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Abstract:

The pursuit equations in two-dimensional space are examined, and then

parametrised in terms of relative velocity and initial range. Several inferences about the
behaviour of these equations are drawn. The burst speed of several fish species are tabulated,
along with several types of Autonomous Underwater Vehicle. An example pursuit calculation is

described.

Keywords: pursuit, fish, evasion, curves of pursuit, marine biology, autonomous underwater
vehicle, AUV, strategy, analytic solution, path planning

NOMENCLATURE

sustained speed

wavelength of sound frequency f in water
initial separation

speed of sound in water

constant of integration

exponential function

frequency of auditory signal

speed of quarry

ratio of pursuer speed to quarry speed
location of AUV (pursuer)

dummy variable for first derivative
location of fish (quarry)

radius

time

burst speed

first Cartesian coordinate

second Cartesian coordinate

first spatial derivative of y

second spatial derivative of y
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1. INTRODUCTION

Some population studies in marine biology require that
fish be tracked. This need is exemplified by a research
partner, the University of the Azores, whose biologists seek
to locate particular specimens which have been tagged
with acoustic emitters. The biologists hope the acoustic
signals which are emitted can indicate the habitat and/or
behaviour of the specimen, shoal, or species. The symbiotic
relationship between the present researchers and the biolo-
gists is to provide the latter with Autonomous Underwater
Vehicle (AUV) tools to achieve their goals. Progress to-
wards the shared goal will be obtained if the mathematics
of biological pursuit is clarified. Properly defined, the set
of all pursuits includes the stationary quarry.

This paper will be organised as follows: the next section
will consist of a literature survey. Curves of pursuit will

be explained in §3. Some biological applications of the
mathematical tool will be explored in consequence. Rec-
ommendations for further study will complete the paper.

2. LITERATURE STUDY

The differential equations of pursuit were developed as a
result of World War II, so that Yates, R. C. [1952] §9.5.G
devoted scarcely two pages to treatment of the subject.
These equations are repeated and developed here in the
next section. Standard reference material even today was
written by Locke, A. S. [1955]. Section 7.9 of Langer, R. E.
[1954] had the pursuer and quarry in opposite corners of
the Cartesian system, but his results were similar to those
of Yates. Stewart did not teach the problem in his first
edition Stewart, J. [1987] but added a treatment similar
to that of Langer in his third Stewart, J. [2006] at page 554.

The example to be employed in the next section follows
Yates, R. C. [1952] closely because his placement of the
origin coincides with the initial location of the pursuer.
The terminal v? /r acceleration problem of military pursuit
is of no concern because, as explained by Fig. 1, the pur-
suit of a specimen differs from its capture. The biologists
forbid specimen capture in the present instance. Adler, F.
P. [1955] knew of three types of guidance systems: pure
pursuit, constant-bearing collision, and proportional nav-
igation. His theory of proportional navigation, as updated
with complex coordinates by Becker, K. [1990], is still
relevant today in the case of the marine biologist. His
reason for the elimination of constant-bearing collision—
that the algorithm requires instantaneous adjustments of
the line-of-sight—holds true for the present application too.
He eliminated for his purposes the first option on two
grounds: (a) that the mathematics of the pursuit equa-
tions forces the system into a tail-chase scenario (which
would be unsuitable for miltary defense); and (b) that the
terminal turn rate becomes infinite if the ratio of pursuer
to quarry speed exceeds two. Doppler effect logic can be
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Fig. 1. The strict definition of the problem includes pur-
suit, marked in red on this numberline, but not
capture, as evinced by the domain termination at
s€[0,1).

employed for biological purposes so that the AUV is only
allowed to engage its quarry while the quarry recedes from
it, while inspection of Fig. 3 shows his error in case (b) to
be of similar type with Zeno’s paradox. This study appears
to be novel since his ground (and those of his peers) differs
from the present ground.

The case of curvature constrained pursuit is of interest,
because curvature is the mirror image of centripetal accel-
eration. Miloh, T. [1982] notes that in certain instances
it can be advantageous to both parties to maintain a
planar relationship in three-dimensional space, and that
the termination of his game-theoretic approach depends
substantially on the maximum rate of acceleration of both
parties. While the minimum rate of turn of the quarry is
unknown and unknowable, the minimum rate of turn of the
pursuer is knowable. More recent efforts in this area have
focussed on collision avoidance Harris, C. J., et al. [1999],
Wilson, P. A., C. J. Harris, X. Hong [2003], or incomplete
measurements and uncertain systems, eg. Moitié, R., et
al. [2002] or Shieh, C.-S. [2007]. The latter can be of very
limited tractability due to memory requirements Moitié,
R., et al. [2002] or are tunable Shieh, C.-S. [2007], thus
unsuited to automation. But the presumption of the latter
that the object of the mathematics is to destroy the quarry
is contrary to expectations in the present study. The ma-
rine biologist whose aim is observation of the quarry at
close range is likely to avoid damage to it, and hence the
minimum turn radius is likely to be irrelevant, whereas
the military objective, which has informed most previous
studies of pursuit, is destruction. Figure 3 demonstrates
the need to avoid velocity ratios near to unity because
this causes more curvature to be required in the path to
intercept.

3. THEORY

The Yates exposition of the pursuit equation, which is re-
peated here in Fig. 2, differs from the Langer presentation
of the same problem in its choice of origin: Yates favours
the pursuer, while Langer favours the quarry. The AUV
(pursuer, P) and the specimen (quarry, @) are labelled.
The quarry travels in a straight line at maximum speed,
while the pursuer acts at all times to minimise its distance
to the quarry; that is, P makes no effort to predict the
behaviour of @, and hence it is at all times directed
towards ). The quarry travels Northward at maximum
speed k. The pursuer notices @ at time t, near O, the

Fig. 2. The problem from the viewpoint of the pursuer,
whose path is marked in green. The path of the quarry
is marked in red. A cross marks the origin of each.

origin, which is a metres distant from the instant location
of Q. Suppose nk to be the speed of P, and 7 to be the
range between the two:

dr
= = 1
nk o (1)

v/ dz? + dy?
=+ 2
p (2)
dry/1+ y'?
T ®)
and the stem of P to be pointed at the location
@ o kt —y
dr vy=

(4)

a—x

Equation 4 completes the physics of the problem, and the
mathematics now follows:

Ya-n= -y )
Yia-a) -y = ke -y (©
v (a—a)—of =Ky @

'la-2)= VT 0

The result is a nonlinear equation of the second order
in which the term y makes no explicit appearance. This
allows the substitution 3’ = p to transform the equation
for the path of P to

d
n(a—x)izx/l—i—pQ (9)
ndp dx

N (10

a—x
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a directly-integrable form which has the general solution

nln(erm)ln( a ) (11)

a—x

Notice is taken of the initial condition that

p|x:0 = y/|1::O = 0 (12)
determines ¢; = a, and so
nln<p+ \/1+p2) =In (aix) (13)
a 1/n
ln(p+ \/1+p2)—ln( ) (14)
a—x

The left-hand side is shown by Stewart, J. [1987] in his
Eq. 6.80 to be amenable to trigonometric substitution:

In (p+ \/1+p2) =sinh ' p (15)
and so
1/n
. a
p = sinh [ln ( ) ] (16)
a—z
dy . a 1/n
£—smh [ln (a—x) 1 (17)
(18)
but Stewart, J. [1987] defines in his Eq. 6.76,
b _ o=
sinh ¢ = — (19)
Now since
a 1/n a 1/n
exp [ln <> ] = < > (20)
a—= a—=

the result is

2@ :( a )1/TL_< a >—1/n
dx a—x a—x

2dy = [al/” (a— x)_l/" —qYn (a — J;)l/"] dx (24)

(23)

al/n (a—.’l?)l_l/n a~1/n (a—.’l?)l+l/n

2y = 25
Y 1-1/n + 1+1/n (25)

2na

1 —n?
where the constant of integration
—2na

—_— 26
T2 (26)

is obtained from the observation that y = 0 when x = 0.

Species 3} VUmaz
Alosa pseudoharengus 4.7
Clupea harengus 1.7
Esox lucius 1.4 20
Gadus morhua 0.5
Micropterus salmoides 0.9
Oncorhynchus gorbuscha 0.6
Pleuronectes platessa 0.3

Sarda sarda 03 1.2
Sphyraena barracuda 12.1
Scomber scombrus 09 3.0
Thunnus albacares 0.6 124
Homo sapiens WR 1.7 21

Table 1. The average speed and burst speed,

measured in m/s, of various fish species as

compiled by Froese, R. and D. Pauly [2010],

contrasted with freestyle swim world records
for 1500m and 100m events.

Species Umaxz Depth  Weight Length  Diameter
Bluefin 9 2.6 100 50 1.65 9

Remus 100 2.8 100 37 1.60 7.5
Gavia 2.8 500 50 1.80 7.9

Table 2. Statistics on three ‘man-portable’
AUVs. All dimensions are compiled in SI units
except inches diameter.

4. RESULTS

Equation 26 has been parametrised as a function of a
and n, which are respectively: the initial separation and
the relative ratio of pursuit to quarry velocities. This is
depicted in Fig. 3 for three velocity ratios, n = 4,2,5/4.
Several characteristics of the family of curves can be seen
immediately:

e The pursuer never reaches the quarry if n = 1; so a
simple evasion tactic is to match or exceed the speed
of the pursuer.

e A corollary is that the pursuer does not engage if
n < 1.

e The interval between engagement and encounter is
calculable a priori when the pursuit is engaged.

e The location of encounter is known when the pursuit
is engaged.

A successful collaboration between biologists and engi-
neers thus requires that the speed of the fish be among
the available data.

The behaviour of fish is studied by marine biologists such
as Korsmeyer, K. E., et al. [2002] and Cartamil, D. P., et
al. [2003]; the velocity of travel of the specimens is but one
of the measures. Table 1 presents these statistics, as well as
some gathered from Froese, R. and D. Pauly [2010]. These
statistics are to be compared with the list of ‘portable’
AUVs in Table 2. The majority of fish species identified in
this paper are pursuable by small AUVs of the types listed
here. The larger predatory fish like the barracuda and the
tuna would require greater speeds of pursuit.
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The ‘Remus 100’ class of AUVs, which has a maximum
velocity of 2.8m/s, is able to catch Sarda sarda', which
has a burst speed of 1.2m/s, because the velocity ratio
n = 2.8/1.2 = 7/3 is greater than unity. This AUV will
require 437.5s (7.5 minutes) to intercept its quarry when
initially they are separated by 1000m, if indeed the bonito
can sustain its burst speed over that interval.

In practice, the algorithm would have a ‘stand-off’ dis-
tance to protect the specimen from interaction with it.
This distance would prevent collision between the two or
exhaustion of the specimen. This accords well with the
exclusion of capture specified by Fig. 1.

Marine acoustic technology has developed enough to allow
sound navigation and ranging to achieve a high level of
accuracy for sophisticated users. Signals must be received
by at least two devices in order to detect target bearing.
It is unknown whether present AUV technology supports
stereophonic reception. Table 2 suggests that a stereo
receiver array might be separated by at most one metre.
Commercially-available transmitters are available which
broadcast at f = 69kHz. The speed of sound in water
is roughly ¢ = 1500m/s, so the wavelength of A\(69kH z) =
¢/f ~ 0.02m is in theory resoluble.

5. CONCLUSION

The evasion strategy of common fish is unknown but know-
able; further biological research to describe the behaviour
of these animals is needed. Focus on the minimum radius
of turn under evasive circumstances might prove beneficial.
The ‘man-portable’ AUVs listed in this study are able in
theory to intercept low-speed tagged fish. Contemporary
technology seems to be unable to offer an AUV which is
able to intercept such high-speed fish as the barracuda.

AUVs are notorious for their power and endurance lim-
itations; in an imagined future, the AUV might query
various speeds for their effect on intercept time and power
consumption, and decide on its optimum action.

This paper provides the mathematical solution to the
path of pursuit in the open ocean given the observables
target range, target speed, and target course or bearing.
The AUV is fed this data to pursue the target. The
open ocean is however three-, not two-dimensional as was
the simplified case above. Three-dimensional solutions to
the equations of pursuit have been reviewed in game-
theoretic terms by Miloh, T. [1982], who states that under
certain conditions both pursuer and quarry find the planar
solution to be optimal. The instant solution is therefore
applicable to the concrete world, however the success of
the algorithm described here remains to be seen in reality.
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Autonomous Underwater Vehicle Minimum-Time
Navigation in a Current Field
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Abstract—The problem of navigation in a spatially variable
current is reviewed, and for a certain class of mathematically-
describable functions, solved for minimum time in closed form.

NOMENCLATURE

rate of change of heading (angular velocity)
z-directed component of vehicle velocity
y-directed component of vehicle velocity
n-dimensional constraint vector

n Lagrange multipliers

vehicle course or heading (control input)
m-dimensional control input, decision vector
unit vector

unit vector

velocity of current

n-dimensional state vector

z-directed component of current
y-directed component of current

a scalar functional

performance index

number of control inputs

number of components of state vector
representative length

vehicle velocity relative to the water
Cartesian component (abscissa)
Cartesian component (ordinate)
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I. INTRODUCTION

To optimise navigation with current in two-dimensional
space is known as Zermelo’s problem, from [5]. The ability
to compensate for current is a vital tool for Autonomous Un-
derwater Vehicles (AUVs). Waypoints, docks and other quasi-
stationary targets need to be reached by the AUV in minimum
time, if its range is to be maximised under conditions of
constant velocity. The solution to this problem is available
under certain conditions in closed form, which allows the
validation of algorithms designed to govern the navigation of
these vehicles. One alternate means to specify the problem
that will not be investigated here is that the energy consumed
by the AUV be minimised over the trajectory from A to B.
Another unexplored option in the same current field is to
control the velocity in order to ensure a straight-line course.

This last option is not recommended for practical applications
because under some circumstances the current may exceed the
maximum velocity of the vehicle.

Zermelo’s problem is solved optimally here by means of the
Pontryagin maximum principle [2] with the methodology of
Bryson and Ho [1, §2.7]. Extensions to this class of problem
were published by Zlobec [6]. The paper is subdivided into
an abstraction, an analysis, and the case of linear current
distribution is solved.

Smith et al. [3] have recently investigated the use of the
three-dimensional current predictions of the JPL OurOcean
portal and found that an unscented Kalman filter (UKF) algo-
rithm seems reliable to predict vehicle paths over a 2km range.
The 2km range is here taken as a representative measure;
the AUV is tasked with minimum time rendez-vous with the
waypoint.

II. ABSTRACTION
The functional that is minimised here is just
tp
J= [ LX(@),U(t))dt (1)
ta
which must be a stationary point in the two hyperplanes, X
and U, of the Hamiltonian, sz:

0x 0x
0J = aU5U+ 8X5X 2)
The vector X represents the state (position) vector, while U
represents the control input vector. The function L(X,U) = 1,
which implies
J=1tp—ta 3)

and allows the statement of a minimum-time navigation prob-
lem, subject to constraints
. dX
=—=FX,U 4
= = F(X.U) @
where the overdot notation is employed to indicate the time
derivative, and optimality conditions

0=FT\ )

obtain. Subscripts, in general, denote differentiation. Here, the
Hamiltonian
w=L+F'\ (6)
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is comprised of the performance index, L, and the Lagrange
multipliers, A, compounded by the constraint functions, F,
transposed. This abstraction maps onto the navigation problem
in what follows with [x,y] € X and [f] € U. That is, the state
vector is identical to the position of the vehicle, while the
heading angle is the only control variable.

III. ANALYSIS

The current field is of known magnitude and direction,

¢=g(z,y)T+ h(z,y)y @)
in the Cartesian plane. Vehicle velocity relative to the water
is V, and constant in magnitude, and as a result the equations
of motion can be written

z =Vcos+g(z,y) 8)
j = Vsing+h(z,y) ©
where overdot notation is written for the time derivative and
0 represents the vehicle course with respect to an earth-fixed

orthogonal coordinate frame. The Hamiltonian of the system
is

=N (VcosO+g)+ A, (Vsind+h)+1 (10
SO
O g h
RPN W Wi 1
A Ox A x Y an
O g h
A= -2\ T2 (12)
Yoy y My
0—% V (=Agsin® + Ay cosf) (13)
where Eq. 13 implies that
tanf = 2 14
an X, (14)

The Hamiltonian is time invariant. Moreover, it equates to zero
because an extremal (minimum-time) solution is desired. The
system of equations 11 and 12 is solved! for A\, and \,:

Ao (VeosO+g)+ Ay (Vsind+h) =—1 (15)
Az (=Vsin®) + Ay (V cosf) = (16)
to obtain
—cosf
.= 17
A V +gcosf + hsiné 17
—sinf
Ay = 1
Y V4 gcosf+ hsinb (18)

and an equation for the rate of change of heading angle is the
result:
. oh ou  Oh dg
0 = sin? H— in 0 0 —— =) —cos?9==2
sin or + sin 6 cos (89: 3y) S 8y
The three rate equations, Egs. 8, 9 and 19, will determine
the minimum-time paths through a terminal point B when the
initial coordinates A and course, 04, are set. What follows
will place the destination at the origin (0,0) of the coordinate
axes, and the initial point A somewhere in the domain.

19)

Isee Appendix

IV. LINEAR CURRENT DISTRIBUTION

The case of a linear current distribution, g = —V/ry, h =0
is addressed here. This current is irrotational and meant to
model a shear flow in y. The terminal heading angle 65 is
assumed to be known and collinear with the terminal velocity.

cosfp
= —————— 2
cos 1+ 9/rcosfp 20)
cos@—!—%cos@B cosf = cosfp 21
%cos@B cos = cosfg — cos b (22)
Y 1 1
= — 23
r cosf coslp 23)
¥y_ secf —secOp 24)
r
The rate equation for 6 is solved next:
oh ﬁg
6= — 292 2
sin? an 0s 8y (25)
sin 6 cos 6 (gi gz> (26)
j 2,09
0 = —cos“ == @7
dy
df 9,V
i cos 97 (28)
dt r
BV sec? 0 29)
/ —dt = / sec? 0df (30)
A N
(tB—tA)_tanG—tanHB 3D
r

Equation 31, which encodes the functional J from Eq. 3, is
also known as the performance index.
The rate equation for z is solved last:

dx
- 2
o Vecosh+g (32)
= Vcosf — v% (33)
dx df
@Ef‘/cos@—VsecHJerecQB (34)
dx
¥ = [V cos — VsecGJerecOB} d9 (3%)
(jl—z:[Vcos&—Vsec@—FVsec@B]VseCQG (36)
dj_ VecosO —Vsech+ Vseclp 37)
g V/rcos? 0
dr = [r sec — rsec® 0 + rsec O sec? 9] do (38)
0a
r_ / [secH — sec? 0 + sec O sec? 9] do 39)
T 0
= —% [secOp(tanfp — tanf4)—
tanfp + seclp
gtan0A+sec0A
tan 04 (secp —sec4)] (40)
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V. RESULTS

Equations 24 and 40 constitute an implicit system for 64
and 0p, and are solved by numerical methods. Suppose an
AUV desires to travel from (x4 /r,ya/r) = (3.66,—1.86) to
the origin, then

ya

. = —1.86 =secfy —seclp (41)
T A 1
— =3.66 = —5 [secOp(tanfp — tanf4)—
,
tanfp +Se(393_
& tanf4 +secly
tanf4(secHp —sech,)) 42)

This system of equations is intractable because it is composed
of the trigonometric tangent and secant functions, both of
which are in places unbounded. Equations 41 and 42 are
modified to equate to zero, and the map of the Lo-norm is
derived over a Cartesian solution plane composed of 6,4 and
0. The map is generated on every odd-numbered degree in
order to avoid the infinities, and then scrutinised in regions
which contain small values. The algorithm, although robust,
can be said to be in want of refinement. The solution, which
requires at most 32,400 iterations of two cosines, two tangents,
one logarithm and one square root function, is found to be for
this example,

04 = 105° O = 240°

VI. CONCLUSIONS AND FUTURE WORK

(43)

Although one is unlikely to meet a well-ordered linear shear
current in nature, the present result can be employed off-line to
validate algorithms for navigation in a current. The abstraction
needs to be automated in order to introduce the ability to
navigate in regions with arbitrary current distributions.
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APPENDIX
A. Isolation of Ay, Ay

The system of equations is solved as follows. Isolate from
Eq. 16 A\,

Isolate from Eq. 16 ),

sin 0
Ay = dg—— 51
Y cos 6 S
and substitute the result into Eq. 15:
sin 6 .
0= [Vcosh+g]+ )“T@ [Vsinf+h|+1 (52)
2 0 p2 :
1=, {VCOS@ +gcosf+ Vsinf +hsm€} (53)
cos 6
Y {V—ngm&—&—hsm@] (54)
cos @
—cosf
As = V 4+ gcosf + hsinf (55)

B. Integration of Equation 39

The integral is split into its additive components. The
observation was made by Stewart [4] on page 122 that

— tanz = sec’
dx

On the inside back cover of Stewart [4] it is observed that
Eq. 71 of his Table of Integrals has

(56)

1 1
/sec3 udu = 5 secutanu+§ log | secu + tanu|+C (57)
Finally it is known that

/sec xdx = log | sec x + tan x| (58)

The logarithmic term in Eq. 57, the integral of the cube of
the secant, is subtracted from the last-mentioned integral, and
this results in Eq. 40.
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sin
—sing = A\, cos0 [V cosf + g] + A, [V sin® 0 + hsin 6]
47
—sinf = A, [Vcos29+gcos9+Vsin29+hsin€] (48)
—sinf = Ay [V + gcos B + hsinb)] (49)
—sin 6
Ay = - 50
Y V4 gcosf+ hsinf (50)
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(a) Some useful trigonometric graphs. (b) Various paths of minimum time navigation.
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(c) Constant time contours.

Fig. 1.

Figures for ‘Autonomous Underwater Vehicle Minimum-Time Navigation in a Current Field’.
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(d) Various paths of constant-course angle.



