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by Glenn Ubly

Let g be a simple complex Lie algebra and let e be a nilpotent element of g. It
was conjectured by Premet in [P07i] that the finite W-algebra U(g, e) admits
a l-dimensional representation, and further work [L.10, P08] has reduced this
conjecture to the case where g is of exceptional type and e lies in a rigid
nilpotent orbit in g. Using the PBW-theorem for U(g, e) we give an algorithm
for determining a presentation for U(g, e) which allows us to determine the
1-dimensional representations for U(g,e). Implementing this algorithm in
GAP4 we verify the conjecture in the case that g is of type Ga, Fy or Fj.
Using a result of Premet in [P08], we can use these results to deduce that
reduced enveloping algebras of those types admit representations of minimal
dimension, and using the explicit presentations we can determine for which
characteristics this will hold. Further, we show that we can determine the
1-dimensional representations of U(g,e) from a smaller set of relations than
is required for a presentation. From calculating these sets of relations, we
show that in the case that g is of type E7 and e lies in any rigid nilpotent
orbit, or in the case that g is of type Es and e lies in one of 14 (out of 17)

rigid nilpotent orbits, that U(g, e) admits a 1-dimensional representation.
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Introduction

The study of finite WW-algebras begins in [DT93], and the definition used here
was first used by Premet in [P02]. For a complex semisimple Lie algebra g
with nilpotent element e, we associate the finite W-algebra U(g, €), an infinite
dimensional associative algebra. There has been a great deal of recent interest
in the representation theory of finite W-algebras. It was proved in [P07ii] that
U(g, e) always admits finite-dimensional representations. In an earlier paper
it was conjectured that U(g, e) always admits a representation of dimension 1
[POT7i, Conjecture 3.1 (1)]. This was verified for g of classical type by Losev in
[L10]. Also, in [P08], Premet reduces the conjecture to the case that e lies in
a nilpotent orbit of g which does not arise by Lusztig-Spaltenstein induction,
i.e. a rigid nilpotent orbit of g. This thesis is a contribution to the completion
of a proof that U(g, e) admits a 1-dimensional representation.

The representation theory of finite W-algebras is closely connected to
the representation theory of reduced enveloping algebras, which are certain
quotients of the universal enveloping algebras of modular Lie algebras. Let k
be the algebraically closed field of characteristic p > 0, let gz be the Chevalley
Z-form of g and let g = gz ® k. The Kac-Weisfeiler conjecture, proved by
Premet in [P95], states that for £ € g, any module of the reduced enveloping
algebra Ug(gy) has dimension divisible by p? where dg is half the dimension of
the coadjoint orbit of £. In [P08, Theorem 1.4], Premet proves that if U(g, e)
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admits a 1-dimensional representation then there exists a Ug(gi)-module with
dimension p%. This makes use of a modular analogue U (gy, ex) of U(g, e).

Chapter 2 contains the necessary background on Lie algebras and nilpo-
tent orbits. In Chapter 3 we give the definition and construction of U(g, e)
and we state a PBW theorem which shows how we can obtain a presentation
for U(g,e). In Chapter 4 we give an algorithm for constructing a presenta-
tion for U(g,e). This takes a nilpotent element e € g and gives an sly-triple
(e, h, f) in g, and from this we can determine a set of generators and relations
for U(g,e) in terms of a carefully chosen ordered basis for g. In Chapter 5
we show how the presentation obtained by the methods of Chapter 4 can be
used to determine all 1-dimensional representations for U(g, e). We also show
that in many cases, we can determine the 1-dimensional representations from
a much smaller set of relations than is necessary for a presentation. We also
consider the implications for the representation theory of reduced enveloping
algebras. In Chapter 6 we give the results of the application of the algorithms
of Chapter 4 to U(g, e) where g is a simple Lie algebra of type Gy, Fy, Eg or
E;, and e lies in a rigid nilpotent orbit in g. We see that in these cases U(g, e)
admits either one or two 1-dimensional representations. For g of type Go, F}
or Fg and e in a rigid nilpotent orbit in g we have explicit presentations for
U(g,e), so we can see for which p we are able to define U(gy, ex) and hence
determine when Ug(gy) (where £ corresponds to e under an identification of
g1 with gi) has a module of dimension p%. We also give this for 5 of the 7
non-zero rigid nilpotent orbits in g of type F;. For the remaining 2 non-zero
rigid nilpotent orbits for type E7 and for 14 of the 17 non-zero rigid nilpotent
orbits for type Eg we are able to determine the 1-dimensional representations
but without further calculation we are not able to determine the condition
on p which allows us to draw conclusions about the associated reduced en-
veloping algebras. In Appendices A to F we give an implementation of the
algorithms of Chapter 4 in GAPA4.

The code given in the appendices is available online at http://www.ruhr-
uni-bochum.de/ffm/Lehrstuehle/Lehrstuhl-VI/ubly-thesis.html.
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Preliminaries

In this chapter we give the necessary definitions and results on Lie algebras.
The material here is standard and can be found in [H72], [S87], [CM93], [J62]
and [C93]. Let k denote a field.

2.1 Lie algebras — elementary definitions and

results

Definition 2.1.1. A Lie algebra over k is a vector space g over k with a

bilinear operation |-,-] : g X g — g satisfying for all z,y, z € g:
1. [x,2] =0,
2. [z, [y, 2] + [y, [z, 2] + [2, [z, 9]] = 0.

For example, given any associative algebra A over k, we can take the
bracket to denote the commutator, i.e. [z, y] = zy —yx for z,y € A. This can
easily be seen to satisfy the above axioms, thus defining a Lie algebra over k.

For the rest of this section, g denotes a finite-dimensional Lie algebra over
k. For x € g write [z, g] for the set {[x,y] | v € g}, and for a subset A C g
write [A, g] for {[z,y] | v € A and y € g}.
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Definition 2.1.2. We call a subspace hh C g a subalgebra of g if for all z,y € b
we have [z,y] € b.

Definition 2.1.3. Call a subspace a of a Lie algebra g an ideal of g if [z,y] € a
for all z € g and y € a.

Definition 2.1.4. Call g abelian if [z,y] = 0 for all z,y € g.
Definition 2.1.5. The centre of g is the set {z € g | [z,y] =0 for all y € g}.
It is clear that the centre of g is an ideal of g.

Definition 2.1.6. For a subset (or element) A of g, the centralizer of A in g
is the set g := {z € g | [z, A] = 0}.

Definition 2.1.7. The normalizer of a subspace A of g is the set N(A) =
{regllr A C A}

It is clear that the normalizer of a subspace of g is a subalgebra of g.

Definition 2.1.8. Let g, § be Lie algebras. A linear map ¢ : g — b satisfying
o([x,y]) = [o(x), ¢(y)] for all x,y € g is a homomorphism of Lie algebras. If
the map ¢ is also a bijection, then ¢ is an isomorphism of Lie algebras. A

homomorphism g — g is an endomorphism of g.

We denote by gl,(k) the general linear Lie algebra; that is n X n matrices
with entries in k& with the commutator [z, y] = zy — yz. More generally, write

gl(V) for the Lie algebra of endomorphisms of V', a vector space over k.

Definition 2.1.9. We call a Lie algebra homomorphism g — gl (k) or g —
gl(V') a representation of g.

Equivalently, given a representation ¢ : g — gl(V'), the action of g on V/
by z.v = ¢(x)(v) allows us to view V' as a g-module. Note that the ideals of

g are precisely the kernels of homomorphisms from g.

Definition 2.1.10. We call g simple if g is non-abelian and contains no ideals
other than g and 0.
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For any element z in g, we define the map adz : g — g by adxz(y) = [z, y]
for all y € g. The map adx is an endomorphism of g. Call this the adjoint
action of  on g. This gives a map ad : g — gl(g) which sends = € g to
adz € gl(g); call this the adjoint representation of g.

Definition 2.1.11. We call a linear map ¢ : ¢ — g a deriwvation of g if it
satisfies the following for all a,b € g:

0([a, b]) = [0(a), b] + [a, 6(D)].

We can easily see that for x € g, ad z is a derivation on g. The space of

derivations of g forms a Lie algebra with the commutator operation.

Definition 2.1.12. We call an element = € g nilpotent if ad x is a nilpo-
tent endomorphism of g. That is, if there is n > 0 such that (adz)"(g) =

[z, [z, - [z,g]]] = 0 (where there are n sets of brackets).

Definition 2.1.13. We define the derived series of g by putting g(® = g and
for i > 1,g® = [gt=V, gt=V]. If there is some n > 0 with g™ = 0 then we

say g is solvable.

Definition 2.1.14. For a Lie algebra g, we call the unique maximal solvable

ideal the radical of g.
Definition 2.1.15. We call a Lie algebra g semisimple if its radical is 0.

Definition 2.1.16. We call a Lie algebra g reductive if the radical of g is

equal to the centre of g.

We immediately have that a simple Lie algebra is semisimple and that a

semisimple Lie algebra is reductive.

Definition 2.1.17. For a Lie algebra g, we define the lower central series
by putting g° = g and for i > 1, g = [g"" !, g]. If there is some n > 0 with

g" = 0 then we say g is nilpotent.
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Theorem 2.1.18 (Engel’s theorem). A Lie algebra g is nilpotent if and only

if each element of g is nilpotent.

For the remainder of this section, we assume that k has characteristic 0

and is algebraically closed.

Theorem 2.1.19 (Ado’s theorem). Fach finite-dimensional Lie algebra g is
isomorphic to a subalgebra of gl(V'), for some finite-dimensional vector space
V.

Definition 2.1.20. We call an element x € g semisimple if the endomor-

phism ad x is diagonalizable.

We can write € g uniquely as a sum x; + z,, where x, is semisimple, x,
is nilpotent and x4 and z,, commute. This is the Jordan—Chevalley decompo-
sition.

Let Tr(A) denote the trace of an endomorphism A of g.

Definition 2.1.21. We define the Killing form on g to be the map x : gxg —
k given by
k(z,y) = Tr(ad x ad y)

for x,y € g.

We note that as Tr(AB) = Tr(BA), the Killing form is symmetric and
we deduce that the Killing form is associative; that is for z,y, z € g, we have
k([x,y], 2) = k(z, [y, z]). The Killing form gives the following criterion for g

to be semisimple.

Theorem 2.1.22. A Lie algebra g is semisimple if and only if the Killing

form on g is non-degenerate.

Theorem 2.1.23. A Lie algebra g is semisimple if and only if it is a direct
sum of a finite set of ideals ay,...,a,, of g such that each a; is a simple Lie

algebra.
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To a Lie algebra over k (where k can be any field) we can associate an
infinite-dimensional associative algebra over k, containing k, called the uni-
versal enveloping algebra of g, denoted U(g). There is a natural equivalence
between the category of g-modules and the category of U(g)-modules. We
give the definition of U(g) in terms of a universal property, and then a more

explicit construction which is more useful for the remainder of this thesis.

Definition 2.1.24. For a Lie algebra g, the universal enveloping algebra
U = U(g) of g is an associative algebra with 1 with a map i : g — U
satisfying

ilz,y] = i(z)i(y) —i(y)i(z) (2.1.25)

such that given any U’ and ¢ : g — U’ satisfying (2.1.25) there is a unique
homomorphism ¢ : U — U’ with ¢ oi = 7'.

Given a Lie algebra g over k, we can construct the universal enveloping
algebra of g as follows. Let T'(g) denote the tensor algebra of g, that is we
put 7"(g) = g*" = g®---® g (with n copies of g) with T%(g) = k. Then the
tensor algebra is T'(g) = @;>0T"(g) with the natural associative multiplication
of elements of T'(g): foru = u1®- - -Qu,, € T™(g) and v = 1, ®- - -Qv,, € T™(g)
we have U@V = U1 ® @ Uy QU Q-+ - v, € T (g). Let I be the 2-sided
ideal of T'(g) generated by the elements * @ y —y ®  — [z,y| for z,y € g.
Then we can take U(g) to be the quotient T'(g)/I. We write an element
1 ® - ® x,y, + I of this quotient as xy ---x,,. Given an ordered basis of g
(which we do not require to be finite-dimensional here) we have a basis for

U(g) as follows.

Theorem 2.1.26 (Poincaré-Birkhoft-Witt). Let x1,zo,... be an ordered ba-
sis of g. Then the elements x;, ...x;, where iy < --- < 4, together with

1 € k, form a basis of U(g).

We call such a basis a PBW-basis of U(g). Note that we can identify g
with T(g), and we do not distinguish in our notation between elements of g

and the corresponding elements in U(g).
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2.2 Root systems and the classification of

semisimple Lie algebras

We can classify semisimple Lie algebras in terms of their associated root
systems. In this section we define root systems in an abstract sense and then

show how root systems are used to classify semisimple Lie algebras.

Definition 2.2.1. For a Euclidean space E with standard inner product (-, ),

a root system is a subset ® of F satisfying the following:
e & is a finite set, spanning F and 0 ¢ &;
e for each a € ® the only multiples of o in ¢ are +q;

e for each a € ® there is a reflection s, such that s,(a) = —a and

So(P) = ;

o if a,3 € ® then (8,a) =2 ¢ 7

(a,@)

Definition 2.2.2. For a root system ® in a Euclidean space F there is a finite
subgroup W of isometries of E generated by the reflections s, for a € ®; call
this the Weyl group of ®.

Definition 2.2.3. Let ®,®’ be root systems in Euclidean spaces E, E’ re-
spectively. An isomorphism of vector spaces ¢ : E — FE’ sending ® to

®' is an isomorphism of root systems if for any roots a,3 € ® we have

(o, B) = (9(a), 9(0)).

Definition 2.2.4. The rank of a root system ® C F is the dimension of the

Euclidean space E.

Given a root system ®, we can choose a subset A = {ay,...,qq} C @
(where [ is the rank of ®) such that A spans E and each root 8 € ® can
be expressed as a finite sum § = Zi’:l c;o; where either all coefficients ¢;
are non-negative integers (call such roots positive) or all coefficients ¢; are

non-positive integers (call such roots negative). We call the roots a, ..., q
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simple roots. Denote by ®T the set of positive roots, and by &~ = —®* the
set of negative roots. We have ® = & U .

Definition 2.2.5. A root system @ is called irreducible if it cannot be ex-
pressed as a union of 2 non-empty subsets: ® = &; U $5, where each root in

®, is orthogonal to each root in ®,.

For a root system ® of rank [ with a set of simple roots {aq,...,a;}, we
define the Cartan matriz associated to ® to be the [ x [ matrix with each
integer («;, ;) in position (¢, j). Note that any Cartan matrix is non-singular,
and is independent of the choice of simple roots, other than the order. The
Cartan matrix determines the root system up to isomorphism.

For a root system ® we define the associated Dynkin diagram as follows.
Choose a set of simple roots ay,...,q; in ®. To each «; we have a vertex
(which we also label ;) and we join vertices o, and o with (ay, o) (o, o)
edges for ¢ # j. In the case that the lengths of the roots «; and «; are not
equal we add an arrow to the edges joining vertices o; and «; in the direction
towards the vertex corresponding to the shorter root.

The Dynkin diagram associated to a root system & is connected if and
only if ® is irreducible. We can uniquely decompose a root system ¢ into a
union of pairwise orthogonal irreducible root systems. The classification of
irreducible root systems is therefore equivalent to the classification of con-
nected Dynkin diagrams. From geometrical consideration of the root systems

in the Euclidean space E, we can deduce the following.

Theorem 2.2.6. If ® is an irreducible root system then its associated Dynkin

diagram is one of the following:
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Type A, (n>1):
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Type Er:
® ® @ o @
Type Eg:
® o ® o ® o
Type Fy:
Type Gs:

e

We now describe how to associate a root system to a semisimple Lie

algebra g.

Definition 2.2.7. A Cartan subalgebra (CSA) of g is a nilpotent subalgebra

equal to its normalizer in g.

We have that Cartan subalgebras always exist for semisimple g. Let g be
a semisimple Lie algebra and let fj be a Cartan subalgebra of g. Then the
dimension of b is the rank of g. We can decompose g as a direct sum of h and

the 1-dimensional h-modules {g, | @ € ®}, where for z € g, for some «a, we
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have that the adjoint action of h €  on x is scalar multiplication. We have
[h,z] = a(h)z

for h € h and z € g,. Thus «a lies in h*, the dual space of the Cartan
subalgebra. The set ® of such a forms a root system in the Euclidean space
h* of dimension rank g. This root system is independent (up to isomorphism)
of the choice of Cartan subalgebra, so we may refer to the root system of
a semisimple Lie algebra without specifying a Cartan subalgebra. We have
the following classification of semisimple Lie algebras over k in terms of the

associated root systems and Dynkin diagrams.
Theorem 2.2.8.

o A semisimple Lie algebra is simple if and only if its root system is

irreducible.

o Two semisimple Lie algebras are isomorphic if and only if they have the

same Dynkin diagrams.

e Fvery root system is the root system of some semisimple Lie algebra.

2.3 Nilpotent orbits in semisimple g

The material in this section is contained mostly in [CM93]. Let g be a
semisimple Lie algebra over C, and let G be the adjoint group of g; that
is the connected component of the group of automorphisms of g. We have
that g is the Lie algebra of G. In this section we consider the G-orbits (re-
ferred to simply as orbits) in g. References to conjugacy of subalgebras of
g refer to the action of G. The action of G preserves the semisimplicity or
nilpotency of x € g. We consider the semisimple and nilpotent orbits of G in

turn.

Theorem 2.3.1. Let b be a Cartan subalgebra of g with associated Weyl
group W. Then the set of semisimple orbits in g is parameterized by b/W.
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In particular, there are infinitely many semisimple orbits in g. We now
show that there are finitely many nilpotent orbits in g. The following the-
orem tells us that any non-zero nilpotent element in g lies in a subalgebra

isomorphic to sls.

Theorem 2.3.2 (Jacobson-Morozov). [CM93, Theorem 3.3.1] Let e € g be
nilpotent. Then there are elements h, f € g such that [h,e] = 2e, [h, f] = =2f
and le, f] = h.

If e, h, f € g span a subalgebra isomorphic to sly then we say (e, h, f) is
an sly-triple. The adjoint action of G on g can be naturally extended to an
action on sly-triples in g. There is a bijection between the non-zero nilpotent
orbits in g and the G-orbits of sly-triples. Given an sly-triple (e, h, f), we can

decompose g into a direct sum of ad h eigenspaces:

o= a0,

JEL
where
9(j) ={z e gllh 2] = jz}.
We call this the Dynkin grading of g associated to the sly-triple (e, h, f).

Definition 2.3.3. The height of a nilpotent orbit in g corresponding to an
slo-triple (e, h, f) is the maximum N such that in the associated Dynkin

grading g(N) # 0.

We can choose a Cartan subalgebra b in g which contains h. This deter-
mines a root system ® for g. Choose a set A C ® of simple roots, and label
the vertex of the Dynkin diagram corresponding to each root a € A with the
value a(h). Each a(h) lies in {0,1,2}. This gives us the weighted Dynkin
diagram for the sly-triple (e, h, f), or equivalently (by the bijection above)
for the nilpotent element e. For any g, the element 0 forms a nilpotent orbit.
The weighted Dynkin diagram for the zero orbit is obtained by labelling each
vertex with 0.

We have the following theorem.
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Theorem 2.3.4. The weighted Dynkin diagram of a nilpotent orbit O C g s
a complete invariant. That is, two orbits O, 0" are equal if and only if their

associated weighted Dynkin diagrams are equal.

Due to the range of values the labels can take, we immediately get an
upper bound of 3¢ on the number of weighted Dynkin diagrams, and
hence on the number of nilpotent orbits in g. This bound is not achieved by
any semisimple g.

We next show how the nilpotent orbits are classified in simple g. There is
a partial order on the nilpotent orbits of g given by the rule © > 0" if © D O,
where O denotes the Zariski closure of @. There are 4 canonical nilpotent
orbits in a simple Lie algebra g (which may coincide for small g) which are
determined by their position in the partial order. The zero orbit is the least
element in this partial order. There is a unique nilpotent orbit O # 0 with
O < O for all orbits O # 0 in g. This is called the minimal orbit in g,
and is denoted Op,;,. There is a unique maximal nilpotent orbit, called the
regular orbit, denoted O,eq, and this has dimension dim(g) — rank(g). There
is a unique nilpotent orbit O # O, with O > O’ for all nilpotent orbits
O # O,e. This is called the subregular orbit in g, and is denoted Ogypreg-
The subregular orbit has dimension dim(g) — rank(g) — 2.

We begin with the classical types. In each of the 4 families of simple
Lie algebras, the nilpotent orbits are parameterized by partitions of a pos-
itive integer which depends on the rank of g. We denote a partition of N
by a tuple [dy, ..., d,,] of non-negative integers in non-increasing order where
Yo d; = N. We may assume any d, for ¢ > m is zero. We call each d;
in a partition a part, and if a part d; is repeated a; times we may write d;"
in the partition. The set of partitions of N is denoted by P(N). The domi-
nance ordering on partitions of IV is a partial order defined by the following:
we have [ay,...,am] > [br, ... by] if Y0 a; > Y7 b; for all ¢. In each of
the following cases, where we denote the orbits corresponding to the parti-
tions a = [a1,...,a,], b = [b1,...,by] by Oa and Oy, respectively, we have
O, > Oy if and only if a > b.
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Type A,

For g = sl,,,1, the nilpotent orbits of g are in bijective correspondence with

P(n+1).

Type B,

For g = s09,,.1, the nilpotent orbits of g are in bijective correspondence with

the partitions in P(2n + 1) in which even parts occur with even multiplicity.

Type C,

For g = sp,,,, the nilpotent orbits of g are in bijective correspondence with

the partitions in P(2n) in which odd parts occur with even multiplicity.

Type D,

For g = so0,,, the nilpotent orbits of g are in bijective correspondence with
the set of partitions in P(2n) in which even parts occur with even multiplicity
except that each partition with only even parts corresponds to two distinct

nilpotent orbits.

Exceptional type

For a simple Lie algebra g of type Go, Fy, Es, E7 or Eg we do not have a neat
parameterization of the nilpotent orbits as in the case where g is of classical
type. We make use of Bala-Carter theory to classify the nilpotent orbits in

g of exceptional type. We require some further terminology.

Definition 2.3.5. A Borel subalgebra of g is a maximal solvable subalgebra

of g.

For example, if we fix a Cartan subalgebra § of g, with associated root

system ® and a choice of simple roots A C ® determining a set of positive
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roots @1, then

b ::h(B 6}9 Ja

acdt
is a Borel subalgebra of g. Any two Borel subalgebras of g are conjugate, so
in particular any Borel subalgebra is conjugate to b.

For a subset X of ® we denote by (X) the root system generated by X.

Definition 2.3.6. A parabolic subalgebra of g is a subalgebra which contains

a Borel subalgebra.
A subset U C A gives an example of a parabolic subalgebra containing

p=bo P g

acdt
—a€e(W)

the above Borel:

Such subsets of A parameterize the parabolic subalgebras of g which contain
b. Thus for a simple Lie algebra g there are 2'%"%8 conjugacy classes of

parabolic subalgebras of g.

Definition 2.3.7. The Levi decomposition of a parabolic subalgebra p of g is
p = [ @& n, where n is the nilradical (i.e. the unique maximal nilpotent ideal)

of p and [ is the corresponding Levi subalgebra of g.

Note that [I,[] is a semisimple Lie algebra. For the parabolic subalgebra

p above, the Levi decomposition is p = [ & n where
=he P g
ae(l)

and

i @D e

a€dH\((T)nd+)
Definition 2.3.8. A parabolic subalgebra p of g with Levi decomposition
p = [ @ nis called distinguished if dim [ = dim(n/[n, n]).
We can now state the Bala—Carter Theorem [C93, Theorem 5.9.5], which

gives us a classification of the nilpotent orbits in a simple Lie algebra g.
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Theorem 2.3.9. There is a natural bijection between the nilpotent orbits in
g and conjugacy classes of pairs (I,p() where | is a Levi subalgebra of g and

p( s a distinguished parabolic subalgebra of |1, 1].

Given a nilpotent element e € g, by Theorem 2.3.2 we have an sly-triple
e, h, f) and the resulting Dynkin grading g = ®;czg(j). We take [ to be
J

the minimal Levi subalgebra of g which contains e, and then the parabolic

pe= @g(]) n [[7 []7

Jj=0

subalgebra

is distinguished in [[, []. Then the conjugacy class of ([, p;) corresponds to the
nilpotent orbit containing e.

We label the nilpotent orbit corresponding to a pair (I,p;) as Xn(a;),
where Xy is the type of the Dynkin diagram associated to the semisimple Lie
algebra [[,1], and 7 is the number of simple roots of g which are roots of the
Levi factor of the parabolic subalgebra p;. We omit the part (a;) in the case
that ¢ = 0. We must also distinguish the cases where we have isomorphic
but non-conjugate Levi subalgebras [. In the case that g has different root
lengths, then we distinguish the case with the shorter root length by Xy.
If the Levi subalgebras [ of g are isomorphic but non-conjugate and cannot
be distinguished by root lengths then if : = 0 we distinguish the labels with
either one or two primes (for example in type FEy;), and if i # 0 then we
write b; instead of a; for one label (for example in type Fg). This labelling
is sufficient to distinguish all nilpotent orbits in g where g is a simple Lie
algebra of exceptional type. These are listed in [CM93, Chapter 8.4]. The
numbers of nilpotent orbits in g of type Go, Fy, Eg, E7 and Eg are 5, 16, 21,
45 and 70 respectively.

We now give a brief description of Lusztig—Spaltenstein induction on nilpo-
tent orbits [LS79]. Let g be a simple Lie algebra and let p ba a parabolic
subalgebra of g with Levi decomposition p = [ @ n. The Levi factor [ is
reductive, so [[,[] is semisimple and the nilpotent elements (and orbits) of [

and [[,[] coincide. Let O be a nilpotent orbit in [ under the action of the
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connected Levi subgroup L of G where Lie(L) = [. Then there is a unique
nilpotent orbit Oy in g whose intersection with O+ n is open and dense in
Or+n. We say Oy in induced from O, and write Oy = Indj(Oy).

Definition 2.3.10. A nilpotent orbit Oy is called rigid if there is no proper
parabolic subalgebra p of g such that we can obtain Oy by induction from a

nilpotent orbit Oy in [ where [ is a Levi factor of p.

Rigid orbits turn out to be of particular significance for the representation
theory of finite W-algebras so for g of classical type we give a criterion in
terms of the associated partition for a nilpotent orbit to be rigid, and for g
of exceptional type we give explicit lists of the rigid nilpotent orbits, along

with their dimensions.

Type A,

The only rigid nilpotent orbit in sl,,; is the zero orbit.

Type B,

The rigid nilpotent orbits in s09,,; are those whose partition [dy,...,d,] €
P(2n+ 1) satisfies d;r1 < d; < djz1+1fori=1,...,m—1, and no odd part
has multiplicity 2.

Type C,

The rigid nilpotent orbits in sp,, are those whose partition [dy,...,d,] €
P(2n) satisfies d;v1 < d; < djyq +1fori=1,...,m — 1, and no even part
has multiplicity 2.

Type D,

The rigid nilpotent orbits in so0s, are those whose partition [dy,...,d,,] €
P(2n) satisfies d; 11 < d; < djy1+1fori=1,...,m—1, and no odd part has
multiplicity 2.
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Table 2.1: Rigid orbits for type Gs.

Bala—Carter label | Dynkin diagram | Dimension
[
Ay 0 1
A, 1 0

Table 2.2: Rigid orbits for type Fj.

Bala—Carter label | Dynkin diagram | Dimension
oo o o
A 1 0 0 0 16
A 00 0 1 22
A+ A 01 0 0 28
Ay + Ay 00 1 0 34
Ay + A, 0 1 0 1 36

Table 2.3: Rigid orbits for type Ej.

Bala—Carter label | Dynkin diagram | Dimension
1.
Ay 1 22
00000
344 0 40
00100
245 + Ay 0 54

Continued on next page
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Table 2.3 — continued from previous page

Bala—Carter label

Dynkin diagram

el

Dimension

1 0101

Table 2.4: Rigid orbits for type F;.

Bala—Carter label | Dynkin diagram | Dimension

e o o o o o

Ay 0 34
100000

244 0 52
000O0T1O0

(3A;) 0 64
010000

4A, 1 70
000O0O01

Ay + 24 0 82
001000

2A5 + Ay 0 90
010010

(As + Ay) 0 92
101000

20
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Table 2.5: Rigid orbits for type FEj.

Bala—Carter label

Ay

24,

34,

44,

As + Ay

Ay + 24,4

Ay + 344

24, + A4

As+ Ay

245+ 24,

As + 24,

Dy(ay) + Ay

As+ A+ Ay

Dynkin diagram | Dimension
R I

0 58
0000001

0 92
1000000

0 112
0000010

1 128
0000000

0 136
1000001

0 146
0000100

0 154
0100000

0 162
1000010

0 164
0000101

0 168
0001000

0 172
0100001

1 176
0000010

0 182
0010000

Continued on next page
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Table 2.5 — continued from previous page

Bala—Carter label | Dynkin diagram | Dimension

R I

2A3 0 188
1001000

Ay + A 0 200
0010010

Ds(aq) + Ay 0 202
0100101

As + Ay 0 202
1010001

22



3
Finite 1V -algebras

Here we define the finite WW-algebra associated to a nilpotent element e of the
Lie algebra g of (G, a simple simply-connected algebraic group over C. We use
the definition given by Premet in [P02]. The definition used by de Boer and
Tjin [DT93] was shown in [D*HK] to be equivalent to that used here, and in
[L10], Losev uses a further definition in terms of Fedosov quantization [L10,

Subsection 2.2], which is shown to be equivalent [L10, Corollary 3.3].

3.1 Some definitions

Let e be a non-zero nilpotent element of g. By Theorem 2.3.2 we can choose
h and f such that (e, h, f) is an slo-triple in g. We let (-,-) denote the
form ﬁn( ,+). This form is non-degenerate, symmetric and invariant —
properties inherited from k. Define x € g* by x(z) = (e, z) for z € g.

The sly-triple gives a decomposition of g into ad h weight spaces:

9(j) ={x e g|[h 2] = jx}

and the Dynkin grading on g = @;¢28(j). Note that as g is finite-dimensional,
g(xj) = 0 for all large enough j.
Let t be a Cartan subalgebra of g containing h. Let ® C t* be the root

23
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system of g with respect to t, and let II C ® be a set of simple roots. Write
g° for the centralizer of e in g, and let t* = g° N t.

We define a bilinear non-degenerate alternating form on g(—1) by

(z,y) = (e, [z, 9]).

These properties follow easily from the properties of the Killing form. It
follows that g(—1) has even dimension, and that we can choose a basis
21y ey 25y 21, - - -5 2% such that
(2,2)) =0={(2,2) and (7 2) =0y

for all 1 <4,5 < s, i.e. a Witt basis. Write g(—1)° for the subspace spanned
by the z]. Then g(—1)° is a Lagrangian subspace of g(—1), that is a maximal
isotropic subspace with respect to the form (-, -). One way to choose the Witt
basis is to make a choice of positive roots in the restricted root system ®°
[BGO7], which is defined to be the set of roots in ® restricted to t¢ (excluding
those whose restriction to t¢ is zero), and take the corresponding root vectors
in g(—1) to be 21, . .., z; and the corresponding negative root vectors (possibly

scalar multiples) to be 21,...,2.. For our purposes here all that is required

P

is that g(—1)" is Lagrangian. We define

mi=g(-1)'® @ a(i).

i<—2

a nilpotent subalgebra of g. We consider the restriction of y to m. We have
m C @,<_19(j), so for z,y € m, if we have either x or y in ®;<_»g(j) then
[z,y] € ®,<_39(j) and hence x([z,y]) = 0. We therefore have

(e;[mm]) = (e [9(-1)°,8(~1)°])
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by the construction of g(—1)°.

We can therefore extend the action of y
to U(m), where for an element z = z;, ---2;,, € U(m) we have x(z) =
X(xi,) - x(x;,). We denote the corresponding 1-dimensional U(m)-module
by C,. Let 1, € C,..

We define the induced module @), := Indggfﬁ) Cy, =U(g) ®um) Cy.

Definition 3.1.1. We now define the finite W -algebra associated to g and e
to be

U(g, ) := End yg) (@),

the opposite algebra of U(g)-module endomorphisms of Q.

Let I, be the left ideal of U(g) generated by all z—x(z) for x € m. We can
identify @), with the space of cosets U(g)/l,. There is an associative action
of gon U(g)/I, given by z(y+1I,) =zy+ I, forz € gand y+ 1, € U(g)/ 1.
The left ideal I, is stable under the action of ad z for x € m so we can define
the adjoint action of m on U(g)/I, by adz(y + I,) = [z,y] + .

From Frobenius reciprocity we can identify U(g, e) with the space of U (m)-
module homomorphisms C, — @,. It follows that elements ¢ € U(g,e) are
determined by the value ¢(1,) € U(g)/l,, and also that we can identify
Ul(g, e) with the elements of (), for which the associative action of m is scalar

multiplication by x(z) for x € m. For x € m and y + I, € U(g)/1,, we have

rly+1,) = x@)y+1,

=

vy —yr+1, = x@)y—yr+1,

=

[yl + 1, = yx(z)—2)+1 =1,

We are therefore identifying U(g, e) with the subspace

{y+1,|[z,y] € I, for all z € m} (3.1.2)
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of U(g)/I,.
Composition of endomorphisms determined by ¢, (1) = y+I, and ¢, (1) =

y' + I, in U(g, e) is given by

(Pydy)(u+ 1)) = uyy' + Iy.

Expressed in terms of the above identification with the space of cosets (3.1.2),
this is
(y+ 1) - (y' + L) = yy' + Iy,

which is the natural operation of multiplication of cosets. This justifies why
we take the opposite algebra of endomorphisms in Definition 3.1.1. From now
on we view U(g,e) as the subspace of U(g)/l, invariant under the adjoint
action of m.

It is straightforward to see that U(g, e) is closed under this multiplication
of cosets. For y; + I, and y» + I,, in U(g, e) and x € m we have

[z, 11Y2] = (xy1 — y12) Y2 + Y1 (TY2 — y2),

so to show that [z,y;y2] € I, for all x € m it is sufficient to show that
Lys € I,. We have

(z—x(@)y = yr—x(x)y+[z,y]
= ylz —x(@)) + [v,y] € L.

It is shown in [GGO02] that we do not need to take a Lagrangian subspace of
g(—1) to be mNg(—1). We can take any isotropic subspace a C g(—1), and let
a’ denote the subspace {x € g(—1) | (z,a) for all a € a}. Then we define I,
to be the left ideal of U(g) generated by all z—x(z) for z € a®D ;. , 9(j), and
we define Q' := U(g)/I,. Then the space of elements of @’ invariant under
the adjoint action of a* @ ®j§—2 g(j) is isomorphic to U(g, e). In particular,
we can take a = 0, so at = g(—1). This makes the procedure of finding a

suitably ordered basis of g significantly easier, but computationally, finding a
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presentation becomes harder, as we are looking for elements of a larger space
@', invariant under the action of a larger subalgebra a* @& @ i< 280j)-

We observe that by the conjugacy of sly-triples [CM93, Chapter 3|, the
isomorphism class of U(g, ¢) depends only on the nilpotent orbit of e and not
on the choices of f and h.

There is a natural embedding of U(g,e) in U(g). By (3.1.2) we see that
the image of the centre of the universal enveloping algebra, denoted Z(g),
is a subalgebra of U(g,e). From [K78] we have equality in the case that e
lies in the regular orbit in g. At the opposite end of the partial order on the
nilpotent orbits, if e = 0 then we can see that U(g,e) = U(g). In the case
that e lies in the minimal orbit in g, there is a presentation of U(g,e) given
in [PO7i, Theorem 6.1].

3.2 PBW-theorem

In order to give a PBW theorem for U(g,e), we need a filtration of U(g,e).
In order to define this filtration, we need to choose an ordered homogeneous
basis of g satisfying certain properties.

Let p be the parabolic subalgebra ;. 8(j) of g determined by our sly-
triple. Then from [J04, Section 5.8] we know that g¢ C p. We choose a
homogeneous basis x1,...,x,, of p such that x1,..., x4 is a basis of g°. As
above, we can choose a basis z1, ...,z 21, ..., 2, of g(—1) where z{,..., 2.
span a Lagrangian subspace of g(—1) with respect to the form (-,-). Let
Tals - s Tmas b€ 21, ..., zg and let Ty, gi1, ..., Tmaos be 27, ..., 25 In what
follows the choice for the remaining terms of the basis is made for reasons of
computational convenience. Note that f lies in ker x|g_2). We can choose a
basis of t*-weight vectors of ker x|g—2), including f. We complete our basis
X1, ..., T, including these elements.

We can make all of the above choices for the basis elements to be weight
vectors for t¢ and eigenvectors for ad h. For each ¢ = 1,...,n, let n; € Z be

such that z; € g(n;) and let 3; € ®¢ be such that z; € gg,.
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The tables in Chapter 6 show bases according to these specifications for
each non-zero nilpotent orbit in g of type G5, and for each non-zero rigid
nilpotent orbit for g of type Fj, Fs and F;.

We have a basis of Q, given by the set of cosets 22+ 1, = x{* - - ap s +1,,

m-+s
where a = (aq,...,Gnmis) € Z;”JS. For a € Zglgrs, we define

m-+s m-+s

al=> a; and [alo= ) a;(n;+2).
i=1 i=1

We say that 2 + I, € Q) has Kazhdan degree |a|.. This restricts to U(g, e),
and we write F;U(g,e) for the span of all elements 2® + I, € U(g, e) where
lale <i. Note that F;U(g,e) =0 for all : < 0.

We now give the PBW-theorem for U(g, e). This combines [P02, Theorem
4.6] and [PO7i, Lemma 2.2], written in terms of our interpretation of U(g, e)
as a subalgebra of U(g)/I

X"

Theorem 3.2.1. Let xq,...,x, be a basis of g as described above. Then we

have the following:

1. There is a set of generators for U(g,e) given by

0,=|x;+ Z )\fixa + 1,

‘a|e§ni+2
for i = 1,...,d where the coefficients N, € Q are zero when azy1 =
v =y =0, or if |al. =n; + 2 and |a| = 1. The coefficients X, are
uniquely determined by the choice of ordered basis x1,...,x, of g and

the above vanishing conditions.
2. The ©; are weight vectors for t¢ with weight ;.
3. The monomials ©* = O - -- O with a € Z%, form a basis of U(g,e).

4. We have [©;,0;] € F, in,42U(g,e) fori,j = 1,...,d. Moreover, if
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[z, 2] = ZZ:1 e in g, then

d
[@i> @j] = Z ,ufj@k + q:'j(e)b EIR) ®d) mod FTLi+TLjU(g7 6)7

k=1

where g;; is a polynomial with coefficients in Q, and zero constant and

linear terms.

The uniqueness claimed in part (1) follows from the proof of [P02, Theo-
rem 4.6], though is not given in the statement of that result. The conditions
on the coefficients \: can be given more clearly by stating that the expression
for ©, contains no term of Kazhdan degree greater than ny + 2, no term is in
U(g®) other than the leading term zj, and it contains no term x; (for j # k)
of Kazhdan degree equal to ny + 2.

Theorem 3.2.1 is fundamental to the methods described in Chapter 4 to
calculate presentations for U(g, ) and to deduce the existence of 1-dimensional
representations as in Chapter 5. From [P07ii, Lemma 4.1] we have that these
commutator relations are sufficient for a presentation of U(g,e). From the
anti-symmetry of the commutator, a full presentation of U(g, e) is given by
the () relations [0;, ©;] = F};(0,...,04) where d = dim(g®), (i > j) and
F;j is a polynomial in d indeterminates. We reduce the amount of relations

needed for a presentation in Section 5.3.



4

An algorithm for finding a

presentation of U(g, e)

For a nilpotent element e in a simple complex Lie algebra g, the finite W-
algebra U(g, e) depends, up to isomorphism, on the adjoint orbit of e. For g
of exceptional type, the nilpotent orbits are listed, along with the associated
weighted Dynkin diagrams, in [CM93, Ch. 8]. This chapter describes an
algorithm which takes as its input a weighted Dynkin diagram associated to
a nilpotent orbit O C g, and returns a presentation for the finite WW-algebra
U(g,e) where e lies in O. The GAP4 implementation of this is detailed in
Appendices A to F.

4.1 Finding an sl,-triple

Let g, t, ® and II be as in Section 3.1. Let [ denote the rank of g, and
IT ={ai,...,a;}. We can construct a Chevalley basis of g, {e, | « € ®} U
{ha = [€a,e—a] | @ € II}. So we have a basis of t given by h; := h,, for
i=1,...,1

Let O be a nilpotent orbit in g. Write D = (D, ..., D;) for the weights
on the nodes of the Dynkin diagram (with the order of nodes corresponding

to the order of simple roots in II) for g associated to O. From D we have a
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decomposition ¢ = J;, (j), where

l l
O(j) ={> aia; € ®| ) _a;D; = j}.
=1 i=1

There is a unique element h € t such that h is part of an sly-triple corre-
sponding to the nilpotent orbit O. To find h = 22:1 Ajh; we need values
of \; satisfying [22:1 Ajhj ;] = D; for i = 1,...,1. This is equivalent to
finding a column vector X such that C\ = DT, where C' is the Cartan matrix
corresponding to II C ®. Uniqueness follows as C' is non-singular.

The element % determines the Dynkin grading g = €D, 8(j). Note that
the Dynkin grading coincides with the grading given by letting g(j) be the
span of the Chevalley basis elements {e, | a € ®(j)} for j # 0 and let g(0)
be the span of t and {e, | @ € ®(0)}. We now require elements e and f in g
such that [h, e| = 2e, [h, f] = —2f and [e, f] = h. We can take e to be a sum
of e, for a € ®(2). We find this as follows.

Write I'; = {e, | @ € ®(j)}. For a subset A C Ty let A’ = {e_, | es €
A} €T 5. Werequire A C I'y such that h lies in the span of {} . 4[ea;eg] |
eg € A}. For such A we have coefficients a, for e, € A satisfying h =
D epea 03 (>..caleare—p]). Then we can take f = > esea ape—p. This gives
our slo-triple (e, h, f). We can always make our choice of A C I'y so that the

ag are positive integers.

Example 4.1.1. As an example, we take g to be the simple Lie algebra of
type Fj, and we take the nilpotent orbit with Bala—Carter label Ay + A,
We use the Chevalley basis by, ..., b5 for g given by GAP4, where we have
simple root vectors by, ..., by, positive root vectors by, ..., by and negative
root vectors bys, . .., bss. We have a basis for the Cartan subalgebra t given
by h; = bygyi = [bi, biso4] for @ = 1,...,4. This orbit has weighted Dynkin

diagram:
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With the order of simple roots used by GAP4 (note that this differs from
the order more commonly used, in Bourbaki [B07, Ch.4-6, Plate VII] and

elsewhere) we have D = (0,0, 1,0), and the Cartan matrix

-1 0

-1

-1 0 2 -1
o -1 -2 2

We require Ay, ..., \s satisfying

10 2 —1]|]xN
0 -1 -2 2 A\

=}
[\
)
|
—_
>
[\
o = O O

So we have h = Y27 Aibijas = 3bag + 4bsg + 6bs; + 8bsy. This gives the
following decomposition: g = @ ;<4 8(j), where g(2) is spanned by I'; =
{b10, b12, b13, b14, b15, b16, b17, b1s, bag . By checking each subset of I'y directly,
we can check that for A C Ty to have h in the span of {} . _,lea, e 5] |
eg € A} to be one of {514, bis, blﬁ}, {blo, b1, b18}7 {1713, bis, 517}, {b107 b1, bzo},
{b12, b13,ba0} or {b12,b16,b15}. Each of these gives an sly-triple with all coef-
ficients in Z (though this will not always be the case), so we may choose to
take € = byy + by5 + big. We have h = [byy, bss] + 2[b15, bso] + 2[b16, bao], SO we
get f = bgs + 2b3g + 2049, and we easily verify that (e, h, f) is an sly-triple in
g.
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4.2 Finding generators for Uf(g, e)

Given an sly-triple (e, h, f) in our Lie algebra g, we have t¢ = g° N t, the
non-degenerate form (-,-) = @m(-, -), the Dynkin grading for g, the map
X(+) = (e,-) and the alternating form (u,v) = (e, [u,v]) on g(—1). We can
determine an ordered basis of g according to the conditions of Section 3.2
such that each element in the basis is a weight vector for t° and for h. This
defines the subalgebra m and the left ideal I, of U(g).

From Theorem 3.2.1, we determine the generators of U(g,e) by finding
for each 7 = 1,. .., d the coefficients N\ for each a such that |a|, < n; +2 and
A% can be non-zero by the conditions of Theorem 3.2.1(2). Let A; C ZZ§™ be
the set of all such a for ©;. We require that [z,0;] = 0+ I, for all x € m.
Let B be a subset of {x;,1s11,--.,2,} such that B generates m. We take B
to be minimal in order to reduce the amount of computation required. For
each generator y € B we calculate [y, z; + Y o4 Aaz® + L] = [y, z; + I, ] +
> aca; Aaly, 22+ ] in U(g)/I. This can be rewritten as o <p o ({4 |
a € A;})a® + I, where b € ZZ{*, and g is a linear polynomial in the
coefficients A\ where a € A;. The condition that [y, ©,] € I, is met by setting
each polynomial g, = 0 and solving. From Theorem 3.2.1(1) there is a unique

solution to this system of equations, which determines the generator ©;.

Example 4.2.1. Let g be the simple Lie algebra of type Gs, with Chevalley
basis (given by GAP4) comprising by, . .., b positive root vectors with simple
short root vector b; and simple long root vector by; negative root vectors
bz,...,b12; and a Cartan subalgebra t spanned by b3 = [b1,b7] and by =
[ba, bg]. Let O denote the nilpotent orbit of g given by the weighted Dynkin

diagram

. e

1 0

By Section 4.1 we have h = 2by3 + 3b14, and as g(2) is the span of by, we must
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take e = by and f = byp. Then g° has dimension 6, and is spanned by the
elements bg, b5, bg, o, bg, b14, With t¢ spanned by the single element byy. We
complete a basis of p = €P;,,9(j) with the elements by, b3, bi3. We divide
the Killing form by k(e, f) = 24 for the form (-,-). The subspace g(—1) is
spanned by by and b7, so we may append by to the basis, then take g(—1)°
to be Cb;, and complete the basis with by = f, bi1, bi2. This ordered basis
is given, with values for n; and (; in Table 6.3. We now relabel the basis
elements as x1,...,r14 in this order. We have that m is generated by the
set {x11,x12,r14}. We find the A; by listing the monomials z? for which the
Kazhdan degree is at most the maximum of the n; +2 (in this case the upper
bound is 5) and selecting the monomials 2® where the conditions of Theorem
3.2.1(1) are satisfied, and label these (in some order) as A?, ... ,A,LA”H, and

put Aj = 1. Write A, = X where A] = 2. We have
A = {51387 L7, T4T10, LTeLg, TgT9, T4TeL10, I4$9$10}~

We calculate 211, 21+ ,c 4, Aa?] = [211, T1+D 0 i<y )\}A{] and project
into U(g)/I, to give the condition

(=3AL + 22\ zgm + (=ML — 3N + 2A)) 2y
+(=3A3 +20\] —3\} —2A\L +4X\)zg € I,

giving 3 linear polynomials in the coefficients /\;. We obtain the rest from
calculating [19, 21+ 3 g jcia; o1 AjAT] and [wg, 21+ 70 4,40 AJAT] to get

the conditions
(=23 + A3)zaT10 + (=1 4+ A\§)as € I,
and
(=24 M)zs + (=1 + Ag)zo + (Mg + A3+ A + Xg) € I,

Putting each of this set of 8 polynomials equal to zero yields the unique
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solution (A}, ..., \}) = (—4,1,—4,2,1,3,2), giving

@1 = (:Ul — 4'758 + X427 — 41’4.7}10 + 2$6.T8 + TgTg + 3I4ZE6$10

+2$4ZL’9$10) + IX‘
Similarly, to calculate ©5 we have

Ay = {$7, Z10, 3210, T5Tg, LeL7, TeL10, L7L9, L9X10, L4T5T10,

2 2 2 3
TgT10, LeL9X10, L8L1g, L9110, $4$10}7

and for k = 11,12,14 we calculate [zy, T2 + 3 ocjciayi1 )\JQA%] and project
into U(g)/I,. For k = 11 this gives

(A2 + 3A%, + 63 w422y + (—3A2 + 2X2))zaws + (20222
H(=A2 42X 69 + (2203 + A2 + 405 w10 + (— A2 + 20%)) 22
+(—1 + 220323 + (202 — 40} + 403,76
F(=A2 = A2+ A2 4+ 2X2 — 202, + 8)\2)) 2y
+(2)\2 — 22+ 4N2 4+ 202 — 4N, 4 80%) € I;

for £k = 12 we have

(—3)\2 — 2)\% + A%g)i[)ﬁiﬂlo -+ (—2)\421 — 2)\2 =+ 2)\%4)(1391‘10

and for k£ = 14 we have
(=M1 + Ah)at + (A + Ad)as € I,
This set of 16 polynomials has a unique solution

()\377>\%5):<2 37;7_ ’ 1717_17%7_%707_%7%7_%7%)7
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so we have

1
@2 = (372 + 21’7 — 31310 + 523T10 — T5Lg — TeLy + TgT19 — T7xg + gl’gl‘lg

3 1 1,2 1,2 1. .3
—5T4T5T10 — 5TeT9T10 + 5Ty — 5TgT10 + 5TaLhy) + Iy

The condition that [Tk, T3 + X ocjc|ay41 )\?Ag] € I, for k = 11,12,14 gives
us the following: for k = 11 we get

for k = 12 we get
(—3 + )\%)IL‘G + (—2 + 2)\g)$4l’9 + ()\% + 4)\2 + )\%)ZEg - IX;

and for £ = 14 we get
(=1 + Az € I

From these 6 polynomials we have the unique solution

(A3,...,08) = (=5,3,1,1,3),

y by by g

so we have
O3 = (w3 — 5wy + 3wewg + Ls10 + L5 + Sxarly) + Iy

In determining Oy, we find that A, is empty, and we verify that [xy, z4] €
I, for k =11,12,14. We therefore have ©4 = x4 + I,.

We have A5 = {21}, and [z11, 25 + Naly + L] = (1 + 4A}) + I, so we
have \j = —% and O5 = 5 — Z—lleo + I,. It is straightforward to check that
[k, O5] € I, for k=12, 14.
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For the final generator, we see that Ag is empty, and [z, x6] € I, for

k =11,12,14, so we have O = x4+ I, and our set of generators is complete.

4.3 Finding relations for Uf(g,e)

Given a set of generators O1,...,0, of U(g,e) (where d = dim(g®)), we find
polynomials F}; for 1 <1i < j < d for which [0;,0,] = F;;(01,...,04) by the
following method. We write (©) for (O1,...,04), and for i = 1,...,d write
©,; = u; + I, where u; € U(g).

For generators ©; and ©;, we calculate [u;, u;] as an element of U(g) and
project into U(g)/I,. Recalling that [©;,0;] € F, 1n,42U(g,¢), we get an

expression of the form

[©:,0;] = D TAE S A

Iale Sni +nj +2

with coefficients p%/ € Q. If all p%’ = 0 then the generators ©; and O;
commute and Fj; = 0. Otherwise, we write the desired polynomial as a sum

of polynomials FZ; homogeneous with respect to the Kazhdan degree:

it +2
F;(©) = Z Fi(©).
k=0
We find the FZ’; in decreasing order of k, from k =n; +n; +2 to k = 0. Let
Ay, +2 be the set of all a such that p%? # 0, |al. = n;+n;+2 and a, = 0 for
all ¢ > d. If Ay, 4 n;12 is empty, then there is no a such that lale =n; +n;+2
and p%7 # 0. Otherwise there is some a with |al. = n; +n; + 2, p4 # 0
and a, # 0 for some ¢ > d, and so the term p%72* must occur in some term
(7 OP in Fritnit2(@) (expressed as a coset in U(g)/I,) with b € 7%, and
|ble = n; +n;+2, which appears in ﬂ?iJranrz(@). So we have in ﬂ?i+nj+2(®)
a term g’ OP # 0 with |b|, = n; +n; + 2, and b, = 0 for all ¢ > d, and we
have that A, p,42 is non-empty. We put Fi?i+nj+2(@) = ZaeAnﬁnﬁz phi e,

a
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We have

[@ 0. ] m+n]+2(®) o Z Mi,j,ni+n3+1 a_J
[3) - a X
lale<ni+n;+1

a]’nz+n3 +1 (

for some coefficients jiq which are not the same as the coefficients

pb7). From the construction of the set Ap;yn;+1 we can reduce the range of the
sum on the right. We now let A, ;11 be the set of a such that pa Lpmitny L #+

0, lae = n;i +n; + 1 and a, = 0 for all ¢ > d, and write Fm+n]+1(®) =

7] a nz+n7+2 nz+n]+1 k
ZaeAn i1 H2 ©2. Given Fj; , F -, I, we have
TLZ+TLJ+2
. ] — q _ i,5,k—1 72
[©:,0;] E ‘Fz'j(@) = § Ha + I,
q=k lale<k—1

from which we define A;_; to be the set of a for which pi?*=1 #£ 0, |a|. =
k —1 and a, = 0 for all ¢ > d, and we let ij;*l(@) = D ca,, MO,
Inductively, this gives the polynomial F;;.

It follows from Theorem 3.2.1 parts (2) and (4) that the sets A; above are
either empty for all even 7 or for all odd 4, but this does not affect the above

process.

Example 4.3.1. Let g, e and U(g, e) be as in Example 4.2.1, with the set of
PBW generators Oy, ...,0s. We find F] 5 as follows. Note that n;+n,+2 = 8.
We have

3 2 11
[@1, @2] = (—18 — 57110 — 61’3 + 5.%'3.1'4375 — 21’3.%'41'10 + 5 XL3Te — 3.%'3.1'61'9
—xgxg — x3x8%10 + 4T3T9 — xgxg — %x% + 332425 — %m%xﬁ

+15l‘4$5(l}6$9 + 9[E4J]5$g + 5$4$5(L’85E10 - 251‘41’5(1]9 + 5I4ZE5J]3

2 2 2 2 13 3
—6z4x67917 + 2141677y — 3T4TEXT) — FT4TIT10 — 2T4T8T7

2 2.2 2 _9.2.2 324
+10x4x9x10—2$4a:9x10—9x4x10+6x4x5m10 STYTE — 5TIT,

—1—42336 — 3ZC6338.T9$10 + ZL’(ﬂ'g.ﬁElO — 53.236559 + 22336.179 — 3376339

—30z; — w810 + 262579 — ngwg + 677 — 3rirg — T7T8
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15 2 1,2 2 37,2 3
+3w8ToT10 — TeTox1o — 15x8x10 — Jagwy + 30T9 — S g + dry
1,4
From the terms in the above expression we get
a 2 2 2,22
{z% |a € Ay} = {a3, wsag, w3wazs, v4vs505, LT},

and we have

Fa©) = 3 uter

acAg

—%@% — 0307 + 5030,05 + 90,0507 — g@i@g.
We subtract this polynomial from the commutator, to get:

[@1, @2] - F18’2(®) = (—18 - 61’3 + 71’31‘6 + %l‘4$5 - %l‘4$51’6
+%x4x6x?0 + %mmfo + 42x6 + Txer3710 — 53T6T9
—1—7:56:1:3 — 303:% + 213:%:&3 + 6272 — 6xgx1o + 30x9

—625) + I

We can check that this expression has Kazhdan degree 6, and so A7 is empty
and F, = 0. We now find FY,. We have

{z® |a € Ag} = {w3s, $g, T4T5%6},
and so

Fiy©) = 3 ul*ter

acAg

— 7030 + 66} — 26,050,

Subtracting these polynomials from the commutator we get:



4. AN ALGORITHM FOR FINDING A PRESENTATION OF U(g,e) 40

[©1,0,] — Z Fle = (18 — 6x3 + %14% 1665x4x10 + 42z — 18x41x9

—3025 — 635210 + 3029 — 675) + I,
As before, we have that A is empty so FP, = 0. We now find F}',. We have
{v*|ac Ay} = {x3, 22, 2475},
and so

Fy(©) = ) p*'er

acAy

= —60; — 3007 + £0,065.

Subtracting further:
@1,@2 ZF{CQ = 18+42136>+IX

From this we easily see that F}, = 0, F7',(©) = 4205, F|', = 0 and F7,(©) =

—18; we can verify that

61, 0,] — Z Ffy(©
so we have

Fi2(©) = —103 - 0;0; 4+ 50;0,0; + 90,0;0; — 20307 + 70305
+60; — 20,050 — 603 — 300 + 26,05 + 4204 — 18.
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We now find F} 3. We have

[@1, @3] = (-35(71 + 65611‘6 — 3$2.T4 — %$3LE4$10 + 3$4$5$8 + 9$4$6$7
2 2
+?7$4$6ng10 - 271‘41’61’10 + 18$4$6I10 — 61‘41’7 + 3[L’4$7[E9
3 2 15 3 2 9,2
—§ZE4JZ8ZL‘10 - ?[L’4J}9{L‘10 + 51‘4%'91'10 + 9[E4l’10 + 51’41‘51’10

—%mixi’o — 48w6w8 + 667879 + 122578 + 4815 — 127879 + L.
We have ny +ng+2 =7, and
F{4(©) = —30,0,+60,6.
We subtract this polynomial from the commutator, to get:

[@1, @3] — F1773(@) = (—3271 — 91‘4$6£L‘10 - 31’41‘7 - 61741'91’10 + 121’41’10

—6xers + 1205 — 3xsw9) + I,
We see that Fs = 0 and FP5(©) = —304, and
[01,03] — F{5(0) — F74(0) € I,.
Thus F} 3(0©) = —30,04 + 60,04 — 30;. We now find F, 3. We have

[@2, @3] = (—3.’1311'5 + %1’1%%0 + 12$2 — 61’2.%6 — 3[13'3.1'61’10 + 3.1'3%’10
—3T4T507 — 624T5T9T10 + 3T4T5219 — %mxﬁxi’o + %SC4£E7£IZ‘%O
+gx4$91‘?0 — 6x4x:1)’0 — 3508 — 3T5x309 — 122627 + 6262729
—%xf;xgxfo — 18xgx9x10 + 3x6x3x10 + 24xgx10 + 6x§x7

2 2 3 2
+31’6$9[E10 - 61’61‘10 + 91’7 - 3[E7I’9 + Zl’gfbgl'lo + 155(791‘10

—3I3$10 — 181‘10) + IX’
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and so Fy4(@) = —30,05 — 60,0¢. Subtracting, we get

[02,05] — FJ4(©) = (12x2 + 6x3210 — 187425210 + 6423y — 122525
—12x¢27 — 6629219 + 1226219 + 2427 — 122729
+6x87% + 30T910 — 67510 — 36T10) + I,
— 120,

50 F53(0@) = —30:05 — 602,04+ 120,. We have [01,04] = 0, so F; 4(0) = 0.
Next,

[@2, @4] = (ZEl + 31‘41’61'10 + 247 + 2[E4I9£L’10 — 45(34.T10 + 21’61‘8 - 4(138
+ZE8$9) + IX
= 0O,

so [54(®) = ©;. Next, we have
[@3, @4] = %274 — 9$4.’B6 + [X,
so F5,(@) = —96,04, and

[@3,@4]—}‘_’;4(@) = 1?51'4+IX

— 15
- 1647

so F54(0@) = —90,06 + %94. We also have

_ 1 3 1,..3 1
[01,05] = (72 + 523710 — 57475710 + 54T — TsTg — Tel7 — 5T6T9T10
+ 2 sTsri+ 3 35 3 I
TeT10 + T7 — 79 + QSL'giEw + 21’933'10 — 21'933'10 — ZElo) —+ X

= @27

and we get F5(0) = ©,. We have [02,05] = 0, so Fy5(0) = 0. Next, for
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F3 5 we have
[03,05] = (=Zas + 95z — Jwgal, + 2a7)) + I,
s0 F35(@) = 90;50¢. Subtracting, we get

[©3,05] — Fé5<®) = (_571335 + %xﬁo) + I

- _%657
which gives F35(0) = 90504 — %@5. Next, we have
[04,05] = (26+3)+ 1,

so Fy5(0©) = O + % We have

[@1, @6] = (—1’1 - 3:1741'6ZL'10 — XyT7 — 21‘41‘9!)310 + 41‘4[)310 - 25(]61‘8 + 41‘8
—Z'SZEQ) + IX
- _@17

and we have Fi 4(©) = —0;. Next,

1 3 1 3 1
[@2, @6] = (332 + 5L3L10 — 5L4L5L10 + 54Xy — L5Lg — L7 — 5T6L9L10
1 2 5 1,.2
+xgx109 + 21’7 — X7Xg + 5%’8.’1310 -+ 51’91’10 — 51’91’10 — 3%’10) + [X

= @27

and [56(0) = ©2. We have [O3,06] = 0, so F34(0) = 0. Next, [O4, 0] =
—21’4 + IX = —2@4, SO F4’6(®) = —2@4 Finally, we have [@5,@6] = (21‘5 —

sx1y) + I, so F54(0©) = 205, completing the presentation for U(g, e).



5

One-dimensional

representations of Ufg, e)

In [POT7ii, Corollary 1.1] Premet proved the existence of finite-dimensional
representations for U(g, e), but the existence of 1-dimensional representations
(i.e. algebra homomorphisms U(g, e) — C) remains open. This is equivalent
to Conjecture 3.1(1) in [PO7i], which conjectures the existence of an ideal
of codimension 1 in U(g, e). It was proved by Losev [L10, Theorem 1.2.3(1)]
that in the case that when g is classical U(g, ) always admits a 1-dimensional
representation.

Further progress was made towards a proof of the conjecture by Premet in
[PO8, Theorem 1.1]. This states that the following condition is sufficient for
U(g, e) to admit a 1-dimensional representation. Let O C g be the nilpotent
orbit with e € O. If there is a proper Levi subalgebra [ of g with a nilpotent
orbit Oy C [ such that O is induced from Oy and that for eqg € Oy, the finite
W-algebra U([[, [], eg) admits a 1-dimensional representation, then U(g, e) also
admits a 1-dimensional representation.

These two results reduce the conjecture to the finite number of cases where
g is of exceptional type and e lies in a rigid orbit of g. These orbits are given
in [S82] and listed in Section 2.3.

44
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5.1 Using a presentation

Given a presentation of U(g, e) as in Chapter 4, with generators ©4,...,0y
for d = dim(g°) and relations Fj;(®) = [0;,0;] for 1 < i < j < d, it
is straightforward to determine the 1-dimensional representations. A repre-
sentation p : U(g,e) — C is determined by the values p(©;) taken at each
generator ;. Given ay,...,ay € C, the map p : U(g,e) — C is defined by
setting p(©;) = a; and extending to sums, scalar multiplication and products
O, -
tation of U(g,e) if and only if Fj;(a,...,aq) =0forall 1 <i < j <d. So

the question of the existence of a 1-dimensional representation of U(g,e) is

-0; for1l <4 <--- <14, < d. This defines a 1-dimensional represen-

answered by solving a set of rational polynomial equations.

Example 5.1.1. We return to the case where g is the simple Lie algebra of
type G, and e € g is a short root vector, as in Examples 4.2.1, 4.3.1 . We

recall the 12 non-zero values of Fj;:

Fi12(0) = 5030,05 — 103 — 0505 + 90,0;0; — 50703 + 70565
—20,050 + 60§ — 605 + 220,05 — 3007 + 420, — 18

F13(0) = 60,0 — 30,0, — 30;

Fi5(0) = 0,

Fi6(©) = -6,

[3(0) = —30,0;5 — 60,06 + 120,

F4(0) = 6,

F4(0) = 0,

F34(0) = —90,04+ 20,

F35(0) = 90505 — 2105

Fy5(0) = 5+6

F6(0) = —20,

F56(©) = 20;.
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We immediately see that for a 1-dimensional representation p of U(g, €) given
by p(©;) = «; we must have o; = 0fori =1,2,4,5 and ag = —%. Substituting

into the above, the only remaining non-zero polynomial is F 2, and we have

—%a%—%ag,—%g = 0.
Solving, we get a3 = —9 or az = —%. We therefore have precisely two
distinct 1-dimensional representations of U(g,e), given by (©4,...,0) —

(0,0,-9,0,0, —%) and (O1,...,0¢) — (0,0, —%, 0,0, —%) respectively.

5.2 Reduced enveloping algebras

We now consider a connection between finite W -algebras and the representa-

tion theory of modular Lie algebras.

Definition 5.2.1. [J62, Section V.7] A restricted Lie algebra of characteristic
p > 0 is a Lie algebra g, over a field k of characteristic p with a map a — al?!

such that for a,b € g, and a € k:
L. (aa)lPl = aPalr],

2. (a+ )Pl = alPl 4Pl 157" s(a, b), where is;(a, b) is the coefficient of
A~tin a(ad(Aa + b))P~!, and

3. [a,b?] = a(ad b)P.

Denote the universal enveloping algebra of a restricted Lie algebra gz by
U(gy). For & € g, let Je denote the 2-sided ideal of U(gy) generated by all
elements 2 — zlPl — £ ()P for 2 € g;. We define the reduced enveloping algebra
Ue(gr) to be the quotient U(gy)/ Je.

Let G and g be as in Chapter 3, with a nilpotent element e € g, and let
gz denote the Chevalley Z-form of g. Let k be the algebraic closure of the
finite field F,, for p > 0 (below we consider more precisely what restriction we

wish to place on p). Let g = gz ® k, let Gy be the simple simply-connected
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algebraic group with Lie(Gk) = gi, and let ex = e® 1 € gi. We use the same
notation (-,-) for the bilinear form on g as for its analogue on g, and let
X € g; denote the (rescaled) map from g to k corresponding to ey. Write
d, = 3dim(Gy - x) for half of the dimension of the orbit of x under the
coadjoint action of Gk on gj..

In this context, the Kac—Weisfeiler conjecture [KW71], proved by Premet
[P95] states that any irreducible representation of the reduced enveloping
algebra U, (gx) associated to x € gi has dimension divisible by p%. Given
this, it is natural to ask whether U, (gx) has representations with dimension
equal to p®. A sufficient condition for this in terms of the finite WW-algebra

U(g,e) is given by Premet in [PO8, Theorem 1.4], which we state here.

Theorem 5.2.2. If the finite W-algebra U(g, e) admits a 1-dimensional rep-
resentation then for an algebraically closed field k of sufficiently large char-
acteristic p, the reduced enveloping algebra U,(gx) has a simple module of

dimension px.

Combined with the results of Premet [P08] and Losev [L10], this means
that the existence of a 1-dimensional representation for each finite WW-algebra
U(g,e) where g is of exceptional type and e lies in a rigid nilpotent orbit
of g gives the existence of a representation of dimension p® for the associ-
ated reduced enveloping algebra U, (gx) provided the characteristic of k is
sufficiently large.

Premet’s proof of Theorem 5.2.2 uses a modular analogue of U(g, ¢), de-
fined over some k = Fp for p > 0. For this we need to repeat the construc-
tion of U(g,e) over Z[D™'], where D is a sufficiently large integer, to get
U (gz[D—l], e) where we have chosen our sly-triple from gz. We first require
that the bad primes for g are invertible in Z[D™1!], so our first candidate for
D is the product of those bad primes. In order that the rescaled Killing form
(+,-) is defined over Z[D~'] we may need to increase D to ensure that (e, f)
is invertible in Z[D™!]. For example, if g is the simple Lie algebra of type Er,
and e lies in the orbit with Bala-Carter label (A3 + A;)’, then x(e, f) = 396,

which has 11 as a factor, which is a good prime for g, and we must increase
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D accordingly. When we choose the basis, we require that the new structure
constants are invertible in Z[D™!], so we may need to increase D further at
this point. We also require that the coefficients A\, in the expressions for the
generators Oy, ...,0, of U(g,e) lie in Z[D™'], so we may need to increase D
again. Similarly, we require that the commutator relations [0;, ©;] = F};(©)
have all coefficients in Z[D™!], so it is possible that D may need to be in-
creased here also.

To establish a lower bound on the characteristic p of k for Theorem 5.2.2
we require that D does not divide p, but we must also consider each of the
finite W-algebras U([L, (], e9), where [ is a Levi subalgebra of g and ey € [[, []
is rigid nilpotent. The Levi subalgebras we need to consider are classical,
and the nilpotent orbits can be listed using a partition classification found in
[CM93, Chapter 5.1] and sly-triples and orbit representatives can be found
using the methods of [CM93, Chapter 5.2]. We require that there is a presen-
tation of U([L, 1], eg) for which p does not divide any denominator, and that p
does not divide the (integer) value x((eq, fo) where k; is the Killing form on [

and (e, [eo, fo], fo) is an sly-triple in [.

Example 5.2.3. We return to the case where g is the simple Lie algebra
of type G5, and e € g is a short root vector in the orbit with Bala—Carter
label A;. The bad primes for g are 2 and 3, and k(e, f) = 24. We have the
generators Oy, ..., ©g from Example 4.2.1 and the relations F;; from Example
4.3.1 and we see that the denominators which occur are 2 and 4. We can
therefore define U(gz-1,¢), and we can take any prime p > 3 for Theorem
5.2.2.

We conclude that for k = Fp where p > 3, the reduced enveloping algebra
associated to a short root vector ey in gy has a simple module of dimension

p?*, where 4 = % is half the dimension of the coadjoint orbit of x in gj.
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5.3 Removing relations

The algorithms of Chapter 4 give a presentation of U(g,e) involving (g)
relations, which allows us to determine the 1-dimensional representations. In
this section, we show that a presentation of U(g,e) can be given by fewer
relations, and that the task of determining the 1-dimensional representations
requires consideration of even fewer relations, thus significantly reducing the
amount of calculation required. The results given here appear in [GRUO09,
Section 3.

Lemma 5.3.1. Suppose we have a basis for g as in Section 3.2 where g°
is generated by w1,...,x, for some b < d. Then U(g,e) is generated by
O1,...,0y.

Proof. We may assume that the basis is chosen so that ny; < -+ < ny
and for Kk =b—1,...,d that zj lies in the span of the elements 1, ..., 2,1
and [z;,z;] for 1 < 4,5 < k — 1. Let W denote the subalgebra of U(g,e)
generated by ©4,...,0,. It is sufficient to show that ©; lies in W for each
E=b+1,...,d

Suppose we have shown ©Op,1,...,0,_1 € W. Then from our condition

on the n; we have that F,,, 1U(g,e) C W. We can express the basis element

xrr € g° in terms of x1,..., x5 1:
k k
T = E Vs, v5] + E 05 T4
i<k i<k

for coefficients ij, p¥ € Q. In the case that we have non-zero values for some
pF, we can change the basis so that w} is replaced by zj — Y oick pFx;, and
we get o = Y, Vhi[zi, 4;]. With this change, the new zy, is still a weight
vector for ad h and the action of t°.

From Theorem 3.2.1(4) we can write

> VE0:,0;] = Op+Gi(O1,...,0p1) + H(O1,...,04 1)

1,5<k
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where G(O1,...,05-1) = >, ;4 4j(O1,...,0k-1) is a polynomial with co-
efficients in Q which lies in F,, 2U(g, e) with zero constant and linear terms,
and Hy is a polynomial with coefficients in Q such that Hy(Oq,...,05_1) €
F,, U(g,e). We therefore have Hy(©1,...,0;_1) € W. We can write

Gk<@1, <oy @k—l) = Z ,Lbﬁ@clll s @Zi}l
|a|>2
2<|ale<ni+1
so we have that G (01, ..., Ok_1) is asum of products of elements of F,,, 11U (g, €)
along with ©1,...,0y, and so Gi(0©1,...,0,_1) € W. We also know that each
commutator [6;, ©;] lies in W, so O € W as required. O

Lemma 5.3.1 shows that not all generators ©4,...,0, are necessary in
order to give a presentation of U(g, ), but if we just have ©4,...,0, for b < d
then we no longer have a set of PBW generators. Incidentally, we get from
the proof of Lemma 5.3.1 an algorithm for finding the generators ©,,1,...,0y,
which does not require us to determine the large list of monomials which may

occur in the expression for O given in Theorem 3.2.1(1).

Theorem 5.3.2. Suppose we have a generating set xq,...,x, of g° as in
Lemma 5.3.1. Then U(g,e) is generated by O1,...,0, subject only to the

relations
[0i,0,] = F;(©O1,...,04) = Fj;(0),

fori=1,...,band j =1,...,d, where F}; is a polynomial with coefficients
in Q, and Fj(©) € F,4n;12U(g, ).

Proof. The case that b = d is immediate from [PO7ii, Lemma 4.1] and Theo-
rem 3.2.1(4). For b < d it is sufficient to show that the polynomials Fy,(©)
for k,l > b are determined by what we shall refer to as known polynomials
i.e. the polynomials F;;(®) where 1 <i<band 1 <j <d.

We need to show that for k,1 > b, we can calculate [O, ©;] = Fj;(©) in

terms of the known polynomials F;;. As in the proof of Lemma 5.3.1 we may



5. ONE-DIMENSIONAL REPRESENTATIONS OF U (g, e) 51

assume that ny,y < --- < ng and for m = b—1,...,d that x,, lies in the
span of the elements [z;,z;] for 1 <i,j < m — 1. From the anti-symmetry of
the relations, we may assume k£ < [. We use induction on the order of the F;;
given first by ny + n;, then by k, and then by [. Assume that we have each
Fyp if either: ny +npy < ng +ng; or if ngy +ny = ny, +n; and K < k; or if
ng +ny =ng +ny, ¥ =k and I’ < I. With polynomials G(O1,...,0, 1)
and Hg(©q,...,0_1) and rational coefficients ij as in the proof of Lemma

5.3.1, we can write

Or = Y v[0:,0;] - Gi(®) — Hy(®).

1,j<k

For k,1 > b we have

0,01 = Y vl[6:,6,],0] - [Gi(©),8)] — [Hi(©),8)].

1,5<k

We show that terms on the right hand side can be expressed as polynomials
in O, ...,0, using the known polynomials. We know G;(®) € F,,, 12U(g,e)
with no constant or linear terms, and that ©; € F,, 12U (g, €), so we can apply
the Leibniz rule to [Gy(©), ©;], expressing it in terms of polynomials F};(©)
polynomials Fj;(®) given by the inductive hypothesis. We can therefore
express [G(0©), 0] in terms of the known polynomials. Similarly, Hy(®) €
F, U(g,e) so we can apply the Leibniz rule and the inductive hypothesis to
express [Hg(©), 0] in terms of the known polynomials as well.

Finally, we consider a term of the form [[©;,©,],0,;]. From the Jacobi

identity we have

[[61'7 @j]v @l] = [@i? [®j’ 61]] + [[@lv 61]? @j]
= [0, Fu(©)] + [Fu(©), 6;].

We know the polynomials F;(®) and F;;(®) from the inductive hypothe-
sis, and by applying the Leibniz rule and the inductive hypothesis again we
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express [[©;,0;],0;], and hence [©,0;] = Fj(®) in terms of the known

polynomials. O]

In the following example, and also in the others for which the explicit
calculations are given below, the order of the basis is not in the form of Lemma
5.3.1 beginning with the generating set for g¢, but instead is in decreasing
order of the Dynkin degree, but this does not impact upon Lemma 5.3.1 and

Theorem 5.3.2, except to simplify the notation used.

Example 5.3.3. Returning to the example of U(g, e) where g is of type G
and e is a short root vector, with basis, generators and relations as in Example
4.3.1. We have that g° has dimension d = 6, and is generated by the elements
To, T3, T4, Ts Where xq = |29, 24] and xg = [x4, x5]. Note that for most cases,
the minimal number of generators is significantly less than the dimension of
g°. To illustrate the above, we find Fj 4(©) from the other relations. We have

[01,06] = [[O2,04], O]
= [O9, Fi6(O)] + [F26(©), O4]
=[O, —20,4] + [O3, O4]

which agrees with our original calculation in Example 4.3.1.

Combining this with Section 5.1, we see that the 1-dimensional represen-
tations of U(g, e) are determined by the relations given by the polynomials
Fjjfor 1 <i <band 1 < j <d where g° is generated by xy,...,x;. From
[PO7i, Lemma 2.4], we have an embedding of t¢ in U(g, e); we identify t¢ with
its image under this embedding, and we have an adjoint action of t on U(g, e)
for which ©; in U(g, e) has t-weight 3;. The following results show that in
order to determine the 1-dimensional representations of U(g, e), it is sufficient

to calculate a much smaller subset of the relations Fj;.

Lemma 5.3.4. Let p : U(g,e) — C be a 1-dimensional representation of
U(g,e). Then p(©;) =0 for all i such that (3; # 0.
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Proof. Let i be such that 8; # 0. Then we can choose t € t° such that
Bi(t) # 0. So we have

PBi(t)p(©:) = p(Bi(1):) = p([t, ©:]) = [p(t), p(©4)] = 0,
and p(©;) = 0 as required. O

The following theorem shows that all 1-dimensional representations of
U(g, e) can be determined by calculating only the commutator relations [©;, ©);]
when 3; + 3; =0. Fori =1,...,d write

1 for ;=0
"]l 0 for Bi 0

and write Fl-j(Tk | B = 0) = F;;(01T1,...,0q4T4) for the evaluation of the
polynomial Fj; at T; = 0 for 3; # 0.

Theorem 5.3.5. The 1-dimensional representations of U(g, €) are in bijective
correspondence with solutions to the set of polynomial equations F;(Ty, | B #
0) =0forl <i<bandl < j < dand B; +F; = 0. The solution
giwen by Ty = oy for each k with B, = 0 corresponds to the 1-dimensional
representation p determined by setting each p(©y) = 0 for k with Oy # 0 and
each p(©k) = ay, for k with B, = 0.

Proof. Given a representation p : U(g,e) — C, the values p(0),...,p(04)
give a solution to all Fj;, and by Lemma 5.3.4 this also is a solution to the
set of polynomials Fij with 1 <:<band 1 <j<d.

Given a solution (aj | B = 0) to the Fy;, we need to show that there
isno Fj; with 1 <47 <band 1 < j < dand 3 + 3; # 0 such that the
evaluation of F;(Ty,...,Ty) at T = ay for By = 0 and T = a; = 0 for
Bk # 0 is non-zero. Suppose there are some 4, j such that Fj;(oy, ..., aq) # 0.

Write F;(©) = Z|a|8§ni+nj+2 A90?2. Then there is some a = (ay,...,ay)
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with \9©2 = (0 and

N H ar # 0.
ap#0
But then each ozZ’“ in the product is non-zero, and so for each k with a; # 0,
we have 3, = 0. The polynomial Fj;(®) is homogeneous with respect to

t°-weight, so we must have ; + 3; = 0, giving a contradiction. n

The above results greatly facilitate the task of finding the 1-dimensional
representations for U(g, ¢), however without a full presentation of U(g, e) we
cannot yet establish a bound on p for Theorem 5.2.2, as there may be further

denominators appearing in the relations not calculated.

Example 5.3.6. Again we return to the case where g is simple of type Gy
and e is a short root vector, and the generators and relations of U(g, e) are
as in Example 4.3.1. We have (4,...,0s) = (1,—1,0,2,—2,0), so for any
1-dimensional representation p we must have p(0©) = 0 for k = 1,2,4, 5, and

to determine the 1-dimensional representations we need only calculate the
relations F2(©), F34(©) and Fy5(©). We have:

Fio(T5,Ts) = —iT5 — TyT5 + TT3T5 + 61 — 6T — 30T; + 42T, — 18
F36(T5,75) = 0
Fus(T5,T5) = %+T6,

which give the same solutions as in Example 5.1.1.



6

Results for rigid nilpotent
orbits in exceptional Lie

algebras

In this chapter we show that for g of type Ga, Fy, Eg or E7, and e a rigid
nilpotent element of g the finite W-algebra U(g, e) admits either 1 or 2 1-
dimensional representations. In the case that g is of type G5, F) or Eg we
also give a lower bound on the characteristic p of the field k for which the
reduced enveloping algebra U, (gi) admits a representation of dimension p%.
We give for each rigid nilpotent orbit for g of type Gs, Fy, Eg or E7 a basis
according to Section 3.2, an sly-triple for that orbit and minimal generating

sets for the subalgebras g¢ and m.

6.1 Type G5

Here we calculate U(g, e) for g of type G2 and e lying in each of the 4 non-
zero nilpotent orbits (not just the rigid orbits). We summarize in Table 6.1
certain data for these orbits, including the number of 1-dimensional represen-
tations for U(g,e) in each case and the primes p for which we cannot define

U(gk, ex) for k of characteristic p and hence we cannot apply Theorem 5.2.2

95
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and conclude that U, (gx) admits a representation of dimension px.

Table 6.1: Results for type Gj.

Dynkin # 1-dim | Bad primes
Orbit | diagram | (e, f) | dim(g®) | dim(t°) reps for U(gy, ex)

o

Ay 0 1 8 8 1 1 2,3

A, 1 0 24 6 1 2 2.3
Ga(ar) | 2 0 32 4 0 0 2,3

Gs 2 2 224 2 0 00 2,3,7

Below we give the full details of the presentation of each of the finite
W-algebras associated to the 4 non-zero nilpotent orbits in g. Note that in
order to make any conclusions about a lower bound for the characteristic
of the field in Theorem 5.2.2, we must consider a presentation of the finite
W-algebra associated to a rigid nilpotent element ey in a Levi subalgebra
[ of g. In this case, the only Levi subalgebra to consider is of type A,
which contains precisely 1 non-zero nilpotent orbit (which is both minimal
and regular), and the associated finite WW-algebra has a presentation where
the only denominators to occur are powers of 2, which is a bad prime for g.

Thus for rigid nilpotent e € g we can apply Theorem 5.2.2 for p > 3.

6.1.1 The orbit A;

Here we consider the finite W -algebra associated to the minimal nilpotent
orbit in g, with Bala—Carter label A;, or equivalently, the orbit containing
a long root vector. In Table 6.2 we give our choice of basis x1,...,x14 of
g in terms of the inbuilt Chevalley basis by,..., b4 in GAP4 for the simple
Lie algebra of type Go. We take our sly-triple to be (e, h, f) = (bg, b1z +



6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 57

2b14, b12) = (21,23 + 2x9, v14). With this basis, a minimal generating set for
g° is {z5, =g, r7}. A minimal generating set for m is {x1, z13, z14}. The

subalgebra t¢ is spanned by zg. We calculate (e, f) = 8.

Table 6.2: Basis for type Gg, orbit A;.

L% Bi

Ty | be 2 0

Toa | ba 1 -3

T3 | b3 1 —1

.| T by 1 1

P g Ts | by 1 3
T | b 0 2

x7 | by 0 -2

rs | b3 0 0

Tg | bia 0 0

T10 | bg | —1 3

T11 | by | —1 1

T12 | big | —1 —1

m r13 | b1y | —1 -3
Tig | 1o | =2 0

Following the algorithm of Section 4.2, we calculate the following generators
for U(g,e):

O1 = (o1 + Taki0 + 323211 — §A707, + Lo — 3T + 25) + I
@2 = I3 + IX
@3 = (.2?3 — %Z’ﬂlﬁll) + IX

_ 2 5
Oy = (24+x710 + 5T8T11 + ToT11 — 5711) + Iy
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O5 = (x5 — sxx11 — TsT1o — ToT1o + 3T10 — =23;) + Iy
O = (z6+ 521)) + I

©; = a7 +1,

O = ws+1,.

And using the algorithm of Section 4.3 we calculate all commutators [©;, ©);]
for1 <i<j<8:

(01,05 = —80, +10;0; + 20,64
[01,035] = —303+ 20,07 + 30505 + 0,04
01,04 = 0507 — 20,65 + 20,0
[01,05] = 65— 20505 + 10,65
[01,04) = 1040465

©1,07] = —§97+@7@8

©1,05] = 0

[02,05] = 367

0,,0,] = 20; — 20;64

05,05] = —2—6,+1646;

[02,06] = O3

02,07 = 0

[O2,08] = 30,

(03,04 = 2—205+30; + 203 — 1640,
[03,05] = —264+ 20405

(05,0 = 20,

[05,0.] = 30,

[©3,05] = O3

[04,05] = 20¢

[O4,06] = 30;
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04,07 = 20,
[04,05] = —64
05,05) = 0
[@5767] = @4
05,05 = 305
0,07] = —2+ 64
0,05 = —204
0,05 = 20,

Solving the associated set of polynomials we conclude that we have a unique

1-dimensional representation for U(g, ), defined by

@1'—>—
@8’—>2,

O

with ©; +— 0 for each other generator. Note that the existence of a 1-
dimensional representation in this case was known from [POT7i] (as our orbit
is minimal), though to verify the details of the presentation given in [PO7i,
Theorem 6.1] using these methods we would need to make a different choice
of basis (but still meeting the conditions of Section 3.2). We can observe that
the only denominators occurring in this presentation are powers of 3, which
is already excluded as it is a bad prime for g, so we may define U(gy, ex)

provided k has characteristic p > 3.

6.1.2 The orbit fll

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label A;, or equivalently, the orbit containing a short root vector. In
Table 6.3 we give our choice of basis for g. The information given here is
repeated from the examples in Chapters 4 and 5. We take our sly-triple to
be (e, h, f) = (b, 2013 + 3b14,b10) = (x3,3x6 + 229, x12). With this basis, a
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minimal generating set for g€ is {xs, x3, x4, x5}. A minimal generating set
for m is {x11, w12, 214}. The subalgebra t¢ is spanned by xg. We calculate

k(e, f) = 24.

Table 6.3: Basis for type Ga, orbit A;.

N Bi

r1 | bg 3 1

To | bs 3 —1

.| @3 by 2 0

g Ta | ba 0

p r5 | bg 0 —2

Te | by 0 0

o | |1 1

rs | b3 1 1

Tg | bi3 0 0

T1o | by | —1 —1
r11 | by | —1 -1

T12 | big | —2 0

m
T3 | by | —3
214 | b2 | =3 —1
We calculate the generators:
O1 = (21 + 32476710 + T4T7 + 22479710 — 474710
+2xers — dag + w3%9) + I,
Oy = (24 $x3T10 — 23475210 + 5242 — 5T — Te7

1 1 2
—§$6$9I10 + TgT1g + 21’7 — T7Zg9 + 51;8'7;10

5 1,.2
+§[Egl’10 - 51‘91’10 - 31’10) + IX
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O3 = (z3+ %mx%o + 36z + TsT10 — BTy + 25) + I
Oy = x4+1,

O; = (v5— }135%0) + 1y

O = w6+ 1.

We calculate all non-zero commutators [0;,0;] for 1 <i < j <6:

[©1, 0]

5030,05 — 103 — 0307 + 90,056
~2010: + 70;0 — 20,0504 + 60}
—60; + 26,05 — 300 + 426, — 18
60105 — 30,0, — 30;

O

-0,

—30,05 — 60,04 + 120,

©1

O

— 90,05 + 26,

90505 — 205

5T 6

—20,

205.

We have two 1-dimensional representations, given by

and

@3|—>—9

1
@6|—>—§
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[\

1

O3
O¢

—
—

S

with all other generators ©; — 0. We can observe that the only denominators
occurring in this presentation are powers of 2, which is already excluded as it
is a bad prime for g, so we may define U(gy, ex) provided k has characteristic

p > 3.

6.1.3 The orbit G5(a;)

Here we consider the finite IW-algebra associated to the orbit of g with Bala—
Carter label Ga(ay), that is, the subregular orbit of g. In Table 6.4 we give
our choice of basis for g. We take our sly-triple to be (e, h, f) = (ba+ by, 2013+
4b14, bs + b1o) = (21, 9, 10). With this basis, a minimal generating set for g°
is {x9, =3, x4}. A minimal generating set for m is {19, 211, Z12, 213}. The

subalgebra t¢ is zero. We calculate «(e, f) = 32.

Table 6.4: Basis for type Gy, orbit Ga(ay).

1y Bi
1 be 4
.| 22 ba + by 2
ey [ bs—3bs | 2
Ty by 2
p Ty b3 2
T b1 0
T by 0
Ty b1z 0
Tg bi4 0
T | bs+b1g | —2
T e | 3bs — by | —2
Continued on next page




6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 63

Table 6.4 — continued from previous page

n; Bi
T12 bg -2
m x13 511 —2
L14 b12 —4

We calculate the generators:

@1 = (331 + %3321:6 — %.TQQW — %x3$9 — %.T4ZL‘6 + éﬂ?43§7 — E335 + é335$8
+3w529 + Bwead — Swewswy + Swexe — Swey — w7 + Haras
—Surwsmg — Swowi + Dawrwg — Swra — Fad) + I

@2 = ($2 + .Z'6I7 — —.1'8 + 4$8I9 + IS 12I9 + 4I9) + I

@3 = ( 41’6 + 45(]61‘8 + 4.%‘@’[’9 + —[E7 - §$7l’8 - 4ZE7CL’9) + IX

O, = (v4+ 1‘61’7 %x7 - _xS + 4wy + xg 929 + 31;) + L

We calculate all non-zero commutators [0;,0,] for 1 <i < j <6:

01,0;] = 20,320, + 2207 + 203 - 320,0, + 203
[@1, @4] == 2@1 - %@3@4 + %@2@3
(03,0, = 405+ 30;.

We have infinitely many 1-dimensional representations. The only denomina-
tors appearing in this presentation are powers of 3 which is already excluded
as it is a bad prime for g, so we may define U(gy, ex) provided k has charac-

teristic p > 3.

6.1.4 The orbit G5

Here we consider the finite IW-algebra associated to the orbit of g with Bala—
Carter label G5, that is, the regular orbit of g. In Table 6.5 we give our choice
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of basis for g. We take our sly-triple to be (e, h, f) = (by+bg, 6b13+10b14, 6b7+
10bg) = (x2, 627 + 10zg, x9). With this basis, a minimal generating set for g°
is {1, x2}. A minimal generating set for m is {xg, x19}. The subalgebra t°
is zero. We calculate k(e, f) = 224.

Table 6.5: Basis for type Ga, orbit Gs.

L Bi

.| 2 bs 10
e | bitb >
T3 bs 8
T4 by 6
P s b3 4
T by 2
T7 b1z 0
s b14 0
Ty | 6b7 +10bg | —2
Ti0 | b7 — 3bg —2
T11 3bg —4

m
T12 bio —6
13 b1y -3
14 b1o —10

We calculate the generators:
0, = (r;— %xgm + 1962975 — %I2x5x7 — %xg%xs 4+ 109762516
60368m2x T7 + M:L‘gxﬁxwg -+ 952x xﬁxg — &éml’gl'ﬁxg

+ 10376:152356:158 — %xg% — %@m + 2458624 x9x728

o 7683200 £L’2.CE733§ + 30733281, .T7[Bg + 24526241,2333 _ 6148560 1723:?1.8
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+1538640x2x$x§ . 1222:1,12096#? + 245287624$2x7$ + 1229312@%4%
_89123120332358 + 1843968:1:23:§ _ 7683320 8 3 1097602:%357
2125295%:6795 218523:% ? + 54880:6‘%338 — 5488x2x8 — 98x3 + 28x377
+56x535 + 2507, + Bayre — Bxyx7 + T84wsarws + 5 1427
4312m rg + @x xg %% + @%xﬁ - £x5x6x7 - 3%2%%:1:8
+315801H2$5$7 4559504x5x 5 + 142688x5x7x§ 452?04%957
+10976x5x7x8 + wx :L‘? + —157257056x5x8 — w —I— Mw :Eg
+§x 12299312033 + 183782144l,6x7 . 11732979296336&: s + 24278912l,6x7$§
——1532640356:157:1:2 284222728356:1:7 + 1536640.756;157958 —1223312033 x?m%
+219;i,952 3361,:; . 1538640 6 x? g — 61421356 6 x‘% + 928£056 L6
_ 10082073584 6 mg + 4456256 6 xg 614656 6 358 + 1174432 x% 352;20 ch 7
+76832x6x7x8 + 71344x§ g _ @xé 4 60368961ng T lg(;ng
+688414720 o7+ 808837296 Loy — 7650(8)(1)8576 x7x8 + 17210368x7x§
+8605184 Iﬂs + 4784244832304 x% 346725159152 2$8 + 4302592m7x8
443025020 43025920 mg xg 4303592 x; xé‘ 5077702598560 x; 6884;472 x? Ia
+456074752 :1:? xé 8603184 x? xg 189§i§048 iU? + 19798119232 :1:‘% s
55922;696 :c4x§ + 86025413840 a:? 172;(1)368 x? g — 17271209368 6 344287360 g
+2443§';2256 2 68841472]38 + 34420736 4) 4 I

Oy = (x2 — Blur + 28wrws + Ba? — 84wg + 2843) + 1.

These generators commute, and as we know, U(g,e) is isomorphic to Z(g),
the centre of U(g), in this case [K78]. We have infinitely many 1-dimensional
representations. The only denominators appearing in this presentation are
powers of 3 which is already excluded as it is a bad prime for g. We have that
7 divides k(e, f), so we may define U(gy, ex) provided k has characteristic
p>T.
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6.2 Type F}

Here we calculate U(g,e) for g of type Fy and e lying in each of the 5 non-
zero rigid nilpotent orbits. We summarize in Table 6.6 certain data for these
orbits, including the number of 1-dimensional representations for U(g,e) in
each case and the primes p for which we cannot define U(gy,ey) for k of

characteristic p.

Table 6.6: Results for type Fj.

Dynkin # 1-dim | Bad primes
Orbit | diagram | (e, f) | dim(g®) | dim(t®) | reps | for U(gy, ex)
e oo o
A 1000/ 18 36 3 1 2,3
A 0001/ 36 30 3 1 2,3
Al+A4, 10100 54 24 2 1 2.3
As+A, {0010 108 18 1 1 2,3
Ay+ A 0101 162 16 1 2 2,3

From here onwards, the generators are too many and/or have too many
terms to be written here, and so are omitted. Similarly, we omit the relations
which are not required in order to determine the 1-dimensional representa-
tions according to Theorem 5.3.5. This information will, however, be consid-
ered in any statements made regarding the lower bound on p for Theorem
5.2.2. The simple summands of the Levi subalgebras of g are of types Ay,
As, Bs, Bs and (3. Calculation of presentations of the associated finite W-
algebras for rigid e shows that the only denominators which occur are powers
of 2 and the values of (e, f) which occur have prime factors 2, 3 and 5. Thus

for rigid nilpotent e € g we can apply Theorem 5.2.2 for p > 5.
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6.2.1 The orbit A;

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label Ay, that is, the minimal nilpotent orbit in g. In Table 6.7 we give
our choice of basis for g. We take our sly-triple to be (e, h, f) = (bag, bsg +
2b50 + 2bs1 + 3bso, bys) = (w1, w32 + 233 + 334 + 2737, T52). With this basis,
a minimal generating set for g¢ is {15, 16, %17, T18, T19, T20, To1}. A
minimal generating set for m is {x4s,...,250}. The subalgebra t¢ has basis

{32, 33, x34}. We calculate k(e, ) = 18.

Table 6.7: Basis for type Fj, orbit Aj.

T Bi
x1 | by 2 (0,0,0)
Ty | by 1 (0,0,—1)
x3 | bg 1 (0,-2,1)
x4 | by 1 (—1,0,0)
5 | by 1 (1,-1,0)
e | bis 1 (—2,2,-1)
T7 | by 1 (0,1,-1)
s | big 1 (—2,0,1)
.| To | b7 1 (0,-1,1)
PI® e bs| 1] (20-1)
11 | big 1 (—1,1,0)
Z12 | bao 1 (2,-2,1)
213 | bay 1 (1,0,0)
T14 | b 1 (0,2,-1)
Z15 | bog 1 (0,0,1)
x16 | b1 0 (2,-1,0)
17 | bos 0 (—2,1,0)
x18 | b3 0 (—1,2,-1)
Continued on next page
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Table 6.7 — continued from previous page

N Bi
Z19 | bor 0 (1,-2,1)
oo | by 0 (0,—-2,2)
o1 | bog 0 (0,2,—2)
Too | b 0 (1,1,-1)
Ta3 | bag 0 (—L -1, 1)
Toy | b7 0 (—1,0,1)
To5 | b3y 0 (1,0,—1)
Zog | bg 0 (1,—-1,1)
. | To7 b32 0 (—=1,1,-1)
p g Zag | bio 0 (—2,2,0)
Tog | bz | O (2,-2,0)
230 | bio 0 (0,1,0)
231 | bse 0 (0,-1,0)
232 | bao 0 (0,0,0)
233 | bs1 0 (0,0,0)
34 | bso 0 (0,0,0)
T35 | bis 0 (2,0,0)
236 | b3g 0 (—2,0,0)
37 | bso 0 (0,0,0)
238 | bog | —1 (0,0,1)
X39 | byg | —1 (0,2,-1)
ZTgo | b3z | —1 (1,0,0)
x4 | D35 | —1 (—1,1,0)
Tgo | b7 | —1 (2,-2,1)
Taz | bsg | —1 (0, -1, 1)
Tag | byo | —1 (2,0,—1)
Ty | a7 | —1 (0,0,—1)
" Tys | byg | —1 (07 —2, 1)

Continued on next page

68
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Table 6.7 — continued from previous page

n; Bi
Tyr | bys | —1 (—=1,0,0)
T48 b43 -1 (17 _170)
Tag | baa | —1 (_27 2, —1>
m
Tso | by | —1 (07 1, —1)
T51 | bag | —1 (—2,0,1)
Ty | bag | —2 (07 0, 0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U (g, e),

we require the commutators Fog 91, Fig 17, Flo19 and Fj 5t

[©20,021] = —5+ O34

[©16,017] = —2+ O3

[©18,010] = O3

[02,015] = 6— 2034 — O35+ O1 — O35035 — 503031 — OO0

—%@26@27 - %@24@25 — ©2002;.

We have one 1-dimensional representation, given by

0, — =5
Oz — 2
B33 — 0
O34 %,

with all other generators ©; — 0. The denominators which appear in the
presentation of U(g, e) are all powers of 2, so we can define U(gy, ex) provided
k has characteristic p > 3. As in the case of the minimal orbit in g of type G5
above, the existence of the 1-dimensional representation for U(g, e) was known

from [P07i], however given the explicit presentation we can also establish the
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bound on the characteristic of p for the modular case.

6.2.2 The orbit 1211

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label Ay, that is, the orbit containing a short root vector of g. In Table
6.8 we give our choice of basis for g. We take our sly-triple to be (e, h, f) =
(ba1, 2b4g+2b50+3bs1 +4bss, bys) = (4, 298+ 399+ 4230+ 2237, 49). With this
basis, a minimal generating set for g° is {14, 15, T16, T17, T19, T2, T23, T25}-
A minimal generating set for m is {x42,...,249}. The subalgebra t¢ has basis
{298, ®a9, 30}. We calculate x(e, f) = 36.

Table 6.8: Basis for type Fy, orbit A;.

n; Bi

xy | bis| 2 (—1,0,0)
To | big 2 (—1,0,1)
x3 | by 2 (0,—2,1)

ry | by 2 (0,0,0)
Ts | boo 2 (0,2,-1)
e | bog 2 (—1,0,1)

T7 | by 2 (1,0,0)
.78 | by 1 (0,-1,0)
P8 e (6| 1] (01,1
T19 | bg 1 (-1,-1,1)
r11 | bnn 1 (1,-1,0)
T12 | bio 1 (—1,1,0)
213 | b1 1 (1,1,-1)
T4 | bi7 1 (0,-1,1)

Z15 | big 1 (0,1,0)
16 | bo 0 (2,0,-1)

Continued on next page
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Table 6.8 — continued from previous page

N Bi
17 | by 0 (—1,-2,2)
18 | bg 0 (1,-2,1)
219 | bio 0 (—1,2,0)
oo | D13 0 (1,2,-1)
21 | b1 0 (0,0,1)
oo | bog 0 (—2,0,1)
e | 23 bos 0 (1,2,-2)
S law b | 0] (-1,2-1)
o5 | b3y 0 (1,-2,0)
Tae | bsr | 0 (-1,-2,1)
p o7 | bao 0 (0,0,—1)
Zog | bso 0 (0,0,0)
Tag | bs1 0 (0,0,0)
230 | bs2 0 (0,0,0)
31 | b3 0 (0,2,-1)
T30 | b7 0 (—1,0,1)
233 | bg 0 (1,0,0)
X34 | bor 0 (0,—2,1)
235 | b3y 0 (1,0,—1)
236 | D33 0 (—1,0,0)
237 | bag 0 (0,0,0)
38 | bos | —1 (0,1,0)
39 | bag | —1 (0,-1,0)
ZTgo | b3z | —1 (1,1,-1)
Tar | bsz | —1 (_L -1, O)
Tz | byz | —1 (07 -1, 0)
m T4z | b1 | —1 (0,1,-1)
Tay | bsg | —1 (—L —1, 1)
Continued on next page
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Table 6.8 — continued from previous page

U B
Zas | bag | —1 (1,-1,0)
a6 | bso | —2 (1,0,0)
Ta7 | baa | =2 (—1,0,1)
n Ty | bag | —2 (0,2,-1)
Tag | bas | —2 (0,0,0)
Tso | bag | —2 (0,-2,1)
Ts1 | ba7 | —2 (1,0,—1)
Tso | byg | —2 (—1,0,0)

72

By Theorem 5.3.5, to determine the 1-dimensional representations of U (g, ¢),

we require the commutators F19’257 F16722, F17723, F8715, F9’145

[©19,025] = —14 O30+ O

[@167 @22] = @28

[®177 @23] = @30

[©5,015] = —18+ 8030 + 6099 + 4025 — Oy + 4091097 + 4057094
+4019095

[Og,014] = 24— 12030 — 14099 — 6095 + O4 + 409903 + 203,

+2@28@29 - 4@21627 - 4(9186)24 - 4(917(923-

We have one 1-dimensional representation given by

1111

—12
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with all other generators ©; — 0. The coefficients which appear in the pre-
sentation of U(g, e) are all integers, so we can define U(gy, ex) provided k has

characteristic p > 3.

6.2.3 The orbit A; + A,

Here we consider the finite IW-algebra associated to the orbit of g with Bala—
Carter label A; + A;. In Table 6.9 we give our choice of basis for g. We take
our sly-triple to be (e, h, f) = (bi7 + baa, 2bsg + 3bso + 4b51 + Gbsa, bag + bag) =
(24,2293 + 3oy + 4x31 + 639, bs5). With this basis, a minimal generating
set for g° is {x1s, T19, T20, T21, T22}. A minimal generating set for m is
{39, T40, T41, Ta2, T43, T4, Ta5, T4, Tas, Tso}. LThe subalgebra t¢ has
basis {xa3, T24}. We calculate k(e, f) = 54.

Table 6.9: Basis for type Fy, orbit A; + A;.

L% Bi
1 bos 3 (0,—1)
T2 b4 3 (07 1)
T3 516 2 (_27 0)
Ty | b7+ oo 2 (0,0)
x5 b1g 2 (—1,0)
6 bao 2 (2,0)
.| 7 ba1 2 (1,0)
P8 o | b 2| (0,0)
To | bat+ib | 1| (0,-1)
Tio | be+5bia | 1 (0,1)
11 b7 1| (-1,-1)
T12 bs 1 (17 _1)
13 b 1 (—1,1)
L14 bio 1 (—2,-1)
Continued on next page
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Table 6.9 — continued from previous page

L Bi

T15 b1y 1 (1,1)
T16 b1 1 (—2,1)
T17 bis 1 (2,-1)

T1g bis 1 (2,1)

. | 19 bs 0 (0,2)
e | bstbw | 0| (=1,0

o1 | bs + bar 0 (1,0)
T99 bag 0 (0,—2)

o3 b9y 0 (0,0)

P a1 | bso 0 (0,0)
o5 by 1 (0,—1)

Tog be 1 (0,1)

To7 by 0 (2,0)
Tog b3 0 (—1,0)

Tog bs 0 (1,0)
Z30 bos 0 (—2,0)

31 bs1 0 (0,0)

39 b5 0 (0,0)

T33 bag —1 (0,1)

T34 b31 —1 (0,1)

T35 b3 -1 (1,1)
T36 b3y —1 (—1,1)

37 bse -1 (2,1)
T38 b7 -1 (2,-1)
T39 bss -1 (0,—1)
40 bso —1 (0,-1)

m
v | b | =1 (=1,-1)

L42 bas 1| (1,-1

Continued on next page
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Table 6.9 — continued from previous page

L Bi
43 byo 1] (=2,-1)
T4 b3g —1 (—2,1)
Ty5 b4 —2 (2,0)
T46 b43 -2 (1,0)
Ty7 bas —2 (—27 0)
" Tyg | ba1 + bag | —2 (0,0)
g | byp — 2046 | —2 (0,0)
L50 bas —2 (=1,0)
T51 baz -3 (0, 1)
Ts2 b4s -3 (0,-1)

75

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F19722, F20721, F5721, F7720, F147182

{@197 @22
[@207 @21

= —2+ 0Oy
= 2— 0Oy

[@7a @20
[@14a @18

We have one 1-dimensional representation:

©4
O3
O23
@24

111

= 24— 60y — Ly + 305 — Oy + 30304, + 303,

]

)

[©5,021] = 12— 3923 — 308 + O4 — 309002;
]

] = —0O5+301909.
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with all other generators ©; — 0. The denominators which appear in the
presentation of U(g, e) are all powers of 2, so we can define U(gy, ex) provided

k has characteristic p > 3.

6.2.4 The orbit A, + A;

Here we consider the finite IW-algebra associated to the orbit of g with Bala—
Carter label A5+ A;. In Table 6.10 we give our choice of basis for g. We take
our sly-triple to be (e, h, f) = (bis + bis + big, 3bag + 4bso + 6bs1 + 8bso, bas +
2b39 + 2b49) = (g, 4x18 — w30 — 431 + 630, 147). With this basis, a minimal
generating set for g¢ is {15, =16, T17}. A minimal generating set for m is
{36, T37, X33, T39, Tao, T41, T43, Ta5, Tag, Ts47}. The subalgebra t° is

spanned by x15. We calculate (e, f) = 108.

Table 6.10: Basis for type Fy, orbit Ay + A;.

n; Bi
T bas 41 =2
To bas 4 0
T3 boy 4
Ty big 3| -1
Tx bay 3 1
Te bi4 + D15 + big 2 0
.| @7 bia 2 0
Pe g bio 2| —4
Ty bio — 2b13 20 =2
T10 bi7 — 2018 2 2
T bao 2 4
T19 bs 1 -3
13 bs + by 1 -1
T14 bs — by 1 1
Continued on next page
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Table 6.10 — continued from previous page

1 Bi
Z15 bi1 1 3
. | 716 by — 2by — by 0 2
g T17 | bas — bag — 2bag 0 —2
218 | bag + 2b50 + 2bs0 0 0
T19 bio 0] -2
T20 bis 0 0
To1 b7 0] -2
T99 bs 0| -1
To3 bg 0 1
P Toy by 0 2
Tos bo 1 2
Tog bg 1 4
To7 bas 0] -2
T2g bas 0 —2
To9 bso 0| —4
30 b4g 0 0
31 bso 0 0
32 bs1 0 0
33 ba7 —1 3
T34 bag -1 1
T35 bs1 -1 1
Z36 bss -1 =3
Z37 b32 -1 -1
38 b3 -1 -1
m Z39 bsy —2
T 40 bag —2
T4 bsr -2
T4 by -2 | =2
Continued on next page
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Table 6.10 — continued from previous page

L% Bi
T43 bao -2 =2
Ty baa -2 —4
T45 bsg — 2bog -2 0
T46 b3g — bao -2 0
m Tya7 | bsg + 2b3g + 2bsg | —2 0
T8 bys3 -3 1
T49 bys -3 -1
T50 bas —4
Ts51 ba7 —4
T52 bag —4 —2

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F16717, F12715, F10,17, F9716, F1716, F3717Z

[@167 @17]
[@12’ 615]
[@107 @17]
[697 @16]
[©1, O1¢]

(O3, O17]

—3 + O3

—304 605 — O7

—84 4 18015 — 607 + 204 + 601017

—% + 3015 — 607 + 206 + 6016017

157 _ 33305 + 810, + 30 + O, + 207, — 7204047
+6012015 + 309015 — 607015 + 9015017013

— 3321 4 B05g,5 — 10207 + 51605 + O — 63075 + 369016017
—3013014 — 3012015 + 3010017 + 309016 + 180015

—900 15 — 5401601701s.



6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 79

We have one 1-dimensional representation:

@2 — %
@6 — —%
@7 — —15
O — %

with all other generators ©; — 0. The denominators which appear in the
presentation of U(g, e) are all powers of 2, so we can define U(gy, ex) provided

k has characteristic p > 3.

6.2.5 The orbit 1212 + Ay

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label A;+ A;. In Table 6.11 we give our choice of basis for g. We take
our sly-triple to be (e, h, f) = (bg + b14 + big, 4bag + Dbso + Tbs1 + 10bss, 2b32 +
2b3s+bag) = (g, —Tw16+4T28+ 12299+ 10230, 43). With this basis, a minimal
generating set for g¢ is {x7, s, T13, T14, T15}. A minimal generating set for
m is {x35, 36, T37, T3s, T41, Ta2, T43}. The subalgebra t¢ is spanned by xy.
We calculate x(e, f) = 162.

Table 6.11: Basis for type Fj, orbit fig + A,

N Bi
T bas 5 -1

To bas 5 1

T3 bao 4 2

p | g% | 2y ba1 4 0
T5 boo 41 =2
T bis + %blg 3 -1

o bir — 2b1s 30 1

Continued on next page
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Table 6.11 — continued from previous page

1 Bi
s bs + b14 + b1g 2 0
Tg big 2 0
10 by — by 1 1
11 bg 1 3
g | T12 b7 — by3 1 —1
T13 big 17 -3
T14 by — boy 0 2
Z15 bs — bog 0| -2
T16 bso — bs1 0 0
T17 b1s 3| -1
18 b7 3 1
p T19 bs 2 0
T b11 2 2
T2 bi2 2 —2
Too by 1 1
T93 by 1 1
Toy bs 1] -1
Tas b13 I -1
T26 by 0 2
To7 b3 0] -2
Tag bag 0 0
T29 bso 0 0
T30 b2 0 0
T31 bag -1 1
T32 bao -1 -3
T33 bs1 —1 1
T34 b7 -1 1
m T35 bas -1 -1
Continued on next page
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Table 6.11 — continued from previous page

L% Bi
T36 bag -1 3
x37 bss -1 -1
T38 b3y -1 -1
T39 bss -2 =2
Z40 bas -2 2
T b3z — bas -2 0
T4o bss — 2049 -2 0
T3 | 2b3g + 2038 + bay | —2 0
m Tga bag -3 1
Ty5 b -3 -1
T46 byo -3 -1
Tya7 b4s3 -3 1
48 by4 —4 | =2
T49 bys —4
Ts50 bas —4
T51 ba7 =5 1
T59 bys -5 -1

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),
we require the commutators Fiy 15, Fii13, Fgi6, F3.15, Fra2, Fs1a, Fro, Fug,
For, P17

[©14,015] = —O35

[011,0135] = 38+ 1805+ Og + 3014015

(05,01 = 0

[03,015] = L+ 2015 — 3609 + 3305 + O, — 2107, — 1220,,0;

+%@11@13 - %@9@16 + g@s@m - %@14@15616
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[©7, O12]

[®57 @14]
(O3, O]

[©4, O]
[O6, O7]

(01, O]

3663 + 234906 + 1800, — 6605 — 20, + 2207
+12420140 15 + 18011013 — 9011015 + 2709015 — 120504
+216014015016

— 41 — 1728015 + 3609 — 3305 — O, — 70207, — 1820,,0;
—2011013 + 209015 — 205015 — 81075 — 243014015016

0

0

28T 4 52245016 + 315909 — WO, — 20, + BT,
+&:99914@15 + w@n@ls - w@m@lz + 312_59@9616
—210; — 1205016 + L0509 — 303 — 567015 + 565014
+1803015 + 2207 + 22570 ,015015 + 81011013614
—%@11@12@15 - %@10912616 + 1620907, + %@9@14@15
—210307; — 2103014015

—3177711 — 182689, — B, + 1228505 — 6480,
_%89311@%6 — S0, 0,5 — 15309011013 — 2820101,
—U31309,0, + 2205 + 230,05 — 12050, + 2763
+270701; — 8164019 — 180407 — 2105014 — 5130,014
+210,0y — 60,05 — 64803015 + 0,0, — 1BUZBGI

— 2121919140150 — 972073,014 — 222611013616
+25011012015 — 729010013014 — 143613@99%6
—M05099014015 — 2204011013 + L0305 + 2210307,
+%@8914@15 + ﬁ98@11@13 - —97@13@14
+810:010015 — 2105014016 — 810,07, — 16203015014
—%@Lﬂ; — 308339,,0,507; — 2267,014616
+%@11@13@2 + M@n@m@m@lﬁ — 2430100130140
—T7290,07%; — 5589@9@14@15@16 + 6075@8@14@15@16

82
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We have two 1-dimensional representations:

O4
Os
Oy
O16

and

O4
Os
Oy
©16

11U 11

1111

6723
2

—150
—38

with all other generators ©; — 0 for each of these. The denominators which

appear in the presentation of U(g,e) are all powers of 2, so we can define

U(gk, ex) provided k has characteristic p > 3.

6.3 Type I

Here we calculate U(g, e) for g of type Eg and e lying in each of the 3 non-

zero rigid nilpotent orbits. We summarize in Table 6.12 certain data for these

orbits, including the number of 1-dimensional representations for U(g,e) in

each case and the primes p for which we cannot define U(gy, ex) where k has

characteristic p.
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Table 6.12: Results for type Eg.

Dynkin # 1-dim | Bad primes
Orbit diagram | k(e, f) | dim(g®) | dim(t°) reps | for U(gy, ex)
L3 L3 I . Ll

A 1 24 56 5 1 2,3
00000

34, 0 72 38 3 1 2,3
00100

24, + A, 0 216 24 1 1 2,3
10101

The simple summands of the Levi subalgebras of g are of types Ay, As, As,
Ay, As, Dy and D5. Calculation of presentations of the associated finite W-
algebras for rigid e shows that the only denominators which occur are powers
of 2 and the values of x(e, f) which occur for rigid e have prime factors only

2 and 3. Thus for rigid nilpotent e € g we can apply Theorem 5.2.2 for p > 3.

6.3.1 The orbit A4,

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label A;. In Table 6.13 we give our choice of basis for g. We take
our slo-triple to be (e, h, f) = (bsg, brs + 2b74 + 2b75 + 3brg + 2077 + brg, bra) =
(21, T2 + 2253 + 3x54 + 2255 + T56 + 2257, 78). With this basis, a minimal
generating set for g° is {xe1, T36, T37, Ta1, Taz, Tas, Tae, Tas, Ta9, Tso}. A
minimal generating set for m is {wgs,...,273}. The subalgebra t° has basis

{1’527 T53, Ts54, T55, 5(756}. We calculate li(@,f) = 24.
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Table 6.13: Basis for type Ejg, orbit A;.

1y Bi
x1 | bsg 2 (0,0,0,0,0)
To | by 1 (0,0,—1,0,0)
rg | bg 1 (0,-1,1,-1,0)
xy | D13 1 (—-1,1,0,—1,0)
T5 | by 1 (0,—-1,0,1,-1)
xe | bi7 1 (1,0,0,—1,0)
x7 | bio 1 (-1,1,-1,1,-1)
xg | bao 1 (0,—1 0,0,1)
Tg | bao 1 (1,0,—1,1,-1)
219 | b2y 1 (— 1,0,1,0 —1)
11 | bas 1 (—-1,1,-1,0,1)
12 | bog 1 (1, — 1,1,0 —1)
213 | bor 1 (1,0,—1,0,1)
9° | 14 | bog 1 (—=1,0,1,-1,1)
15 | bag 1 (0,1,0,0,—1)
216 | b3o 1 (1,-1,1,-1,1)
17 | b3y 1 (—1,0 0,1,0)
18 | b3 1 (0,1,0,—1,1)
Z19 | b33 1 (1,-1 0,1,0)
ZTog | b3y 1 (0,1,—1,1,0)
Zo1 | b3s 1 (0,0,1,0,0)
Too | by 0 (2 —1,0,0,0)
ZTog | b3 0 (—=1,2,-1,0,0)
Toy | by 0 (O, 1,0)
Zos | bs 0 (0,0, —1)
ZTog | be 0 (0,0,0, 1 —2)
ZTor | by 0 (1,1,—1,0,0)

Continued on next page
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Table 6.13 — continued from previous page

1 Bi

ZTog | bo 0 (—-1,1,1,-1,0)
Zag | bio 0 (0, —1,1,1,—1)
30 | b11 0 (0, 1,1,1)
31 | b12 0 (1, 0,1, ,0)
T30 | bis 0 (—1,1,0,1,—1)
33 | big 0 (0,-1,1,0,1)
34 | D1s 0 (1,0,0,1,—1)
35 | by 0 (—1,1,0,0,1)
36 | bos 0 (1,0,0,0,1)
37 | bar 0 (—2,1,0,0,0)
Z3g | D3 0 (1,-2,1,0,0)
39 | bao 0 (0,1 2,1,0)
40 | baa 0 (0, 0,1, 1)
o | @ | baa| O (000,1, —2)
P8 e b | 0] (=1,-1,1,0,0)
2w | bis| 0] (1,—1,-1,1,0)
Zu | b | 0] (0,1,-1,-1,1)
2 | b | O] (0,0,1,—1,1)
2as | bas | O] (=1,0,—1,1,0)
2o | bsi| O] (1,-1,0,—1,0)
2us | ba | O] (0,1,-1,0,—1)
2a9 | bsa | O] (=1,0,0,—1,1)
w50 | bsr | 0] (1,—1,0,0,—1)
w51 | bso | O] (=1,0,0,0,—1)
Zs | bis | 0| (0,0,0,0,0)
w55 | bis | 0| (0,0,0,0,0)
w51 | bis | O] (0,0,0,0,0)
255 | b | 0| (0,0,0,0,0)

Continued on next page
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Table 6.13 — continued from previous page

1y Bi
9° | T56 | Drs 0 (0,0,0,0,0)
P Ts7 | bry 0 (0,0,0,0,0)
Tsg | bsg | —1 (0,0,1,0,0)
Tso | bay | —1 (0,1,—1,0,0)
ZTeo | bao | —1 (1,-1 0,1,0)
ZTe1 | bso | —1 (0,1,0,—1,1)
ZTeo | bsz | —1 (—1,0 0,1,0)
Zg3 | bss | —1 (1,-1,1,-1,1)
ZTes | bsg | —1 (0,1,0,0,—1)
Zes | bss | —1 (—=1,0,1,-1,1)
Zee | o | —1 (—1,0,1,0,1)
Ter | ber | —1 (1, — 1,1,0 —1)
ZTeg | be2 | —1 (—=1,1,-1,0,1)
Zgo | bes | —1 (—1 0,1,0 —1)
T7o | bes | —1 (1,0,—-1,1,-1)
x7 | bes | —1 (0,-1,0,0,1)
Ty [ bes | —1 | (—=1,1,—1,1,—1)
m r73 | ber | —1 (1,0,0,—1,0)
T7q | bes | —1 (0,-1,0,1,-1)
T | beo | —1 (—=1,1,0,-1,0)
e | bro | —1 (0,—1,1,-1,0)
T | by | —1 (0,0,—1,0,0)
Trg | bra | —2 (0,0,0,0,0)

87

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F5 o1, Faa 37, Faa1, Fara2, F3045, F3146, F334s,
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F34.49, F3550, Fa651:

[©2,021] = 11 —Oz5 — 2054 — O53 + O1 — O36051 — O35050 — O34O.49
—033048 — 039047 — O31046 — O29O 44 — O23043 — ©24O39

[©22,037] = —1+ Os

[O26,04] = —1+Os

[O27,042] = —1+ Os3+ Os

[O30,045] = —1+Os6+ Os5

[©31,046] = —2+ Os4 + Os3 + O

[©33,045] = —2+ O56 + Os5 + Os4

[©34,049] = —2+ Os5+ Os4 + Os3 + O
[O@35,050] = —2+ Os6+ O35 + Os54 + O3
[©36,051] = —3+ Os6 + Os5 + O54 + Os3 + Os2.

We have one 1-dimensional representation:

-9,

L A A A

— O = O

with all other generators ©; — 0. The coefficients which appear in the pre-
sentation of U(g,e) are all integers, so we can define U(gy, ex) provided k
has characteristic p > 3. We again note that the existence of a 1-dimensional

representation in this case was known from [P07i], as our orbit is minimal.
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6.3.2 The orbit 34,

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label 3A4;. In Table 6.14 we give our choice of basis for g. We take
our sly-triple to be (e, h, f) = (bag + b3 + b31, 2b73 + 3b74 + 4b75 + 6b76 + 4b77 +
2b7s, bes + bes + ber) = (w6, 436 + 337 + 2738 — 2x47 + 2148 + 6249, 7). With
this basis, a minimal generating set for g¢ is {xae7, To9, 31, T32, T33, T34}-
A minimal generating set for m is {x59, %60, Te1, To2, T63, Tea, T65, LT66, T67,

Tes, Te9, T70, L74, T75, T76}. The subalgebra t¢ has basis {x36, 37, x3s}. We

calculate (e, f) = 72.

Table 6.14: Basis for type Ejg, orbit 3A;.

1 Bi
1 bss 3 (0,—1,0)
To bsg 3 (0,1,0)
T3 bay 2 (-1,0,—-1)
Ty bag 2 (1,0,-2)
T bog 2 (—2,0,1)
Te | bag + b3o + b3 2 (0,0,0)
T bso 2 (0,0,0)
Ts bs1 2 (0,0,0)
pog | 2y bs2 2 (—1,0,2)
10 b33 2 (2,0,-1)
T11 b34 2 (1,0,1)
T12 by 1| (-1,-1,-1)
T13 bs 1| (-1,1,-1)
T14 b 1| (-2,—-1,1)
15 b1o 1| (1,-1,-2)
T16 bio — b1s 1 (0,—-1,0)
T17 b13 1 (—2,1,1)
Continued on next page
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Table 6.14 — continued from previous page

L Bi
T18 b1 1 (1,1,-2)
T19 bis — big 1 (0,—1,0)
Z20 b7 — big 1 (0,1,0)
L21 bis 1 (2> -1, _1)
T99 big — bag 1 (0,1,0)
To3 ba1 1 (—1 -1,2)
L24 baa 1 ( )
Tos bos 1 (1, —1 1)
Tog bas 1 (— 17 1,2)
Ta7 bar 1 (1,1,1)
g° | Tog by + bs 0 (2,0,-1)
T29 by 0 (0,2,0)
30 bs + bg 0 ( 17 0, 2)
T31 b7 + b1y 0 (1,0,1)
T30 bs7 + bar 0 (—2,0,1)
X33 b3s 0 (0,-2,0)
T34 b3g + a2 0 (1,0,-2)
T35 baz + byr 0| (-1,0,-1)
T36 brs + bry 0 (0,0,0)
x37 br4 0 (0,0,0)
T38 brs + brs 0 (0,0,0)
T39 b1 1 (0,—1,0)
T40 big 1 (0,1,0)
T41 b1 0 (2,0,—1)
T 4o b3 0 (—1,0,2)
43 by 0 (1,0,1)
T44 b7 0 (—2,0,1)
Ty5 bsg 0 (1,0,-2)

Continued on next page

90



91

6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g

Table 6.14 — continued from previous page
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Table 6.14 — continued from previous page

n; Bi
74 bgs — bee -2 (0,0,0)
75 bes — ber -2 (0,0,0)
m x76 | bes + bes + ber | —2 (0,0,0)
X7 bz -3 (0,1,0)
78 bro -3 (0,—1,0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators F531, Fys4, Floge, Fi2o7r, Fasze, Fog 33, F3034,

F31,351
[©3,031] = —12 — 3033 + 6037 + 205 + O7 — O + 303,035
[Og,O34] = —24+ 3035 + 3037 + 3036 + Og + 207 — O
[©10,032] = —24+ 30353 + 3037 + 6035 + Og — O7 + 3095037
[012,027] = 2+ 07— 203035 — 30203
[O2g, 03] = —2+ O3
[©29,033] = —% + O37
[030,034] = —2+ O3
[©31,035] = —44 O35 + Og.

We have one 1-dimensional representation:

Qs — —2

07 — —%

O — 0
O3 +— 2
O37 %
Oz +— 2,
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with all other generators ©; — 0. The denominators which appear in the
presentation of U(g, e) are all powers of 2, so we can define U(gy, ex) provided

k has characteristic p > 3.

6.3.3 The orbit 24, + A;

Here we consider the finite W-algebra associated to the orbit of g with
Bala—Carter label 24, + A;. In Table 6.15 we give our choice of basis
for g. We take our sly-triple to be (e,h, f) = (bia + bag + boy + bao +
baa, 4b73 + Bbrg + Thrs + 10b7g + Thyy + 4brg, 2048 + 2bs6 + 2bs7 + 2bss + bgo) =
(11, —=Twog + 4xg1 + 12249 + 14243 + 10244 + 4245, v64). With this basis, a
minimal generating set for g° is w13, x99, T93. A minimal generating set for
m is {$52, Ts53, Ts54, 55, Tse, Ls7, T58, L0, Lel, L2, L63, Led, $65}- The

subalgebra t¢ is spanned by z24. We calculate k(e, f) = 216.

Table 6.15: Basis for type Eg, orbit 245 + Aj.

n; 51‘
T bss 5 —1
T2 bse 51 1
€3 bso 4 0
Ty b3 41 2
Ty b33 41 =2
Ze baa 4 0
I baz — bag 3| —1
T b26 + b31 3 —1
T ba7 — bog 3] 1
10 bag + bag 31 1
11 b1 + bag + bo1 + bag + bay 2
T12 b1 + bao 2
13 big — bisg 2| =2
Continued on next page
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Table 6.15 — continued from previous page

T14
T15
T16
Ti7
T18
T19
T20
T21
T2
T23

To4

L5
T26
Lot
Tag
T29
T30
T31
T32
33
T34
T35
36
T37
T38
T39

T40

T4

ni | G
by — bos 20 2
ba1 + baa 210
by 4+ 2by + b11 — by 1] -1
by — b14 + b15 1] -1
bg + b7y + 2bg — by 1] 1
bs — by + b1g 1] 1
bio 1] -3
bi3 1] 3
by — b3 + by 0] 2
bs + bsg — b3g 0] -2
bra + brs — bey 0 0
bos 3] —1
bar 3] 1
b1o 210
bie 2| =2
b7 20 2
bo1 210
by 1] -1
by 1] -1
be 1] 1
by 1] 1
bg 1] 1
b1y 1] -1
by 0] 2
b3 0] 2
bs 0] -2
bss 0] -2
b3 0] 0

Continued on next page
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Table 6.15 — continued from previous page

ni | G
T 42 br4 0
T43 brs 0
F Tys bre 0
T45 brg 0
T46 b7 —1 1
Ty bao —1 1
T48 bag —1] 3
L49 bar -1] 1
50 bso -1 1
51 bs1 -1 1
L52 baa —-1|-1
T53 bas —1] -1
T4 o —-1] -1
Ts5 bas —1] -1
T56 bag —-1]-3
Ts7 bss 1| -1
L58 bs2 -2\ 2
T59 bs3 -2 -2
m T60 bsa -2 2
Te1 bag — bsg -21 0
Te2 bs — bs7 210
T63 bs7 — bsg -2, 0
Tea | 2bys + 2056 + 2057 + 2bss +bgo | —2 | O
L5 bss — beo 210
T66 be1 -2 -2
Te7 bsg -3 | 1
Tes b2 -3 1
Teg bes =3 -1
Continued on next page
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Table 6.15 — continued from previous page

ni | B
Z70 bea -3 | -1
T71 bes -3 —1
T2 ber -3
73 bee —4 10
m Ty bes —4 | =2
L5 beo —4
T76 bro —4
T77 bz =5
78 b7o -5 | —1

By Theorem 5.3.5, to determine the 1-dimensional representations of U (g, €),
we require the commutators F1 18, Flyo3, F502, F718, F31s, Fi322, F1a23, Fie1s,

F17,187 F22,233

[O2, 093] = —4+ Oy

O16,015] = 132+ 9305 — 2015 + 2015 + O, — 489250

[©14,093] = —216 — 15054 — O15 + O12 — 210203

[©13,02] = 168 — 3905 — O15 + O15 — 1803, + 15605053

[©17,018] = 4245702 — 4015 — 2015 + 3011 — 30022023

[©7,015] = 1683 + 298802, — 135015 — 5401, + 5401, + 305 + 37862,
—3042025093 — 27091091 + 6016015 + 2101309
—378092023024

[O5,00] = 14508 + 69305, — 9015 + 9001, — 301, — O — O

—126902, + 20340250535 — 905005 — 9016015 + 9015094
—|—9@14@23 —+ 15@13@22 -+ 9@12@24 - 162@%4 + 405@22@23@24
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[O4,005] = 13500 + 13500, + 108015 + 9015 — 301, — O — Oy
+882022023 — 9020021 — 9016015 + 9015024 + 3014023
_27622@23@24

[Og,O015] = 3978 + 23130y, + 18005 + 2430, — 1260,; — O — O3
+59403, + 738059093 + 4509009, + 9017019 — 120,705
+9®16@19 - 18@14@23 - 15@13@22 + 36612624
—108022023024

[01,015] = —85158 — 26686804, + 5616015 + 224105 — 20250,
14504 — 22505 — 55728032, + 185220025025 — 97209004,
—216017019 + 126017015 + 27006019 + 81001605
1864015054 — 108014093 — 747013045 + 2700150,
—324011094 — 9010017 — 9010016 — 603013
—1807013 — 605045 — 180,043 — 360309, — 291603,
+45846099023094 — 10807043 + 81017015094 + 8107,y
181016015024 — 8107045 + 16201502023 — 1080,304,0,
+16201502,053 — 1620,02,093 + 29160,,093053,.

We have one 1-dimensional representation:

@6 s 56;30
@11 — —1056
@12 —  —299
O - 2
@24 — 47

with all other generators ©; — 0. The coefficients which appear in the pre-
sentation of U(g, e) are all integers, so we can define U(gy, ex) provided k has

characteristic p > 3.
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6.4 Type I~

98

Here we calculate U(g,e) for g of type E7 and e lying in each of the 7 non-

zero rigid nilpotent orbits. We summarize in Table 6.16 certain data for these

orbits, including the number of 1-dimensional representations for U(g,e) in

each case and the primes p, if known, for which we cannot define U(gy, ex)

where k has characteristic p.

Table 6.16: Results for type FEx.

Dynkin # 1-dim | Bad primes
Orbit diagram | (e, f) | dim(g®) | dim(¢%) reps for U(gy, ex)
Ay 0 36 99 6 1 2,3
100000
24, 0 72 81 5 1 2.3
000010
(34,) 0 108 69 3 | 2,3
010000
4A, 1 144 63 3 1 2,3
000001
Ay + 24, 0 216 51 3 1 2,3
001000
2A5 + Ay 0 324 43 2 1
010010
(As+ A |0 396 41 3 2
101000

For the first 5 of these orbits, we have calculated a full presentation, so we can

in each of those cases identify for which primes p we cannot define U(gy, ex),
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but for the last 2 rigid orbits in the table due to computational limitations we
have only sufficient relations to determine the 1-dimensional representations.

The simple summands of the Levi subalgebras of g are of types A;, As,
As, Ay, As, Dy, D5, Dg and Eg. Calculation of presentations of the associated
finite W-algebras for rigid e shows that the only denominators which occur
are powers of 2 and 3 and the values of (e, f) which occur for rigid e have
prime factors only 2, 3 and 5. Thus for rigid nilpotent e € g in one of the
orbits Ay, 24, (3A;)', 44, or As + 2A; we can apply Theorem 5.2.2 for
p > 5. To extend this to all rigid orbits in g would require significant further
calculation of relations in U(g, e) for e in the orbits 245 + A; and (As + A;)'.

6.4.1 The orbit A4,

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label A;. In Table 6.17 we give our choice of basis for g. We take our
sly-triple to be (e, h, f) = (be3, 20127 + 2b12g + 3b12g + 4b139 + 3b131 + 2b132 +
b33, bizs) = (w1, 294 + 3295 + 4796 + 397 + 2298 + Tgg + 27100, T133). With
this basis, a minimal generating set for g¢ is {xs3, x¢3, T64, Tes, T71, T2, T74,
Tr79, Tg1, Ts2, Ts3}. A minimal generating set for m is {x117,...,2133}. The

subalgebra t¢ has basis {xg4, ..., To9}. We calculate x(e, f) = 36.

Table 6.17: Basis for type E-, orbit A;.

1 Bi
1 bes 2 (0,0,0,0,0,0)
To by 1 (0,-1,0,0,0,0)
T3 bs 1 (0,1,-1,0,0,0)

p gl ay b4 1| (-1,0,1,—1,0,0)

Ts bago 1 (1,0,0,—1,0,0)
Tg bo1 1| (-1,0,0,1,—1,0)
T bag 1| (1,0,-1,1,-1,0)

Continued on next page
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Table 6.17 — continued from previous page

ny;

Bi

Ts

L9

T10
T11
T12
T13
T14
T15
T16
T17
T18
T19
T20
T21
T2
T3
T24
T25
T26
Tt
Tog
T29
T30
T31
T32
T33
T34

Z35

b27
bs2
b33
b34
b37
b38
b39

b42

beo
be1

be2
by

[ e e e e e e T e T e T e T e T = S R e R S R R e N

0

(—1,0,0,0,1,—1)

(0,—-1,1,0,—-1,0)

(1,0,—1,0,1,—1)
(—=1,0,0,0,0,1)
(0,1,0,0,—1,0)

(0,—1,1,-1,1,-1)

(1,0,—1,0,0,1)
(0,1,0,—1,1,-1
(0,—1 0,1,0 ~1
(0, — ,0,1
(0 ,1 1,1,0 ~1
(0,1,0,—1,0,1)
(0,-1,0,1,—1,1)
(—=1,0,1,0,0,—1)
(0,1,-1,1,—1,1)
(0,—1,0,0,1,0)
(1,0,0,0,0,—1)
(=1,0,1,0,—1,1)
(0,1,—1,0,1,0)
(1,0,0,0,—1,1)
(=1,0,1,— 1,1,0)
(1,0,0,—1,1,0)
(—1,0,0,1,0,0)
( )
( )

)
)
)
)

1,0,—1,1,0,0
0,—1,1,0,0,0
(0,1,0,0,0,0)

(2,0,—1,0,0,0)

(0,2,-1,0,0,0)

Continued on next page
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Table 6.17 — continued from previous page

L Bi
T36 by 0| (-1,-1,2,—-1,0,0)
T3y bs 0| (0,0,—1,2,-1,0)
T3g bg 0| (0,0,0,-1,2,—1)
39 by 0 (0,0,0,0,—1,2)
T40 by 0| (1,-1,1,—-1,0,0)
T4 | bio 0| (-1,1,1,-1,0,0)
Tgo | D11 0| (-1,-1,1,1,-1,0)
43 | b1 0| (0,0,—1,1,1,-1)
Taq | D13 0 (0,0,0,—1,1,1)
45 | bis 0 (1,1,0,—1,0,0)
ZTag | big 0| (1,-1,0,1,-1,0)
Tar | D17 0| (-1,1,0,1,-1,0)
T4g | bis 0 (—1,—1,1,0,1,—1)
o | Ta9 b1g 0 (0,0,—1,1,0,1)
P8 Tso | bao 0| (1,1,-1,1,-1,0)
T51 | bog 0| (1,-1,0,0,1,—1)
Tso | Doy 0| (-1,1,0,0,1,—1)
Ts3 | bos 0| (-1,-1,1,0,0,1)
Tss | bog 0 (0,0,1,0,—1,0)
Ts5 | bag 0| (1,1,-1,0,1,-1)
Ts6 | b3 0 (1,-1,0,0,0,1)
Tsr | b3 0 (-1,1,0,0,0,1)
Tsg | bss 0] (0, 0,1,— ,1,—=1)
Ts9 | bsg 0 (1,1,-1,0,0,1)
ZTeo | bao 0 (0, O 0,1,0,—1)
Ter | ba 0 (0,0,1,-1,0, 1)
Tea | bas 0 (0,0,0,1,-1,1)
g3 | bag 0 (0,0,0,0, 1, 0)
Continued on next page
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Table 6.17 — continued from previous page

L Bi
Tes | bes 0 (—2,0,1,0,0,0)
ZTes | beg 0 (0,—2,1,0,0,0)
ZTes | ber 0 (1,1,-2,1,0,0)
Ter | bes 0 (0,0,1, -2, 1,())
ZTegs | beo 0 (0,0,0,1,-2,1)
ZTeo | bro 0 (O 0,0,0, 1, —2)
Tro | bro 0| (-1,1,-1,1,0,0)
x| brs 0 (1, 17 1,0,0)
Tro | by 0| (1,1, 1,1,0)
73 | brs 0 (0,0,1, 1,1)
Trq | brs 0] (0,0,0, 17— —1)
75 | brs 0| (-1,-1,0,1,0,0)
T7e | brg 0| (- 1,1,0 -1,1,0)
. | T77 bso 0] (1,— 1,1,0)
P8 r7g | bsi 0] (1,1,— 1)
Trg | bso 01| (0,0, 1, —1)
rso | bss 0| (=1,-1,1, 1 1 O)
rg1 | bsg 0| (-1,1,0,0,-1,1)
Tgo | bsr 0| (1,-1,0,0,—-1,1)
g3 | bss 0| (1,1,-1,0,0, 1)
Tga | boy 0 (0,0,—1,0,1,0)
g5 | boo 0] (-1, —1, 1,0,—1,1)
Tgg | bos 0| (-1,1,0,0,0,—1)
g7 | Doy 0| (1,-1,0,0,0,-1)
Tgg | bosg 0| (0,0,—1,1,-1,1)
g9 | bog 0| (-1,-1,1,0,0,—1)
ZToo | D103 0 (0,0,0,—1,0,1)
ZTo1 | bioa 0| (0,0,—1,1,0,—1)

Continued on next page
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Table 6.17 — continued from previous page

T Bi
zeo | bios| 0] (0,0,0,—1,1,—1)
T3 | bi1o 0 (0,0,0,0,—1,0)
Tos | biog 0 (0,0,0,0,0,0)
laes b | 0] (0,0,0,0,0,0)
p |9 [ 2 b | 0 (0,0,0,0,0,0)
o7 | bz | O (0,0,0,0,0,0)
zos | b | O]  (0,0,0,0,0,0)
Tog | b33 0 (0,0,0,0,0,0)
Tio | biar | O (0,0,0,0,0,0)
200 | bt | —1|  (0,1,0,0,0,0)
2102 | b | =1 | (0,-1,1,0,0,0)
2103 | brr | 1| (1,0,—1,1,0,0)
Tioa | bgg | —1 (—=1,0,0,1,0,0)
2105 | bsa | =1 (1,0,0,—1,1,0)
2106 | bso | —1| (=1,0,1,-1,1,0)
Zio7 | boo | —1 (1,0,0,0,—1,1)
z10s | bos | —1| (0,1,-1,0,1,0)
Tig9 | bog | —1 | (=1,0,1,0,—1,1)
T110 | bor | —1 (1,0,0,0,0,—1)
111 | bigo | —1 (0,-1,0,0,1,0)
x112 | byor | —1 | (0,1,—-1,1,—1,1)
113 | bz | =1 | (—1,0,1,0,0,—1)
T114 | bos | =1 | (0,—1,0,1,—1,1)
2115 | bios | —1 (0,1,0,—1,0,1)
x116 | bror | —1 | (0,1, — 1,1,0 —1)
z117 | bigg | =1 | (0,—1,1,-1,0,1)
m zus | bio | 1| (0,—1,0, 1, o ~1)
Z119 | b111 | —1 (0,1,0,—1,1,—1)
Continued on next page
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Table 6.17 — continued from previous page

T Bi
T120 | bus | 1| (1,0,—1,0,0,1)
Zron | bua | =1 ] (0,-1,1,-1,1,-1)
X122 5115 -1 (O, 1,0 0 1,0)
Ti23 | bue | =1 | (=1,0,0,0,0,1)
Tioq | b117 | =1 | (1,0,—1,0,1,—1)
125 | bus | =1 (0,—1,1,0,—1,0)
N 1 | b | =1 | (—1,0,0,0,1,—1)
T1o7 | bizo | =1 | (1,0,—1,1,—1,0)
Tyos | by | —1 | (-1, 0 ,0,1,—1,0)
1o | b | =1 | (1,0,0,-1,0,0)
T30 | bias | =1 | (—1,0,1,—1,0,0)
T131 | biog | —1 (0,1,-1,0,0,0)
T132 | bias | —1 (0,-1,0,0,0,0)
T133 | biog | —2 (0,0,0,0,0,0)

104

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators Fiyy 71, Faoro, Faara, F3a64, F3565, F5181, Fr289,

Fs383, Fagr9, Fe3,93, F7r9.72:

—1 + Ogg + Ogs
—1 + Og7 + Ogg
—1 + Ogg + Ogg

Oy
—1+ Ogs

-1+ @98 + @97 + @96 + @94
-2+ 698 + @97 + 696 + @95
-2+ @99 + 698 + @97 + @96
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[©49,070] = —2+ Ogg + Ogg + Og7

[O63, 093] = —4+ Ogg + 2095 + 2097 + 2095 + Og5 + Oy

[©2,033] = 31— Ogg — 2097 — 4095 — 4095 — 2094 + O1 — 63003
—062092 — O61091 — O0O90 — O59O59 — O55085 — O570s7
—O55085 — 54081 — 052052 — O50080 — O47O77 — O45075
—01071 — O3506;5.

We have one 1-dimensional representation:

O —25
Og4
Ogs
Ogs
Ogr
Oos

C_')99

L A A

—_ O = O = O

with all other generators ©; — 0. The coefficients which appear in the pre-
sentation of U(g,e) are all integers, so we can define U(gy, ex) provided k
has characteristic p > 3. We again note that the existence of a 1-dimensional

representation in this case was known from [P07i], as our orbit is minimal.

6.4.2 The orbit 24,

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label 2A4;. In Table 6.18 we give our choice of basis for g. We take our
sly-triple to be (e, h, f) = (bs7+beo, 2b127 + 3b125 +4b199 4 6b130 + 5b131 +4b130 +
20133, b12o + bi2s) = (%, 2277 + X7s + 479 + Bxso + 2081 + 2399 + 4291, T127).
With this basis, a minimal generating set for g¢ is {z42, 43, Taa, T45, T46, Ta7,
T8, Te1, Te2, Te3, Teay- A minimal generating set for m is {xps,..., 2130}
The subalgebra t¢ has basis {z77,...,zs1}. We calculate k(e, f) = 72.
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Table 6.18: Basis for type E7, orbit 2A;.

L% Bi
T bag 2 (—1,0,0,0,0)
To bs2 2 (1,0,—1,0,0)
T3 bss 2| (0,-1,1,-1,0)
Ty bs7 + beo 2 (0,0,0,0,0)
x5 bsg 2 (0,1,0,—1,0)
T bsg 2 (0,-1,0,1,0)
x7 beo 2 (0,0,0,0,0)
Tg be1 2 (0,1,-1,1,0)
Tg be2 2 (—1,0,1,0,0)
10 be3 2 (1,0,0,0,0)
T11 bs 11 (0,0,0,—1,-1)
T19 b12 1| (0,-1,0,0,—1)
13 b13 1 (0,0,0,—1,1)
p | g°| r1a b1s 1| (0,0,—-1,1,-1)
T15 b1g 1 (0,—-1,0,0,1)
T16 ba3 1| (0,1,—-1,0,—1)
T17 by 1|(-1,-1,1,0,-1)
18 bas 1 (0,0,—1,1,1)
T19 bor 1| (1,-1,0,0,—1)
To0 bag 1|(-1,0,1,-1,-1)
To1 b3o 1 (0,1,-1,0,1)
To9 bs1 1| (-1,-1,1,0,1)
Ta3 b33 1| (1,0,0,—1,-1)
o4 baa 1| (1,-1,0,0,1)
Tos bas 1| (~1,1,0,0,-1)
Tog bss 1| (-1,0,1,-1,1)
Loy bs 1| (1,1,-1,0,—1)
Continued on next page
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Table 6.18 — continued from previous page

1 Bi
g bo 1] (1,0,0,—1,1)
20 bao 1| (-1,0,0,1,-1)
30 bs1 1 (—1,1,0,0,1)
a1 bas 1| (0,0,1,—1,-1)
T3 bas 1| (1,0,-1,1,-1)
X33 b4 1 (1,1,—1,0,1)
T34 bas 1| (-1,0,0,1,1)
35 bas 1| (o, —1,1,0 ~1)
T36 by7 1 (0, 0, 1,—-1,1)
a7 bag 1| (1,0,-1 1,1)
38 bso 1 (0, O ,0,1,—1)
3 bs1 1| (0,-1,1,0,1)
T 40 bs3 1 (0,1,0,0,—1)
. | Ta bs4 1 (0,0,0,1,1)
L N bs 1] (0,1,0,0,1)
43 by 0 (2,0,—1,0,0)
Ta4 by — bgg 0 (0,1,0,—1,0)
Tas b 0] (-1,-1,2,—1,0)
Zas | batbi | 0| (0,1,-1,1,0)
a7 bs — bgs 0 (0,-1,0,1,0)
48 by 0 (0,0,0,0,2)
Ta by 0l (1, —1,1,—1,0)
T50 by 0 (0,2,—1,0,0)
T51 bio + b2y 0 (=1 0> 1,0,0)
T52 bi1 0 (0,0,—1,2,0)
T53 | big + bog 0 (1,0,0,0,0)
54 bis 0| (-1,1,1,-1,0)
o by 0| (~1,-1,1,1,0)

Continued on next page
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Table 6.18 — continued from previous page

1 ﬁz‘
Ts6 b2 0] (1,1 ,0)
o bor 0ol (1,- 0 0, 1, 0)
Tss bas 0| (~1,1,0,1,0)
59 bs 0| (1,1,-1,1,0)
T60 bz 0 (0,0,1,0,0)
Zer boa 0| (=2,0,1,0,0)
oo bes 0| (1,1,-2,1,0)
Te3 | ber + brg 0| (0,—-1,1,—1,0)
Tos bro 0| (0,0,0,0,-2)
s bry 0| (~1,1,-1,1,0)
oo bro 0| (0,-2,1,0,0)
Ter | brs + bgs 0 (1,0,-1,0,0)
| s bra 0 (0,0,1,-2,0)
! Teg | brr + bsg 0] (-1,0,0,0,0)
P Z70 brs 0] (1,— 1, 1, 0)
T bso 0] (1, 1, ,0)
12 bs 0| (1,1, o 1,0)
73 bsa 0| (1,1 ,0)
T74 bo1 0] (1,— ,0)
o bos 0 (—1,—1,1,—1,0)
Z76 b10o 0 (0,0,—1,0,0)
T77 bia7 0 (0,0,0,0,0)
x7g | biag + biso 0 (0, 0,0,0, 0)
Z79 bi2g 0 (0,0,0,0,0)
xgo | bizg + b1zt 0 (0,0,0,0,0)
Tg1 bi33 0 (0,0,0,0,0)
o by 0| (0,1,0,—1,0)
a3 by 0| (0,1,-1,1,0)
Continued on next page
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Table 6.18 — continued from previous page

1 Bi
T84 bs 0 (0,-1,0,1,0)
85 bio 0 (—1,0,1,0,0)
86 b4 0 (1,0,0,0,0)
87 be7 0| (0,-1,1,-1,0)
F s | bus 0| (1,0,-1,0,0)
89 b7z 0 (—1,0,0,0,0)
90 b1os 0 (0,0,0,0,0)
To1 b132 0 (0,0,0,0,0)
e beo ~1] (0,0,0,1,1)
T3 b5 —1 (0,1,0,0,1)
T4 b6 —1 (0,0,0,1,—1)
Tos bs1 —1 (0,0,1,—1,1)
Tog bss —1 (0,1,0,0,—1)
To7 bse —1 (0,-1,1,0,1)
Tos bs7 —1 (1,1,-1,0,1)
T99 bss -1 (0,0,1,-1,-1)
100 bao —1 (—1,1,0,0,1)
101 bos —1 (1,0,—-1,1,1)
T102 bos -1 (0,-1,1,0,—1)
103 boy4 -1 (1,1,-1,0,-1)
T104 bos —1 (—1,0,0,1,1)
105 bo7 -1 (-1,1,0,0,—1)
106 bag -1 (1,0,-1,1,-1)
107 b102 -1 (-1,0,0,1,-1)
| 2 bos —1| (1,-1,0,0,1)
109 b1o1 -1 (-1,-1,1,0,1)
T lene | b |1 (1,0,0,-1,1)
T111 b1o4 —-11] (1,-1,0,0,-1)
Continued on next page
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Table 6.18 — continued from previous page

T Bi
T112 b10s —1 (0,0,—1,1,1)
113 b1o6 —-1] (=1,0,1,-1,1)
T114 bioz —1|(-1,-1,1,0,-1)
Z115 b1og -1 (1,0,0,—1,-1)
T116 b109 —1 (0,1,—1,0,1)
T117 biio -1 (0,0,—-1,1,-1)
T118 b111 -1 (-1,0,1,—-1,-1)
Z119 bi13 -1 (0,0,0,—1,1)
Z120 bi14 -1 (0,1,-1,0,-1)
Z121 bi16 -1 (0,-1,0,0,1)
m T122 bi17 -1 (0,0,0,—1,-1)
T123 b119 —-11] (0,-1,0,0,-1)
T124 bi12 -2 (1,0,0,0,0)
Z125 b11s -2 (—1,0,1,0,0)
T126 b11s —2 (0, 1,—1,1, 0)
T127 | bioo + b12g | —2 (0,0,0,0,0)
T198 | biog — bioz | —2 (0,0,0,0,0)
Z129 bia1 -2 (0,—1,0,1,0)
Z130 bi22 -2 (0,1,0,—1,0)
T131 b124 -2 | (0,-1,1,-1,0)
T132 b12s —2 (1,0,—1,0,0)
133 b126 —2 (—1,0,0,0,0)

110

By Theorem 5.3.5, to determine the 1-dimensional representations of U (g, ¢),

we require the commutators Fggs, Fuse1, Fusar, Fuseo, Fisea, Foaa, Fuges,
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F5,47, F3,46, F12,421

(O3, O3]

[@467 @63]
[@57 C'_‘)47]

(O3, O46]

[6127 @42]

72 — 40g; — 160gg — 12079 — 42073 — 6077 — 207 + Oy
+207305; + 6075050 + 4073079 + 2075 + 2077075
—2059075 — 2058074 — 2055068 — 2050066 + 2049065
—2046063 + 2045062

O77

Ogo — Ors

Or9

Os1

36059 — 4079 — 42075 — 2077 — 207 + O, — 205,051 — 603,
—40790g0 + 2075051 + 6075050 + 4075079 — 2077059
+2077075 — 2057073 + 2056072 — 2055071 + 2054070
—205260658 + 2050066 — 2044047

—4 + Ogp + O3

—60g9 — 4079 — 2077 — 207 + O4 + 205,073 — 205079
+2055071 — 2054070 + 2055068 — 2050066 + 4044047
—48 + 40351 4+ 100 + 12079 + 28073 + 6077 + 207 — O,
—2073051 — 4075050 — 4075079 — 2077075 — 2059075
—2058074 + 2052068 + 2050066 + 2049065 + 2045062
—36 4 6031 + 2605y + 4079 — 20075 + 2077 — O7 — 205705,
—403, — 40790g0 + 2075Og1 + 2075050 + 4075079 + 207
—2077050 + 2077075 + 2060076 + 2059075 + 2055074
+2056072 + 2054079 + 2050046 + 2045064.
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We have one 1-dimensional representation:

O4

O7
@77
@78
@79
@80
Os1

—36
—24

L A A

0
2
0
2
0,

with all other generators ©; — 0. The denominators which appear in the
presentation of U(g, e) are all powers of 3, so we can define U(gy, ex) provided

k has characteristic p > 3.

6.4.3 The orbit (34;)

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label (34;)". In Table 6.19 we give our choice of basis for g. We take
our sly-triple to be (e, h, f) = (bso + bse + bs9, 3b127 + 4b12g + 6b1og + 8biz0 +
6b131 4 4b132 + 20133, D105 + bi1g + b122) = (24, 366 + 2067 + 8wes + 2269 + 284 +
6xgs + wbsg, T129). With this basis, a minimal generating set for g¢ is {mys,
T46, Tas, T49, T50, Ts1, Tso}. A minimal generating set for m is {x102, 2103,
L1045 T105, 106, L107, L108, L109, L1105 L1115 L1125 T113, T114, T115, L116, L117,
T118, £119, L1205, T121, T122, T123, T124, T126, L1290} The subalgebra t¢ has basis

{66, To7, Tes, Teo}. We calculate k(e, f) = 108.
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Table 6.19: Basis for type E7, orbit (34;)".

1y B;
1 be2 3 (—=1,0,0,0)
To be3 3 (1,0,0,0)
T3 b3z 2| (0,-1,0,-1)
T4 baa + bsg + bsg 2 (0,0,0,0)
T by 21 (0,1,—1,-1)
T by7 2 (0,-1,0,1)
T7 bso 2| (0, —1,1,—1)
Ts bs1 2 (0, L, )
Tg bs3 2 (0, 1,0 —1)
10 bs4 2 (0, —2, 1, 0)
T11 bss 2 (O, L, -1, )
T19 bs6 2 (0,0,0,0)
T13 bs7 2 (0,-1,1,1)
p |l g°| T4 bsg 2 (0,1,0,1)
T15 bs9 2 (0,0,0,0)
T16 beo 2 (0,2,-1,0)
T17 be1 2 (0,0,1,0)
T18 b3 1| (-1,0,-1,0)
T19 bs 1 (1,0,—1,0)
T b1o 1| (-1,-2,1,0)
To1 b4 1 (1,—-2,1,0)
T99 bis — boy 1 (—1,0,0,0)
T3 b7 1| (-1,-1,0,-1)
Toyg bag — boy 1 (1,0,0,0)
Ta5 bo1 1| (1,-1,0,—1)
To6 bao 1| (-1,1,-1,-1)
To7 bay + bys 1 (—=1,0,0,0)
Continued on next page
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Table 6.19 — continued from previous page

1 Bi
Tog bog 1 (1,1,-1,-1)
T29 ba7 + bag 1 (1,0,0,0)
T30 bog 1| (-1, —1, 1,—1)
T31 bag 1 ( )
T39 bs1 1| (-1 1 0,1)
T33 b32 1| (1, 17 1, 1)
T3y b33 1 (1,2,-1,0)
T35 b3y 1 (L -1, O 1)
T36 b3 1 (—1,0,1,0)
T3y b3 1| (-1,1,-1,1)
T3s bag 1 (1,0, 1,0)
T39 b3g 1 (1,1,-1,1)
T40 b4 1| (=1,1,0,-1)
pole° | 2n bu 1] (-1,-1,1,1)
Ty bys3 1 (1,1,0,—-1)
Ty3 44 1 (1,-1,1,1)
Ty4 b4 1 (—-1,1,0,1)
Ty5 bso 1 (1,1,0,1)
T46 by 0 (2,0,0,0)
Tyq7 by + 1o 0 (0,2,-1,0)
T8 by 0 (0,—2,2,0)
T49 bs — bgg 0] (0,1,-1,-1)
T50 bs + b3 0 (0,1,0,1)
T51 by — by 0 (0,-1,0,1)
T by — big 0 (0,0,1,0)
T53 b1 + g2 0| (0,-1,1,-1)
T4 b13 0 (0,0,0,2)
Ts5 big — bro 0 (0,1,0,—1)
Continued on next page
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1 Bi
T56 big + b74 0 (0,1,-1,1)
Ts7 bas 0 (0,2,0,0)
Tsg bas — bes 0 (0,-1,1,1)
T b4 0 (—2,0,0,0)
6o bes + brs 0 (0,—2,1,0)
T61 be7 0| (0,2,-2,0)
. | Te2 bey + bos 0| (0,-1,0,-1)
¥ 26 by — by 0| (0,0,-1,0)
T4 b7 0 (0,0,0,—2)
Te5 bse 0 (0,-2,0,0)
Te6 b127 0 (0,0,0,0)
Ter | biog + 0131 +biz2 | O (0,0,0,0)
T6g b130 0 (0,0,0,0)
T bi32 + D133 0 (0,0,0,0)
F - bis 1| (=1,0,0,0)
T7 bao 1 (1,0,0,0)
T7o bs 0 (0,2,-1,0)
T73 bs 0| (0,1,—1,-1)
Ty be 0 (0,1,0,1)
T75 b7 0 (0,-1,0,1)
T7g bg 0 (0,0,1,0)
L7 b11 0] (0,—-1,1,-1)
T78 bis 0 (0, 1,0, 1)
L9 big 0 (O )
T30 bas 0 (0, — 1, 1, 1)
xg1 bes 0| (0,-2,1,0)
Tgo beo 0| (0,-1,0,—-1)
T3 b7o 0 (0,0,—1,0)

Continued on next page
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1 Bi
T4 108 0 (0,0,0,0)

p x5 bi2g 0 (0,0,0,0)
g6 b131 0 (0,0,0,0)
Tg7 bee —1 (1,0,1,0)
T8 b7 —1 (—=1,0,1,0)
Tg9 b3 —1 (1,2,-1,0)
9o b7 -1 (-1,2,-1,0)
To1 brs —1 (1,0,0,0)
Too bso —1 (1,1,0,1)
To3 bs4 -1 (—-1,1,0,1)
Loy bss —1 (1,-1,1,1)
To5 bs7 —1 (1,0,0,0)
To6 bsg -1 (-1,-1,1,1)
Tg7 bo1 —1 (1,1,-1,1)
Tog bo4 -1 (1,1,0,—-1)
Tog bos -1 (-1,1,-1,1)
T100 b103 —1 (1,-1,0,1)
T101 bios -1 (1707070>
T102 bss3 -1 (—1,0,0,0)
T103 bao —1 (—1,0,0,0)
T104 bgo —1 (1,—-2,1,0)
T105 bog -1 (-1,-2,1,0)

n 106 bo7 -1 (-1,1,0,-1)
T107 bos —1 (1,0,—-1,0)
T108 bgg 1] (1,-1,1,-1)
T109 bio1 —1 (_1707 _170)
110 b102 -1 (-1,-1,1,-1)
T111 b104 —-1] (1,1,-1,-1)

Continued on next page
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1 Bi
T112 b106 -1 (-1,-1,0,1)
T113 bio7 —1](-1,1,-1,-1)
T114 b111 -1 (—1,0,0,0)
T115 b112 -1 (1,-1,0,-1)
T116 bi1s —11](-1,-1,0,-1)
T117 b100 —2 (0,1,0,1)
T118 bios — b119 -2 (070,0,0)
T119 biog —2 (0,-1,1,1)
T190 b110 -2 (0,1,0,—1)
T191 b113 -2 (0,1,-1,1)
T122 b114 —2 (0,0,1,0)
Bl b —2| (0,-1,0,1)
T194 bi17 —2 (0,2,-1,0)
T195 b11s -2 (0,—-1,1,-1)
T126 bi1g9 — b122 —2 (0,0;0,0)
T1o7 b120 -2 (0,1,-1,-1)
T198 b121 -2 (0,—1,0,-1)
T129 | bios + b11g + D22 | —2 (0,0,0,0)
130 b123 -2 (0,-2,1,0)
T131 b124 —2 (0,0,—-1,0)
T132 b1o5 -3 (1,0,0,0)
T133 b126 -3 (—1,0,0,0)

117

By Theorem 5.3.5, to determine the 1-dimensional representations of U (g, ¢),

we require the commutators Fisso, Fise1, Faoss, Fr062, F5155, F350, Fos1,

F13,497 F23,453
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[O46,059] = —% + Og6
[©u8,061] = Ogs
[O49,058] = —3+ Og9 + Ogs
[©50,062] = —6+ Ogg + Ogs + Oy
[©51,055] = —Og9 + Ops + Opr
[©3,05] = —45—30¢y + 303 + 21067 4 9O¢6 + O15 + 201, — Oy

—6047063 — 3046067 + 3057065 + 3051064 + 3052043
+30,470¢0

[09,051] = 42045 — 3067 — O15 — 2013 + Oy — 903, — 306705
—3066068 — 3057065 + 3054064 — 3053056 + 3051055
+30490ss

[©13,049] = —93 + 54069 + 69065 + 3047 + 3066 — 2015 — O12 + Oy
—30¢ — 12645069 — 9955 — 3067069 — 3067065 — 3666060
—3066068 — 30954061 — 3052043 — 3049058 — 30456061

[O23,045] = —% + 33065 — O15 — 306369 — 602 — 3067065 — 306665
+3057065 + 3054061 + 2050062 + 30.46O5,.

We have one 1-dimensional representation:

P
L A A
| | |
RIS i o|®

LW O W o
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with all other generators ©; — 0. The denominators which appear in the
presentation of U(g, e) are all powers of 2, so we can define U(gy, ex) provided

k has characteristic p > 3.

6.4.4 The orbit 44,

Here we consider the finite IW-algebra associated to the orbit of g with Bala—
Carter label 44;. In Table 6.20 we give our choice of basis for g. We take our
slo-triple to be (e, h, f) = (bys + bz + bsa + bs3, 3b127 + Hb1og + 6b129 + 9130 +
7h131 + 5b132 + 3bi3s, bios + br1o + D115 + bi1s) = (212, 2261 + 5762 + 9263 + Ts2 +
brgs — Tgg + 3xgs, T117). With this basis, a minimal generating set for g¢ is
{45, 46, Tas, Ta9, T50, T51, Ts0}. A minimal generating set for m is {zyg2,
Z103; T104, 105, L1065, L107, L108, L1095 L1105 T111; T112, T113, T114, L115, L116;
T117, L1185 L119, L1205 L121, T122, L123, T124, L126 I129}~ The subalgebra t* has

basis {zg1, Te2, Te3}. We calculate k(e, f) = 144.

Table 6.20: Basis for type Er, orbit 4A;.

T B;

1 bse 3| (0,-1,0)

To bss 3| (—1,0,0)

T3 beo 31 (1,1,-1)
Ty be1 31 (=1,-1,1)

Ts be2 3 (0,1,0)

| bes 3| (1,0,0)
L bao 2| (~1,-1,0)
g b 2| (0,1,-1)

Tg bsg 2| (1,0,-1)
T10 ba1 2| (=2,-1,1)
T11 baa 2| (-1,-2,1)

T12 bas + ba7 + bsa + bs3 2 (0,0,0)
Continued on next page
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1 Bi
T13 byr 2 (0,0,0)
T14 b4 2| (1,-1,0)
15 b4 2| (=1,1,0)
T16 bs1 2| (2,1,-1)
T17 bso 2 (0,0,0)
18 bs3 2 (0,0,0)
T19 bs4 2| (0,-1,1)
T20 bss 2| (1,2,-1)
To1 bs7 2| (=1,0,1)
To9 bsg 2 (1,1,0)
To3 bo 1] (0,0,-1)
Toa by — big 1] (0,-1,0)
Tos b 1| (-2,-2,1)
. | T2 bis + b15 1| (-1,0,0)
P bis — ba 1| (~1,0,0)
Tog b1 + bao 1| (0,-1,0)
Tog b19 — bao 1| (1,1,-1)
30 bay — b33 1 (1,1,-1)
T3 bas + bog 1| (-1,-1,1)
T39 bag 1| (2,0,-1)
T33 bog — bsg 1](=1,-1,1)
T34 b29 1 (O, 2’ 1)
T35 bs1 + by 1 (0,1,0)
T36 b3o 1] (0,-2,1)
T37 b3y — bs7 1 (1,0,0)
T38 bss 1| (-2,0,1)
T39 bs7 + by 1 (1,0,0)
T40 bao — a2 1 (0, L, 0)

Continued on next page
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1 Bi
T41 b 1] (2,2,-1)
T4 bso 1 (0,0,1)
T3 by + beg 0| (1,-1,0)
T4y b3 + b1 0| (1,2,-1)
Ty5 by 0] (-2,-2,2)
T46 bs — bg 0| (2,1,-1)
T4z be + bea 0| (=1,1,0)
T48 bio — big 0| (—1,0,1)
T49 bi1 + b1g 0| (0,—-1,1)
T50 bi7 — by 0 (1,1,0)
Ts51 bo1 0 (2,0,0)
g° | x50 bay 0 (0,2,0)
T53 bes + brs 0| (~1,-2,1)
T4 be7 0| (2,2,-2)
P Z5s bes — bry 0 (~2,-1,1)
T56 br3 — bsy 0| (1,0,—1)
Ts7 br4 + br7 0] (0,1,-1)
L58 bso — bo 0| (-1,-1,0)
T bsa 0| (-=2,0,0)
6o bs7 0| (0,-2,0)
Te1 bia7 + bi2g + b131 0| (0,0,0)
T62 bi2g + bi31 + bi3o 0 (0,0,0)
Z63 b130 0 (0,0,0)
T4 br 1] (0,—1,0)
Tes b1 1] (=1,0,0)
T big 1| (1,1,-1)
Tgr bas 1| (-1,-1,1)
T8 bs1 1 (0,1,0)

Continued on next page
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1 Bi
T69 b3y 1 (1,0,0)
70 by 0| (1,-1,0)
T b3 0| (1,2,-1)
T b 0| (2,1,-1)
T73 be 0| (—1,1,0)
T4 big 0| (=1,0,1)
T75 b1y 0| (0,-1,1)
76 bi7 0 (1,1,0)
p X7 bee 0| (=1,-2,1)
78 bes 0] (=2,—-1,1)
79 br3 0| (1,0,—1)
80 b4 0| (0,1,-1)
81 bso 0| (-=1,-1,0)
T8 bio7 0 (0,0,0)
T3 b1og 0 (0,0,0)
T84 b129 0 (0,0,0)
85 b133 0 (0,0,0)
Ts6 bes -1 (0,0,1)
Tg7 b0 —1 (0,1,0)
88 bro 11 (2,2,-1)
89 bre —1 (1,0,0)
o0 brs —1 (1,0,0)
To1 b9 —1 (0,1,0)
T2 bss —1 (0,1,0)
To3 bsg —1 (1,0,0)
To4 bss -1 (L 1, 1)
o5 bo1 -1 (1,1,-1)
To6 bos —-11] (0,2,-1)
Continued on next page
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1 Bi
Tg7 bos —-11] (2,0,-1)
L98 bio1 -1 (1,1,-1)
g9 bso -11(-1,-1,1)
100 bss —-11(-1,-1,1)
101 bso -1 (—2, 0, 1)
102 bg2 -1 (0, —2, 1)
103 b4 -1 (O, -1, O)
L104 boe -1 (-1,-1,1)
105 bor -1 (=10, 0)
106 b1oo —1] (-1,0,0)
L107 bios -1 (0,-1,0)
2108 bios -1 (0,-1,0)
109 b1os —1] (-1,0,0)
110 b1o9 -1 (_2> -2, 1)
m T111 b113 -1 (O, 0, _1)
T112 bo3 —2 (17 L, 0)
T113 bog —2 (O, -1, 1)
T114 bio2 —2 (—17 0, 1)
T115 b1o4 —2 (27 L _1>
T116 bioz —2 (17 2, _1>
T117 | bios + b11o + b11s + biie | —2 (0,0,0)
T118 —b1os + D110 -2 1 (0,0,0)
T119 bi11 —2 (_1> L, 0)
120 bi12 —2 (L -1, O)
T121 b114 -2 (=2,—-1,1)
122 —b110 + b115 —2 (0,0,0)
T123 —b110 + b116 -2 (0,0,0)
T124 bi17 —2 (O, L, —1)
Continued on next page
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1 Bi

T125 bi1s —2 (_17_271)
T126 b120 —2 (L 0, _1)
T197 b12o -2 | (-1,-1,0)
T128 bi19 -3 (0> L, 0)

T129 bi21 -3 (1> 0, 0)

130 b123 =31 (-1,-1,1)
T131 b124 -3 (1,1,-1)
T132 b1os -3 1] (0,—1,0)
133 b126 -3 (-1,0,0)

124

By Theorem 5.3.5, to determine the 1-dimensional representations of U (g, €),

we require the commutators Fy3 47, Fuas3, Fissa, Fs159, Fraar, Farsr, Fooss,

Fog 37, Iy 37

[6207 @53]

—BOg2 + O¢1
-5+ 962

3+ O3

—2 4 Og3 + O

—80¢3 — 4042 — 8061 — O15 — 2017 — O13 + O12 + 405204
—405,059 — 6043047

—72 + 52063 — 466 + 1004, — O15 + O17 — O13 — 80,
—2062063 + 2032, — 404,043 — 204142 + 405,059

+2050058 + 4043056 + 4044053 + 2043047
—120 4 22043 + 20042 + O17 — O13 + 4055040 — 4045054

+2044053
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[@267 @37] = —124 + 600¢3 + 3404, — 1804, — 203 — 6923 — 8049663
—202, + 404,063 + 207, + 8051059 + 2050055 + 2043647
[@2, @37] = —3624 + 1884043 + 205204, — 107604, + 2805 — 1807

—64013 — 2015 — 23202, — 84804,043 — 33607,
+592041 043 + 16005102 + 11207, + 2405,049 + 24005059
+20050055 + 40045055 — 8046055 — 16045054 + 16044053
—12043047 + 4034035 — 4032035 — 2027037 — 4021056
—4020053 — 6015063 — 20150452 — 2013061 + 6017063
+2017042 + 2017061 — 2015043 + 10013643 + 10036062
—20130¢1 + 20,050 + T206,03; + 7207,063 + 1602,
—7204105; — 48041042043 — 240,043 — 1607, Oy
—40051059063 — 40051059062 + 8051059061 — 80,43050059.

We have one 1-dimensional representation:

with all other generators ©; — 0. The denominators which appear in the
presentation of U(g, e) are all powers of 2, so we can define U(gy, ei) provided

k has characteristic p > 3.
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6.4.5 The orbit A, + 24,

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label Ay + 2A;. In Table 6.21 we give our choice of basis for g. We
take our sly-triple to be (e, h, f) = (b1 + byo + baz + bs1, 4b127 + 6b12g + 8b129 +
12by130 + 9b131 + 6b132 + 3b133, 2b104 + D105 + 20106 + b114) = (218, 6250 + 351 +
Adx7r + 878 + 12279 + 6250, T120). With this basis, a minimal generating set
for g¢ is {x49, T43, T4, Tas, Tag, Ta7, T4g}. A minimal generating set for m is
{5593, Tg4, To5, T96, L97, L98, L99, L1005, L101;, L102, L1035 L104, L1055 L1065 L107,
T108, L1105 L1115 T112, £113, L115, L116, L117, L120}- The subalgebra t¢ has basis
{249, T50, x51}. We calculate k(e, f) = 216.

Table 6.21: Basis for type E7, orbit As + 2A;.

n; Bi
1 be1 4 (0,0,0)
To be2 4 (—1,0,0)
T3 bes3 4 (1,0,0)
Ty bso 3| (0,-1,-1)
Ts bs3 3 (0,1,-1)
ZTg bs4 3| (1,-1,-1)
T7 bse 3 (1,1,-1)
.| T8 bs7 3 (0,-1,1)
Y o bss 31 (0,11)
10 bsg 3| (-1,-1,1)
T11 beo 3 (—1,1,1)
T19 bog 2 (0,0,—-2)
T13 b32 2 (2,0,-2)
T14 b3s — bus 2 (_17 0, 0)
15 b3z 2 (1,0,-2)
T16 bsg — bay 2 (1,0,0)
Continued on next page
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1 Bi
17 b4 2 (—2,0,0)
T18 b1 + baa + bag + b5y 2 (0,0,0)
T19 by1 + baz 2 (0,0,0)
T20 by 2 (0,0,0)
To1 bas 2 (2,0,0)
T2 bas — bae 2 ( 1,0, 0)
93 by — bag 2 (1,0,0)
Toy bsg 2 (—2,0,2)
Tos bso 2 (0,0,2)
Tog bs5 2 (—1,0,2)
Tor by + bay 1) (1,-1,-1)
Tog by + bag 1 (1,1,-1)
T29 bio — b1 1 (O, -1, _1)
| @0 by 1| (2,-1,-1)
P o bis — bug 1 (0,1,-1)
39 b7 1| (-1,-1,-1)
T33 big — b3 1 (—1,—1,1)
T3y bag 1 (2,1,-1)
T35 baso 1] (-1,1,-1)
T3 baz — b3g 1 (—1,1,1)
T37 bay 1] (-2,—-1,1)
T38 bas + bay 1 (0,-1,1)
T39 bag 1 (—2,1,1)
Z40 b3o + b33 1 (0,1,1)
T4, b3y 1 (1,-1,1)
T 49 b3g 1 (1,1,1)
43 by 0 (0,2,0)
Ta4 bz + %1?5 + %570 - %571 0 (—1,0,0)

Continued on next page
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1 Bi
T45 bs + b1g 0 (—1,0,2)
T46 b7 — 2bg + b + bes 0 (1,0,0)
La7 bes 0 (07 -2, 0)
9° | x4s beo + bso 0 (1,0,-2)
T49 bior — b131 — D132 0 (0, 0, 0)
50 b12s 0 (07 0, 0)
Ts1 b131 + 20132 + bi33 0 (0,0,0)
T b3s 2 (—1,0,0)
T53 bss 2 (1,0,0)
T54 ba1 2 (0> 0, 0)
Ts5 by 1] (1,-1,-1)
T56 b 1 (1,1,-1)
Ts57 b1o 1| (0,-1,-1)
T8 b1s 1 (0,1,-1)
P 250 bis 1] (-1,-11)
T bos3 1 (—1,1,1)
Te1 bos 1 (0,-1,1)
T2 b3o 1 (0,1,1)
T3 by 0 (2,0,0)
T4 b3 0 (—1,0,0)
ZTes bs 0 (—1,0,0)
T bg 0 (—1,0,2)
Tg7 b7 0 (1,0,0)
Tes bs 0 (1,0,0)
T b1o 0 (—2,0,2)
T70 b13 0 (0,0,2)
T be4 0 (—2,0,0)
T79 bee 0 (1,0,0)
Continued on next page
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1 Bi
T3 beo 0 (1,0,-2)
T74 bo 0 (—1,0,0)
T75 b5 0 (2,0,—-2)
T b6 0 (0,0,—-2)
P L7 b127 0 (0,0,0)
T8 b129 0 (07 0, 0)
L9 b13o 0 (O, 0, 0)
T80 b131 0 (0,0,0)
g1 be7 —1 (—1,1,1)
Tgo b3 —1 (0,1,1)
T3 b4 —1 (0,1,1)
Tg4 b77 —1 (—2,1,1)
85 brs —1 (0,-1,1)
T b9 —1 (0,-1,1)
Tg7 bso —1 (1,1,1)
T8 bs1 —1 (1,1,-1)
g9 bsy4 —1 (—1,1,1)
oo bss —1 (1,—-1,1)
To1 bs7 —1 (2,1,-1)
L9 bog4 —1 (1,1,-1)
T3 bzo —1] (-1,-1,1)
To4 bss3 —1] (=2,-1,1)
o5 bsg -1 (1,-1,-1)
T bss —1 (0,1,-1)
i Do 1] (-1,-1,1)
Tog bao —1 (0,1,-1)
Tg9 bos2 —1] (2,—-1,-1)
T100 b3 -1 (0,-1,-1)
Continued on next page
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1 Bi
T101 bog —1] (0,—1,-1)
T102 bo7 —-1] (-1,1,-1)
T103 bgg -1 (17 -1, _1)
T104 b102 -1 (-1,-1,-1)
T105 b1 -2 (0,0,2)
T106 bos —2 (_27 0, 2)
T107 bos —2 (L 0, 0)
T108 b10o —2 (-1,0,2)
109 bio1 —2 (—1,0,0)
110 b103 —2 (2,0,0)
T111 bioa — bios -2 (0,0,0)
T112 bios — b1os -2 (0,0,0)
T113 bio6 — b114 —2 (0, 0, 0)
m T114 b1o7 -2 (—2,0,0)
T115 b1os —2 (1,0,0)
T116 b109 —2 (1,0,0)
T117 b110 -2 (—1,0,0)
T118 b111 —2 (—1,0,0)
T119 b112 —2 (2,0,—-2)
T120 | 20104 + D105 + 20106 + D114 | —2 (0,0,0)
T121 bi1s —2 (0,0,-2)
T192 b11g —2 (1,0,-2)
T193 b113 -3 (0,1,1)
T124 b116 -3 (0,—1,1)
T195 bi17 -3 (—1,1,1)
T126 b119 -3 (-1,-1,1)
T197 b120 -3 (0,1,-1)
T1928 bi21 -3 1| (0,—1,-1)
Continued on next page
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1 Bi
T129 bi22 -3 (1> L, _1)
2130 b123 -3 | (1,—-1,-1)
m T131 b124 —4 (0,0,0)
T132 b12s —4 (L 0, O)
T133 b126 —4 (—1,0,0)

By Theorem 5.3.5, to determine the 1-dimensional representations of U(g, e),

we require the commutators Fiyae, Fisas, Fazar, Fisa5, Fiaas, F32.42, Fha 46,

F16,447 F23,447 F26,487 F2,467 F3,44:

-3+ O5

—54 4+ 6050 — 42049 — 2095 — O19 + O3 + 604905

—36 + 3605, + 6059 + 90049 + 4059 + 2019 — 203
—605005, + 6049051 — 12049050 + 1207, — 1204406
—BO20 — O19 + O15 — 6043047

—90 + 1805, + 12050 + 24049 — 2099 — 4019 + 3015
+6045048 + 12044046

—63 + 27051 + 9650 + 576049 + Oz — O19 + 5615 — 305005
+3049051 — 6049050 + 6075 + 3045045

—90 + 33051 + 90950 + 57049 + Oz + 2019 — 20,5 — 303,
—3050051 — 9049051 — 60,4905 — 6079 — 30,4565

90 — 12051 — 6050 + 60049 + 209y + O19 — O15 — 604905,
—6049050 — 6045048
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[O2,04] = 9360 — 554405, — 2304059 — 10620049 — 204055 — 6019
—6015 — O + 32402, + 126005005, + 14402, + 10804905,
12448049050 — 115207, — 61204505 — 720446046
—360,43047 — 12035041 — 12034037 + 1203045 + 12037039
—6026048 + 602051 + 24090050 — 12020049 — 601905,
—12019049 + 6013051 + 12013049 — 12016044 — 6015045
—6014045 — 3605002, — 7202,05; + 3604902, — 14404903,
+720%,051 + 14407,050 + 360,450,45051 + 72045045050

[O3,04] = —13374 4 495005, + 282605, + 8604049 + 13509 — 90019
+180:5 — 101 — 19807, — 86405005 — 14402 + 3604905
— 1584049050 + 82807, + 396045048 + 36044045 — 18043047
+3035041 — 6034037 — 3033042 — 3031035 + 6030039
13029040 + 6028033 — 60270365 + 3026048 — 6023044
—12090050 + 12047049 + 6019051 + 6019050 + 60190 49
—3015051 — 6013049 — 6016044 + 3015045 + 1805007,
+3602,051 — 1804903, + 7204907, — 36073,051 — 7207,05
—18045048051 — 360450.48050.

We have one 1-dimensional representation:

©; — 576
©:8 — —96
O — —36
O9 +— —60
Ou — 1
O — 3
O5 — 3,
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with all other generators ©; — 0. The denominators which appear in the
presentation of U(g, e) are all powers of 2, so we can define U(gy, ex) provided

k has characteristic p > 3.

6.4.6 The orbit 245 + A;

Here we consider the finite IW-algebra associated to the orbit of g with Bala—
Carter label 245 + A;. In Table 6.22 we give our choice of basis for g. We
take our sly-triple to be (e, h, f) = (bss + bss + bsg + b3z + sz, Bb1o7 + Thiog +
10b129 + 14b130 + 11b1g1 + 8bisa + 4biss, 2bg7 + 2bgg + 2bgg + bioo + 2b106) =
(93, —Tx49 +4x43+ 12074+ 10275 + 10276 + 6277 + 8278, 112). With this basis,
a minimal generating set for g° is {x3s, 37, T38, T39, T40, T41}. A minimal
generating set for m is {xsg, Too, To1, T2, To3, Toa, To5, Tog, T97, To8, T99, L100,
T101, T102; T103, T104, T105, L106, T107; T110, T112, T114f- 1he subalgebra t© has
basis {z42, z43}. We calculate (e, f) = 324.

Table 6.22: Basis for type Fr, orbit 24, + Aj.

L Bi
I be2 5 (_17 0)
To bes3 5) (1,0)
T3 bss 4| (0,-2)
Ty bs7 4 (0,0)
Ts bss 4 (2,0)
. | e bsg 4| (-2,0)
L R beo 1] (0,0
s be1 4 (0,2)
Ty by 3 (1,-2)
10 bas 3 (_17 _2)
T11 bar + bs2 31 (1,0)
L12 bag — bso 31 (=1,0)
Continued on next page
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Table 6.22 — continued from previous page

T13
T14
T15
T16
Ti7
I8
T19
T20
Ta21
T22
T23
Tog
T25
T26
Tor
Tag
T29
T30
T31
T32
T33
T34
I35
T36
T37
T38
T39

L 40

L B;
bsg — bs1 3|1 (=1,0)
bsz — bs3 31 (1,0)
b4 31 (=1,2)
bse 31 (1,2)
bog 2| (~2,-2)
bor — bag 2| (0,-2)
b3 — bao 2| (=2,0)
b33 2| (2,-2)
bas + bss 2 (0,0)
bz + ba3 2 (0,0)
b3 + bzs + b3g + b3 + baz 2| (0,0)
bas — b3g 2| (2,0)
bap — bag 2 (0,2)
baa 2 (2,2)
bas 2] (-2,2)
bs — bia 1] (-1,-2)
be — bs 1| (1,-2)
bio + 2bis + 1big — 3bo 1| (=1,0)
b1z + 2b14 — b5 — bog 1 (1,0)
b1s — b1s + bog 1 (1,0)
bi7 1| (=3,0)
big + big + bay — 2bao 1| (-1,0)
bao 1| (3,0
bas + bag 1| (-1,2)
bsg — bas 1 (1,2)
b1 — by + bgg 0 (2,0)
by — by — bg 0 (0,2)
bs + bes — bgs 0] (=2,0)

Continued on next page
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Table 6.22 — continued from previous page

L B;
T41 ber — bro — brg 0 (0> _2)
9° | Ta2 bia7 + biog — b131 0] (0,0)
Z43 biog + 2b130 + b131 + b133 0 (0,0)
L44 ba7 3 (L 0)
T45 bag 3 (—17 0)
T46 bar 2 (07 —2
Ty7 b1 21 (-2,0
L48 b4 2 (0,0)
T49 bse 2 (07 O)
50 bss 2 (2,0)
Ts51 ba 2 (0,2)
T b3 1| (-1,-2)
T53 be 1| (1,-2)
T4 bio 1 (_17 0)
P L55 b13 1 (1,0)
T56 b14 1 (1,0)
T57 bis 1 (L O)
L58 bis 1| (-1,0)
L59 big 1 (_17 0)
60 bas 1] (-1,2)
T61 bso 1 (1,2)
T2 by 0 (2,0)
T3 by 0] (2,0)
L64 by 0 (0, 2)
Te5 b 0] (—2,0)
66 by 0 (0,2)
Le7 by 0 (27 2)
L68 bi1 0] (-2,2)

Continued on next page
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Table 6.22 — continued from previous page
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Table 6.22 — continued from previous page

1 Bi
Lo7 b3 -1 (-1, _2)
L98 bos -1 (-1,-2)
L99 bsr —2 (2= 2)
100 bgo —2 (O, 2)
101 bg2 —2 (0, 2)
102 bo4 —2 (2= O)
103 bos —2 (_27 2)
L104 bg7 — bog —2 (0,0)
105 bgs — bog —2 (07 0)
106 bgg — b10o —2 (0,0)
L107 b1oo — b1os —2 (0,0)
108 bio1 -2 (-2,0)
109 b1o2 2| (=2,0)
m 110 b1o3 —2 (27 O)
T111 b1o4 —2 (0> _2)
T112 | 2bgr + 2bgs + 2bgg + b1go + 2b106 | —2 | (0,0)
T113 bio7 —2 (_27 _2)
T114 bios —2 (2> _2)
T115 bi11 —2 (07 _2)
T116 bios —3 (_17 2)
T117 b1og -3 (1,2)
T118 b110 —3 (_L 0)
T119 b112 -3| (1,0)
120 b113 —3 (17 O)
T121 b114 -3 (17 O)
T122 bi1s —3 (_17 0)
T123 bi16 -3 (—17 0)
T124 bi17 -3 (1> —2)
Continued on next page
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L Bi
T125 b119 -3 (~1,-2)
126 bi1s —4 (0,2)
197 b120 —4 (0,0)
T128 bi21 —4 (—27 0)
m T129 b122 —4 (2,0)
130 b123 —4 (0,0)
T131 b124 —4 (0, —2)
T132 bi2s =5| (1,0)
133 b126 =5| (=1,0)

138

By Theorem 5.3.5, to determine the 1-dimensional representations of U (g, €),

we require the commutators F3g 41, F38.40, F1938, F3335, Fig 39, o541, Fhg 37,

F24,407 F8,417 F5,407 F6,387 F3,397 F10,37:

[@39a @41]
[9383 @40]
[6197 638]

[@337 @35]
[6187 @39]

[@25a @41]

[62& 637]

[6247 @40]

—4 4+ Oy3

—4 4+ Oy

240 — 33043 — 108045 — Oag + O + 90420,3 — 1807,
196033049

—56 — 54049 — O3 + O + Og1 + 30356.49

144 — 5403 — 27045 — Ogy + Og; — 90,450,43 — 907,
—90330 49

252 — 117043 — 63045 — Ogy + Oy + 907, — 9607,
—180390 41 — 9633049

—144 + 18043 — 108045 + Og3 — 205y — Oy + 90456043
—907, + 303904,

—336 + 3043 — 360,45 — Og + Oy — 2703309
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[(—)87 @41]

[©5, O]

[©6, O3]

(O3, O3]

[@107 @37]

—10152 4 3267043 — 567043 + 9093 4+ 909 — 20709, — O7
—04 — 24307, + 24304503 + 8107, — 8370390,
+1296033040 — 9029036 — 9928037 — 9025041 + 1802043
—9602,042 — 9019035 + 81039041043 — 81039041042
—81035040043 + 162035040042

—32724 + 1485043 — 5940042 + 3093 — 171095 + 13504,
—O7 + 04 + 13504503 — 29707, + 540390, — 24840330,
19033035 + 18030031 — 9024040 + 9022043 — 9022042
—902,043 + 9021049 — 9015039 + 810330490 43
—2430330400 42

29160 — 6021043 — 60480 15 — 3093 + O7 — O, + 29707,
+13500420 43 — 1404073, + 105303904, + 2052035049
—9633035 — 18030031 + 9025041 + 9024040 + 9022042
+9019O35 — 8104507, + 16207,0,3 — 81039046043
+162039041042 — 162033049043 + 162035040042

16848 — 9072043 — 3078045 + 9055 — 135099 — 2705, — O
—04 + 56702, — 1296045043 — 137703, + 4590390,
—1134035049 — 9929035 — 9028037 + 902,049 + 9022043
—902,049 — 18013039 + 810,03, — 8103, — 8103904043
+81038040043 — 81035040042

—4860 + 1512043 — 1188045 — 270493 + 87095 + 39049, + O
—2707%,; + 27004903 — 2703, + 2160390, + 54033049
+9033035 + 5032034 — $031034 + 9030032 — 903,03,
19028037 + 9023043 + 9023042 — 18022043 — 902209
—9051043 — 902,045 + 6015039 + 540390 41O 45.
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We have one 1-dimensional representation:

O, — 756
O7 — 34668
Oy — —308
Qg +— —T76
Og3 +— —1356
O — 4
O +— 4,

with all other generators ©; — 0. We know that we cannot define U(gy, ex)
for k of characteristic 2 or 3, but without a presentation we cannot establish

that these are the only primes which have to be excluded for the definition
of U ( Ok, 611().

6.4.7 The orbit (A3 + A;)

Here we consider the finite W-algebra associated to the orbit of g with Bala—
Carter label (A3 + A;)’. In Table 6.23 we give our choice of basis for g.
We take our sly-triple to be (e, h, f) = (bay + bag + bsg + bag, 6b127 + 8b1og +
11b129 + 16b130 + 120131 + 8b132 + 4b133, 3bgg + 4bg1 + 3b102 4+ b112) = (225, —4x30+
1z + 12247 + 6275 + 12276 + 16277 + 8278, £110). With this basis, a minimal
generating set for g is {x12, To4, To5, T32, T33, T34, T35, T36, T37, T3g}. A
minimal generating set for m is {xgs, Zs9, Too, To1, Loz, To3, Toa, To5, Tog, Lo,
Zgg, L99, 101, L102, L104, L105, L106, L108, L109, L110; 33116}~ The subalgebra t*
has basis {x39, Z49, ¥41}. We calculate (e, f) = 396.
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Table 6.23: Basis for type E7, orbit (A3 + Ay)".

1 B;
1 bes3 6 (0,0,0)
To be1 5) (0,-1,0)
T3 be2 ) (0,1,0)
T4 bso + bsg 4 (0,0,0)
Ts bs3 4 (2,0,0)
Tg bs4 4 (—2,0,0)
T bs7 4| (-1,0,-1)
Ts bss 4 (1,0,-1)
Ty bsg 4 (—1,0,1)
T10 beo 4 (1,0,1)
11 b3o — bso 3 (0,—1,0)
L12 bar — bss 3 (07 L, 0)
T13 bss 3| (1,-1,-1)
p gl T4 byo 3 (1,1,-1)
T15 bys3 3 (1,—-1,1)
T16 44 3] (=1,-1,-1)
T17 by 3 (1,1,1)
18 ba7 3| (=1,1,-1)
T19 b4s 3| (-1,-1,1)
To0 bs1 3 (—1,1,1)
To1 b1y — bgy 2| (-1,0,-1)
T22 bao + b3s 2 (1,0,-1)
Tos ba1 — bys 2 (—1,0,1)
T4 bae + bao 2 (1,0,1)
T25 bar + bag + b3g + bag 2 (0,0,0)
To6 b4 2 (0,0,0)
Lot bis — b3o 1 (0,-1,0)
Continued on next page
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Table 6.23 — continued from previous page

L Bi
Tog bas 1 (2,—1,0)
Tag bos — bag 1 (0,1,0)
T30 bas 1| (—2,—-1,0)
T31 bag 1 (2,1,0)
T3 b3y 1 (—2,1,0)
T33 by + b7o 0 (2,0,0)
ED by 0| (0,2,0)
. bs 0l (0,0,2)
T3g by + bgs 0 (—2,0,0)
T3y bes 0 (0,-2,0)
T3g bes 0 (0,0,-2)
T'39 biog — b133 0 (0,0,0)
Ta0 b129 0 (0,0,0)
T41 bi31 0 (0,0,0)

F Tas bso 4 (0,0,0)
Ta3 b3 3 (0,-1,0)
T4y b3y 3 (0,1,0)
Tu5 bia 2| (-1,0,-1)
T bao 2 (1,0,—1)
Ty7 ba1 2| (-1,0,1)
T48 bag 2 (1,0,1)
Tag bor 2 (0,0,0)
T50 bag 2 (0,0,0)
Ts51 b33 2 (2,0,0)
T2 b3y 2 (—2,0,0)
T53 by 1 (0,-1,0)
T4 by 1| (-1,-1,-1)
Ts5 bs 1 (0,1,0)

Continued on next page
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L Bi
Ts6 b 1| (1,-1,-1)
Ts7 b1o 1| (-1,1,-1)
T58 b11 1| (-1,-1,1)
Ts9 b1s 1 (1,1,-1)
60 big 1 (1,—-1,1)
Te1 bi7 1 (—1,1,1)
T2 b1s 1 (0,-1,0)
Te3 bao 1 (1,1,1)
T4 bay 1 (0,1,0)
Tes bo 0 (2,0,0)
Te6 bg 0 (1,0,-1)
p Te7 b7 0 (—2,0,0)
T8 b2 0 (1,0,1)
e b13 0| (=1,0,-1)
T70 big 0 (—=1,0,1)
T beo 0 (—1,0,1)
T b5 0| (=1,0,-1)
T73 bre 0 (1,0,1)
T74 bsso 0 (1,0,—1)
L5 bi27 0 (0,0,0)
L76 bi2s 0 (0,0,0)
L7 b13o 0 (0,0,0)
L7 b132 0 (0,0,0)
T79 be4 —1 (0,1,0)
T80 be7 —1 (1,1,1)
Zs1 b7o -1 (—1,1,1)
g9 b3 -1 (1,-1,1)
T3 b4 —1 (1,1,-1)
Continued on next page
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L Bi
T4 bs1 -1 (0> L, 0)
L85 bss -1 (2> L, 0)
L6 b3 —1 (07 L 0)
Tg7 bo4 -1 (2,-1,0)
Tgs b -1 (0,—1,0)
g9 brs -1 (-1,-1,1)
oo b9 -1 (-1,1,-1)
To1 bso 1] (1,-1,-1)
To bss —1](-1,-1,-1)
To3 bsg -1 (—2,1,0)
Loy b7 —1 (O, -1, O)
95 bos2 -1 (-2,-1,0)
L96 bog —1 (O, —1, O)
To7 b7 -2 (1,0,1)
Tog bss -2 (—=1,0,1)
Tgg bga4 —2 (1,0,—1)
m
100 bsg —2 (_17 0, _1)
101 bgo — bo1 —2 (0> 0, 0)
102 bg1 — b1o2 -2 (0, 0, 0)
103 bos —2 (—2,0,0)
L104 bo7 —2 (2,0,0)
105 bos —2 (=1,0,1)
106 bio2 — b112 —2 (0,0,0)
107 b103 -2 (-1,0,-1)
2108 b1o4 —2 (1,0,1)
L109 bios —2 (17 0, _1>
T110 | 3bgo + 4bgy + 3b1o2 + b112 | —2 (0,0,0)
T111 bos -3 (0> L, 0)
Continued on next page
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ny; Bi
T112 b10o -3 (O, -1, 0)
Z113 b101 -3 (‘17 1, 1)
L114 b1os -3 (_17 -1, 1)
T115 b1o6 -3 (—L 1, —1)
Z116 bio7 -3 (17 1, 1)
Z117 b1og -3 (—17 —1, —1)
T118 bi10 -3 (1, -1, 1)
T119 bin -3 (1, 1, —1)
L120 bi14 -3 (17 —1, —1)
T121 bi15 -3 (07 1, O)
m T122 biis -3 (O, -1, 0)
L123 bi13 —4 (0> 0, 0)
T124 bi16 4 (—2> 0, 0)
T125 bii7 —4 (2> 0, O)
L126 bi1g —4 (07 0, 0)
T127 b120 —1 (1, 0, 1)
T128 bi21 —4 (_17 0, 1)
T129 b122 —4 (L 0, —1)
T130 b123 —4 (_17 0, —1)
T131 b124 =5 (07 1, 0)
T132 bi2s =5 (O, -1, 0)
Z133 b126 —6 (07 0, 0)

145

By Theorem 5.3.5, to determine the 1-dimensional representations of U (g, ¢),

we require the commutators F3336, F3a37, F3538, Fogs2, Fasa1, 2539, Fos a0,

F5,367 F25,267 F6,337 F21,247 F12,277 F4,257 F7,247 F11,127 F1,257 F2,12:
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[O35,038] = —1+0604

[©33,035] = —3+ O3

[©34,037] = —% + O40

[O25,032] = —88+ 77041 + 33049 — B O39 — Og5 — 1107, — 1104904

11105041 + 11054057 + 103,05

[©25,04] = 0

[O25,039] = 0

[©25,040] = 0

[O5,036] = —G%i + 8107041 + 8107049 — 484039 + 198095 — 18705

—O4 — 48402, — 10890400, — 48402, + 12103904,
+121035035 + 121034037 — 3025033035 + 1103903,
— 11093035 — 2209604, — 22096049 + 2202504, + 22025049
4363033036041 + 363033036049

[O6,033] = % — 20576041 — 2420049 — 6292059 + 165026 — 15405
—Oy + 242073, 4 3630490y + 24202, + 24200390,
+2420039049 — 1936039 + 121035035 + 121034037
4242033035 — 11039031 + 11095035 — 22096041 — 22096049
+11026039 + 220,504 + 22095049 — 110,5039 — 24203707,
—4840390 40041 — 24203907, + 363039041 + 363035,O.40
—12103,

[©91,024] = —B8L 4 6655041 + 3751040 + 7381039 — 99046 + 14305
+0, — 133103, — 314604904, — 48407, — 18150390,
—2662039049 + 84702, + 1210055055 — 12103,03;
12662033035 — 11030031 + 11095035 — 110460,
122096049 — 22096039 — 1105501 — 2205509 + 11095039
+36304007; + 24207,04; + 12103907, + 36303904904
124203903, — 12103,0,4; — 12103,049 — 2420350350,
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—363035035039 — 605033036041 — 363033036040
+121033036039

[©12,07] = 1022 1923904 — 10,0 + 2209803 + 440056 — 21O0s
—0, + 18207, + 6413040041 + 60507, — 326703904
—2178039040 + 36303, + 121035035 — 2203,05;
5324033035 + 1103003 + 11025035 + 1109,049
—5509604; — 66026049 + 11025039 + 22025041 + 2209504
— 10,5039 — 36303, — 8470,07,
—48407041 + 8803907, + 484039040041 + 1210507,
—12103,041 — 1210330140 + 363034057041 + 48405,03704
—%@34@37939 + 726033036041 + 968033036049
—242033036039

[©25,09] = 0

(07,0, = —1000 6841340, — 20,5 — 511104059 + 1294764
—10527095 + 220, + O + 28749603, + 54837204904,
+9450107, 4 9849403904 + 230263039049 — 282203,
—202312035035 + L1 03,037 — 5164280330365 + 121003003
— 1573028035 — 36305604, — 5203026049 + 2420026039
—22032s + 169409504, + 3146025049 — 726055059
111025096 + 11059093 + 1109094 + 1105055 — 2795103,
—1397550,4003, — 103818073,04, — 798603, + 13310507,
—23958039040041 — 4126103902, + 532402,04
+1597202,0,40 + 8385303503304 + 6388803505304
+1331035033039 — 26620340370 49 + 2662034037039
+174361033056041 + 1597200330 36049 — 2222053036039
1121031035037 — 36303003,04 — 12103,03,0,9
1121099030033 + 363023032041 + 24202503,0 49
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—121095030034 — 121027035033 — 36309403,
1242056040041 + 4840,560%, — 1210230390,
—363026039040 — 121025035035 + 121054035034
—2420550,400,; — 2420,50%, + 121095039049
—121045035035 — 121025033036 + 79860403,
+133100%,02%, + 532403,0,41 — 13310390,,0%,
+2662039073,04 + 266203903, — 133103,0,400.4;
—133102,0%, — 7986035033073, — 133100350350,4004;
—39930350330%) + 133103503303904; — 26620 350330390 49
1133103503303, + 39930303, — 133100330307,
—279510330360,40041 — 1197903303407,
+931760330350390 41 + 7986033035039049 — 133103303403,

+106480330350350 35
[©4,095] = 0
011,012 = 107683797 + 2233087@41 — @@40 + %@39 — 29403044

+16335045 — 770, — 20, — HEBOL — 79194504004

— 18957, + 20T 03004 + 13310390, + 12203,
—57233035035 + 204,047 + 795938033036
+10890350031 4 1089025030 — 21057099 + 907509604
+9075096040 — 1573096039 — 22035, — 44770504,

— 201055040 + 1321025039 + 22025025 — L O3, — 11015047
—22011099 + 11979007, + 310829,,07, + 14907203,0.4
+798603, — 12105907, — 6122603904041 — 399303907,
+21702,0.41 + 7986035035041 + 798603503504
—2662035035039 — 1597200340370, — 1304380340370 49
+29895.03,037059 — 2874960330360 — 2582140330360.49

+95832@33@36@39 — 484@31@32@37 — 242@30@31@40
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(O3, ©12)]

—242095035040 + 484023057034 — 72609403,
—121002604904; — 72609607, + 24205603904
+1210960390 40 — 726026034037 + 36309507,
1605095049041 + 36302507, — 12105503904,
—1219,5039040 + 363025034057 — 12O}, — 199650403,
—2262703,07, — 798603041 + 3993039073, + 1220300,,07,
+532403903,0.41 — 22103,07, — 221030404
+1197903,037,03%, + 2795103,03704004;

+1197905,05,02%, — 399303,0370390 4
—113—79@34@37@39@40 + %@34@37939 - &;79934937
+2395803303607, + 479160330350.4004; + 2129603303507,
—159720330360390,41 — 159720330 35039040

4266203303503, — 1064803303,035037

1289096127 1189625173 131080873 138957731
] + ] 641 - 4 @40 + 4 639

—134?11&@26 + %@25 - 5241&@4 — 3080, — w@u

— 5004 g, 00, — 573927202 4 B8T2Lg, 9,

— RORTIQ300,0 + LRIV, 3945655 9, Oy
+%‘51743@34@37 + w@&%@% - 6564183 030031
_%@28632 + 41_361@27@29 + 4321081 O2041 + 204(2)423 ©26040
— 026039 + 363035 — TP 05041 — 630894025049

+ 32807 0,:039 — 282095025 + L1203 — 290405, 024
—11016017 — 11015015 + 11014019 + 110,309 — 24205047
—605011029 — 22011015 + 11019021 + 110903, — 1105033
—11607044 4 242004033 + 254105035 + 220,04
+3070,0,0 — 36304039 — 1104055 + 10,025 — 220,04
+440,04; + 440,04 — 110,039 + 2528500763,
20020259, 62 1 3086322802,04 + 165443307
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—7803653039073, — 812903004004 + 10248700507,
_TRI6LG2 9, — S2SBGL G, 4 64420403,

+ 28T 935033041 + 2522103;0330,40 — 1288408035035030
_%7157@34@37@41 — 2516787903,0370 40

+ 100870995, 037039 — 436448210330360.41

— TTA329 633036040 + 2221033036039 — 7986003103037
+@@30@31@41 + WQ%@gl@m — 17303035005, 039
—3930,003)033 + 133103,0,7 + 1281450,30,,0,,

+ 857 0,5 0350 49 — 3859905035039 + 2795105030034
+39930,509036 + 2395807052033 — 2528905703, O34

— U8 0,,0290.41 — 7986027020040 + 133102702903

+952035:031 — 1038180507 — 257026000

— 78529055073, + 252056030041 + 24T Oy3039019

—T7986026039 — 2662026035035 — 2812056034037
—652196025033035 + 363025030031 + 36302602503

—12103,0.41 + 151102507, + 1104730230400

+465850507, — 2928202503904 — 252890250390.49
+39930503 — 2220,;03;035 + 91839@25@34@37

1399302503303 — 232025050031 — 252025025037 + 12102502604
—363025093041 — 48402053040 + 121@22923939 + 36302102404
+484051054049 — 121021024039 — 121012030033 + 121012025034
—121015027041 — 121012057040 — 36305033041 — 4840033010
+1210033039 — 36305036041 — 48405036040 + 12105035039

~ 350,07}, — 484040400, — 363040}, + 216,030
+1210,0490.4) — 330,04,05; — 219615007, — 71594490003,

_ L6051 02 02 9884277073 041 — 8TS460Y, + 108343405007,

F U023 G,00,,0% + 2BETH,,0% 0, — 439230300%, + 585640202,
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HO0BLE2 610, + 2196150202, — 10248703,0,; — 117128030,
+1464103, — 28970,,03307, — 3221020350350.40041
—204974035035075, + @@35@38@39@41 + 3362743 O350330390 .49
—2928203503502, + 732050207 + 00110, 0,,02,
+8389293031057040011 + 3718814050570 — 2152 0,,05,0300.1
— 3089251 03,0370390 49 + 8784603403703, — 2119 03,055057035

— 15958609 92,03, + 614922003303507; + 11756723033036040041
+528540103303507, — 2884277033036030041 — 27671490 33035030010
+27817903303603 + 117128033035036035 — 12005620 33034036037
+10648031 032037041 + 10648031032037049 — 2662031032037039
—L9190,,05,02, — 106480500310.40041 — 399303003,0%
+252030031039041 + 5203003103000 + 751 030031034037
_#@28932621 — 106480250520400.41 — 399302505,07

+ 191 025032030041 + 1181 02503,0390.49 — 1331055035503,
+154028039034037 — 2662095030034041 — 2662020300340
—1331028030034039 — 3993027032033041 — 532402703,033049
+133102703:033039 + 3993070510360, + 5324027031 036010

— 133107031 O36O39 + 266202;030033031 — 2662057050340 36
+3920560]; + 133102604007 — 133102603,041 — 57026020073,
—%31@26@39@40941 + @@26@34637@41 + 18634026034037040
—3993096034037039 + 7986025033036041 + 1064806033030 49
—2662025033036039 — 252025074, — 002504007, — 133105505,04
+15102503007; + 151023039040041 — 700503403700
—53240550305704 + 1331050340570 + BIHOF,

+21099.0,4,07, + 46851203,07, + 33674303,07,

8784604041 — 439230501, — 28190,,0,,073,

— 304619, 92 02, — 5856403005,041 + 18102 6%
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+1464103,0407, + X5403,07,0.41 — 17569205,0;3;07,
— 1185921 93,05,0,4907, — 58564003,03707,0.41
—17569203,0370%) + 7320503,03703907;

12049740340 37039040041 + 11712803,03,03907,
—19103,05703041 — 1464105,03;03)0.49

+201592 03,041 + 8784603,03,0.49 — 2928203,03,039
—26353803303503, — 7906140330350,4003,
—76133203303303,04; — 2342560330550,
+175692033036039073, + 3513840330350390,40O.41
11756920330 3503907, — 2928203303303,0.41
—292820330350350040 + 14641003303,0360370.4
+1171280330340350370.40 — 2928203303,036037O039

14641 102487 102487 1331 14641 (2
[©1,095] = . 9 O4 + @39+—@6+—@
14641 14641 14641 4641
+—@4o@41 — 939@41 == 039049 — 5034037
14641
O33036 + 1331 @30931 + —@28@32 — —@31@32@37

_TGZSGSO O34.

We have two 1-dimensional representations:

0, — —=756008
0, — 16214
O — — 6771
O — — %
O3z9 +— 3
O %
@41 = 17
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and

©,

O,
Oas
Oa
@39
O40
O

2

w

L A

— oo

18029

—352
_ 165

3531143

with all other generators ©; +— 0 for each of these. We know that we cannot

define U(gy, ex) for k of characteristic 2,3 or 11, but without a presentation

we cannot establish that these are the only primes which have to be excluded
for the definition of U(gy, ex).

6.5 Type Fg

Due to computational limits, it has not been feasible to carry out the calcu-

lations above for each of the 17 non-zero rigid nilpotent orbits when g is of

type Fg, so we summarize the results obtained for the 14 accessible orbits.

Table 6.24: Results for type FEs.

Dynkin # 1-dim
Orbit diagram k(e, f) | dim(g®) | dim(t°) reps
Ay 0 60 190 7 1
0000001

Continued on next page
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Table 6.24 — continued from previous page
Dynkin # 1-dim
Orbit diagram k(e, f) | dim(g®) | dim(t°) reps
2A, 0 120 156 6 1
1000000
3A; 0 180 136 5t 1
0000010
4 A, 1 240 120 4 1
00000O0O
As + Ay 0 300 112 D 1
1000001
A + 24, 0 360 102 4 1
0000100
Ay + 344 0 420 94 3 1
0100000
245+ Ay 0 540 86 3 1
1000010
As+ Ay 0 660 84 4 2
0000101
2A5 + 24 0 600 80 2 1
0001000
Az + 24, 0 720 76 3 1
0100001
Dy(ar) + A4 1 780 72 2 1
0000010
As+ Ay + Ay 0 900 66 2 1
0010000
2A3 0 1200 60 2 1
1001000




6. RESULTS FOR RIGID ORBITS IN EXCEPTIONAL g 155

The 3 remaining orbits offer such computational difficulties largely due to the
heights of A4 + A3, Ds(a;) + As and As + A; being 9,10 and 10 respectively.

6.6 The number of 1-dimensional representa-

tions

From the above tables we see that for rigid e in exceptional g (except possibly
for type Eg with e lying in one of the 3 remaining orbits), U(g, e) admits 1
or 2 1-dimensional representations. A common feature of each of the orbits
for which there is precisely one 1-dimensional representation is that we can
choose a generating set of g from the ad h weight spaces g(0) and g(1); in
the (so far, 4) cases where there are two 1-dimensional representations any
generating set of g¢ must contain an element of g(3).

Of the remaining Ejg orbits, we can choose generating sets for g° as follows:
for e in the orbit A4 + A3 we have that g¢ is generated by g(0) Ug(1); for e in
the orbit Ds(a;)+ As we have that g¢ is generated by g(0)Ug(1)Ug(2)Ug(3);
and for e in the orbit As + A; we have that g° is generated by U_,g(7).
It seems likely that we will find that in these cases there is more than one

1-dimensional representation.



Appendix A

Finding an sl-triple from a
weighted Dynkin diagram using
GAP4

For a simple Lie algebra L (with Chevalley basis b), GAP4 gives a correspond-
ing root system, a set of positive roots, and the associated Cartan matrix.
The following procedure takes this data, together with a weighted Dynkin
diagram corresponding to a nilpotent orbit in L, and returns a list [e, h, f]
such that these elements of L nontrivially satisfy the sly relations, where the
coefficients are integers and the number of basis elements whose sum is e is
minimal. If no such triple exists (i.e. the weighted Dynkin diagram does not
correspond to a nilpotent orbit), the procedure returns "fail®".

The function S12h(WDD) returns the semisimple element of the desired
sly-triple by solving a set of linear equations involving the Cartan matrix and
the weighted Dynkin diagram WDD. The function EValue(h,y) returns the
ad h eigenvalue of an element y in L; if y is not an eigenvector for ad i the
function returns "fail". The function ESpace(h,u) returns the list of basis

elements of L whose ad h eigenvalue is u.
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L:=SimpleLieAlgebra("type", rank, field);
b:=Basis(L);

n:=Dimension(L) ;

RSL:=RootSystem(L) ;
RSLpos:=PositiveRoots(RSL);
C:=CartanMatrix(RSL);
RankL:=Length(C);

S12h:=function(WDD)
local CT, v, w, i;
CT:=TransposedMat (C) ;
v:=SolutionMat (CT,WDD) ;
w:=List([1..RankL],i->b[2*Length(RSLpos)+i]);
return v*w;

end; ;

EValue:=function(h,y)
local yx, a;
yx:=ExtRep0f0bj (y) ;
a:=ExtRep0£f0bj (h*y) ;
if a in VectorSpace(Rationals, [yx]) then
return SolutionMat([yx],a)[1];
else return "fail";
fi;

end; ;

ESpace:=function(h,u)
local i;
return Filtered(b,i->EValue(h,i)=u);

end; ;
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GetS12:=function(WDD)
local h, A, CA, B, CB, i, U, V, M, j, N, P, e, M1, £f, v;
h:=S12h(WDD) ;
A:=ESpace(h,2);
CA:=Combinations(A);
Sort (CA,function(v,w) return Length(v)<=Length(w); end);
CB:=List(CA,i->List(Positions(ExtRep0f0bj(Sum(i)),1)
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+(n-RankL)/2,j->b[j1));

for i in [2..Length(CA)] do
U:=CA[i];
V:=CB[i];
M:=NullMat (Length(U) ,Length(V));
for i in [1..Length(U)] do
for j in [1..Length(V)] do
M[i]l [j]:=U[i]=*V[j];
od;
od;
N:=TransposedMat (M) ;
P:=List(N,i->Sum(i));
if h in VectorSpace(Rationals,P) then
e:=Sum(U) ;
M1:=List (V, j->ExtRep0f0bj (e*xj));
v:=SolutionMat (M1,ExtRep0f0bj(h));
if ForAll(v,k->k in Integers) then
f:=v*V,;
return [e,h,f];
fi;
fi;
od;
return "fail";

end; ;



Appendix B

A GAP4 procedure for creating

a new basis for a Lie algebra

Our purpose is to specify a basis for our Lie algebra g according to the
requirements of Section 3.2. The input is the simple Lie algebra L (and n
is defined to be the dimension of L) and a list ¢ of n elements in terms of the
inbuilt Chevalley basis corresponding to the new ordered basis of g.

This is carried out by means of a table TSC of structure constants. We
also create the following: the associated universal enveloping algebra Ug; the
set of n PBW generators x of Ug corresponding to the ordered basis c of g;
and a polynomial ring R on the set r of n indeterminates. We declare famUg
and famR to be the respective families of objects containing the elements of
Ug and R.

NewSCTable:=function(c)
local C, Y, R, TSC, M, N, i, j, k, A, u, V;
C:=NullMat(n,n);
Y:=[];
V:=[1;
TSC:=EmptySCTable(n,0,"antisymmetric");
M:=List(c,i->ExtRep0f0bj(i));

N:=Inverse(M);
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for j in [1..Length(c)] do
for k¥ in [j..n] do
Clj] k] :=c[jl*c[k];
od;
od;
for i in [1..n] do
for j in [i+1..n] do
if not cli]*c[jl=Zero(L) then
u:=ExtRep0f0bj (c[il*c[j]);
A:=uxN;
for k in [1..n] do
V[2*k] :=k;
V[2*k-1] :=A[k];
SetEntrySCTable(TSC, i, j, V);
od;
fi;
od;
od;
return TSC;

end; ;

TSC:=NewSCTable(c);
g:=LieAlgebraByStructureConstants(Rationals,TSC);
c:=Basis(g);

n:=Length(c);

Ug:=UniversalEnvelopingAlgebra(g) ;
x:=Generators0fAlgebraWithOne (Ug) ;
famUg:=Family0Obj (One (Ug) ) ;
R:=PolynomialRing(Rationals,n);
r:=Indeterminates0fPolynomialRing(R) ;
famR:=FamilyObj(One(R));
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Appendix C

Calculating in U(g, e) using
GAP4

We have elements e, h and f as elements of g. Elements of U(g,e) are
stored in GAP4 as elements of the polynomial ring R. Addition and scalar
multiplication are carried out in R. The associative multiplication operation
in U(g, e) on two elements is carried out by the function Mult(y,z), which
converts each argument into a list of monomials in Ug (using the function
MonomiallList), then takes the sum of the term by term products in Ug,
and factors out the left ideal I, by evaluating each basis element of m at x
(the function InQ(y)). The function MultList carries out the multiplication
operation on a list of elements of U(g,e). The function Com(y,z) returns
the commutator of two elements in U(g, e) by similar means. The function

Kdeg(y) returns the Kazhdan degree of an element y of Ug.

d:=Dimension(Centralizer(g,e));

q:=1/2*(n+d);

mBasis:=[q+1..n];

hDeg:=List([1..n],i->EValue(h,c[il));

Kappa_ef:=Trace(AdjointMatrix(c,e)*AdjointMatrix(c,f));

chi:=List(mBasis,i->1/Kappa_ef*
Trace(AdjointMatrix(c,e)*AdjointMatrix(c,c[i])));
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CSA:=Filtered([1..n],i—>h*c[i]=0%c[i] and

exc[i]=0*c[i] and

ForAll(c,j->c[il*j in VectorSpace(Rationals, [j]1)));
CSA_R:=List(CSA,i->r[i]);

InQ:=function(y)
local i;
return Value(y,List(mBasis,i->r[i]),chi)*0One(R);

end; ;

MonomialList:=function(y)
local yx, 1i;
yx:=ExtRepPolynomialRatFun(y) ;
return List([1..Length(yx)/2],i->
[ObjByExtRep(famUg, [0, [yx[2*i-11,yx[2%i111)]1);

end;;

Mult:=function(y,z)
local u, yList, zList, i, j, v;
u:=Zero(R) ;
yList:=Monomiallist(y);
zList:=MonomiallList(z);
for i in [1..Length(yList)] do
v:=[];
for j in [1..Length(zList)] do
v[j]:=PolynomialByExtRep (famR,
ExtRep0f0bj (yList [i]*zList [j1) [2]);
od;
u:=u+Sum(v) ;
od;

return InQ(u);
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end; ;

MultList:=function(Y)
local a, i ;
a:=0ne(R);
for i in [1..Length(Y)] do
a:=Mult(a,Y[i]);
od;
return a;

end; ;

Com:=function(y,z)
local u, yList, zList, i, j, v;
u:=Zero(R);
yList:=Monomiallist(y);
zList:=MonomialList(z);
for i in [1..Length(yList)] do
=0
for j in [1..Length(zList)] do
v[j] :=PolynomialByExtRep(famR,
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ExtRep0f0bj (yList [i]*zList [j]-zList [jl*yList[i]) [2]);

od;
u:=u+InQ(Sum(v));
od;
return u;

end; ;

KList:=function(Y)
local i, u;
u:=0;
for i in [1..Length(Y)/2] do
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u:=u+(hDeg[Y[2%i-1]]+2) *Y[2%i];
od;
return u;

end;;

KDeg:=function(y)
local i, yx, pxf;
if y = Zero(R) then
return O;
else yx:=ExtRepPolynomialRatFun(y);
return Maximum(List(Filtered(yx,i->IsList(i)),j->KList(j)));
fi;

end; ;

Weight:=function(A,y)
local w, 1i;
wi=[1;
for i in [1..Length(A)] do
if Com(A[i],y)=Zero(R) then
wli]:=0;
elif Com(A[i],y) in VectorSpace(Rationals, [y]) then
w[i] :=ExtRepPolynomialRatFun(Com(A[i],y)) [2]/
ExtRepPolynomialRatFun(y) [2];
else return "fail";
fi;
od;
return w;

end; ;



Appendix D

Finding generators of U(g,¢)
using GAP4

The following is to give the generators of U(g,e) in accordance with Section
3.2. We have a list mGens whose elements are the indices of a set of genera-
tors of m. The first stage is to list all monomials which may appear in the
generators along with their Kazhdan degrees and t®-weights. This is given
by the function GetBigList (y) where the argument y gives an upper bound
on the Kazhdan degree. We then set the variable BigList to be this list for
some choice of bound y. The function MonList(y) then filters this list to
include only those monomials which may have a non-zero coefficient in the
expression for the generator with leading term y.

The function GetGen(z) finds the coefficients for the monomials found by
MonList(r[z]). For this we create a polynomial ring S over the rationals
with the number of indeterminates equal to the number of monomials in the
list D:=MonList (r[z]) for which we need the coefficient. We then create a
polynomial ring Q over S with n indeterminates. Taking the commutators of
each generator of m (the list mGens) with each monomial (in the list D), we
get a list of elements of the iterated polynomial ring Q. For each monomial in
D (and also the constants) we take the sum of the coefficients (elements of the

polynomial ring S). Thus each element of the list D gives a linear polynomial
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in S. Setting the leading coefficient to be 1 (that is, evaluating at S.1=0ne (3))
and triangulizing the matrix of coefficients of polynomials (which has rank

Length(D)-1) gives a list of coefficients for the required generator O,.

HighIndex:=function(y)

local yx, u, i;
yx:=ExtRepPolynomialRatFun(y) ;
u:=Filtered(yx,i->IsList(i) and not i=[]);
if u=[] then
return O;
else
return Maximum(List(u,i->i[Length(i)-1]));
fi;

end; ;

GetBigList:=function(y)
local U, u, B, C, A, v, i, j;
U:=PolynomialRing(Rationals,q);
u:=Indeterminates0fPolynomialRing(U);
B:=List([1..q],i—>ulil);
C:=List([1..q],i->List([i..ql,j—>uljl));
A:=[B];
v:=-1+y/Minimum(Filtered (hDeg,i-> i>0));
for i in [1..v] do
Ali+1]:=[1;
for j in [1..Length(A[i])] do
Append (A[i+1],A[i] [j]*Filtered(C[HighIndex(A[i] [j1)],
k->KDeg (k) <=y-KDeg (A[i] [j1)));
od;
od;
return(List (Flat(A),i->[i,Weight (CSA_R,i),KDeg(i)1));

end;;
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BiglList:=GetBigList(y);

MonList:=function(y)
local A, i, w, v, B;
w:=Weight (CSA_R,y);
:=Weight ([r*ExtRep0f0bj (h)1,y) [1];
:=Filtered(BigList,i->i[2]=w and 1i[3]<=v+2);
:=List (A,i->[ExtRepPolynomialRatFun(i[1]),i[2],i[3]1]1);
:=Filtered(B,i->PolynomialByExtRep(famR,i[1])=y
or (i[1]1[1] [Length(i[1][1]1)-11>d
and not (Length(i[1][1])=2
and i[1][1][2]=1 and i[3]=v+2)));
return List(B,i->PolynomialByExtRep(famR,i[1]));

o W = <

end; ;

ITER_POLY_WARN:=false;
GetGen:=function(z)
local D, LD, S, famS, Q, famQ, F, i, j, k, a, w, wx, A, U, V,
M, gen, v;
D:=MonList(r[z]);
LD:=Length (D) ;
A:=[];
if LD=1 then
return r[z];
else
S:=PolynomialRing(Rationals,LD);
famS:=FamilyObj (One(S));
Q:=PolynomialRing(S,n);
famQ:=FamilyObj (One(Q));
F:=List(mBasis,i->PolynomialByExtRep(famQ, [[i,1],0ne(S)]1));
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for i in mGens do
U:=Zero(Q);
for j in [1..LD] do
a:=ExtRepPolynomialRatFun(Com(r[i],D[j]));
a:=List(a,i—>i);
for k in [2,4..Length(a)] do
a[k] :=0ne(S)*alk];
od;
U:=U+PolynomialByExtRep(famQ,a)*PolynomialByExtRep
(famS, [[j,1]1,11);
od;
w:=Value(U,F,0ne(Q)*chi);
wx :=ExtRepPolynomialRatFun(w) ;
for k in [2,4..Length(wx)] do
Add(A,Value(wx[k],[S.1], [One(S)1));
od;
od;
V:=List(A,i->ExtRepPolynomialRatFun(i));
M:=NullMat (Length(V),LD);
gen:=D[1];
for i in [1..Length(V)] do
for j in [2,4..Length(V[i])] do
if V[i][j-1]=[] then
M[i] [LD] :=-V[il [j1;
else M[i] [V[i] [j-11[1]-1]1:=V[i][j];
fi;
od;
od;
TriangulizeMat (M) ;
v:=List(M,i->i[Length(i)]);
for i in [2..LD] do
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gen:=gen+v[i-11*D[i];
od;

return gen;

fi;

end;;



Appendix E

Finding relations for U(g, ¢)
using GAP4

We have a list t giving generators O1, ..., O, of generators of U(g, €), stored as
elements of the polynomial ring R. The following procedure takes 2 generators
©, and ©, and returns a polynomial F;, such that [©,,0,] = F,.(01,...,04).

The function PolyCalc(p) takes a polynomial in R and returns that poly-
nomial evaluated at the generators of U(g, e). The function InCent (p) takes
an element p of U(g) and returns the image of p under the projection into
U(g°), along with the terms whose sum is that polynomial, and the Kazhdan
degrees of those terms. The function GetRel (p) takes an element p of U(g, e)
where p is obtained by taking the commutator of two of the generators, say

t[y] and t[z], and returns the desired polynomial F)..

PolyCalc:=function(p)
local px, u, i, j, k, a, A;
px:=ExtRepPolynomialRatFun(p);
u:=List ([1..Length(px)/2],i->[px[2*i-1],px[2*i]]);
a:=Zero(R);
for i in [1..Length(u)] do
A:=[];
for j in [1..Length(uli][1])/2] do
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for k in [1..ul[il[1][2*j]] do
Add(A,t[ulil [1]1 [2%j-111);
od;
od;
a:=a+ul[i] [2] *MultList (A);
od;
return a;

end; ;

InCent:=function(p)
local u, i, v, pc, a, ax, Q, QK;
u:=List([d+1..n],i->r[i]);
v:=List(u,i->0);
if not p=Zero(R) then
a:=Value(p,u,v)*0ne(R);
ax:=ExtRepPolynomialRatFun(a) ;
Q:=List([1..Length(ax)/2],i->PolynomialByExtRep

(famR, [ax[2xi-1],ax[2%i]]));

QK:=List(Q,1i->KDeg(i));
return [a,Q,QK];
fi;
return [p, [p]l,[0]];

end; ;

GetRel:=function(p)
local U, pc, a, i, A;
U:=[];
if InQ(p)=Zero(R) then
return Zero(R);
else
while not p=Zero(R) do
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pc:=InCent (p);
a:=Maximum(pc[3]);
A:=Filtered(pc[2],i->KDeg(i)=a);
Append (U, A) ;
p:=p-PolyCalc(Sum(A));

od;

return Sum(U);

fi;

end; ;



Appendix F

Sample code for type Go,
orbit Al

Here we show how the above procedures are used in order to obtain a pre-
sentation of the finite W-algebra U(g, e) associated to some element e in the
nilpotent orbit A; of the complex simple Lie algebra of type Gs.

We first construct our Lie algebra and its Chevalley basis, and specify the
ordered list of weights for the Dynkin diagram for the orbit in question:

L:=SimpleLieAlgebra("G",2,Rationals);

b:=Basis(L);
n:=Dimension(L) ;
WDD:=[1,0];

We read the content of Appendix A and find our sly-triple e = by, h =
2013 + 3b1a, | = bio:

s12:=GetS12([1,0]);

e:=s12[1];
h:=s12[2];
f:=s512[3];

We give a new ordered basis for our Lie algebra:
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c:=[b[6],b[5],b[4],b[2],b[8],b[14],
b[1],b[3],b[13],b[9],
b[7],b[10],b[11],b[12]];

We read the content of Appendix B and define our sly-triple in terms of the

new basis:

e:=c[3];
f:=c[12];
h:=exf;

We read the content of Appendix C. We find a generating set for the subal-

gebra m - the set {c11, ¢12, ¢14} is minimal - and list the indices:
mGens:=[11, 12, 14];

We read the content of Appendix D up to the function GetBigList(y), and
we note that the highest Kazhdan degree of a generator is 5 (for ©1 and ©,), so
we set y:=5, evaluate BigList:=GetBigList(y) and read Appendix D from

the definition of the function MonList on. We calculate the 6 generators:
t:=List([1..d],i->GetGen(i));

We read the content of Appendix E and calculate all relations, stored as

polynomials in the matrix Rels:

Rels:=NullMat(d,d);

for i in [1..d] do
for j in [1..d] do
Rels[i] [j]:=GetRel(Com(t[i],t[j1));
od;

od;
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