
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What Do Bayesian Methods Offer Population 

Forecasters? 

 

Guy J. Abel, Jakub Bijak, Jonathan J. Forster, 

James Raymer and Peter W.F. Smith. 

Centre for Population Change Working Paper 6/2010 

ISSN2042-4116 



ESRC Centre for Population Change 
 

The ESRC Centre for Population Change (CPC) is a multi-disciplinary research 

centre that aims to improve our understanding of the key drivers and implications of 

population change within the UK. The Centre is a joint initiative between the 

Universities of Southampton, St Andrews, Edinburgh, Strathclyde, Stirling and 

Dundee, in partnership with the Office for National Statistics and the General Register 

Office Scotland. The Centre is funded by the Economic and Social Research Council 

(ESRC) under a five year grant to December 2013 (Grant Reference RES-625-28-

0001),   

 

In addition to our working paper series, we produce occasional summaries of our 

research in CPC Briefings. All these publications are available to download free of 

charge from our website.  

 

For further information on the work of the Centre, please contact the Centre Research 

Manager on: 

 

Telephone:  UK +2380 592579 

Email:  cpc@soton.ac.uk 

Web site: http://www.cpc.ac.uk 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 Guy J. Abel, Jakub Bijak, Jonathan J. Forster, James Raymer and Peter W.F. 

Smith. 

 

All rights reserved. Short sections of text, not to exceed two paragraphs, may be 

quoted without explicit permission provided that full credit, including  notice, is 

given to the source. 



Editorial Note and Acknowledgments 

Guy Abel is Postdoctoral Researcher in the ESRC Centre for Population Change, 

University of Southampton. He can be contacted at the e-mail address: 

g.j.abel@soton.ac.uk. Jakub Bijak is a Lecturer in the Division of Social Statistics 

and a member of the modelling research team in the ESRC Centre for Population 

Change. Jonathan J. Forster is a Professor in the School of Mathematics and a 

member of the modelling research team in the ESRC Centre for Population Change. 

James Raymer is a Reader in the Division of Social Statistics and a senior member 

of the ESRC Centre for Population Change research team. Peter W.F. Smith is the 

Director of Southampton Statistical Sciences Research Institute, a Professor in the 

Division of Social Statistics and a member of the modelling research team in the 

ESRC Centre for Population Change 

. 

The authors would like to thank Andrei Rogers for his advice concerning the direction 

of this paper and Arkadiusz Wisniowski for his suggestions concerning the modelling. 

 

Abstract 

 
The Bayesian approach has a number of attractive properties for probabilistic 

forecasting. In this paper, we apply Bayesian time series models to obtain future 

population estimates with uncertainty for England and Wales. To account for 

heterogeneity found in the historical data, we add parameters to represent the 

stochastic volatility in the error terms. Uncertainty in model choice is incorporated 

through Bayesian model averaging techniques. The resulting predictive distributions 

from Bayesian forecasting models have two main advantages over those obtained 

using traditional stochastic models. Firstly, data and uncertainties in the parameters 

and model choice are explicitly included using probability distributions. As a result, 

more realistic probabilistic population forecasts can be obtained. Second, Bayesian 

models formally allow the incorporation of expert opinion, including uncertainty, into 

the forecast. Our results are discussed in relation to classical time series methods and 

existing cohort component projections. This paper demonstrates the flexibility of the 

Bayesian approach to simple population forecasting and provides insights into further 

developments of more complicated population models that include, for example, 

components of demographic change. 

 

Key words: population forecasting, Bayesian forecasting, Bayesian modelling, time 

series models, stochastic volatility, model averaging, England and Wales. 
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1 Introduction

This paper explores the use of Bayesian methods for population forecasting. The main rationale

is the need for incorporating uncertainty in population forecasts, advocated by many authors

since the 1980s (Alho & Spencer, 1985; Keyfitz, 1991; Lee, 1998). Statistical agencies typically

provide “high” and “low” variants to communicate uncertainty around their principal popula-

tion projections. Such variants have a number of drawbacks with the most prominent being a

lack of specificity regarding the probability range of the high, low or even principal variants,

e.g., Keilman et al. (2002) or Lutz & Goldstein (2004). In response, demographers and statisti-

cians have developed methods to calculate probabilistic forecasts that describe the uncertainly

of future populations by relying on time series models, expert judgements or extrapolation of

past forecast errors (Keilman, 2001; Keilman et al., 2002). Methods have also been developed

to combine elements of each of these approaches, for example, the parameters from time series

models have been constrained according to expert opinions (Lee & Tuljapurkar, 1994) or to

target levels and age distributions of fertility and mortality (Lutz et al., 2001).

We believe Bayesian methods offers a more natural framework than traditional frequentist

methods to forecast future population with uncertainty. First, the Bayesian approach offers an

explicit, coherent and transparent mechanism to include uncertainty in the data, parameters of

the model and the model itself, by using probability distributions. Second, it allows the inclusion

of expert judgements, including uncertainty, into the model framework. Third, the predictive

distributions follow directly from the probabilistic model applied. As a result, probabilistic

population forecasts, with more reliable and coherent estimates of predictive distributions, can

be obtained. Together, these have the potential to improve the measurement of uncertainty in

forecasts, and thus improve our potential for planning and understanding population change.

There have been several recent papers on the Bayesian estimation of demographic compo-

nents for countries with inadequate data: Alkema et al. (2008) for fertility, and Brierley et al.

(2008) and Raymer et al. (2010) for migration. For forecasting demographic components, exist-

ing examples include Tuljapurkar (1999) and Alkema et al. (2010) for fertility, Pedroza (2006),

Girosi & King (2008) and Chunn et al. (2010) for mortality, and Gorbey et al. (1999) and Bijak

(2010) for migration. A comprehensive example of using Bayesian methods for forecasting is

the study of the Iraqi Kurdish population prepared by Daponte et al. (1997). In this paper, we

focus on a developed-country situation with a relatively good availability of demographic data.

We also consider a wider class of time series models and apply a Bayesian modelling averaging

techniques.

To present the case for a Bayesian framework for population forecasting, we focus on a

single time series of population change in England and Wales, which is described in the next

section. In Section 3, we introduce the notation and describe the models used in this study.

These include autoregression models for time series and stochastic volatility models to account

for possible heterogeneity in historical data. We also present the Bayesian inference used for
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parameter calculation and model averaging, which is used to incorporate model uncertainty,

and a more robust set of estimates. In Section 4, we present our fully probabilistic population

forecasts from 2008 to 2033. Our results and their levels of uncertainty are discussed in relation

to classical time series methods and existing cohort component estimates in Section 5. Also,

comparisons are made with forecasts based on shortened data series and under the assumption

that the future volatility of the population growth rate will remain at 2006 levels. Finally, we

end the paper with a summary and some suggestions for extending the proposed approach.

2 Data

A historical series of the England and Wales population totals are used to introduce the

Bayesian approach to time series forecasting, obtained from The Human Mortality Database

(www.mortality.org). The mid-year population totals from 1841 to 2007, including military

personnel, are presented in the top panel of Figure 1. Here, we see that the population totals

in England and Wales exhibited a steady increase over time, rising from 15.8 million in 1841

to 53.9 million in 2007. Brief periods of slight population decline are visible during the First

World War and the 1918 influenza pandemic. Also noticeable is a period of leveling off in the

population totals during the 1970s and 1980s, a result of net emigration and a slow rate of

natural increase.

The features of population change are more evident when the annual rates of growth, plotted

in the second panel of Figure 1, are considered. Detailed explanations for these patterns can

be found in various books on British population history (Wrigley & Schofield, 1989; Coleman

& Salt, 1992; Anderson, 1996; Hinde, 2003). The following provides a very brief account. The

population growth rates were highest during the first third of the series. This was predominantly

due to the declining mortality occurring before the decline in fertility, which remained at pre-

industrial levels for much of this period. Between the two wars the rate of growth remained

low in comparison with the later half of the 19th century and early 20th century. This was

driven by the effects of low fertility from economic depression and a change in sociological

factors. After the Second World War, population growth rates increased initially, through a

short-lived fertility rise associated with demobilization, followed by a more substantial increase

(baby boom) in fertility during the 1950s and early 1960s. In the late 1970s and early 1980s,

the levels of population growth slowed down (as mentioned above) before rising in more recent

decades though net immigration and increased fertility levels.

In this paper, we use this simple time series of population data to forecast the future

population totals up to 2033. We are primarily interested in identifying the models that best

fit these data in order to specify realistic probabilistic intervals in forecasted populations. As

we can see from the observed data, the annual rates of growth have varied considerably over

time. The models, described in the next section, take these variations into account in specifying

the uncertainty, which is useful for understanding future variations in population change. As
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Figure 1: England and Wales Population Data, 1841-2007.
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a result, we do not have the concern of choosing a strategic starting point for the data series

that might best reflect future variation. A long time series also allows us to test our models by

performing in-sample forecasts (see Section 5.2).

3 Models

In this section, we specify the models and notation used to forecast future annual growth rates

in England and Wales. The subsections focus on autoregression models, stochastic volatility,

Bayesian inference and model uncertainty. To start, let pt be the population size at time t for

an uninterrupted series of observed time points. In population forecasting, we are interested

in obtaining estimates of pt for one or more values of t > T , where T is the last observed time

point, and their associated measures of uncertainty.

In order to model pt, we first derive the time series of population growth rates rt, where

pt+1 = (1 + rt)pt. (1)

However, experience suggests that if we are to use models which assume stationarity, it is more

appropriate to model changes in rt (Chatfield, 2003), denoted by yt:

yt = rt − rt−1. (2)

For our data, time series plots of rt and yt are presented in the second and third panels,

respectively, of Figure 1. In the next two sections, we introduce autoregression (AR) models

and stochastic volatility (SV) models for yt.

3.1 Autoregression Model

AR models have been used in the demographic context to forecast populations, see for exam-

ple, Saboia (1974), Ahlburg (1987), Pflaumer (1992), Alho & Spencer (2005) and Statistics

Netherlands (2005). An AR model of order p, denoted AR(p), is defined as

yt =
p∑

j=1

φjyt−j + zt, (3)

where φj are the autoregressive coefficients representing the correlations between observations yt

and yt−j, whilst j represents the time lag, and zt are assumed to be independent observations

from a probability distribution with zero mean and constant variance, σ2. A slightly more

flexible model, which we apply, also allows for a non-zero mean, µ, for yt:

yt = µ+
p∑

j=1

φj(yt−j − µ) + zt. (4)
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This model implies a mean increase in rt of µ each year. For a fully-specified probability model,

we need to assume a distribution for zt. Typically, a normal distribution is assumed.

3.2 Stochastic Volatility

SV models were popularised for modelling financial data where the assumption of constant

variance for zt is usually untenable. Models that account for non-constant variance have been

sparsely used in the demographic context (Keilman & Pham, 2004; Bijak, 2010). Historical

time series of demographic data, however, often exhibits some form of volatility due to events

such as epidemics, wars or baby booms. This is certainly true for the data set out in Figure

1. SV models are time series models, similar to the AR models defined in (4), but where the

variance of zt is allowed to be time-dependent. This is achieved by replacing σ2 with σ2
t , and

specifying a time series model for σ2
t . In this paper, we assume an AR(1) model for − log σ2

t ,

i.e.,

σ2

t = e−ht (5)

and

ht ∼ N(α + ψht−1, τ
2), (6)

where ht represents the volatility at time t, α denotes the mean level of ht over the entire

time period, and τ is the standard deviation of ht. Finally, ψ is the autoregressive coefficient

representing the correlations between ht and ht−1.

3.3 Bayesian Inference

In Bayesian inference, uncertainty about the (multivariate) parameter θ of a statistical model

is described by its posterior probability distribution given observed data y{T} = {y1, . . . , yT}.

The probability density function of yt is obtained by using Bayes Theorem:

f(θ|y{T}) =
f(y{T}|θ)f(θ)

f(y{T})
, (7)

where f(y{T}|θ) is the likelihood function and is defined by the model, f(θ) is the prior dis-

tribution for θ and f(y{T}) is a normalising constant. The prior distribution f(θ) specifies the

uncertainty about θ prior to observing any data.

Forecasting or prediction is particularly natural in a Bayesian framework. Uncertainty about

the next K future values of yt (for t = T + 1, . . . , T +K) is described by the joint predictive

probability distribution

f(yT+1, . . . , yT+K |y{T}) =
∫
f(θ|y{T})

K∏
k=1

f(yT+k|y{T+k−1}, θ)dθ. (8)

Note that the product term represents the joint predictive distribution in the case that param-
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eter θ is known. The Bayesian predictive distribution simply averages (integrates) this with

respect to the posterior probability distribution for θ. Hence, uncertainty about θ in light of

the observed data is fully integrated.

In a Bayesian analysis we obtain forecasts and associated measures of uncertainty by calcu-

lating marginal probability distributions for quantities of interest by integrating the posterior

distribution in (7) or the predictive distribution in (8). Performing these integrations analyt-

ically is typically not possible for realistically complex models such as those described above.

Historically, this has prevented demographers and others from taking advantages of Bayesian

methods for statistical inference. Recent developments in Bayesian computation have focussed

on Markov chain Monte Carlo (MCMC) generation of samples from distributions such as (7)

or (8); see Gelman et al. (2003) for details. Once a sample has been obtained from a joint

distribution, then a sample from a distribution of any component or function of components is

readily available. To generate samples from the posterior and predictive distribution in this pa-

per, we used an MCMC sampling approach implemented using the WinBUGS software (Lunn

et al., 2000).

3.4 Model Uncertainty

In practical population forecasting, it is unrealistic for the analyst to be sure that any particu-

lar statistical model is the right one upon which to base their forecasts. Hence, the statistical

methodology adapted should be one which allows for model uncertainty. Furthermore, we con-

sider it essential that the measures of uncertainty associated with any forecast should incorpo-

rate both the uncertainty concerning the model and the uncertainty concerning the parameters

of each model. In this paper, model uncertainty is directly integrated with parameter uncer-

tainty into a single predictive probability distribution. An comprehensive review of Bayesian

model averaging can be found in Hoeting et al. (1999).

Formally, let m = 1, . . . ,M index the models under consideration and let θm represent the

parameter associated with model m. Note that different models may have parameters of differ-

ent dimensionality. For example, the AR(1) model with drift has a three-dimensional parameter

(µ, φ1, σ
2). The likelihood function for model m is f(y{T}|θm,m), the prior distribution for m,

is f(θm|m) and the posterior distribution is

f(θm|y{T},m) =
f(y{T}|θm,m)f(θm,m)

f(y{T}|m)
, (9)

where f(y{T}|m) is a normalising constant, known as the marginal likelihood for model m, and

is given by

f(y{T}|m) =
∫
f(θm|m)f(yT |θm,m)dθm. (10)

Prior uncertainty about models is encapsulated by a discrete probability distribution, f(m),

m = 1, . . . ,M . The prior model probabilities can be assigned the same values, 1

M
.
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The posterior probability distribution for m given observed data y{T} is obtained by using

Bayes Theorem as follows:

f(m|y{T}) =
f(y{T}|m)f(m)

f(y{T})
. (11)

Hence, the posterior model probability for any model m is proportional to the product of the

prior model probability and the marginal likelihood. Therefore, efficient methods for compu-

tation of marginal likelihoods is essential for Bayesian inference under model uncertainty. See,

for example, those described in O’Hagan & Forster (2004). In our implementation, we found

that the bridge sampler (Meng & Wong, 1996) was effective for this computation.

Finally, to obtain a predictive distribution for population forecasts in the presence of model

uncertainty, (8) is extended to

f(yT+1, . . . , yT+K |y{T}) =
M∑

m=1

f(m|y{T})f(yT+1, . . . , yT+K |y{T},m) (12)

=
M∑

m=1

f(m|y{T})
∫
f(θm|y{T},m)

K∏
k=1

f(yT+k|y{T+k−1}, θm,m)dθm,

which is the average of predictive distributions for individual models weighted by their posterior

probabilities, f(m|y{T}).

4 Forecasts

In this section, we present parameter estimates from a range of individual AR and SV models. In

addition, the predictive probability distributions from a selection of these models are provided

in order to gain a better understanding of the effect of expanding the dimensionality of θm on

future population growth rates. These individual forecasts are compared in the final subsection

with a single forecast that accounts for our uncertainty in model choice.

4.1 Individual AR Models

An initial set of nine models was considered for the differenced population growth rate, yt,

introduced in (1) and presented in the bottom panel of Figure 1. These consist of an independent

normal (IN) model and eight autoregression models (with non-zero means), increasing in order

from AR(1) to AR(8). This range of models was selected in order to represent all possible

autoregressive processes that might adequately describe the differences in the overall growth

rate series. As we have no previous knowledge about the nature of the parameters in each model

we assigned non-informative prior distributions: µ ∼ N(0, 1002), φj ∼ N(0, 1), j = 1, . . . , p and

σ ∼ U(0, 100), where N(µ, σ2) denotes a Normal (Gaussian) distribution with mean µ and

variance σ2, whereas U(a, b) denotes a Uniform distribution over the interval (a, b). An MCMC

sample of 10,000 observations was obtained from the posterior distribution for each model.
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Figure 2: Selected Posterior Predictive Plots of Population Growth Rates from Individual
Models
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In a Bayesian analysis, marginal posterior distributions completely describe the uncertainty

about each model parameter given the observed data. These are typically summarised using

posterior means (as parameter estimates) and posterior standard deviations (as measures of

uncertainty). The posterior means and standard deviations for the parameters of each of the

nine models are presented in Table 1. Posterior estimates of µ tend to be centered on zero with

much lower standard deviations than their prior distributions. This feature was also true for

the estimates of σ. In all models, the posterior means of φj at lower values of j were below

zero, indicating negative autocorrelation for their respective lags. Estimates of φj, for j > 5,

tend to be close to zero, signifying that the association between yt and yt−j becomes weak at

larger values of j.

Posterior predictive plots of the forecasted rt from the IN, AR(4) and AR(8) models are

illustrated in the top row of Figure 2. These are obtained from the forecast of yt by rearranging

(1) for each set of iterates and assuming the starting point of r2006 = 0.00609 as in the data.

Each shade of the forecasted fan represents a single percentile of the estimated posterior density,

where darkest shades correspond to most central values and the lighter shades to the tails of

the distribution. Contour lines are also plotted at each decile and the 1st and 99th percentile.

Forecasts from the simple independent normal model provide a greater level of uncertainty of
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future values. As autoregressive parameters are added to the independent normal model, the

posterior predictive distribution become comparatively tighter, illustrated by the comparisons

along the top row of Figure 2. As noted previously, φj for j > 5 are close to zero in the

higher order AR models. This results in similar posterior predictive distribution for higher

order models, where the increase in the number of lagged terms no longer substantially reduces

the width of the predictive distribution.

4.2 Individual SV Models

A further set of nine models were considered for the differenced population growth rate. These

extend the nine models of the previous subsection with additional parameters to allow the the

variance of yt be time-dependent, as introduced in (6). Again we assigned non-informative

prior distributions to the new parameters: α ∼ N(0, 102), ψ ∼ U(−0.999, 0.999) and τ ∼

N(0, 1002)I(τ > 0), where I indicates a truncation to the distribution. The posterior means

(and standard deviations) of the parameters in the nine models are presented in Table 2 from

MCMC samples of 10,000 observations for each model. As in Table 1, estimates of µ tend to be

centered on zero with much lower standard deviations than their prior distributions. Estimates

of autoregressive parameters tend to be close to zero for most φj with the exception of j = 2, 3.

The SV extension replaces the σ2 term in the AR models with time dependent variances

σ2
t . As specified in (6) this results in three new parameters α, ψ and τ (also shown in Table

2), as well as 165 new latent parameters of ht. Posterior means of α, the average volatility

level, are similar across all models. The corresponding values of σ are slightly lower than

σ in Table 1 after applying the transformation (5). Posterior means for ψ, representing the

autocorrelation between a current level of volatility and that of a previous year, are above

zero in all models. Values are close to 0.9 indicating a strong positive autocorrelation in the

volatility levels of rt. Estimates of τ , measuring the standard deviation of volatility, are similar

across all models. The posterior distributions for the 165 latent ht parameters are plotted (for

illustrative purposes) for the IN-SV model in Figure 3. In addition, the predictive distributions

of the future volatility from this model are provided. Inspection of this plot reveals a number

of features. First, the estimated volatility levels decreases throughout most of the observed

period. Volatility is at its lowest level in 2001, prior to a increase in subsequent years leading

up to the last observation, marked by the vertical line. Second, the estimated volatility levels

are highest during the 1918 influenza pandemic and war periods. During these years, the 1st

quantile of the predictive distribution are higher than the 99th quantile of the final estimated

volatility. Finally, the median of the predictive distributions of the future volatility gradually

increases towards the value of α provided in Table 2. The width of the predictive distributions

also gradually increases over time.

Posterior predictive plots of the forecasted rt from the IN-SV, AR(4)-SV and AR(8)-SV

models are illustrated in the bottom row of Figure 2. Comparisons between models with
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Figure 3: Posterior and Predictive Distributions of Volatility (ht) from the IN-SV Model.
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SV terms reveal that uncertainty in forecasted rt is slightly reduced through the addition

of autoregressive parameters, as was the case with the AR models with a constant variance

parameter. However, this reduction in uncertainly is small due to the values of φj, for j > 3,

in the SV models being close to zero. Comparison of the forecasted population growth rates

between the selected individual models with constant variance and the SV models (between the

top and bottom row in Figure 2) demonstrates a different shape in the forecast fans, caused

by a combination of lower φ values and additional terms for a non-constant variance in the SV

models. The width of the decile contour lines of the predictive distributions in the SV models

increase at a steady rate. The equivalent contour lines in the constant variance model tend

to spread quickly (depending on the order of the AR model) and then continue to widen at a

steady, but slower, rate. Consequently, for the simplest models (IN and IN-SV) the inclusion of

the SV terms reduces the width of the predictive distribution, as illustrated in 2033 where the

difference between the 80th and 20th percentile is 0.01449 compared to 0.01942 for the IN-SV

model. As the model order for the mean process increases, this relationship is reversed. For

example the difference between the 80th and 20th percentile for the AR(4)-SV model is 0.01010

compared to 0.01120 for the AR(4) model.
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Figure 4: Joint Predictive Probability Distribution of the Model Averaged Growth Rates (left)
and Resulting Population Forecast in Millions (right).
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4.3 Model Averaged Forecasts

We calculated posterior probabilities, f(m|y{T}) for all models (with and without SV terms)

as described in Section 3.4. These are only displayed in the last column of Table 2. Note, all

posterior probabilities for the models with out SV term (in Table 1) were very close to zero.

This result give strong support for the IN-SV model (posterior probability of 0.79347). The

next most likely model is the AR(3)-SV model, followed by the AR(1)-SV. All SV models with

higher order AR terms, in addition to the models with constant variance terms, appear very

unlikely with model probabilities below 0.01.

The predictive probability distribution of rt averaged over all models, given the model prob-

abilities, are presented in the left hand panel of Figure 4. Because a sample from the posterior of

probability distribution of each individual model is generated in the analysis, calculation of the

averaged predictive probability distribution is straightforward. Unsurprisingly, this plot bares a

large resemblance to the IN-SV model forecasts in Figure 2, from which a large posterior model

probability was estimated. On the right hand panel of Figure 4 we also present the resulting

population forecast from the predictive probability distribution of rt. Our results provide a

median predictive population of 64.0 million in 2033. Numerous measures of uncertainty are
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Figure 5: Comparison of Alternative Future Growth Rates (left) and Population in Millions
(right).
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also available, for example in 2033 the 20th percentile is 59.0 million and the 80th percentile is

69.4 million.

5 Comparisons of Results

In this section the presented results and their levels of uncertainty are discussed in relation to

alternative methods and model specifications in three stages. First, the results in Figure 4 are

compared with forecasts from classical time series methods and existing cohort component esti-

mates. Second, accuracy is assessed by re-estimating parameters and forecasts using shortened

data series and comparing these against past observed data. Third, comparisons of our results

are made with forecasts conditional on the volatility fixed at the last observed level, under the

scenario that past observed variation in historical population growth rates (such as during the

influenza or war periods) will not occur again.

5.1 Comparison with Alternative Methods

For comparative purposes, traditional frequentist time series models corresponding to the nine

AR models (with the constant variance assumption) were estimated using the arima function
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in R 2.10.1 (R Development Core Team, n.d.). As noted at the beginning of Section 3.1 such

models have previously been used to forecast future populations, as opposed to SV models. Es-

timates of φj in all models were within 0.1 of the mean values presented in Table 1. Estimates

from the arima function of µ and σ were also very similar (to a higher degree of accuracy) to

those estimated using the Bayesian methodology. The close correspondences between param-

eter estimates are due to the reliance on data, rather than the (uninformative) priors, in the

calculation of posterior distributions.

Model summary statistics from the models fitted in R are also provided in Table 1. For

comparison with a Bayesian model averaging approach, the last column of Table 1 shows the

re-estimated posterior model probabilities, when only the models with constant variance are

considered. The Akaike Information Criterion (AIC) of Akaike (1973) is commonly used for

model selection for time series methods (Chatfield, 2003, p256). This criterion favoured the

AR(5) model, as opposed to the model probabilities which provided this model with a proba-

bility of 0.07690 (and zero when SV models are considered). Hence, if we were to use the AIC

as an alternative method for model selection in a frequentist setting, only a single model, which

we estimated to have a low probability, would be selected. The Bayesian Information Criterion

(BIC) of Schwarz (1978), which penalises the inclusion of extra parameters more severely, is

also presented in Table 1. The BIC closely resembles the posterior model probabilities (as

might be expected given the established link (Raftery, 1995)) and suggests AR(3) as a suitable

model. Note, neither the AIC or BIC can be easily obtained for equivalent SV models as they

require a direct calculation of the likelihood.

In Figure 5 we compare the results of the choice of a single model, based on the AIC,

against our model averaged forecast over all 18 models. In left hand panel the mean forecast

of rt from the AR(5) model is displayed using the dot-dashed line. This was calculated using

the predict.arima function in R. In addition, the 60% prediction intervals from the AR(5)

forecast are plotted. Comparisons of the two measures of central tendency provide differing

estimates of the future growth rate of population. The forecasted mean growth rate from the

AR(5) model is 0.00455 in 2032. In contrast, the median of the predictive probability for r2032

was 0.00733. This difference is also reflected in the forecasts of the total population plotted

on the right hand panel of Figure 5. The mean forecasted population for the AR(5) model is

61.4 million in 2033, 3.6 million lower than the median of the posterior predictive probability

for p2033. This discrepancy is predominantly caused by allowing the model selection process

to consider models that account for stochastic variance terms. As noted above, when only

AR models are considered the model selection using the AIC still favours a model with a low

estimated model probability. However, the median of the predictive probability for rt in 2032

averaged over only the AR model was 0.00493, much closer to that of the AR(5) model.

Uncertainty from the selection of a single model can be compared to that of the model

averaged uncertainty. We use the 60% prediction intervals, obtained from the fit in R and

plotted in Figure 5, and compare these to the equivalent 20th and 80th percentiles of the

15



posterior predicative distributions. The model selection method provides a smaller amount of

uncertainty for future forecasts than the model averaged forecast. The 60% prediction interval

for r2032 from the AR(5) model is (0.00063, 0.00846), smaller in range to that of the 20th and

80th percentiles (0.00083, 0.01380) in the same year. The same story is reflected in the range

of forecasted population, where the model selection method provides a prediction interval of

(56.8 million, 66.3 million) compared to (58.9 million, 69.3 million) from the model averaged

method. This discrepancy is derived predominantly from the averaging over models in the

Bayesian framework. It is interesting to note that when only AR models are averaged, the

range between the 20th and 80th percentiles (not plotted) of r2032 (-0.00055, 0.01057) remains

large in comparison with the AR(5) model.

In the United Kingdom, the Office for National Statistics (ONS) prepare a set of projected

total populations estimated using a cohort component methodology under a range of determin-

istic scenarios. We focus on comparing our results with the three variants (principal, high and

low) published in the latest set of projections for England and Wales, see Wright (2010). All

three variants are based on sets of demographic trend-based assumptions for future fertility,

mortality and net migration. The principal variant relies on assumptions considered to best

reflect demographic patterns at the time they were adopted. The high (or low) population vari-

ant assumes a combination of high (or low) fertility, life expectancy and net migration. They

are intended to provide users with a better understanding of future uncertainty in population

change. All three variants of population totals are displayed on the right hand panel in Figure

5. On the left hand panel are the derived values of rt. The central, dashed lines represents the

principal projections, whilst the upper and lower dashed line represent the high and low popu-

lation variants respectively. The panels in Figure 5 illustrate a number of differences between

the ONS principal projection and that of our model averaged forecasts. First, the uncertainty

in the ONS rate, represented by their high and low variants, is far smaller than that of our

model averaged forecasts at all points of time. Second, the uncertainty in the rate of population

growth of the ONS projection does not increase substantially over time, unlike those derived

using probabilistic methods. Third, the ONS principal population projection in 2033 of 63.7

million is slightly lower than our model averaged median (64.0 million), despite a reduction in

the rate away from the median of the model averaged forecast towards the end of the horizon.

Finally, the high and low variants in the projected population totals by the ONS lie within

the 77th and 24th percentiles of the posterior predictive distribution of the 2033 population

forecasts.

5.2 In Sample Forecasts

To asses the accuracy of the Bayesian time series methods in-sample forecasts are conducted

using three shortened data sets with end points at 1977, 1987 and 1997 respectively. The

posterior model probabilities of these shortened series were very similar those presented in Table
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Figure 6: Growth Rates (top) and Population (bottom) Forecasts Based on Data Shortened at
1977 (Left), 1987 (Middle) and 1997 (Right).
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2, with the IN-SV model having a model probability of 0.74872, 0.79542 and 0.67155 for data

ending in 1977, 1987 and 1997 respectively. Model averaged posterior predictive distributions

of rt (top) and pt (bottom) are shown in Figure 6.

The plots show altering forecasted predictive distributions for each series. For the shortest

series, with last observation in 1977, the median of the population forecast in the 2033 predictive

distribution is 37.6 million. For the data set with the last observation in 1987 the median

population in 2033 is 51.0 million and for the longest data set with the last observation in 1997

the median population in 56.0 million. There are a number of noticeable conclusions that can

be drawn from Figure 6.

Inspection of the median from the in-sample forecasts illustrate the susceptibility of time

series models to turning points in the data series, as occurred during the mid-1970’s and early

1980’s. This weakness is accentuated by the results of the model averaging process each of the

shortened data series, where the large estimated probabilities on the IN-SV model provides a

reliance on the median forecasts of yt on the µ parameter. As noted previously, this parameter

acts a trend term for the entire rt series. Hence, as the end point alters, so does the posterior

mean estimates of µ. The observed data fall below the 90th percentile in each of the in-sample

forecasts of rt. Forecasts from a single time series model, such as the AR(5) model discussed
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Figure 7: Comparisons of Joint Predictive Probability Distribution of the Model Averaged
Growth Rates (top) and Resulting Population Forecast in Millions (bottom) When Forecasted
Volatility is Fixed at the 2006 Estimate (right) or Model Based (left).
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in the previous sub-section, have narrower intervals and hence would provide less support for

the resulting observations.

5.3 Constant Future Volatility

In this section, we compare the model averaged forecast that allows future uncertainty in volatil-

ity with one that keeps volatility constant at the last observed level. This is motivated by the

reduced volatility exhibited in more recent years (see Figure 3), where predictive distributions

of the volatility, observed in historical periods (e.g., during epidemics or times of war) might be

deemed unrealistic for plausible future forecasts. Using a modification the WinBUGS code, the

volatility estimated in 2006 are fixed for all SV models. The posterior predictive distributions

of the model averaged forecasts were then calculated using the probabilities provided in Table

2. The resulting forecasts of rt and pt are shown on the right hand panels of Figure 7, where

the results in Figure 4 are reproduced on the left hand panel.

Unsurprisingly, comparisons between the left and right hand panels results in narrower

predictive distributions when the volatility is fixed at 2006 levels. The difference between the
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20th percentile and 80th percentile of p2033 reduces from 10.5 million to 6.8 million. The median,

as expected, remains the same, at 64.0 million.

6 Conclusion

In this paper, we have demonstrated the use of Bayesian time series methods for the forecasting

of the future population of England and Wales by using a historical series of population growth

rates. The forecasts have explicitly allowed for uncertainties in the data, parameters of the

model and the model itself by using probability distributions, which are fully represented in

the final probabilistic population forecast.

Volatility in the observed yt series was handled using SV models. Alternative approaches to

deal with non-constant variances are available, such as autoregressive conditional heteroscedas-

tic models (ARCH) or generalised ARCH models (GARCH); see for example Chatfield (2003).

This family of models imply a deterministic structure for σt in addition to the mean struc-

ture for yt. Further extensions to the modelling of the growth rate can also be explored by

decomposing rt into demographic components of population change. Separate series of births,

deaths and migration can be modelled as a multivariate time series process using Bayesian

Vector Autoregressive (VAR) models. This decomposition may be further continued by mod-

elling subnational populations (and the flows between them) or by incorporating age structures.

These extensions, which we are currently investigating, are likely to reduce the uncertainty of

population forecasts in comparison to those presented in this paper.

As Booth (2006) notes, the incorporation of informed judgements have formed the basis

of many of the assumptions in traditional population projections. She also notes that meth-

ods tend to be unsystematic or inadequately documented, even in developed countries. The

Bayesian approach allows data and uncertainty in parameters and model choice to be fully quan-

tified using probability distributions. In our implementation, prior informed opinion (which was

deliberately kept uninformative) had minimal influence on the final forecasts. Further work, in

collecting expert opinion and translating these to priors for Bayesian time series models, may

lead to alternative forecasts and reduced levels of uncertainty.

Time series models were used in this paper to forecast future population growth. The medi-

ans of our predictive distributions for future populations are slightly higher, but not drastically

different to, the principal projection estimated by the ONS using a more complex cohort com-

ponent methodology. Such methodologies require a large amount of data on current age and

sex structures, along with numerous assumptions on rates of demographic components. How-

ever, unlike the more complex, yet deterministic, cohort component method, the forecasting

methods used in this paper are able to quantify our uncertainty through a posterior predictive

distribution.

Our model averaged posterior predictive distribution tended to be wider than those provided

by predictive intervals from traditional frequentist time series methods. This is not unexpected
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as intervals for a single model selected on the basis of a model fit statistics (such as the AIC

or BIC) will tend to be too narrow since they do not take into account model uncertainty

(Chatfield, 2003, p86). Thus, the use of model averaging allows a more realistic picture of the

uncertainty of future population to be obtained.
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