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Abstract: This paper presents an electrical equivalent circuit model for lithium-ion batteries used
for hybrid eectric vehicles (HEV). The model has two RC networks characterizing battery
activation and concentration polarization process. The parameters of the model are identified using
combined experimental and Extended Kalman Filter (EKF) recursive methods. The open-circuit
voltage and ohmic resistance of the battery are directly measured and calculated from
experimental measurements, respectively. The rest of the coupled dynamic parameters, i.e. the RC
network parameters, are estimated using the EKF method. Experimental and simulation results are
presented to demonstrate the efficacy of the proposed circuit model and parameter identification
techniques for simul ating battery dynamics.

Keywords: Parameters identification; dynamic battery model; lithium-ion battery; HEV;

CLC number: TM912.8 Document code: A Article|D:

1. Introduction

Lithium-ion batteries are increasingly used in portable electronics, automotive and aerospace
applications, as well as in back-up power applications due to their high voltage, high energy
density, none memory effect, and | ow self-discharge during storage. Recently there has been a fast
growth in demand for large lithium-ion batteries for direct power supply of eectric vehicles (EV)
and hybrid electric vehicles (HEVS). Accurate modeling of battery dynamics is important for
accurate simulation and optimization, and rea time energy management of EVs and HEVs.

An accurate dynamic model of battery usually involves the relations of the terminal voltage to
current, power, temperature, state of charge (SOC), the effects of self-discharge, and the effects of
aging. Currently, there are three main types of model used to describe the reationship between
input and output of a battery system. These are electrochemica model (1.2 artificial neural
network model '*# and electrical equivalent circuit model ). The electrochemical battery model
describes the dynamic process of chemical reactions occurring on the electrodes based on
mathematical method, which can integrally reflect dynamic characteristics of the battery. However,
this model requires battery chemical parameters and detailed knowledge of the battery
construction and material properties which is not normally available to designers of vehicles.

The artificial neural networks method has advantage of adaptive learning which can be applied to
the system identification of battery’s nonlinear characteristics during charging and discharging.
The artificiad neural networks modd has be widely implemented for various battery systems.
However, this model requires alarge amount of data for training and the accuracy of these models



is affected significantly by the training data and training method. Furthermore, the neural network
model may not be suitable for simulating battery characteristics of HEV since the battery current
fluctuates acutel y and randomly as the power demand varies during a vehicle’s driving cycles.

Electrical equivalent circuit modds are based on the operational principle of the battery which
simulates its dynamics with circuit network composed of capacitor, resistor, and constant voltage
source etc. Equivaent circuit models have been extensively researched in recent years due to its
excellent adaptability and simple realization. Severa equivalent circuit models such as RC model,
Thevenin model and Partnership for a New Generation of Vehicles (PNGV) model have been
applied to lithium-ion batteries in HEV. These models are used for simulating the dynamic
characteristics and estimating SOC of the battery.

The parameters of equivalent circuit model for batteries are normally determined by performing a
series of charging and discharging tests at different SOC values with controlled current and
temperature. Various techniques have been proposed to identify the model parameters.. For
example, the identification technique, based on experimental data coupled with characteristics of
battery model, is essentialy utilized for specifying the parameters[s' ° However, it requires highly
accurate measurement apparatus to obtain the resistance and time constant of RC network in the
model. In addition, it heavily relies on the experience of the researcher. The well known Extended
Kaman Filter (EKF) is arecursive algorithm for computing estimates of states and parameters of
nonlinear system. It is particularly able to optimally estimate the states and parameters affected by
process and measurement noise™. It has been applied in a wide range of applications such as
state observation, parameter estimation and state prediction problems. In this paper, the EKF
combined with the experimental identification methods are used to obtain the circuit model
parameters of alithium ion battery.

2. Model formulation

The power assist unit in the hybrid electric vehicle described in this paper, is composed of 144
lithium-ion cells. Each battery module (battery box) consists of 16 lithium-ion cells. Idedlly, tests
and model identification need to be carried out on each cell with alarge quantity of computation.
But this will be expensive and time consuming. Alternatively, tests and modelling could be based
on one cell, and then multiply by144 to obtain a model of the whole battery pack. But this may not
be accurate due to tolerance variations between the battery cells. As a compromise the battery
module of 16 cells is regarded as the object for modelling, multiplying the amount of battery
modules as the total battery pack model.

The electrica circuit model is used to describe the relationship between the currents and voltages
measured at the terminal of the battery. The model used for the lithium-ion battery comprises three
parts, as shown in Fig. 1: 1) open-circuit battery voltageV,. , which is composed of an equilibrium
potential V, and a hysteresis voltageV,, , 2) internal resistance R contains the ohmic resistance R,

and the polarization resistance, where the polarization resistance has two components R,

andR,., where R,, represents effective resistance characterising activation polarization and

pc

Roc represents effective resistance characterising concentration polarization, 3) effective



capacitances, which consists two parameters of C,,andC., these two parameters are used to

pc*

describe the activation polarization and concentration polarization, which are used to characterise
the transient response during transferring power to/from the battery. The el ectrical behaviour of
the circuit can be expressed as following equations:
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Fig. 1 Proposed equivalent circuit model for the lithium-ion battery

3. Parameters estimation
3.1 Open-circuit voltage

The equilibrium potential is the open circuit voltage measured when the forward and reverse
reaction rates are equa in an electrolytic solution, thereby establishing the potential of an
electrode. The equilibrium potential of the battery, which is determined by Nernst equation,
depends on the temperature and the amount of active materia left in the eectrolyte. Fig. 2
illustrates the open-circuit voltage (OCV) as afunction of SOC after charge and discharge at room
temperature. In this experiment, the battery was first discharged at constant current of 30 A from
fully charged statetill 10 % of the nominal capacity (100 A h) was consumed. It was subsequently
left in open-circuit condition, while the open-circuit voltage was observed. After one hour, the
measured voltage was considered as equilibrium voltage since the rate of the increase of the open
circuit voltage was negligible and hence the battery was assumed to be got to a steady state. The
battery was subsequently discharged by a further 10 % of the nomina at the same current and the
equilibrium voltage measured after waiting for one hour, and the procedure was repeated to obtain
the remaining data points on the discharge curve in Fig. 2. The battery was then recharged at the
specified current, the equilibrium voltage after charge could be obtained every 0.1 SOC. From Fig.
2, we can find that the equilibrium voltage has different values after charge and discharge



respectively at the same SOC, which indicates that the equilibrium potential depends on previous
treatment of the battery and the hysteresis phenomenon is observed during a charge and discharge.
Thus, two SOC vaues exist for a given equilibrium voltage. The hysteresis voltage needs to be
considered when the open-circuit voltage is used to determine a battery’s initid SOC.The
hysteresis characteristics is thought to be due to the intercalation of lithium ions into carbon and
into LiMnO, electrodes for lithium-ion batteries as discussed in 4,

In this paper, in order to identify the model parameters, we assume SOC point is known.
Hysteresis will be neglected and the average open-circuit voltage of battery V., will be used.
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Fig. 2 Open-circuit of battery voltage as afunction of SOC at room temperature
3.2 Ohmic resistance

The total Ohmic impedance of the battery is the sum of the resistance across the solution and the
resistance of the external circuit, which depend on temperature and SOC. The Ohmic resistance of
the battery at the specified SOC and temperature can be determined experimentally using pulse
current charging and discharging asillustrated in Fig. 3.
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Fg. 3 Battery voltage response at the pulse current

As shown in Fg. 3, the instantaneous battery voltage is dropped at the condition of pulse current
which can be expressed as:



oV = - v @

The ohmic resistance can be given by:
R, =% )

Where | isthe charge/discharge current through the battery.

The Ohmic resistance was found to be independent of the battery current. But it was found to be a
function of SOC shown in Fig. 4. It can be seen that the resistance varies with SOC, and has high
vaues at lower SOC and also has a high value at SOC=1.
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Fig. 4 Ohmic resistance of the battery as afunction of SOC at room temperature

3.3 Identification of dynamic behaviour parameters
3.3.1 Theextended Kalman filter

The Kaman filter is a mathematical technique that provides an efficient recursive means for
estimating the states of a process, in such a way so as to minimize the mean of the squared error
(8 The filter has been applied extensively to the field of linear estimation including state
estimation, parameters estimation and dual estimation. The extended Kalman filter (EKF) is a
nonlinear version of Kalman filter that linearizes about the current mean and covariance of the
state. It can be described as follows ™ the system of interest is continuous-time dynamics with
discrete-ti me measurements given by:

= f(xu,wt)
Yie = M (X, Vi) ©)
w(t) ~ (0,Q)
Ve ~ (OR)

where u(t) is the control input; w(t) represents process noise which is assumed to be
continuous-time Gaussian zero-mean white noise with covariance of Q ; v, represents

measurement noise which is assumed to be discrete-time Gaussian white noise with zero mean and
acovariance R, . The procedure for using the EKF for optimal state and parameter estimation can



be summarised as follows:
Step | : Initialisation

The initial estimation of x, before any measurement is moddled as a Gaussian random vector
with mean X, and covariance B, which is expressed by:

)

Step |1: time update (fromtime(k - )" totime (k)™ )
The time update phase uses the state estimate and its covariance from the previous time step
(k- D* to produce an estimate of the sate at the current time step (k)”  as follows:

§=f(%u01)

5 ; ®)
= AP+PAT +Q

Where Aisapartial derivate Jacobian matrix evaluated at the current state estimate which can be
given as:

a=10 9)

T[X X=X
In this step, the integration is processed with %= %;_,;andP =P, . At the end of the integration,
wehave =%, andP =R, . With reference to equation (8), the estimated state and its covariance

propagates from time (k- 1)"to time (k) based on the previous values, system dynamics, the
control input and the errors of the actual system (a7,

Step 111: measurement update

In this phase, the measurement information at timek is processed to refine the estimate of x, to

arive at a more accurate state estimate. The resulting estimate of x, is denoted %; , and its

covariance is denoted R," . Performing the measurement update of the state estimate and estimation

error covariance, the measurement update equation can be described as follows:

Ki =B Cr (CR G +R)™
%= %+ K (Vi - he(3,0,1) (10)
RS =(1 - KGR (1 - KeC)T + K ReKy
Where K,is Kaman gain matrix; C,is the partial derivative of h,(x,,v.)with respect tox, ,
which is given by:



C=Th (1)

fix X=Xy
It should be noted that % and % are both estimates of the same quantity; and are both
estimates of x, . However, % is the estimate of x, before the measurement vy, is taken into

account, which is called priori estimate, and % isthe estimate of after the measurement vy, is
taken into account, which is called posteriori estimate.
3.3.2 Implementation

This section presents the implementation for estimating states and parameters of the dynamic
battery model. For the electrical circuit model, the output voltage of the battery is based on
equation (3) which can be rearranged by

V) =V, +[-1 -l" (12)
oc gv

C)C C'

where V. represents the average voltage of the battery open-circuit voltage. The current flowing
out of the battery is assumed positive for this study.

Taking time derivative of output voltage of the battery and assumingdV,./dt » 0, dl /dt » O(the
rate of change of open-circuit voltage and terminal current between sampling time is negligible)
gives:

é 1 U é 1 1 U é 1 10 é 1
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In this study, the parametersR,,, C,,, Ry, C,. areconsidered as constant at a specified SOC.

The parameters considered as states are added to the state variables. Combing equations (1), (2),
(12) and (13), the system can be expressed as follows:

k= f(xu) (1)
Yic = he (%)
1 1 1 1
wherex=[Vp, Ve VL — T & G 1",

u=1, h(x)=Vi-
foxuy=(f, f, f3 f, f5 fo fI'
and f; = - XX, X5 + XU ;

fy = - XoXgX7 + XU ;

fa = - XgX7Xg + (XgX5 - XgX7)Xq - (RoXgX7 + X5 + X7 )U + XXV 5
f,=0; f3=0; fz=0; f;=0.



Then we can calculate the matrices of the system by
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Where

Q1 = XgXs, Qg T XXs, A5 = XX tU

Ay =~ XXz, Bgg = XXz, Q7 =- XpXg U

831 = XgX5 - XgX7, 833 =-XgX7, 834 = XgX, 835 = X% - U,

Bgg =~ X7X3 - XpXq - RyXU+VoeX7, 8g7 = - XgX3 - Xg¥q - RyXgl - U+ Vo Xs .

C=[0 0100 0 0]

Fig. 5 shows the estimating results with EKF ad gorithm for the states and parameters of the model
at the point of 100 % SOC. In this case, the covariance matricesQ, P,and R selected are given

by:
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Fig. 5 (@ and (b) shows the behaviour of the estimated voltages characterising battery
polarizations. Fig. 5 (a) shows that the voltage of capacity characterising battery activation
polarization reaches steady-state within 4 seconds, which suggests that time constant of the RC
network is small. However, the voltage of capacity characterising battery concentration
polarization in Fig. 5 (b) takes a much longer timeto get steady state. In Fig. 5 (¢), (d), (€) and (),
the estimated parameters have got to constant values within 4 seconds. Fig. 5 (g) represents the
behaviour of estimated voltage and measured voltage of the batery. There is a reasonable



agreement between the estimated voltage and the measured voltage; the maximum estimate error
is within 0.3 V, as shown in Fig. 5 (h). This suggests that the extended Kalman filter can be
effectively implemented to estimate the parameters of battery model.
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Fg. 5 Estimating results of states and parameters for the battery model with EKF algorithm (SOC=1.0)

4. Simulation and validation

The DST driving cycles ™ was applied for validating the dynamic model of the battery. Theinitial
battery SOC was set to 1.0. The model parameters obtained for a SOC of 1.0, and assumed to be
constant during the simulation. This is not strictly true, as the parameter will change with the



change of SOC. But for short operation time, it may be a reasonabl e approximation. The measured
and estimated terminal voltage of the battery isillustrated in Fig. 6. From Fig.6, it is shown that
the battery mode with the estimated parameters can effectively simulate the battery dynamics, and
the battery terminal voltage error shown in Fg. 7 is approximately around 3 %. It is clear that the
error will increase with time, and it is necessary to update the parameters to maintain asmall error.
Fig. 6 suggests that the parameters need to be updated at least every 200 seconds. This will be
implemented in the future.
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Fig. 7 The simulation error for the battery

5. Conclusions

This paper presented an equivalent circuit model with two RC networks characterising battery
activation and concentration polarization process. The extended Kaman filter was used to
estimate the coupled parameters reflecting battery polarization characteristics. The parameters
characterising battery equilibrium potential and ohmic resistance were determined experimentally.
Simulation results using proposed model with the identified parameters, were found to agree
satisfactorily with the experimental results. Future work will focus on using EKF to estimate
battery states (for example SOC and state of hedlth) and for online model parameters
identification.
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