θ16 + 3159Θ9 − 1107
2

Θ8 − 9
2
Θ4 + 47871

4
Θ2

16

+63099
4

Θ14Θ15 + 1053
2

Θ11Θ13 − 1053
4

Θ10Θ12 + 3159
2

Θ9Θ16

−27
2

Θ2
9 − 1485

4
Θ8Θ16 + 27

2
Θ8Θ9 − 3Θ2

8 − 9
2
Θ7Θ12 + 9

2
Θ5Θ14

+18Θ3Θ15 + 3159
4

Θ3
16 + 26487

8
Θ14Θ15Θ16 + 81Θ11Θ13Θ16

−243
4

Θ11Θ12Θ15 − 81
2

Θ10Θ12Θ16 + 162Θ9Θ2
16 + 243

2
Θ9Θ14Θ15

−81
2

Θ8Θ2
16 − 297

4
Θ8Θ14Θ15

[Θ1,Θ7] = −3177711− 15642639
4

Θ16 − 605313
4

Θ9 + 12285Θ8 − 648Θ4

−10759311
8

Θ2
16 − 6426135

4
Θ14Θ15 − 15309Θ11Θ13 − 3645

4
Θ10Θ12

−413343
4

Θ9Θ16 + 2349
4

Θ2
9 + 54513

4
Θ8Θ16 − 459

2
Θ8Θ9 + 27Θ2

8

+297
2

Θ7Θ12 − 81Θ6Θ10 − 18Θ6Θ7 − 1701
2

Θ5Θ14 − 513Θ4Θ16

+27
2

Θ4Θ9 − 6Θ4Θ8 − 648Θ3Θ15 + 9
2
Θ2Θ12 − 1301265

8
Θ3

16

−5452191
8

Θ14Θ15Θ16 − 972Θ2
12Θ14 − 3159

2
Θ11Θ13Θ16

+7533
2

Θ11Θ12Θ15 − 729Θ10Θ13Θ14 − 143613
8

Θ9Θ2
16

−54675
4

Θ9Θ14Θ15 − 243
2

Θ9Θ11Θ13 + 81
2

Θ2
9Θ16 + 8991

4
Θ8Θ2

16

+30699
4

Θ8Θ14Θ15 + 189
2

Θ8Θ11Θ13 − 243
4

Θ7Θ13Θ14

+81
2

Θ7Θ10Θ15 − 297
2

Θ5Θ14Θ16 − 81Θ4Θ2
16 − 162Θ3Θ15Θ16

−19683
4

Θ4
16 − 566433

8
Θ14Θ15Θ2

16 − 243
2

Θ2
12Θ14Θ16

+729
2

Θ11Θ13Θ2
16 + 3645

4
Θ11Θ12Θ15Θ16 − 243Θ10Θ13Θ14Θ16

−729Θ9Θ3
16 − 5589

2
Θ9Θ14Θ15Θ16 + 6075

4
Θ8Θ14Θ15Θ16.
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We have two 1-dimensional representations:

Θ4 7→ 6723
2

Θ8 7→ −150

Θ9 7→ −38

Θ16 7→ 0,

and

Θ4 7→ 7119
2

Θ8 7→ −156

Θ9 7→ −38

Θ16 7→ 0,

with all other generators Θi 7→ 0 for each of these. The denominators which

appear in the presentation of U(g, e) are all powers of 2, so we can define

U(gk, ek) provided k has characteristic p > 3.

6.3 Type E6

Here we calculate U(g, e) for g of type E6 and e lying in each of the 3 non-

zero rigid nilpotent orbits. We summarize in Table 6.12 certain data for these

orbits, including the number of 1-dimensional representations for U(g, e) in

each case and the primes p for which we cannot define U(gk, ek) where k has

characteristic p.
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Table 6.12: Results for type E6.

Dynkin # 1-dim Bad primes

Orbit diagram κ(e, f) dim(ge) dim(te) reps for U(gk, ek)

A1 1 24 56 5 1 2, 3

0 0 0 0 0

3A1 0 72 38 3 1 2, 3

0 0 1 0 0

2A2 + A1 0 216 24 1 1 2, 3

1 0 1 0 1

The simple summands of the Levi subalgebras of g are of types A1, A2, A3,

A4, A5, D4 and D5. Calculation of presentations of the associated finite W -

algebras for rigid e shows that the only denominators which occur are powers

of 2 and the values of κ(e, f) which occur for rigid e have prime factors only

2 and 3. Thus for rigid nilpotent e ∈ g we can apply Theorem 5.2.2 for p > 3.

6.3.1 The orbit A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label A1. In Table 6.13 we give our choice of basis for g. We take

our sl2-triple to be (e, h, f) = (b36, b73 + 2b74 + 2b75 + 3b76 + 2b77 + b78, b72) =

(x1, x52 + 2x53 + 3x54 + 2x55 + x56 + 2x57, x78). With this basis, a minimal

generating set for ge is {x21, x36, x37, x41, x42, x45, x46, x48, x49, x50}. A

minimal generating set for m is {x68, . . . , x78}. The subalgebra te has basis

{x52, x53, x54, x55, x56}. We calculate κ(e, f) = 24.
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Table 6.13: Basis for type E6, orbit A1.

ni βi

p ge

x1 b36 2 (0, 0, 0, 0, 0)

x2 b2 1 (0, 0,−1, 0, 0)

x3 b8 1 (0,−1, 1,−1, 0)

x4 b13 1 (−1, 1, 0,−1, 0)

x5 b14 1 (0,−1, 0, 1,−1)

x6 b17 1 (1, 0, 0,−1, 0)

x7 b19 1 (−1, 1,−1, 1,−1)

x8 b20 1 (0,−1, 0, 0, 1)

x9 b22 1 (1, 0,−1, 1,−1)

x10 b24 1 (−1, 0, 1, 0,−1)

x11 b25 1 (−1, 1,−1, 0, 1)

x12 b26 1 (1,−1, 1, 0,−1)

x13 b27 1 (1, 0,−1, 0, 1)

x14 b28 1 (−1, 0, 1,−1, 1)

x15 b29 1 (0, 1, 0, 0,−1)

x16 b30 1 (1,−1, 1,−1, 1)

x17 b31 1 (−1, 0, 0, 1, 0)

x18 b32 1 (0, 1, 0,−1, 1)

x19 b33 1 (1,−1, 0, 1, 0)

x20 b34 1 (0, 1,−1, 1, 0)

x21 b35 1 (0, 0, 1, 0, 0)

x22 b1 0 (2,−1, 0, 0, 0)

x23 b3 0 (−1, 2,−1, 0, 0)

x24 b4 0 (0,−1, 2,−1, 0)

x25 b5 0 (0, 0,−1, 2,−1)

x26 b6 0 (0, 0, 0,−1,−2)

x27 b7 0 (1, 1,−1, 0, 0)

Continued on next page
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Table 6.13 – continued from previous page

ni βi

p ge

x28 b9 0 (−1, 1, 1,−1, 0)

x29 b10 0 (0,−1, 1, 1,−1)

x30 b11 0 (0, 0,−1, 1, 1)

x31 b12 0 (1, 0, 1,−1, 0)

x32 b15 0 (−1, 1, 0, 1,−1)

x33 b16 0 (0,−1, 1, 0, 1)

x34 b18 0 (1, 0, 0, 1,−1)

x35 b21 0 (−1, 1, 0, 0, 1)

x36 b23 0 (1, 0, 0, 0, 1)

x37 b37 0 (−2, 1, 0, 0, 0)

x38 b39 0 (1,−2, 1, 0, 0)

x39 b40 0 (0, 1,−2, 1, 0)

x40 b41 0 (0, 0, 1,−2, 1)

x41 b42 0 (0, 0, 0, 1,−2)

x42 b43 0 (−1,−1, 1, 0, 0)

x43 b45 0 (1,−1,−1, 1, 0)

x44 b46 0 (0, 1,−1,−1, 1)

x45 b47 0 (0, 0, 1,−1, 1)

x46 b48 0 (−1, 0,−1, 1, 0)

x47 b51 0 (1,−1, 0,−1, 0)

x48 b52 0 (0, 1,−1, 0,−1)

x49 b54 0 (−1, 0, 0,−1, 1)

x50 b57 0 (1,−1, 0, 0,−1)

x51 b59 0 (−1, 0, 0, 0,−1)

x52 b73 0 (0, 0, 0, 0, 0)

x53 b75 0 (0, 0, 0, 0, 0)

x54 b76 0 (0, 0, 0, 0, 0)

x55 b77 0 (0, 0, 0, 0, 0)

Continued on next page
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Table 6.13 – continued from previous page

ni βi

p
ge x56 b78 0 (0, 0, 0, 0, 0)

x57 b74 0 (0, 0, 0, 0, 0)

x58 b38 −1 (0, 0, 1, 0, 0)

x59 b44 −1 (0, 1,−1, 0, 0)

x60 b49 −1 (1,−1, 0, 1, 0)

x61 b50 −1 (0, 1, 0,−1, 1)

x62 b53 −1 (−1, 0, 0, 1, 0)

x63 b55 −1 (1,−1, 1,−1, 1)

x64 b56 −1 (0, 1, 0, 0,−1)

x65 b58 −1 (−1, 0, 1,−1, 1)

x66 b60 −1 (−1, 0, 1, 0, 1)

x67 b61 −1 (1,−1, 1, 0,−1)

m

x68 b62 −1 (−1, 1,−1, 0, 1)

x69 b63 −1 (−1, 0, 1, 0,−1)

x70 b64 −1 (1, 0,−1, 1,−1)

x71 b65 −1 (0,−1, 0, 0, 1)

x72 b66 −1 (−1, 1,−1, 1,−1)

x73 b67 −1 (1, 0, 0,−1, 0)

x74 b68 −1 (0,−1, 0, 1,−1)

x75 b69 −1 (−1, 1, 0,−1, 0)

x76 b70 −1 (0,−1, 1,−1, 0)

x77 b71 −1 (0, 0,−1, 0, 0)

x78 b72 −2 (0, 0, 0, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F2,21, F22,37, F26,41, F27,42, F30,45, F31,46, F33,48,
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F34,49, F35,50, F36,51:

[Θ2,Θ21] = 11−Θ55 − 2Θ54 −Θ53 + Θ1 −Θ36Θ51 −Θ35Θ50 −Θ34Θ49

−Θ33Θ48 −Θ32Θ47 −Θ31Θ46 −Θ29Θ44 −Θ28Θ43 −Θ24Θ39

[Θ22,Θ37] = −1 + Θ52

[Θ26,Θ41] = −1 + Θ56

[Θ27,Θ42] = −1 + Θ53 + Θ52

[Θ30,Θ45] = −1 + Θ56 + Θ55

[Θ31,Θ46] = −2 + Θ54 + Θ53 + Θ52

[Θ33,Θ48] = −2 + Θ56 + Θ55 + Θ54

[Θ34,Θ49] = −2 + Θ55 + Θ54 + Θ53 + Θ52

[Θ35,Θ50] = −2 + Θ56 + Θ55 + Θ54 + Θ53

[Θ36,Θ51] = −3 + Θ56 + Θ55 + Θ54 + Θ53 + Θ52.

We have one 1-dimensional representation:

Θ1 7→ −9,

Θ52 7→ 1

Θ53 7→ 0

Θ54 7→ 1

Θ55 7→ 0

Θ56 7→ 1,

with all other generators Θi 7→ 0. The coefficients which appear in the pre-

sentation of U(g, e) are all integers, so we can define U(gk, ek) provided k

has characteristic p > 3. We again note that the existence of a 1-dimensional

representation in this case was known from [P07i], as our orbit is minimal.
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6.3.2 The orbit 3A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label 3A1. In Table 6.14 we give our choice of basis for g. We take

our sl2-triple to be (e, h, f) = (b29 + b30 + b31, 2b73 + 3b74 + 4b75 + 6b76 + 4b77 +

2b78, b65 + b66 + b67) = (x6, 4x36 + 3x37 + 2x38− 2x47 + 2x48 + 6x49, x76). With

this basis, a minimal generating set for ge is {x27, x29, x31, x32, x33, x34}.
A minimal generating set for m is {x59, x60, x61, x62, x63, x64, x65, x66, x67,

x68, x69, x70, x74, x75, x76}. The subalgebra te has basis {x36, x37, x38}. We

calculate κ(e, f) = 72.

Table 6.14: Basis for type E6, orbit 3A1.

ni βi

p ge

x1 b35 3 (0,−1, 0)

x2 b36 3 (0, 1, 0)

x3 b24 2 (−1, 0,−1)

x4 b26 2 (1, 0,−2)

x5 b28 2 (−2, 0, 1)

x6 b29 + b30 + b31 2 (0, 0, 0)

x7 b30 2 (0, 0, 0)

x8 b31 2 (0, 0, 0)

x9 b32 2 (−1, 0, 2)

x10 b33 2 (2, 0,−1)

x11 b34 2 (1, 0, 1)

x12 b4 1 (−1,−1,−1)

x13 b8 1 (−1, 1,−1)

x14 b9 1 (−2,−1, 1)

x15 b10 1 (1,−1,−2)

x16 b12 − b15 1 (0,−1, 0)

x17 b13 1 (−2, 1, 1)

Continued on next page
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Table 6.14 – continued from previous page

ni βi

p

ge

x18 b14 1 (1, 1,−2)

x19 b15 − b16 1 (0,−1, 0)

x20 b17 − b19 1 (0, 1, 0)

x21 b18 1 (2,−1,−1)

x22 b19 − b20 1 (0, 1, 0)

x23 b21 1 (−1,−1, 2)

x24 b22 1 (2, 1,−1)

x25 b23 1 (1,−1, 1)

x26 b25 1 (−1, 1, 2)

x27 b27 1 (1, 1, 1)

x28 b1 + b5 0 (2, 0,−1)

x29 b2 0 (0, 2, 0)

x30 b3 + b6 0 (−1, 0, 2)

x31 b7 + b11 0 (1, 0, 1)

x32 b37 + b41 0 (−2, 0, 1)

x33 b38 0 (0,−2, 0)

x34 b39 + b42 0 (1, 0,−2)

x35 b43 + b47 0 (−1, 0,−1)

x36 b73 + b77 0 (0, 0, 0)

x37 b74 0 (0, 0, 0)

x38 b75 + b78 0 (0, 0, 0)

x39 b15 1 (0,−1, 0)

x40 b19 1 (0, 1, 0)

x41 b1 0 (2, 0,−1)

x42 b3 0 (−1, 0, 2)

x43 b7 0 (1, 0, 1)

x44 b37 0 (−2, 0, 1)

x45 b39 0 (1, 0,−2)

Continued on next page
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Table 6.14 – continued from previous page

ni βi

p

x46 b43 0 (−1, 0,−1)

x47 b73 0 (0, 0, 0)

x48 b75 0 (0, 0, 0)

x49 b76 0 (0, 0, 0)

x50 b40 −1 (1, 1, 1)

x51 b44 −1 (1,−1, 1)

x52 b45 −1 (2, 1,−1)

x53 b46 −1 (−1, 1, 2)

x54 b48 −1 (0, 1, 0)

x55 b49 −1 (2,−1,−1)

x56 b50 −1 (−1,−1, 2)

x57 b51 −1 (0, 1, 0)

x58 b52 −1 (0, 1, 0)

m

x59 b63 −1 (−1,−1,−1)

x60 b59 −1 (−1, 1,−1)

x61 b58 −1 (−2,−1, 1)

x62 b61 −1 (1,−1,−2)

x63 b53 −1 (0,−1, 0)

x64 b54 −1 (−2, 1, 1)

x65 b57 −1 (1, 1,−2)

x66 b55 −1 (0,−1, 0)

x67 b56 −1 (0,−1, 0)

x68 b60 −2 (1, 0, 1)

x69 b62 −2 (−1, 0, 2)

x70 b64 −2 (2, 0,−1)

x71 b68 −2 (1, 0,−2)

x72 b69 −2 (−2, 0, 1)

x73 b70 −2 (−1, 0,−1)

Continued on next page
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Table 6.14 – continued from previous page

ni βi

m

x74 b65 − b66 −2 (0, 0, 0)

x75 b66 − b67 −2 (0, 0, 0)

x76 b65 + b66 + b67 −2 (0, 0, 0)

x77 b71 −3 (0, 1, 0)

x78 b72 −3 (0,−1, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F3,31, F9,34, F10,32, F12,27, F28,32, F29,33, F30,34,

F31,35:

[Θ3,Θ31] = −12− 3Θ38 + 6Θ37 + 2Θ8 + Θ7 −Θ6 + 3Θ31Θ35

[Θ9,Θ34] = −24 + 3Θ38 + 3Θ37 + 3Θ36 + Θ8 + 2Θ7 −Θ6

[Θ10,Θ32] = −24 + 3Θ38 + 3Θ37 + 6Θ36 + Θ8 −Θ7 + 3Θ28Θ32

[Θ12,Θ27] = 3
2

+ Θ7 − 3
2
Θ31Θ35 − 3Θ29Θ33

[Θ28,Θ32] = −2 + Θ36

[Θ29,Θ33] = −3
2

+ Θ37

[Θ30,Θ34] = −2 + Θ38

[Θ31,Θ35] = −4 + Θ38 + Θ36.

We have one 1-dimensional representation:

Θ6 7→ −21
2

Θ7 7→ −3
2

Θ8 7→ 0

Θ36 7→ 2

Θ37 7→ 3
2

Θ38 7→ 2,
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with all other generators Θi 7→ 0. The denominators which appear in the

presentation of U(g, e) are all powers of 2, so we can define U(gk, ek) provided

k has characteristic p > 3.

6.3.3 The orbit 2A2 + A1

Here we consider the finite W -algebra associated to the orbit of g with

Bala–Carter label 2A2 + A1. In Table 6.15 we give our choice of basis

for g. We take our sl2-triple to be (e, h, f) = (b12 + b20 + b21 + b22 +

b24, 4b73 + 5b74 + 7b75 + 10b76 + 7b77 + 4b78, 2b48 + 2b56 + 2b57 + 2b58 + b60) =

(x11,−7x24 + 4x41 + 12x42 + 14x43 + 10x44 + 4x45, x64). With this basis, a

minimal generating set for ge is x18, x22, x23. A minimal generating set for

m is {x52, x53, x54, x55, x56, x57, x58, x60, x61, x62, x63, x64, x65}. The

subalgebra te is spanned by x24. We calculate κ(e, f) = 216.

Table 6.15: Basis for type E6, orbit 2A2 + A1.

ni βi

p ge

x1 b35 5 −1

x2 b36 5 1

x3 b30 4 0

x4 b32 4 2

x5 b33 4 −2

x6 b34 4 0

x7 b23 − b26 3 −1

x8 b26 + b31 3 −1

x9 b27 − b28 3 1

x10 b28 + b29 3 1

x11 b12 + b20 + b21 + b22 + b24 2 0

x12 b12 + b20 2 0

x13 b16 − b18 2 −2

Continued on next page
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Table 6.15 – continued from previous page

ni βi

p

ge

x14 b17 − b25 2 2

x15 b21 + b22 2 0

x16 b1 + 2b4 + b11 − b14 1 −1

x17 b4 − b14 + b15 1 −1

x18 b6 + b7 + 2b8 − b9 1 1

x19 b8 − b9 + b19 1 1

x20 b10 1 −3

x21 b13 1 3

x22 b2 − b3 + b41 0 2

x23 b5 + b38 − b39 0 −2

x24 b74 + b75 − b77 0 0

x25 b23 3 −1

x26 b27 3 1

x27 b12 2 0

x28 b16 2 −2

x29 b17 2 2

x30 b21 2 0

x31 b1 1 −1

x32 b4 1 −1

x33 b6 1 1

x34 b7 1 1

x35 b8 1 1

x36 b11 1 −1

x37 b2 0 2

x38 b3 0 2

x39 b5 0 −2

x40 b38 0 −2

x41 b73 0 0

Continued on next page
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Table 6.15 – continued from previous page

ni βi

p

x42 b74 0 0

x43 b75 0 0

x44 b76 0 0

x45 b78 0 0

x46 b37 −1 1

x47 b40 −1 1

x48 b46 −1 3

x49 b47 −1 1

x50 b50 −1 1

x51 b51 −1 1

m

x52 b42 −1 −1

x53 b43 −1 −1

x54 b44 −1 −1

x55 b45 −1 −1

x56 b49 −1 −3

x57 b55 −1 −1

x58 b52 −2 2

x59 b53 −2 −2

x60 b54 −2 2

x61 b48 − b56 −2 0

x62 b56 − b57 −2 0

x63 b57 − b58 −2 0

x64 2b48 + 2b56 + 2b57 + 2b58 + b60 −2 0

x65 b58 − b60 −2 0

x66 b61 −2 −2

x67 b59 −3 1

x68 b62 −3 1

x69 b63 −3 −1

Continued on next page
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Table 6.15 – continued from previous page

ni βi

m

x70 b64 −3 −1

x71 b65 −3 −1

x72 b67 −3 1

x73 b66 −4 0

x74 b68 −4 −2

x75 b69 −4 2

x76 b70 −4 0

x77 b71 −5 1

x78 b72 −5 −1

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F1,18, F4,23, F5,22, F7,18, F8,18, F13,22, F14,23, F16,18,

F17,18, F22,23:

[Θ22,Θ23] = −4 + Θ24

[Θ16,Θ18] = 132 + 93Θ24 − 2Θ15 + 2Θ12 + Θ11 − 48Θ22Θ23

[Θ14,Θ23] = −216− 15Θ24 −Θ15 + Θ12 − 21Θ22Θ23

[Θ13,Θ22] = 168− 39Θ24 −Θ15 + Θ12 − 18Θ2
24 + 15Θ22Θ23

[Θ17,Θ18] = 42 + 57Θ24 − 4Θ15 − 2Θ12 + 3Θ11 − 30Θ22Θ23

[Θ7,Θ18] = 1683 + 2988Θ24 − 135Θ15 − 54Θ12 + 54Θ11 + 3Θ3 + 378Θ2
24

−3042Θ22Θ23 − 27Θ20Θ21 + 6Θ16Θ18 + 21Θ13Θ22

−378Θ22Θ23Θ24

[Θ5,Θ22] = 14508 + 693Θ24 − 9Θ15 + 90Θ12 − 3Θ11 −Θ6 −Θ3

−1269Θ2
24 + 2034Θ22Θ23 − 9Θ20Θ21 − 9Θ16Θ18 + 9Θ15Θ24

+9Θ14Θ23 + 15Θ13Θ22 + 9Θ12Θ24 − 162Θ3
24 + 405Θ22Θ23Θ24
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[Θ4,Θ23] = 13500 + 1350Θ24 + 108Θ15 + 9Θ12 − 3Θ11 −Θ6 −Θ3

+882Θ22Θ23 − 9Θ20Θ21 − 9Θ16Θ18 + 9Θ15Θ24 + 3Θ14Θ23

−27Θ22Θ23Θ24

[Θ8,Θ18] = 3978 + 2313Θ24 + 180Θ15 + 243Θ12 − 126Θ11 −Θ6 −Θ3

+594Θ2
24 + 738Θ22Θ23 + 45Θ20Θ21 + 9Θ17Θ19 − 12Θ17Θ18

+9Θ16Θ19 − 18Θ14Θ23 − 15Θ13Θ22 + 36Θ12Θ24

−108Θ22Θ23Θ24

[Θ1,Θ18] = −85158− 266868Θ24 + 5616Θ15 + 2241Θ12 − 2025Θ11

+45Θ6 − 225Θ3 − 55728Θ2
24 + 185220Θ22Θ23 − 972Θ20Θ21

−216Θ17Θ19 + 126Θ17Θ18 + 270Θ16Θ19 + 810Θ16Θ18

+864Θ15Θ24 − 108Θ14Θ23 − 747Θ13Θ22 + 270Θ12Θ24

−324Θ11Θ24 − 9Θ10Θ17 − 9Θ10Θ16 − 6Θ8Θ18

−18Θ7Θ18 − 6Θ5Θ22 − 18Θ4Θ23 − 36Θ3Θ24 − 2916Θ3
24

+45846Θ22Θ23Θ24 − 108Θ2
18Θ23 + 81Θ17Θ18Θ24 + 81Θ2

17Θ22

+81Θ16Θ18Θ24 − 81Θ2
16Θ22 + 162Θ15Θ22Θ23 − 108Θ13Θ22Θ24

+162Θ12Θ22Θ23 − 162Θ11Θ22Θ23 + 2916Θ22Θ23Θ2
24.

We have one 1-dimensional representation:

Θ3 7→ −44613

Θ6 7→ −56130
3

Θ11 7→ −1056

Θ12 7→ −299

Θ15 7→ −3450
6

Θ24 7→ 4,

with all other generators Θi 7→ 0. The coefficients which appear in the pre-

sentation of U(g, e) are all integers, so we can define U(gk, ek) provided k has

characteristic p > 3.
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6.4 Type E7

Here we calculate U(g, e) for g of type E7 and e lying in each of the 7 non-

zero rigid nilpotent orbits. We summarize in Table 6.16 certain data for these

orbits, including the number of 1-dimensional representations for U(g, e) in

each case and the primes p, if known, for which we cannot define U(gk, ek)

where k has characteristic p.

Table 6.16: Results for type E7.

Dynkin # 1-dim Bad primes

Orbit diagram κ(e, f) dim(ge) dim(te) reps for U(gk, ek)

A1 0 36 99 6 1 2, 3

1 0 0 0 0 0

2A1 0 72 81 5 1 2, 3

0 0 0 0 1 0

(3A1)′ 0 108 69 3 1 2, 3

0 1 0 0 0 0

4A1 1 144 63 3 1 2, 3

0 0 0 0 0 1

A2 + 2A1 0 216 51 3 1 2, 3

0 0 1 0 0 0

2A2 + A1 0 324 43 2 1

0 1 0 0 1 0

(A3 + A1)′ 0 396 41 3 2

1 0 1 0 0 0

For the first 5 of these orbits, we have calculated a full presentation, so we can

in each of those cases identify for which primes p we cannot define U(gk, ek),
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but for the last 2 rigid orbits in the table due to computational limitations we

have only sufficient relations to determine the 1-dimensional representations.

The simple summands of the Levi subalgebras of g are of types A1, A2,

A3, A4, A5, D4, D5, D6 and E6. Calculation of presentations of the associated

finite W -algebras for rigid e shows that the only denominators which occur

are powers of 2 and 3 and the values of κ(e, f) which occur for rigid e have

prime factors only 2, 3 and 5. Thus for rigid nilpotent e ∈ g in one of the

orbits A1, 2A1, (3A1)′, 4A1 or A2 + 2A1 we can apply Theorem 5.2.2 for

p > 5. To extend this to all rigid orbits in g would require significant further

calculation of relations in U(g, e) for e in the orbits 2A2 +A1 and (A3 +A1)′.

6.4.1 The orbit A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label A1. In Table 6.17 we give our choice of basis for g. We take our

sl2-triple to be (e, h, f) = (b63, 2b127 + 2b128 + 3b129 + 4b130 + 3b131 + 2b132 +

b133, b126) = (x1, 2x94 + 3x95 + 4x96 + 3x97 + 2x98 + x99 + 2x100, x133). With

this basis, a minimal generating set for ge is {x33, x63, x64, x65, x71, x72, x74,

x79, x81, x82, x83}. A minimal generating set for m is {x117, . . . , x133}. The

subalgebra te has basis {x94, . . . , x99}. We calculate κ(e, f) = 36.

Table 6.17: Basis for type E7, orbit A1.

ni βi

p ge

x1 b63 2 (0, 0, 0, 0, 0, 0)

x2 b1 1 (0,−1, 0, 0, 0, 0)

x3 b8 1 (0, 1,−1, 0, 0, 0)

x4 b14 1 (−1, 0, 1,−1, 0, 0)

x5 b20 1 (1, 0, 0,−1, 0, 0)

x6 b21 1 (−1, 0, 0, 1,−1, 0)

x7 b26 1 (1, 0,−1, 1,−1, 0)

Continued on next page



6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 100

Table 6.17 – continued from previous page

ni βi

p ge

x8 b27 1 (−1, 0, 0, 0, 1,−1)

x9 b32 1 (0,−1, 1, 0,−1, 0)

x10 b33 1 (1, 0,−1, 0, 1,−1)

x11 b34 1 (−1, 0, 0, 0, 0, 1)

x12 b37 1 (0, 1, 0, 0,−1, 0)

x13 b38 1 (0,−1, 1,−1, 1,−1)

x14 b39 1 (1, 0,−1, 0, 0, 1)

x15 b42 1 (0, 1, 0,−1, 1,−1)

x16 b43 1 (0,−1, 0, 1, 0,−1)

x17 b44 1 (0,−1, 1,−1, 0, 1)

x18 b46 1 (0, 1,−1, 1, 0,−1)

x19 b47 1 (0, 1, 0,−1, 0, 1)

x20 b48 1 (0,−1, 0, 1,−1, 1)

x21 b50 1 (−1, 0, 1, 0, 0,−1)

x22 b51 1 (0, 1,−1, 1,−1, 1)

x23 b52 1 (0,−1, 0, 0, 1, 0)

x24 b53 1 (1, 0, 0, 0, 0,−1)

x25 b54 1 (−1, 0, 1, 0,−1, 1)

x26 b55 1 (0, 1,−1, 0, 1, 0)

x27 b56 1 (1, 0, 0, 0,−1, 1)

x28 b57 1 (−1, 0, 1,−1, 1, 0)

x29 b58 1 (1, 0, 0,−1, 1, 0)

x30 b59 1 (−1, 0, 0, 1, 0, 0)

x31 b60 1 (1, 0,−1, 1, 0, 0)

x32 b61 1 (0,−1, 1, 0, 0, 0)

x33 b62 1 (0, 1, 0, 0, 0, 0)

x34 b2 0 (2, 0,−1, 0, 0, 0)

x35 b3 0 (0, 2,−1, 0, 0, 0)

Continued on next page
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Table 6.17 – continued from previous page

ni βi

p ge

x36 b4 0 (−1,−1, 2,−1, 0, 0)

x37 b5 0 (0, 0,−1, 2,−1, 0)

x38 b6 0 (0, 0, 0,−1, 2,−1)

x39 b7 0 (0, 0, 0, 0,−1, 2)

x40 b9 0 (1,−1, 1,−1, 0, 0)

x41 b10 0 (−1, 1, 1,−1, 0, 0)

x42 b11 0 (−1,−1, 1, 1,−1, 0)

x43 b12 0 (0, 0,−1, 1, 1,−1)

x44 b13 0 (0, 0, 0,−1, 1, 1)

x45 b15 0 (1, 1, 0,−1, 0, 0)

x46 b16 0 (1,−1, 0, 1,−1, 0)

x47 b17 0 (−1, 1, 0, 1,−1, 0)

x48 b18 0 (−1,−1, 1, 0, 1,−1)

x49 b19 0 (0, 0,−1, 1, 0, 1)

x50 b22 0 (1, 1,−1, 1,−1, 0)

x51 b23 0 (1,−1, 0, 0, 1,−1)

x52 b24 0 (−1, 1, 0, 0, 1,−1)

x53 b25 0 (−1,−1, 1, 0, 0, 1)

x54 b28 0 (0, 0, 1, 0,−1, 0)

x55 b29 0 (1, 1,−1, 0, 1,−1)

x56 b30 0 (1,−1, 0, 0, 0, 1)

x57 b31 0 (−1, 1, 0, 0, 0, 1)

x58 b35 0 (0, 0, 1,−1, 1,−1)

x59 b36 0 (1, 1,−1, 0, 0, 1)

x60 b40 0 (0, 0, 0, 1, 0,−1)

x61 b41 0 (0, 0, 1,−1, 0, 1)

x62 b45 0 (0, 0, 0, 1,−1, 1)

x63 b49 0 (0, 0, 0, 0, 1, 0)

Continued on next page
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Table 6.17 – continued from previous page

ni βi

p ge

x64 b65 0 (−2, 0, 1, 0, 0, 0)

x65 b66 0 (0,−2, 1, 0, 0, 0)

x66 b67 0 (1, 1,−2, 1, 0, 0)

x67 b68 0 (0, 0, 1,−2, 1, 0)

x68 b69 0 (0, 0, 0, 1,−2, 1)

x69 b70 0 (0, 0, 0, 0, 1,−2)

x70 b72 0 (−1, 1,−1, 1, 0, 0)

x71 b73 0 (1,−1,−1, 1, 0, 0)

x72 b74 0 (1, 1,−1,−1, 1, 0)

x73 b75 0 (0, 0, 1,−1,−1, 1)

x74 b76 0 (0, 0, 0, 1,−1,−1)

x75 b78 0 (−1,−1, 0, 1, 0, 0)

x76 b79 0 (−1, 1, 0,−1, 1, 0)

x77 b80 0 (1,−1, 0,−1, 1, 0)

x78 b81 0 (1, 1,−1, 0,−1, 1)

x79 b82 0 (0, 0, 1,−1, 0,−1)

x80 b85 0 (−1,−1, 1,−1, 1, 0)

x81 b86 0 (−1, 1, 0, 0,−1, 1)

x82 b87 0 (1,−1, 0, 0,−1, 1)

x83 b88 0 (1, 1,−1, 0, 0,−1)

x84 b91 0 (0, 0,−1, 0, 1, 0)

x85 b92 0 (−1,−1, 1, 0,−1, 1)

x86 b93 0 (−1, 1, 0, 0, 0,−1)

x87 b94 0 (1,−1, 0, 0, 0,−1)

x88 b98 0 (0, 0,−1, 1,−1, 1)

x89 b99 0 (−1,−1, 1, 0, 0,−1)

x90 b103 0 (0, 0, 0,−1, 0, 1)

x91 b104 0 (0, 0,−1, 1, 0,−1)

Continued on next page



6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 103

Table 6.17 – continued from previous page

ni βi

p
ge

x92 b108 0 (0, 0, 0,−1, 1,−1)

x93 b112 0 (0, 0, 0, 0,−1, 0)

x94 b128 0 (0, 0, 0, 0, 0, 0)

x95 b129 0 (0, 0, 0, 0, 0, 0)

x96 b130 0 (0, 0, 0, 0, 0, 0)

x97 b131 0 (0, 0, 0, 0, 0, 0)

x98 b132 0 (0, 0, 0, 0, 0, 0)

x99 b133 0 (0, 0, 0, 0, 0, 0)

x100 b127 0 (0, 0, 0, 0, 0, 0)

x101 b64 −1 (0, 1, 0, 0, 0, 0)

x102 b71 −1 (0,−1, 1, 0, 0, 0)

x103 b77 −1 (1, 0,−1, 1, 0, 0)

x104 b83 −1 (−1, 0, 0, 1, 0, 0)

x105 b84 −1 (1, 0, 0,−1, 1, 0)

x106 b89 −1 (−1, 0, 1,−1, 1, 0)

x107 b90 −1 (1, 0, 0, 0,−1, 1)

x108 b95 −1 (0, 1,−1, 0, 1, 0)

x109 b96 −1 (−1, 0, 1, 0,−1, 1)

x110 b97 −1 (1, 0, 0, 0, 0,−1)

x111 b100 −1 (0,−1, 0, 0, 1, 0)

x112 b101 −1 (0, 1,−1, 1,−1, 1)

x113 b102 −1 (−1, 0, 1, 0, 0,−1)

x114 b105 −1 (0,−1, 0, 1,−1, 1)

x115 b106 −1 (0, 1, 0,−1, 0, 1)

x116 b107 −1 (0, 1,−1, 1, 0,−1)

m

x117 b109 −1 (0,−1, 1,−1, 0, 1)

x118 b110 −1 (0,−1, 0, 1, 0,−1)

x119 b111 −1 (0, 1, 0,−1, 1,−1)

Continued on next page
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Table 6.17 – continued from previous page

ni βi

m

x120 b113 −1 (1, 0,−1, 0, 0, 1)

x121 b114 −1 (0,−1, 1,−1, 1,−1)

x122 b115 −1 (0, 1, 0, 0,−1, 0)

x123 b116 −1 (−1, 0, 0, 0, 0, 1)

x124 b117 −1 (1, 0,−1, 0, 1,−1)

x125 b118 −1 (0,−1, 1, 0,−1, 0)

x126 b119 −1 (−1, 0, 0, 0, 1,−1)

x127 b120 −1 (1, 0,−1, 1,−1, 0)

x128 b121 −1 (−1, 0, 0, 1,−1, 0)

x129 b122 −1 (1, 0, 0,−1, 0, 0)

x130 b123 −1 (−1, 0, 1,−1, 0, 0)

x131 b124 −1 (0, 1,−1, 0, 0, 0)

x132 b125 −1 (0,−1, 0, 0, 0, 0)

x133 b126 −2 (0, 0, 0, 0, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F41,71, F42,72, F44,74, F34,64, F35,65, F51,81, F52,82,

F53,83, F49,79, F63,93, F79,72:

[Θ41,Θ71] = −1 + Θ96 + Θ95

[Θ42,Θ72] = −1 + Θ97 + Θ96

[Θ44,Θ74] = −1 + Θ99 + Θ98

[Θ34,Θ64] = Θ94

[Θ35,Θ65] = −1 + Θ95

[Θ51,Θ81] = −1 + Θ98 + Θ97 + Θ96 + Θ94

[Θ52,Θ82] = −2 + Θ98 + Θ97 + Θ96 + Θ95

[Θ53,Θ83] = −2 + Θ99 + Θ98 + Θ97 + Θ96
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[Θ49,Θ79] = −2 + Θ99 + Θ98 + Θ97

[Θ63,Θ93] = −4 + Θ99 + 2Θ98 + 2Θ97 + 2Θ96 + Θ95 + Θ94

[Θ2,Θ33] = 31−Θ98 − 2Θ97 − 4Θ96 − 4Θ95 − 2Θ94 + Θ1 −Θ63Θ93

−Θ62Θ92 −Θ61Θ91 −Θ60Θ90 −Θ59Θ89 −Θ58Θ88 −Θ57Θ87

−Θ55Θ85 −Θ54Θ84 −Θ52Θ82 −Θ50Θ80 −Θ47Θ77 −Θ45Θ75

−Θ41Θ71 −Θ35Θ65.

We have one 1-dimensional representation:

Θ1 7→ −25

Θ94 7→ 0

Θ95 7→ 1

Θ96 7→ 0

Θ97 7→ 1

Θ98 7→ 0

Θ99 7→ 1,

with all other generators Θi 7→ 0. The coefficients which appear in the pre-

sentation of U(g, e) are all integers, so we can define U(gk, ek) provided k

has characteristic p > 3. We again note that the existence of a 1-dimensional

representation in this case was known from [P07i], as our orbit is minimal.

6.4.2 The orbit 2A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label 2A1. In Table 6.18 we give our choice of basis for g. We take our

sl2-triple to be (e, h, f) = (b57 +b60, 2b127 +3b128 +4b129 +6b130 +5b131 +4b132 +

2b133, b120 + b123) = (x4, 2x77 + x78 + 4x79 + 5x80 + 2x81 + 2x90 + 4x91, x127).

With this basis, a minimal generating set for ge is {x42, x43, x44, x45, x46, x47,

x48, x61, x62, x63, x64}. A minimal generating set for m is {x108, . . . , x130}.
The subalgebra te has basis {x77, . . . , x81}. We calculate κ(e, f) = 72.
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Table 6.18: Basis for type E7, orbit 2A1.

ni βi

p ge

x1 b49 2 (−1, 0, 0, 0, 0)

x2 b52 2 (1, 0,−1, 0, 0)

x3 b55 2 (0,−1, 1,−1, 0)

x4 b57 + b60 2 (0, 0, 0, 0, 0)

x5 b58 2 (0, 1, 0,−1, 0)

x6 b59 2 (0,−1, 0, 1, 0)

x7 b60 2 (0, 0, 0, 0, 0)

x8 b61 2 (0, 1,−1, 1, 0)

x9 b62 2 (−1, 0, 1, 0, 0)

x10 b63 2 (1, 0, 0, 0, 0)

x11 b6 1 (0, 0, 0,−1,−1)

x12 b12 1 (0,−1, 0, 0,−1)

x13 b13 1 (0, 0, 0,−1, 1)

x14 b18 1 (0, 0,−1, 1,−1)

x15 b19 1 (0,−1, 0, 0, 1)

x16 b23 1 (0, 1,−1, 0,−1)

x17 b24 1 (−1,−1, 1, 0,−1)

x18 b25 1 (0, 0,−1, 1, 1)

x19 b27 1 (1,−1, 0, 0,−1)

x20 b29 1 (−1, 0, 1,−1,−1)

x21 b30 1 (0, 1,−1, 0, 1)

x22 b31 1 (−1,−1, 1, 0, 1)

x23 b33 1 (1, 0, 0,−1,−1)

x24 b34 1 (1,−1, 0, 0, 1)

x25 b35 1 (−1, 1, 0, 0,−1)

x26 b36 1 (−1, 0, 1,−1, 1)

x27 b38 1 (1, 1,−1, 0,−1)

Continued on next page
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Table 6.18 – continued from previous page

ni βi

p ge

x28 b39 1 (1, 0, 0,−1, 1)

x29 b40 1 (−1, 0, 0, 1,−1)

x30 b41 1 (−1, 1, 0, 0, 1)

x31 b42 1 (0, 0, 1,−1,−1)

x32 b43 1 (1, 0,−1, 1,−1)

x33 b44 1 (1, 1,−1, 0, 1)

x34 b45 1 (−1, 0, 0, 1, 1)

x35 b46 1 (0,−1, 1, 0,−1)

x36 b47 1 (0, 0, 1,−1, 1)

x37 b48 1 (1, 0,−1, 1, 1)

x38 b50 1 (0, 0, 0, 1,−1)

x39 b51 1 (0,−1, 1, 0, 1)

x40 b53 1 (0, 1, 0, 0,−1)

x41 b54 1 (0, 0, 0, 1, 1)

x42 b56 1 (0, 1, 0, 0, 1)

x43 b1 0 (2, 0,−1, 0, 0)

x44 b2 − b68 0 (0, 1, 0,−1, 0)

x45 b3 0 (−1,−1, 2,−1, 0)

x46 b4 + b16 0 (0, 1,−1, 1, 0)

x47 b5 − b65 0 (0,−1, 0, 1, 0)

x48 b7 0 (0, 0, 0, 0, 2)

x49 b8 0 (1,−1, 1,−1, 0)

x50 b9 0 (0, 2,−1, 0, 0)

x51 b10 + b22 0 (−1, 0, 1, 0, 0)

x52 b11 0 (0, 0,−1, 2, 0)

x53 b14 + b26 0 (1, 0, 0, 0, 0)

x54 b15 0 (−1, 1, 1,−1, 0)

x55 b17 0 (−1,−1, 1, 1, 0)

Continued on next page



6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 108

Table 6.18 – continued from previous page

ni βi

p

ge

x56 b20 0 (1, 1, 0,−1, 0)

x57 b21 0 (1,−1, 0, 1, 0)

x58 b28 0 (−1, 1, 0, 1, 0)

x59 b32 0 (1, 1,−1, 1, 0)

x60 b37 0 (0, 0, 1, 0, 0)

x61 b64 0 (−2, 0, 1, 0, 0)

x62 b66 0 (1, 1,−2, 1, 0)

x63 b67 + b79 0 (0,−1, 1,−1, 0)

x64 b70 0 (0, 0, 0, 0,−2)

x65 b71 0 (−1, 1,−1, 1, 0)

x66 b72 0 (0,−2, 1, 0, 0)

x67 b73 + b85 0 (1, 0,−1, 0, 0)

x68 b74 0 (0, 0, 1,−2, 0)

x69 b77 + b89 0 (−1, 0, 0, 0, 0)

x70 b78 0 (1,−1,−1, 1, 0)

x71 b80 0 (1, 1,−1,−1, 0)

x72 b83 0 (−1,−1, 0, 1, 0)

x73 b84 0 (−1, 1, 0,−1, 0)

x74 b91 0 (1,−1, 0,−1, 0)

x75 b95 0 (−1,−1, 1,−1, 0)

x76 b100 0 (0, 0,−1, 0, 0)

x77 b127 0 (0, 0, 0, 0, 0)

x78 b128 + b130 0 (0, 0, 0, 0, 0)

x79 b129 0 (0, 0, 0, 0, 0)

x80 b130 + b131 0 (0, 0, 0, 0, 0)

x81 b133 0 (0, 0, 0, 0, 0)

x82 b2 0 (0, 1, 0,−1, 0)

x83 b4 0 (0, 1,−1, 1, 0)

Continued on next page
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Table 6.18 – continued from previous page

ni βi

p

x84 b5 0 (0,−1, 0, 1, 0)

x85 b10 0 (−1, 0, 1, 0, 0)

x86 b14 0 (1, 0, 0, 0, 0)

x87 b67 0 (0,−1, 1,−1, 0)

x88 b73 0 (1, 0,−1, 0, 0)

x89 b77 0 (−1, 0, 0, 0, 0)

x90 b128 0 (0, 0, 0, 0, 0)

x91 b132 0 (0, 0, 0, 0, 0)

x92 b69 −1 (0, 0, 0, 1, 1)

x93 b75 −1 (0, 1, 0, 0, 1)

x94 b76 −1 (0, 0, 0, 1,−1)

x95 b81 −1 (0, 0, 1,−1, 1)

x96 b82 −1 (0, 1, 0, 0,−1)

x97 b86 −1 (0,−1, 1, 0, 1)

x98 b87 −1 (1, 1,−1, 0, 1)

x99 b88 −1 (0, 0, 1,−1,−1)

x100 b90 −1 (−1, 1, 0, 0, 1)

x101 b92 −1 (1, 0,−1, 1, 1)

x102 b93 −1 (0,−1, 1, 0,−1)

x103 b94 −1 (1, 1,−1, 0,−1)

x104 b96 −1 (−1, 0, 0, 1, 1)

x105 b97 −1 (−1, 1, 0, 0,−1)

x106 b99 −1 (1, 0,−1, 1,−1)

x107 b102 −1 (−1, 0, 0, 1,−1)

m

x108 b98 −1 (1,−1, 0, 0, 1)

x109 b101 −1 (−1,−1, 1, 0, 1)

x110 b103 −1 (1, 0, 0,−1, 1)

x111 b104 −1 (1,−1, 0, 0,−1)

Continued on next page
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Table 6.18 – continued from previous page

ni βi

m

x112 b105 −1 (0, 0,−1, 1, 1)

x113 b106 −1 (−1, 0, 1,−1, 1)

x114 b107 −1 (−1,−1, 1, 0,−1)

x115 b108 −1 (1, 0, 0,−1,−1)

x116 b109 −1 (0, 1,−1, 0, 1)

x117 b110 −1 (0, 0,−1, 1,−1)

x118 b111 −1 (−1, 0, 1,−1,−1)

x119 b113 −1 (0, 0, 0,−1, 1)

x120 b114 −1 (0, 1,−1, 0,−1)

x121 b116 −1 (0,−1, 0, 0, 1)

x122 b117 −1 (0, 0, 0,−1,−1)

x123 b119 −1 (0,−1, 0, 0,−1)

x124 b112 −2 (1, 0, 0, 0, 0)

x125 b115 −2 (−1, 0, 1, 0, 0)

x126 b118 −2 (0, 1,−1, 1, 0)

x127 b120 + b123 −2 (0, 0, 0, 0, 0)

x128 b120 − b123 −2 (0, 0, 0, 0, 0)

x129 b121 −2 (0,−1, 0, 1, 0)

x130 b122 −2 (0, 1, 0,−1, 0)

x131 b124 −2 (0,−1, 1,−1, 0)

x132 b125 −2 (1, 0,−1, 0, 0)

x133 b126 −2 (−1, 0, 0, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F8,63, F43,61, F44,47, F45,62, F48,64, F6,44, F46,63,
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F5,47, F3,46, F12,42:

[Θ8,Θ63] = 72− 4Θ81 − 16Θ80 − 12Θ79 − 42Θ78 − 6Θ77 − 2Θ7 + Θ4

+2Θ78Θ81 + 6Θ78Θ80 + 4Θ78Θ79 + 2Θ2
78 + 2Θ77Θ78

−2Θ59Θ75 − 2Θ58Θ74 − 2Θ52Θ68 − 2Θ50Θ66 + 2Θ49Θ65

−2Θ46Θ63 + 2Θ45Θ62

[Θ43,Θ61] = Θ77

[Θ44,Θ47] = Θ80 −Θ78

[Θ45,Θ62] = Θ79

[Θ48,Θ64] = Θ81

[Θ6,Θ44] = 36Θ80 − 4Θ79 − 42Θ78 − 2Θ77 − 2Θ7 + Θ4 − 2Θ80Θ81 − 6Θ2
80

−4Θ79Θ80 + 2Θ78Θ81 + 6Θ78Θ80 + 4Θ78Θ79 − 2Θ77Θ80

+2Θ77Θ78 − 2Θ57Θ73 + 2Θ56Θ72 − 2Θ55Θ71 + 2Θ54Θ70

−2Θ52Θ68 + 2Θ50Θ66 − 2Θ44Θ47

[Θ46,Θ63] = −4 + Θ80 + Θ78

[Θ5,Θ47] = −6Θ80 − 4Θ79 − 2Θ77 − 2Θ7 + Θ4 + 2Θ57Θ73 − 2Θ56Θ72

+2Θ55Θ71 − 2Θ54Θ70 + 2Θ52Θ68 − 2Θ50Θ66 + 4Θ44Θ47

[Θ3,Θ46] = −48 + 4Θ81 + 10Θ80 + 12Θ79 + 28Θ78 + 6Θ77 + 2Θ7 −Θ4

−2Θ78Θ81 − 4Θ78Θ80 − 4Θ78Θ79 − 2Θ77Θ78 − 2Θ59Θ75

−2Θ58Θ74 + 2Θ52Θ68 + 2Θ50Θ66 + 2Θ49Θ65 + 2Θ45Θ62

[Θ12,Θ42] = −36 + 6Θ81 + 26Θ80 + 4Θ79 − 20Θ78 + 2Θ77 −Θ7 − 2Θ80Θ81

−4Θ2
80 − 4Θ79Θ80 + 2Θ78Θ81 + 2Θ78Θ80 + 4Θ78Θ79 + 2Θ2

78

−2Θ77Θ80 + 2Θ77Θ78 + 2Θ60Θ76 + 2Θ59Θ75 + 2Θ58Θ74

+2Θ56Θ72 + 2Θ54Θ70 + 2Θ50Θ66 + 2Θ48Θ64.
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We have one 1-dimensional representation:

Θ4 7→ −36

Θ7 7→ −24

Θ77 7→ 0

Θ78 7→ 2

Θ79 7→ 0

Θ80 7→ 2

Θ81 7→ 0,

with all other generators Θi 7→ 0. The denominators which appear in the

presentation of U(g, e) are all powers of 3, so we can define U(gk, ek) provided

k has characteristic p > 3.

6.4.3 The orbit (3A1)
′

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label (3A1)′. In Table 6.19 we give our choice of basis for g. We take

our sl2-triple to be (e, h, f) = (b42 + b56 + b59, 3b127 + 4b128 + 6b129 + 8b130 +

6b131 + 4b132 + 2b133, b105 + b119 + b122) = (x4, 3x66 + 2x67 + 8x68 + 2x69 + 2x84 +

6x85 + xb86, x129). With this basis, a minimal generating set for ge is {x45,

x46, x48, x49, x50, x51, x59}. A minimal generating set for m is {x102, x103,

x104, x105, x106, x107, x108, x109, x110, x111, x112, x113, x114, x115, x116, x117,

x118, x119, x120, x121, x122, x123, x124, x126, x129}. The subalgebra te has basis

{x66, x67, x68, x69}. We calculate κ(e, f) = 108.
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Table 6.19: Basis for type E7, orbit (3A1)′.

ni βi

p ge

x1 b62 3 (−1, 0, 0, 0)

x2 b63 3 (1, 0, 0, 0)

x3 b37 2 (0,−1, 0,−1)

x4 b42 + b56 + b59 2 (0, 0, 0, 0)

x5 b46 2 (0, 1,−1,−1)

x6 b47 2 (0,−1, 0, 1)

x7 b50 2 (0,−1, 1,−1)

x8 b51 2 (0, 0,−1, 0)

x9 b53 2 (0, 1, 0,−1)

x10 b54 2 (0,−2, 1, 0)

x11 b55 2 (0, 1,−1, 1)

x12 b56 2 (0, 0, 0, 0)

x13 b57 2 (0,−1, 1, 1)

x14 b58 2 (0, 1, 0, 1)

x15 b59 2 (0, 0, 0, 0)

x16 b60 2 (0, 2,−1, 0)

x17 b61 2 (0, 0, 1, 0)

x18 b3 1 (−1, 0,−1, 0)

x19 b8 1 (1, 0,−1, 0)

x20 b10 1 (−1,−2, 1, 0)

x21 b14 1 (1,−2, 1, 0)

x22 b15 − b24 1 (−1, 0, 0, 0)

x23 b17 1 (−1,−1, 0,−1)

x24 b20 − b27 1 (1, 0, 0, 0)

x25 b21 1 (1,−1, 0,−1)

x26 b22 1 (−1, 1,−1,−1)

x27 b24 + b45 1 (−1, 0, 0, 0)

Continued on next page
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Table 6.19 – continued from previous page

ni βi

p ge

x28 b26 1 (1, 1,−1,−1)

x29 b27 + b48 1 (1, 0, 0, 0)

x30 b28 1 (−1,−1, 1,−1)

x31 b29 1 (−1, 2,−1, 0)

x32 b31 1 (−1,−1, 0, 1)

x33 b32 1 (1,−1, 1,−1)

x34 b33 1 (1, 2,−1, 0)

x35 b34 1 (1,−1, 0, 1)

x36 b35 1 (−1, 0, 1, 0)

x37 b36 1 (−1, 1,−1, 1)

x38 b38 1 (1, 0, 1, 0)

x39 b39 1 (1, 1,−1, 1)

x40 b40 1 (−1, 1, 0,−1)

x41 b41 1 (−1,−1, 1, 1)

x42 b43 1 (1, 1, 0,−1)

x43 b44 1 (1,−1, 1, 1)

x44 b49 1 (−1, 1, 0, 1)

x45 b52 1 (1, 1, 0, 1)

x46 b1 0 (2, 0, 0, 0)

x47 b2 + b12 0 (0, 2,−1, 0)

x48 b4 0 (0,−2, 2, 0)

x49 b5 − b88 0 (0, 1,−1,−1)

x50 b6 + b30 0 (0, 1, 0, 1)

x51 b7 − b79 0 (0,−1, 0, 1)

x52 b9 − b18 0 (0, 0, 1, 0)

x53 b11 + b82 0 (0,−1, 1,−1)

x54 b13 0 (0, 0, 0, 2)

x55 b16 − b70 0 (0, 1, 0,−1)

Continued on next page
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Table 6.19 – continued from previous page

ni βi

p

ge

x56 b19 + b74 0 (0, 1,−1, 1)

x57 b23 0 (0, 2, 0, 0)

x58 b25 − b68 0 (0,−1, 1, 1)

x59 b64 0 (−2, 0, 0, 0)

x60 b65 + b75 0 (0,−2, 1, 0)

x61 b67 0 (0, 2,−2, 0)

x62 b69 + b93 0 (0,−1, 0,−1)

x63 b72 − b81 0 (0, 0,−1, 0)

x64 b76 0 (0, 0, 0,−2)

x65 b86 0 (0,−2, 0, 0)

x66 b127 0 (0, 0, 0, 0)

x67 b128 + b131 + b132 0 (0, 0, 0, 0)

x68 b130 0 (0, 0, 0, 0)

x69 b132 + b133 0 (0, 0, 0, 0)

x70 b15 1 (−1, 0, 0, 0)

x71 b20 1 (1, 0, 0, 0)

x72 b2 0 (0, 2,−1, 0)

x73 b5 0 (0, 1,−1,−1)

x74 b6 0 (0, 1, 0, 1)

x75 b7 0 (0,−1, 0, 1)

x76 b9 0 (0, 0, 1, 0)

x77 b11 0 (0,−1, 1,−1)

x78 b16 0 (0, 1, 0,−1)

x79 b19 0 (0, 1,−1, 1)

x80 b25 0 (0,−1, 1, 1)

x81 b65 0 (0,−2, 1, 0)

x82 b69 0 (0,−1, 0,−1)

x83 b72 0 (0, 0,−1, 0)

Continued on next page
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Table 6.19 – continued from previous page

ni βi

p

x84 b128 0 (0, 0, 0, 0)

x85 b129 0 (0, 0, 0, 0)

x86 b131 0 (0, 0, 0, 0)

x87 b66 −1 (1, 0, 1, 0)

x88 b71 −1 (−1, 0, 1, 0)

x89 b73 −1 (1, 2,−1, 0)

x90 b77 −1 (−1, 2,−1, 0)

x91 b78 −1 (1, 0, 0, 0)

x92 b80 −1 (1, 1, 0, 1)

x93 b84 −1 (−1, 1, 0, 1)

x94 b85 −1 (1,−1, 1, 1)

x95 b87 −1 (1, 0, 0, 0)

x96 b89 −1 (−1,−1, 1, 1)

x97 b91 −1 (1, 1,−1, 1)

x98 b94 −1 (1, 1, 0,−1)

x99 b95 −1 (−1, 1,−1, 1)

x100 b103 −1 (1,−1, 0, 1)

x101 b108 −1 (1, 0, 0, 0)

m

x102 b83 −1 (−1, 0, 0, 0)

x103 b90 −1 (−1, 0, 0, 0)

x104 b92 −1 (1,−2, 1, 0)

x105 b96 −1 (−1,−2, 1, 0)

x106 b97 −1 (−1, 1, 0,−1)

x107 b98 −1 (1, 0,−1, 0)

x108 b99 −1 (1,−1, 1,−1)

x109 b101 −1 (−1, 0,−1, 0)

x110 b102 −1 (−1,−1, 1,−1)

x111 b104 −1 (1, 1,−1,−1)

Continued on next page
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Table 6.19 – continued from previous page

ni βi

m

x112 b106 −1 (−1,−1, 0, 1)

x113 b107 −1 (−1, 1,−1,−1)

x114 b111 −1 (−1, 0, 0, 0)

x115 b112 −1 (1,−1, 0,−1)

x116 b115 −1 (−1,−1, 0,−1)

x117 b100 −2 (0, 1, 0, 1)

x118 b105 − b119 −2 (0, 0, 0, 0)

x119 b109 −2 (0,−1, 1, 1)

x120 b110 −2 (0, 1, 0,−1)

x121 b113 −2 (0, 1,−1, 1)

x122 b114 −2 (0, 0, 1, 0)

x123 b116 −2 (0,−1, 0, 1)

x124 b117 −2 (0, 2,−1, 0)

x125 b118 −2 (0,−1, 1,−1)

x126 b119 − b122 −2 (0, 0, 0, 0)

x127 b120 −2 (0, 1,−1,−1)

x128 b121 −2 (0,−1, 0,−1)

x129 b105 + b119 + b122 −2 (0, 0, 0, 0)

x130 b123 −2 (0,−2, 1, 0)

x131 b124 −2 (0, 0,−1, 0)

x132 b125 −3 (1, 0, 0, 0)

x133 b126 −3 (−1, 0, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F46,59, F48,61, F49,58, F50,62, F51,55, F3,50, F9,51,

F13,49, F23,45:
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[Θ46,Θ59] = −5
2

+ Θ66

[Θ48,Θ61] = Θ68

[Θ49,Θ58] = −3 + Θ69 + Θ68

[Θ50,Θ62] = −6 + Θ69 + Θ68 + Θ67

[Θ51,Θ55] = −Θ69 + Θ68 + Θ67

[Θ3,Θ50] = −45− 3Θ69 + 3Θ68 + 21Θ67 + 9Θ66 + Θ15 + 2Θ12 −Θ4

−6Θ67Θ68 − 3Θ66Θ67 + 3Θ57Θ65 + 3Θ54Θ64 + 3Θ52Θ63

+3Θ47Θ60

[Θ9,Θ51] = 42Θ68 − 3Θ67 −Θ15 − 2Θ12 + Θ4 − 9Θ2
68 − 3Θ67Θ68

−3Θ66Θ68 − 3Θ57Θ65 + 3Θ54Θ64 − 3Θ53Θ56 + 3Θ51Θ55

+3Θ49Θ58

[Θ13,Θ49] = −93 + 54Θ69 + 69Θ68 + 3Θ67 + 3Θ66 − 2Θ15 −Θ12 + Θ4

−3Θ2
69 − 12Θ68Θ69 − 9Θ2

68 − 3Θ67Θ69 − 3Θ67Θ68 − 3Θ66Θ69

−3Θ66Θ68 − 3Θ54Θ64 − 3Θ52Θ63 − 3Θ49Θ58 − 3Θ48Θ61

[Θ23,Θ45] = −9
2

+ 33Θ68 −Θ15 − 3Θ68Θ69 − 6Θ2
68 − 3Θ67Θ68 − 3Θ66Θ68

+3Θ57Θ65 + 3Θ54Θ64 + 3
2
Θ50Θ62 + 3Θ46Θ59.

We have one 1-dimensional representation:

Θ4 7→ −81
2

Θ12 7→ −45
2

Θ15 7→ −9
2

Θ66 7→ 5
2

Θ67 7→ 3

Θ68 7→ 0

Θ69 7→ 3,
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with all other generators Θi 7→ 0. The denominators which appear in the

presentation of U(g, e) are all powers of 2, so we can define U(gk, ek) provided

k has characteristic p > 3.

6.4.4 The orbit 4A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label 4A1. In Table 6.20 we give our choice of basis for g. We take our

sl2-triple to be (e, h, f) = (b45 + b47 + b52 + b53, 3b127 + 5b128 + 6b129 + 9b130 +

7b131 + 5b132 + 3b133, b108 + b110 + b115 + b116) = (x12, 2x61 + 5x62 + 9x63 +x82 +

5x83 − x84 + 3x85, x117). With this basis, a minimal generating set for ge is

{x45, x46, x48, x49, x50, x51, x59}. A minimal generating set for m is {x102,

x103, x104, x105, x106, x107, x108, x109, x110, x111, x112, x113, x114, x115, x116,

x117, x118, x119, x120, x121, x122, x123, x124, x126, x129}. The subalgebra te has

basis {x61, x62, x63}. We calculate κ(e, f) = 144.

Table 6.20: Basis for type E7, orbit 4A1.

ni βi

p ge

x1 b56 3 (0,−1, 0)

x2 b58 3 (−1, 0, 0)

x3 b60 3 (1, 1,−1)

x4 b61 3 (−1,−1, 1)

x5 b62 3 (0, 1, 0)

x6 b63 3 (1, 0, 0)

x7 b30 2 (−1,−1, 0)

x8 b36 2 (0, 1,−1)

x9 b39 2 (1, 0,−1)

x10 b41 2 (−2,−1, 1)

x11 b44 2 (−1,−2, 1)

x12 b45 + b47 + b52 + b53 2 (0, 0, 0)

Continued on next page
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Table 6.20 – continued from previous page

ni βi

p ge

x13 b47 2 (0, 0, 0)

x14 b48 2 (1,−1, 0)

x15 b49 2 (−1, 1, 0)

x16 b51 2 (2, 1,−1)

x17 b52 2 (0, 0, 0)

x18 b53 2 (0, 0, 0)

x19 b54 2 (0,−1, 1)

x20 b55 2 (1, 2,−1)

x21 b57 2 (−1, 0, 1)

x22 b59 2 (1, 1, 0)

x23 b2 1 (0, 0,−1)

x24 b7 − b16 1 (0,−1, 0)

x25 b9 1 (−2,−2, 1)

x26 b13 + b15 1 (−1, 0, 0)

x27 b15 − b23 1 (−1, 0, 0)

x28 b16 + b20 1 (0,−1, 0)

x29 b19 − b22 1 (1, 1,−1)

x30 b22 − b33 1 (1, 1,−1)

x31 b25 + b28 1 (−1,−1, 1)

x32 b26 1 (2, 0,−1)

x33 b28 − b38 1 (−1,−1, 1)

x34 b29 1 (0, 2,−1)

x35 b31 + b40 1 (0, 1, 0)

x36 b32 1 (0,−2, 1)

x37 b34 − b37 1 (1, 0, 0)

x38 b35 1 (−2, 0, 1)

x39 b37 + b43 1 (1, 0, 0)

x40 b40 − b42 1 (0, 1, 0)

Continued on next page
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Table 6.20 – continued from previous page

ni βi

p

ge

x41 b46 1 (2, 2,−1)

x42 b50 1 (0, 0, 1)

x43 b1 + b69 0 (1,−1, 0)

x44 b3 + b12 0 (1, 2,−1)

x45 b4 0 (−2,−2, 2)

x46 b5 − b8 0 (2, 1,−1)

x47 b6 + b64 0 (−1, 1, 0)

x48 b10 − b18 0 (−1, 0, 1)

x49 b11 + b14 0 (0,−1, 1)

x50 b17 − b27 0 (1, 1, 0)

x51 b21 0 (2, 0, 0)

x52 b24 0 (0, 2, 0)

x53 b66 + b75 0 (−1,−2, 1)

x54 b67 0 (2, 2,−2)

x55 b68 − b71 0 (−2,−1, 1)

x56 b73 − b81 0 (1, 0,−1)

x57 b74 + b77 0 (0, 1,−1)

x58 b80 − b90 0 (−1,−1, 0)

x59 b84 0 (−2, 0, 0)

x60 b87 0 (0,−2, 0)

x61 b127 + b129 + b131 0 (0, 0, 0)

x62 b129 + b131 + b132 0 (0, 0, 0)

x63 b130 0 (0, 0, 0)

x64 b7 1 (0,−1, 0)

x65 b13 1 (−1, 0, 0)

x66 b19 1 (1, 1,−1)

x67 b25 1 (−1,−1, 1)

x68 b31 1 (0, 1, 0)

Continued on next page
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Table 6.20 – continued from previous page

ni βi

p

x69 b34 1 (1, 0, 0)

x70 b1 0 (1,−1, 0)

x71 b3 0 (1, 2,−1)

x72 b5 0 (2, 1,−1)

x73 b6 0 (−1, 1, 0)

x74 b10 0 (−1, 0, 1)

x75 b11 0 (0,−1, 1)

x76 b17 0 (1, 1, 0)

x77 b66 0 (−1,−2, 1)

x78 b68 0 (−2,−1, 1)

x79 b73 0 (1, 0,−1)

x80 b74 0 (0, 1,−1)

x81 b80 0 (−1,−1, 0)

x82 b127 0 (0, 0, 0)

x83 b128 0 (0, 0, 0)

x84 b129 0 (0, 0, 0)

x85 b133 0 (0, 0, 0)

x86 b65 −1 (0, 0, 1)

x87 b70 −1 (0, 1, 0)

x88 b72 −1 (2, 2,−1)

x89 b76 −1 (1, 0, 0)

x90 b78 −1 (1, 0, 0)

x91 b79 −1 (0, 1, 0)

x92 b83 −1 (0, 1, 0)

x93 b86 −1 (1, 0, 0)

x94 b88 −1 (1, 1,−1)

x95 b91 −1 (1, 1,−1)

x96 b95 −1 (0, 2,−1)

Continued on next page
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Table 6.20 – continued from previous page

ni βi

x97 b98 −1 (2, 0,−1)

x98 b101 −1 (1, 1,−1)

m

x99 b82 −1 (−1,−1, 1)

x100 b85 −1 (−1,−1, 1)

x101 b89 −1 (−2, 0, 1)

x102 b92 −1 (0,−2, 1)

x103 b94 −1 (0,−1, 0)

x104 b96 −1 (−1,−1, 1)

x105 b97 −1 (−1, 0, 0)

x106 b100 −1 (−1, 0, 0)

x107 b103 −1 (0,−1, 0)

x108 b105 −1 (0,−1, 0)

x109 b106 −1 (−1, 0, 0)

x110 b109 −1 (−2,−2, 1)

x111 b113 −1 (0, 0,−1)

x112 b93 −2 (1, 1, 0)

x113 b99 −2 (0,−1, 1)

x114 b102 −2 (−1, 0, 1)

x115 b104 −2 (2, 1,−1)

x116 b107 −2 (1, 2,−1)

x117 b108 + b110 + b115 + b116 −2 (0, 0, 0)

x118 −b108 + b110 −2 (0, 0, 0)

x119 b111 −2 (−1, 1, 0)

x120 b112 −2 (1,−1, 0)

x121 b114 −2 (−2,−1, 1)

x122 −b110 + b115 −2 (0, 0, 0)

x123 −b110 + b116 −2 (0, 0, 0)

x124 b117 −2 (0, 1,−1)

Continued on next page
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Table 6.20 – continued from previous page

ni βi

m

x125 b118 −2 (−1,−2, 1)

x126 b120 −2 (1, 0,−1)

x127 b122 −2 (−1,−1, 0)

x128 b119 −3 (0, 1, 0)

x129 b121 −3 (1, 0, 0)

x130 b123 −3 (−1,−1, 1)

x131 b124 −3 (1, 1,−1)

x132 b125 −3 (0,−1, 0)

x133 b126 −3 (−1, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F43,47, F44,53, F45,54, F51,59, F14,47, F27,37, F20,53,

F26,37, F2,37:

[Θ43,Θ47] = −Θ62 + Θ61

[Θ44,Θ53] = −5 + Θ62

[Θ45,Θ54] = 5
2

+ Θ63

[Θ51,Θ59] = −5
2

+ Θ63 + Θ61

[Θ14,Θ47] = −8Θ63 − 4Θ62 − 8Θ61 −Θ18 − 2Θ17 −Θ13 + Θ12 + 4Θ52Θ60

−4Θ51Θ59 − 6Θ43Θ47

[Θ27,Θ37] = −72 + 52Θ63 − 4Θ62 + 10Θ61 −Θ18 + Θ17 −Θ13 − 8Θ2
63

−2Θ62Θ63 + 2Θ2
62 − 4Θ61Θ63 − 2Θ61Θ62 + 4Θ51Θ59

+2Θ50Θ58 + 4Θ48Θ56 + 4Θ44Θ53 + 2Θ43Θ47

[Θ20,Θ53] = −120 + 22Θ63 + 20Θ62 + Θ17 −Θ13 + 4Θ52Θ60 − 4Θ45Θ54

+2Θ44Θ53
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[Θ26,Θ37] = −124 + 60Θ63 + 34Θ62 − 18Θ61 − 2Θ13 − 6Θ2
63 − 8Θ62Θ63

−2Θ2
62 + 4Θ61Θ63 + 2Θ2

61 + 8Θ51Θ59 + 2Θ50Θ58 + 2Θ43Θ47

[Θ2,Θ37] = −3624 + 1884Θ63 + 2052Θ62 − 1076Θ61 + 28Θ18 − 18Θ17

−64Θ13 − 2Θ12 − 232Θ2
63 − 848Θ62Θ63 − 336Θ2

62

+592Θ61Θ63 + 160Θ61Θ62 + 112Θ2
61 + 24Θ52Θ60 + 240Θ51Θ59

+20Θ50Θ58 + 40Θ48Θ56 − 8Θ46Θ55 − 16Θ45Θ54 + 16Θ44Θ53

−12Θ43Θ47 + 4Θ34Θ36 − 4Θ32Θ38 − 2Θ27Θ37 − 4Θ21Θ56

−4Θ20Θ53 − 6Θ18Θ63 − 2Θ18Θ62 − 2Θ18Θ61 + 6Θ17Θ63

+2Θ17Θ62 + 2Θ17Θ61 − 2Θ15Θ43 + 10Θ13Θ63 + 10Θ13Θ62

−2Θ13Θ61 + 2Θ7Θ50 + 72Θ62Θ2
63 + 72Θ2

62Θ63 + 16Θ3
62

−72Θ61Θ2
63 − 48Θ61Θ62Θ63 − 24Θ2

61Θ63 − 16Θ2
61Θ62

−40Θ51Θ59Θ63 − 40Θ51Θ59Θ62 + 8Θ51Θ59Θ61 − 8Θ43Θ50Θ59.

We have one 1-dimensional representation:

Θ12 7→ −617
4

Θ13 7→ −363
4

Θ17 7→ −63
4

Θ18 7→ −72

Θ61 7→ 5

Θ62 7→ 5

Θ63 7→ −5
2
,

with all other generators Θi 7→ 0. The denominators which appear in the

presentation of U(g, e) are all powers of 2, so we can define U(gk, ek) provided

k has characteristic p > 3.
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6.4.5 The orbit A2 + 2A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label A2 + 2A1. In Table 6.21 we give our choice of basis for g. We

take our sl2-triple to be (e, h, f) = (b41 + b42 + b43 + b51, 4b127 + 6b128 + 8b129 +

12b130 + 9b131 + 6b132 + 3b133, 2b104 + b105 + 2b106 + b114) = (x18, 6x50 + 3x51 +

4x77 + 8x78 + 12x79 + 6x80, x120). With this basis, a minimal generating set

for ge is {x42, x43, x44, x45, x46, x47, x48}. A minimal generating set for m is

{x93, x94, x95, x96, x97, x98, x99, x100, x101, x102, x103, x104, x105, x106, x107,

x108, x110, x111, x112, x113, x115, x116, x117, x120}. The subalgebra te has basis

{x49, x50, x51}. We calculate κ(e, f) = 216.

Table 6.21: Basis for type E7, orbit A2 + 2A1.

ni βi

p ge

x1 b61 4 (0, 0, 0)

x2 b62 4 (−1, 0, 0)

x3 b63 4 (1, 0, 0)

x4 b50 3 (0,−1,−1)

x5 b53 3 (0, 1,−1)

x6 b54 3 (1,−1,−1)

x7 b56 3 (1, 1,−1)

x8 b57 3 (0,−1, 1)

x9 b58 3 (0, 1, 1)

x10 b59 3 (−1,−1, 1)

x11 b60 3 (−1, 1, 1)

x12 b28 2 (0, 0,−2)

x13 b32 2 (2, 0,−2)

x14 b35 − b45 2 (−1, 0, 0)

x15 b37 2 (1, 0,−2)

x16 b38 − b47 2 (1, 0, 0)

Continued on next page
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Table 6.21 – continued from previous page

ni βi

p ge

x17 b40 2 (−2, 0, 0)

x18 b41 + b42 + b43 + b51 2 (0, 0, 0)

x19 b41 + b43 2 (0, 0, 0)

x20 b42 2 (0, 0, 0)

x21 b44 2 (2, 0, 0)

x22 b45 − b46 2 (−1, 0, 0)

x23 b47 − b48 2 (1, 0, 0)

x24 b49 2 (−2, 0, 2)

x25 b52 2 (0, 0, 2)

x26 b55 2 (−1, 0, 2)

x27 b4 + b21 1 (1,−1,−1)

x28 b9 + b26 1 (1, 1,−1)

x29 b10 − b11 1 (0,−1,−1)

x30 b14 1 (2,−1,−1)

x31 b15 − b16 1 (0, 1,−1)

x32 b17 1 (−1,−1,−1)

x33 b18 − b31 1 (−1,−1, 1)

x34 b20 1 (2, 1,−1)

x35 b22 1 (−1, 1,−1)

x36 b23 − b36 1 (−1, 1, 1)

x37 b24 1 (−2,−1, 1)

x38 b25 + b27 1 (0,−1, 1)

x39 b29 1 (−2, 1, 1)

x40 b30 + b33 1 (0, 1, 1)

x41 b34 1 (1,−1, 1)

x42 b39 1 (1, 1, 1)

x43 b2 0 (0, 2, 0)

x44 b3 + 1
2
b5 + 1

2
b70 − 1

2
b71 0 (−1, 0, 0)

Continued on next page
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Table 6.21 – continued from previous page

ni βi

p

ge

x45 b6 + b19 0 (−1, 0, 2)

x46 b7 − 2b8 + b66 + b68 0 (1, 0, 0)

x47 b65 0 (0,−2, 0)

x48 b69 + b82 0 (1, 0,−2)

x49 b127 − b131 − b132 0 (0, 0, 0)

x50 b128 0 (0, 0, 0)

x51 b131 + 2b132 + b133 0 (0, 0, 0)

x52 b35 2 (−1, 0, 0)

x53 b38 2 (1, 0, 0)

x54 b41 2 (0, 0, 0)

x55 b4 1 (1,−1,−1)

x56 b9 1 (1, 1,−1)

x57 b10 1 (0,−1,−1)

x58 b15 1 (0, 1,−1)

x59 b18 1 (−1,−1, 1)

x60 b23 1 (−1, 1, 1)

x61 b25 1 (0,−1, 1)

x62 b30 1 (0, 1, 1)

x63 b1 0 (2, 0, 0)

x64 b3 0 (−1, 0, 0)

x65 b5 0 (−1, 0, 0)

x66 b6 0 (−1, 0, 2)

x67 b7 0 (1, 0, 0)

x68 b8 0 (1, 0, 0)

x69 b12 0 (−2, 0, 2)

x70 b13 0 (0, 0, 2)

x71 b64 0 (−2, 0, 0)

x72 b66 0 (1, 0, 0)

Continued on next page
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Table 6.21 – continued from previous page

ni βi

p

x73 b69 0 (1, 0,−2)

x74 b70 0 (−1, 0, 0)

x75 b75 0 (2, 0,−2)

x76 b76 0 (0, 0,−2)

x77 b127 0 (0, 0, 0)

x78 b129 0 (0, 0, 0)

x79 b130 0 (0, 0, 0)

x80 b131 0 (0, 0, 0)

x81 b67 −1 (−1, 1, 1)

x82 b73 −1 (0, 1, 1)

x83 b74 −1 (0, 1, 1)

x84 b77 −1 (−2, 1, 1)

x85 b78 −1 (0,−1, 1)

x86 b79 −1 (0,−1, 1)

x87 b80 −1 (1, 1, 1)

x88 b81 −1 (1, 1,−1)

x89 b84 −1 (−1, 1, 1)

x90 b85 −1 (1,−1, 1)

x91 b87 −1 (2, 1,−1)

x92 b94 −1 (1, 1,−1)

m

x93 b72 −1 (−1,−1, 1)

x94 b83 −1 (−2,−1, 1)

x95 b86 −1 (1,−1,−1)

x96 b88 −1 (0, 1,−1)

x97 b89 −1 (−1,−1, 1)

x98 b90 −1 (0, 1,−1)

x99 b92 −1 (2,−1,−1)

x100 b93 −1 (0,−1,−1)

Continued on next page
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Table 6.21 – continued from previous page

ni βi

m

x101 b96 −1 (0,−1,−1)

x102 b97 −1 (−1, 1,−1)

x103 b99 −1 (1,−1,−1)

x104 b102 −1 (−1,−1,−1)

x105 b91 −2 (0, 0, 2)

x106 b95 −2 (−2, 0, 2)

x107 b98 −2 (1, 0, 0)

x108 b100 −2 (−1, 0, 2)

x109 b101 −2 (−1, 0, 0)

x110 b103 −2 (2, 0, 0)

x111 b104 − b105 −2 (0, 0, 0)

x112 b105 − b106 −2 (0, 0, 0)

x113 b106 − b114 −2 (0, 0, 0)

x114 b107 −2 (−2, 0, 0)

x115 b108 −2 (1, 0, 0)

x116 b109 −2 (1, 0, 0)

x117 b110 −2 (−1, 0, 0)

x118 b111 −2 (−1, 0, 0)

x119 b112 −2 (2, 0,−2)

x120 2b104 + b105 + 2b106 + b114 −2 (0, 0, 0)

x121 b115 −2 (0, 0,−2)

x122 b118 −2 (1, 0,−2)

x123 b113 −3 (0, 1, 1)

x124 b116 −3 (0,−1, 1)

x125 b117 −3 (−1, 1, 1)

x126 b119 −3 (−1,−1, 1)

x127 b120 −3 (0, 1,−1)

x128 b121 −3 (0,−1,−1)

Continued on next page
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Table 6.21 – continued from previous page

ni βi

m

x129 b122 −3 (1, 1,−1)

x130 b123 −3 (1,−1,−1)

x131 b124 −4 (0, 0, 0)

x132 b125 −4 (1, 0, 0)

x133 b126 −4 (−1, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F44,46, F45,48, F43,47, F15,45, F14,46, F32,42, F22,46,

F16,44, F23,44, F26,48, F2,46, F3,44:

[Θ44,Θ46] = 5
2
− 1

2
Θ51 −Θ49

[Θ45,Θ48] = −3 + Θ51

[Θ43,Θ47] = −3 + Θ50

[Θ15,Θ45] = −54 + 6Θ50 − 42Θ49 − 2Θ20 −Θ19 + Θ18 + 6Θ49Θ50

[Θ14,Θ46] = −36 + 36Θ51 + 6Θ50 + 90Θ49 + 4Θ20 + 2Θ19 − 2Θ18

−6Θ50Θ51 + 6Θ49Θ51 − 12Θ49Θ50 + 12Θ2
49 − 12Θ44Θ46

[Θ32,Θ42] = −Θ20 −Θ19 + Θ18 − 6Θ43Θ47

[Θ22,Θ46] = −90 + 18Θ51 + 12Θ50 + 24Θ49 − 2Θ20 − 4Θ19 + 3Θ18

+6Θ45Θ48 + 12Θ44Θ46

[Θ16,Θ44] = −63 + 27Θ51 + 9Θ50 + 57Θ49 + Θ20 −Θ19 + 1
2
Θ18 − 3Θ50Θ51

+3Θ49Θ51 − 6Θ49Θ50 + 6Θ2
49 + 3Θ45Θ48

[Θ23,Θ44] = −90 + 33Θ51 + 9Θ50 + 57Θ49 + Θ20 + 2Θ19 − 3
2
Θ18 − 3Θ2

51

−3Θ50Θ51 − 9Θ49Θ51 − 6Θ49Θ50 − 6Θ2
49 − 3Θ45Θ48

[Θ26,Θ48] = 90− 12Θ51 − 6Θ50 + 60Θ49 + 2Θ20 + Θ19 −Θ18 − 6Θ49Θ51

−6Θ49Θ50 − 6Θ45Θ48
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[Θ2,Θ46] = 9360− 5544Θ51 − 2304Θ50 − 10620Θ49 − 204Θ20 − 6Θ19

−6Θ18 −Θ1 + 324Θ2
51 + 1260Θ50Θ51 + 144Θ2

50 + 108Θ49Θ51

+2448Θ49Θ50 − 1152Θ2
49 − 612Θ45Θ48 − 72Θ44Θ46

−36Θ43Θ47 − 12Θ35Θ41 − 12Θ34Θ37 + 12Θ32Θ42 + 12Θ30Θ39

−6Θ26Θ48 + 6Θ20Θ51 + 24Θ20Θ50 − 12Θ20Θ49 − 6Θ19Θ51

−12Θ19Θ49 + 6Θ18Θ51 + 12Θ18Θ49 − 12Θ16Θ44 − 6Θ15Θ45

−6Θ14Θ46 − 36Θ50Θ2
51 − 72Θ2

50Θ51 + 36Θ49Θ2
51 − 144Θ49Θ2

50

+72Θ2
49Θ51 + 144Θ2

49Θ50 + 36Θ45Θ48Θ51 + 72Θ45Θ48Θ50

[Θ3,Θ44] = −13374 + 4950Θ51 + 2826Θ50 + 8604Θ49 + 135Θ20 − 90Θ19

+18Θ18 − 1
2
Θ1 − 198Θ2

51 − 864Θ50Θ51 − 144Θ2
50 + 36Θ49Θ51

−1584Θ49Θ50 + 828Θ2
49 + 396Θ45Θ48 + 36Θ44Θ46 − 18Θ43Θ47

+3Θ35Θ41 − 6Θ34Θ37 − 3Θ32Θ42 − 3Θ31Θ38 + 6Θ30Θ39

+3Θ29Θ40 + 6Θ28Θ33 − 6Θ27Θ36 + 3Θ26Θ48 − 6Θ23Θ44

−12Θ20Θ50 + 12Θ20Θ49 + 6Θ19Θ51 + 6Θ19Θ50 + 6Θ19Θ49

−3Θ18Θ51 − 6Θ18Θ49 − 6Θ16Θ44 + 3Θ15Θ45 + 18Θ50Θ2
51

+36Θ2
50Θ51 − 18Θ49Θ2

51 + 72Θ49Θ2
50 − 36Θ2

49Θ51 − 72Θ2
49Θ50

−18Θ45Θ48Θ51 − 36Θ45Θ48Θ50.

We have one 1-dimensional representation:

Θ1 7→ 576

Θ18 7→ −96

Θ19 7→ −36

Θ20 7→ −60

Θ49 7→ 1

Θ50 7→ 3

Θ51 7→ 3,
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with all other generators Θi 7→ 0. The denominators which appear in the

presentation of U(g, e) are all powers of 2, so we can define U(gk, ek) provided

k has characteristic p > 3.

6.4.6 The orbit 2A2 + A1

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label 2A2 + A1. In Table 6.22 we give our choice of basis for g. We

take our sl2-triple to be (e, h, f) = (b34 + b35 + b36 + b37 + b43, 5b127 + 7b128 +

10b129 + 14b130 + 11b131 + 8b132 + 4b133, 2b97 + 2b98 + 2b99 + b100 + 2b106) =

(x23,−7x42 +4x43 +12x74 +10x75 +10x76 +6x77 +8x78, x112). With this basis,

a minimal generating set for ge is {x35, x37, x38, x39, x40, x41}. A minimal

generating set for m is {x89, x90, x91, x92, x93, x94, x95, x96, x97, x98, x99, x100,

x101, x102, x103, x104, x105, x106, x107, x110, x112, x114}. The subalgebra te has

basis {x42, x43}. We calculate κ(e, f) = 324.

Table 6.22: Basis for type E7, orbit 2A2 + A1.

ni βi

p ge

x1 b62 5 (−1, 0)

x2 b63 5 (1, 0)

x3 b55 4 (0,−2)

x4 b57 4 (0, 0)

x5 b58 4 (2, 0)

x6 b59 4 (−2, 0)

x7 b60 4 (0, 0)

x8 b61 4 (0, 2)

x9 b42 3 (1,−2)

x10 b46 3 (−1,−2)

x11 b47 + b52 3 (1, 0)

x12 b49 − b50 3 (−1, 0)

Continued on next page
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Table 6.22 – continued from previous page

ni βi

p ge

x13 b50 − b51 3 (−1, 0)

x14 b52 − b53 3 (1, 0)

x15 b54 3 (−1, 2)

x16 b56 3 (1, 2)

x17 b24 2 (−2,−2)

x18 b27 − b29 2 (0,−2)

x19 b31 − b40 2 (−2, 0)

x20 b33 2 (2,−2)

x21 b34 + b35 2 (0, 0)

x22 b36 + b43 2 (0, 0)

x23 b34 + b35 + b36 + b37 + b43 2 (0, 0)

x24 b38 − b39 2 (2, 0)

x25 b41 − b48 2 (0, 2)

x26 b44 2 (2, 2)

x27 b45 2 (−2, 2)

x28 b3 − b12 1 (−1,−2)

x29 b6 − b8 1 (1,−2)

x30 b10 + 1
2
b18 + 1

2
b19 − 1

2
b21 1 (−1, 0)

x31 b13 + 2b14 − b15 − b23 1 (1, 0)

x32 b14 − b15 + b26 1 (1, 0)

x33 b17 1 (−3, 0)

x34 b18 + b19 + b21 − 2b22 1 (−1, 0)

x35 b20 1 (3, 0)

x36 b25 + b28 1 (−1, 2)

x37 b30 − b32 1 (1, 2)

x38 b1 − b2 + b68 0 (2, 0)

x39 b4 − b7 − b16 0 (0, 2)

x40 b5 + b64 − b65 0 (−2, 0)

Continued on next page
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Table 6.22 – continued from previous page

ni βi

p

ge
x41 b67 − b70 − b79 0 (0,−2)

x42 b127 + b128 − b131 0 (0, 0)

x43 b128 + 2b130 + b131 + b133 0 (0, 0)

x44 b47 3 (1, 0)

x45 b49 3 (−1, 0)

x46 b27 2 (0,−2)

x47 b31 2 (−2, 0)

x48 b34 2 (0, 0)

x49 b36 2 (0, 0)

x50 b38 2 (2, 0)

x51 b41 2 (0, 2)

x52 b3 1 (−1,−2)

x53 b6 1 (1,−2)

x54 b10 1 (−1, 0)

x55 b13 1 (1, 0)

x56 b14 1 (1, 0)

x57 b15 1 (1, 0)

x58 b18 1 (−1, 0)

x59 b19 1 (−1, 0)

x60 b25 1 (−1, 2)

x61 b30 1 (1, 2)

x62 b1 0 (2, 0)

x63 b2 0 (2, 0)

x64 b4 0 (0, 2)

x65 b5 0 (−2, 0)

x66 b7 0 (0, 2)

x67 b9 0 (2, 2)

x68 b11 0 (−2, 2)

Continued on next page
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Table 6.22 – continued from previous page

ni βi

p

x69 b64 0 (−2, 0)

x70 b67 0 (0,−2)

x71 b70 0 (0,−2)

x72 b72 0 (−2,−2)

x73 b74 0 (2,−2)

x74 b127 0 (0, 0)

x75 b128 0 (0, 0)

x76 b129 0 (0, 0)

x77 b130 0 (0, 0)

x78 b132 0 (0, 0)

x79 b66 −1 (1, 2)

x80 b69 −1 (−1, 2)

x81 b71 −1 (−1, 2)

x82 b73 −1 (1, 0)

x83 b75 −1 (1, 2)

x84 b80 −1 (3, 0)

x85 b81 −1 (1, 0)

x86 b82 −1 (1, 0)

x87 b84 −1 (1, 0)

x88 b85 −1 (1, 0)

m

x89 b76 −1 (−1, 0)

x90 b77 −1 (−1, 0)

x91 b78 −1 (−1, 0)

x92 b83 −1 (−3, 0)

x93 b86 −1 (−1, 0)

x94 b88 −1 (1,−2)

x95 b89 −1 (−1, 0)

x96 b91 −1 (1,−2)

Continued on next page
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Table 6.22 – continued from previous page

ni βi

m

x97 b93 −1 (−1,−2)

x98 b95 −1 (−1,−2)

x99 b87 −2 (2, 2)

x100 b90 −2 (0, 2)

x101 b92 −2 (0, 2)

x102 b94 −2 (2, 0)

x103 b96 −2 (−2, 2)

x104 b97 − b98 −2 (0, 0)

x105 b98 − b99 −2 (0, 0)

x106 b99 − b100 −2 (0, 0)

x107 b100 − b106 −2 (0, 0)

x108 b101 −2 (−2, 0)

x109 b102 −2 (−2, 0)

x110 b103 −2 (2, 0)

x111 b104 −2 (0,−2)

x112 2b97 + 2b98 + 2b99 + b100 + 2b106 −2 (0, 0)

x113 b107 −2 (−2,−2)

x114 b108 −2 (2,−2)

x115 b111 −2 (0,−2)

x116 b105 −3 (−1, 2)

x117 b109 −3 (1, 2)

x118 b110 −3 (−1, 0)

x119 b112 −3 (1, 0)

x120 b113 −3 (1, 0)

x121 b114 −3 (1, 0)

x122 b115 −3 (−1, 0)

x123 b116 −3 (−1, 0)

x124 b117 −3 (1,−2)

Continued on next page
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Table 6.22 – continued from previous page

ni βi

m

x125 b119 −3 (−1,−2)

x126 b118 −4 (0, 2)

x127 b120 −4 (0, 0)

x128 b121 −4 (−2, 0)

x129 b122 −4 (2, 0)

x130 b123 −4 (0, 0)

x131 b124 −4 (0,−2)

x132 b125 −5 (1, 0)

x133 b126 −5 (−1, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F39,41, F38,40, F19,38, F33,35, F18,39, F25,41, F28,37,

F24,40, F8,41, F5,40, F6,38, F3,39, F10,37:

[Θ39,Θ41] = −4 + Θ43

[Θ38,Θ40] = −4 + Θ42

[Θ19,Θ38] = 240− 33Θ43 − 108Θ42 −Θ22 + Θ21 + 9Θ42Θ43 − 18Θ2
42

+9Θ38Θ40

[Θ33,Θ35] = −56− 54Θ42 −Θ23 + Θ22 + Θ21 + 3Θ38Θ40

[Θ18,Θ39] = 144− 54Θ43 − 27Θ42 −Θ22 + Θ21 − 9Θ42Θ43 − 9Θ2
42

−9Θ38Θ40

[Θ25,Θ41] = 252− 117Θ43 − 63Θ42 −Θ22 + Θ21 + 9Θ2
43 − 9Θ2

42

−18Θ39Θ41 − 9Θ38Θ40

[Θ28,Θ37] = −144 + 18Θ43 − 108Θ42 + Θ23 − 2Θ22 −Θ21 + 9Θ42Θ43

−9Θ2
42 + 3Θ39Θ41

[Θ24,Θ40] = −336 + 3Θ43 − 36Θ42 −Θ22 + Θ21 − 27Θ38Θ40
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[Θ8,Θ41] = −10152 + 3267Θ43 − 567Θ42 + 9Θ23 + 9Θ22 − 207Θ21 −Θ7

−Θ4 − 243Θ2
43 + 243Θ42Θ43 + 81Θ2

42 − 837Θ39Θ41

+1296Θ38Θ40 − 9Θ29Θ36 − 9Θ28Θ37 − 9Θ25Θ41 + 18Θ21Θ43

−9Θ21Θ42 − 9Θ19Θ38 + 81Θ39Θ41Θ43 − 81Θ39Θ41Θ42

−81Θ38Θ40Θ43 + 162Θ38Θ40Θ42

[Θ5,Θ40] = −32724 + 1485Θ43 − 5940Θ42 + 3Θ23 − 171Θ22 + 135Θ21

−Θ7 + Θ4 + 135Θ42Θ43 − 297Θ2
42 + 54Θ39Θ41 − 2484Θ38Θ40

+9Θ33Θ35 + 18Θ30Θ31 − 9Θ24Θ40 + 9Θ22Θ43 − 9Θ22Θ42

−9Θ21Θ43 + 9Θ21Θ42 − 9Θ18Θ39 + 81Θ38Θ40Θ43

−243Θ38Θ40Θ42

[Θ6,Θ38] = 29160− 6021Θ43 − 6048Θ42 − 3Θ23 + Θ7 −Θ4 + 297Θ2
43

+1350Θ42Θ43 − 1404Θ2
42 + 1053Θ39Θ41 + 2052Θ38Θ40

−9Θ33Θ35 − 18Θ30Θ31 + 9Θ25Θ41 + 9Θ24Θ40 + 9Θ22Θ42

+9Θ19Θ38 − 81Θ42Θ2
43 + 162Θ2

42Θ43 − 81Θ39Θ41Θ43

+162Θ39Θ41Θ42 − 162Θ38Θ40Θ43 + 162Θ38Θ40Θ42

[Θ3,Θ39] = 16848− 9072Θ43 − 3078Θ42 + 9Θ23 − 135Θ22 − 27Θ21 −Θ7

−Θ4 + 567Θ2
43 − 1296Θ42Θ43 − 1377Θ2

42 + 459Θ39Θ41

−1134Θ38Θ40 − 9Θ29Θ36 − 9Θ28Θ37 + 9Θ24Θ40 + 9Θ22Θ43

−9Θ22Θ42 − 18Θ18Θ39 + 81Θ42Θ2
43 − 81Θ3

42 − 81Θ39Θ41Θ43

+81Θ38Θ40Θ43 − 81Θ38Θ40Θ42

[Θ10,Θ37] = −4860 + 1512Θ43 − 1188Θ42 − 27Θ23 + 87Θ22 + 39Θ21 + Θ7

−27Θ2
43 + 270Θ42Θ43 − 27Θ2

42 + 216Θ39Θ41 + 54Θ38Θ40

+9Θ33Θ35 + 9
2
Θ32Θ34 − 9

2
Θ31Θ34 + 9Θ30Θ32 − 9Θ30Θ31

+9Θ28Θ37 + 9Θ23Θ43 + 9Θ23Θ42 − 18Θ22Θ43 − 9Θ22Θ42

−9Θ21Θ43 − 9Θ21Θ42 + 6Θ18Θ39 + 54Θ39Θ41Θ42.
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We have one 1-dimensional representation:

Θ4 7→ 756

Θ7 7→ 34668

Θ21 7→ −308

Θ22 7→ −776

Θ23 7→ −1356

Θ42 7→ 4

Θ43 7→ 4,

with all other generators Θi 7→ 0. We know that we cannot define U(gk, ek)

for k of characteristic 2 or 3, but without a presentation we cannot establish

that these are the only primes which have to be excluded for the definition

of U(gk, ek).

6.4.7 The orbit (A3 + A1)
′

Here we consider the finite W -algebra associated to the orbit of g with Bala–

Carter label (A3 + A1)′. In Table 6.23 we give our choice of basis for g.

We take our sl2-triple to be (e, h, f) = (b27 + b28 + b39 + b49, 6b127 + 8b128 +

11b129 +16b130 +12b131 +8b132 +4b133, 3b90 +4b91 +3b102 +b112) = (x25,−4x39 +

11x40 + 12x41 + 6x75 + 12x76 + 16x77 + 8x78, x110). With this basis, a minimal

generating set for ge is {x12, x24, x25, x32, x33, x34, x35, x36, x37, x38}. A

minimal generating set for m is {x88, x89, x90, x91, x92, x93, x94, x95, x96, x97,

x98, x99, x101, x102, x104, x105, x106, x108, x109, x110, x116}. The subalgebra te

has basis {x39, x40, x41}. We calculate κ(e, f) = 396.
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Table 6.23: Basis for type E7, orbit (A3 + A1)′.

ni βi

p ge

x1 b63 6 (0, 0, 0)

x2 b61 5 (0,−1, 0)

x3 b62 5 (0, 1, 0)

x4 b50 + b56 4 (0, 0, 0)

x5 b53 4 (2, 0, 0)

x6 b54 4 (−2, 0, 0)

x7 b57 4 (−1, 0,−1)

x8 b58 4 (1, 0,−1)

x9 b59 4 (−1, 0, 1)

x10 b60 4 (1, 0, 1)

x11 b32 − b52 3 (0,−1, 0)

x12 b37 − b55 3 (0, 1, 0)

x13 b38 3 (1,−1,−1)

x14 b42 3 (1, 1,−1)

x15 b43 3 (1,−1, 1)

x16 b44 3 (−1,−1,−1)

x17 b46 3 (1, 1, 1)

x18 b47 3 (−1, 1,−1)

x19 b48 3 (−1,−1, 1)

x20 b51 3 (−1, 1, 1)

x21 b14 − b41 2 (−1, 0,−1)

x22 b20 + b35 2 (1, 0,−1)

x23 b21 − b45 2 (−1, 0, 1)

x24 b26 + b40 2 (1, 0, 1)

x25 b27 + b28 + b39 + b49 2 (0, 0, 0)

x26 b49 2 (0, 0, 0)

x27 b18 − b30 1 (0,−1, 0)

Continued on next page
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Table 6.23 – continued from previous page

ni βi

p

ge

x28 b23 1 (2,−1, 0)

x29 b24 − b36 1 (0, 1, 0)

x30 b25 1 (−2,−1, 0)

x31 b29 1 (2, 1, 0)

x32 b31 1 (−2, 1, 0)

x33 b2 + b70 0 (2, 0, 0)

x34 b3 0 (0, 2, 0)

x35 b5 0 (0, 0, 2)

x36 b7 + b65 0 (−2, 0, 0)

x37 b66 0 (0,−2, 0)

x38 b68 0 (0, 0,−2)

x39 b128 − b133 0 (0, 0, 0)

x40 b129 0 (0, 0, 0)

x41 b131 0 (0, 0, 0)

x42 b50 4 (0, 0, 0)

x43 b32 3 (0,−1, 0)

x44 b37 3 (0, 1, 0)

x45 b14 2 (−1, 0,−1)

x46 b20 2 (1, 0,−1)

x47 b21 2 (−1, 0, 1)

x48 b26 2 (1, 0, 1)

x49 b27 2 (0, 0, 0)

x50 b28 2 (0, 0, 0)

x51 b33 2 (2, 0, 0)

x52 b34 2 (−2, 0, 0)

x53 b1 1 (0,−1, 0)

x54 b4 1 (−1,−1,−1)

x55 b8 1 (0, 1, 0)

Continued on next page
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Table 6.23 – continued from previous page

ni βi

p

x56 b9 1 (1,−1,−1)

x57 b10 1 (−1, 1,−1)

x58 b11 1 (−1,−1, 1)

x59 b15 1 (1, 1,−1)

x60 b16 1 (1,−1, 1)

x61 b17 1 (−1, 1, 1)

x62 b18 1 (0,−1, 0)

x63 b22 1 (1, 1, 1)

x64 b24 1 (0, 1, 0)

x65 b2 0 (2, 0, 0)

x66 b6 0 (1, 0,−1)

x67 b7 0 (−2, 0, 0)

x68 b12 0 (1, 0, 1)

x69 b13 0 (−1, 0,−1)

x70 b19 0 (−1, 0, 1)

x71 b69 0 (−1, 0, 1)

x72 b75 0 (−1, 0,−1)

x73 b76 0 (1, 0, 1)

x74 b82 0 (1, 0,−1)

x75 b127 0 (0, 0, 0)

x76 b128 0 (0, 0, 0)

x77 b130 0 (0, 0, 0)

x78 b132 0 (0, 0, 0)

x79 b64 −1 (0, 1, 0)

x80 b67 −1 (1, 1, 1)

x81 b72 −1 (−1, 1, 1)

x82 b73 −1 (1,−1, 1)

x83 b74 −1 (1, 1,−1)

Continued on next page
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Table 6.23 – continued from previous page

ni βi

x84 b81 −1 (0, 1, 0)

x85 b88 −1 (2, 1, 0)

x86 b93 −1 (0, 1, 0)

x87 b94 −1 (2,−1, 0)

m

x88 b71 −1 (0,−1, 0)

x89 b78 −1 (−1,−1, 1)

x90 b79 −1 (−1, 1,−1)

x91 b80 −1 (1,−1,−1)

x92 b85 −1 (−1,−1,−1)

x93 b86 −1 (−2, 1, 0)

x94 b87 −1 (0,−1, 0)

x95 b92 −1 (−2,−1, 0)

x96 b99 −1 (0,−1, 0)

x97 b77 −2 (1, 0, 1)

x98 b83 −2 (−1, 0, 1)

x99 b84 −2 (1, 0,−1)

x100 b89 −2 (−1, 0,−1)

x101 b90 − b91 −2 (0, 0, 0)

x102 b91 − b102 −2 (0, 0, 0)

x103 b96 −2 (−2, 0, 0)

x104 b97 −2 (2, 0, 0)

x105 b98 −2 (−1, 0, 1)

x106 b102 − b112 −2 (0, 0, 0)

x107 b103 −2 (−1, 0,−1)

x108 b104 −2 (1, 0, 1)

x109 b108 −2 (1, 0,−1)

x110 3b90 + 4b91 + 3b102 + b112 −2 (0, 0, 0)

x111 b95 −3 (0, 1, 0)

Continued on next page
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Table 6.23 – continued from previous page

ni βi

m

x112 b100 −3 (0,−1, 0)

x113 b101 −3 (−1, 1, 1)

x114 b105 −3 (−1,−1, 1)

x115 b106 −3 (−1, 1,−1)

x116 b107 −3 (1, 1, 1)

x117 b109 −3 (−1,−1,−1)

x118 b110 −3 (1,−1, 1)

x119 b111 −3 (1, 1,−1)

x120 b114 −3 (1,−1,−1)

x121 b115 −3 (0, 1, 0)

x122 b118 −3 (0,−1, 0)

x123 b113 −4 (0, 0, 0)

x124 b116 −4 (−2, 0, 0)

x125 b117 −4 (2, 0, 0)

x126 b119 −4 (0, 0, 0)

x127 b120 −4 (1, 0, 1)

x128 b121 −4 (−1, 0, 1)

x129 b122 −4 (1, 0,−1)

x130 b123 −4 (−1, 0,−1)

x131 b124 −5 (0, 1, 0)

x132 b125 −5 (0,−1, 0)

x133 b126 −6 (0, 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F33,36, F34,37, F35,38, F28,32, F25,41, F25,39, F25,40,

F5,36, F25,26, F6,33, F21,24, F12,27, F4,25, F7,24, F11,12, F1,25, F2,12:
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[Θ35,Θ38] = −1 + Θ41

[Θ33,Θ36] = −3 + Θ39

[Θ34,Θ37] = −5
2

+ Θ40

[Θ28,Θ32] = −88 + 77Θ41 + 33Θ40 − 99
2

Θ39 −Θ26 − 11Θ2
41 − 11Θ40Θ41

+11Θ39Θ41 + 11Θ34Θ37 + 11
2

Θ33Θ36

[Θ25,Θ41] = 0

[Θ25,Θ39] = 0

[Θ25,Θ40] = 0

[Θ5,Θ36] = −63525
2

+ 8107Θ41 + 8107Θ40 − 484Θ39 + 198Θ26 − 187Θ25

−Θ4 − 484Θ2
41 − 1089Θ40Θ41 − 484Θ2

40 + 121Θ39Θ41

+121Θ35Θ38 + 121Θ34Θ37 − 3025Θ33Θ36 + 11Θ30Θ31

−11Θ28Θ32 − 22Θ26Θ41 − 22Θ26Θ40 + 22Θ25Θ41 + 22Θ25Θ40

+363Θ33Θ36Θ41 + 363Θ33Θ36Θ40

[Θ6,Θ33] = 12705
2
− 2057Θ41 − 2420Θ40 − 6292Θ39 + 165Θ26 − 154Θ25

−Θ4 + 242Θ2
41 + 363Θ40Θ41 + 242Θ2

40 + 2420Θ39Θ41

+2420Θ39Θ40 − 1936Θ2
39 + 121Θ35Θ38 + 121Θ34Θ37

+242Θ33Θ36 − 11Θ30Θ31 + 11Θ28Θ32 − 22Θ26Θ41 − 22Θ26Θ40

+11Θ26Θ39 + 22Θ25Θ41 + 22Θ25Θ40 − 11Θ25Θ39 − 242Θ39Θ2
41

−484Θ39Θ40Θ41 − 242Θ39Θ2
40 + 363Θ2

39Θ41 + 363Θ2
39Θ40

−121Θ3
39

[Θ21,Θ24] = −7381
2

+ 6655Θ41 + 3751Θ40 + 7381Θ39 − 99Θ26 + 143Θ25

+Θ4 − 1331Θ2
41 − 3146Θ40Θ41 − 484Θ2

40 − 1815Θ39Θ41

−2662Θ39Θ40 + 847Θ2
39 + 1210Θ35Θ38 − 121Θ34Θ37

+2662Θ33Θ36 − 11Θ30Θ31 + 11Θ28Θ32 − 11Θ26Θ41

+22Θ26Θ40 − 22Θ26Θ39 − 11Θ25Θ41 − 22Θ25Θ40 + 11Θ25Θ39

+363Θ40Θ2
41 + 242Θ2

40Θ41 + 121Θ39Θ2
41 + 363Θ39Θ40Θ41

+242Θ39Θ2
40 − 121Θ2

39Θ41 − 121Θ2
39Θ40 − 242Θ35Θ38Θ41
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−363Θ35Θ38Θ39 − 605Θ33Θ36Θ41 − 363Θ33Θ36Θ40

+121Θ33Θ36Θ39

[Θ12,Θ27] = 18029
4
− 19239Θ41 − 8591

2
Θ40 + 32065

4
Θ39 + 440Θ26 − 341

2
Θ25

−Θ4 + 10527
2

Θ2
41 + 6413Θ40Θ41 + 605Θ2

40 − 3267Θ39Θ41

−2178Θ39Θ40 + 363Θ2
39 + 121Θ35Θ38 − 5445

2
Θ34Θ37

−5324Θ33Θ36 + 11Θ30Θ31 + 11Θ28Θ32 + 11Θ27Θ29

−55Θ26Θ41 − 66Θ26Θ40 + 11Θ26Θ39 + 22Θ25Θ41 + 22Θ25Θ40

−11
2

Θ25Θ39 − 363Θ3
41 − 847Θ40Θ2

41

−484Θ2
40Θ41 + 605

2
Θ39Θ2

41 + 484Θ39Θ40Θ41 + 121Θ39Θ2
40

−121
2

Θ2
39Θ41 − 121

2
Θ2

39Θ40 + 363Θ34Θ37Θ41 + 484Θ34Θ37Θ40

−121
2

Θ34Θ37Θ39 + 726Θ33Θ36Θ41 + 968Θ33Θ36Θ40

−242Θ33Θ36Θ39

[Θ25,Θ26] = 0

[Θ7,Θ24] = −1004905
4
− 684134Θ41 − 464519

2
Θ40 − 511104Θ39 + 12947Θ26

−10527Θ25 + 22Θ4 + Θ1 + 287496Θ2
41 + 548372Θ40Θ41

+94501Θ2
40 + 98494Θ39Θ41 + 230263Θ39Θ40 − 91839

2
Θ2

39

−202312Θ35Θ38 + 9317
2

Θ34Θ37 − 516428Θ33Θ36 + 1210Θ30Θ31

−1573Θ28Θ32 − 363Θ26Θ41 − 5203Θ26Θ40 + 2420Θ26Θ39

−22Θ2
26 + 1694Θ25Θ41 + 3146Θ25Θ40 − 726Θ25Θ39

+11Θ25Θ26 + 11Θ22Θ23 + 11Θ21Θ24 + 11Θ5Θ36 − 27951Θ3
41

−139755Θ40Θ2
41 − 103818Θ2

40Θ41 − 7986Θ3
40 + 1331Θ39Θ2

41

−23958Θ39Θ40Θ41 − 41261Θ39Θ2
40 + 5324Θ2

39Θ41

+15972Θ2
39Θ40 + 83853Θ35Θ38Θ41 + 63888Θ35Θ38Θ40

+1331Θ35Θ38Θ39 − 2662Θ34Θ37Θ40 + 2662Θ34Θ37Θ39

+174361Θ33Θ36Θ41 + 159720Θ33Θ36Θ40 − 113135
2

Θ33Θ36Θ39

+121Θ31Θ32Θ37 − 363Θ30Θ31Θ41 − 121Θ30Θ31Θ40

+121Θ29Θ30Θ33 + 363Θ28Θ32Θ41 + 242Θ28Θ32Θ40



6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 148

−121Θ28Θ30Θ34 − 121Θ27Θ32Θ33 − 363Θ26Θ2
41

+242Θ26Θ40Θ41 + 484Θ26Θ2
40 − 121Θ26Θ39Θ41

−363Θ26Θ39Θ40 − 121Θ26Θ35Θ38 + 121Θ26Θ33Θ36

−242Θ25Θ40Θ41 − 242Θ25Θ2
40 + 121Θ25Θ39Θ40

−121Θ25Θ35Θ38 − 121Θ25Θ33Θ36 + 7986Θ40Θ3
41

+13310Θ2
40Θ2

41 + 5324Θ3
40Θ41 − 1331Θ39Θ40Θ2

41

+2662Θ39Θ2
40Θ41 + 2662Θ39Θ3

40 − 1331Θ2
39Θ40Θ41

−1331Θ2
39Θ2

40 − 7986Θ35Θ38Θ2
41 − 13310Θ35Θ38Θ40Θ41

−3993Θ35Θ38Θ2
40 + 1331Θ35Θ38Θ39Θ41 − 2662Θ35Θ38Θ39Θ40

+1331Θ35Θ38Θ2
39 + 3993Θ2

35Θ2
38 − 13310Θ33Θ36Θ2

41

−27951Θ33Θ36Θ40Θ41 − 11979Θ33Θ36Θ2
40

+9317Θ33Θ36Θ39Θ41 + 7986Θ33Θ36Θ39Θ40 − 1331Θ33Θ36Θ2
39

+10648Θ33Θ35Θ36Θ38

[Θ4,Θ25] = 0

[Θ11,Θ12] = 10763797
8

+ 2232087
2

Θ41 − 775973
4

Θ40 + 488477
4

Θ39 − 29403Θ26

+16335Θ25 − 77Θ4 − 2Θ1 − 1468093
2

Θ2
41 − 791945Θ40Θ41

−105149
2

Θ2
40 + 320771

2
Θ39Θ41 + 1331

4
Θ39Θ40 + 1331

4
Θ2

39

−57233Θ35Θ38 + 1497375
4

Θ34Θ37 + 795938Θ33Θ36

+1089Θ30Θ31 + 1089Θ28Θ32 − 847
2

Θ27Θ29 + 9075Θ26Θ41

+9075Θ26Θ40 − 1573Θ26Θ39 − 22Θ2
26 − 4477Θ25Θ41

−9801
2

Θ25Θ40 + 1331
2

Θ25Θ39 + 22Θ25Θ26 − 11
2

Θ2
25 − 11Θ12Θ27

−22Θ11Θ29 + 119790Θ3
41 + 531069

2
Θ40Θ2

41 + 149072Θ2
40Θ41

+7986Θ3
40 − 107811

2
Θ39Θ2

41 − 61226Θ39Θ40Θ41 − 3993Θ39Θ2
40

+9317
2

Θ2
39Θ41 + 7986Θ35Θ38Θ41 + 7986Θ35Θ38Θ40

−2662Θ35Θ38Θ39 − 159720Θ34Θ37Θ41 − 130438Θ34Θ37Θ40

+59895
2

Θ34Θ37Θ39 − 287496Θ33Θ36Θ41 − 258214Θ33Θ36Θ40

+95832Θ33Θ36Θ39 − 484Θ31Θ32Θ37 − 242Θ30Θ31Θ40
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−242Θ28Θ32Θ40 + 484Θ28Θ30Θ34 − 726Θ26Θ2
41

−1210Θ26Θ40Θ41 − 726Θ26Θ2
40 + 242Θ26Θ39Θ41

+121Θ26Θ39Θ40 − 726Θ26Θ34Θ37 + 363Θ25Θ2
41

+605Θ25Θ40Θ41 + 363Θ25Θ2
40 − 121Θ25Θ39Θ41

−121
2

Θ25Θ39Θ40 + 363Θ25Θ34Θ37 − 11979
2

Θ4
41 − 19965Θ40Θ3

41

−22627Θ2
40Θ2

41 − 7986Θ3
40Θ41 + 3993Θ39Θ3

41 + 17303
2

Θ39Θ40Θ2
41

+5324Θ39Θ2
40Θ41 − 1331

2
Θ2

39Θ2
41 − 1331

2
Θ2

39Θ40Θ41

+11979Θ34Θ37Θ2
41 + 27951Θ34Θ37Θ40Θ41

+11979Θ34Θ37Θ2
40 − 3993Θ34Θ37Θ39Θ41

−11979
2

Θ34Θ37Θ39Θ40 + 1331
2

Θ34Θ37Θ2
39 − 11979

2
Θ2

34Θ2
37

+23958Θ33Θ36Θ2
41 + 47916Θ33Θ36Θ40Θ41 + 21296Θ33Θ36Θ2

40

−15972Θ33Θ36Θ39Θ41 − 15972Θ33Θ36Θ39Θ40

+2662Θ33Θ36Θ2
39 − 10648Θ33Θ34Θ36Θ37

[Θ2,Θ12] = 1289096127
8

+ 1189625173
8

Θ41 − 131080873
4

Θ40 + 138957731
4

Θ39

−13436445
4

Θ26 + 8519731
4

Θ25 − 52393
4

Θ4 − 308Θ1 − 467853155
4

Θ2
41

−500444021
4

Θ40Θ41 − 5739272Θ2
40 + 48037121

4
Θ39Θ41

−42092875
4

Θ39Θ40 + 29852999
4

Θ2
39 − 35943655

4
Θ35Θ38

+219951743
4

Θ34Θ37 + 370402659
4

Θ33Θ36 − 656183
4

Θ30Θ31

−326095
4

Θ28Θ32 + 41261
2

Θ27Θ29 + 4327081
4

Θ26Θ41 + 2040423
2

Θ26Θ40

−581647
2

Θ26Θ39 + 363Θ2
26 − 2796431

4
Θ25Θ41 − 630894Θ25Θ40

+328757
2

Θ25Θ39 − 363
2

Θ25Θ26 + 6171
2

Θ22Θ23 − 2904Θ21Θ24

−11Θ16Θ17 − 11Θ15Θ18 + 11Θ14Θ19 + 11Θ13Θ20 − 242Θ12Θ27

−605Θ11Θ29 − 22Θ11Θ12 + 11Θ10Θ21 + 11Θ9Θ22 − 11Θ8Θ23

−11Θ7Θ24 + 2420Θ6Θ33 + 2541Θ5Θ36 + 5203
2

Θ4Θ41

+8107
2

Θ4Θ40 − 363Θ4Θ39 − 11Θ4Θ26 + 11
2

Θ4Θ25 − 22Θ2Θ29

+44Θ1Θ41 + 44Θ1Θ40 − 11Θ1Θ39 + 25285007Θ3
41

+220420255
4

Θ40Θ2
41 + 30863228Θ2

40Θ41 + 1654433Θ3
40



6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 150

−7803653Θ39Θ2
41 − 14187129

2
Θ39Θ40Θ41 + 1024870Θ39Θ2

40

−7627961
4

Θ2
39Θ41 − 5021863

2
Θ2

39Θ40 + 644204Θ3
39

+4348377
2

Θ35Θ38Θ41 + 5578221
2

Θ35Θ38Θ40 − 1288408Θ35Θ38Θ39

−115327157
4

Θ34Θ37Θ41 − 25167879Θ34Θ37Θ40

+10087649
2

Θ34Θ37Θ39 − 43644821Θ33Θ36Θ41

−77143429
2

Θ33Θ36Θ40 + 41975747
4

Θ33Θ36Θ39 − 79860Θ31Θ32Θ37

+155727
2

Θ30Θ31Θ41 + 105149
2

Θ30Θ31Θ40 − 17303Θ30Θ31Θ39

−3993
2

Θ29Θ30Θ33 + 1331Θ2
29Θ37 + 126445

2
Θ28Θ32Θ41

+75867
2

Θ28Θ32Θ40 − 38599Θ28Θ32Θ39 + 27951Θ28Θ30Θ34

+3993
2

Θ28Θ29Θ36 + 23958Θ27Θ32Θ33 − 25289Θ27Θ31Θ36

−14641
2

Θ27Θ29Θ41 − 7986Θ27Θ29Θ40 + 1331Θ27Θ29Θ39

+3993
2

Θ2
27Θ34 − 103818Θ26Θ2

41 − 302137
2

Θ26Θ40Θ41

−78529Θ26Θ2
40 + 99825

2
Θ26Θ39Θ41 + 89177

2
Θ26Θ39Θ40

−7986Θ26Θ2
39 − 2662Θ26Θ35Θ38 − 278179

2
Θ26Θ34Θ37

−65219Θ26Θ33Θ36 + 363Θ26Θ30Θ31 + 363Θ26Θ28Θ32

−121Θ2
26Θ41 + 142417

2
Θ25Θ2

41 + 110473Θ25Θ40Θ41

+46585Θ25Θ2
40 − 29282Θ25Θ39Θ41 − 25289Θ25Θ39Θ40

+3993Θ25Θ2
39 − 3993

2
Θ25Θ35Θ38 + 91839

2
Θ25Θ34Θ37

+3993Θ25Θ33Θ36 − 363
2

Θ25Θ30Θ31 − 363
2

Θ25Θ28Θ32 + 121
2

Θ25Θ26Θ41

−363Θ22Θ23Θ41 − 484Θ22Θ23Θ40 + 121Θ22Θ23Θ39 + 363Θ21Θ24Θ41

+484Θ21Θ24Θ40 − 121Θ21Θ24Θ39 − 121Θ12Θ30Θ33 + 121Θ12Θ28Θ36

−121Θ12Θ27Θ41 − 121Θ12Θ27Θ40 − 363Θ6Θ33Θ41 − 484Θ6Θ33Θ40

+121Θ6Θ33Θ39 − 363Θ5Θ36Θ41 − 484Θ5Θ36Θ40 + 121Θ5Θ36Θ39

−363
2

Θ4Θ2
41 − 484Θ4Θ40Θ41 − 363Θ4Θ2

40 + 121
2

Θ4Θ39Θ41

+121
2

Θ4Θ39Θ40 − 363
2

Θ4Θ34Θ37 − 2196150Θ4
41 − 7159449Θ40Θ3

41

−15680511
2

Θ2
40Θ2

41 − 2884277Θ3
40Θ41 − 87846Θ4

40 + 1083434Θ39Θ3
41

+4436223
2

Θ39Θ40Θ2
41 + 2298637

2
Θ39Θ2

40Θ41 − 43923Θ39Θ3
40 + 58564Θ2

39Θ2
41
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+600281
2

Θ2
39Θ40Θ41 + 219615Θ2

39Θ2
40 − 102487Θ3

39Θ41 − 117128Θ3
39Θ40

+14641Θ4
39 − 248897

2
Θ35Θ38Θ2

41 − 322102Θ35Θ38Θ40Θ41

−204974Θ35Θ38Θ2
40 + 278179

2
Θ35Θ38Θ39Θ41 + 336743

2
Θ35Θ38Θ39Θ40

−29282Θ35Θ38Θ2
39 + 73205Θ2

35Θ2
38 + 8360011

2
Θ34Θ37Θ2

41

+8389293Θ34Θ37Θ40Θ41 + 3718814Θ34Θ37Θ2
40 − 2679303

2
Θ34Θ37Θ39Θ41

−3089251
2

Θ34Θ37Θ39Θ40 + 87846Θ34Θ37Θ2
39 − 131769

2
Θ34Θ35Θ37Θ38

−1595869
2

Θ2
34Θ2

37 + 6149220Θ33Θ36Θ2
41 + 11756723Θ33Θ36Θ40Θ41

+5285401Θ33Θ36Θ2
40 − 2884277Θ33Θ36Θ39Θ41 − 2767149Θ33Θ36Θ39Θ40

+278179Θ33Θ36Θ2
39 + 117128Θ33Θ35Θ36Θ38 − 1200562Θ33Θ34Θ36Θ37

+10648Θ31Θ32Θ37Θ41 + 10648Θ31Θ32Θ37Θ40 − 2662Θ31Θ32Θ37Θ39

−11979
2

Θ30Θ31Θ2
41 − 10648Θ30Θ31Θ40Θ41 − 3993Θ30Θ31Θ2

40

+3993
2

Θ30Θ31Θ39Θ41 + 3993
2

Θ30Θ31Θ39Θ40 + 1331
2

Θ30Θ31Θ34Θ37

−11979
2

Θ28Θ32Θ2
41 − 10648Θ28Θ32Θ40Θ41 − 3993Θ28Θ32Θ2

40

+11979
2

Θ28Θ32Θ39Θ41 + 14641
2

Θ28Θ32Θ39Θ40 − 1331Θ28Θ32Θ2
39

+1331
2

Θ28Θ32Θ34Θ37 − 2662Θ28Θ30Θ34Θ41 − 2662Θ28Θ30Θ34Θ40

−1331Θ28Θ30Θ34Θ39 − 3993Θ27Θ32Θ33Θ41 − 5324Θ27Θ32Θ33Θ40

+1331Θ27Θ32Θ33Θ39 + 3993Θ27Θ31Θ36Θ41 + 5324Θ27Θ31Θ36Θ40

−1331Θ27Θ31Θ36Θ39 + 2662Θ27Θ30Θ33Θ34 − 2662Θ27Θ28Θ34Θ36

+3993
2

Θ26Θ3
41 + 1331Θ26Θ40Θ2

41 − 1331Θ26Θ2
40Θ41 − 1331

2
Θ26Θ39Θ2

41

−1331
2

Θ26Θ39Θ40Θ41 + 35937
2

Θ26Θ34Θ37Θ41 + 18634Θ26Θ34Θ37Θ40

−3993Θ26Θ34Θ37Θ39 + 7986Θ26Θ33Θ36Θ41 + 10648Θ26Θ33Θ36Θ40

−2662Θ26Θ33Θ36Θ39 − 3993
2

Θ25Θ3
41 − 6655

2
Θ25Θ40Θ2

41 − 1331Θ25Θ2
40Θ41

+1331
2

Θ25Θ39Θ2
41 + 1331

2
Θ25Θ39Θ40Θ41 − 11979

2
Θ25Θ34Θ37Θ41

−5324Θ25Θ34Θ37Θ40 + 1331Θ25Θ34Θ37Θ39 + 131769
2

Θ5
41

+570999
2

Θ40Θ4
41 + 468512Θ2

40Θ3
41 + 336743Θ3

40Θ2
41

+87846Θ4
40Θ41 − 43923Θ39Θ4

41 − 278179
2

Θ39Θ40Θ3
41

−307461
2

Θ39Θ2
40Θ2

41 − 58564Θ39Θ3
40Θ41 + 14641

2
Θ2

39Θ3
41



6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 152

+14641Θ2
39Θ40Θ2

41 + 14641
2

Θ2
39Θ2

40Θ41 − 175692Θ34Θ37Θ3
41

−1185921
2

Θ34Θ37Θ40Θ2
41 − 585640Θ34Θ37Θ2

40Θ41

−175692Θ34Θ37Θ3
40 + 73205Θ34Θ37Θ39Θ2

41

+204974Θ34Θ37Θ39Θ40Θ41 + 117128Θ34Θ37Θ39Θ2
40

−14641
2

Θ34Θ37Θ2
39Θ41 − 14641Θ34Θ37Θ2

39Θ40

+219615
2

Θ2
34Θ2

37Θ41 + 87846Θ2
34Θ2

37Θ40 − 29282Θ2
34Θ2

37Θ39

−263538Θ33Θ36Θ3
41 − 790614Θ33Θ36Θ40Θ2

41

−761332Θ33Θ36Θ2
40Θ41 − 234256Θ33Θ36Θ3

40

+175692Θ33Θ36Θ39Θ2
41 + 351384Θ33Θ36Θ39Θ40Θ41

+175692Θ33Θ36Θ39Θ2
40 − 29282Θ33Θ36Θ2

39Θ41

−29282Θ33Θ36Θ2
39Θ40 + 146410Θ33Θ34Θ36Θ37Θ41

+117128Θ33Θ34Θ36Θ37Θ40 − 29282Θ33Θ34Θ36Θ37Θ39

[Θ1,Θ25] = 14641
4
− 102487

2
Θ41 + 102487

2
Θ39 + 1331

2
Θ26 + 14641

2
Θ2

41

+14641
2

Θ40Θ41 − 14641
2

Θ39Θ41 − 14641
2

Θ39Θ40 − 14641
2

Θ34Θ37

−14641
4

Θ33Θ36 + 1331
2

Θ30Θ31 + 1331
2

Θ28Θ32 − 1331
2

Θ31Θ32Θ37

−1331
2

Θ28Θ30Θ34.

We have two 1-dimensional representations:

Θ1 7→ −756008

Θ4 7→ 16214

Θ25 7→ −671
2

Θ26 7→ −165
2

Θ39 7→ 3

Θ40 7→ 5
2

Θ41 7→ 1,
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and

Θ1 7→ −3531143
4

Θ4 7→ 18029

Θ25 7→ −352

Θ26 7→ −165
2

Θ39 7→ 3

Θ40 7→ 5
2

Θ41 7→ 1,

with all other generators Θi 7→ 0 for each of these. We know that we cannot

define U(gk, ek) for k of characteristic 2, 3 or 11, but without a presentation

we cannot establish that these are the only primes which have to be excluded

for the definition of U(gk, ek).

6.5 Type E8

Due to computational limits, it has not been feasible to carry out the calcu-

lations above for each of the 17 non-zero rigid nilpotent orbits when g is of

type E8, so we summarize the results obtained for the 14 accessible orbits.

Table 6.24: Results for type E8.

Dynkin # 1-dim

Orbit diagram κ(e, f) dim(ge) dim(te) reps

A1 0 60 190 7 1

0 0 0 0 0 0 1

Continued on next page
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Table 6.24 – continued from previous page

Dynkin # 1-dim

Orbit diagram κ(e, f) dim(ge) dim(te) reps

2A1 0 120 156 6 1

1 0 0 0 0 0 0

3A1 0 180 136 5 1

0 0 0 0 0 1 0

4A1 1 240 120 4 1

0 0 0 0 0 0 0

A2 + A1 0 300 112 5 1

1 0 0 0 0 0 1

A2 + 2A1 0 360 102 4 1

0 0 0 0 1 0 0

A2 + 3A1 0 420 94 3 1

0 1 0 0 0 0 0

2A2 + A1 0 540 86 3 1

1 0 0 0 0 1 0

A3 + A1 0 660 84 4 2

0 0 0 0 1 0 1

2A2 + 2A1 0 600 80 2 1

0 0 0 1 0 0 0

A3 + 2A1 0 720 76 3 1

0 1 0 0 0 0 1

D4(a1) + A1 1 780 72 2 1

0 0 0 0 0 1 0

A3 + A2 + A1 0 900 66 2 1

0 0 1 0 0 0 0

2A3 0 1200 60 2 1

1 0 0 1 0 0 0
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The 3 remaining orbits offer such computational difficulties largely due to the

heights of A4 +A3, D5(a1) +A2 and A5 +A1 being 9, 10 and 10 respectively.

6.6 The number of 1-dimensional representa-

tions

From the above tables we see that for rigid e in exceptional g (except possibly

for type E8 with e lying in one of the 3 remaining orbits), U(g, e) admits 1

or 2 1-dimensional representations. A common feature of each of the orbits

for which there is precisely one 1-dimensional representation is that we can

choose a generating set of ge from the adh weight spaces g(0) and g(1); in

the (so far, 4) cases where there are two 1-dimensional representations any

generating set of ge must contain an element of g(3).

Of the remaining E8 orbits, we can choose generating sets for ge as follows:

for e in the orbit A4 +A3 we have that ge is generated by g(0)∪ g(1); for e in

the orbit D5(a1)+A2 we have that ge is generated by g(0)∪g(1)∪g(2)∪g(3);

and for e in the orbit A5 + A1 we have that ge is generated by ∪4
i=0g(i).

It seems likely that we will find that in these cases there is more than one

1-dimensional representation.



Appendix A

Finding an sl2-triple from a

weighted Dynkin diagram using

GAP4

For a simple Lie algebra L (with Chevalley basis b), GAP4 gives a correspond-

ing root system, a set of positive roots, and the associated Cartan matrix.

The following procedure takes this data, together with a weighted Dynkin

diagram corresponding to a nilpotent orbit in L, and returns a list [e, h, f ]

such that these elements of L nontrivially satisfy the sl2 relations, where the

coefficients are integers and the number of basis elements whose sum is e is

minimal. If no such triple exists (i.e. the weighted Dynkin diagram does not

correspond to a nilpotent orbit), the procedure returns "fail".

The function Sl2h(WDD) returns the semisimple element of the desired

sl2-triple by solving a set of linear equations involving the Cartan matrix and

the weighted Dynkin diagram WDD. The function EValue(h,y) returns the

adh eigenvalue of an element y in L; if y is not an eigenvector for adh the

function returns "fail". The function ESpace(h,u) returns the list of basis

elements of L whose adh eigenvalue is u.

156
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L:=SimpleLieAlgebra("type", rank, field);

b:=Basis(L);

n:=Dimension(L);

RSL:=RootSystem(L);

RSLpos:=PositiveRoots(RSL);

C:=CartanMatrix(RSL);

RankL:=Length(C);

Sl2h:=function(WDD)

local CT, v, w, i;

CT:=TransposedMat(C);

v:=SolutionMat(CT,WDD);

w:=List([1..RankL],i->b[2*Length(RSLpos)+i]);

return v*w;

end;;

EValue:=function(h,y)

local yx, a;

yx:=ExtRepOfObj(y);

a:=ExtRepOfObj(h*y);

if a in VectorSpace(Rationals,[yx]) then

return SolutionMat([yx],a)[1];

else return "fail";

fi;

end;;

ESpace:=function(h,u)

local i;

return Filtered(b,i->EValue(h,i)=u);

end;;
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GetSl2:=function(WDD)

local h, A, CA, B, CB, i, U, V, M, j, N, P, e, M1, f, v;

h:=Sl2h(WDD);

A:=ESpace(h,2);

CA:=Combinations(A);

Sort(CA,function(v,w) return Length(v)<=Length(w); end);

CB:=List(CA,i->List(Positions(ExtRepOfObj(Sum(i)),1)

+(n-RankL)/2,j->b[j]));

for i in [2..Length(CA)] do

U:=CA[i];

V:=CB[i];

M:=NullMat(Length(U),Length(V));

for i in [1..Length(U)] do

for j in [1..Length(V)] do

M[i][j]:=U[i]*V[j];

od;

od;

N:=TransposedMat(M);

P:=List(N,i->Sum(i));

if h in VectorSpace(Rationals,P) then

e:=Sum(U);

M1:=List(V,j->ExtRepOfObj(e*j));

v:=SolutionMat(M1,ExtRepOfObj(h));

if ForAll(v,k->k in Integers) then

f:=v*V;

return [e,h,f];

fi;

fi;

od;

return "fail";

end;;



Appendix B

A GAP4 procedure for creating

a new basis for a Lie algebra

Our purpose is to specify a basis for our Lie algebra g according to the

requirements of Section 3.2. The input is the simple Lie algebra L (and n

is defined to be the dimension of L) and a list c of n elements in terms of the

inbuilt Chevalley basis corresponding to the new ordered basis of g.

This is carried out by means of a table TSC of structure constants. We

also create the following: the associated universal enveloping algebra Ug; the

set of n PBW generators x of Ug corresponding to the ordered basis c of g;

and a polynomial ring R on the set r of n indeterminates. We declare famUg

and famR to be the respective families of objects containing the elements of

Ug and R.

NewSCTable:=function(c)

local C, Y, R, TSC, M, N, i, j, k, A, u, V;

C:=NullMat(n,n);

Y:=[];

V:=[];

TSC:=EmptySCTable(n,0,"antisymmetric");

M:=List(c,i->ExtRepOfObj(i));

N:=Inverse(M);
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for j in [1..Length(c)] do

for k in [j..n] do

C[j][k]:=c[j]*c[k];

od;

od;

for i in [1..n] do

for j in [i+1..n] do

if not c[i]*c[j]=Zero(L) then

u:=ExtRepOfObj(c[i]*c[j]);

A:=u*N;

for k in [1..n] do

V[2*k]:=k;

V[2*k-1]:=A[k];

SetEntrySCTable(TSC, i, j, V);

od;

fi;

od;

od;

return TSC;

end;;

TSC:=NewSCTable(c);

g:=LieAlgebraByStructureConstants(Rationals,TSC);

c:=Basis(g);

n:=Length(c);

Ug:=UniversalEnvelopingAlgebra(g);

x:=GeneratorsOfAlgebraWithOne(Ug);

famUg:=FamilyObj(One(Ug));

R:=PolynomialRing(Rationals,n);

r:=IndeterminatesOfPolynomialRing(R);

famR:=FamilyObj(One(R));



Appendix C

Calculating in U(g, e) using

GAP4

We have elements e, h and f as elements of g. Elements of U(g, e) are

stored in GAP4 as elements of the polynomial ring R. Addition and scalar

multiplication are carried out in R. The associative multiplication operation

in U(g, e) on two elements is carried out by the function Mult(y,z), which

converts each argument into a list of monomials in Ug (using the function

MonomialList), then takes the sum of the term by term products in Ug,

and factors out the left ideal Iχ by evaluating each basis element of m at χ

(the function InQ(y)). The function MultList carries out the multiplication

operation on a list of elements of U(g, e). The function Com(y,z) returns

the commutator of two elements in U(g, e) by similar means. The function

Kdeg(y) returns the Kazhdan degree of an element y of Ug.

d:=Dimension(Centralizer(g,e));

q:=1/2*(n+d);

mBasis:=[q+1..n];

hDeg:=List([1..n],i->EValue(h,c[i]));

Kappa_ef:=Trace(AdjointMatrix(c,e)*AdjointMatrix(c,f));

chi:=List(mBasis,i->1/Kappa_ef*

Trace(AdjointMatrix(c,e)*AdjointMatrix(c,c[i])));
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CSA:=Filtered([1..n],i->h*c[i]=0*c[i] and

e*c[i]=0*c[i] and

ForAll(c,j->c[i]*j in VectorSpace(Rationals,[j])));

CSA_R:=List(CSA,i->r[i]);

InQ:=function(y)

local i;

return Value(y,List(mBasis,i->r[i]),chi)*One(R);

end;;

MonomialList:=function(y)

local yx, i;

yx:=ExtRepPolynomialRatFun(y);

return List([1..Length(yx)/2],i->

[ObjByExtRep(famUg,[0,[yx[2*i-1],yx[2*i]]])]);

end;;

Mult:=function(y,z)

local u, yList, zList, i, j, v;

u:=Zero(R);

yList:=MonomialList(y);

zList:=MonomialList(z);

for i in [1..Length(yList)] do

v:=[];

for j in [1..Length(zList)] do

v[j]:=PolynomialByExtRep(famR,

ExtRepOfObj(yList[i]*zList[j])[2]);

od;

u:=u+Sum(v);

od;

return InQ(u);
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end;;

MultList:=function(Y)

local a, i ;

a:=One(R);

for i in [1..Length(Y)] do

a:=Mult(a,Y[i]);

od;

return a;

end;;

Com:=function(y,z)

local u, yList, zList, i, j, v;

u:=Zero(R);

yList:=MonomialList(y);

zList:=MonomialList(z);

for i in [1..Length(yList)] do

v:=[];

for j in [1..Length(zList)] do

v[j]:=PolynomialByExtRep(famR,

ExtRepOfObj(yList[i]*zList[j]-zList[j]*yList[i])[2]);

od;

u:=u+InQ(Sum(v));

od;

return u;

end;;

KList:=function(Y)

local i, u;

u:=0;

for i in [1..Length(Y)/2] do
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u:=u+(hDeg[Y[2*i-1]]+2)*Y[2*i];

od;

return u;

end;;

KDeg:=function(y)

local i, yx, pxf;

if y = Zero(R) then

return 0;

else yx:=ExtRepPolynomialRatFun(y);

return Maximum(List(Filtered(yx,i->IsList(i)),j->KList(j)));

fi;

end;;

Weight:=function(A,y)

local w, i;

w:=[];

for i in [1..Length(A)] do

if Com(A[i],y)=Zero(R) then

w[i]:=0;

elif Com(A[i],y) in VectorSpace(Rationals,[y]) then

w[i]:=ExtRepPolynomialRatFun(Com(A[i],y))[2]/

ExtRepPolynomialRatFun(y)[2];

else return "fail";

fi;

od;

return w;

end;;
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Finding generators of U(g, e)

using GAP4

The following is to give the generators of U(g, e) in accordance with Section

3.2. We have a list mGens whose elements are the indices of a set of genera-

tors of m. The first stage is to list all monomials which may appear in the

generators along with their Kazhdan degrees and te-weights. This is given

by the function GetBigList(y) where the argument y gives an upper bound

on the Kazhdan degree. We then set the variable BigList to be this list for

some choice of bound y. The function MonList(y) then filters this list to

include only those monomials which may have a non-zero coefficient in the

expression for the generator with leading term y.

The function GetGen(z) finds the coefficients for the monomials found by

MonList(r[z]). For this we create a polynomial ring S over the rationals

with the number of indeterminates equal to the number of monomials in the

list D:=MonList(r[z]) for which we need the coefficient. We then create a

polynomial ring Q over S with n indeterminates. Taking the commutators of

each generator of m (the list mGens) with each monomial (in the list D), we

get a list of elements of the iterated polynomial ring Q. For each monomial in

D (and also the constants) we take the sum of the coefficients (elements of the

polynomial ring S). Thus each element of the list D gives a linear polynomial
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in S. Setting the leading coefficient to be 1 (that is, evaluating at S.1=One(S))

and triangulizing the matrix of coefficients of polynomials (which has rank

Length(D)-1) gives a list of coefficients for the required generator Θz.

HighIndex:=function(y)

local yx, u, i;

yx:=ExtRepPolynomialRatFun(y);

u:=Filtered(yx,i->IsList(i) and not i=[]);

if u=[] then

return 0;

else

return Maximum(List(u,i->i[Length(i)-1]));

fi;

end;;

GetBigList:=function(y)

local U, u, B, C, A, v, i, j;

U:=PolynomialRing(Rationals,q);

u:=IndeterminatesOfPolynomialRing(U);

B:=List([1..q],i->u[i]);

C:=List([1..q],i->List([i..q],j->u[j]));

A:=[B];

v:=-1+y/Minimum(Filtered(hDeg,i-> i>0));

for i in [1..v] do

A[i+1]:=[];

for j in [1..Length(A[i])] do

Append(A[i+1],A[i][j]*Filtered(C[HighIndex(A[i][j])],

k->KDeg(k)<=y-KDeg(A[i][j])));

od;

od;

return(List(Flat(A),i->[i,Weight(CSA_R,i),KDeg(i)]));

end;;
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BigList:=GetBigList(y);

MonList:=function(y)

local A, i, w, v, B;

w:=Weight(CSA_R,y);

v:=Weight([r*ExtRepOfObj(h)],y)[1];

A:=Filtered(BigList,i->i[2]=w and i[3]<=v+2);

B:=List(A,i->[ExtRepPolynomialRatFun(i[1]),i[2],i[3]]);

B:=Filtered(B,i->PolynomialByExtRep(famR,i[1])=y

or (i[1][1][Length(i[1][1])-1]>d

and not (Length(i[1][1])=2

and i[1][1][2]=1 and i[3]=v+2)));

return List(B,i->PolynomialByExtRep(famR,i[1]));

end;;

ITER_POLY_WARN:=false;

GetGen:=function(z)

local D, LD, S, famS, Q, famQ, F, i, j, k, a, w, wx, A, U, V,

M, gen, v;

D:=MonList(r[z]);

LD:=Length(D);

A:=[];

if LD=1 then

return r[z];

else

S:=PolynomialRing(Rationals,LD);

famS:=FamilyObj(One(S));

Q:=PolynomialRing(S,n);

famQ:=FamilyObj(One(Q));

F:=List(mBasis,i->PolynomialByExtRep(famQ,[[i,1],One(S)]));
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for i in mGens do

U:=Zero(Q);

for j in [1..LD] do

a:=ExtRepPolynomialRatFun(Com(r[i],D[j]));

a:=List(a,i->i);

for k in [2,4..Length(a)] do

a[k]:=One(S)*a[k];

od;

U:=U+PolynomialByExtRep(famQ,a)*PolynomialByExtRep

(famS,[[j,1],1]);

od;

w:=Value(U,F,One(Q)*chi);

wx:=ExtRepPolynomialRatFun(w);

for k in [2,4..Length(wx)] do

Add(A,Value(wx[k],[S.1],[One(S)]));

od;

od;

V:=List(A,i->ExtRepPolynomialRatFun(i));

M:=NullMat(Length(V),LD);

gen:=D[1];

for i in [1..Length(V)] do

for j in [2,4..Length(V[i])] do

if V[i][j-1]=[] then

M[i][LD]:=-V[i][j];

else M[i][V[i][j-1][1]-1]:=V[i][j];

fi;

od;

od;

TriangulizeMat(M);

v:=List(M,i->i[Length(i)]);

for i in [2..LD] do
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gen:=gen+v[i-1]*D[i];

od;

return gen;

fi;

end;;



Appendix E

Finding relations for U(g, e)

using GAP4

We have a list t giving generators Θ1, . . . ,Θd of generators of U(g, e), stored as

elements of the polynomial ring R. The following procedure takes 2 generators

Θy and Θz and returns a polynomial Fyz such that [Θy,Θz] = Fyz(Θ1, . . . ,Θd).

The function PolyCalc(p) takes a polynomial in R and returns that poly-

nomial evaluated at the generators of U(g, e). The function InCent(p) takes

an element p of U(g) and returns the image of p under the projection into

U(ge), along with the terms whose sum is that polynomial, and the Kazhdan

degrees of those terms. The function GetRel(p) takes an element p of U(g, e)

where p is obtained by taking the commutator of two of the generators, say

t[y] and t[z], and returns the desired polynomial Fyz.

PolyCalc:=function(p)

local px, u, i, j, k, a, A;

px:=ExtRepPolynomialRatFun(p);

u:=List([1..Length(px)/2],i->[px[2*i-1],px[2*i]]);

a:=Zero(R);

for i in [1..Length(u)] do

A:=[];

for j in [1..Length(u[i][1])/2] do
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for k in [1..u[i][1][2*j]] do

Add(A,t[u[i][1][2*j-1]]);

od;

od;

a:=a+u[i][2]*MultList(A);

od;

return a;

end;;

InCent:=function(p)

local u, i, v, pc, a, ax, Q, QK;

u:=List([d+1..n],i->r[i]);

v:=List(u,i->0);

if not p=Zero(R) then

a:=Value(p,u,v)*One(R);

ax:=ExtRepPolynomialRatFun(a);

Q:=List([1..Length(ax)/2],i->PolynomialByExtRep

(famR,[ax[2*i-1],ax[2*i]]));

QK:=List(Q,i->KDeg(i));

return [a,Q,QK];

fi;

return [p,[p],[0]];

end;;

GetRel:=function(p)

local U, pc, a, i, A;

U:=[];

if InQ(p)=Zero(R) then

return Zero(R);

else

while not p=Zero(R) do
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pc:=InCent(p);

a:=Maximum(pc[3]);

A:=Filtered(pc[2],i->KDeg(i)=a);

Append(U,A);

p:=p-PolyCalc(Sum(A));

od;

return Sum(U);

fi;

end;;



Appendix F

Sample code for type G2,

orbit Ã1

Here we show how the above procedures are used in order to obtain a pre-

sentation of the finite W -algebra U(g, e) associated to some element e in the

nilpotent orbit Ã1 of the complex simple Lie algebra of type G2.

We first construct our Lie algebra and its Chevalley basis, and specify the

ordered list of weights for the Dynkin diagram for the orbit in question:

L:=SimpleLieAlgebra("G",2,Rationals);

b:=Basis(L);

n:=Dimension(L);

WDD:=[1,0];

We read the content of Appendix A and find our sl2-triple e = b4, h =

2b13 + 3b14, f = b10:

sl2:=GetSl2([1,0]);

e:=sl2[1];

h:=sl2[2];

f:=sl2[3];

We give a new ordered basis for our Lie algebra:
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c:=[b[6],b[5],b[4],b[2],b[8],b[14],

b[1],b[3],b[13],b[9],

b[7],b[10],b[11],b[12]];

We read the content of Appendix B and define our sl2-triple in terms of the

new basis:

e:=c[3];

f:=c[12];

h:=e*f;

We read the content of Appendix C. We find a generating set for the subal-

gebra m - the set {c11, c12, c14} is minimal - and list the indices:

mGens:=[11, 12, 14];

We read the content of Appendix D up to the function GetBigList(y), and

we note that the highest Kazhdan degree of a generator is 5 (for Θ1 and Θ2), so

we set y:=5, evaluate BigList:=GetBigList(y) and read Appendix D from

the definition of the function MonList on. We calculate the 6 generators:

t:=List([1..d],i->GetGen(i));

We read the content of Appendix E and calculate all relations, stored as

polynomials in the matrix Rels:

Rels:=NullMat(d,d);

for i in [1..d] do

for j in [1..d] do

Rels[i][j]:=GetRel(Com(t[i],t[j]));

od;

od;
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