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ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Sotirios Ch. Diamantas

Navigation is at the heart of today’s mobile robotic systems. The use of landmarks for
the guidance of autonomous systems is an essential part of the process. Shape, size, and
colour are some of the properties of the landmarks. In this work biological and other
methods have been developed for navigating a simulated mobile robot back to its home.
Optical flow which is not a property of the landmarks but a property of the camera
motion, has been used for building topological maps which are used to localise a robot.
The advantage of this approach is that there is no need for storing or retrieving images.
Any computation is performed on the basis of vectors. Metric maps are generated using

a parsimonious localisation and mapping algorithm using a laser range finder.

The purpose of this research is to effectively navigate a robot to its home position using
computationally efficient biological and other techniques for navigation. Biology is seen
as an alternative solution to the problems robots’ encounter which include algorithmic
complexity, performance, and power consumption among others. Biological inspiration
provides simple, yet effective methods for the solutions of such problems. The careful
examination of such methods has twofold gain. The study of the principles of biological
organisms entails making better autonomous systems that will, in turn help us perceive

and understand better the underlying mechanisms of biological organisms.

It is therefore essential to have an understanding of how biological and robotic systems
work. This work discusses the techniques and strategies found both in animals and
robots. It then goes on to describe the implementation of a series of simulation algo-
rithms inspired by biology and other fields that assist in the navigation process, and in
particular, homing. Their results are discussed and analysed. The novelty of this re-
search lies in its methods for robot homing that make use of optical flow information to
recognise a location as well as methods based on a laser range finder to avoid obstacles,

perform path planning, localise a robot, and map the environment.
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Chapter 1

Introduction

Recently, there has been a resurgence of interest in the use of biologically-inspired
robotics due to the simple, yet effective strategies they employ. A honeybee can es-
timate its velocity and its distance to an object by calculating the rate of change of
objects seen by its retina. Optical flow techniques that calculate the rate of change of
objects in a camera have been developed and used for collision avoidance and robot cen-
tring when passing through a corridor. These types of systems have adopted techniques
and methods that are found in biological organisms with simple sensing and neural com-
plexity. Nevertheless, the behaviour they exhibit is effective and, in the majority of cases
quite complex. Hence, a considerable amount of research interest has been undertaken
in mobile robotic systems inspired by nature; a rather new area with a large number
of applications from surveillance and inspection systems to systems that can be used in

medicine, in space missions, or military applications.

From the rich information provided by the visual sensors, this research is aiming at the

high-level vision part, in particular extracting meaningful features, such as landmarks.

A landmark is a salient feature of the world. They can be divided into global
and local, and natural or artificial. Global, refer to landmarks such as the
sun, the moon, the stars while local refer to a river, a tree, or a rock. An

artificial landmark can be a building, a bridge, or a corner of a wall.

Based on studies on biological organisms, particularly insects, the use of landmarks
play an important role in their search for food, a process called foraging, as well as for
returning to their home (nest or hive for ants or bees, respectively), a method called
homing. Homing is an important part of the navigational process. A robot may need
to return to its base for a number of reasons like recharging of batteries, failure of a
subsystem, or completion of a task. This work is also looking at different navigation

strategies and how these can be combined to aid a mobile robot in navigation. Detection

1



2 Chapter 1 Introduction

of large-scale landmarks during the beginning of the outbound trip as well as the use of

optical flow for building maps are some of the strategies developed for homing.

1.1 Motivation and Objectives

The research question of this work is to find how a mobile robot can effectively return to
its home using computationally efficient biological and other techniques for navigation.
The hypothesis is that insects, and in particular honeybees use optic flow for localisation
and map building. The initial work consists of a literature review in the areas of visual
navigation of animals and, in particular, insects, followed by a review of the Simultane-
ous Localisation and Mapping (SLAM) literature. A number of simulations have been
conducted to support the homing methods and techniques, the results from which are

presented in this thesis.

Motivation for this work has raised from the fact that robotics and computer vision will
be playing more and more significant role in the years to come. They are large disciplines
and their application areas are numerous ranging from surveillance systems to systems
used in difficult or dangerous for the human environments. Moreover, by studying the
principles of biological organisms efficient and useful robotic systems can be built that
will, in turn, help us to perceive and understand better the underlying mechanisms that

govern navigation in animals.

The aim of this work is to apply vision and laser systems to mobile robotics for the
purpose of providing efficient navigation capabilities to robotic systems. Such systems
can operate on various types of environments, both indoor and outdoor. The application
areas of robots capable of performing homing, that is the return to the home or base, are
wide ranging. Homing is of importance for robots that are used for search and rescue.
Areas that have been hit by earthquakes make up such environments. Yet, regions that
suffer from extreme meteorological phenomena form another candidate for this type of
systems. Planetary missions can also provide an excellent application area. Matsuno and
Tadokoro (2004) provide an overview of this type of agents that are currently developed
in Japan for search and rescue in hazardous and disastrous environments caused by

earthquakes and other natural phenomena.

Having set the aim of this research, the following objectives need to be met:

e Add to the understanding of visual-based navigation for fully autonomous mobile
robots. Inspiration is drawn from biological and engineering studies, with the
overriding objective of application with the search and rescue field. To claim this,
the research is looking at the effectiveness of novel algorithms that will aid the

robot navigation.
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e Methods based on visual landmark recognition are computationally expensive.
Another objective of this research is to provide robust yet computationally effi-
cient methods for robot navigation. For this reason, inspiration from biology has
provided the methods for landmark recognition and topological map building. In-
spiration from biology has a two-fold gain as it can provide insights for robust
robotic systems while at the same time it can explain the underlying mechanisms

that underpin biological organisms.

e Model and simulate biological navigational methods that are applicable to robotic
systems. For this objective, this research will be looking at navigational methods
of well-studied animals, that is, insects such as ants and honeybees. Apart from
the fact that these insects have provided a plethora of information to the research
community, their navigational methods are efficient and effective for the small

number of neurons they possess.

e Traditional methods for localisation and mapping are rather accurate but their
computational cost is quite high. This is a core problem encountered in almost
all methods for localising and mapping a robot within an environment. In the
SLAM methodology computational cost increases quadratically with the number
of landmarks. For this reason, localisation and mapping using visual methods
inspired by biology are used in conjunction with methods based on laser scanner

for efficient path localisation and map building.

The aim of this work is not to make a complete model of a biological organism, but rather
to take inspiration from biological that will meet the objectives set. To complement the
work, a study in homing has been conducted from the engineering point of view. For the
purpose of this work, the main sensing capability used is vision and a laser range scanner
is used for path planning, and localisation and mapping. The reason for this is that vision
systems are relatively low cost, provide a plethora of information, and are used across
the robotics community. However, the greatest disadvantage of vision systems lies in
the processing of the information. Though an image can provide an enormous amount
of information, the time needed for the processing is critical, especially for real-time
systems. In addition, image noise is a major drawback of vision systems this impedes
and obstructs the proper processing. This leads, sometimes, to erroneous information

being extracted from the image.

Furthermore, a laser sensor is employed for obstacle avoidance and path planning. A
laser range finder is highly suitable for that purpose due to its strength in estimating
distances accurately while unburdening the system from problems arising in other sensors
like infrared or sonar. In fact, there is a large number of works that utilise laser range
sensors for obstacle avoidance (Ulrich and Borenstein, 1998; An and Wang, 2004; Koren
and Borenstein, 1991; Martinez et al., 1998).
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This thesis makes significant contributions to the state of the art that can be categorised
into two parts. The first part that is inspired by biology and, the second part that uses

methods found in engineering.

e Optical flow has been used to build topological map based on the optical flow
‘fingerprint’ of the landmarks. The main novelty of this approach is that it does
not make use of any information apart from the optical flow patterns of the land-
marks. Velocity, position, and distance between the robot and the landmark are all
remain unknown. Optical flow, however, is not a property of the landmarks, like
colour, shape, and size, but a property of the camera motion. Based on a training
algorithm landmarks can be recognised based on their optical flow ‘signature’. In
addition, during the initiation of the outbound trip the robot is performing the
TBL method in order to detect large-scale landmarks which are located close to its
home position. These landmarks will be used for recognition of the home position

when the robot is completing its inbound trip.

e The second part of this work involves building metric maps based on a laser range
finder. The algorithm detects corners in the environment, that act as landmarks,
which are used for localising the robot with respect its environment. A camera
has also been used to support this method in cases where there are no distinct
landmarks. Yet, a comparison is made between the optical flow method and a least
squares approach in estimating depth, that is the distance between the robot and
a landmark. A mixed approach has also been implemented where least squares
is combined with optical flow in inferring depth. However, there is a trade off

between robustness and computational cost.

Figure 1.1 shows a general plan that has been followed for the accomplishments of these
aims and objectives. The research questions have been defined based on the readings
of literature review. This, in turn, has provided an input to the study of the visual
navigation strategies of animals, mainly insects, and of the robots currently used. A
large number of robots, nowadays, make use of the SLAM (Simultaneous Localisation
and Mapping) for navigational purposes. Some others try to model biological organisms
and mimic their abilities; thus, the emergence of biorobotics field. Inspiration from the
biological and the engineering world has provided input for the methods to be followed
and the algorithms developed for this work. Experiments have been conducted using
primarily a 3D simulator, Gazebo (2006), and a 2D simulator, Player/Stage (2006)
which are part of the Gerkey et al. (2003) project. MATLAB (2005), has also been
used for data analysis. Therefore, using simulation tools the robot is capable of building
topological and metric maps. During the outbound trip the robot performs a series of
strategies that have been inspired by the way animals navigate. These include the turn-
back-and-look (TBL) approach that detects large scale landmarks while retreating from

home position and the optical flow based landmark recognition. On the other hand a
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method which relates to SLAM methodology has been employed for metric map building
and localisation and mapping using a laser range finder. The outcome of all those is the

navigation of a mobile robot, in particular homing, within an unknown environment.

A number of publications have been produced from this research. The following list

shows the papers and the conferences at which have and will be appeared.

e S. Ch. Diamantas, A. Oikonomidis, and R. M. Crowder. Towards optical flow-
based robotic homing. In Proceedings of the International Joint Conference on
Neural Networks (IEEE World Congress on Computational Intelligence), Barcelona,
Spain, July 2010 (In Press)b.

e S. Ch. Diamantas, A. Oikonomidis, and R. M. Crowder. Depth estimation for
autonomous robot navigation: A comparative approach. In Proceedings of the In-

ternational Conference on Imaging Systems and Techniques, Thessaloniki, Greece,
July 2010 (In Press)a.

e S. Ch. Diamantas and R. M. Crowder. Localisation and mapping using a laser
range finder: A goal-seeking approach. In Proceedings of the Fifth International
Conference on Autonomic and Autonomous Systems, pages 270-276, Valencia,
Spain, April 2009.

1.2 Structure of the Thesis

The thesis comprises of six chapters. Chapter 1 provides an introduction to the field
and a theoretical background to the areas directly related to the subject of the research,
namely navigation of insects and machines. It also discusses the application areas of
robots performing homing and provides the general plan followed for the attainment of

the aims and objectives.

Chapter 2 provides an introduction to navigation techniques, employing vision as the
main modality, used by animals and robots. It also presents related work of other
researchers in biology as well as in SLAM, and the various methodologies they have
used. Moreover, it presents the basic models developed and tested on robotic systems
which have been inspired by insects and by engineering studies. It also presents the

mathematical formulation of the optic flow algorithm.

Chapter 3 describes the general simulation platform. The architecture of the simulator
is discussed as well as the various tools that encompass the simulation environment. A

description of the related two simulators (2D and 3D) is given.

Chapter 4 deals with the evaluation of the preparations that have been made. The meth-

ods and their results are presented and analysed. It also gives quantitative information
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F1GURE 1.1: Plan of the research programme. The initial phase has included literature

review that has pointed out the research question of the work. It has followed by studies

in insect and robot navigation. The simulation tools have been used for the implemen-

tation of the optical flow-based map building and the modelling and simulation of a

laser range finder for metric map building and localisation. The red boxes depict the
contribution of this research.

regarding the recognition of landmarks by the robot using the optic flow algorithm, and
the large-scale landmark recognition and detection algorithms. Finally, it shows how ef-
fectively a robot can localise with respect to a landmark based on the topological maps
it has built.

Chapter 5 presents the engineering studies of localisation and mapping as well as the
algorithm developed for creating metric maps of the environment. The algorithm of
this chapter uses a laser range scanner which is then supported by a camera to produce

better results.

Chapter 6 summarises the work achieved thus far and provides a section for further
research. It discusses the important areas where research can continue and provides

some of their limitations.



Chapter 2

Background Work

2.1 Introduction

This chapter considers the visual navigation strategies employed by animals. Most of the
discussion will be restricted to insects, such as ants and bees that have been well-studied.
However, a brief discussion is performed around the visual methods other animals use,
such as birds. In addition, this chapter surveys the various models of visual homing that
have been developed based on biological studies. Furthermore, various strategies that
ants employ and which are related to the current work of visual navigation in unknown
environments. These strategies are path integration, visual landmarks, and searching.
Searching is a strategy that is employed when all other methods have failed. The litera-
ture review of this chapter acts as the basis for the developed models which are explained
in the following two chapters. In this chapter the two most popular biological models
of homing are presented, namely ALV and snapshot as well as the utilisation of optical
flow algorithms on robotic systems. The limitations of each of the available algorithms
are highlighted, thus indicating the novel work that could be developed. Moreover, the
chapter surveys the navigation methods used in today’s robotic systems from the en-
gineering point view, namely Simultaneous Localisation and Mapping (SLAM) and its
mathematical underpinning. Finally it concludes, with an explanation of the Lucas-
Kanade optic flow algorithm that has been used for building topological maps based on

the optical flow ‘fingerprint’ of the landmarks.

2.2 Historical Perspective

In the decade of 1940’s, Norbert Wiener coined the term cybernetics that refers to the
communication and control in the animal and the machine (Wiener, 1965), this was the

first link between intelligence in animals and machines. Biologically inspired robotics
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FIGURE 2.1: Grey Walter’s tortoise constructed between late 40’s and early 50’s. Figure
from The Grey Walter Online Archive (2006).

is a rather new approach but its roots can be traced as early as the beginning of the
twentieth century when Hammond built a heliotrope based on Loeb’s theory of tropism*
(Sharkey, 2002). In this theory, Loeb suggested that animals be attracted and repelled

by stimuli similar to that found in plants.

The first practical mobile robots used principles such as phototaxis (light) and were
built by mid of the twentieth century by the neurophysiologist Grey Walter (Holland,
2003). Grey Walter used only two receptors, a light and a touch sensor, for his tor-
toises (Fig. 2.1). These simple machines were able to exhibit complex behaviour when
interacting with the environment. Few of the behaviours that his machines exhibited
were social organisation, free-will, pertinacity, recognition of self, and others (Holland,
2003). As lately as the 80’s, Braitenberg (1984) described various robots that exhibit
complex behaviour based on simple rules. These robots could control the speed of the
motor based on a sensor; they could be attracted or repelled by light, or perform various
trajectories between light sources. All of these approaches had a common element, they
exhibited life-like behaviours based on a few simple neurons. Inspired by these simple
interactions Brooks (1985, 1991) invented the behaviour-based approach on robotics.
Behaviour-based robotics came as an alternative to the traditional approaches of ar-
tificial intelligence where a robot was required to have a precise representation of its

environment, a detailed map for example.

*Tropism and taxis refer to the same thing, i.e., the attraction or repulsion of an agent directed by
a stimulus. Some examples include chemotaxis, geotaxis, phototaxis, phonotaxis, and osmotropotaxis -
trail following.
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The work presented in this thesis is to take inspiration from the biology world, for
these simple reasons stated above. The simplicity and ease of processing that complex
tasks require make insects, and animals in general, perfect candidates for modelling and

simulation.

2.3 Biological Navigation and Homing

This section provides an overview of the capabilities and methods animals employ for
navigation. Insects are the animals whose navigational behaviour is examined in this
thesis, since they are well-studied and exhibit a variety of interesting capabilities as
compared to their physical and neural structure. In particular, this section’s discussion
is about ants and honeybees. However, other animals’ navigational behaviour is briefly
reported. Concerning navigation, it is well known that certain animals can cover very
long distances, returning back home and traversing the same route with a high degree
of accuracy. An insect’s brain contains approximately 10° neurons, a small number
compared to the complex tasks, such as navigation, they can carry out and also when
compared to vertebrates (Collett and Collett, 2002).

Insects have developed efficient methods that do not require complicated calculations
for solving those tasks from which inspiration has been taken. Such an example is
when robots calculate their position relative to some landmarks by performing complex
calculations such as feature extraction, sensor fusion, etc. On the other hand as discussed
briefly in Chapter one, studies have shown that honeybees use optic flow, that is, the rate
of change of image motion in their retina that makes them locate at any instant of time
their position relative to some goal location or landmarks Srinivasan et al. (1999). This,
however, does not seem to be the case for the desert ant Cataglyphis fortis (Ronacher
et al., 2000) where they seem to rely mainly on idiothetic means. The discovery of the
use of image motion in the retina of honeybees has led to the use of optic flow techniques

in robotic systems.

Two other techniques that animals employ for navigation and which are of interest
for this work are path integration and landmark recognition. These two techniques
along with searching are discussed below. Yet, another popular technique employed by
insects is pheromone trail following. It is used by many species of ants, but not from
all. The well-studied desert ant Cataglyphis does not lay pheromone since this species
lives in deserts where the high temperatures would cause an evaporation of trailings
(Wehner et al., 1996). Nevertheless, even the ant species that lay pheromone have been
shown (Klotz, 1987; Harrison et al., 1989) to associate trails with visual landmarks.
Thus, making homing more robust and accurate. When there exist both pheromone
trails and visual landmarks, experienced ants adopt the landmark strategy whereas the

inexperienced ants are directed by pheromone trails (Harrison et al., 1989).
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Healy (1998) discusses a large number of similar, as well as different navigation strate-
gies employed by fish, pigeons, mammals, and birds. Hafner (2004) demonstrates how
the hippocampus area of rats assists in cognitive mapping of the environment. She in-
troduces various navigational strategies that are employed by animals, and specifically,
rats. In particular, the question posed is to what extent navigation behaviour in ani-
mals is innate or learnt. Experiments (Hafner, 2004) have shown that in principle visual
homing strategies can be both learnt and evolved by artificial agents. Even a sparse
topological representation of place cells can lead to good spatial representation of the
environment where metric information can easily be extracted, if required, by the agent.
Nevertheless, it is not clear which navigation strategy is applied by an animal, since its
behaviour consists of a combination of different strategies. When, and to what extent,
the different strategies are chosen and which sensory modalities are applied is still an

open question.

2.4 Insect Strategies

This section discusses the major strategies that animals employ when foraging or homing.
A significant work by Lehrer and Bianco (2000) examines the turn-back-and-look (TBL)
behaviour that honeybees exhibit (Lehrer, 1991, 1993; Fry and Wehner, 2005). Figure
2.2 depicts the TBL behaviour that bees perform. In this experiment, when bees come
out of a reward feeding site they turn by 180° and inspect the feeding site again and
again while they are retreating. When bees were captured on their departure from a
feeding site, they were not able to find the goal location, while those who were not,
performed the TBL behaviour and found the food source on the next arrival (Lehrer,
1991, 1993). The experiments showed also that colour and shape of landmarks are
mainly learnt during arrival to a feeding site. However, when bees are prevented from
learning these cues on arrival, they learn them on departure from the feeding site. Thus,

colour and shape are not learnt during the TBL phase.

It seems that bees during the TBL approach learn the spatial relationship of landmarks
and of the feeding site. This can be explained by the fact that nearer objects move
faster than further ones. This hypothesis was tested by Lehrer and Collett (1994) using
a large and a small cylinder as landmarks. The bees trained during the arrival preferred
the cylinder with the memorised size. The same occurred with the TBL approach.
Thus, showing that bees learn the size of a landmark during the turn-back-and-look
approach. In another experiment, bees could view either the large or the small cylinder
on both arrivals and departures. When bees tests at the end of the TBL phase showed a
preference to the correct distance over the correct size. When the same bees were tested
with no TBL phase, they preferred the cylinder with the correct size. This reveals that

information about absolute distance occurs only at the initial phase to a feeding site,
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FIGURE 2.2: The turn-back-and-look behaviour of insects. Numbers along the trajec-

tories depict the course of flight of a honeybee while departing from its hive. I-III.

The first TBL of three individual bees. IV. Departure of two individual bees after the
TBL-phase has ended. Figure from Lehrer and Bianco (2000).

since at this phase bees are keen on finding near landmarks to the feeding site. Once

this has occurred, the bees try to learn the angular size of the landmark.

A similar work to the TBL approach with ants, was performed by Judd and Collett
(1998). In their work, Judd and Collett (1998), showed that wood ants take several
snapshots of a familiar beacon from different vantage points. Their hypothesis is based
on the fact that the retinal image of an object changes according to the viewing distance
and sometimes direction. In fact, the rate of change of a retinal image changes more
rapidly when the viewing distance is getting smaller and smaller between the object

and the viewer. On the other hand, there is not much rate of change of the object
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stored on the retina when the viewing distance is becoming larger and larger. In other
words, the rate of change of retinal image is dependent on the distance as well as on the
velocity. An object’s rate of change image may change rapidly because distance between
the insect and object is small but it can also be due to the high velocity of the insect
rather than the small distance. To investigate this hypothesis, Judd and Collett (1998)
trained wood ants with an upright and an inverted cone. The experiments showed that
ants tend to perform the turn-back-and-look approach as honeybees and wasps perform
it. Upon leaving the nest, ants performed a tortuous path, turning back and looking
towards the landmark. As the ants move further away, the turn-back-and-look approach
is diminishing, revealing that the ants sample the landmark at a higher rate when close to

it, whereas further away the sampling rate drops as the image size transforms gradually.

2.4.1 Path Integration

Path integration! in insects, refers to the ability to produce a home vector having in-
tegrated angles and distances during the outward journey (Collett et al., 1999). This
home vector can produce a straight route back to the nest. In other words, although a
foraging trip might not be a route viewed as a straight line, the return trip is completely
optimised and previously covered route needs not be retraced. This is supported by
experiments conducted by Wehner et al. (1996) and reporting that if an ant is caught
on its way home and released at another site, the ant still follows its stored home vector.
In other words, it traverses a path parallel and equal to the home vector, though the
release site might be completely different from the site that the ant was caught. Figure
2.3 shows a schematic drawing of how an ant performs path integration during a mean-
dering foraging journey. Ants can cover a tortuous path up to 250 m while honeybees

can cover a distance of 10 km or 23 km for the Orchida bee.

For orientation, the ant Cataglyphis uses the polarisation pattern of the sky. This is
achieved by its visual system, at the upper part of its facet eyes (Wehner, 2001). There,
exist polarisation detectors which detect the various patterns created by the scattering
of sun light in the atmosphere. For orientation of honeybees, Collett and Baron (1994)
argue that this is achieved by the recognition of magnetic fields. For information on
distance travelled, there are two theories; one pertaining to energy consumption while
the other is based on visual cues. In honeybees, there is a strong evidence that this is
achieved by means of retinal image motion (Srinivasan et al., 1996, 2000) while for the

ant Cataglyphis fortis Ronacher et al. (2000) support this is caused by idiothetic means.

In a recent work by Wittlinger et al. (2007) experiments showed that ants employ a kind
of ‘step counter’ for path integration. They trained the desert ant Cataglyphis fortis to

walk a distance of 10 m in linear alloy channel from their nest entrance to a feeder. They

fPath integration is a term restricted to biology. The general term is dead reckoning, taken from
nautical navigation.



Chapter 2 Background Work 13

. w1
bl out: 592.1 m (12.8 min) ||
. ) in - 140.5m ( 6.5 min) |
2 §
L i \
I
. N
[] '\\

FIGURE 2.3: Path integration in ants. The tortuous path depicted in grey-colour line
represents the foraging trip of the ant. The almost straight black line represents the
homeward journey of the ant after having used its path integration system. On the top
right corner the distance and time is given for both the foraging and return trip. As it
can be seen, path integration in ants reduces significantly the amount of time to return
from a distant and spiral-like foraging journey. Figure from Lambrinos et al. (2000).

then extended the legs of the ants by placing stilts. The tests showed that ants misgauge
travel distance to feeder by overestimating the distance to it. The inverse occurred when
trained ants had their legs shortened (‘stumps’). The ants underestimated the travel
distance to the feeder. The experiments revealed that ants used the same number
of strides both in training and in tests even though their legs had been elongated or
shortened. The same number of steps used by the ants shows that they use a kind of
pedometer that counts the number of steps they have walked. Nevertheless, Collett et al.
(2006) argue that ants cannot measure distances simply by counting steps. They base
their argument on the fact that each stride counted by insects must be tagged with a
length. An ant may start its journey by walking slowly, then it may run faster when
it carries a piece of food and walk very slow when it carries a large item. Thus, they
conclude that the pedometer is not a possible explanation as ants adjust their speed by

changing both stride length and stride frequency.

In some other experiments, Grah et al. (2005) trained the desert ants Cataglyphis fortis
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to visit a feeder while travelling on undulating terrain. Their experiments showed that
the ants used the ground distance as opposed to walking distance to feed into their path
integrator. The ants, thus, updated their home vector using only the horizontal plane.
Path integration is a prominent method used by insects, but is not the only one. The
reason for this is that path integration is inherently erroneous method both in ants and in
robots. Errors are accumulated especially when a wind blows and an insect can deviate
from its route. This is one of the reasons why path integration is not the only strategy
employed by insects. Visual landmarks play an important role in the navigation, and in

particular homing, of insects.

2.4.2 Visual Landmarks

It has been shown that ants and honeybees use visual landmarks to orient and direct
themselves towards a goal position. When other strategies such as path integration have
failed, ants resort to navigation by landmarks (Wehner and Raber, 1979). Honeybees,
too, select landmarks for visual homing that are close to their hive (Cheng et al., 1987).
They distinguish between near and far landmarks by the retinal size and position of the
landmarks. Extensive experiments conducted by Collett (1996); Graham and Collett
(2002); Pratt et al. (2001) have shown that ants follow large prominent landmark lying
across or near the route to the goal and that they perform a route parallel to an extended
landmark such as a wall. Their distance from the extended landmark is dependent on the
height of the landmark. The larger the height of the landmark, the larger the distance
ants have against that landmark. By continuously following the height of the landmark,
ants guide themselves to the goal. The height of the landmark, as it was previously

mentioned, is calculated by its position in the retina.

In a recent paper by Dacke and Srinivasan (2008) the counting ability of honeybees is
investigated. In particular, Dacke and Srinivasan (2008) trained honeybees to find a
food source in a 4m long tunnel by placing landmarks in it. During training the position
of the landmarks varied as well as the position of the rewarded landmark which was
set to be between 120cm to 320cm away from the tunnel entrance. In addition, the
shape and size of landmarks varied from experiment to experiment. The results showed
that the bees hold a sequential counting ability of landmarks. Although the distance
to the food reward varied in order for bees not to be able to identify the position of
the landmark from its distance, bees were able to reach the food reward provided the
landmarks passed en route did not exceed the number four. The number of landmarks
that contained the food reward was the same both in the training and in the test, but

was changed every time a new training was taking place.
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2.4.3 Optical Flow

A large number of insects use optic flow for navigation. Optic flow in insects like
Drosophila use the apparent visual motion of objects to supply information about the
three-dimensional structure of the environment. The fly Drosophila uses optic flow to
pick near targets. Collett (2002) shows that the task of evaluating distances between
objects is made easier by making side-to-side movements of the head strictly transla-
tional and disregarding any rotational components that can influence the distance to the
objects. Looming can also distort the actual distance to the object as the apparent size
compared to the physical size of the object differs. In his experiments (Collett, 2002)
ascertains that Drosophila like many insects limit rotational flow during exploratory
locomotion. In fact, Drosophila move in straight-line segments and restrict any rotation
to saccades at the end of each segment. Schuster et al. (2002) have used virtual reality
techniques to show that fruit flies use translational motion for picking up the nearest

object while disregarding looming (image expansion).

Ladybirds also move in straight-line segments and rely on translational optic flow rather
that looming cues. Other animals like locusts and mantids turn their head from one
side to the other just before jumping. Kral and Poteser (1997) suggest that locusts and
mantids use translation motion to infer the three-dimensional structure of the environ-
ment and in particular the distance to the object they wish to approach. In some other
experiments performed by Tautz et al. (2004) trained bees had to travel large distances
across various scenes that included both land and water. The results showed that the
flights over water had a significantly flatter slope than the one above land. That suggests
that the perception of the distance covered by bees is not absolute but scene-dependent
where the optic flow perceived is evidently larger. This may suggest why some bees are
drowning by ‘diving’ into lakes or the sea while flying above water. The distance and
direction to a food source is communicated in the bees by means of waggle dances that

integrate retinal image flow along the flight path (Esch et al., 2001; von Frisch, 1993).

Esch and Burns (1996) performed experiments with trained bees to travel between two
tall buildings. The bees that had flown at a higher height exhibited shorter waggle
dance component than that expressed by bees travelling the same distance but at a
lower height. They concluded that bees use optic flow to gauge distances to targets.
The same conclusion comes from the work of Srinivasan et al. (1996) that trained bees
to fly through a 20 cm wide tunnel until they reach a food source. The tunnel had
textured walls in order to provide high optical flow signals to the bees. When the
bees tested to fly in a narrower tunnel, they searched for the food source at a shorter
distance than what had been trained. Inversely, when the bees tested to fly in a wider
tunnel, the distance they covered until searching for the food source was longer than the
distance they had been trained. The optic flow per unit of distance experienced by bees

was higher in the narrow tunnel and lower in the wide tunnel. Therefore, Srinivasan
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et al. (1996) concluded, too, that bees integrate over time the amount of optic flow they

experience and that the target location is a summation of the total amount of flow.

However, as stated by Collett et al. (2006) it remains a mystery how bees control height
because bees tend to keep their moment-to-moment optic flow signal constant during
flight by increasing speed when they gain height and reducing speed when they approach
surface. Collett et al. (2006) pose the question whether bees employ static cues, such
as texture grain size to control height. The findings of this thesis may explain that bees

use optical flow of landmarks to localise.

One more parameter which has been tested extensively is the relationship between colour
vision and motion. von Frisch (1993) and Chittka et al. (2001) report that although bees
have excellent trichromatic colour vision that they use, for example, for the identification
of flowers, colour is not related to motion (Zhang and Srinivasan, 1993). Experiments
conducted by Chittka and Tautz (2003) report that even though distance estimation
is colour blind there is a strong correlation between green contrast and waggle dance
probability while there is no correlation between any other spectral parameters and
waggle dance probability. That, therefore, indicates that the green receptor signal is

used for distance estimation in honeybees.

2.4.4 Searching

Wehner and Srinivasan (1981); Miiller and Wehner (1994) demonstrate that the desert
ant (Cataglyphis) does not perform a random walk but rather it resorts to a piloting or a
systematic search, a spiral pattern-like behaviour, when all other information has failed.
For example, when an ant cannot locate its nest after returning from a foraging trip,
because of a failure of its path integration system, it resorts to a searching technique. A
fail in the path integration system can be caused, for example, by a cross wind, making
the home vector not to coincide with the nest entrance. In particular, this search pattern
consists of a system of loops of ever-increasing size centred about the origin. Computer
simulations performed by Miiller and Wehner (1994) have shown that searching strategy
adapts to the probability density of finding the target, i.e., the nest. In other words,
these patterns reveal that the target location is most heavily searched, indicating that
the behaviour of the ant Cataglyphis is geared towards finding the nest in an optimal

way.

2.5 Robot Strategies

This section describes robot strategies, in particular, the turn-back-and-look behaviour
which has been implemented on various autonomous agents. But, what does agent

exactly mean? The term agent is somewhat ambiguous, and in this context is considered



Chapter 2 Background Work 17

Autonomous Agents

@ Real Valued |
imp.l’ement.contro.l'
e P tecfiigues inspived by
e =7

/.
-

—~~| Simulations —

to improve state
Research of the art
Platforms

Manipulator
+Mobile Robot
Applications

FIGURE 2.4: Partial agent taxonomy. Figure adapted from Sunderland (2006).

to mean a system that operates independently, contained within a shell, or ‘body’, which
mediates its interactions with the outside world (Sunderland, 2006). What constitutes
the body is context dependant. In other words, when we are referring to animals or
robots, body implies the collective term of its material components, whereas in software
agents it is the methods through which they can sense and modify their environment.
Figure 2.4 shows a partial representation of agent taxonomy. The work presented in this
thesis involves the implementation of real-valued virtual agents that are inspired mainly
by invertebrates for use in both industrial and research robots. The difference between
the real-valued and symbolic virtual agents lies in the fact that the latter use symbolic

logic.

Lehrer and Bianco (2000); Lehrer (1991, 1993); Lehrer and Collett (1994), and Fry and
Wehner (2005) describe the turn-back-and-look behaviour from the biological point of
view. To complement this, Lehrer and Bianco (2000); Bianco and Cassinis (2000), and
Thompson et al. (1999) describe the TBL behaviour from the robotics point of view. In
particular, in their work TBL is used for the selection of stable landmarks. TBL is used
for dynamic landmark selection, whereas for static landmark selection the ‘The Valley
Method’ proposed by Mori et al. (1995) is used. Figure 2.5 shows a distortion matrix of
a reliable landmark. In this method various landmarks of local uniqueness are selected

compared to the area immediately surrounding the landmark.

Equation 2.1 is a boolean measure to select a template where § is a given threshold, ¢’
is the (local) minimum value found in a circle given a radius around g, that is the global
minimum in the correlation matrix. Figure 2.5 depicts the process of a correlation matrix
where the global minimum, that is g, is found at the centre of the grey area whereas the

local minimum, that is ¢/, is found in the grey area.
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FIGURE 2.5: The Valley Method. The uniqueness of the landmark is depicted by the

sharp point in the centre of the image, i.e., correlation, being represented by the z-awis.

The z-axis and y-azis represent the columns and the rows of the matrix, respectively.

Grey rectangles denote the pixels surrounding the landmark. Global minimum is lo-

cated at the centre of the grey area whereas local minimum is found in the grey area.
Figure from Bianco and Cassinis (2000).

g
r=1-— o >0 (2.1)
By relaxing the ‘The Valley Method’ the following eqn. 2.2 is obtained that calculates
the reliability of each landmark, i.e., how stable it is through time where r is the measure
of uniqueness of the landmark. The greater the value of r, the more unique a landmark

is compared to its neighbourhood (grey squares).

r=1-4 (2.2)

g/
The reliability of the r; of the landmark [ is continuously evaluated and updated using

the following eqn. 2.3,

n g
= =17 (2.3)
n
where n is the total number of steps taken during the TBL until that time, and r{ is the

reliability of landmark [ calculated at time .
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2.6 Strategies of Navigation

In navigation, three questions that must be answered by an autonomous agent each
time, these are; where am I, where am I going, and how will I get there, though the most
important for the homing task is the last one (Franz and Mallot, 2000). However, based
on the sensory information available, the navigation task, and the state of the agent,
different strategies can be followed. Redish (1999) presents five strategies an agent can

take, these are:

I. Random navigation

When there is no information about the goal, the agent moves around randomly

in the environment until it finds the goal otherwise it switches to another strategy.

II. Taxon navigation

Taxon navigation, as mentioned in the previous section, refers to attraction of the

agent directed by a stimulus, e.g., landmark or beacon.

ITI. Praxic navigation

Praxic navigation comes from the term praxis meaning ‘action’. The agent can
execute a constant motor programme. A special case of praxic navigation is path

integration.

IV. Route navigation

Route navigation is the sequence of taxon and praxic navigation strategies depen-

dent on the sensory input.

V. Locale navigation

Locale navigation refers to the learning of location of the goal relative to a constel-
lation of cues. Redish (1999) claims that locale navigation depends on the local

view, path integrator coordinates, head direction, place code, and goal memory.

Franz and Mallot (2000) present a hierarchy of two strategies, namely local navigation
and way-finding. The former refers to the navigation process that requires the recogni-
tion of only one location, the goal location, while the latter one involves the recognition

of several places.

“Way-finding relies on local navigation skills to move from one place to another, but it
allows the agent to find places that could not be found by local navigation alone. The
distinction between local navigation and way-finding is not necessarily associated with
the scale of the environment in which the agent moves: By simply following a locally

measured compass direction, for instance, one can find places that are thousands of



20 Chapter 2 Background Work

kilometres away, whereas finding a particular room in a campus building already

requires considerable way-finding skills” (Franz and Mallot, 2000).

This navigation scheme is a modification and extension of the scheme proposed by
Trullier et al. (1997). The two main divisions of navigation and their subdivisions
presented by Franz and Mallot (2000) are:

I. Local navigation

A. Search

B. Direction-following
C. Aiming

D. Guidance

I1. Way-finding

A. Recognition-triggered response
B. Topological navigation

C. Survey navigation

Search forms the simplest case of navigation. This can be the case when the agent
performs a systematic or random search in pursuit of the goal. It requires the simplest
form of locomotion and goal detection. In addition, search requires a large amount of
time compared to other strategies. Direction-following may be extracted either from
allothetic (based on an external reference) information sources such as the magnetic
field of earth or pheromone trails, or they can be extracted based on idiothetic (internal
reference) information such as proprioceptive signals or an inertial compass. Direction-
following is more effective than search but, it allows the agent to find its goal by following

trails (e.g., pheromone). Examples include path integration or trail following.

Aiming requires the agent to orient its body axis towards a salient cue that is perceptible
during the approach, such as olfactory, auditory, or other. Guidance is the process
whereby a certain egocentric relationship with respect to the landmark is maintained.
When a goal is not marked by a salient cue, the agent can be guided by the spatial
configuration of the surrounding objects. Visual homing is an example of guidance. A
nautical example of guidance would be a ship that tries to reach a fixed position between
several islands. These four methods fall under the local navigation since they lead to a

single location with the help of locally available information.

Recognition-triggered responses connect two locations by means of a local navigation
method. They require the recognition of the goal as well as of the starting location. The

recognition of the staring location triggers the activation of a local navigation method
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leading to a goal. Routes are sequences of recognition-triggered responses in which the
achievement of a place triggers the reach of the next one. Topological navigation requires
the agent to have a representation of places and their connections. It integrates route
navigation and allows for finding alternate routes to a goal in the presence, for example,
of obstacles. However, such a process requires that the agent has previously visited
the route. These routes can be expressed mathematically in the form of graphs, where
vertices represent places and edges represent local navigation methods. As a result, by
building graphs alternative routes can be generated, but cannot be novel and efficient if

the routes have not been visited previously.

Lastly, survey navigation forms the most complex method of navigation since it requires
the embedding of all known places and their spatial relations into one frame of reference.
Apart from topological information the agent can extract metric information that can
be used for the finding of novel routes or shortcuts between unconnected routes, or
detours around obstacles in unknown terrain. These last three methods fall under the
way-finding spatial behaviour. This work is trying to use both local and way-finding
methods for navigating an agent in unknown environments. The next section discusses

the main biological models and their implementation to robots.

2.7 Models of Navigation

What constitutes a good model? A biological model can vary from the number of
legs an animal possesses to a detailed description of its neural circuitry mechanisms.
Webb (2001) discusses what constitutes a good model and how biological behaviour
should be modelled. As previously stated, visual homing falls under the guidance form
of navigation. Visual homing with the use of landmarks is employed by social insects
when, after foraging, ants return home. Nonetheless, this is not always the case. Homing
is also considered when the goal is at the food source and not necessarily at the nest or
the hive, where an insect need to return back. In addition, homing is used in conjunction
with path integration (the integration of distance and direction) and systematic search
(e.g., spiral patterns of motion), though landmark navigation can be used after the
afore-mentioned approaches have failed (Wehner and Raber, 1979) or when an insect is
returning to the goal location having previously stored a snapshot of the environment

and the goal location.

Most of the models used for robotic homing fall under the so called local homing strategy
(Hong et al., 1991). Local homing refers to one only image taken at the goal position.
The model then compares that picture with a stored one to infer the homing vector.
However, there exists another approach, the so called associative homing (Nelson, 1991;
Jogan and Leonardis, 2000), where it samples the environment at a number of different

locations. The disadvantage of the associative homing lies in the storage and processing
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requirements of images. The larger the sampling of the environment, the greater the
number of images to be processed. Yet, it is not quite clear whether insects sample their
environment a number of times. Collett (1996) argues the association of scenes and
vectors. For example, when an insect arrives at a goal location it associates the home
vector acquired by its path integration system with the local scene. This hypothesis
has been supported by experiments conducted with bees (Menzel et al., 1998). Wehner
et al. (1996) juxtapose, however, by arguing that insects acquire images in memory in
series which are retrieved in order. For example, a landmark or image that has been
stored on insect’s memory will retrieve the next image stored that will lead the insect

to the next location. Thus, achieving visual homing.

2.7.1 The Template Hypothesis

The template hypothesis was first conceived by Cartwright and Collett (1983, 1987b)
who suggested it as a model for visual homing of honeybees. In their experiment, they
trained bees to enter a room from a window few metres away from the hive of the bees.
The room was prepared to eliminate visual cues. Inside the room, was located a food
source surrounded by some artificial landmarks. These were black cylinders of 40 cm
in height and 4 cm in width. Cartwright and Collett (1983, 1987b) found that bees
learnt the retinal size and bearings of the landmarks as viewed from the food source.
This revealed that honeybees stored a snapshot of the goal position. When the array of
landmarks was modified or when food source was removed, the bees started searching
where the apparent size and bearings of landmarks was matching the most the snapshot
image. This also revealed that there was a matching processing between the snapshot
image taken at the goal position and the snapshot taken at the current position of the

honeybee.

A similar experiment was conducted with the ant Cataglyphis bicolor. The experiment
by Wehner and Raber (1979) shows that ants try to match the current retinal image
with a stored one. Their experiment involved training ants in a location between two
landmarks. When the landmarks moved apart twice the original distance, then the ants
gathered around each landmark. When, on the other hand, the landmarks moved apart
again twice the distance, but had a double size this time, the ants gathered between the
landmarks. Again, this experiment supports the template hypothesis. Figure 2.6 shows
experimental data collected by Wehner and Raber (1979) and simulation results from
Moller (2001).

2.7.2 The Parameter Hypothesis

The parameter hypothesis was first conceived by Anderson (1977) who conducted exper-

iments in honeybees, too. The experiment included eight landmarks forming a circle, in
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FIGURE 2.6: Experimental and simulation data showing the behaviour of ants accord-

ing to the size of landmarks stored on the retina. Landmarks are depicted by black

circles. I. Nest in the centre of the landmarks. II. Double distance of landmarks from

the nest with fixed their size. III. Double landmark size and distance. Figure from
Moller (2001).

the centre of which there was a food source. Three of the landmarks were removed and
the tests showed that the bees did not gather in the position where they could achieve a
best retinal match and bearing of the landmarks, but instead, they moved towards the
inside part of the circle. Anderson (1977) suggested that honeybees searched to restore

a measure of surroundedness.

The following section presents the major models of homing based on the template and
parameter hypotheses. Vardy (2005) provides a review on the approaches and a clas-
sification based on the hypothesis used. The majority of the models discussed below,
however, adopt the template approach. It should be noted that the following models
make use of panoramic cameras as they resemble better, but are not identical, to the
visual system of insects, the ommatidia (single eyes that make up the compound eye).
Thus, the images captured by such cameras cover a 360° field of view. Panoramic cam-
eras are simple in its conception, i.e., they consist of a camera turned upwards and

towards a parabolic mirror that reflects the rays of the environment.

2.7.3 The Snapshot Model

The snapshot model is an implementation of the template hypothesis. It requires a

panoramic snapshot of the goal position, be it a hive, nest, or a food source. Along with
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the snapshot the compass direction is stored. The snapshot model is an image matching
process between a snapshot taken at a goal position and a snapshot containing the
current view. The image obtained from the omnidirectional camera is unwrapped and
a threshold operation is performed to yield a one-dimensional black and white image.
The landmarks are denoted as black marks on the image. Then, this is compared with
the snapshot of the current view to produce the homing vector. The homing vector is a
two-dimensional vector pointing towards the home position, and is obtained by summing
up all radial and tangential vector components. A radial vector is directed towards the
landmark if it has grown smaller in the current snapshot or away from the centre of
the landmark if it has grown larger. The tangential vector is attached tangentially to
the landmark to denote the direction of the landmarks in the snapshot image. All these

vectors are either unit or zero vectors.

The environment in which this model has been tested is quite simple with some cylinders
or other geometrical objects acting as landmarks, thus making the image processing a
very easy task. Figures 2.7(a) and 2.7(b) show a representation of the model. In Fig.
2.7(a) the insect is at the goal location. The two black circles denote the landmarks
and the two black squares represent the landmarks as they have been imprinted in the
panoramic image. In the adjacent figure, Fig. 2.7(b), the insect has been displaced
and the inner circle represents the snapshot image while the outer circle represents the
current image. The filled head arrows depict the tangential vectors, v}, while the open
ones the radial vectors, v. The arrow in the centre of the circles denotes the home vector,
vy, pointing towards the home, H, location after having summed up the tangential and
radial vector components. The mathematical formulation of the snapshot model can be

expressed with the following eqn. 2.4,

_ Zi(3vi + U%)
= G+ o[- 24

Uh

2.7.4 The ALV Model

The Average Landmark Vector (ALV) model (Lambrinos et al., 2000) uses, too, a pro-
cessed panoramic image but, in contrast to the snapshot model, it need not be stored.
Only a two-dimensional vector for each landmark needs to be stored that points to the
direction of the landmark. Matching and unwrapping of the image are not required,
since the calculations are performed on the basis of vector components. Thus, ALV
is more parsimonious than the snapshot model. Nevertheless, snapshots in the ALV
model have to be captured and processed to produce a one-dimensional picture, as in

the snapshot model.

Figures 2.8(a) and 2.8(b) depict the Average Landmark Vector (ALV) model. In Fig.

2.8(a) the insect is at the home location where two vectors, [{, point to the centres of the
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(a) Snapshot at goal location. Landmarks are repre- (b) Snapshot at current location. The inner circle rep-
sented by black circles. The black rectangles denote resents the image at goal location while the outer circle
the landmarks in the one-dimensional, black and white, the image at the current location. Home position is de-
panoramic image. noted as H. Filled head arrows denote the tangential
vectors while the open ones the radial vectors. The
homing vector pointing towards the home position is
depicted with the arrow in the centre of the circle.

FIGURE 2.7: Snapshot model at goal location 2.7(a) and at the current location 2.7(b).

corresponding landmarks ny. The bold arrow represents the average vector ALVg. In
the adjacent figure, Fig. 2.8(b), the agent (robot, in this case) is at a displaced position,
having again two vectors, I3, pointing in the direction of the centres of the landmarks,
ny. The home vector (the arrow with the unfilled head), vy, is calculated by subtracting
the average vector (the short, bold arrow) at home location, ALVg, from the average
vector (the dashed line), ALV, at the current location. In Fig. 2.8(b), H denotes the
home location. The mathematical formulation of the ALV model is expressed with eqn.
2.5,

I, 1 &,
vy = — [ —— IE 2.5
o 2; - X; : (2.5)
where ALV, eqn. 2.6, is the current viewed snapshot,
1 &,
ALV = — 1 2.6
L3 20)

and ALVg, eqn. 2.7, is the snapshot at goal location,
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(a) Snapshot at goal location. Landmarks are repre- (b) Snapshot at current location. The two long arrows

sented by black circles. The two long arrows represent represent the vectors that point to the direction of the

the vectors that point to the direction of the land- landmarks. The bold arrow represents the average vec-

marks. In ALV model the image is not stored, but tor at home location, denoted as H. The dashed arrow

rather the vectors pointing to landmarks. The bold represents the average vector at current location while

arrow represents the average vector. the arrow with the unfilled head represents the home
vector. The home vector is calculated by subtracting
the average vector at home location from the average
vector at current location.

FIGURE 2.8: Average Landmark Vector (ALV) model at goal location 2.8(a) and at
current view 2.8(b).

1 &,
ALVg = — 15 2.7
5= ; 5 (2.7)
This reduces to eqn. 2.8,
vp = ALVe — ALV (2.8)

Two mobile robots, Sahabot I and Sahabot II, were built by Lambrinos et al. (1997, 2000);
Moller et al. (1998) in order to test and simulate the behaviour of the ant Cataglyphis.
The robots model the polarisation pattern of the sky that Cataglyphis uses for path
integration. In the robots, this is implemented with photodiodes covered with a polar-
isation filter and a blue filter providing sensory information. Both robots make use of
panoramic cameras, i.e., a camera pointing upwards, towards a conical mirror. How-
ever, it has to be noted that such an approach does not model faithfully the vision of
ants. In Cataglyphis the height of the eyes from the ground is about 0.5 cm whereas in
the panoramic cameras used, the system’s distance from the ground was about 25 cm.

The path integration system was implemented on the robots with wheel encoders. The
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formula for representing the position and location of the robot according to the sensory

information is given by the following formulas 2.9 and 2.10,

z(t + At) = x(t) + cos(0(t))s(t) At. (2.9)

y(t + At) = y(t) +sin(0(t))s(t) At. (2.10)

where At is the time step, (x(t),y(t)) is the position of the agent at time ¢, 6(t) is the
heading angle at time ¢, and s(¢) the speed at time ¢. Sahabot II implements also the
snapshot behaviour of the Cataglyphis. The experiments with both robots took place
in the Tunisian desert having as landmarks black cylinders. The image processing was

once again limited to a one-dimensional, binary picture.

The snapshot and the Average Landmark Vector are two models that have been inspired
by the way insects perform homing. On one hand, their main advantage is the simplicity
of the method that entails a low computational complexity. On the other hand, their
disadvantages are that both methods are applied at the end of the homing process, that
is, when an agent is close to its home position. Moreover, all landmarks need to be
visible both in the current snapshot as well as in the stored snapshot, that is, they must

be the same landmarks in both snapshots.

2.8 Various Models of Navigation

This section discusses an assortment of other homing models that have been developed,
most of which resemble or adopt characteristics from either the snapshot or the ALV

model of homing.

2.8.1 Analog ALV Model

Méller (2000) presents the analog variant of the ALV model. Since the ALV model is
a parsimonious model it is easier to implement in analog hardware. Analog hardware
shares a number of information processing principles with its biological counterparts.
The analog robot built consisted of 32 photo-diodes arranged horizontally with a stan-
dard operational amplifier circuit for amplification comprising the visual sensor for edge
extraction. Two flux gate magnetic field sensors arranged orthogonally act as a com-
pass to rotate the ALV model. The ALV vector is stored in two capacitors and then is
applied to the motors by rotating the right wheel according to the x component of the
vector, and applying the y component of the vector to the left-hand side wheel. The
analog robot built provided a test bed for the biological hypotheses, i.e., how various

neural mechanisms take place in the insect’s brain, thus, providing an insect with visual
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homing capabilities. The work by Méller (2000) suggests that ALV can be implemented
in analog hardware mainly because of its simplicity and the little computation costs it
has. Furthermore, it suggests that in some landmark setups, the behaviour of the analog

model resembles that of the bees.

2.8.2 Warping Model

Franz et al. (1998a,b) adopt a different approach compared to that of searching cor-
respondences. The model makes use of panoramic images reduced to one-dimensional
images with greyscale values. Their model is based on image warping, searching for
possible directions, orientations, and distances. The image captured is warped and com-
pared with the image taken at the goal position. A number of different possible vectors
are compared and the best match is chosen. The model was tested in a miniature world,
consisting of miniature toys. It achieved good results, but its biological plausibility has
been questioned. A variant of the warping model has been implemented by Stiirzl and
Mallot (2002) which uses range images rather than intensity images. The model per-
forms well in illumination changes, but is limited to 1 meter distance inference mainly

due to the small baseline used.

2.9 Navigation and Homing using SLAM

This section discusses the Simultaneous Localisation and Mapping (SLAM) problem
for navigating mobile robots. SLAM has risen to one of the most research-intensive
problems in the robotics field. SLAM is not used as much for homing as for navigation,
in general. In this approach, when a robot navigates it needs to acquire its location in
order to build an accurate map. However, in order for an accurate map to be constructed,
accurate localisation must have been inferred. Therefore, localisation and mapping are
two inter-dependent tasks. Localisation and mapping can thus be considered to be a “a
chicken and egg” problem, requiring both accurate position estimates of the robot and
of the surroundings. In any SLAM algorithm the number and location of landmarks is
not known a priori. Landmark locations must be inferred from observations obtained

by sensors.

Smith et al. (1988) used an Extended Kalman Filter (EKF), instead of the simple linear
Kalman filter, to solve the SLAM problem. The EKF uses linearised kinematic and
observation equations for generating state predictions. They modelled the robot pose
and the map parameters in the state vector. The readings from the sensors were used
to update the map parameters and the pose of the robot relative to a global frame of
reference. The disadvantage of the approach, however, is that the increased number of

features added to the map expands the matrix that keeps track of all the features and
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thus, adding to the increased computational costs of the approach. There have been
attempts, however, to reduce the unnecessary features tracked from the state vector
(Dissanayake et al., 2000).

FastSLAM (Hahnel et al., 2003; Montemerlo et al., 2002) is another method that in-
tegrates particle filters and Extended Kalman Filters. FastSLAM tries to alleviate the
problem of data association, that is, the problem where landmarks look alike which is
prevalent in the previous methods. Most of the above mentioned methods use mainly
odometry information and laser sensors to support the SLAM methodology. Nonethe-
less, there has also been a SLAM-based method that employs a single camera (Davison
et al., 2007) to infer the 3D trajectory of a monocular camera in an unknown envi-
ronment. This vision-based SLAM has been widely known for years as the ‘structure
from motion’ problem and it had been researched in parallel and in ignorance of the
robotics community. Other sensors which have been used for localisation include Radio
Frequency Identification (RFID) technology. For example Hahnel et al. (2004), proposes
a model based on RFID technology and a laser-based FastSLLAM approach to effectively
determine the location of RFID tags.

Amigoni et al. (2004) proposed a method for map building without using any odometry
information. Their method builds a geometrical global map based on various scans of
the environment taken at different instants of time. They try to integrate the maps
using three different methods, namely sequential, tree, and pivot methods. However,
they do not keep track of the position of the manually driven robot. An approach
which uses Dynamic Programming (DP) for the real-time self-localisation of a robot
is explained by Einsele (1997). In this work a panorama laser range finder (PLRF) is
employed. Similarly to the previous work, a matching between present preprocessed
scans and already stored scan data is taking place. The task of preprocessing method
is to extract line segments from the acquired range data. Moreover, in their approach
they make use of local coordinate systems linked together by topological information.
No global environmental map is built, but they rather focus on local ‘distinctive’ places

to build local maps for self-localisation.

One of the fundamental problems in the SLAM approach is the accumulation of error
as the robot navigates in an environment. The harsher the environment, the greater the
likelihood for accumulation of errors due to noise in sensor readings. One such error is
caused by the dead reckoning system of the robot. The slippage of the terrain causes
erroneous sensor readings. Though most of the approaches make use of range sensors
such as laser and sonar, a work by Davison and Murray (2002) approaches the problem
of SLAM with active vision sensors. Davison and Murray (2002) used SIFT features that
are invariant to scale and rotation to estimate their position in the three-dimensional
space. Furthermore, sparse prior knowledge is incorporated into the maps to reduce the

uncertainty in the global frame of reference. In a subsequent work, Davison (2003) uses
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a real-time approach to the localisation and mapping problem using a single camera.

The depth of features is inferred by calculating inverse depth.

2.9.1 Mathematical Formulation of the SLAM Problem

In this section the mathematical formulation of the SLAM problem is described, and
in particular the probabilistic approaches used to estimate the position of the vehicle
and the location of the landmarks within the environment. The SLAM process consists
of a number of different steps; such as landmark extraction, data association, state
estimation, state update and landmark update. There are various ways of solving each
of the different steps and a number of different sensors for providing the input. The most
common sensors used for SLAM, however, are laser scanners and odometry sensors. In
lieu of the laser scanners, sonar or vision sensors can be used but each one of them
has its advantages and disadvantages. Laser scanners are reliable and apart from from
their suitability in landmark extraction, they can also be used for obstacle avoidance.

Especially for the latter, laser scanners outweigh sonar and infrared sensors.

When a robot manoeuvres in an environment, it is making observations using its sensors,
for example laser scanner, and is estimating its position based on the input from the
odometry sensors. At time instant k, the following quantities are defined as described
by Durrant-Whyte and Bailey (2006):

I. xj: the state vector describing the location and orientation of the robot

II. ug: the control vector, applied at time k — 1 to drive the robot to a state xj at

time k

III. m;: a vector describing the location of the ¢th landmark whose true location is

assumed time invariant

IV. z;;: an observation taken from the robot of the location of the ith landmark at

time k.

In addition, the following sets are defined:

I. Xo.k = {x0,%1,..., Xk} = {Xo:k—1,Xx}: the history of robot locations
II. Ugy = {uy,ug,...,ux} = {Upx_1,ur}: the history of control inputs
III. m = {m;, my,...,m,}: the set of all landmarks

IV. Zo, ={21,29,...,21} = {Zo.x—1,21}: the set of all landmark observations.
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FIGURE 2.9: The Simultaneous Localisation and Mapping (SLAM) process that in-
cludes estimated locations of landmarks and robot based on observations taken and
their true locations. Figure from Durrant-Whyte and Bailey (2006).

Figure 2.9 shows the basic idea that underpins the SLAM problem. In probabilistic
form, the SLAM problem requires that the probability distribution, eqn. 2.11,

P(xg, m|Zo.;, Ug., X0) (2.11)

be computed for all times k. The observation model describes the probability of making
an observation zp when the robot position and landmark location are known and is

described in the following eqn. 2.12,

P(zk|xx, m) (2.12)

The motion model for the robot is described with the following eqn. 2.13,

P(xk\xk,l, uk) (2.13)

The SLAM algorithm is implemented in a two-step recursive (sequential) prediction time

update form given by the following eqn. 2.14,
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P(xy,m|Zg.;—1,Ugk, X0) = /P(Xklxk—huk) X P(x—1,m|Zo.;—1, Up:p—1,X0)dXp—1
(2.14)

and the measurement update described by the eqn. 2.15,

P(zg|x, m)P(xp, m|Zo.,—1, Ug.i, X0)
P(z|Zo.;—1, Uo.k)

P(xp, m|Zo, Ugx, x0) = (2.15)

Equations 2.14 and 2.15 provide a recursive procedure for calculating the joint poste-
rior P(xy, m|Zg., Ug.x,Xo) for the robot state x; and map m at time k£ based on all

observations Zg.; and all control inputs Ug.;, up to and including time k.

The localisation and mapping problem can thus be split into two separate tasks and
be computed independently. Therefore, the map building problem can be formulated
as computing the conditional density P(m|Xq.x, Zo.x, Up.kx) assuming that the location
of the vehicle xj, is known at all times. A map m is then constructed by fusing obser-
vations from different locations. Similarly, the localisation problem can be formulated
by computing the probability distribution P(xg|Zo.x, Ug.x, m). This time, however, it
is assumed that the landmark locations are known with certainty at all times and the
objective is to compute an estimate of the vehicle location with respect to these land-

marks.

Most problems in SLAM accrue from errors between true and estimated landmark loca-
tions. Those errors are a result of vehicle motion, as the sensors, in particular odometry
sensors, cannot give the true location of the vehicle, thus giving erroneous estimates of
landmark positions. This implies that errors in landmark location estimates are highly
correlated meaning that the relative location between landmarks may be known with
high accuracy, even though the absolute location of landmarks is quite uncertain. Thus,
the correlations between landmark estimates increase monotonically as more and more
observations are made resulting in a more accurate estimate of relative location of land-
marks regardless of vehicle motion. (Dissanayake et al., 2001) prove it for the linear

Gaussian case.

Figure 2.9 shows that at location x;, the vehicle observes two landmarks m; and m;.
At location x4 the vehicle observes again m; and two more landmarks. This allows
the update model to take place and the estimated location of the robot and landmark
m; to be updated. This causes a chain of updates of the past observations to take place
and update the landmark m; as well although it is not observed at location xj41. This

occurs because the landmark location estimates are highly correlated.
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2.9.1.1 Kalman Filter and Extended Kalman Filter

At the heart of the SLAM problem lies the Kalman Filter (KF) (Welch and Bishop,
2006). The Kalman Filter in the SLAM problem processes data like sensor readings
and actuator input and tries to estimate the position and pose of the vehicle as well as
the location of landmarks. Since noise is involved in the SLAM problem, Kalman Filter
assumes a zero mean uncorrelated noise that is normally distributed. The uncorrelated
zero mean noise is also known as white noise. A correlated noise between time steps is
normally small in robot sensors, thus, it is not considered. One more assumption made
by the KF is that the process model is linear. A linear process can be the case when a
robot is navigating indoors where the motion of the vehicle can be described by a linear
function. For more complex cases, i.e., nonlinear, the Extended Kalman Filter (EKF)

is used. In Kalman Filter the time update is described by the following eqn. 2.16,

Xplk—1 = Xp—1 + Gruy (2.16)

where Gy is a matrix that maps control inputs into a predicted state space (Csorba,
1997).

The observation update in the Kalman Filter is given by eqn. 2.17,

Py = Prjpoy — WiSk WY, (2.17)

where Sy is defined by eqn. 2.18,

S = VhPy; 1 Vh! + Ry, (2.18)

and Wy is defined by eqn. 2.19,

W, =Py Vh'S, ! (2.19)

The matrix S is the covariance of the innovation vy which in turn is defined as addi-
tive, zero mean uncorrelated Gaussian observation errors with covariance Ry. Innovation
refers to the difference between the estimated robot position and the actual robot posi-
tion. The Vh is the Jacobian of h that transforms representations used by sensors into
state estimates. Wy, is the Kalman weighting matrix which determines the influence of

the innovation on the updated estimate (Csorba, 1997).

The Extended Kalman Filter is applied to nonlinear cases where, for example, the esti-

mated position of the vehicle cannot be described by a linear function. This can be the
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case when the wheels of a vehicle are spinning without the vehicle actually moving. The

time update of the EKF is given by eqn. 2.20 and eqn. 2.21,

Kije—1 = F(Xp—1jp—1, Uk) (2.20)

P:ca:,k|k—1 = Vﬂ?acczz,k—lwc—lVfT + Q, (221)

where f(-) models vehicle kinematics and Vf is the Jacobian of f evaluated at the
estimate Xj_j,_1. Qg is the covariance matrix of the process noise (Durrant-Whyte
and Bailey, 2006).

The observation update of the EKF is given by eqn. 2.22,

< ﬁkl‘k ) = [Xpp—1Mg-1] + Wiz — h(Xpp_1, hg—1)] (2.22)
k

and eqn. 2.17. The main disadvantage of both KF and EKF implementations is the
computational cost of updating all landmarks and the joint covariance matrix every time
a new observation is made. The computation cost, thus, increases quadratically with
the number of landmarks. Another problem associated with KF and EKF is the data
association. Data association refers to cases where a vehicle re-observes some landmarks
and cannot realise they have already been observed. Thus, they are counted for new
landmarks. This gives rise to the loop-closing problem where a robot cannot distinguish

a location it has already visited.

2.9.1.2 FastSLAM

The FastSLAM algorithm (Montemerlo et al., 2002) was developed to tackle the limita-
tions of the KF and EKF solutions. As was shown earlier, the KF and EKF models suffer
from the computation cost of updating all landmarks and covariance matrices every time
a new observation is made. In cases where there are millions of landmarks to update the
EKF’s performance degrades substantially. FastSLAM comes as an improvement to this
important aspect of computation cost. FastSLAM breaks up the problem of localisation
and mapping into many separate conditionally independent problems. The joint SLAM
state can be factored into a vehicle component and a conditional map component as

described by the following eqn. 2.23

P(Xo.k, m|Zo.x, Ugep, X0) = P(m|Xo.x, Zo.r P(Xo:k|Zo:k, Uoik, Xo) (2.23)
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F1cURE 2.10: Graphical model of the FastSLAM algorithm. The past pose estimates
are known, then the map states are independent since observations are conditionally
independent. Figure from Durrant-Whyte and Bailey (2006).

The probability distribution is on the trajectory Xg., rather than the single pose x; be-
cause when conditioned on the trajectory the landmarks become independent (Durrant-
Whyte and Bailey, 2006) as shown in Fig. 2.10. This is the key idea behind FastSLAM

that the map is represented as a set of independent Gaussians with linear complexity.

The main structure of the FastSLAM is a Rao-Blackwellized state where the trajec-
tory is represented by weighted samples. Thus, the set {w,(j),Xgi)k, P(m|XéZ;)k, Zox) 1N
represents the joint distribution at time k£ where the map accompanying each particle
is composed of independent Gaussian distributions (Durrant-Whyte and Bailey, 2006),
described by eqn. 2.24,

M
J

Recursive estimation is performed by particle filtering for the pose estimates and the
EKF for the map states. Thus, each observed landmark is processed individually as an
EKF measurement update from a known pose leaving unobserved landmarks unchanged.
One of the disadvantages of the FastSLAM algorithm, however, is a possible decrease
in accuracy as a result of ignoring correlations in landmark locations which in turn is

caused by inaccuracies in the vehicle’s position.



36 Chapter 2 Background Work

2.10 Optic Flow in Robotics

Lately a growing number of autonomous vehicles have been built using techniques in-
spired by insects and, in particular, optic flow. One of the first works that studied the
relation of scene geometry and the motion of the observer was by Gibson (1974). A
large amount of work, however, has been focussed on obstacle avoidance using optical
flow (Camus et al., 1996; Warren and Fajen, 2004; Merrell et al., 2004). The technique,
generally, works by splitting the image (for single camera systems) into left and right
sides. If the summation of vectors of either side exceeds a given threshold then the
vehicle is about to collide with an object. Similarly, this method has been used for
centring autonomous robots in corridors or even a canyon (Hrabar et al., 2005) with the
difference that the summation of vectors must be equal in both the left-hand side and
the right-hand side of the image. Ohnishi and Imiya (2007) utilise optical flow for both
obstacle avoidance and corridor navigation. Madjidi and Negahdaripour (2006) have

tested the performance of optical flow in underwater colour images.

In a recent work implemented by Kendoul et al. (2009) optic flow is used for fully
autonomous flight control of an aerial vehicle. The distance travelled in this Unmanned
Aerial Vehicle (UAV) is calculated by integrating the optic flow over time. A similar
work for controlling a small UAV in confined and cluttered environments has also been
implemented by Zufferey et al. (2008). Barron et al. (1994) discuss the performance of
optical flow techniques and their comparison and focussed on accuracy, reliability and
density of the velocity measurements. Other works employ optic low methods for depth
perception (Simpson, 1993), motion segmentation (Blackburn and Nguyen, 1995), or

estimation of ego-motion (Frenz and Lappe, 2005).

A similar technique to optical flow developed by Langer and Mann (2003) called optical
snow arises in situations where camera motion occurs in highly cluttered 3D environ-
ments. Such cases involve a passive observer watching the fall of the snow, hence the
name of the method optical snow. Optical snow has been inspired by research in ani-
mals that inhabit in highly dense and cluttered environments, such animals include the
rabbit, the cat, and the bird. The properties of the optical snow are that yields dense
motion parallax with many depth discontinuities occurring in almost all image points.
This comes in contrast to the classical methods that compute optical flow and presup-
pose temporal persistence and spatial coherence. Langer and Mann (2003) present the
properties of optical snow in the Fourier domain and investigate its computational prob-
lems of motion processing. Figure 2.11(c) shows an example of optic flow emanating
from Fig. 2.11(a) and Fig. 2.11(b).
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2.11 Mathematical Foundations of the Optical Flow

This section describes the mathematics that underlie the optic flow algorithms, and in
particular, the Lucas-Kanade (LK) algorithm (Lucas and Kanade, 1981). In order for
the optical flow algorithms to perform well, some suitable images need to be chosen. This
suitability refers to images that have high texture and contain a multitude of corners.
Such images have strong derivatives and, when two orthogonal derivatives are observed
then this feature may be unique, and thus, good for tracking. Tracking a feature refers to
the ability of finding a feature of interest from one frame to a subsequent one. Tracking
the motion of an object can give the flow of the motion of the objects among different

frames. In Lucas-Kanade algorithm corners are more suitable than edges for tracking
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as they contain more information. For the implementation of the LK algorithm the
OpenCV (2008) library has been used.

Lucas-Kanade algorithm is also referred to as sparse optical flow in contrast to dense
optical flow. Sparse optical flow refers to an algorithm that uses local information that
is derived from some small window surrounding each of the points of interest. This is a
drawback of the sparse approach as large motions can cause points to move outside the
search window. Dense optical flow refers to to an algorithm that uses global information
(Horn and Schunck, 1981). Dense optical flow algorithms generally are more robust
to fast motions but their drawback is the heavy computational cost. To overcome the
problem of local information in LK, the pyramidal LK algorithm was developed. The
pyramidal LK tracks points from the highest level (coarse) of the pyramid down to the
lowest (fine) level, thus allowing large motions to be tracked. Lucas-Kanade algorithm
is applied on two contiguous frames to infer optical flow. The size of the window as well
as the number of points to be considered for matching within the two frames are the

requirements of Lucas-Kanade algorithm.

The most commonly used algorithm for corner finding is the edge detector by Harris
and Stephens (1988). The second-order derivatives taken at all points in an image is

called the Hessian image and it is described by the following eqn. 2.25,

1 0%
H(p)=| %, %% (2.25)
Oyox ay? p

where I is the intensity of the pixel and dxr and Jy are the horizontal and vertical
displacements of the pixel. The second-order derivatives are useful as can detect non-
uniform gradients. For Harris corner detector the autocorrelation matrix of the second
derivatives is used to find corners where two large eigenvalues occur. The eigenvalues of
the autocorrelation matrix are also invariant to rotation. The autocorrelation matrix is
described by eqn. 2.26,

M(z,y) = [j f] (2.26)

where «, 3, 7, and § are expressed by eqns. 2.27, 2.28, 2.29, 2.30,

a= Y wl(x+iy+)) (2.27)
~K<ij<K

~K<ij<K
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—K<i,j<K
5= > wil(x+iy+7) (2.30)
—K<i,j<K

The w; ; is a weighting term that can be uniform that is often used to create a circular
window or Gaussian weighting. Harris’s corner detector is taking the determinant of
H(p), subtracting the trace of H(p) with some weighting coefficient and then comparing
the difference to a predetermined threshold. Shi and Tomasi (1994) have extended Harris
corner detector by taking into account that the smaller of the two eigenvalues is greater
than a minimum threshold. Sobel operator is used to compute the second derivatives and
then the required eigenvalues. In order to find the required corners, subpixel location is
used that requires the dot product between two gradients to be equal to 0 (Bradski and
Kaehler, 2008).

The optic flow algorithm of Lucas-Kanade presupposes three main criteria to produce

satisfactorily results. These are:

I. Brightness constancy. The brightness of a pixel does not change from frame to
frame, that is I(z,y,t) = I(x + u,y +v,t + 1).

II. Temporal persistence or small movements. The motion of the object that is tracked
moves smoothly from frame to frame, that is I,u+ I,v+ I; = 0, where v, u are the

x,1y components of the velocity .

ITI. Spatial coherence. Neighbouring points of a pixel that belong to the same surface
have typically similar motion, and project to nearby points on the image plane
(Bradski and Kaehler, 2008).

The equation in the second criterion is an under constrained equation since involves
two unknowns for any given pixel and cannot be used to solve the motion of a pixel
in the two dimensions. For this reason the third criterion is used as an assumption to
solve the full motion of a pixel in the two dimensions. The third criterion assumes that
the neighbouring pixels of any given pixel move coherently as they belong to the same
object and project to the same image plane as the given pixel projects. Thus, for solving
the problem in case, the brightness values of the neighbouring pixel are taken and solve
a system of linear equations. Hence, if a 5 x 5 pixel window is taken a system of 25
linear equations needs to be solved. However, if the window is too small the aperture
problem may be encountered where only one dimension of the motion of a pixel can be
detected and not the two-dimensional. On the other hand, if the window is too large

then the spatial coherence criterion may not be met. Moreover, the larger the window



40 Chapter 2 Background Work

the greater the computational cost that entails. A window of 5 x 5 has been considered
as it provides a balance between computational cost and accuracy. Nevertheless, the
system that needs to be solved following a window of 5 x 5 pixels is expressed by the

following eqn. 2.31.

L:(pl)  I,(pl) Ii(p1)
Ix(?2) 1,(p2) H - It(fﬂ) (2.31)
L(p25) I,(25)] a—vx1  |[L(p25)
——
A=25x%x2 b=25x%x1

The goal on the above system of linear equations is to minimise || A# — b||* where A = b

is solved by employing least-squares minimisation as in eqn. 2.32,

(ATA)ya = ATb (2.32)

where AT A, @, and ATb are equal to, eqn. 2.33,

e w)-By -

Yo I, 213 v Y I
—_———
AT A U ATp
and the solution to the equation is, eqn. 2.34
7= [“ = (AT A)~1 ATy, (2.34)
v

If AT A is invertible, i.e., no zero eigenvalues, it means it has full rank (2) and two large
eigenvectors. This occurs in images where there is high texture in at least two directions.

If the area that is tracked is an edge, then AT A becomes singular, eqn. 2.35,

ZI:% Zlmly _Iy _ 0 (2 35)
SLI, SE2||L| |0 '

where —1I, I, is an eigenvector with eigenvalue 0. If the area of interest is homogeneous
then AT A ~ 0, that implies 0 eigenvalues. The pyramidal approach of the (LK) algo-
rithm solves the optical flow problem at the top layer by tracking over large spatial scales
and then as it proceeds downwards to the lower layers the velocity criteria are refined
until it arrives at the raw image pixels. Figure 2.12 shows the pyramidal structure of
the LK algorithm.
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FIGURE 2.12: Pyramidal Lucas-Kanade structure. The LK algorithm begins at top
coarse layer and the resulting motion estimates are used as a starting point for the
lower ones. Figure from Bradski and Kaehler (2008).

2.12 Conclusion

This chapter discussed the methods used by animals for their navigation. It also dis-
cussed the corresponding implementations of these methods on robotic systems. It has
been shown how homing is achieved by insects, and in particular ants and honeybees.
As the field of experimental biology has significantly progressed the last few years, it
has become feasible to understand better the mechanisms that underlie those animals.
The methods that discussed in detail and which are related to this research were path
integration, visual landmark recognition, optical flow, and searching. Although search-
ing has not been implemented in this research, it has been discussed as future work can
act upon it. In addition, a plethora of basic models and their variations were presented.
In particular, the basic models of homing, that is ALV and snapshot were presented and
their advantages as well as their limitations were addressed. Both the ALV and snap-
shot model require all landmarks to be present at the current and at the stored image.
However, the two models can only be applied towards the end of the homing process.
If they are applied in a large number of snapshots, then the calculated home vector
can significantly deviate from the actual one. The main advantage of the ALV over the
snapshot model, however, is that it does not require a matching and unwrapping of the

images. All calculations are performed on the basis of vector components.

This chapter also discussed the TBL approach which has been used in this research to
match landmarks that are near home position, thus, providing the robot with a supple-

mentary information when close to its target. In addition, the Simultaneous Localisation
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and Mapping (SLAM) methodology as well as the optical flow technique were also dis-
cussed. Optical flow which has been a core part of this research has been presented with
its advantages, limitations, and its applications. Thus far, optical flow has been used
for obstacle avoidance and centring a robot in corridor-like paths. Having this in mind,
this research has implemented a novel optical flow method for building topological maps
of the environment based on the optical flow ‘fingerprint’ of the landmarks. The optical
flow method meets all the objectives set in the previous chapter relating to biology and
efficiency of the approach. The work that follows in Chapter four and Chapter five has
drawn heavily on this chapter. The next chapter deals with the architectural framework

of the simulated environment.



Chapter 3

The Simulation Environment

3.1 Introduction

This chapter describes the general simulation environment developed and used for the
experiments. In particular, it discusses the framework of the Gazebo (2006) simulator
and its supporting tools for the generation of the simulated environment. In addition, it
presents the core characteristics of the sensors created and their functionality. Gazebo
is part of the Gerkey et al. (2003) project and is developed in cooperation with Player

and Stage projects whose development began in 2001.

3.2 Player and Stage Environments

Player (2006) is a socket-based device server that allows control of a wide variety of
sensors and actuators (Gerkey et al., 2003). These could include bumpers, cameras, and
laser range finders. Player executes on a machine that is physically connected to these
devices. Client programs (i.e., programs written by users) can interact with Player via
TCP socket interface and can control these devices (sensors, actuators) by exchanging
messages through the TCP socket. Client programs can be written in any high-level
language such as C/C++ or even Common LISP. The Stage is a two-dimensional sim-
ulator that interfaces with Player to simulate very large number of robots, in the order
of hundreds. It is not accurate in terms of visual scenery since it provides only the two
dimensions of it, but it provides a high fidelity representation of large teams of robots
and their behaviour, e.g., kinematics. An example of the Stage simulator is depicted in
Fig. 3.1. In addition to Player-stage, the breve simulation environment has been used

for the generation of landmarks (Klein, 2002).

The following code depicts an example driver, called configuration file, for the player

stage simulator. In the code a stage driver is created with a 2D position information as

43
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well as a laser range scanner. The world file which describes the simulation environment

is loaded through the configuration file.

# Loads the Stage plugin simulation driver
driver
(

name "stage"

provides ["simulation:0" ]

plugin "libstageplugin"

# Loads the named file into the simulator.

# Worldfile defines the simulated world,

# i.e., the sensors and actuators to be

# simulated and the background image to load

worldfile "pss.world"

# Create a Stage driver and attach position2d and laser interfaces
# to the model "robotl"
driver
(
name "stage"
provides ["position2d:0" "laser:0" ]
model "robotl"

Player-stage has provided the general framework, that is the templates, in order for the
various sensors and models to be developed. The general framework can be seen from
the source code of the configuration file. There, the models to be used are defined as well
as their parameters. The algorithms for localising and mapping an environment have
been developed and are part of this research. The purpose of a simulator is to simulate a
real environment and provide output based on the input parameters and the algorithms
employed. Thus, the algorithm for obstacle avoidance using a laser range finder as well
as the properties of the laser sensor have been developed and defined by the author of
this research. The graphics of the laser rays and the environment are properties defined

by the creators of the simulator.
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FIGURE 3.1: The Stage 2D simulator. The left-hand picture shows a simple 2D image
and its representation in the Stage environment (right-hand side picture). Figure from

Stage (2006).

3.3 Gazebo Simulation Environment

The Gazebo (2006) is a three-dimensional, open source simulator aiming at simulating
robots mainly in an outdoor environment. Gazebo has been in use the last few years,
and has rapidly evolved into a framework for simulating a population of robots in 3D
structures. Whereas Stage is intended to simulate behaviour of very large populations of
robots with low quality visual representation, Gazebo simulates the behaviour of small
number of robots, in the order of tens, with high fidelity. The 3D representation of
the environment and of the robots themselves with all the computational cost that this
entails makes Gazebo ideal for simulating small teams of robots with high dynamics

accuracy concerning robot-environment interaction.

All simulated objects in the environment have mass, velocity, friction, and a number of
other attributes that allow them to behave realistically when a force is applied to them.
The robot themselves are dynamic structures composed of rigid bodies connected via
joints (Koenig and Howard, 2004). The following Fig. 3.2 shows the general framework

of the Gazebo simulator and its components.

The World is a file written in XML in which all models, such as robot, objects, terrain,
cameras, and other sensors are represented. In addition, some other parameters such as
lighting, gravity, and resolution of images can be passed on to the Gazebo. Each model
is composed of at least one body and any number of joints and sensors. The third party
libraries, such as Open Dynamics Engine and GLUT, reside below the API in order to

make models independent of any future changes of these third party libraries.



46 Chapter 3 The Simulation Environment

(B all and Sodfei) [Un'wersa])

Hinge ?—axis

(Open Dynamics En gir@

FIGURE 3.2: The general architectural framework of Gazebo simulator. Figure from
Stage (2006).

The ODE (2006) (Open Dynamics Engine) is an open-source physics engine designed
to simulate the dynamics and kinematics associated with the articulated rigid bodies.
ODE provides features like joints, collision detection, mass and rotational functions.
Gazebo utilises these features by providing a layer of abstraction situated between the
ODE and Gazebo models (Koenig and Howard, 2004). OpenGL (2006) and GLUT
(OpenGL Utility Toolkit) provide the visualisation tools for Gazebo. Scenes rendered
using OpenGL are displayed in windows created by GLUT. The replacement of both
the physics engine and the graphics engine can be done easily since they provide an
abstraction to the Gazebo simulator, i.e., lying under the API interface. Gazebo can
be used in conjunction with Player. Player and Gazebo can exchange messages and
communicate in general through an interface. Gazebo can access all sensors provided by
Player through shared memory. All three programs (Player, Stage, and Gazebo) have
identical interfaces so programs written for one simulator can be employed unchanged

in real-world robots.

Following is an example code of the gazebo simulator which describes the simulated
environment. In this code it can be seen the instantatiation of a geometrical object with
its properties, that is, shape, size, colour, and position in space. Apart from the creation

of the robot, the terrain with the ground floor is described in the following xml code.
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# definition of the ground plane
# with the colour property and the
# loading of the respective texture file.
<model:GroundPlane>
<id>ground1</id>
<color>0.3 0.3 0.3</color>
<textureFile>pattern.ppm</textureFile>

</model :GroundPlane>

# definition of the terrain.
<model:Terrain>
<xyz>0.000 0.000 -0.100</xyz>
<terrainFile>example.gzb</terrainFile>

</model:Terrain>

# definition of the the Pioneer2AT robot
# and its coordinates in space.
<model:Pioneer2AT>

<id>roboti</id>

<xyz>-0.000 0.000 0.001</xyz>

# definition of a geometric object with
# properties of shape, size, and colour.
<model:SimpleSolid>

<xyz>2.500 0.000 0.000</xyz>

<shape>box</shape>

<size>2 2 2</size>

<color>0.3 1.0 3</color>
</model:SimpleSolid>

In gazebo environment the various kinematics and collision properties have been defined
by the owners of the simulator. As with Player-stage, the templates for sensors as
depicted in the world file are part of the simulator. The algorithms by which the robot
avoids obstacles, performs optical flow, localises itself and creates map are part of this
research. The 3D landmarks used for this work are all stationary. Some of them have
been textured in order to simulate a realistic object while others have been left with no
texture but are in colour, in order to validate the biological models as they are described

in Chapter 2, that is simple, colour geometrical objects.
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3.3.1 Models and Sensors

The most basic model that was created for the purposes of this work is a Pioneer 2AT
robot. Figure 3.3(a) shows the real robot and Fig. 3.3(b) depicts the modelled one.
The model is a four-wheel robot equipped with a pan, tilt, and zoom stereo head, a
Sony VID30 camera, and a sonar sensor. Various other parameters are controllable like
lighting conditions, horizontal field-of-view, baseline and others. The majority of these

parameters are handled through the World file.

(a) Pioneer 2AT robot. Figure from Mo- (b) Modelled Pioneer 2AT robot with sen-
bileRobots (2006) sors

FIGURE 3.3: Pioneer 2AT robot

Figure 3.4 shows a snapshot of the Gazebo environment and the models employed.
In the working environment, one can discern a maze and four distinct landmarks of
different colour and shape. One can also see the rays emitted by the sonar sensor and

its corresponding control interface.

The maze in the example of Fig. 3.4 was created with the gzbuilder utility (provided by
Gazebo) that inputs a binary 2D structure like the one in Fig. 3.5(a) and outputs a 3D
image loadable by the terrain model. The image must comply with the format rules of
GDAL (2006) library. The 3D output structure as seen from the observer camera model
is shown in Fig. 3.5(b). The maze created is in grey colour. The objects or landmarks

can later be added to the environment.

3.4 Conclusion

This chapter discussed the general architectural framework of the simulator and the tools
used for the creation of the 2D and 3D structures that has served as the platform for the
development and testing of the navigation strategies. Player (2006) and Gazebo (2006)
simulators have provided the ideal environment for the simulations of this work. In this
chapter it was also shown how sensors and actuators are defined in a text file which
are then loaded for simulation. Player-stage and gazebo simulators are open-source

simulators that provide a plethora of properties for interacting a simulated device with
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FIGURE 3.4: The working environment of Gazebo simulator depicting a Pioneer 2AT
robot with a sonar sensor, a PTZ stereo head, and a Sony VID30 camera.

the environment. One of the main advantages of those simulators is that the algorithms
developed can easily be ported to a robot with identical sensors. Because of their
widespread use, a large number of simulated devices, from cameras to grippers, can be

found on their online repository.

The following chapter discusses the algorithms developed for localising a robot within
an environment while at the same time mapping that environment. The first part of
Chapter 4 presents an algorithm for localisation and map building based on a laser
range finder whose field of view is 240°. An inherent property of this process is obstacle
avoidance. The second part of this chapter is dedicated to adding a camera sensor that
can support the localisation and mapping process. Furthermore, a comparison is given
between two different methods for calculating depth, that is the distance between an
object and the camera, that is used to support localisation within specific environments,

such as corridors. Chapter 4 and Chapter 5 comprise the research part of this work.
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(a) 2D input image that is used for the creation of solid struc-
tures like mazes

Cantrols

time 9.200 0.000

(b) 3D output image with landmarks and terrain features
added as seen from the observer’s camera

FIGURE 3.5: 2D input image and 3D output image



Chapter 4

Metric Maps

4.1 Introduction

This chapter discusses the development and implementation of a parsimonious algorithm
using a laser range scanner for localisation and mapping. The implementation of this
algorithm produces metric maps which are essential for the navigation process, and in
particular, homing. Metric maps are used in conjunction with topological maps which
are discussed in the next chapter in order to infer distances between various landmarks.
In graph theory terminology, metric maps would act as edges while landmarks inferred

by topological maps would act as nodes.

The assumption that is taken in this method is that the robot will be able to detect
‘distinct’ landmarks in the environment. In cases this does not hold the robot can use
its visual sensor to estimate depth between a landmark and the robot, thus supporting
the localisation process. For estimating depths, two different strategies have been used,
that is least squares and optical flow. A comparison between these approaches as well

as a mixed approach is presented in this chapter.

4.2 Localisation and Mapping Using a Laser Range

In this work no prior information about the environment is assumed. The only hypothesis
made is that the robot knows where it should head to. Thus, the robot is fed with a goal
that has to be sought. However, even this hypothesis can be ruled out so long as the robot
navigates without any restrictions, i.e., without having to pursue an effective path. In
such a case the robot can navigate towards places where there are distinguishable points

by the laser finder, for example corners, and drive among such ‘places’.

In this chapter the navigation method presented is based on the idea of Vector Field His-

togram (VFH) (Ulrich and Borenstein, 1998), a real-time motion planning and obstacle

=
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avoidance algorithm. The method that is presented in this chapter has adopted the idea
of VFH in order to plan an obstacle-free path using a lase range finder. Nevertheless,
the main significance of this research is the localisation of the robot and mapping of the
environment using the same laser range finder. The robot scans the environment using
the laser sensor and based on the measurements taken an efficient path is sought. In
order to infer an efficient path the target point is assumed to be known. Therefore, a
supposition is made that the goal position is known by its z,y, ¢ coordinates or that
the goal position can be seen through a vision sensor and an estimate of its distance or
direction can be taken. Next, the robot will try to identify ‘distinctive’ landmarks in
the scanned environment; these are mainly corners, and can be identified by the range
of the neighbouring ray values. The robot will thus extract the shortest obstacle-free
path to the target defined by the rays of the laser scanner. While traversing the chosen
route, the landmark is tracked down by the laser scanner’s rays until it is ‘met’ by the
side rays of it. The side rays of the laser scanner are used to identify the landmark as
they form a 90° angle with the chosen path. The sides of the right triangle formed by
the side rays of the scanner, the landmark, and the position of the robot at which the

landmark was first detected are computed with the trigonometric functions.

The process of finding a ‘distinctive landmark’ is critical for the path to be extracted as
is needed to be as close to the autonomous robot as possible. Figure 4.1 demonstrates
this process where the robot at time ty scans the environment and selects the nearest
landmark to it, depicted by the bold scan line. At time ¢; the robot is scanning again
the environment using the laser scanner and an updated second path is chosen to reach
the target at point denoted by the ‘X’ symbol. The robot could have missed reaching
the target and ended up in a blind alley had it not selected a nearby landmark.

The primary purpose of this work is to tackle one of the core problems in robotics
science, namely localisation and mapping using minimal sensing. It is not uncommon
that a critical sensor to the system may fail and thus having to bypass it using alternative
sensors and methods. Such cases become of high importance if the autonomous robot
acts in remote or hostile environments. Moreover, sensors like GPS cannot operate in
environments like, indoors, underwater, or the outer space. Therefore, the localisation
and mapping problem is approached using only a laser scanner sensor to infer accurate
maps of the environment while at the same time localising the robot. Later, in the
chapter it is discussed how the addition of a vision sensor can make this algorithm more
robust and reliable. It is also presented how the two different visual methods, a least

squares and optical flow, can estimate depth.

4.2.1 Methodology

In this section are described the methods that have been followed to tackle the problem

of localisation and mapping (Diamantas and Crowder, 2009). No a-priori knowledge
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FIGURE 4.1: Robot having selected the nearest landmark (in bold line) which leads to
an efficient path to the target point ‘X’.

of the environment is provided. However, as already stated a goal-seeking approach is
adopted and a competent path is selected which is defined by the laser scanner rays.
The map of the environment is initially empty and is built up as the navigation of the
autonomous robot proceeds. Figure 4.2 depicts the structure of the localisation and

mapping algorithm.

During the first phase, the robot collects raw data from the laser range finder, and in
the next one the obstacles of the environment are expanded, Fig. 4.3, according to the

radius, 7, of the robot using the equation of the circle eqn. 4.1,

(2= b2+ (y — k)2 =12, (4.1)

where h, k is the centre of the circle C, in this case the point at which the ray of the

laser hits on the obstacle, and the equation of the line eqn. 4.2,

y =mx + b, (4.2)
that represents a laser ray. The slope, (eqn. 4.3), of the line, i.e., ray is computed,
_ G~ Ry

= "9 4.
m= g, (43)

by knowing the current position of the robot R, , and the end position of the ray, i.e.,

Ch,k- Next, eqn. 4.2 is substituted into the second part of eqn. 4.1 to yield eqn. 4.4,

(x —h)? + (ma+b—k)* =r (4.4)
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FIGURE 4.2: Flowchart of the various stages of the localisation and map building

X

FIGURE 4.3: Robot having identified a new path, R¢, , and a landmark, C}, ;. Locali-

sation coordinates are computed from the triangles OBC' and OAB.
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(x-2)%+(y-2)2-0.3%=0

FIGURE 4.4: A simulated scan sample with a detectable area of 240° and a detectable

distance of 4.0 metres. The point at x = 2, y = 2 is expanded by 0.3 metres which is

equal to the radius, r, of the robot. The marked laser rays (shown in red dashed lines)

are thus do not provide a safe path for navigation. If a path curved by the red lines is
followed the robot will collide with the obstacle.

Thus, from eqn. 4.4 a quadratic equation is formed (eqn. 4.5),

azr® +bx+c¢=0, (4.5)

which is solved in order to obtain the points in which the rays intersect (or hit) the
obstacles expanded by the radius . Thus, if discriminant, A > 0, then the ray intersects
the expanded obstacle in two points, whereas if A = 0, there exists a tangent ray to the
circle. If A < 0 then the ray is not intersecting any point of the circle formed by the
expansion of the obstacle. Figure 4.4 shows the rays of the laser scanner one of which
hits at an obstacle with coordinates z = 2, y = 2. The circle represents the expansion
of the obstacle by the radius, r, of the robot, in this case 0.3 metres. The marked lines
representing the laser rays that fall within the expanded obstacle do not thus provide a
safe path for the robot. All other rays, hence paths, would provide a safe path if they
were to be taken. Figure 4.5 shows the outcome of applying the above algorithm to the

laser data.

Upon expansion of obstacles the path selection module takes over, Fig. 4.2, and an
efficient path is chosen based on the proximity of the laser ray to the target point. As
discussed earlier, the coordinates of the target are known to the system. This however,
could have been omitted had it been used a compass or a vision sensor to know at any
instant of time the direction to the target. So long as the path is selected, the robot
rotates around its axis until its central ray, Rc, Fig. 4.3, points to the selected path,

Rc, . The next step involves updating the laser data by taking a new laser scan after
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the robot has rotated by angle . At this point the landmark search module is taking
over which identifies corners, jumps, and discontinuities in the laser scan. Such points
act as ‘landmarks’ and are identified when a ray being equal to the maximum range,
say set A, and its neighbouring n rays do not belong to the set A, i.e., they hit on an
obstacle. Therefore, the mathematical formulation of this is, ray, € A, and ray,4, ¢ A
or rayy—n ¢ A constitute a ‘landmark’. Using this technique the robot can distinguish
between an obstacle and end of range provided that not all n rays with maximum range

belong to an obstacle.

Furthermore, the landmark search module will eventually select a single landmark at
each time step for navigation. The selection of this landmark is based upon its proximity
to robot location. This is happening because a shorter path to the target may be
discovered after the approximation of the robot to the landmark. Therefore, the use the
Euclidean distance, d, between the landmark location, (L, L;), and the robot, (R,
R,) is employed to find the nearest landmark. Figure 4.1 shows an example of landmark
selection among a set of detected landmarks. The Euclidean distance is described by

eqn. 4.6

d= mini\/(Rx — Li)2 + (R, — Li)2. (4.6)

The area of searching for landmarks is less than 90° from the central ray, R¢, Fig. 4.3,
as the robot is using its side rays, namely, Rg, and Rg,, to detect the landmark and
build a map. At this point a local frame of reference is used to calculate distances to
landmarks. Figure 4.3 shows how the method works. After having inferred a new path
the robot rotates by angle «, that is, from R¢ to R¢, . At this point its Ry, ray detects
and selects landmark Cj, ;. The sides of the triangle OBC named CB and OB are

calculated using the trigonometric functions sin ¢ and cos ¢.

Having found the coordinates of local frame of reference, they are then added up in order
to find the global frame of reference. Again, Fig. 4.3 depicts the variables involved. This
is done by adding the angle by which the robot has rotated, that is a degrees, to initial
pose «g, thus inferring the pose of the robot. The projection of side OB to the x-awis
and y-azis is then found. The sides of the triangle OAB are calculated with the cosine
and sine trigonometric functions. Their outcome will thus give us the x,y coordinates
of the point B which are added to the initial R, , coordinates of the robot.

In order for the robot to follow the path from point O to point B the landmark at point
Ch, 1 is tracked down by the neighbouring rays of the Ry, ray as the robot proceeds. At
point B, as Fig. 4.3 shows, the side ray, Rg,, will detect the landmark by the range of
the Rg, ray which should approximately be equal to C'B found earlier. Due to noise,
it is quite probable that the landmark be missed. For this reason a laser scanner whose
field-of-view (FOV) is 240° has been simulated thus if the landmark is missed by the
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Before Obstacle Expansion
~ = = After Obstacle Expansion

FIGURE 4.5: Expansion of obstacles. The obstacles are expanded by an amount equal
to the radius, 7, of the robot. This is essential in order for the robot to select an
obstacle-free path.

side ray, Rg,, it can be detected by the neighbouring rays which form an angle larger

than 90°. Figure 4.6 shows this scenario.

At this time step the robot will localise itself with its global z,y coordinates and create
a new map of the environment. Having reached the final step of the algorithm, the robot

initiates a new laser scan to proceed with the navigation process.

4.2.2 Simulation results

The localisation and mapping algorithm has been developed on the Player/Stage 2D
simulation environment (Gerkey et al., 2003). The simulated devices consist of an Erratic
mobile robot and a HOKUYO URGO04LX laser range finder with 240° field of view, 4.0
metres maximum range, and 685 samples per scan. The angular resolution was set to
0.35°. The error in range conforms to the specification of the laser scanner and this
is 1% of the detected distance. Figure 4.7 shows a snapshot of the simulated testing
environment, the size of which is 10.0 metres by 10.0 metres. The robot is on the left

lower corner with a delineation of the laser scanner.

Figure 4.8 shows the first scan at position R,, = —3.92, R,, = —4.26. The target
position has been set at x = 4.00, y = 4.00. In this first laser scan there have been
detected six landmarks of which, the nearest one, is selected for reference which is at
position x = —2.38, y = —2.06. The robot will try to re-detect the landmark from
position denoted by the symbol x at location x = —2.09, y = —2.34.
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FI1GURE 4.6: An example of how the location of the robot can be calculated after having
missed the landmark by the side ray, Rg,. The landmark is, however, still detectable
by the neighbouring rays of the laser scanner.

L

—

FIGURE 4.7: Snapshot of the simulated environment.
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FIGURE 4.8: First scan of the environment. Six landmarks have been detected one of
which is selected.
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FIGURE 4.9: Second scan of the environment. Two landmarks have been detected one
of which is selected.

In Fig. 4.9 the robot has successfully recognised the landmark and has updated its
location coordinates; a new scan has been performed with two observed landmarks one

of which again is selected for the navigation.

In Fig. 4.10 the robot has traversed the environment even more and has detected two
other landmarks. At this point, although the target position is at x = 4.00, y = 4.00, the
robot has selected its next targeted position, denoted by x symbol, to be further upwards
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FIGURE 4.10: Third scan of the environment. Two landmarks have been detected one

of which is selected. At this point the robot’s laser finder is obstructed partly by the

expansion of the obstacles at the right hand side. Thus, the next robot position is
calculated to be further upwards instead of being slightly upwards.

instead of being on its right side. This occurs because the expansion of the obstacles
obscures some laser rays that form a path in the right-hand side of the robot. The arrow
shows the position, in particular the corner point, at which this occurs. Though thus
far the selected path can be described as optimal, in cases such as this the optimality of

the path is not guaranteed.

It should be noted that during the landmark selection process the map that does not
contain the expanded obstacles is employed. The map with the expanded obstacles is
used in the path selection process. That is why the landmarks selected are not artificially
deformed. In Fig. 4.11 the robot has reached its desired position and a new scan has
been taken which has detected two landmarks in the environment, one of which is again

selected.

In Fig. 4.12 the robot has almost reached its target. The boldface x denotes the target
position. However, in this figure it can be seen the influence of noise into the navigation
process. There exists a map drift between the previous laser scan and the current one.
This noise effect has caused the autonomous robot to select its next target point a little
further away than the final target. The landmark selected in the previous time step, as
shown in Fig. 4.11, is not a salient one; as it can be seen, the landmark at this point is

more like a curved ‘corner’ and not a distinct corner.

Figure 4.13 shows all previous laser scans and the route of the robot as calculated by its

localisation system and as it appears by the GPS system. From the graph it is seen that
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FIGURE 4.11: Fourth scan of the environment. Two landmarks have been detected one

of which is selected.
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Fifth scan of the environment. One landmark has been detected and
selected.

FIGURE 4.12:

the autonomous robot has performed quite well in the first scans. Table 4.1 summarises
the coordinates of the robot, the GPS, the selected landmark’s as well as the coordinates
of the next position to be reached. Nevertheless, there is a small drifting in the accuracy
of the localisation system in the last phase of the navigation process caused mainly by
the noise. In this last phase the landmarks selected, as can be seen from Fig. 4.13, are

not prominent corners, but they rather occur in a curvy slope.
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F1GURE 4.13: A performance comparison between the localisation system of the robot

and the GPS.

TABLE 4.1: Localisation and Mapping Coordinates

Robot GPS Landmark Location
Ist scan | (-3.92, -4.26) (-3.92, -4.26) (-2.38, -2.06) (-2.09, -2.34)
2nd scan | (-2.09, -2.34) (-2.09, -2.34)  (-0.59, 0.9) (-0.86, 1.0)
3rd scan | (-0.86, 1.0) (-0.87, 0.99) (2.33, 2.0) (-0.24, 2.86)
4th scan | (-0.24, 2.86)  (-0.24, 2.86)  (2.59, 2.04) (2.19, 3.51)
Sthscan | (2.19,3.51)  (1.91,3.44)  (5.29, 0.96)  (4.29, 4.9)
Location | (4.29, 4.9) (4.04, 4.01)

4.3 Navigation With a Vision Sensor and a Laser Range

Scanner

The work in this section intends to expand the localisation and mapping algorithm by

adding one more sensor, namely a camera. As described earlier, the localisation and

mapping algorithm requires the extraction of distinct landmarks in order to accomplish

its objectives smoothly. However, there are cases where there are no distinct landmarks

and this is the case when a robot is passing through a corridor. If the algorithm is used

outdoors then there may be cases where there are no corners nearby. For these reasons,

the algorithm has been supplied with one more modality, the visual. For the solution

of this problem a least-squares approach has been employed, that is, a visual landmark

is tracked in the environment and the position of the landmark is inferred based on the

orientation of the robot (Diamantas et al., 2010, In Press,a).
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. Landmark, L

F1GURE 4.14: Robot snapshots of the landmark L taken at different time steps ¢ and
at different robot positions 7.

4.3.1 Least Squares

A least squares approach is highly suitable for such type of cases as it can provide a
relatively high estimate of the distance between the robot and a landmark with low com-
putational cost. It is assumed that when the robot enters into a corridor its orientation
does not change significantly, or it changes slightly. The input to the least squares is the
x,1y coordinates provided by the laser finder as well as the angle 6§ between the robot
and the landmark that is provided by the visual sensor. A similar method has been
used by Boley et al. (1995) to infer the starting position of the robot. The odometry
in their algorithm is provided by the dead reckoning. In our approach, however, the
least squares algorithm builds upon the localisation and mapping model (Diamantas
and Crowder, 2009). In other words, odometry is provided by means of the laser range

scanner approach.

For the estimation of depth using the least squares approach a visual landmark is tracked
in the environment and the position of the landmark is inferred based on the orientation
and position of the robot. In the simulation, various snapshots of a landmark have been
taken at equally spaced time steps and measure the angle  between the robot position
and the visual landmark, Fig. 4.14. Every snapshot represents a linear equation and
the solution of the linear system gives the position of the landmark L. Thus, a set

Q; is formed for every snapshot taken. Equations 4.7 and 4.8 show an example of two

snapshots,
LEQl:{hE§R2|(’U1—T1)Th:’u{'7"1—HT1H2} (47)
—— —
a1 B1
LEQg:{hE%Q\(vg—m)Th:v2T~r2—HrgHz} (4.8)

az B2
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where 71 and 79 are the positions of the robot, and v; and ve are any two points on a
line which is perpendicular to the line formed between the robot and the landmark, that
is angle 6. In essence, what needs to be found is the L € 2y N Qs. Figure 4.14 shows a

L 72 and r™ at corresponding time intervals to, ¢1,

robot at three different positions, r
and t,, that also represent three different snapshots. The following equations, eqn. 4.9
and eqn. 4.10, show the process for a n number of snapshots. Noise in the system is

represented by variable ¢;.

hay + €1 = (1
hag + €9 =
2 ‘ 2 = [ (4.9)
hag, + €, = By
h € argmin Z(hozi — B +€)? (4.10)
i=1

(znz OéiOéZT + 6@) h= (Zn: Otzﬂz> (4.11)

h=C"1y (4.12)

In eqn. 4.11 C is a 2 x 2 matrix and v € R2. The position of the landmark is, thus,
given by h where its y-axis element is considered, that is depth. In this experiment
n = 1000 observations were used (drawn by a Gaussian distribution with p = 11, 0 = 3)
at varying distances between the landmark and the robot. They were performed 10
trials for each observation in order to estimate the mean position of the landmark. In
addition, the error, ¢;, in # is uniformly distributed and it has been tested with three
different deviations +1°, +3°, and £5°. Figures 4.15(a)-4.15(d) show the tracking of
a landmark in 3D environment using the tracking algorithm of Benhimane and Malis
(2007).

The graphs, Figs. 4.16(a)-4.16(d), depict the convergence of the least squares approach
as the number of snapshots increase. Deviation represents the difference between the
actual and the estimated distance of the landmark. In each of the four graphs three
different error levels have been used. Furthermore, as it can be seen that a sensible
estimate can be inferred with a small number of steps, that is snapshots. This has the
advantage of low cost as a small number of linear equations needs to be solved. When
the landmark is relatively close to the robot the depth estimation remains quite high

and it drops as the distance between the robot and the landmark increases. Therefore,
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(a) Frame 1 (b) Frame 17

(c) Frame 34 (d) Frame 51

FIGURE 4.15: Tracking of a landmark at different frames

by knowing the position of the landmark, the robot is able to compute how much path

it has traversed along its x — azis using the trigonometric functions.

4.3.2 Optical Flow

In order for the robot to localise in an environment using optical flow vectors, a training
data set of n = 1000 observations has been implemented where a vector is observed at
varying distances between the robot and the landmark, and at varying velocities. More-
over, the distances and velocities chosen to create the training set approximate the real
distributions of distance and velocity when a robot navigates in an environment. Thus,
a joint probability distribution has been created by two continuous and independent

variables, that is distance, D, and velocity, F, and is expressed by eqn. 5.4,

fpyE(d, 6) = fD(d) . fE(e) Vd, e. (4.13)

The velocity (in km/h) and the distance (in metres) variables have been drawn from
two Gaussian distributions with 4 =4, 0 = 1 and pu = 11, 0 = 3, respectively. The n

observations model the position of the optic flow vector in the plane under n varying
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FIGURE 4.16: Deviation (metres) between actual depth and estimated using least
squares approach under different object distances.

distances and velocities.

Figure 4.17 provides a pictorial representation of Gaussian
distributions for velocity and distance.

One assumption that needs to be met in our method is that the majority of the vectors
comprising a given landmark should have the same, or almost the same magnitude. In
addition, the orientation of the camera on the robotic platform is perpendicular to the
direction of motion so as a translational optical flow information is generated. During
the testing of the optical flow algorithm the velocity of the robot is not known. The

only information employed for inferring depth is the optical flow vectors of the landmark.
The following section presents the results from the two strategies.

4.4 Comparing and Combining Optical Flow and Least
Squares

In the least squares strategy, as it would be expected, the fit of the estimated distance

to the actual distance increases as the number of snapshots increase and as the mean
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FIGURE 4.17: Gaussian distributions used for modelling distance, D, and velocity, F,

in the optical flow strategy. Their mean and standard deviation are p = 11, 0 = 3

and pu = 4, 0 = 1, respectively. The range of their values is 2 < d < 20 (metres) for
distance and 2 < e < 6 (km/h) for velocity.

simulation error decreases. However, the larger the number of snapshots the greater
the computational cost. Table 4.2 presents the R? statistic for various combinations
of number of snapshots and mean simulation error. This R? statistic for n snapshots
and different error corresponds to the fit of the model D = 0+ 1 - E(D) where D
is the actual distance and E(D) is the expected distance estimated through the least
squares method. The minimum number of snapshots is 4 as this is the number required

for the system to become overdetermined. Assuming that estimated distance is an

TABLE 4.2: Performance of Least Squares method - R?

Snapshots n | R? (¢; £1°) R? (¢, £3°) R? (¢; £5°)
4 0.971 0.137 0.000
6 0.991 0.722 0.000
8 0.996 0.883 0.336
10 0.998 0.940 0.649
12 0.999 0.967 0.801
14 0.999 0.979 0.881
16 1.000 0.987 0.915
18 1.000 0.991 0.944
20 1.000 0.993 0.959

unbiased estimate of the actual distance, if linear regression is used to estimate (for each
combination of number of snapshots and mean simulation error) a and b in the function
D =a+b-E(D), using the experiment’s data, it should turn out that the best estimates
are (approximately) a = 0 and b = 1. However, this is not the case as there seems
to be a tendency for this method to systematically underestimate distance, especially

when the mean simulation error is high and the number of snapshots low. The level of
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underestimation is more obvious if in the previous function the constant is constrained to
be 0. Interestingly, even though the bias decreases as the number of snapshots increases
or the mean simulation error decreases, it is always significant as the standard error
of the coefficient decreases too. In the following Table 4.3 the estimated coefficient of
expected distance is presented for each combination of number of snapshots and mean

simulation error. The confidence interval is 95%.

TABLE 4.3: Performance of Least Squares method - Coefficient

Snapshots n | Coeff. (¢; £1°) Coeff. (¢; £3°) Coeff. (¢; £5°)
4 1.017 1.166 1.726
6 1.013 1.130 1.386
8 1.009 1.084 1.239
10 1.006 1.057 1.162
12 1.004 1.042 1.118
14 1.004 1.033 1.089
16 1.003 1.026 1.073
18 1.002 1.021 1.059
20 1.002 1.018 1.049

In the optical flow strategy, regression analysis has been employed to estimate the dis-
tance between a landmark and the robot based only on the observed length of the
optical flow vectors. Modelling the natural logarithm of distance as a linear function of
the observed vectors’ length is the optimal method to estimate distance. The regression

formula that expresses this distance is described by eqn. 4.14,

InD;=a+b-len; + ¢ (4.14)

where In D; is the expected distance, a is the constant, b is the coefficient, len; is the

length of the optical flow vectors, and ¢; is the error.

Thus, linear regression is utilised to estimate the combination of a and b that minimises
the squared error in eqn. 4.14. Equation 4.14 has also been employed to compute R? at
different velocity intervals in order to adapt to realistic implementations. The outputs

of these regression models are presented in Table 4.4.

TABLE 4.4: Performance of Optical Flow method

Velocity e (km/h) | Constant a  Coefficient b R?
2<e<b6 2.96 -0.075 0.6029
2<e<b 3.03 -0.09 0.6483
2<e<4 3.08 -0.11 0.7569
2<e<3 3.1 -0.143 0.8052

Obviously, velocity influences the length of the optic flow vectors and the smaller the

range used the better the estimation of the expected distance. However, we avoided
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using velocity as a variable in the tests as this work is intended to be used in self-
localisation systems where the position of the robot is provided only by means of a laser

range finder. Hence, velocity cannot be estimated with a laser finder.

The results show that optical flow can perform better in cases where the mean error
is high and a small number of snapshots have been taken in the least squares strat-
egy. Nevertheless, when velocity range is large enough, optical flow does not perform

satisfactorily enough when compared to least squares.

As these two strategies, namely optical flow and least squares, offer two independent
estimations of the distance between the robot and the landmark, combining them should
offer a more accurate estimate. Thus, an ordinary least squares (OLS) regression is
employed to estimate a function that gives the most accurate measurement of the actual
distance. Obviously, as the number of snapshots increases, the estimation becomes very
accurate, but cost inefficient, too. Therefore, measuring distance based on the length of
the vectors of the observed landmark offers little additional information, an estimation
derived after a large number of snapshots was taken. However, it can significantly
improve estimations that arise from a lower number of snapshots and therefore, provide

higher accuracy, without sacrifising cost efficiency.

By way of example, the natural logarithm of distance has been modelled as a function
of the estimated distance derived by four snapshots (sn4), mean error equal to three
(e3), and the length of the observed vector. After experimenting with various functional
forms of the two variables, various equations have been inferred which are described in
Table 4.5. The dependent variable is In distance and R? = 0.8366.

TABLE 4.5: Performance of Least Squares and Optical Flow methods
Variable | Coefficient T-Stat P-Value

In(e3sn4)? 0.642 23.020  0.000
In(e3snd)3 | -0.141  -18.040  0.000

In(len) 0.821 2.300 0.022
(In(len))? -0.533 -3.010  0.003
(In(len))? 0.086 3.010  0.003
constant 0.587 2.410 0.016

Obviously, increasing the number of snapshots decreases the additional value of the
optical flow method. Thus, if a high number of snapshots is taken there is no need to
consider information derived by optical flow. As a consequence, whether to estimate the
distance based on optical flow information, through observed snapshots or via a mixed
approach, is a trade-off between desired accuracy and cost efficiency. Similarly, as the
number of snapshots increase, the optic-flow related variables’ significance statistics will
be reducing as the additional value of this information becomes insignificant, if a high

number of snapshots is taken.
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4.5 Conclusion

In this chapter the problem of localisation and mapping has been addressed. The key
idea behind our work is that no prior knowledge of the environment is used nor any
odometry information. In fact, the odometry information is provided by a laser range
finder. Its main purpose is to localise a robot and map the environment while at the
same time selecting efficient paths for driving the robot to a target place. An inherent
behaviour is obstacle avoidance. This is performed while path planning obstacle-free
routes to desired locations. The requirements of the method are kept at minimum since
only one sensor is employed. Nevertheless, the limitation of the approach is that it is
dependent on the structure of the environment. An environment that contains distinct
geometrical objects, can produce better results than an environment that contains curved
surfaces. In cases where there are no detectable features an extended approach of the
afore-mentioned method has been employed that makes use of a visual sensor. Using a
visual sensor a least squares and an optical flow method have been deployed to estimate
depth, that is the distance between a landmark and the robot. Both methods have low
computational cost while at the same time they can produce robust depth estimates.
It has been shown that there is a trade-off between accuracy of the estimates and high
number of snapshots in the least squares approach, thus, decreasing any additional value
of the optical flow method. Furthermore, optical flow outweighs least squares when the
error in the least squares approach is large and the number of snapshots is small. A

combination of the two approaches produces better depth estimation results.

The algorithms in this chapter provide the metric maps needed for the navigation of
the robot. To support this method, a biologically-inspired model is presented in the
next chapter where topological maps are built based on the optical flow ‘fingerprint’ of
the landmarks. The following model is implemented with a single modality, that is a
visual sensor. The requirements of the model to be presented are cost-efficient as only
the properties of vectors comprising an image need to be stored. Furthermore, the only
information used is optical flow. Velocity and position of the robot are considered during

testing.



Chapter 5
Biological Maps

5.1 Introduction

This chapter presents the methods and results* obtained by applying a series of tech-
niques for landmark visual navigation. Most of the methods applied have been inspired
by biology. The work in this chapter implements some of the techniques described in
Chapter 2. This chapter also deals with the problem of navigating a robot back to its
home position using the methods discussed earlier. This chapter is concentrated on the
biologically inspired algorithms while the previous one was focused on the engineering

based algorithms.

The topological maps which are built by the robot are constructed during two different
phases. In particular, when the robot departs from its home, it turns back towards home
position and takes various snapshots of the area surrounding home. These snapshots
are used for comparison when the robot has nearly finished the homing journey, i.e.,
when it is close to home location, and tries to locate its home position. The optic flow
algorithm on the other hand, is used during the main course of both the foraging and
homing journey. In other words, as soon as the Turn-Back-and-Look (TBL) approach
has completed the robot starts building topological maps based on the ‘fingerprint’ of
landmarks that is caused by the motion of the cameras which are perpendicular to the

direction of motion. In this work translational optic flow is considered.

The first of these algorithms implements a strategy which was discussed in the second
chapter when the template hypothesis was addressed. When an ant navigates, stores in
its memory snapshots of prominent landmarks. Based on the size of the landmarks on
their retina, ants are able to infer whether they have departed from or have come closer
to the landmark compared to the position the initial snapshot was taken. A second

technique that has been implemented is the detection of large-scale landmarks based on

*Figures in this chapter are best viewed in colour and most of them are placed at the end of the
chapter.
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the homogeneity of their colour. Detection of large-scale landmarks is required in this

work in order to support the TBL phase.

Furthermore, the TBL approach has been implemented for storing a series of different
snapshots from different perspectives and varying illumination conditions. During the
TBL process, the robot stores images of large-scale landmarks and their vicinity. The
TBL approach is applied primarily at the beginning of the foraging journey since at
that time the rate of change of landmarks is higher. For the detection and recognition
of landmarks two block matching algorithms have been employed, namely the Sum of
Absolute Differences (SAD) algorithm and the Normalised Cross Correlation (NCC)

algorithm.

Finally, the last algorithm which has been developed is based on the optical flow algo-
rithm of Lucas-Kanade. Using this algorithm and a training data set, the robot is able
to infer a similarity score between the flow vectors of the current image and the flow
vectors stored in the database. Storing only the vectors and not whole images is an
important computational advantage. The robot, thus, tries to localise itself by calculat-
ing the similarity score based on the optical flow patterns of the current image and the
patterns stored in the database. If the similarity score of vectors is high, then the robot

recognises the location it is currently in otherwise it neglects it.

5.2 Retinal Size Landmark Simulation

As has been discussed in the second chapter, ants gauge distances from known landmarks
by comparing their size in the retina at various locations. In this context, retinal size
landmark simulation is used to support the TBL approach by inferring how far or close
a landmark is. At the goal position an insect stores a global view of the scene, including
some distinct landmarks. This process takes place when an insect has initiated its
foraging trip. As soon as the insect has completed the outward journey the homing
process begins. During its way back home the insect takes several snapshots of the
environment and compares them with the stored initial image at the home position. So
long as some landmarks are detected and recognised the insect takes an action on the
basis of the retinal size of the landmarks. When a landmark is viewed from a distance
its size on the retina is smaller, thus triggering an action towards the target. Conversely,
when a landmark during the homing process looks larger compared to the stored initial
image this implies that the insect has been closer to the landmark than the time it was

captured during the foraging process.

The retinal size landmark technique has been implemented in the Gazebo (2006) simu-

lator. Figures 5.1(a) and 5.1(b) show a snapshot of a landmark at the goal location.
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(a) Bird’s eye view of the environment ) Landmark view from robot camera

FIGURE 5.1: Snapshot of a landmark at goal location. Distance between robot and
landmark is 2.5m
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FIGURE 5.2: Camera and landmark parameters used for the simulation of landmarks
in the retina.

In this simulation, the initial distance (or translation, T} , . ) of the robot to goal location
is 2.5 metres, where x = 2.5m, y = 0.0m, and z = 0.0m. The rotation parameters
(or Euler angles) R, ,, (roll, pitch, yaw) have been kept constant to 0 radians. The
dimensions Dy, , of the landmark are z = 1m (height), y = 2m (width), and z = 1Im
(depth). Finally, the known horizontal field-of-view (b-FOV) of the camera is 60°. Figure

5.2 shows the various parameters used for the simulation.

Furthermore, Fig. 5.3(a) and Fig. 5.3(b) show a bird’s eye view of the environment
and a snapshot of the robot camera respectively, at twice the distance from the goal
location. In these figures, size, shape, and orientation of the landmark have been kept
fixed while the translation 77 , . has been increased by a factor of two of the initial

location. Therefore, x = 5.0m, y = 0.0m, and z = 0.0m.
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(a) Bird’s eye view of the environment (b) Landmark view from robot camera

FIGURE 5.3: Snapshot at two times the distance from the goal location. Distance
between robot and landmark is 5m.

Similarly, Fig. 5.4(a) and Fig. 5.4(b) show a bird’s eye view of the environment and
a snapshot of the robot camera, respectively. The distance between the robot and the
camera is three times the distance of the initial snapshot, Fig. 5.1(b). The dimensions,
D, y -, of the landmark have been kept constant to the initial values, as in the previous
figures, i.e., x = 1m, y = 2m, and z = 1m. Rotation R, ,, has been kept, too, constant

to 0 radians, while translation T} , . has the values x = 7.5m, y = 0.0m, and z = 0.0m.

(a) Bird’s eye view of the environment (b) Landmark view from robot camera

FIGURE 5.4: Snapshot at three times the distance from the goal location. Distance
between robot and landmark is 7.5m.

This information has been used in order to calculate the rate of change of a landmark’s
area with respect to distance. Figure 5.5 shows the rate of change of the area of a
landmark as the distance between the robot and the landmark increases. The results
shown in this figure, Fig. 5.5 will be used in the optical flow part of this work as the
distance parameter will be considered when modelling distance in the training algorithm.
In figure Fig 5.5 the slope of the function in the first few metres is higher than in the

following ones. This reveals two things,

I. The rate of change of the landmark size in the retina is higher in the first few

metres and is lowering as the distance increases.
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Area (pixels)

Distance (metres)

F1cURE 5.5: Rate of change of a landmark’s area as a function of distance. The rate
of change of a landmark’s area decreases as the distance between the robot and the
landmark increases.

II. The performance of calculating precisely the distance between a landmark and a
camera drops as the size of the landmark decreases at a higher rate. This also

reveals that error is proportional to the rate of change of the landmark size.

The finding that the rate of change of landmark size is increasing when approaching a
landmark and, decreasing when departing from it is not a new one, but will prove useful
when the turn-back-and-look approach is explained. Judd and Collett (1998) report that
ants store multiple views of a landmark when they are close to it and the rate of change
of its size in the retina continuously changes. Moreover, the number of snapshots taken

for the same landmark has the tendency to decrease as its retinal size is stabilised.

5.3 Detection of Large-scale Landmarks

This section is devoted to an algorithm developed for the detection of large-scale land-
marks. Various geometrical objects of varying size and colour have served as landmarks.
The intensity of the pixels varies significantly, though they retain their colour over their
whole surface. An illumination parameter has been added for this purpose, and the
colour of the landmarks changes more abruptly as these are viewed from a larger dis-

tance.

The following algorithm calculates the Euclidean distance, d, between a reference pixel
R; and the pixels, C}, located on the circumference, i.e., on the boundaries, of the
reference pixel. The purpose of this algorithm is to identify large and stable landmarks.

The Euclidean distance has been employed as it can provide a metric distance between
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two points. It also requires less computation when compared to other distance measures
like Mahalanobis distance. In the previous chapter it was shown how a landmark is
tracked over time in order to infer the position of the robot. Furthermore, this algorithm
as well as the one presented in the previous section, support the TBL approach by
recognising the landmarks that surround the home position. The detection of large-
scale landmarks is geared towards the global navigation scheme. For local purposes,
other techniques can be applied such as the SIFT method proposed by Lowe (1999,
2004). SIFT features are invariant to scale, rotation, translation, and to some extent
illumination changes in image space. The following equation, eqn. 5.1, shows how the

large-scale detection algorithm works,

d=+/(rr—cr)®>+ (r¢ — cc)®> + (rp — cp)? (5.1)

where,

Ry = (rRr,ra,7B)

and,

Cj = (cr,ca,cB)

with a radius of,

r=|Ry — Cyl r >0

with C; and R, being the column coordinates of the template. Currently, the algorithm
uses the R, G, B colour space to compute the value differences between the reference
pixel, Ry, and the pixels, Cj, located on the boundaries of a template. In order to
compute the Euclidean distance, d, the radius, r, must be r > 0, i.e., the template must
be odd-numbered and have a size of at least 3 x 3. Figure 5.6 providesa a pictorial

representation of the algorithm.

The Fuclidean distance, d, between the reference pixels and the pixels located in the
circumference is compared to a given threshold, T. If any of the pixels of the circum-
ference, C', of the template are above a threshold, 7', then the reference pixel, R, is
disregarded, otherwise it is considered a homogeneous pixel. Figures 5.7(a), 5.7(b),
5.7(c), and 5.7(d) demonstrate the input and output of the algorithm. The threshold
value, T, that was used for this experiment was 100. Figures 5.8(a), 5.8(b), 5.8(c), and
5.8(d) demonstrate the results of the algorithm with lower resolution images and land-

marks at smaller scales. A large landmark in this context refers to an object with a large
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FIGURE 5.6: Reference pixel, Ry, in black cell, and boundary-pixels, C}, in red cells,
located in the circumference of the 7 x 7 template. Radius, r, in this example is 3.

a) Image before large-scale landmark detection ) Image after large-scale landmark detection

T —

) Image before large-scale landmark detection (d) Image after large-scale landmark detection

FIGURE 5.7: Large-scale landmarks detection. The resolution of images is 640 x 480.

amount of a homogeneous area. A landmark whose area does not fall within a specific
bound then it is not considered a large landmark. A pattern image is thus extracted
from a large scale landmark in order to match with an image. This algorithm is applied
towards the end of the homing process in order to facilitate the robot locate its home

position. Thus, metric distance is not considered at this step. Hence, a landmark that
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may look large due to its vicinity to the robot is not disregarded.

) Image before large-scale landmark detection ) Image after large-scale landmark detection

) Image before large-scale landmark detection (d) Image after large-scale landmark detection

FI1GURE 5.8: Large-scale landmarks detection. The resolution of images is 320 x 240.

The Euclidean distance algorithm for the detection of large-scale landmarks does not
take into account pixels that fall within the template, only pixels that are situated on
the circumference of it. From the few examples that the algorithm was tested with all
the pixels that compose the template array, it was found that the algorithm performs
quite inefficiently in terms of execution time. Nevertheless, the algorithm can find large
homogeneous areas as the radius, r, increases. This, however, is at the expense of
running time of the algorithm. One more parameter that affects the performance of the
algorithm is the resolution of the image. The algorithm was tested for 640 x 480 and
320 x 240 images. A series of radii was used to test and evaluate the performance of the

algorithm. The results are shown in Fig. 5.9.

5.4 Recognition of Large-scale Landmarks

This section describes and evaluates the performance of the two algorithms that were
employed for the recognition of large-scale landmarks, namely the Sum-of-Absolute-
Differences (SAD) and the Normalised Cross-Correlation (NCC). Both of these algo-

rithms have been used extensively for visual navigation systems. SAD is simpler in
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Time performance of various radii and camera resolutions
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FIGURE 5.9: Time performance of various radii and camera resolutions. The tests have
run on a Pentium 4 machine at 3.00 GHz with 1.00 GB of RAM.

complexity than NCC, but suffers from various parameters, such as lighting conditions,

angle of view (or perspectiveness), and noise.

5.4.1 Sum of Absolute Differences algorithm

The Sum of Absolute Differences algorithm (SAD) used for area detection (or the recog-

nition of the landmarks) is expressed by the following equation, eqn. 5.2,

10—

SAD =Y " |Li; - Tl. (5.2)

1=

[aay

<

where R is rows; C' is columns; and I;; and T;; represent the image and the template,
respectively. The SAD algorithm employs a block matching process between a template
image and an image for which the best match needs to be found. SAD algorithm
subtracts the values of the corresponding pixels of the template and the image and the
result is summed up until the whole search window is completed. The SAD algorithm
produces a result of 0 when there is a perfect match between the image and the template.
The larger the result of the correlation process, the less likely a matching occurs between
the image and the template. The template image, T;;, consists of a 3 x 3 array of the
original image (5.1(b)), I;;. The z-axis, or the correlation axis, has been normalised for

the purposes of visualisation.
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5.4.2 Normalised Cross-Correlation algorithm

Normalised Cross-Correlation is described by the following equation, eqn. 5.3,

R—1 C-1
>ico 2j—o (Ii;Tij)

Neo = R-1\~C-1 R-1\~C-1
\/Zz’:_o ij_o (Iij)Q ) Zi:_o ij_o (Tij)2

(5.3)

where R, represents the rows, and C the columns. I;; and T;; represent the image
and the template correspondingly. The range of a normalised cross-correlated matrix
is [~1..1], with 1 being a perfect match between the image I;; and the template image
Ti; (5.1(b)), and —1 for the opposite. A value greater than 0.8 is considered a good
match. NCC involves more computations which are time consuming, like multiplications,
divisions, and square roots. Banks and Corke (2001) present qualitative and quantitative
comparison measures for various area detection algorithms, including the SAD and NCC
algorithms, using images from stereo cameras. In this thesis, however, SAD and NCC
algorithms are tested with different landmark scales and at varying distances. Yet, they

have also been tested under different illumination conditions.

5.5 The Turn-Back-and-Look Approach

This section provides a means of comparison between the Sum of Absolute Differences
(SAD) algorithm and the Normalised Cross-Correlation (NCC) algorithm using the
turn-back-and-look behaviour. The turn-back-and-look, as discussed in Chapter 2, is

a behaviour employed mainly by bees when depart from their hive.

Figure 5.10 demonstrates the trajectory of the robot while it retreats from its home
performing the turn-back-and-look strategy. The arrows indicate camera poses. Yet,
the multitude of arrows represents the number of snapshots taken, that is, the nearer
to home position the more snapshots are taken. In the current section TBL is used for
the comparison of SAD and NCC algorithms. Nevertheless, TBL has also been used for
storing snapshots of the same landmark from different perspectives with the view to be
used for matching in the homing journey of the robot. Lehrer and Bianco (2000); Bianco
and Cassinis (2000), and Thompson et al. (1999) have used TBL for tracking landmarks
as well as for selecting the most stable ones from a constellation of landmarks. TBL is
a process that favours storing images whose rate of change in image space is changing
rapidly. This occurs when the robot has initiated its outbound journey. During this
period of time, the image space of the viewed landmarks is changing at a higher rate

than in other instances.
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FIGURE 5.10: The turn-back-and-look approach. Arrows pointing towards hive (trian-
gle) indicate camera poses.

5.5.1 Landmark Recognition under Different Camera Perspectives

The figures in this section demonstrate the performance of the SAD and NCC algorithms
employing the TBL strategy. The view of landmarks is now under different perspectives,
i.e., different viewing angles and scaling. Figure 5.11(a) shows the landmark viewed at
the initial stage of the TBL phase. The distance of the robot to the landmark is 2.5
metres. The dark red area reveals matching between a pattern image and the original

image.

The same templates, as described earlier, have been used in all of the following images
that implement the SAD and NCC algorithms. Figures 5.11(b) and 5.11(c) depict the
correlation matrices of the SAD and NCC algorithms. In both images the matching
occurred is at high levels. In Fig. 5.11(b) the dark red points reveal perfect matching.
As the matching becomes less and less accurate, the colours change accordingly. Where
there is no match, correlation matrix is of blue colour and, this is valid for both SAD
and NCC correlation matrices. It should be noted that the images are transformed into

grey level before the implementation of the algorithm.

The next figure, Fig. 5.26(a) has been taken at a distance of 5.0 metres between the
robot and the landmark. The correlation matrix, Fig. 5.26(b), reveals that there is no
absolute matching, but despite that, matching is quite high. The dark red square of
Fig. 5.26(b) shows how much area of the landmark is close to exact matching. The
correlation matrix, Fig. 5.26(c), of NCC algorithm shows too a small drop in matching

the landmark with the image.

Figure 5.27(a) shows the landmark captured during the TBL phase while the robot is

at an angular point of view. The correlation matrices, Fig. 5.27(b) and Fig. 5.27(c), of
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FiGure 5.11: SAD and NCC correlation matrices of landmark image at 2.5m distance
(red colour depicts absolute matching in both graphs).

SAD and NCC correspondingly are similar to the previous ones with the NCC matching
algorithm performing slightly better than SAD.

The next figure, Fig. 5.28(a), depicts the landmark at an even a larger translation of
7.5m. Once again, both the SAD and the NCC correlation matrices, Fig. 5.28(b) and
Fig. 5.28(c) correspondingly, do not differ substantially with the previous correlation
matrices. In fact, scaling seems not to be a major factor under the same illumination

conditions.

Figure 5.29(a) is an image taken at an angular point of view, during the TBL approach,
but the robot this time is moving left from the centre of the TBL motion. At this
perspective the landmark is not homogeneously illuminated in all viewing sides, thus the
dark-blue colour of the one side. The correlation matrices, Figs. 5.29(b) and 5.29(c),
produced by the SAD and NCC algorithms correspondingly, reveal that SAD algorithm
performs poorer that NCC whose correlation matrix remains almost identical to the

previous one (Fig. 5.28(c)).

The next figure, Fig. 5.30(a), is again an image taken during the leftward-phase of TBL.

The area of the landmark is decreasing as the robot retreats from its initial location.
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The sides of the landmark are better illuminated compared to the previous example of
Fig. 5.29(a). The correlation matrices of SAD and NCC, Fig. 5.30(b) and Fig. 5.30(c)
correspondingly, differ significantly as NCC can achieve quite large amounts of matching.
However, their matching has dropped even more because of the area reduction of the

landmark.

Figure 5.31(a) shows the landmark at a larger distance from the initial location of the
robot. The illumination is identical to the previous images with the difference that the
scaling and rotation of the camera is larger. The viewing area of the landmark has
become even smaller. The correlation matrices produced by SAD and NCC algorithms,
Fig. 5.31(b) and Fig. 5.31(c) correspondingly, have dissimilar outputs as NCC outper-
forms SAD. The matching, however, has even more dropped since the landmark’s area

has decreased substantially.

The conclusion drawn from this section is that both SAD and NCC algorithms perform
similarly when the area of the landmark remains stable and when illumination conditions
do not change. When one or both of this parameters changes then NCC outperforms
SAD. However, none of the algorithms result in an exact match so long as the TBL
phase is initiated. The number of landmarks that are present in an image does not seem
to influence their performance so long as matching occurs between the pattern and the
image. Their performance drops as the TBL approach progresses and the robot retreats
from its initial coordinates. The reason is obviously the decreasing area of the landmark
viewed because of its increasing distance from the robot. The following section examines

the two algorithms, SAD and NCC, under different illumination conditions.

5.5.2 Landmark Recognition under Different Illumination Conditions

This section demonstrates the performance of SAD and NCC algorithms using the TBL
strategy under different illumination conditions. The first figure, Fig. 5.32(a), shows
the same landmark as in Fig. 5.11(a) but with reversed lighting conditions and with
the addition of one more landmark, a cylinder. The source of light in this image is in
front of the robot camera causing landmarks to be viewed as dark-blue. The correlation
matrix of SAD, Fig. 5.32(b), shows that SAD performs inadequately. The landmark’s
area is viewed in the correlation matrix in light green colour. The matching in that area
of the matrix is about 0.65 with 0 being the perfect match. Certainly, it is the poorest
result of the SAD algorithm encountered so far. The correlation matrix of NCC, Fig.
5.32(c), shows that NCC, in contrast to SAD, performs quite satisfactorily.

The following figure, Fig. 5.33(a), depicts a landmark from a close perspective and an
angular point of view. The correlation matrix of SAD algorithm, shown in Fig. 5.33(b),
reveals that the matching accuracy is higher this time. The illumination is different

from the one of the previous section but the colour of the landmark remains largely
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identical to the initial image Fig. 5.11(a). The correlation matrix of NCC algorithm,
Fig. 5.33(c), has a high degree of matching accuracy.

Figure 5.34(a) is similar to the previous image of Fig. 5.33(a) with the difference that
the large side of the landmark is shadowy and is viewed by the robot camera as dark-
blue. The results of the correlation matrices of SAD and NCC, Fig. 5.34(b) and Fig.
5.34(c) correspondingly, reveal that the SAD algorithm has performed a match in the
area of the landmark whose side is not shadowy. In the dark-blue region of the land-
mark the matching has dropped. NCC’s correlation matrix, on the contrast, performs

approximately as good as in the previous image (Fig. 5.33(a)).

The image of Fig. 5.35(a) shows the landmark at perspectives with its sides being shad-
owed. The correlation matrix of SAD algorithm, Fig. 5.35(b), performs poorly since the
landmark imprint is depicted on the correlation matrix with light green colour, meaning
that its matching is at low levels. On the other hand, the correlation matrix of NCC
algorithm, Fig. 5.35(c) performs satisfactorily, better than SAD, and its performance

has remained stable.

The last image of the section, Fig. 5.36(a), shows the landmark at a close perspective
with all its sides shadowed. The correlation matrix of SAD algorithm, Fig. 5.36(b),
reveals that the matching occurred is quite poor, similar to the previous figure’s, Fig.
5.35(a). NCC algorithm performs better in this shadowy image, too. Its correlation
matrix, Fig. 5.36(c), retains a high degree of matching accuracy. From these tests,
it can be concluded that SAD algorithm performs almost equally well with NCC when
illumination remains constant, but it performs poorly when illumination within an image
varies. The scaling parameter seems not to affect equally both algorithms. Although,
at the beginning of the TBL process scaling did not seem to affect matching, it has,
however, been shown that it becomes a drawback after a certain point. The matching
accuracy of both algorithms at different scales is decreasing, but it still is high enough to
perform a recognition task, especially for NCC. The rest of the chapter is devoted to the
primary novelty of this chapter which is the localisation and topological map building

using optic flow patterns.

5.6 Optic Flow-based Robot Localisation

In this section the problem of localising a robot is addressed and is tackled using tech-
niques found in biological organisms. Optical flow which has been used extensively lately
for obstacle avoidance in this research has been employed to build topological maps of
the environment. The purpose of this work is to show how optical flow can be used
to create a signature of the environment based on the optical flow patterns perceived
by the robot as it navigates through the environment. The only information used in

this model is optical flow. Information such as position and velocity of the robot are



Chapter 5 Biological Maps 85

not considered during navigation. Various landmarks have been modelled and simulated
which the robot passes through. The simulated landmarks have geometrical shapes, like
a sphere or a rectangular and they are textured (as is in real environments) in order to
produce high optic flow. The simulated robot consists of two side-ways cameras which
are perpendicular to the direction of motion. This creates a translational optic flow
as the robot moves in the environment. Every landmark in the environment emits a
number of optical flow vectors that are dependent on the distance of the robot to the
landmark and the velocity of the robot. Comparing and storing only the properties of
the vectors between different frames instead of the images greatly reduces the compu-
tation of the localisation process (Diamantas et al., 2010, In Press,b). The images are
only captured and are not used for storage or comparison. The properties of the vectors
refer to the number of vectors a given image possesses as well as the mean position of

all the vectors in the image.

During the outbound trip of the robot the camera takes snapshots of the environment and
using the Lucas-Kanade algorithm optical flow vectors are produced. During that phase
the robot builds topological maps from the optical flow ‘fingerprint’ of the landmarks
detected. After the foraging trip (or outbound trip), has completed, the homing trip
(or inbound trip) is initiated. During the homing phase, the robot compares the optical
flow patterns it currently perceives with the ones stored in the database, that is the ones
created during the outward journey. If the similarity score between the two images is
above a given threshold then the robot assumes the current landmark observed is the
same with landmark observed during the outbound trip. The topological map of the
robot is then used to localise the robot within an environment. The similarity score of
the vectors is a probabilistic result of the Euclidean distance of the mean position of the

vectors between the current image and the image stored in the database.

In order for the robot to localise in the environment using optical flow vectors, a training
data set of n = 1000 observations has been implemented where a vector is observed at
varying distances between the robot and the landmark, and at varying velocities. Thus, a
joint probability distribution has been created by two continuous independent variables,

that is velocity, C, distance, D, and is expressed by the following eqn. 5.4

fep(e,d) = fo(c) - fp(d) Ve, d. (5.4)

The velocity and the distance variables have been drawn from two Gaussian distributions
with p =4,0 =1 and p = 11, 0 = 3 respectively. The distances and velocities chosen to
create the training data set approximate the real distributions of velocity and distance
when a robot navigates in an environment. Figure 5.12(a) and Fig. 5.12(b) depict the
histograms of the two variables, and Fig. 5.12(c) shows a pictorial representation of
how the two variables, distance and velocity are modelled with respect to the robot.

The n = 1000 observations model the position of the vector in the plane in a varying
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combination of distances and velocities. One assumption that needs to be met is that

300

300

(a) Gaussian distribution for distance

(b) Gaussian distribution for velocity

. landmarle

\.
=
z4 b
&L
1
= = a
- &
A=t =)
/ \
/ \
/’. l'\\
s AN
_’_.»/ .
Weloctty [2..6]

(c) Modelling of distance and velocity

FIGURE 5.12: The mean and standard deviation for distance (D) are u = 11, o = 3,

respectively, while for velocity (E) mean and standard deviation are p = 4, o = 1,

respectively. The range of the velocity modelled is from 2km/h to 6km/h and the

range of distance modelled is from 2m to 20m. Figure 5.12(a) shows the Gaussian

distribution used for modelling distance between robot and landmark. Figure 5.12(b)

shows the Gaussian distribution of velocity that was used for modelling the velocity of
the robot for navigating within an environment.

the majority of the vectors comprising a landmark should have the same or almost the
same length. In order to solve the similarity problem between vectors, the mean, xj, ys,
or centre point of every vector is taken. Thus, summing up all the mean points of the

training data set and dividing by the number of observations the mean of the means is
produced, Z, %, as shown in eqn. 5.5

n

-y xp,yr  n = 1000. (5.5)
k=1

8
|
Il
S|
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The mean of the means in an optic flow pattern can be visualised as the centre of
gravity in a physical system. Another alternative to the mean of the mean could have
been the matching of every single vector from the current snapshot with the vectors of
the reference image. This, however, has proven infeasible as the number of vectors differ
between the reference and the current image. Hence, the Euclidean distances, x, are
computed between the mean of the means and the n observations as expressed by eqn.
5.6

Xk =V (zk — 2)2 + (ye — 9) (5.6)

The histogram produced by the Euclidean distances, xg, of the training data set forms
a log-normal probability density function (pdf) with p = 2.24 in the log location and
o = 0.86 in log scale. Figure 5.13(a) shows the histogram of vector deviations and the
probability density function of the log-normal. The log-normal pdf is deployed in order
to infer a similarity score (or probability as referred to in the graphs) as to how likely
it is for the vectors of the current snapshot to have deviated when compared with the
vectors of a snapshot stored in memory. In addition, the log-logistic probability density
function could have been used as it equally models well the distribution of the vector
deviations. Nevertheless, log-normal is believed to behave better than log-logistic for
larger data sets. Figure 5.13(b) depicts the cumulative distribution function (cdf) of

vector deviations and the lognormal.

The probability density function of log-normal is given by the eqn. 5.7,

1 _ (ns—p)?

= ——-e 2052 €T > O 57
So/2m (5:7)

and the cumulative density function of log-normal is expressed by eqn. 5.8,

fX(57 H, U)

Fx(0;p,0) = %erfc [_lnj\éu] = (lnég—,u) (5.8)

where erfc is the complementary error function and @ is the standard normal cdf. During
the homing navigation process, the robot calculates the Euclidean distance, §, between
the mean position, z,y, of all the vectors in a given landmark with the mean position
of the vectors of the landmarks stored in the database. Equations 5.9, 5.10, and 5.11
describe the process for two distinct landmarks. In eqn. 5.9, and eqn. 5.10, r and s
are the number of vectors for two distinct landmarks ¢ and j, one of which is observed

during the outbound trip while the other one is observed during the inbound trip.

1 r
fhg’i = ; : Z%u?ﬂz (59)
a=1
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FiGURE 5.13: Probability density function and cumulative density function of vector
deviations and the log-normal distribution.

1
Zj,Yj = g'zwb,yb (5.10)
b=1

= /(@ — )2 + @ - ) (5.11)

P=1-P; (5.12)

The log-normal cdf then gives us the probability Ps based on the Euclidean distance §
between the two sets of vectors. It is then subtracted from 1 to give the probability P as

is in eqn. 5.12. In addition, the probability P of the log-normal is multiplied by the ratio



Chapter 5 Biological Maps 89

of the number of the vectors as shown in eqn. 5.13 with min; being the landmark ¢ with

the minimum number of vectors and max; being the landmark j with the maximum

Pr="P (mm ) (5.13)

max;

number of vectors.

This results to the total probability (or similarity score), Pp. Thus, even if the Euclidean
distance, &, between two sets of vectors is small, the total probability, Pr, can be low
if the ratio of the vectors is small. Hence, two patterns which are totally different
may have a small Euclidean distance that yields a high probability. Multiplying the
probability value, P, by the ratio of the number of vectors can drop significantly the
total probability value, Pr, assuming that the number of vectors of the two sets are not

of the same multitude.

Figure 5.14(c) shows the optical flow pattern of the landmark taken at a distance of
11m and with a velocity of 4km/h. The optical flow images are produced by calculating
the motion of an entity at two contiguous frames. It should also be noted that the flow
vectors appear upside down since the images are read upside down, too. Figure 5.14(a)
and Fig. 5.14(b) show the first and the second frame in sequence, correspondingly.
The landmark of Fig. 5.14(c) acts as a reference landmark for the following snapshots
in order to demonstrate the similarity score at varying distances and velocities, and

between different landmarks.

In this work a clustering algorithm has also been implemented for counting the number of
landmarks. The counting of landmarks is a method that is used by insects as mentioned
in Chapter 2. Although the clustering algorithm is a rather simple one, distinguishing
between different landmarks is an important task. The number of landmarks each one
of the two cameras can distinguish is two. Therefore four is the maximum number of
landmarks that can be seen at any one time. The matching process is independent for
each camera. Thus, in the case where one or more landmarks have gone missing then
the robot can recognise its location from the landmarks which are still visible in the
other camera. The clustering algorithm creates a histogram of the vectors and finds
the minimum point between the two peaks of the histogram. Figure 5.15 shows an
application of the algorithm with two landmarks. Vectors with small length, that is
equal to or less than 1 are considered as outliers. In the same figure a number of outliers
has been detected.

The following figures explain the effectiveness of the model to localise a robot within an
environment based on the optical flow patterns of the landmarks. The first set of figures
Figs. 5.16(a)-5.16(c) and Figs. 5.17(a)-5.17(c) show the optical flow patterns between
the reference image, Fig. 5.14(c), and the patterns of the same image taken at different
time steps, t. The circles in the graphs represent the mean position of all the vectors
that comprise a given landmark and deviation refers to the Euclidean distance between

the centres of the circles. The Green colour refers to the vectors of the reference image
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(a) Image A taken at time ¢ (b) Image B taken at time ¢ + At

M Optic Flow Fingerprint

(c) Optic flow

FIGURE 5.14: Snapshot of a reference landmark taken at a distance of 11m and a
velocity of 4km/h

while Blue colour refers to the current image. The current snapshot has been taken at
a distance of 8m and a velocity of 4km/h. The reference image has been taken at a
distance of 11m and a velocity of 4km/h. As can be seen from the figures, the difference
in the similarity score occurs due to the different position the snapshots were taken.
The highest similarity score, 45.01%, is achieved in Fig. 5.16(a). In the same figure the
Euclidean distance between the two images is the smallest among the figures of the set.
In the remaining figures, Figs. 5.16(b)-5.16(c), it can be seen that deviation increases
as the time step, ¢, changes. Another feature that is affected by the different time step
an image has been captured is the number of elements. In Fig. 5.16(a) the number of
elements is 308. The number of elements in the neighbouring snapshots drop or increase
according to whether they have been taken before or after Fig. 5.16(a). In the last
two figures of the set, that is Fig. 5.17(b) and Fig. 5.17(c) the similarity score is low
revealing that the difference in time step an image is captured can be critical to the

localisation process.

In the next set of figures, that is Figs. 5.18(a)-5.18(c) and Figs. 5.19(a)-5.19(c) the
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FI1GURE 5.15: Clustering of two landmarks by employing the histogram of their vectors.

The circles which are located within optical flow vectors depict the mean position of

the corresponding optical flow patterns. The circle in the centre of the graph depicts
the minimum point of the histogram.

similarity score, 92.71%, is at the highest level, approaching almost the perfect match,
Fig. 5.18(a). In this set of figures the distance has been kept the same as in the reference
image, that is 5m, but changing the velocity from 4km/h to 5km/h. The similarity scores
in four out of the six snapshots of the set is quite high. However, the snapshots of Fig.
5.19(b) and Fig. 5.19(c) give a low similarity score. These snapshots have been taken
at t =t — 2At and t = t — 3At, respectively which shows why the low similarity score
occurs. Deviation in these two snapshots is also quite large, that is 30.28 and 40.23 for
Fig. 5.19(b) and Fig. 5.19(c), respectively. From this simulation it can be concluded

that distance affects more than velocity the optical flow patterns.

In Figs. 5.20(a)-5.20(c) and Figs. 5.21(a)-5.21(c) both distance and velocity parameters
have changed to 8m and 5km/h, respectively. The similarity score of 30.61% (Fig.
5.20(a)) is rather sensible if we take into consideration that the similarity score of the
same landmark at the same distance and a velocity equal to 4km/h was 45.01%, Fig.
5.16(a). In the same figure, Fig. 5.20(a), deviation is small when compared to the rest
of figures in the same set. The remaining figures depict a drop in the similarity score as
t changes. The larger the At the smaller the similarity score achieved. Tables 5.1-5.3
summarise the results of the optical low method at varying distances and velocities.
The similarity scores refer to the same reference landmark taken at different time steps

and at varying velocities and distances.

In the next set of images the similarity score is inferred between the reference image of
Fig. 5.14(c) and a mountain-like landmark, Fig. 5.22. Figures 5.23(a)-5.23(d) depict the

optical flow patterns at varying distances and velocities. In Fig. 5.23(a) the distance and
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TABLE 5.1: Optical Flow Performance at 8m and 4km/h

Time t | No of vectors Deviation Probability (%)
t+ 3At 394 24.58 7.71
t+ 2At 343 25.32 8.37
t — 2At 294 14.33 24.63
t+ At 395 10.67 26.01
t— At 306 8.07 43.50
t 308 7.66 45.01

TABLE 5.2: Optical Flow Performance at 11m and 5km/h

Time t | No of vectors Deviation Probability (%)
t — 3At 265 40.23 3.92
t— 2At 273 30.28 7.31
t+2At 237 13.42 33.27
t— At 203 9.52 42.70
t+ At 219 5.21 70.49

t 227 2.18 92.71

TABLE 5.3: Optical Flow Performance at 8m and 5km/h

Time t | No of vectors Deviation Probability (%)
t+ 4At 223 47.05 2.83
t+ 3At 198 33.97 5.60
t+ 2At 205 27.63 9.04
t— At 254 21.64 15.11
t+ At 169 14.18 22.67
t 174 11.33 30.61

velocity parameters have been kept the same as in the reference image. The similarity
score, 7.26%, is very low revealing that the optical flow patterns are dissimilar. A similar
probabilistic score is inferred in Fig. 5.23(c) as well. In the remaining figures, that is
Fig. 5.23(b) and Fig. 5.23(d) the similarity score calculated is even lower that that of
the previous images. In Fig. 5.23(b) the similarity score is 2.29% and deviation between
the current image and the reference image is 44.19 while in Fig. 5.23(d) the similarity
score is 1.63% and deviation is 49.93. The number of elements in the current images
differ substantially with the number of elements in the reference image contributing
even more to the low probabilistic scores. From this last set of figures it can be seen
that similarity score cannot achieve acceptable levels even if the distance and velocity
parameters remain the same as in the reference snapshot. A low similarity score is not
regarded by the robot while a high similarity score is used to localise the robot with

respect to the topological map.

Figure 5.24(a) depicts another landmark whose optical flow pattern, Fig. 5.24(b), is
compared with the reference’s landmark, Fig. 5.14(c). The distance and velocity the

image was taken are the same as in reference image, that is 11m and 4km /h, respectively.
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(a) Image taken at time ¢

Landmarks: 1, Green elem: 234, Blue elem: 306, Deviation: 8.07, Probability: 43.50%

250 T T T T T
200} - - J
150 1
>

100 1

50 q

Reference vectors
. Current vectors
0 . . . n n
0 100 200 300 400 500 600

(b) Image taken at time ¢t — At

Landmarks: 1, Green elem: 234, Blue elem: 294, Deviation: 14.33, Probability: 24.63%
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(c) Image taken at time t — 2A¢

FIGURE 5.16: Snapshot of reference landmark taken at a distance of 8m and a velocity
of 4km/h. In these graphs, the reference landmark Fig. 5.14(c) which has been taken
at a distance of 11m and a velocity of 4km/h is compared against the same landmark
taken at a different distance and velocity. Similarity score (or Probability) decreases as
the time step a snapshot was taken differs from first one, Fig. 5.16(a). This is reflected
in the increasing deviation (Euclidean distance) between the two optical flow patterns.
The circles in the graphs depict the mean position of the corresponding optical flow

vectors. (A).
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(a) Image taken at time ¢t + At

Landmarks: 1, Green elem: 234, Blue elem: 343, Deviation: 25.32, Probability: 8.37%
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(b) Image taken at time ¢ + 2A¢

Landmarks: 1, Green elem: 234, Blue elem: 394, Deviation: 24.58, Probability: 7.71%
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(c) Image taken at time ¢ + 3At

FIGURE 5.17: Snapshot of reference landmark taken at a distance of 8m and a velocity

of 4km/h. Similarity score (or Probability) decreases as the time step a snapshot was

taken differs from first one, Fig. 5.16(a). The circles in the graphs depict the mean
position of the corresponding optical flow vectors. (B).

The similarity score inferred by the patterns of the two images is quite low, that is
2.04% revealing that the two snapshots are different to each other. This is a result of

the large deviation between the two graphs, that is 44.40. The low ratio of the number
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(a) Image taken at time ¢
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(b) Image taken at time ¢ + At

Landmarks: 1, Green elem: 234, Blue elem: 237, Deviation: 13.42, Probability: 33.27%
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(c) Image taken at time t + 2A¢

FIGURE 5.18: Snapshot of reference landmark taken at a distance of 11m and a velocity
of 5km/h. Reference landmark of Fig. 5.14(c) is compared against the same landmark
but at a distance of 11m and a velocity of 5km/h. Figure 5.18(a) shows that a high
similarity score is achieved between the two optical flow patterns. Velocity, therefore,
is less influential that distance. Similarity score is high even when time steps differ,
Fig. 5.18(b) and Fig. 5.18(c). The circles in the graphs depict the mean position of

the corresponding optical flow vectors. (A)
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Landmarks: 1, Green elem: 234, Blue elem: 203, Deviation: 9.52, Probability: 42.70%
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(a) Image taken at time t — At

Landmarks: 1, Green elem: 234, Blue elem: 273, Deviation: 30.28, Probability: 7.31%
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(b) Image taken at time ¢t — 2A¢

Landmarks: 1, Green elem: 234, Blue elem: 265, Deviation: 40.23, Probability: 3.92%
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(c) Image taken at time ¢t — 3At

FIGURE 5.19: Snapshot of reference landmark taken at a distance of 11m and a velocity
of 5km/h. Similarity score drops further as the time step increases. The circles in the
graphs depict the mean position of the corresponding optical flow vectors. (B).

of elements of the two graphs has also contributed to the low similarity score. The
landmark of Fig. 5.24(c) is also compared with the reference landmark of Fig. 5.14(c).
This parallelogram landmark is similar to the reference one, in terms of shape, size,

and texture. The optical flow pattern of the landmark is depicted in the next figure,
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Fig. 5.24(d) where the similarity score achieved is 39.13%. Although the ratio of the
number of their elements is small the deviation between the patterns has caused a low
probabilistic score between the patterns. This is a case where the two patterns refer to
different landmarks but the similarity score is high enough to be considered as identical
landmarks. In such a scenario, the robot will consider as having revisited the place, thus

leading to erroneous actions on behalf of the robot.

Figure 5.25(a) depicts two landmarks in one snapshot and their corresponding optical
flow patterns in Fig. 5.25(b). At the reference image of Fig. 5.25(b) (shown in Green
for the tower and Red for the sphere) the distance between the robot and the sphere
is bm and, 11m between the robot and the tower. The velocity the image was taken is
4km/h. The current snapshot of Fig. 5.25(b) (shown in Blue for the tower and Black
for the sphere) has been taken 2m further from the reference landmark, that is 7m
from the sphere and 13m from the tower. The velocity has been increased to 5km/h.
The similarity score for the tower landmark is 22.55% and for the sphere is 27.08%.
This is an important finding since the two similarity scores do not differ significantly.
The distance between the current and the reference image has increased by 2m but the
distance between the two landmarks is 6m. This shows that it does not matter how far
the reference image was taken so long as the distance between the reference and current
image does not differ significantly. In the next Fig. 5.25(c) two different landmarks are
shown. These two landmarks are compared against the landmarks of the previous image,
Fig. 5.25(a). Their optical flow patterns appear in Fig. 5.25(d). The distance between
the robot and the mountain landmark is 8m while the distance between the robot and
the tower landmark is 11m. The velocity the image was taken is 3km/h. The similarity
score between Fig. 5.25(a) and Fig. 5.25(c) is quite low showing that the two patterns
are different to each other. In particular, the similarity score between the two towers
is 8.34% while the similarity score between the sphere and the mountain is 0.93%. The
similarity score is higher between the two towers as their shape and size resemble to each
other. From the simulations it can be concluded that a similarity score of a landmark
above 20% is considered satisfactory to be used for the localisation of the robot. There
are, however, cases as shown earlier, where a landmark may falsely be recognised and

thus be used for localisation.

5.7 Conclusion

This chapter has presented the biologically-inspired methods for tackling the homing
problem. At first, a detection algorithm was presented that detects large-scale and
homogeneous landmarks in the environment. This method is used at the beginning of
the outbound trip, that is, during the Turn-Back-and-Look approach. At this point the
robot turns towards its home position and takes snapshots of the area surrounding its

home. The number of snapshots taken decreases as the robot moves outwards. The
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reason for this is that the rate of change in the size of the landmarks decreases with
distance. The snapshots of the home position are taken at different positions and viewing
angles. These snapshots will be used by the robot at the end of the homing process when
robot is close to its home position and the precise position of its home location needs to
be found. For recognising the landmarks at the end of the homing process two different
area detection algorithms have been tested, namely Sum of Absolute Differences and
Normalised Cross Correlation. The later one seems to outperform the former one when

an image is taken at different viewing angles and distances.

During the main course of the navigation, that is, when the robot has completed its Turn-
Back-and-Look approach and has initiated its outward journey the robot creates optical
flow patterns from images. From these optical flow patterns only the mean position of all
the vectors and the number of vectors are stored. This greatly reduces the computational
complexity of the model in contrast to traditional visual navigation methods where whole
images need to be stored and retrieved. In fact, the only information used in this model
is optical flow. Position and velocity of the robot are not known during testing. They
are only modelled in the training algorithm. An additional novelty of the model is that
optical flow is not a property of the landmarks such as colour, shape, and size but a
property of the camera motion. When the robot has completed its outward journey
and homing has initiated, the optical flow patterns perceived by the cameras of the
robot are compared with the patterns stored in memory. A similarity score is inferred
between the two patterns. If the similarity score is above a given threshold, as shown
by simulations above 20.0% is satisfactory, then the robot localises itself with respect
to the environment and a topological map is created based on the optical flow patterns
perceived. The following chapter presents the conclusions drawn from this work and a

future work is addressed.



Chapter 5 Biological Maps

99

Landmarks: 1, Green elem: 234, Blue elem: 174, Deviation: 11.33, Probability: 30.61%

250 T T T T T
200 = - = - b
150 b
>
100 b
50 ,
Reference vectors
. Current vectors
0 . . . T T
0 100 200 300 400 500 600
X
(a) Image taken at time ¢
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(b) Image taken at time ¢ + At
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(c) Image taken at time ¢t — At

F1GURE 5.20: Snapshot of reference landmark taken at a distance of 8m and a velocity
of 5km/h. Reference landmark of Fig. 5.14(c) is compared against the same landmark
but at a distance of 8m and a velocity of 5km/h. Similarity score is high in Fig. 5.20(a)
and Fig. 5.20(b) although both distance and velocity parameters have changed. The
circles in the graphs depict the mean position of the corresponding optical flow vectors.

(A).
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(a) Image taken at time t 4+ 2At
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(b) Image taken at time ¢ + 3At
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(c) Image taken at time t + 4A¢t

FI1GURE 5.21: Snapshot of reference landmark taken at a distance of 8m and a velocity

of 5km/h. Similarity score is lowering as the time step the current snapshot was taken

increases. The circles in the graphs depict the mean position of the corresponding
optical flow vectors. (B).
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FIGURE 5.22: Mountain-like landmark used for comparison
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(b) Image taken at 8m and 4km/h
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(c) Image taken at 11m and 5km/h
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(d) Image taken at 8m and 5km/h

FIiGUurE 5.23: Optical flow vectors of a mountain-like landmark taken at varying dis-
tances and velocities. Current landmark is compared against reference landmark of
Fig. 5.14(c). The difference between the two patterns is shown by the large deviation
(distance between circles) and the large difference in the numbers of their elements.
The circles in the graphs depict the mean position of the corresponding optical flow

vectors.
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(a) Tower-like landmark (b) Optical flow vectors between the tower-like landmark and
the reference landmark
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(c) Parallelogram landmark (d) Optical flow vectors between the parallelogram landmark
and the reference landmark

F1cURE 5.24: Comparison of optical flow vectors between two different landmarks and

the reference landmark of Fig. 5.14(c). Similarity score in Fig. 5.24(b) is 2.04% reveal-

ing the difference in optical flow patterns. In Fig. 5.24(d) although the two landmarks

are different the optical flow pattern are similar resulting in a high probabilistic score

of 39.13%. The circles in the graphs depict the mean position of the corresponding
optical flow vectors.
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(a) Two landmarks used for comparison at a dis- (b) Optical flow vectors of Fig. 5.25(a) (reference snapshot).
tance of 5m for sphere and 11m for tower. Veloc- Current snapshot has been taken 2m further from the reference
ity taken is 4km/h snapshot and at a velocity of 5km/h.
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(¢) Two different landmarks which are compared (d) Optical flow vectors between the landmarks of Fig. 5.25(a)
and the landmarks of Fig. 5.25(c) Distance from mountain

landmark is 8m and for tower is 11m. The velocity the image
was taken is 3km/h

against the reference landmarks

Ficure 5.25: Comparison of optic flow vectors between different landmarks. The
circles in the graphs depict the mean position of the corresponding optical flow vectors.
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F1cURE 5.26: SAD and NCC correlation matrices of landmark image at 5.0m distance
(red colour depicts absolute matching in both graphs).
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(a) Landmark at 5.5m and 3.5m clockwise
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F1cUure 5.27: SAD and NCC correlation matrices of landmark image at 5.5m distance
and 3.5m right from the centre (red colour depicts absolute matching in both graphs).
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(a) Landmark at 7.5m distance
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F1cUre 5.28: SAD and NCC correlation matrices of landmark image at 7.5m distance
(red colour depicts absolute matching in both graphs).
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(a) Landmark at 7.5m and 5.5m counter-clockwise
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F1cURrE 5.29: SAD and NCC correlation matrices of landmark image at 7.5m distance
and 5.5m left from the centre (red colour depicts absolute matching in both graphs).
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(a) Landmark at 8.5m and 11.8m counter-clockwise
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F1cUre 5.30: SAD and NCC correlation matrices of landmark image at 8.5m distance
and 11.8m left from the centre (red colour depicts absolute matching in both graphs).
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(a) Landmark at 10.5m and 15.8m counter-clockwise
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F1cUre 5.31: SAD and NCC correlation matrices of landmark image at 10.5m distance
and 15.8m left from the centre (red colour depicts absolute matching in both graphs).
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(a) Two-landmark image

0.9
04 08
s 07
06

H 0.6

=07

£ 0.5

s

S 08

0.4
08
0.3
1
300 02

Columns 0o Rowis

(b) Correlation matrix produced with SAD

NCC

Correlation

Columns 0o

Rows

(c) Correlation matrix produced with NCC

Ficure 5.32: SAD and NCC correlation matrices of a two-landmark image viewed.
The landmarks are shadowy. The source of light is in front of the robot camera and
the landmarks (red colour depicts absolute matching in both graphs).
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(a) Image of landmark at a close perspective
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Ficure 5.33: SAD and NCC correlation matrices of the landmark taken at a close
angular perspective (red colour depicts absolute matching in both graphs).
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(a) Image of landmark at a close perspective with a shad-
owy side
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F1cUre 5.34: SAD and NCC correlation matrices of the landmark taken at a close
angular perspective with a shadowy side (red colour depicts absolute matching in both

graphs).
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(a) Image of landmark at perspective with shadowy sides
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F1cUure 5.35: SAD and NCC correlation matrices of the landmark taken at perspective
with shadowy sides (red colour depicts absolute matching in both graphs).
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(a) Image of landmark at close perspective with shadowy
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Ficure 5.36: SAD and NCC correlation matrices of the landmark taken at a close
perspective with shadowy sides (red colour depicts absolute matching in both graphs).



Chapter 6

Conclusions and Further Work

6.1 Background

Robot homing is the process by which a robot returns to its home position. Thus
far, various models have been developed to tackle the problem of homing. The most
prominent ones are the Snapshot model and the Average Landmark Vector (ALV) model.
Both models have been inspired by the way insects navigate. Their main advantage is
the simplicity of their approach and the low computational requirements needed to
perform homing. For the snapshot model, images need to be processed, matched, and
stored whereas in the ALV matching occures in terms of vector components. ALV
is, thus, more parsimonious than the snapshot model. Apart from the use of visual
modality, both models, however, require the use of a compass. Their main limitation
is that all landmarks need to be present, that is both in the current snapshot and the
target snapshot. Because of this, the models can only be applied towards the end of the
homing process, when the robot is close to its home position and when all landmarks
are visible. On the other hand there are techniques such as Simultaneous Localisation
and Mapping (SLAM) where a number of sensors are employed such as sonar, visual,
laser, and odometry. The advantage of these techniques is accuracy, but computational
cost is a core issue. This is the reason that faster variants of SLAM have been developed
such as FastSLAM.

The research presented in this thesis has contributed to the state of the art by em-
ploying biological models and models which are related to the localisation and mapping
methodology. The reason for using biological techniques is that provide simple, yet ef-
fective methods for navigation of mobile robots. Research on ants and bees has given an
insight on how these insects carry out complex tasks such as foraging and homing. The
neural circuitry these creatures carry is little but the methods they employ, effective and

robust. In this thesis a number of biologically inspired methods have been deployed such

116



Chapter 6 Conclusions and Further Work 117

as retinal landmark simulation, large-scale detection, counting of landmarks, and locali-
sation based on the optical flow of the landmarks. The purpose was to build topological
maps that will enable a mobile robot to localise with respect to its environment. The
gain from such an attempt is twofold. By examining the strategies animals employ we
can build better and more efficient robots, and by building such robots we can under-
stand better how the underlying mechanisms of animals work. Further to this, a model
which is related to the simultaneous localisation and mapping has been presented. In
this model, metric map are built by employing a laser range finder. This model has
been extended by utilising a visual sensor to track landmarks and infer depth estimates
between robot and landmarks. The use of metric maps acts upon the topological maps

by providing metric information among landmarks.

6.2 Conclusions

The literature review of this thesis has provided the state of the art in navigation of
mobile robots as well as animals and insects. It has provided the basis for understanding
the concepts and strategies of biological visual navigation. It has also included concepts
and techniques from the Simultaneous Localisation and Mapping field. Based on that,
the research question of how effectively a mobile robot can return to its home has
been set. The main objectives of this research were to develop algorithms to perform
navigation efficiently based on studies in biology. Thus, computational cost was the main
objective of this research. For the development of the algorithms, Player/Stage, and
partly breve, simulators were used. However, there exists a number of things that have to
be made in order to describe as accurately as possible a virtual environment. In general,
the structure of the environment was kept simple. Nevertheless, noise was modelled in
order to make more realistic the environments. Furthermore, the virtual environment
was kept simple for the purpose of understanding the navigational mechanisms that
underlie the biological organisms. This is one of the main novelties of this work. Apart
from designing an efficient robotic system for performing homing, the results from the
methods followed may reveal the strategies that insects perform in order to navigate.
Such a strategy is the optical flow patterns generated by the motion of the virtual or

physical agent and their use for localisation.

In Chapter 4 it was presented the localisation and mapping model based on a laser
range finder. The novelty of this model lies in the fact that a single sensor, namely
a laser range scanner can provide the localisation of the robot and mapping of the
environment. The algorithm selects the nearest landmark to the robot and tracks it
until laser’s side rays detect the landmark. The advantage of the approach is that it does
not use a large number of resources unlike many algorithms in this field. On the other
hand, the limitations of the approach are that it is environment-dependent, that is, an

environment with geometrical entities is suitable for this type of model. Furthermore,



118 Chapter 6 Conclusions and Further Work

it was shown that optimal paths can be chosen through the navigation of the robot.
This advantage holds so long as the laser rays are not occluded by the expansion of
the obstacles. In addition to this, a visual sensor has been added to the model with the
purpose of providing depth estimates between the robot and the landmark so as the robot
can navigate through environments where landmarks are not always distinguishable. In
particular, two algorithms were developed for this purpose, a least squares and an optical
flow. The combination of both methods has proven to be quite effective in estimating

depth. This model provides the metric maps to the robot.

In Chapter 5 a novel representation of the environment has been used. Optical flow
patterns act as maps for the navigation of the robot. During the outbound trip of the
robot, a ‘fingerprint’ of the environment is created based on the optical flow patterns
of the landmarks. Based on a training algorithm the model infers a similarity score
between the patterns of the current snapshot (the snapshot taken during the homing
process) and the reference one. One advantage of the method is that it does not make
use of any other information apart from the optical flow. Moreover, images are not
stored as most of traditional methods do. Only the properties of the flow vectors are
stored, that is their mean position and their number, and any comparison is done on the
basis of vector properties. This model proves to be parsimonious not only because of
its low memory requirements but also because it does not make use of any other sensor
apart from a visual one. This model provides the topological maps of the environment.
At the end of the homing process the robot matches the snapshots of the TBL approach

with its current view in order to infer home position.

The simulations of this model have shown that it is possible honeybees to use optical flow
patterns to localise. So far most of the biologically-inspired approaches could benefit
only one way from the application of biology onto robotic systems. Robust and efficient
biologically-inspired robots have been designed and built but very little understanding of
the underlying biological mechanisms has been gained. This research gives a new insight
on how insects, and in particular honeybees navigate. Furthermore, this biological model
does not consider the properties of the landmarks, that is colour, shape, and size, but
the properties of the camera motion. This property is essential for the honeybees since it
is known that they use optical flow at least for obstacle avoidance. Yet, Avargues-Weber
et al. (2009) reveal that honeybees are capable of discriminating faces. It could well be
the case of optical flow pattern recognition. Kendoul et al. (2009) write in the future
work of their paper that an extension of his work would be to investigate the mapping

of the environment using optical flow techniques.

Altogether, both the optical flow model and the model based on the laser range finder
allow us to make significant performance gains over existing approaches. The objectives
which were set and discussed at the first chapter have been met. The next section

presents some ideas which can extend further the current models.
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6.3 Further Work

The aim of this work was to develop algorithms that will enable a robotic system to
perform efficiently the homing task. The following are some of the ideas that can be

implemented and extend the scope as well as the capabilities of the model.

e Develop a Bayesian approach to localise the robot based on the optical flow maps.
In this case a prior distribution needs to be calculated and a likelihood to be
determined. The posterior distribution will enable the model to adapt and improve
as new observations enter the model. This, will therefore, expand the navigation

abilities of the robot to various types of environments.

e Perform SLAM techniques for localisation of the robot. This techniques, however,
will differentiate the scope of the model since core SLAM techniques involve ac-
quisition of data from sensors such as dead reckoning and sonar. This will increase
the complexity of the model as well as its computational cost, but it is expected

to perform well in complex and dynamic environments.

e Integrate colour patterns onto the optical flow model. This would be an interesting
aspect to investigate since it is known that honeybees have acute vision on the main

colours.

e Develop a dense tracking algorithm and compare it with the current sparse tracking
algorithm. As has been mentioned in earlier chapters a dense tracking algorithm
may perform better but at the same time this would increase the computational

complexity of the whole model.

e Develop a better clustering algorithm for landmark counting. For the purpose
of this work where the number of landmarks is not known in advance nor which
vectors belong to which landmarks, clustering becomes a difficult and at the same
time challenging problem. An unsupervised clustering methods needs, therefore,

to be developed.

e Apply the optical low model on a multi-agent system in order to infer the exact

position of a landmark.

e Perform spiral techniques to search for lost landmarks. In Chapter 2 the spiral
patterns ants perform when lost were discussed. It can be shown using simulation
what type of spiral patterns ants perform more closely and how effective this is
compared to other search techniques. Some known spirals are the Archimedean
spiral, Fermat’s spiral, hyperbolic spiral, and the golden spiral which is a special
case of the logarithmic spiral. Golden spiral is found in nature and in things like

sunflower heads, nautilus shells, and others.
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Localisation and Mapping Using
a Laser Range Finder: A
Goal-Seeking Approach

Sotirios Ch. Diamantas and Richard M. Crowder. ICAS 2009, Valencia, Spain, 2009.
Abstract

In this paper we examine the problem of localisation and mapping of an unknown envi-
ronment using data from a laser range finder. In order to support our method we detect
landmarks in the environment using the same laser finder. For the localisation and
mapping process to take place we assume that the mobile robot will follow a path until
a landmark is observed by the laser scanner. Our approach alleviates the requirement
to provide odometry or other information. In addition, an efficient path is sought to
reach target location. An inherent property of this is obstacle avoidance. The simulated

experiments presented in the paper validate the effectiveness of our approach.

A.1 Introduction

For a mobile robot to build a map of an unknown environment an accurate estimation
of the position of the robot is required as well as a means for effectively mapping the
environment. Localisation and mapping can be considered to be a “a chicken and egg”
problem, requiring both accurate position estimates of the robot and of the surroundings.
A laser range finder is highly suitable for that purpose due to its strength in estimating
distances accurately while unburdening the system from problems arising in other sensors
like infrared or sonar. In fact, there is a large number of works that utilise laser range
sensors for obstacle avoidance Ulrich and Borenstein (1998); An and Wang (2004); Koren
and Borenstein (1991); Martinez et al. (1998).
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In this work no prior information about the environment is assumed. The only hypothesis
made is that the robot knows where it should head to. Thus, we feedback the robot
with a goal that has to be sought. However, even this hypothesis can be ruled out so
long as the robot navigates without any restrictions, i.e., without having to pursue an
effective path. In such a case the robot can navigate towards places where there are
distinguishable points by the laser finder, for example corners, and drive among such

‘places’.

In this paper we present a navigation method based on the idea of Vector Field Histogram
(VFH) Ulrich and Borenstein (1998). The robot scans the environment using the laser
sensor and based on the measurements taken an efficient path is sought. In order to
infer an efficient path the target point is assumed to be known. We can, therefore,
make a supposition that the goal position is known by its x,y, ¢ coordinates or that
the goal position can be seen through a vision sensor and an estimate of its distance or
direction can be taken. Next, the robot will try to identify ‘distinctive’ landmarks in the
scanned environment; these are mainly corners, and can be identified by the range of
the neighbouring ray values. The robot will thus extract the shortest obstacle-free path
to the target defined by the rays of laser scanner. While traversing the chosen route, the
landmark is tracked down by the laser scanner’s rays until it is ‘met’ by the side rays
of it. We use the side rays of the laser scanner to identify the landmark as they form a
90° angle with the chosen path. The sides of the right triangle formed by the side rays
of the scanner, the landmark, and the position of the robot at which the landmark was

first detected are computed with the trigonometric functions.

The process of finding a ‘distinctive landmark’ is critical for the path to be extracted
as is needed to be as close to the autonomous agent as possible. Fig. A.1 demonstrates
this process where the robot at time ¢y scans the environment and selects the nearest
landmark to it, depicted by the bold scan line. At time #; the robot is scanning again
the environment using the laser scanner and an updated second path is chosen to reach
the target at point denoted by the ‘X’ symbol. The robot could have missed to reach
the target and end up in a blind alley had it not selected a nearby landmark.

The primary purpose of this work is to tackle one of the core problems in robotics sci-
ence, namely localisation and mapping using minimal sensing. It is not uncommon that
a critical sensor to the system may fail and thus having to bypass it using alternative
sensors and methods. Such cases become of high importance if the autonomous agent
acts in remote or hostile environments. Moreover, sensors like GPS cannot operate in en-
vironments like, indoors, underwater, or the outer space. Therefore, we have approached
the localisation and mapping problem using only a laser scanner sensor to infer accurate

maps of the environment while at the same time localising the robot.

This paper is comprised of five sections. Following is section 2 where related work

is presented. Then, in section 3 we present and analyse the methods that have been
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implemented to localise the robot and map the unknown environment. In section 4 we
present and discuss the experimental results. Finally, section 5 epitomizes the paper

with a brief discussion on the conclusions derived from this work and a future work.

A.2 Related work

Localisation and mapping has been at the forefront of robotics research the last decade.
The work presented in this paper is closely related to the Simultaneous Localisation
and Mapping (SLAM) Smith and Cheeseman (1986) problem in which a robot has to
build map while at the same time estimating its position relative to the map. Most of
the approaches make use of Kalman Filter (KF) and Extended Kalman Filter (EKF)
Dissanayake et al. (2001); Leonard et al. (1992), Armesto and Tornero (2004); Choi et al.
(2007). Under these methods a matrix representing the robot and landmarks’ position
is established. As the number of landmarks increases so does the matrix resulting in a
computational expensive solution. An alternative solution to KF and EKF is the use of
particle filters Fox et al. (2001) and Monte Carlo methods Thrun et al. (2000, 2001).

FastSLAM Hahnel et al. (2003); Montemerlo et al. (2002) is another method that inte-
grates particle filters and Extended Kalman Filters. FastSLAM tries to alleviate from
the problem of data association, that is, the problem where landmarks look alike which
is prevalent in the previous methods. Most of the above mentioned methods use mainly
odometry information and laser sensors to support the SLAM methodology. Nonethe-
less, there has also been a SLAM-based method that employs a single camera Davison
et al. (2007) to infer the 3D trajectory of a monocular camera in an unknown envi-
ronment. This vision-based SLAM is widely known for years as the ‘structure from
motion’ problem and it has been researched in parallel and in ignorance of the robotics
community. Other sensors which have been used for localisation include Radio Fre-
quency Identification (RFID) technology. For example Hahnel et al. (2004), proposes a
model based on RFID technology and a laser-based FastSLAM approach to effectively
determine the location of RFID tags.

In Amigoni et al. (2004) the authors proposed a method for map building without
using any odometry information. Their method builds a geometrical global map based
on various scans of the environment taken at different instants of time. They try to
integrate the maps using three different methods, namely sequential, tree, and pivot
methods. However, they do not keep track of the position of the manually driven robot.
An approach which uses Dynamic Programming (DP) for the real-time self-localisation of
a robot is explained in Einsele (1997). In this work a panorama laser range finder (PLRF)
is employed. Similarly to the previous work, a matching between present preprocessed
scans and already stored scan data is taking place. The task of preprocessing method

is to extract line segments from the acquired range data. Moreover, in their approach
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FicUure A.1: Robotic agent having selected the nearest landmark which leads to an
efficient path to the target point ‘X’.

they make use of local coordinate systems linked together by topological information.
No global environmental map is built, but they rather focus on local ‘distinctive’ places

to build local maps for self-localisation.

A.3 Methodology

In this section we describe the methods we have followed to tackle the problem of locali-
sation and mapping. No a-priori knowledge of the environment is provided. However, as
already stated we adopt a goal-seeking approach and a competent path is selected which
is defined by the laser scanner rays. The map of the environment is initially empty and
is built up as the navigation of the autonomous agent proceeds. Fig. A.2 depicts the

structure of the localisation and mapping algorithm.

During the first phase the robot collects raw data from the laser range finder, and in
the next one the obstacles of the environment are expanded, see Fig. A.3, according to

the radius, r, of the robot using the equation of the circle (A.1),

(x —h)2+ (y — k) =12, (A1)

where h, k is the centre of the circle C, in this case the point at which the ray of the
laser hits on the obstacle, and the equation of the line (A.2),

y =mx + b, (A.2)

that represents a laser ray. We compute the slope (A.3) of the line, i.e., ray,
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FIGURE A.2: Flowchart of the various stages of the localisation and mapping algorithm.
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FIGURE A.3: Robotic agent having identified a new path, R¢, , and a landmark, C}, .
This figure shows how the localisation coordinates are computed from the triangles
OBC and OAB.

Ch — Ry’
by knowing the current position of the robot R;, and the end position of the ray, i.e.,
Ch - Next, we substitute equation (A.2) into the second part of (A.1) having (A.4),

_ G By (A.3)
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(x-2)%+(y-2)* - 0.3%=0

FIGURE A.4: A simulated scan sample with a detectable area of 240° and a detectable
distance of 4.0 metres. An expanded point by 0.3 metres is shown with the laser rays
falling into the circle being marked.

(z—h)2+ (mz+b—k)? =r% (A.4)

Thus, from (A.4) we end up having a quadratic equation (A.5),

az’ + bz +c=0, (A.5)

which we solve it in order to obtain the points in which the rays intersect (or hit) the
obstacles expanded by the radius r. Thus, if discriminant, A > 0, then the ray intersects
the expanded obstacle in two points, whereas if A = 0, there exists a tangent ray to the
circle. If A < 0 then the ray is not intersecting any point of the circle formed by the
expansion of the obstacle. Fig. A.4 shows the rays of the laser scanner one of which
hits at an obstacle with coordinates x = 2, y = 2. The circle represents the expansion
of the obstacle by the radius, r, of the robot, in this case 0.3 metres. The marked lines
representing the laser rays that fall within the expanded obstacle do not thus provide a
safe path for the robot. All other rays, hence paths, would provide a safe path if they
were to be taken. Fig. A.5 shows the outcome of applying the above algorithm to the

laser data with added noise.

Upon expansion of obstacles the path selection module takes over, Fig. A.2, and an
efficient path is chosen based on the proximity of the laser ray to the target point. As
written earlier, the coordinates of the target are known to the system. This however,
could have been omitted had we used a compass or a vision sensor to know at any
instant of time the direction to the target. So long as the path is selected, the robot
rotates around its axis until its central ray, Rc, Fig. A.3, points to the selected path,
Rc,,. The next step involves updating the laser data by taking a new laser scan after
the robot has rotated by angle . At this point the landmark search module is taking

over which identifies corners, jumps, and discontinuities in the laser scan. Such points
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FiGURE A.5: Expansion of obstacles.

act as ‘landmarks’ and are identified when a ray being equal to the maximum range,
say set A, and its neighbouring n rays do not belong to the set A, i.e., they hit on an
obstacle. Therefore, the mathematical formulation of this is, ray, € A, and ray,4+, ¢ A

or rayz—n ¢ A constitute a ‘landmark’.

Furthermore, the landmark search module will eventually select a single landmark at
each time step for navigation. The selection of this landmark is based upon its proximity
to robot location. This is happening because a shorter path to the target may be
discovered after the approximation of the agent to the landmark. Therefore, we use the
Euclidean distance, d, between the landmark location, (L, L;), and the robot, (R, Ry)
to find the nearest landmark. Fig. A.1 shows an example of landmark selection among
a set of detected landmarks. The Euclidean distance is described by (A.6)

d = miniy/(R, — LL) + (R, — Lj)?. (A.6)

The area of searching for landmarks is less than 90° from the central ray, R¢, Fig. A.3,
as the robot is using its side rays, namely, Rg, and Rg,, to detect the landmark and
build a map. At this point we use a local frame of reference to calculate distances to
landmarks. Fig. A.3 shows how the method works. The robot after having inferred
a new path it rotates by angle «, that is, from Rc to Rc,. At this point its Ry ray
detects and selects landmark C}, ;. The sides of the triangle OBC named CB and OB

are calculated using the trigonometric functions sin ¢ and cos ¢.

Having found the coordinates of local frame of reference we add them up to the global
frame of reference. Again, Fig. A.3 depicts the variables involved. This is done by
adding the angle by which the agent has rotated, that is a degrees, to initial pose «y,
thus inferring the pose of the robot. We then find the projection of side OB to the

z-azis and y-azis. The sides of the triangle OAB are again calculated with the cosine
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FIGURE A.6: An example of how the location of the robot can be calculated after
having missed the landmark by the side ray, Rg,. The landmark is, however, still
detectable by the neighbouring rays of the laser scanner.

and sine trigonometric functions. Their outcome will thus give us the x,y coordinates
of the point B which are added to the initial R, , coordinates of the robot.

In order for the robot to follow the path from point O to point B the landmark at point
Chk is tracked down by the neighbouring rays of the Ry, ray as the robot proceeds. At
point B, as Fig. A.3 shows, the side ray, Rg,, will detect the landmark by the range of
the Rg, ray which should approximately be equal to C'B found earlier. Due to noise,
it is quite probable that the landmark be missed. For this reason we have simulated a
laser scanner whose field-of-view (FOV) is 240° so if the landmark is missed by the side
ray, Rg,, it can be detected by the neighbouring rays with angle larger than 90°. Fig.

A .6 shows this scenario.

At this time step the robot will localise itself with its global z,y coordinates and create
a new map of the environment. Having reached the final step of the algorithm, the agent

initiates a new laser scan to proceed with the navigation process.

A.4 Experimental results

The localisation and mapping algorithm has been developed on the Player/Stage 2D
simulation environment Player/Stage (2006). The simulated devices consist of an Erratic
mobile robot and a HOKUYO URGO04LX laser range finder with 240° field of view, 4.0
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F1GURE A.7: Snapshot of the simulated environment.
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FIGURE A.8: First scan of the environment.

metres maximum range, and 685 samples per scan. The angular resolution was set to
0.35°. Fig. A.7 shows a snapshot of the simulated testing environment, the size of which
is 10.0 metres by 10.0 metres. The robot is on the left lower corner with a delineation

of the laser scanner.

Fig. A.8 shows the first scan at position R;, = —3.92, R,, = —4.26. The target position
has been set at x = 4.00, y = 4.00. In this first laser scan there have been detected
six landmarks of which, the nearest one, is selected for reference which is at position
r = —2.38, y = —2.06. The robot will try to re-detect the landmark from position
denoted by the symbol x at location x = —2.09, y = —2.34.

In Fig. A.9 the robot has successfully recognised the landmark and has updated its
location coordinates; a new scan has performed with two landmarks present one of

which again is selected for the navigation.
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FIGURE A.9: Second scan of the environment.
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: Third scan of the environment.

In Fig. A.10 the robot has traversed the environment even more and has detected two

other landmarks. At this point, although the target position is at x = 4.00, y = 4.00,

the robot has selected its next targeted position, denoted by x symbol, to be further

upwards instead of being on its right side. This occurs because the expansion of the

obstacles obscures some laser rays that form a path in the right-hand side of the robot.

The arrow shows the position, in particular the corner point, at which this occurs.

It should be noted that during the landmark selection process we use the map that does

not contain the expanded obstacles. The map with the expanded obstacles is used in

the path selection process. In Fig. A.11 the robot has reached its desired position and

a new scan has been taken which has detected two landmarks in the environment, one

of which is again selected.
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FIGURE A.11: Fourth scan of the environment.
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FIGURE A.12: Fifth scan of the environment.

In Fig. A.12 the robotic agent has almost reached its target. The boldface x denotes the
target position. However, in this figure we see the influence of noise into the navigation
process. There exists a map drift between the previous laser scan and the current one.
This noise effect has caused the agent to select its next target point a little further away
than the final target.

Fig. A.13 shows all previous laser scans and the route of the robot as calculated by its
localisation system and as it appears by the GPS system. From the graph it is seen
that the autonomous agent has performed quite well in the first scans. Nevertheless,
there is a small drifting in the accuracy of the localisation system in the last phase of
the navigation process caused mainly by the noise. In this last phase the landmarks
selected, as can be seen from Fig. A.13, are not prominent corners, but they rather

occur in a curvy slope.
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F1cUure A.13: A performance comparison between the localisation system of the robot
and the GPS.

A.5 Conclusions and future work

In this paper the problem of localisation and mapping has been addressed. The key idea
behind our work is that no prior knowledge of the environment is used nor any odometry
information. In fact, the odometry has been substituted by a laser range scanner. Its
main purpose is to localise a robotic agent and map the environment while at the same
time selecting efficient paths for driving the robotic agent to a target place. An inherent
behaviour is obstacle avoidance. This is performed while path planning obstacle-free

routes to desired locations.

The problem of localisation and mapping is at the heart of robot navigation and it has
been approached through many ways. Our method promises to be efficient and accurate
so long as the environment permits it. For example, an environment in which wide
corridors occur results in erroneous estimates of the location of the robot. However, our
approach is described by its simplicity and its efficiency. The simulated environment we

have used to support our methodologies proves our assertions.

Future work will focus on larger scale and different types of environments. Moreover, we
want to extract more salient features that will serve as landmarks. Last but not least,
our work is part of a larger project where the navigation strategies are adapted according
to the information available. This piece of work is trying to tackle the localisation and

map building problem with minimal sensing.
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Abstract

Depth estimation has long been a fundamental problem both in robotics science and in
computer vision. Various methods have been developed and implemented in a large num-
ber of applications. Despite the rapid progress in the field the last few years, computation
remains a significant issue of the methods employed. In this work, we have implemented
two different strategies for inferring depth, both of which are computationally efficient.
The first one is inspired by biology, that is optical flow, while the second one is based on
a least squares method. In the first strategy, we observe the length variation of the optic
flow vectors of a landmark at varying distances and velocities. In the second strategy, we
take snapshots of a landmark from different positions and use a least squares approach
to estimate the distance between the robot and a landmark. An evaluation of the two
different strategies for various depth estimations has been deployed and the results are

presented in this paper.

B.1 Introduction

Depth estimation is an important task for a large number of robot navigation techniques.
In this work, we estimate the distance between a robot and a landmark with the view to

support the localisation and mapping problem, a problem which is at the heart of today’s

132



Appendix B Depth Estimation for Autonomous Robot Navigation: A Comparative
Approach 133

mobile robotic systems. This type of work has been developed in order to be integrated
into a self-localisation system as is in Diamantas and Crowder (2009) or similar type of
systems as described in Amigoni et al. (2004); Einsele (1997). These type of systems
make no use of dead reckoning or odometry information and the position of the robot is
estimated by means of a laser range finder. Thus, for a robot to be able to estimate its
position in an environment, corners and other related features are extracted from the
laser range scans. There are, however, cases where a robot navigates in an environment
that does not contain these type of features. Such type of environments are the corridors
or environments without geometrical objects within the range of the laser scanner. In
this paper, the distance of the robot to a landmark is used as a means to calculate
the translational distance the robot has covered in that environment while there is no
presence of corner features. We, therefore, have adopted two different strategies for
inferring the distance between the robot and a landmark and compare the results from
both approaches. The first one, that is optical flow, has been inspired by biology and
the way insects, in particular honeybees, navigate. The second one is a least squares
method that calculates the position of a landmark based on different snapshots taken

during the navigation process of the robot.

Optical flow, that is the rate of change of image motion in the retina or a visual sensor,
is extracted from the motion of an agent. Optical flow has extensively been used thus far
for obstacle avoidance and centring a robot in corridor-like environments Camus et al.
(1996); Warren and Fajen (2004); Merrell et al. (2004); Hrabar et al. (2005). Optical
flow for depth estimation has been used in Slesareva et al. (2005); Satoru et al. (1999)
and a least squares approach for inferring depth appears in Malik and Choi (2009);
Boley et al. (1995). Furthermore, a large amount of effort has been focussed on using
total least squares Bab-Hadiashar and Suter (1997); jen Tsai et al. (1998), least squares
Maybank (1986), or constrained total least squares methods jen Tsai et al. (1999) for
calculating the optical flow field.

This paper is comprised of five sections. The following section, Section II, presents
the background work while Section III presents the methodology of the two different
strategies for depth estimation. Section IV presents and discusses the results from
the two strategies. Finally, Section V epitomises the paper with a discussion on the

conclusions drawn from this work.

B.2 Background Work

This section describes the mathematics that underlie the Lucas and Kanade (1981) (LK)
algorithm which has been employed in this research work. In order for the optical flow
algorithms to perform well, some suitable images need to be chosen. This suitability

refers to images that have high texture and contain a multitude of corners. Such images
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have strong derivatives and, when two orthogonal derivatives are observed then this
feature may be unique, and thus, good for tracking. Tracking a feature refers to the
ability of finding a feature of interest from one frame to a subsequent one. Tracking
the motion of an object can give the flow of the motion of the objects among different
frames. In Lucas-Kanade algorithm corners are more suitable than edges for tracking
as they contain more information. For the implementation of the LK algorithm the
OpenCV (2008) library has been used.

The optical flow algorithm of Lucas-Kanade presupposes three main criteria to produce

satisfactorily results. These are:

I. Brightness constancy. The brightness of a pixel does not change from frame to
frame, that is I(z,y,t) = I(z + u,y + v,t + 1).

II. Temporal persistence or small movements. The motion of the object that is tracked
moves smoothly from frame to frame, that is I,u+ Iyv+ I; = 0, where v, u are the

x,1y components of the velocity .

ITI. Spatial coherence. Neighbouring points of a pixel that belong to the same surface

have typically similar motion, and project to nearby points on the image plane.

The equation in the second criterion is an under constrained equation since it involves
two unknowns for any given pixel and cannot be used to solve the motion of a pixel in
the two dimensions. For this reason the third criterion is used as an assumption to solve
the full motion of a pixel in the two dimensions. The third criterion assumes that the
neighbouring pixels of any given pixel move coherently as they belong to the same object
and project to the same image plane as the given pixel projects. Thus, for tackling the
problem in case, the brightness values of the neighbouring pixels are considered and solve
a system of linear equations Bradski and Kaehler (2008). Hence, if we take a window of
5 x b pixels a system of 25 linear equations needs to be solved. However, if the window
is too small the aperture problem may be encountered where only one dimension of the
motion of a pixel can be detected and not the two-dimensional. On the other hand, if the
window is too large then the spatial coherence criterion may not be met. Nevertheless,
the system that needs to be solved following a window of 5 x 5 pixels is expressed by
(B.1)

L:(pl)  I,(pl) Ii(p1)
Ix(.p2) 1,(p2) H o It@) (B.1)
L(p25) I,(p25)] a—9x1 L(p25)

———

A=25x2 b=25x1
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The goal on the above system of linear equations is to minimise || A@ —b||? where A = b

is solved by employing least-squares minimisation as in (B.2),

(AT A)ii = ATb (B.2)

where AT A i, and ATb are equal to (B.3),

Ry e

S LI, Y I | |v S I
~~ ——
AT A U ATp
and the solution to the equation is given by (B.4)
= [“ — (AT A)~1 AT, (B.4)
v

If AT A is invertible, i.e., no zero eigenvalues, it means it has full rank 2 and two large
eigenvectors. This occurs in images where there is high texture in at least two directions.
If the area that is tracked is an edge, then AT A becomes singular, that is (B.5),

I? LI\ | -1 0
Z T Z m2y vyl — (B. 5)

Z ley Z Iy Ix O
where —1I, I, is an eigenvector with eigenvalue 0. If the area of interest is homogeneous
then ATA ~ 0 implying 0 eigenvalues. The pyramidal approach of the LK algorithm
overcomes the local information problem at the top layer by tracking over large spatial

scales and then as it proceeds downwards to the lower layers the velocity criteria are

refined until it arrives at the raw image pixels.

B.3 Methodology

This section describes the methodology followed for estimating depth using optical flow
and least squares. For the optical flow strategy we used the 3D simulation environment in
Klein (2002), while for the least squares strategy we employed the Gerkey et al. (2003) 2D
simulator. The programming environment of MATLAB (2005) was used for the analysis
of the data. The purpose of both methods is to estimate the translational distance a
robot has covered in a corridor-like environment due to the absence of ‘distinct’ features
in laser scans. The translational distance a robot has travelled can be calculated using

the trigonometric functions once the position of a landmark has been estimated.
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Ficure B.1: Robot snapshots of the landmark L taken at different time steps ¢ and
at different robot positions r.

B.3.1 Least Squares

For the estimation of depth using the least squares approach we track a visual landmark
in the environment and infer the position of the landmark based on the orientation and
position of the robot. A similar approach has been used by Boley et al. (1995) to infer
the starting position of the robot.

In this simulation experiment, we have taken various snapshots of a landmark at equally
spaced time steps and measure the angle € between the robot position and the visual
landmark. Every snapshot represents a linear equation and the solution of the linear
system gives us the position of the landmark L. Thus, we form a set {); for every

snapshot taken. Equations (B.6) and (B.7) show an example of two snapshots,

LEQl:{hG%2|(U1—T1)Th:11{'7“1—H’I“1H2} (B.G)

a1 B1

LEQQ:{h€%2|(U2—7’2)Th:1)g"7"2—HT2H2} (B7)

a2 B2

where r1 and ro are the positions of the robot, and v; and v9 are any two points on a
line which is perpendicular to the line formed between the robot and the landmark, that
is angle 6. In essence, what we are trying to find is the Q1 N Q = (). Figure B.1 shows

1

a robot at three different positions, 7!, r2, and ™ at corresponding time intervals tg, 1,

and t,, that also represent three different snapshots.

The following equations, (B.8) and (B.9), show the process for a n number of snapshots.

Noise in the system is represented by variable ;.
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) (B.8)
hay, + €, = By
h € argmin Z(hai — Bi + €)? (B.9)
i=1

(Zn: aiaiT + q) h= (Zn: ai@) (B.10)
i=1 i=1

(& Y

h=C"1y (B.11)

In (B.10) C'is a 2 x 2 matrix and v € R2. The position of the landmark is, thus, given by
h where we are interested in its y-axis element, that is depth. In this experiment we have
used n = 1000 observations (also explained in the next subsection) with varying distances
between the landmark and the robot. We have performed 10 trials for each observation
in order to estimate the mean position of the landmark. In addition, the error, €;, in 0
is uniformly distributed and it has been tested with three different deviations £1°, £3°,
and £5°.

B.3.2 Optical Flow

In order for the robot to localise in an environment using optical flow vectors, a training
data set of n = 1000 observations has been implemented where a vector is observed at
varying distances between the robot and the landmark, and at varying velocities. More-
over, the distances and velocities chosen to create the training set approximate the real
distributions of distance and velocity when a robot navigates in an environment. Thus,
a joint probability distribution has been created by two continuous and independent

variables, that is distance, D, and velocity, F, and is expressed by (B.12),

foe(d,e) = fp(d)- fe(e) Vd,e. (B.12)

The velocity (in km/h) and the distance (in metres) variables have been drawn from
two Gaussian distributions with 4 =4, 0 = 1 and p = 11, ¢ = 3, respectively. The n
observations model the position of the optic flow vector in the plane under n varying
distances and velocities. Figure B.2 provides a pictorial representation of Gaussian

distributions for velocity and distance.
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FiGUrE B.2: Gaussian distributions used for modelling distance, D, and velocity, F,

in the optical flow strategy. Their mean and standard deviation are p = 11, 0 = 3

and pu = 4, 0 = 1, respectively. The range of their values is 2 < d < 20 (metres) for
distance and 2 < e < 6 (km/h) for velocity.

One assumption that needs to be met in our method is that the majority of the vectors
comprising a given landmark should have the same, or almost the same magnitude. In
addition, the orientation of the camera on the robotic platform is perpendicular to the
direction of motion so as a translational optical flow information is generated. During
the testing of the optical flow algorithm the velocity of the robot is not known. The only

information employed for inferring depth is the optical flow vectors of the landmark.

Regression analysis has been employed to estimate the distance between a landmark and
the robot based only on the observed length of the optical flow vectors. The regression

formula that expresses this distance is described by (B.13),

InD; =a+b-len; +¢; (B.13)

where In D; is the expected distance, a is the constant, b is the coefficient, len; is the
length of the optical flow vectors, and ¢; is the error. The following section presents the

results from the two strategies.

B.4 Results

In the least squares strategy, as it would be expected, the fit of the estimated distance
to the actual distance increases as the number of snapshots increase and as the mean
simulation error decreases. However, the larger the number of snapshots the greater
the computational cost. Table B.1 presents the R? statistic for various combinations

of number of snapshots and mean simulation error. This R? statistic for n snapshots
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and different error corresponds to the fit of the model D = 0+ 1 E(D) where D
is the actual distance and E(D) is the expected distance estimated through the least
squares method. The minimum number of snapshots is 4 as this is the number required

for the system to become overdetermined. Assuming that estimated distance is an

TABLE B.1: Performance of Least Squares method - R?

Snapshots n | R? (¢, £1°) R? (¢, £3°) R? (¢ +5°)
4 0.971 0.137 0.000
6 0.991 0.722 0.000
8 0.996 0.883 0.336
10 0.998 0.940 0.649
12 0.999 0.967 0.801
14 0.999 0.979 0.881
16 1.000 0.987 0.915
18 1.000 0.991 0.944
20 1.000 0.993 0.959

unbiased estimate of the actual distance, if linear regression is used to estimate (for each
combination of number of snapshots and mean simulation error) a and b in the function
D =a+0b-E(D), using the experiment’s data, it should turn out that the best estimates
are (approximately) a = 0 and b = 1. However, this is not the case as there seems
to be a tendency for this method to systematically underestimate distance, especially
when the mean simulation error is high and the number of snapshots low. The level of
underestimation is more obvious if in the previous function the constant is constrained to
be 0. Interestingly, even though the bias decreases as the number of snapshots increases
or the mean simulation error decreases, it is always significant as the standard error
of the coefficient decreases too. In the following Table B.2 the estimated coefficient of
expected distance is presented for each combination of number of snapshots and mean

simulation error. The confidence interval is 95%.

TABLE B.2: Performance of Least Squares method - Coefficient

Snapshots n | Coeff. (¢; +1°) Coeff. (¢; £3°) Coeff. (¢; £5°)
4 1.017 1.166 1.726
6 1.013 1.130 1.386
8 1.009 1.084 1.239
10 1.006 1.057 1.162
12 1.004 1.042 1.118
14 1.004 1.033 1.089
16 1.003 1.026 1.073
18 1.002 1.021 1.059
20 1.002 1.018 1.049

In the optical flow strategy, after experimenting with various functional forms, we con-

cluded that modelling the natural logarithm of distance as a linear function of the
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observed vectors’ length is the optimal method to estimate distance. Thus, linear re-
gression is utilised to estimate the combination of a and b that minimises the squared
error in (B.13). Equation (B.13) has also been employed to compute R? at different
velocity intervals in order to adapt to realistic implementations. The outputs of these

regression models are presented in Table B.3.

TABLE B.3: Performance of Optical Flow method

Velocity e (km/h) | Constant @ Coefficient b | R?
2<e<6 2.96 -0.075 0.6029
2<e<b 3.03 -0.09 0.6483
2<e<4 3.08 -0.11 0.7569
2<e<3 3.1 -0.143 0.8052

Obviously, velocity influences the length of the optic flow vectors and the smaller the
range used the better the estimation of the expected distance. However, we avoided
using velocity as a variable in the tests as this work is intended to be used in self-
localisation systems where the position of the robot is provided only by means of a laser

range finder. Hence, velocity cannot be estimated with a laser finder.

The results show that optical flow can perform better in cases where the mean error
is high and a small number of snapshots have been taken in the least squares strat-
egy. Nevertheless, when velocity range is large enough, optical flow does not perform

satisfactorily enough when compared to least squares.

B.5 Conclusion

In this work we have addressed the problem of depth estimation using two different
strategies, namely optical flow and least squares. The idea is to use a depth estimation
method in a self-localisation system where the only sensor used for providing odometry
data is a laser range finder. Such type of systems cannot operate in environments where
there are no ‘distinct’ features like corners. Thus, the addition of a visual sensor can

support the localisation process of the robot.

The results in this paper reveal that least squares is conditional on the number of
snapshots and the mean simulation error. Optical flow, on the other hand, is conditional
on the velocity of the robot. The results presented in this paper show that there is a

trade-off between accuracy and computational cost.

Acknowledgment

The authors would like to thank Dr Renato Cavalcante for his helpful comments on this

work.



Appendix C

Towards Optical Flow-based
Robotic Homing

Sotirios Ch. Diamantas, Anastasios Oikonomidis, and Richard M. Crowder. IJCNN
2010 (IEEE WCCI 2010), Barcelona, Spain, 2010.

Abstract

This paper presents a nowvel biologically-inspired approach for tackling the problem of
robot homing. In our method the only information employed is optical flow. Optical
flow, which is not a property of landmarks like colour, shape, and size but a property
of the camera motion, is used for localising an autonomous robot in a priori unknown
environment. Qur method exploits the optical flow ‘fingerprint’ of landmarks caused
by the motion of the robot in the environment. For this purpose, we have developed a
training algorithm that estimates the probability of observing the same landmark from
varying distances and velocities. Our method promises to be computationally efficient

and inexpensive. The simulation results we present show the validity of our methods.

C.1 Introduction

Visual navigation lies at the heart of mobile robotics. Homing (or inbound journey)
refers to the navigation process where an autonomous agent performs a return to its
home position after having completed foraging (or outbound journey; foraging is mainly
attributed to a biological agent). A robot may have to return to its base for a number
of reasons like recharging batteries, failure of a subsystem, or completion of a task.
The application areas of robots capable of performing homing are plenty and vary.
Search and rescue robots are in need in areas that have been hit by earthquakes or in
environments that are hazardous for humans Matsuno and Tadokoro (2004). Planetary

missions to other regions constitute another application area of robots whose navigation
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process involves returning back to their base. In this paper we have developed a novel
approach to tackle the problem of robot homing using visual modality as the only source
of information. No other sensor is provided to the robotic agent apart from two side-ways

cameras mounted on a simulated mobile platform.

Optical flow, that is the rate of change of image motion in the retina or a visual sensor,
is extracted from the motion of the autonomous agent. The orientation of the cameras
on the robotic platform are perpendicular to the direction of motion so as a translational
optic flow information is generated. Optic flow, which is not a property of the landmarks,
like colour, shape, and size, but a property of the camera motion has been used for
building topological maps in a priori unknown environment based on the optical flow
patterns of the landmarks. The novelty of our method lies in the fact that no information
is given such as the position or the velocity of the robot but only the optical flow
‘fingerprint’ of the landmarks caused by the motion of the robot. For this purpose, a
training algorithm has been deployed and a probability is inferred that is computed from

the similarity of the optical flow patterns between the outbound and inbound journeys.

Biology is seen as an alternative solution to the problems robots encounter which includes
algorithmic complexity, performance, and power consumption among others. Biological
inspiration provides simple, yet effective methods for the solutions of such problems.
The careful examination of those methods has twofold gain. The study of the principles
of biological organisms entails making better autonomous systems that will, in turn,
help us perceive and understand better the underlying mechanisms that underpin the

biological organisms.

This paper comprises five sections. Following is Section II where related as well as
background work is presented. In Section III the methodology of the homing model is
described. Section IV presents the results of the statistical model on the homing process
of navigation. Finally, Section V epitomizes the conclusions drawn from this work and

indicates a number of areas that further research is attainable.

C.2 Related Work

A large number of insects use optic flow for navigation. Insects like Drosophila use the
apparent visual motion of objects to supply information about the three-dimensional
structure of the environment. The fly Drosophila uses optic flow to pick near targets.
Collett in Collett (2002) shows that in insects the task of evaluating distances between
objects is made easier by making side-to-side movements of the head strictly transla-
tional and disregarding any rotational components that can influence the distance to
the objects. Looming, i.e., image expansion, can also distort the actual distance to the
object as the apparent size compared to the physical size of the object differs. Collett

(2002) in his experiments ascertains that Drosophila like many insects limit rotational
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flow during exploratory locomotion. In fact, Drosophila move in straight-line segments
and restrict any rotation to saccades at the end of each segment. Schuster et al. Schuster
et al. (2002) have used virtual reality techniques to show that fruit flies use translational

motion for picking up the nearest object while disregarding looming.

Ladybirds also move in straight-line segments and rely on translational optic flow rather
that looming cues. Other animals like locusts and mantids turn their head from one side
to the other just before jumping. Kral and Poteser Kral and Poteser (1997) suggest that
locusts and mantids use translational motion to infer the three-dimensional structure
of the environment and in particular the distance to the object they wish to approach.
In some other experiments performed by Tautz et al. Tautz et al. (2004) trained bees
had to travel large distances across various scenes that included both land and water.
The results showed that the flights over water had a significantly flatter slope than the
ones above land. This suggests that the perception of distance covered by bees is not
absolute but scene-dependent where the optic flow perceived is evidently larger. This
may also suggest why some bees are drowning by ‘diving’ into lakes or the sea while
flying above water. The distance and direction to a food source is communicated in the
bees by means of waggle dances that integrate retinal image flow along the flight path
Esch et al. (2001), von Frisch (1993).

Two well-known homing models are the snapshot and the Average Landmark Vector
(ALV) model. The snapshot model is an implementation of the template hypothesis
Cartwright and Collett (1983), Cartwright and Collett (1987a). It requires a panoramic
snapshot of the goal position, be it a hive, nest, or a food source. Along with the
snapshot the compass direction is stored. The snapshot model is an image matching
process between a snapshot taken at a goal position and a snapshot containing the
current view. The image obtained from the omnidirectional camera is unwrapped and
a threshold operation is performed to yield a one-dimensional black and white image.
The landmarks are denoted as black marks on the image. Then, this is compared with
the snapshot of the current view to produce the homing vector. The homing vector is a
two-dimensional vector pointing towards the home position and is obtained by summing
up all radial and tangential vector components. The ALV model Lambrinos et al. (2000)
uses, too, a processed panoramic image but, in contrast to the snapshot model, it need
not be stored. Only a two-dimensional vector for each landmark needs to be stored that
points to the direction of the landmark. Matching and unwrapping of the image are not
required since the calculations are performed on the basis of vector components. Thus,
ALV is more parsimonious than the snapshot model. Nevertheless, snapshots in the
ALV model have to be captured and processed to produce a one-dimensional picture, as

is in the snapshot model. A compass information is required for the ALV model as well.

The snapshot and the Average Landmark Vector are two models that have been inspired
by the way insects perform homing. On one hand, their main advantage is the simplicity

of the method that entails a low computational complexity. On the other hand, their
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disadvantages are that both methods are applied at the end of the homing process, that
is, when an agent is close to its home position. Moreover, all landmarks need to be visible
both in the current snapshot as well as in the stored snapshot, that is, they must be the
same landmarks in both snapshots. In addition to the biologically inspired methods,
other methods of homing have been developed that make use of the Extended Kalman
Filter (EKF) or homing methods that are based on panoramic vision Argyros et al.
(2005). The former are trying to tackle the Simultaneous Localisation and Mapping
(SLAM) problem and make use of probability to build accurate maps that are based on
vehicle position estimates. In turn, these maps provide a more accurate estimate of the

vehicle’s position.

A work by Newman et al. (2002) addresses the problem of homing through the locali-
sation and mapping method using a laser scanner and wheel encoders. In their method
they extract line segments from a laser scanner that act as features while the position
of the robot is calculated from wheel encoder readings. A major issue of the SLAM
methodology lies in the accumulation of errors as the robot navigates. The slippage of
the terrain causes erroneous sensor readings and, the harsher a terrain is, the larger the
accumulation of errors that occur. The main disadvantage of SLAM, however, is the
computational cost that increases quadratically as new observations are made by the
sensor be it a laser scanner or a camera Smith et al. (1988); Davison (2003). Updat-
ing all features and the joint covariance matrix each time a new observation is made
adds significantly to the computational cost of the method. Another issue in the SLAM
methodology is the data association problem where features or landmarks look alike.
FastSLAM uses Rao-Blackwellised particle filters and is a method that tries to alleviate
the data association problem Hahnel et al. (2003); Montemerlo et al. (2002). SLAM
methods can be applied to a wide range of environments, such as indoors, outdoors,
dynamic, or large-scale environments. It can, thus, be understood why SLAM has risen

to one of the most research-intensive problems in the robotics field.

C.2.1 Applications of Optical Flow

Lately a growing number of autonomous vehicles have been built using techniques in-
spired by insects and, in particular, optical flow. One of the first works that studied
the relation of scene geometry and the motion of the observer was by Gibson (1974). A
large amount of work, however, has been focussed on obstacle avoidance using optical
flow Camus et al. (1996); Warren and Fajen (2004); Merrell et al. (2004). The technique,
generally, works by splitting the image (for single camera systems) into left- and right-
hand side. If the summation of vectors of either side exceeds a given threshold then
the vehicle is about to collide with an object. Similarly, this method has been used for
centring autonomous robots in corridors or even a canyon Hrabar et al. (2005) with the

difference that the summation of vectors this time must be equal in both the left-hand
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side and the right-hand side of the image. Ohnishi and Imiya (2007) utilise optical flow
for both obstacle avoidance and corridor navigation. The performance of optical flow
has also been tested in underwater colour images by Madjidi and Negahdaripour (2006).
Vardy (2005) deploys various optical flow techniques which are compared using block

matching and differential methods to tackle homing.

In a recent work implemented by Kendoul et al. (2009) optic flow is used for a fully au-
tonomous flight control of an Unmanned Aerial Vehicle (UAV). The distance travelled
in this UAV is calculated by integrating the optical flow over time. A similar work for
controlling a small UAV in confined and cluttered environments has also been imple-
mented by Zufferey et al. (2008). Barron et al. (1994) discuss the performance of optical
flow techniques. Their comparison is focussed on accuracy, reliability and density of the
velocity measurements. Other works employ optic flow methods for depth perception
Simpson (1993), motion segmentation Blackburn and Nguyen (1995), or estimation of

ego-motion Frenz and Lappe (2005).

A similar technique to optical flow developed by Langer and Mann (2003) called optical
snow arises in situations where camera motion occurs in highly cluttered 3D environ-
ments. Such cases involve a passive observer watching the fall of the snow, hence, the
name of the method. Optical snow has been inspired by research in animals that inhabit
in highly dense and cluttered environments; such animals include the rabbit, the cat, and
the bird. The properties of the optical snow are that yields dense motion parallax with
many depth discontinuities occurring in almost all image points. This comes in contrast
to the classical methods that compute optical flow and presuppose temporal persistence
and spatial coherence. In the work of Langer and Mann (2003) the properties of optical
snow in the Fourier domain are presented and investigate its computational problems

on motion processing.

C.2.2 Mathematical Foundations of Optical Flow

This section describes the mathematics that underlie the optic flow algorithms, and in
particular, the Lucas and Kanade (1981) (LK) algorithm that has been employed in
this research work. In order for the optic flow algorithms to perform well, some suitable
images need to be chosen. This suitability refers to images that have high texture and
contain a multitude of corners. Such images have strong derivatives and, when two
orthogonal derivatives are observed then this feature may be unique, and thus, good for
tracking. Tracking a feature refers to the ability of finding a feature of interest from
one frame to a subsequent one. Tracking the motion of an object can give the flow of
the motion of the objects among different frames. In Lucas-Kanade, algorithm corners
are more suitable than edges for tracking as they contain more information. For the
implementation of the LK algorithm the OpenCV (2008) library has been used.
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The optic flow algorithm of Lucas-Kanade presupposes three main criteria to produce

satisfactorily results. These are:

I. Brightness constancy. The brightness of a pixel does not change from frame to
frame, that is I(z,y,t) = I(z +u,y + v, t + 1).

II. Temporal persistence or small movements. The motion of the object that is tracked
moves smoothly from frame to frame, that is I,u+ I,v+ I; = 0, where v, u are the

x,1y components of the velocity 1.

III. Spatial coherence. Neighbouring points of a pixel that belong to the same surface
have typically similar motion, and project to nearby points on the image plane
Bradski and Kaehler (2008).

The equation in the second criterion is an under constrained equation since it involves
two unknowns for any given pixel and cannot be used to solve the motion of a pixel
in the two dimensions. For this reason the third criterion is used as an assumption to
solve the full motion of a pixel in the two dimensions. The third criterion assumes that
the neighbouring pixels of any given pixel move coherently as they belong to the same
object and project to the same image plane as the given pixel projects. Thus, for solving
the problem in case, the brightness values of the neighbouring pixels are taken and solve
a system of linear equations Bradski and Kaehler (2008). Hence, if we take a window
of 5 x 5 pixels a system of 25 linear equations needs to be solved. However, if a window
is too small the aperture problem may be encountered where only one dimension of the
motion of a pixel can be detected and not the two-dimensional. On the other hand, if a
window is too large then the spatial coherence criterion may not be met. Nevertheless,
the system that needs to be solved following a window of 5 x 5 pixels is expressed by

(C.1)

I(p1)  Iy(pl) Ii(p1)
Iw(?2) I,(p2) H o It(?Q) ' 1)
L(p25) I,(p25)] a—9x1 L (p25)
—_————
A=25x%x2 b=25x%x1

The goal on the above system of linear equations is to minimise ||A@ —b||? where A = b

is solved by employing least-squares minimisation as in (C.2),

(AT Ay = AT (C.2)

where AT A, i, and ATb are equal to (C.3),



Appendix C Towards Optical Flow-based Robotic Homing 147

NI Y LIy |u| | XL (©3)
S LI, S22 |v] | LL '
~~ ~——
AT A U ATh

and the solution to the equation is given by (C.4)

- u
u =
v

If AT A is invertible, i.e., no zero eigenvalues, it means it has full rank 2 and two large

= (ATA)~1ATh. (C.4)

eigenvectors. This occurs in images where there is high texture in at least two directions.
If the area that is tracked is an edge, then AT A becomes singular, that is (C.5),

fo Z—Tﬂtly _Iy _ 0 C5)
S LI, SI2||L| |0 (C.

where —1I, I, is an eigenvector with eigenvalue 0. If the area of interest is homogeneous
then AT A ~ 0 implying 0 eigenvalues. The reason that the LK algorithm was chosen
is that it is a fast and accurate optical flow algorithm. It relies on local information
rather than global as is the nature of Horn and Schunck (1981) algorithm. This has
the advantage of performing fast optic flow operations. Nevertheless, the disadvantage
of local information, that is derived from a small window, is that large motions can
move out of the local window. The pyramidal approach of the LK algorithm uses a
coarse-to-fine iterative method, that is, various layers in scale-space to overcome the
local information problem. Thus, the optical flow problem is first solved at the top layer
by tracking over large spatial scales and then as it proceeds downwards to the lower

layers the initial velocity criteria are refined until it arrives at the raw image pixels.

C.3 Methodology

In this section we describe how the optical flow ‘signature’ of the landmarks, that is
caused by the perceived motion of the robot in the environment, can be used to localise
the robot during the homing process. Various landmarks have been modelled and simu-
lated from which the robot passes through. The simulated landmarks have geometrical
shapes like a sphere or a rectangular and they are textured in order to produce large
amounts of optic flow (as is in real environments). As mentioned in Section I the simu-
lated robot consists of two side-ways cameras which are perpendicular to the direction
of motion. This creates a translational optic flow as the robot navigates through the

environment. Every landmark in the environment ‘emits’ a number of optic flow vectors
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that are dependent on the distance between the robot and the landmark, and the veloc-
ity of the robot. One of the advantages of our method is that images are only captured
and are not used for storage or comparison. Storing and comparing only the properties
of vectors between different frames, that is, the mean position of all the vectors and the
number of vectors, reduces the computational complexity and the cost of the homing

process.

During the outbound trip of the robot the camera calculates and stores the optic flow
vectors that are generated by the motion of the vehicle. During this phase the robot
builds a topological map from the optical flow ‘fingerprint’ of the landmarks. After the
foraging trip has completed the homing trip is initiated. In the homing phase, the robot
compares the optical flow patterns it currently perceives with the ones occurred during
the foraging journey. If the similarity score (i.e., probability) between the two patterns
is above a given threshold, then the robot assumes the current landmark observed is
the same with the landmark observed during the outbound trip. This information is
then used to localise the robot within the topological map. The similarity score of the
vectors is a probabilistic result of the Fuclidean distance of the vectors between the

current image and the image taken during the outbound journey.

In order for the robot to localise in an environment using optic flow vectors, a training
data set of n = 1000 observations has been implemented where a vector is observed
at varying distances between the robot and the landmark, and at varying velocities.
The distances and velocities chosen to create the training set approximate the real
distributions of velocity and distance when a robot navigates in an environment. Thus,
a joint probability distribution has been created by two continuous and independent

variables, that is velocity, C, and distance, D, and is expressed by (C.6)

fep(e,d) = fo(c) - fp(d) Ve, d. (C.6)

The velocity and the distance variables have been drawn from two Gaussian distributions
with g = 4,0 = 1 and p = 11,0 = 3, respectively. The n observations model the
position of the vector in the plane in a varying combination of distances and velocities.
One assumption that needs to be met in our method is that the majority of the vectors
comprising a given landmark should have the same, or almost the same magnitude. In
order to solve the similarity problem between vectors, the mean, xy, yx, or centre point
of every vector is taken. Thus, summing up all the mean points of the training set and
dividing by the number of observations we end up having the mean of the means, z, ¥,

as shown in (C.7)

Tk, yr  n = 1000. (C.7)
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Ficure C.1: Histogram of vector deviations of the training algorithm and the log-
normal probability density function (pdf) fit. Mean and standard deviation are p = 2.24
and o = 0.86, respectively.
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FicurE C.2: Cumulative density functions (cdf) of vector deviations and the log-
normal distribution.

The mean of the means in an optic flow pattern can be visualised as the centre of gravity
in a physical system. We then compute the Euclidean distances, i, between the mean

of the means and the n observations as expressed by (C.8)

Xk =V (@r = )2 + (ye — 9)*. (C.8)

The histogram produced by the Euclidean distances, xg, forms a log-normal probability
density function (pdf) with pu = 2.24 in log location and o = 0.86 in log scale. Figure
C.1 shows the histogram of vector deviations and the probability density function of
the log-normal. The log-normal pdf is deployed in order to infer a probability as to
how likely it is for the vectors of the current snapshot to have deviated when compared
with the vectors of a snapshot stored in memory. Figure C.2 depicts the cumulative

distribution function (cdf) of vector deviations and the log-normal.
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The cumulative density function of log-normal is expressed by (C.9), where erfc is the
complementary error function and ® is the standard normal cdf. The probability density

function of log-normal is given by (C.10)

) 1 Ind—pl Ind —p
Fx(6;p,0) = 26rfc[ 7 ] —<1>< . > (C.9)
1 (lntsf,u,)2
fx(8;p,0) 22 §>0. (C.10)

Thus far, we have explained the methodology of the training algorithm. We now move
on to the process of calculating a probability for the patterns observed by the robot
during the foraging and homing process. This probability will aid the robot localise
itself in the environment. During the homing navigation process, the robot calculates
the Euclidean distance, §, between the mean position, Z, ¥, of all the vectors in a given
landmark with the mean position of the vectors of the landmarks stored in the database.
Equations (C.11), (C.12), and (C.13) describe the process for two distinct landmarks.
In (C.11), (C.12), r and s are the number of vectors for two distinct landmarks i and
4, one of which is observed during the outbound trip while the other one is observed

during the inbound trip.

1 T
=S 2y 11
Ty i = — azlx y (C.11)
I
T3 ¥i =73 Zwmyb (C.12)
b=1
6= /(@ — ) + (i — 4))? (C.13)
P=1-P; (C.14)

The log-normal cdf then gives us the probability Ps based on the Euclidean distance
between the two sets of vectors. It is then subtracted from 1 to give the probability P as
is in (C.14). In addition, the probability P of the log-normal is multiplied by the ratio
of the number of the vectors as shown in (C.15) with min; being the landmark ¢ with

the minimum number of vectors and max; being the landmark j with the maximum

Pr=P (mm> (C.15)

max;

number of vectors.
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Ficure C.3: Snapshot of the reference landmark and its optical flow ‘signature’ taken
at a distance of 11m and a velocity of 4km/h.
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Figure C.4: Clustering of two landmarks by employing the histogram of their vectors.

This results to the total probability (or similarity score), Pr. Thus, even if the Euclidean
distance, §, between two sets of vectors is small, the total probability, Pr, can be low
if the ratio of the vectors is small. Hence, two patterns which are totally different
may have a small FEuclidean distance that yields a high probability. Multiplying the
probability value, P, by the ratio of the number of vectors can drop significantly the
total probability value, Pr, assuming that the number of vectors of the two sets are not
of the same multitude. The landmark of Fig. C.3 acts as a reference for the following
snapshots in order to demonstrate the similarity score at varying distances and velocities,
and between different landmarks. The optic flow images are created by calculating the
motion of a landmark between two contiguous frames. It should also be noted that the

flow vectors appear upside down since the images are read from top to bottom.

In this work, a clustering algorithm has also been implemented for counting the number
of landmarks. The counting of landmarks is a method that is used by insects as revealed
in a recent work by Dacke and Srinivasan (2008). Although the clustering algorithm is a
rather simple one, distinguishing between different landmarks is an important task. The

number of landmarks each one of the two cameras can distinguish is two. Therefore four
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is the maximum number of landmarks that can be seen at any time. However, in the
case where one or more landmarks have gone missing then the robot can still recognise
its location from the optical flow ‘fingerprint’ of the remaining ones. The clustering
algorithm creates a histogram of the vectors and finds the minimum point between the
two peaks of the histogram. Figure C.4 shows an application of the algorithm with two
landmarks. In the same figure some outliers have been located, that is, vectors with

small length that have been disregarded.

C.4 Results

The homing model described in this paper has been implemented in C++ programming
language and the MATLAB (2005) software has been used for the analysis of the data.
The breve simulator Klein (2002) was used for the creation of landmarks in 3D. The
algorithm was run offline on a Pentium 4 machine at 3.00 GHz with 1.00 GB of RAM. The
following graphs, Fig. C.5, demonstrate the effectiveness of our approach by comparing
the vectors of the reference image, Fig. C.3, taken at a distance of 11m and a velocity of
4km/h with the vectors of the same landmark taken at different distances and velocities.
Figures C.5(a), C.5(b), and C.5(c) depict the similarity score at a distance of 11m and
a velocity of 5km/h while Figs. C.5(d), C.5(e), and C.5(f) depict the similarity score at

a distance of 8m and a velocity of 4km/h.

The circle in the graphs represents the mean position of all the vectors that comprise
a landmark. The green, (Gr), optic flow vectors refer to the reference image while the
blue, (Bl), ones refer to the current snapshot. Deviation is the Euclidean distance, ¢,
between the mean position of the vectors of the current snapshot, z, %, with the mean
position of the vectors of the reference image. The number of elements, i.e., vectors,
in the current snapshot differs from frame to frame as the angle of perception changes.
Time, ¢, denotes the time steps the images were captured. It is clear that the similarity
score is quite high in all three images, Figs. C.5(a)-C.5(c). This shows that velocity
does not influence significantly the patterns of the images. However, as it is expected,
the similarity score drops as time step, t, changes, Fig. C.5(b) and Fig. C.5(c). In the
remaining graphs, Figs. C.5(d)-C.5(f), of Fig. C.5, the distance at which images were
taken is 8m while the velocity has been kept the same as is in the reference image, that is,
4km/h. The similarity score in these figures appears to be lower revealing that distance
influences more than velocity the optic flow patterns. Nevertheless, the similarity score

can be considered quite satisfactory, in general.

Figure C.6 depicts two different landmarks and the similarity score is inferred against
the reference landmark of Fig. C.3. The distance and velocity at which they were
captured remains the same as is in the reference image. In the first graph, Fig. C.6(c),

the similarity score is quite low, that is 2.04% while in the next graph, Fig. C.6(d), the
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Ficure C.5: Optical flow vectors of the reference landmark at its initial setting
(distance=11m, velocity=4km/h) against the optical flow vectors of the same land-
mark taken at a distance of 11m and a velocity of 5km/h, Figs. C.5(a), C.5(b), C.5(c),

and at a distance of 8m and a velocity of 4km/h, Figs. C.5(d), C.5(e), C.5(f).

similarity score is high enough, that is 39.13% although the two landmarks are different

to each other. In the former case, the probability is low because deviation is large while

in the latter, the probability is high because deviation is small. As it can be seen in
the last graph, Fig. C.6(d), the texture and the shape of the landmark, Fig. C.6(b),

resemble that of the reference landmark, Fig. C.3. In cases such as this, the matching
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algorithm, and hence the localisation of the robot can be erroneous.

Finally, in Fig. C.7, a comparison between two landmarks is attempted. In the first
graph, Fig. C.7(c), two landmarks are captured initially at a distance of 5m from the
sphere-like landmark and 11m from the tower-like landmark, Fig. C.7(a). In the same
graph, a second snapshot has been captured but at a distance of 13m from the tower-
like landmark and 7m from the sphere-like landmark. The velocity at which the initial
snapshot was taken is 4km/h while at the current (second) snapshot the velocity was
increased to 5km/h. Their similarity score is at an acceptable level, that is, 22.55% for
the tower-like landmark and 27.08% for the sphere-like landmark. In the graph of Fig.
C.7(d) the landmarks of Fig. C.7(a) at their initial snapshot are compared with two
different landmarks, Fig. C.7(b). The hill-like landmark is at a distance of 7.0m while
the tower-like landmark is at a distance of 13m. The velocity the image was taken is
5km/h. The probability in this case is quite low revealing the dissimilarity between the
landmarks. In particular, the similarity score of the tower-like landmarks is at 8.34%
while for the other two landmarks is at 0.93%.

C.5 Conclusions and Future Work

The simulation experiments of this work show that a similarity score of 20.0% and above
is adequate to identify and recognise a landmark from its optical flow ‘fingerprint’ . The
results are quite encouraging and sensible, especially if we take into consideration the fact
that the only information used was optic flow. Our method promises to tackle the homing
problem in a priori unknown environment using a parsimonious biologically-inspired
approach to solve a well-studied problem. Of significant interest is that our model can
also help explain the methods employed by insects, and in particular honeybees, to
perform localisation and thus homing. To support this, a recent study by Avargues-
Weber et al. (2009) reveals that honeybees are capable of discriminating faces. It could
well be the case of optical flow patterns. In addition, our model does not require the
storage or the processing of images every time matching is to be performed. Only the
properties of the vectors are stored in every frame, that is, the mean position of all the

vectors and the number of vectors.

Future work will focus on using Bayesian statistics to extend the optic flow model to
complex scene environments. In this case, a prior distribution needs to be calculated
and a likelihood to be determined. The posterior distribution will enable the model to
adapt and improve as new observations enter the model. In addition, a robust cluster-
ing algorithm for classifying various landmarks would be advantageous. However, the
problem in this case is that we do not know which vectors belong to which landmarks.

An unsupervised clustering method, therefore, needs to be developed. This problem can
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also be overcome if there is no counting of landmarks and the images are not fragmented

into landmarks, but instead are taken as whole piece of information.

(a) Tower-like landmark (b) Parallelogram landmark

Landmarks: 1, Gr elements: 234, Bl elerments: 138, Deviation: 44.40, Probability: 2.04% Landmarks: 1, Gr elements: 234, Bl elements: 147, Deviation: 7.16, Probability: 39.13%
250 280
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(c) Optic flow vectors between the tower-like landmark (d) Optic flow vectors between the parallelogram land-
and the reference landmark. mark and the reference landmark.

Ficure C.6: Comparison of optic flow vectors between two different landmarks and

the reference landmark. The distance of 11m and the velocity of 4km/h remains the
same as is in the reference landmark.
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(a) A sphere-like landmark
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(c¢) Optic flow vectors captured initially at a distance of (d) Optic flow vectors between the landmarks of Fig.
5m from sphere-like landmark and 11m from the tower- C.7(a) at their initial snapshot and two new different
like landmark. The initial velocity at which image was landmarks, Fig. C.7(b), located at a distance of 11m
taken is 4km/h. The current (second) snapshot has from the tower and 8.0m from the hill-like landmark.

been taken at 2m further away from the initial snapshot The velocity the image was taken is 3km/h.

and at a velocity of 5km/h.

Figure C.7: Comparison of optic flow vectors between identical and different land-
marks.
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