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1. INTRODUCTION

The eventual aim of this work is to manufacture an
AUV refuel or recharge station, as depicted in Fig. 1, in
which a surface craft powers a submerged AUV. Several
advantages obtain with this concept, among which are
productivity and operator safety. The transverse vibration
which is analysed here is but one strand of an effort to solve
a ship-cable-towfish interaction in an arbitrary seaway.

That the system may be liable to irregular Vortex-Induced
Vibrations (VIV) was discovered by Blanco, M. [2010].
A calculation was made of frequency based on the taut
string theory of Milburn, D. A. [1983]. That calculation,
which revealed the fundamental frequency to be on the
order of milliHertz, was problematic because the physics
of the taut string do not account for the composite nature
of the cable, which is in general a helical arrangement of
conductors, insulators and tension members. This paper
is an effort to replace the taut string theory with a novel
beam-cable theory. It is hoped to ameliorate the accuracy
with which the present model response represents reality.

One problem with the physics of the Milburn model may
have been in their simple representation of the inertia of
the system. The choice is therefore made here to investi-
gate the system as a Bernoulli-Euler beam (Timoshenko,
S. P. [1953]). The results of Milburn and of Blanco are
repeated here for comparison, and as a result, the units
employed here are Imperial; conversion Table 1 is included
for ease of reference. Han, S. M., H. Benaroya and T.
Wei [1999] modelled the dynamics of beams in tranverse
mode with a variety of cantilever and free end conditions.
They did not include a dynamic mass condition, but did
conclude that the Bernoulli-Euler theory was valid for the
conditions of the present problem. Laura, P. A. A., J. L.
Pombo and E. A. Susemihl [1974] studied the vibrations
of a system similar to the present system, but they were
concerned with a clamped end condition. The present
system is modelled as a pinned dry end, which presumably

Fig. 1. Depiction and notation for a shipborne AUV refuel
station.

has a cleat or a winch termination, and a dynamic mass–
which represents the AUV–at the wet end. This problem
is amenable to analytic solution, which is the subject of
the next section. Section 3 is a report of the numerical
calculation. The paper ends with a short summary and
outlook.

2. THEORY

This section is divided into two subsections. The problem
is stated in the first part, and solved in the second.

2.1 Statement of Problem

Beams, or bars, in vibration are often modelled by this
fourth order differential equation: 1

EI
d4X(x)
dx4

− ω2Aγ

g
X(x) = 0 (1)

1 See Timoshenko, S. and D. H. Young [1955], §51.



where the wavenumber is 2

k4 =
ω2Aγ

EIg
(2)

Prescott, J. [1961] (Ch. 9), Volterra, E. and E. C. Zach-
manoglou [1965] (§4.5), Bishop, R. E. D., and D. C. John-
son [1960], Seto, W. W. [1964] and Timoshenko, S., D. H.
Young and W. Weaver, Jr. [1974] can be consulted on this
subject.

The four boundary conditions imposed on the solution
are determined by the physics of the problem, and in
turn, determine the solution. This paper models winch or
cleat terminations on the ship with pinned end boundary
conditions, as follows:

X|x=0 = 0 (3)
d2X

dx2
|x=0 = 0 (4)

A free mass at the underwater plunger end implies

d2X

dx2
|x=L = 0 (5)

−EI d
3X

dx3
|x=L = ω2WpX (6)

In order of appearance, these are statements that:

• the pinned end is fixed;
• the pinned end is allowed non-zero slope but no

curvature;
• the bending moment at the plunger end is identically

zero;
• the dynamic shear force at the plunger end is identi-

cally the inertial force of the free plunger mass, Wp.

Equation 4 causes this imagined device to differ substan-
tially from that of Laura, P. A. A., J. L. Pombo and E. A.
Susemihl [1974], who investigated a cantilevered beam.

2.2 Solution of Problem

Trial solutions are found by substitutions of
X(x) = C1 [cos kx+ cosh kx] + C2 [cos kx− cosh kx]

+ C3 [sin kx+ sinh kx] + C4 [sin kx− sinh kx] (7)

or (equivalently, see Prescott, J. [1961], §149)
X(x) = A cos kx+B sin kx+H cosh kx+ J sinh kx (8)

into Eq. 1 with Eqs. 3 to 6 as boundary conditions. The
equation with the Ci subscripts is discounted here because
the solution for Eq. 8 is much easier to manipulate in the
present instance.

Equation 3 dictates that A+H = 0 because the cosine and
hyperbolic cosine functions are non-zero at x = 0, while
Eq. 4 dictates that −A + H = 0 for similar reasons, as
depicted in Fig. 2. The only way for these equations both
to be true is for A = H = 0.
2 The various quantities are defined in the section on nomenclature,
and will not be repeated here.

Fig. 2. The four trigonometric functions that contribute to
the solution of the fourth-order differential equation
for a beam.

Now Eq. 5 gives, at x = L

−Bk2 sin kL+ Jk2 sinh kL = 0 (9)

The second boundary condition at the wet end implies
that

+EIB cos kL− EIJ cosh kL =

+ω2mpB sin kL+ ω2mpJ sinh kL (10)

or

0 = B
(
EIk3 cos kL− ω2mp sin kL

)
+J

(
−EIk3 cosh kL− ω2mp sinh kL

)
(11)

Non-trivial solutions of the homogeneous system of Eqs. 9
and 11 must exist in the nolocations 3 of the determinantal
equation. These nolocations, the first few of which are
listed in Table 5, are the vibration frequencies for the
system.

0 =− sin kL
(
−EIk3 cosh kL− ω2mp sinh kL

)
− sinh kL

(
EIk3 cos kL− ω2mp sin kL

)
(12)

0 = 2ω2mp sin kL sinh kL

+EIk3 (sin kL cosh kL− sinh kL cos kL) (13)

0 = 2
ω2mp

k3EI
+
(

cosh kL
sinh kL

− cos kL
sin kL

)
(14)

0 = 2kLα+ (coth kL− cot kL) (15)

where α is the ratio of the mass of the plunger to the mass
of the beam-cable. Figure 3 depicts a segment of Eq. 15
when α = 1.

3 literally, locii of the zeros
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Fig. 3. The roots of this equation, knL = 3.4, 6.6, 9.75, . . .,
are the frequencies of vibration of the α = 1 system.

Equation 2 is rearranged into

ωn = k2
n

√
EIg

Aγ
(16)

and k is obtained as the solution of Eq. 15. The observable
frequency, φn in Hertz, is simply the circular frequency
divided by 2π:

φn =
k2

n

2π

√
EIg

Aγ
(17)

where φn represents the nth natural frequency of the
beam-cable. It is seen that the frequency of vibration is
inversely proportional to the square of the length of the
beam, and proportional to the square root of the flexural
rigidity.

The modal shapes are generated by the solution of Eq. 9:

J =
sin kL

sinh kL
B (18)

so that, as depicted in Fig. 4 for the displacement and
acceleration of the seventh natural frequency,

X(x) = sin knx+
sin knL

sinh knL
sinh knx (19)

It is notable that, in Fig. 4, the first six half-waves have
the period and amplitude of the sine wave, whereas the
seventh and final half-wave shows a marked variation
from the norm. The departure occurs at the wet end, the
acceleration of which could be termed a whiplash..

3. RESULTS

The cable characteristics which were listed in Blanco,
M. [2010] are repeated here in Table 2 and Fig. 5. The
Milburn-Alembert analysis of VIV in Blanco, M. [2010],

Fig. 4. Modal shape diagram for seventh natural frequency
of beam-cable system.

Fig. 5. Static cable analyses: range and depth for three
cables.

which is repeated here in Table 3, is suspect because of its
coarse physics,

fn =
n

2L

√
T

m
(20)

and is indicated by f1 in Table 3.

The first normal mode is recalculated here with the analy-
sis of §2.2. Vibration modes can be said to be shaped by a
ratio of ‘inertial’ force and ‘restoration’ force. The analysis
of Milburn, D. A. [1983] can be said to have been overly
simplistic, whereas Eq. 17 results from one that is more
complex. The modal values obtained from the parameters
of Table 2 are given in Table 5.

The co-axial cable depicted in Fig. 6 is a simple model
of the structure. Pesce, C. P., R. Ramos, Jr., L. M. Y.
da Silveira, R. L. Tanaka, C. de Arruda Martins, F. C.
M. Takafuji, J. P. Z. Novaes and C. A. F. Godinho [2010]
is able to represent the various components of a modern
umbilical cable. No effort has been been made to optimise
the instant geometry, which is armoured by 24 concentric
Kevlar tension members.
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Fig. 6. Typical umbilical cable, sheathed with 24 strands of
Kevlar (gray); center is high-voltage DC, while outer
ring (in black) is ground potential. The conductors
are separated by an insulator (white).

Since the core conductors and insulator are all at least
an order of magnitude less stiff than the Kevlar tension
members, they are treated as if they were transparent in
the present study. In other words, the tension members
are treated as a pipe or tube, and the moment of inertia
is taken to be that of a disk about its central axis:

Io =
∫
A

y2dA (21)

=
π

4
(r4o − r4i ) (22)

It is important to differentiate between the ‘second mo-
ment of inertia’ 4 , denoted in L4F 0T 0, and ‘moment of
inertia’, denoted in L1F 1T 2. The former quantity is em-
ployed for static problems like the present one, while the
latter quantity is employed for problems of dynamics. No
notice has been taken here of the ‘virtual mass’ effect in
water, whereby the mass of the entrained fluid is calculated
based on potential flow theory.

Table 4 lists the values employed in the calculation of
Eq. 17. The result is φ1 = 2.78 × 10−3Hz, a similar
order of magnitude as the Milburn model. Where the
present model differs substantially from the Milburn taut
string model is in the square of the wavenumber factor
that appears in the former model. This implies that the
smaller wavelength, higher wavenumber, modes are able
to sustain audible frequencies. In concrete terms, the
300ft wavelength is unlikely to be excited, whereas the
1ft wavelength, wavenumber k119 with frequency 70Hz, is
likelier to be excited. Table 5 lists some wavenumbers and
frequencies of vibration for this beam-cable system.

4. CONCLUSION

The sinusoidal function turns out to be the only trial
solution for the transverse oscillations of an underwater
4 also known as the ‘area moment of inertia’

beam-cable system. The solution to the beam equation
with pinned dry end and with a mass on the wet end
was discovered and characterised. The modal shape was
illustrated and can now be calculated.

The quantitative result for the first modal frequency of this
particular beam-cable system is insignificant. The result
corroborated that of Blanco, M. [2010], which employed
a taut string model instead of the present beam-cable
model. The present analysis differs in that the square of the
wavenumber is a factor in the frequency equation, so that
some in the audible range ought to manifest themselves.
Experiments ought to be performed in order to verify these
results.
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Mechanical Quantity SI System BGS System

Linear velocity LM0T−1 LF 0T−1

Linear acceleration LM0T−2 LF 0T−2

Angular velocity L0M0T−1 L0F 0T−1

Angular acceleration L0M0T−2 L0F 0T−2

Mass L0MT 0 L−1F T 2

Force LMT−2 L0F T 0

Momentum, impulse LMT−1 L0F T
Angular momentum L2MT−1 LF T
Work, Energy, Torque L2MT−2 LF T
Power L2MT−3 LF T−1

Moment of inertia of mass L2MT 0 LF T 2

Moment of inertia of area L4M0T 0 L4F 0T 0

Flexural rigidity L2F 1T 0

Table 1. Dimensions of the principal mechani-
cal quantities.

Timoshenko, S., D. H. Young and W. Weaver, Jr. Vi-
bration Problems in Engineering. John Wiley & Sons,
London, 4th edition, 1974.

Timoshenko, S. P. History of strength of materials: with
a brief account of the history of theory of elasticity and
theory of structure. McGraw-Hill, New York, 1953.

Volterra, E. and E. C. Zachmanoglou. Dynamics of
vibrations. C. E. Merrill Books, Columbus, OH, 1965.

NOMENCLATURE

α Mass ratio of plunger and beam-cable −
γ (specific) weight per unit volume lb/in3

ωn circular frequency of vibration
φn frequency of vibration (beam-cable model) 1/s
ρ mass density, lb · s2/in4

A cross-sectional area in2

E Young’s modulus (of elasticity) lb/in2

EI Flexural rigidity lb · in2

fn frequency of vibration (string model) 1/s
g acceleration due to gravity in/s2

I (area) moment of inertia of beam section in4

k wavenumber 1/in
Wp plunger weight lb
x Displacement along length of beam in
X(x) Trial function in

Table 1 lists the dimensions of the principal mechanical
quantities in terms of length L, mass M , force F , and time
T . This table serves as a check for dimensional congruity,
without which the equation is said to be incorrect.

Equation 17 ought to result in T−1; else it is incorrect:

φn =
1

L2F 0T 0

√
L2F 1T 0 · L1F 0T−2

L2F 0T 0 · L−3F 1T 0
(23)

Here, the radicand is comprised of the flexural rigidity
and the acceleration due to gravity divided by the cross-
sectional area and the weight per unit volume.

Characteristic Steel Swenson Milburn

diameter, in 0.35 0.43 0.30
weight, lb/ft 0.15 0.02 0.01
elasticity, ×106 psi 9.0- 9.0- 9.0-
Reynolds number 11,600 14,300 10,200

Table 2. Characteristics of three electrome-
chanical cables - Imperial units.

Variable Steel Swenson Milburn

φ, in 0.35 0.43 0.30
L, ft 405.6 331.8 329.6
T 642.6 545.1 550.9
m, lb/ft 0.15 0.02 0.01
S∗ 0.212 0.212 0.212
f∗, Hz 49.0 39.9 57.2
f1, Hz 0.08 0.24 0.35
N 612.5 166.25 163.42

Table 3. Blanco, M. [2010] calculations of the
cable represented as a taut string.

Variable Value Value Units Multiplier

E 30. 30. lb/in2 ×106

I 0.15 0.26 in4 1
γ 0.324 0.324 lb/in3 1
A 0.58 0.58 in2 1
L 3960. 3960. in 1
φ1 2.78 . 1/s ×10−3

Table 4. Values employed in calculations of φn

for Swenson cable.

n knL kn φn

1 3.46 0.00087 0.0067
2 6.60 0.00166 0.0247
3 9.75 0.00246 0.0537
4 12.88 0.00325 0.0938
5 16.03 0.00405 0.1456
6 19.17 0.00484 0.2080
7 22.32 0.00564 0.2825
8 25.45 0.00643 0.3671
9 28.60 0.00722 0.4629

10 31.75 0.00802 0.5711
20 60.01 0.01515 2.0380
40 119.70 0.03023 8.1145
80 239.08 0.06037 32.3615

119 352.19 0.08894 70.2393

Table 5. Values calculated for φn of Swenson
cable. Units of kn are 1/in, so k119 ≈1ft.

5 of 5

CAMS 2010



Autonomous Underwater Vehicle Pursuit
of Biological Specimens in the Open Ocean

Max Blanco and Philip A. Wilson ∗

∗ School of Engineering Sciences, University of Southampton,
Southampton, UK, SO17 1BJ.

Abstract: The pursuit equations in two-dimensional space are examined, and then
parametrised in terms of relative velocity and initial range. Several inferences about the
behaviour of these equations are drawn. The burst speed of several fish species are tabulated,
along with several types of Autonomous Underwater Vehicle. An example pursuit calculation is
described.

Keywords: pursuit, fish, evasion, curves of pursuit, marine biology, autonomous underwater
vehicle, AUV, strategy, analytic solution, path planning

NOMENCLATURE
v̄ sustained speed
λ(f) wavelength of sound frequency f in water
a initial separation
c speed of sound in water
c1 constant of integration
e exponential function
f frequency of auditory signal
k speed of quarry
n ratio of pursuer speed to quarry speed
P location of AUV (pursuer)
p dummy variable for first derivative
Q location of fish (quarry)
r radius
t time
vmax burst speed
x first Cartesian coordinate
y second Cartesian coordinate
y′ first spatial derivative of y
y′′ second spatial derivative of y

1. INTRODUCTION

Some population studies in marine biology require that
fish be tracked. This need is exemplified by a research
partner, the University of the Azores, whose biologists seek
to locate particular specimens which have been tagged
with acoustic emitters. The biologists hope the acoustic
signals which are emitted can indicate the habitat and/or
behaviour of the specimen, shoal, or species. The symbiotic
relationship between the present researchers and the biolo-
gists is to provide the latter with Autonomous Underwater
Vehicle (AUV) tools to achieve their goals. Progress to-
wards the shared goal will be obtained if the mathematics
of biological pursuit is clarified. Properly defined, the set
of all pursuits includes the stationary quarry.

This paper will be organised as follows: the next section
will consist of a literature survey. Curves of pursuit will

be explained in §3. Some biological applications of the
mathematical tool will be explored in consequence. Rec-
ommendations for further study will complete the paper.

2. LITERATURE STUDY

The differential equations of pursuit were developed as a
result of World War II, so that Yates, R. C. [1952] §9.5.G
devoted scarcely two pages to treatment of the subject.
These equations are repeated and developed here in the
next section. Standard reference material even today was
written by Locke, A. S. [1955]. Section 7.9 of Langer, R. E.
[1954] had the pursuer and quarry in opposite corners of
the Cartesian system, but his results were similar to those
of Yates. Stewart did not teach the problem in his first
edition Stewart, J. [1987] but added a treatment similar
to that of Langer in his third Stewart, J. [2006] at page 554.

The example to be employed in the next section follows
Yates, R. C. [1952] closely because his placement of the
origin coincides with the initial location of the pursuer.
The terminal v2/r acceleration problem of military pursuit
is of no concern because, as explained by Fig. 1, the pur-
suit of a specimen differs from its capture. The biologists
forbid specimen capture in the present instance. Adler, F.
P. [1955] knew of three types of guidance systems: pure
pursuit, constant-bearing collision, and proportional nav-
igation. His theory of proportional navigation, as updated
with complex coordinates by Becker, K. [1990], is still
relevant today in the case of the marine biologist. His
reason for the elimination of constant-bearing collision–
that the algorithm requires instantaneous adjustments of
the line-of-sight–holds true for the present application too.
He eliminated for his purposes the first option on two
grounds: (a) that the mathematics of the pursuit equa-
tions forces the system into a tail-chase scenario (which
would be unsuitable for miltary defense); and (b) that the
terminal turn rate becomes infinite if the ratio of pursuer
to quarry speed exceeds two. Doppler effect logic can be



Fig. 1. The strict definition of the problem includes pur-
suit, marked in red on this numberline, but not
capture, as evinced by the domain termination at
s ∈ [0, 1).

employed for biological purposes so that the AUV is only
allowed to engage its quarry while the quarry recedes from
it, while inspection of Fig. 3 shows his error in case (b) to
be of similar type with Zeno’s paradox. This study appears
to be novel since his ground (and those of his peers) differs
from the present ground.

The case of curvature constrained pursuit is of interest,
because curvature is the mirror image of centripetal accel-
eration. Miloh, T. [1982] notes that in certain instances
it can be advantageous to both parties to maintain a
planar relationship in three-dimensional space, and that
the termination of his game-theoretic approach depends
substantially on the maximum rate of acceleration of both
parties. While the minimum rate of turn of the quarry is
unknown and unknowable, the minimum rate of turn of the
pursuer is knowable. More recent efforts in this area have
focussed on collision avoidance Harris, C. J., et al. [1999],
Wilson, P. A., C. J. Harris, X. Hong [2003], or incomplete
measurements and uncertain systems, eg. Moitié, R., et
al. [2002] or Shieh, C.-S. [2007]. The latter can be of very
limited tractability due to memory requirements Moitié,
R., et al. [2002] or are tunable Shieh, C.-S. [2007], thus
unsuited to automation. But the presumption of the latter
that the object of the mathematics is to destroy the quarry
is contrary to expectations in the present study. The ma-
rine biologist whose aim is observation of the quarry at
close range is likely to avoid damage to it, and hence the
minimum turn radius is likely to be irrelevant, whereas
the military objective, which has informed most previous
studies of pursuit, is destruction. Figure 3 demonstrates
the need to avoid velocity ratios near to unity because
this causes more curvature to be required in the path to
intercept.

3. THEORY

The Yates exposition of the pursuit equation, which is re-
peated here in Fig. 2, differs from the Langer presentation
of the same problem in its choice of origin: Yates favours
the pursuer, while Langer favours the quarry. The AUV
(pursuer, P ) and the specimen (quarry, Q) are labelled.
The quarry travels in a straight line at maximum speed,
while the pursuer acts at all times to minimise its distance
to the quarry; that is, P makes no effort to predict the
behaviour of Q, and hence it is at all times directed
towards Q. The quarry travels Northward at maximum
speed k. The pursuer notices Q at time to near O, the

Fig. 2. The problem from the viewpoint of the pursuer,
whose path is marked in green. The path of the quarry
is marked in red. A cross marks the origin of each.

origin, which is a metres distant from the instant location
of Q. Suppose nk to be the speed of P , and r to be the
range between the two:

nk =
dr

dt
(1)

=

√
dx2 + dy2

dt
(2)

=
dx
√

1 + y′2

dt
(3)

and the stem of P to be pointed at the location

dy

dx
= y′ =

kt− y
a− x

(4)

Equation 4 completes the physics of the problem, and the
mathematics now follows:

y′ (a− x) = kt− y (5)

y′′ (a− x)− y′ = k
dt

dx
− y′ (6)

y′′ (a− x)− y′ = k

√
1 + y′2

nk
− y′ (7)

ny′′ (a− x) =
√

1 + y′2 (8)

The result is a nonlinear equation of the second order
in which the term y makes no explicit appearance. This
allows the substitution y′ = p to transform the equation
for the path of P to

n (a− x)
dp

dx
=
√

1 + p2 (9)

ndp√
1 + p2

=
dx

a− x
(10)
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a directly-integrable form which has the general solution

n ln
(
p+

√
1 + p2

)
= ln

(
c1

a− x

)
(11)

Notice is taken of the initial condition that
p|x=0 = y′|x=0 = 0 (12)

determines c1 = a, and so

n ln
(
p+

√
1 + p2

)
= ln

(
a

a− x

)
(13)

ln
(
p+

√
1 + p2

)
= ln

(
a

a− x

)1/n

(14)

The left-hand side is shown by Stewart, J. [1987] in his
Eq. 6.80 to be amenable to trigonometric substitution:

ln
(
p+

√
1 + p2

)
= sinh−1 p (15)

and so

p= sinh

[
ln
(

a

a− x

)1/n
]

(16)

dy

dx
= sinh

[
ln
(

a

a− x

)1/n
]

(17)

(18)
but Stewart, J. [1987] defines in his Eq. 6.76,

sinhφ =
eφ − e−φ

2
(19)

Now since

exp

[
ln
(

a

a− x

)1/n
]

=
(

a

a− x

)1/n

(20)

and

exp

[
− ln

(
a

a− x

)1/n
]

= exp

[
ln
(

a

a− x

)−1/n
]

(21)

=
(

a

a− x

)−1/n

(22)

the result is

2
dy

dx
=
(

a

a− x

)1/n

−
(

a

a− x

)−1/n

(23)

2dy =
[
a1/n (a− x)−1/n − a−1/n (a− x)1/n

]
dx (24)

2y =
a1/n (a− x)1−1/n

1− 1/n
+
a−1/n (a− x)1+1/n

1 + 1/n
(25)

− 2na
1− n2

where the constant of integration
−2na
1− n2

(26)

is obtained from the observation that y = 0 when x = 0.

Species v̄ vmax

Alosa pseudoharengus 4.7
Clupea harengus 1.7
Esox lucius 1.4 2.0
Gadus morhua 0.5
Micropterus salmoides 0.9
Oncorhynchus gorbuscha 0.6
Pleuronectes platessa 0.3
Sarda sarda 0.3 1.2
Sphyraena barracuda 12.1
Scomber scombrus 0.9 3.0
Thunnus albacares 0.6 12.4

Homo sapiens WR 1.7 2.1

Table 1. The average speed and burst speed,
measured in m/s, of various fish species as
compiled by Froese, R. and D. Pauly [2010],
contrasted with freestyle swim world records

for 1500m and 100m events.

Species vmax Depth Weight Length Diameter

Bluefin 9 2.6 100 50 1.65 9
Remus 100 2.8 100 37 1.60 7.5
Gavia 2.8 500 50 1.80 7.9

Table 2. Statistics on three ‘man-portable’
AUVs. All dimensions are compiled in SI units

except inches diameter.

4. RESULTS

Equation 26 has been parametrised as a function of a
and n, which are respectively: the initial separation and
the relative ratio of pursuit to quarry velocities. This is
depicted in Fig. 3 for three velocity ratios, n = 4, 2, 5/4.
Several characteristics of the family of curves can be seen
immediately:

• The pursuer never reaches the quarry if n = 1; so a
simple evasion tactic is to match or exceed the speed
of the pursuer.

• A corollary is that the pursuer does not engage if
n ≤ 1.

• The interval between engagement and encounter is
calculable a priori when the pursuit is engaged.

• The location of encounter is known when the pursuit
is engaged.

A successful collaboration between biologists and engi-
neers thus requires that the speed of the fish be among
the available data.

The behaviour of fish is studied by marine biologists such
as Korsmeyer, K. E., et al. [2002] and Cartamil, D. P., et
al. [2003]; the velocity of travel of the specimens is but one
of the measures. Table 1 presents these statistics, as well as
some gathered from Froese, R. and D. Pauly [2010]. These
statistics are to be compared with the list of ‘portable’
AUVs in Table 2. The majority of fish species identified in
this paper are pursuable by small AUVs of the types listed
here. The larger predatory fish like the barracuda and the
tuna would require greater speeds of pursuit.
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The ‘Remus 100’ class of AUVs, which has a maximum
velocity of 2.8m/s, is able to catch Sarda sarda 1 , which
has a burst speed of 1.2m/s, because the velocity ratio
n = 2.8/1.2 = 7/3 is greater than unity. This AUV will
require 437.5s (7.5 minutes) to intercept its quarry when
initially they are separated by 1000m, if indeed the bonito
can sustain its burst speed over that interval.

In practice, the algorithm would have a ‘stand-off’ dis-
tance to protect the specimen from interaction with it.
This distance would prevent collision between the two or
exhaustion of the specimen. This accords well with the
exclusion of capture specified by Fig. 1.

Marine acoustic technology has developed enough to allow
sound navigation and ranging to achieve a high level of
accuracy for sophisticated users. Signals must be received
by at least two devices in order to detect target bearing.
It is unknown whether present AUV technology supports
stereophonic reception. Table 2 suggests that a stereo
receiver array might be separated by at most one metre.
Commercially-available transmitters are available which
broadcast at f = 69kHz. The speed of sound in water
is roughly c = 1500m/s, so the wavelength of λ(69kHz) =
c/f ≈ 0.02m is in theory resoluble.

5. CONCLUSION

The evasion strategy of common fish is unknown but know-
able; further biological research to describe the behaviour
of these animals is needed. Focus on the minimum radius
of turn under evasive circumstances might prove beneficial.
The ‘man-portable’ AUVs listed in this study are able in
theory to intercept low-speed tagged fish. Contemporary
technology seems to be unable to offer an AUV which is
able to intercept such high-speed fish as the barracuda.

AUVs are notorious for their power and endurance lim-
itations; in an imagined future, the AUV might query
various speeds for their effect on intercept time and power
consumption, and decide on its optimum action.

This paper provides the mathematical solution to the
path of pursuit in the open ocean given the observables
target range, target speed, and target course or bearing.
The AUV is fed this data to pursue the target. The
open ocean is however three-, not two-dimensional as was
the simplified case above. Three-dimensional solutions to
the equations of pursuit have been reviewed in game-
theoretic terms by Miloh, T. [1982], who states that under
certain conditions both pursuer and quarry find the planar
solution to be optimal. The instant solution is therefore
applicable to the concrete world, however the success of
the algorithm described here remains to be seen in reality.
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Fig. 3. Three curves of pursuit: n = 5/4, 2, 4. The domain and range are both in quadrant I.
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Autonomous Underwater Vehicle Minimum-Time
Navigation in a Current Field
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Abstract—The problem of navigation in a spatially variable
current is reviewed, and for a certain class of mathematically-
describable functions, solved for minimum time in closed form.

NOMENCLATURE

θ̇ rate of change of heading (angular velocity)
ẋ x-directed component of vehicle velocity
ẏ y-directed component of vehicle velocity
F n-dimensional constraint vector
λ n Lagrange multipliers
θ vehicle course or heading (control input) θ ∈ U
U m-dimensional control input, decision vector
~ı unit vector
~ unit vector
~c velocity of current
X n-dimensional state vector
g(x, y) x-directed component of current
h(x, y) y-directed component of current
J a scalar functional
L performance index
m number of control inputs
n number of components of state vector
r representative length
V vehicle velocity relative to the water
x Cartesian component (abscissa) x ∈ X
y Cartesian component (ordinate) y ∈ X

I. INTRODUCTION

To optimise navigation with current in two-dimensional
space is known as Zermelo’s problem, from [5]. The ability
to compensate for current is a vital tool for Autonomous Un-
derwater Vehicles (AUVs). Waypoints, docks and other quasi-
stationary targets need to be reached by the AUV in minimum
time, if its range is to be maximised under conditions of
constant velocity. The solution to this problem is available
under certain conditions in closed form, which allows the
validation of algorithms designed to govern the navigation of
these vehicles. One alternate means to specify the problem
that will not be investigated here is that the energy consumed
by the AUV be minimised over the trajectory from A to B.
Another unexplored option in the same current field is to
control the velocity in order to ensure a straight-line course.

This last option is not recommended for practical applications
because under some circumstances the current may exceed the
maximum velocity of the vehicle.

Zermelo’s problem is solved optimally here by means of the
Pontryagin maximum principle [2] with the methodology of
Bryson and Ho [1, §2.7]. Extensions to this class of problem
were published by Zlobec [6]. The paper is subdivided into
an abstraction, an analysis, and the case of linear current
distribution is solved.

Smith et al. [3] have recently investigated the use of the
three-dimensional current predictions of the JPL OurOcean
portal and found that an unscented Kalman filter (UKF) algo-
rithm seems reliable to predict vehicle paths over a 2km range.
The 2km range is here taken as a representative measure;
the AUV is tasked with minimum time rendez-vous with the
waypoint.

II. ABSTRACTION

The functional that is minimised here is just

J =
∫ tB

tA

L(X(t), U(t))dt (1)

which must be a stationary point in the two hyperplanes, X
and U , of the Hamiltonian, κ:

δJ =
∂κ
∂U

δU +
∂κ
∂X

δX (2)

The vector X represents the state (position) vector, while U
represents the control input vector. The function L(X,U) ≡ 1,
which implies

J = tB − tA (3)

and allows the statement of a minimum-time navigation prob-
lem, subject to constraints

Ẋ ≡ dX

dt
= F (X,U) (4)

where the overdot notation is employed to indicate the time
derivative, and optimality conditions

0 = FTu λ (5)

obtain. Subscripts, in general, denote differentiation. Here, the
Hamiltonian

κ = L+ FTu λ (6)
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is comprised of the performance index, L, and the Lagrange
multipliers, λ, compounded by the constraint functions, F ,
transposed. This abstraction maps onto the navigation problem
in what follows with [x, y] ∈ X and [θ] ∈ U . That is, the state
vector is identical to the position of the vehicle, while the
heading angle is the only control variable.

III. ANALYSIS

The current field is of known magnitude and direction,

~c = g(x, y)~ı + h(x, y)~ (7)

in the Cartesian plane. Vehicle velocity relative to the water
is V , and constant in magnitude, and as a result the equations
of motion can be written

ẋ = V cos θ + g(x, y) (8)
ẏ = V sin θ + h(x, y) (9)

where overdot notation is written for the time derivative and
θ represents the vehicle course with respect to an earth-fixed
orthogonal coordinate frame. The Hamiltonian of the system
is

κ = λx (V cos θ + g) + λy (V sin θ + h) + 1 (10)

so

λ̇x = −∂κ
∂x

= −λx
g

x
− λy

h

x
(11)

λ̇y = −∂κ
∂y

= −λx
g

y
− λy

h

y
(12)

0 =
∂κ
∂θ

= V (−λx sin θ + λy cos θ) (13)

where Eq. 13 implies that

tan θ =
λy
λx

(14)

The Hamiltonian is time invariant. Moreover, it equates to zero
because an extremal (minimum-time) solution is desired. The
system of equations 11 and 12 is solved1 for λx and λy:

λx (V cos θ + g) + λy (V sin θ + h) = −1 (15)
λx (−V sin θ) + λy (V cos θ) = 0 (16)

to obtain

λx =
− cos θ

V + g cos θ + h sin θ
(17)

λy =
− sin θ

V + g cos θ + h sin θ
(18)

and an equation for the rate of change of heading angle is the
result:

θ̇ = sin2 θ
∂h

∂x
+ sin θ cos θ

(
∂u

∂x
− ∂h

∂y

)
− cos2 θ

∂g

∂y
(19)

The three rate equations, Eqs. 8, 9 and 19, will determine
the minimum-time paths through a terminal point B when the
initial coordinates A and course, θA, are set. What follows
will place the destination at the origin (0, 0) of the coordinate
axes, and the initial point A somewhere in the domain.

1see Appendix

IV. LINEAR CURRENT DISTRIBUTION

The case of a linear current distribution, g = −V/ry, h = 0
is addressed here. This current is irrotational and meant to
model a shear flow in y. The terminal heading angle θB is
assumed to be known and collinear with the terminal velocity.

cos θ =
cos θB

1 + y/r cos θB
(20)

cos θ +
y

r
cos θB cos θ = cos θB (21)

y

r
cos θB cos θ = cos θB − cos θ (22)

y

r
=

1
cos θ

− 1
cos θB

(23)

y

r
= sec θ − sec θB (24)

The rate equation for θ is solved next:

θ̇ = sin2 θ
∂h

∂x
− cos2 θ

∂g

∂y
+ (25)

sin θ cos θ
(
∂g

∂x
− ∂h

∂y

)
(26)

θ̇ = − cos2 θ
∂g

∂y
(27)

dθ

dt
= cos2 θ

V

r
(28)

dt

dθ
=

r

V
sec2 θ (29)∫ B

A

V

r
dt =

∫ θB

θA

sec2 θdθ (30)

V

r
(tB − tA) = tan θ − tan θB (31)

Equation 31, which encodes the functional J from Eq. 3, is
also known as the performance index.

The rate equation for x is solved last:

dx

dt
= V cos θ + g (32)

= V cos θ − V y
r

(33)

dx

dθ

dθ

dt
= V cos θ − V sec θ + V sec θB (34)

dx

dθ
= [V cos θ − V sec θ + V sec θB ]

dt

dθ
(35)

dx

dθ
= [V cos θ − V sec θ + V sec θB ]

r

V
sec2 θ (36)

dx

dθ
=
V cos θ − V sec θ + V sec θB

V/r cos2 θ
(37)

dx =
[
r sec θ − r sec3 θ + r sec θB sec2 θ

]
dθ (38)

x

r
=
∫ θA

θB

[
sec θ − sec3 θ + sec θB sec2 θ

]
dθ (39)

= −1
2

[sec θB(tan θB − tan θA)−

log
tan θB + sec θB
tan θA + sec θA

−

tan θA(sec θB − sec θA)] (40)
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V. RESULTS

Equations 24 and 40 constitute an implicit system for θA
and θB , and are solved by numerical methods. Suppose an
AUV desires to travel from (xA/r, yA/r) = (3.66,−1.86) to
the origin, then

yA
r

= −1.86 = sec θA − sec θB (41)

xA
r

= 3.66 = −1
2

[sec θB(tan θB − tan θA)−

log
tan θB + sec θB
tan θA + sec θA

−

tan θA(sec θB − sec θA)] (42)

This system of equations is intractable because it is composed
of the trigonometric tangent and secant functions, both of
which are in places unbounded. Equations 41 and 42 are
modified to equate to zero, and the map of the L2-norm is
derived over a Cartesian solution plane composed of θA and
θB . The map is generated on every odd-numbered degree in
order to avoid the infinities, and then scrutinised in regions
which contain small values. The algorithm, although robust,
can be said to be in want of refinement. The solution, which
requires at most 32,400 iterations of two cosines, two tangents,
one logarithm and one square root function, is found to be for
this example,

θA = 105◦ θB = 240◦ (43)

VI. CONCLUSIONS AND FUTURE WORK

Although one is unlikely to meet a well-ordered linear shear
current in nature, the present result can be employed off-line to
validate algorithms for navigation in a current. The abstraction
needs to be automated in order to introduce the ability to
navigate in regions with arbitrary current distributions.
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APPENDIX

A. Isolation of λx, λy
The system of equations is solved as follows. Isolate from

Eq. 16 λx

λx = −V cos θ
−V sin θ λy (44)

= cos θ
sin θ λy (45)

and substitute the result into Eq. 15:

−1 = λy

(
cos θ
sin θ

)
[V cos θ + g] + λy [V sin θ + h] (46)

− sin θ = λy cos θ [V cos θ + g] + λy
[
V sin2 θ + h sin θ

]
(47)

− sin θ = λy
[
V cos2 θ + g cos θ + V sin2 θ + h sin θ

]
(48)

− sin θ = λy [V + g cos θ + h sin θ] (49)

λy =
− sin θ

V + g cos θ + h sin θ
(50)

Isolate from Eq. 16 λy

λy = λx
sin θ
cos θ

(51)

and substitute the result into Eq. 15:

0 = λx [V cos θ + g] + λx
sin θ
cos θ

[V sin θ + h] + 1 (52)

−1 = λx

[
V cos θ2 + g cos θ + V sin θ2 + h sin θ

cos θ

]
(53)

−1 = λx

[
V + g sin θ + h sin θ

cos θ

]
(54)

λx =
− cos θ

V + g cos θ + h sin θ
(55)

B. Integration of Equation 39

The integral is split into its additive components. The
observation was made by Stewart [4] on page 122 that

d

dx
tanx = sec2 x (56)

On the inside back cover of Stewart [4] it is observed that
Eq. 71 of his Table of Integrals has∫

sec3 udu =
1
2

secu tanu+
1
2

log | secu+ tanu|+C (57)

Finally it is known that∫
secxdx = log | secx+ tanx| (58)

The logarithmic term in Eq. 57, the integral of the cube of
the secant, is subtracted from the last-mentioned integral, and
this results in Eq. 40.
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Fig. 1. Figures for ‘Autonomous Underwater Vehicle Minimum-Time Navigation in a Current Field’.

4 of 4

Oceans ’10 - Seattle


