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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCES AND MATHEMATICS

SCHOOL OF ENGINEERING SCIENCES

Doctor of Philosophy

UNSTEADINESS IN SHOCK-WAVE/BOUNDARY-LAYER INTERACTIONS

by Emile Touber

The need for better understanding of the low-frequency unsteadiness observed in shock

wave/turbulent boundary layer interactions has been driving research in this area for

several decades. This work investigates the interaction between an impinging oblique

shock and a supersonic turbulent boundary layer via large-eddy simulations. Special

care is taken at the inlet in order to avoid introducing artificial low-frequency modes

that could affect the interaction. All simulations cover extensive integration times to

allow for a spectral analysis at the low frequencies of interest. The simulations bring

clear evidence of the existence of broadband and energetically-significant low-frequency

oscillations in the vicinity of the reflected shock, thus confirming earlier experimen-

tal findings. Furthermore, these oscillations are found to persist even if the upstream

boundary layer is deprived of long coherent structures.

Starting from an exact form of the momentum integral equation and guided by data

from large-eddy simulations, a stochastic ordinary differential equation for the reflected-

shock foot low-frequency motions is derived. This model is applied to a wide range

of input parameters. It is found that while the mean boundary-layer properties are

important in controlling the interaction size, they do not contribute significantly to

the dynamics. Moreover, the frequency of the most energetic fluctuations is shown to

be a robust feature, in agreement with earlier experimental observations. Under some

assumptions, the coupling between the shock and the boundary layer is mathematically

equivalent to a first-order low-pass filter. Therefore, it is argued that the observed low-

frequency unsteadiness is not necessarily a property of the forcing, either from upstream

or downstream of the shock, but simply an intrinsic property of the coupled dynamical

system.
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Symbols

A parameter in section 7.3

Aε0,∆σ set of instants, see (6.2a)

A0 parameter, q [L/(ū1φ)]2

B parameter in section 7.3

C Sutherland’s law constant, S/T̄ 1,

or a parameter in section 7.3 (see context)

Cf skin friction, 2τw/(ρ̄1ū
2
1)

Cf0
skin friction at reflected-shock foot

CM MTS model constant, 0.03

CT MTS model constant, 10

c speed of sound

D parameter in section 7.3

D compact subset of the R3 space

Et total energy

Ĕt resolved total energy

F similarity thickness function, [δi(ξ)− δi(ξ = 0)]/∆i, see (7.10)

F ′ derivative of F , dF/dξ

f frequency

fc cutoff frequency

G, G∗ convolution kernels

H reflected-shock mean and instantaneous shock-crossing point height,

see figure 7.6
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Symbols xv

h time-averaged zero streamwise velocity contour height

or instantaneous shock-crossing height (see context)

h0 time-averaged shock-crossing height (see figure 7.1)

K streamwise distance between the time-averaged reflected-shock foot

and the reflected-shock mean and instantaneous shock-crossing point,

see figure 7.6

k linear-dependence coefficient of s on ε, s/ε

kes SGS kinetic energy in the MTS model

kx stream-wise wavenumber

kξr
wavenumber in the reflected-shock direction

L interaction length, x̄0 − x̄imp

Lx, Ly, Lz streamwise, wall-normal and spanwise domain length

Lsep separation length, x̄at − x̄sep

l0 streamwise distance between the mean shock-foot and shock-crossing

positions (see figure 7.1)

M Mach number (flow-velocity to speed-of-sound ratio)

M momentum-thickness integrand, ρu[1− u/ū1]/[ρ̄1ū1]

ṁ reversed mass flow rate per unit width, see (6.1)

N number of periods covered by a sine wave at f = 0.035ū1/L

Nx, Ny, Nz streamwise, wall-normal and spanwise number of grid points

N measure of the set Aε0,∆σ, see (6.2b)

Pr Prandtl number (viscous to thermal diffusion rates ratio), 0.72

Prt turbulent Prandtl number, 1.0

P0 stagnation pressure

P2 ratio p+
2 /p̄1

P3 ratio p̄3/p̄1

p pressure

q proportionality coefficient in (7.54b), or variance of C ′′
f0

in (7.60)

q conservative-variable vector, [ρ, ρu, ρv, ρw, ρEt]
T

R parameter in (7.45)

Ra auto-correlation function, Ra(τ) = a′(t0)a′(t0 + τ)/a′(t0)a′(t0)

Re Reynolds number (inertial to viscous forces ratio)



Symbols xvi

Reδ̌1
Reynolds number based on the code reference length, ρ̄1ū1δ̌1/µ̄1

Reδ1 Reynolds number based on the displacement thickness, ρ̄1ū1δ1/µ̄1

Reδ2 Reynolds number based on the momentum thickness, ρ̄1ū1δ2/µ̄1

Reτ Reynolds number based on the friction velocity, ρ̄1uτδ0/µ̄1

R3 ratio ρ̄3/ρ̄1

r, r′, r′′ model coefficients, see section 7.3

r0 timescale ratio, tf/ts

S Sutherland’s temperature, 110.4K

S power-spectral-density function

Sij strain-rate tensor, (∂ui/∂xj + ∂uj/∂xi)/2

S∗
ij deviatoric part of the strain-rate tensor

Sp wall-pressure power-spectral-density function

St Strouhal number, fLsep/ū1 or fL/ū1 (see context)

s mean to instantaneous shock-crossing points streamwise distance

T total temperature, or a time interval (see context)

Taw adiabatic wall temperature

Tc temperature computed using the Crocco-Busemann relation

TS MTS-model timescale

Tsim simulation runtime

T̄ 1 freestream total temperature upstream of the interaction

T0 stagnation temperature

t time

t⋆ normalised time, tū1/L

tf timescale associated with upstream turbulence structures, δ0/ū1

ts timescale associated with the low-frequency shock motions

t0 a chosen startup time

U+
vd mean van Driest velocity profile in friction-velocity units

u, v, w stream-wise, wall-normal and span-wise velocity

uc convection velocity (see context for details)

ū1 freestream velocity upstream of the interaction

uτ friction velocity,
√

(µw/ρw)[∂u/∂y]w

x, y, z stream-wise, wall-normal and span-wise direction

x̄at mean boundary-layer-reattachment location

x̄imp mean location of the extension of the impinging shock to the wall

x̄sep mean boundary-layer-separation location



Symbols xvii

x̄0 mean location of the extension of the reflected shock to the wall

Greek

α time-averaged reflected-shock angle (see figure 7.1)

β incident-shock angle or span-wise wave-number, 2π/λz (see context)

βy grid-stretching parameter in the wall-normal direction

Γ Langevin force in (7.54a)

γ specific-heat ratio, 1.4

∆i thickness amplitude function, δi(ξ = 1)− δi(ξ = 0), see (7.10)

∆t time step

∆x, ∆y, ∆z local grid spacing (stream-wise, wall-normal and span-wise direction)

∆, ∆̂, ∆̂ filter cutoff lengthscale

δ Dirac function

δ0 boundary-layer 99% thickness

δimp
0 boundary-layer thickness at the incident-shock

impingement location in the absence of the shock

δ1 displacement thickness,
∫ h
0 [1− ρu/ (ρ̄1ū1)] dy, h > δ0

δimp
1 boundary-layer displacement thickness at the incident-shock

impingement location in the absence of the shock

δ̌1 inlet boundary-layer displacement thickness based on the

van Driest velocity profile using the incompressible definition

δ2 momentum thickness,
∫ h
0 [ρu/ (ρ̄1ū1)] (1− u/ū1) dy, h > δ0

δp pressure thickness,
∫ h
0 [1− p/ph] dy, h > δ0

δρ density thickness,
∫ h
0 [1− ρ/ρh] dy, h > δ0

ε reflected-shock foot displacement with respect to its mean position

ε̇ reflected-shock foot velocity, dε/dt

ζ normalised reflected-shock foot displacement, ε/L

ζ̇ speed of the normalised reflected-shock foot displacement, dζ/dt⋆

η vertical displacement of the shock-crossing point, h− h0 (see figure 7.1)

ηr reflected-shock displacement with respect to its mean position

Θi mean thickness amplitude, ∆i



Symbols xviii

θ wedge angle

ϑ velocity component in the reflected-shock normal direction

ι instantaneous reflected-shock angle (see figure 7.6)

κi linear-dependence coefficient of ∆i on η, [∆i −Θi]/η

κ von Karman constant (assumed to be 0.41)

κ (tanα+ tan β) sin (2α) sin [2 (α+ θ)] / (tan β (1− 1/ tanα)− 1)

Λ linear-dependence coefficient of C̃f0
on ζ, C̃f0

/ζ

λ length of a superstructure

λz span-wise wavelength

µ dynamic viscosity

µ̄1 freestream dynamic viscosity upstream of the interaction

ν kinetic viscosity, µ/ρ

νt eddy viscosity

ξ moving coordinate system, (x+ l0 − ε)/(l0 − ε+ s)

ξ̄ normalised streamwise axis, (x− x̄0)/L

ξr longitudinal position along the reflected shock

ξ′ normalised streamwise axis, (x− x̄sep)/Lsep

Π parameter, tanβ/[2F ′(0) (tanα+ tanβ)]

π ratio of the circumference of a circle to its diameter (3.141592 . . .)

̟ velocity component along the reflected-shock direction

ρ fluid density

ρ̄1 freestream density upstream of the interaction

σ standard deviation of a signal

σij subgrid-scale stress tensor

ς component of the sound speed along the reflected-shock direction

τ correlation time

τc characteristic correlation time

τij viscous shear stress

τs system characteristic time scale, 1/Φ



Symbols xix

τw time-averaged wall shear-stress, µw[∂u/∂y]w

τ̆ resolved viscous shear stress

υ steady term in (7.24)

Φ ODE damping coefficient, ū1φ/L

φ normalised ODE damping coefficient, see (7.26b) and (7.53b)

φmax ODE cutoff Strouhal number, φ/(2π)

ϕp disturbance phase angle with respect to a predefined reference

χ parameter, [2γ + γ (γ− 1) M2
1]/[γ + 1]

Ψi SGS heat flux

ψ forcing in (7.26c)

Ω power-law exponent, 0.67

ωi disturbance growth rate

Subscripts

1, 2, 3 the quantity is evaluated in the potential-flow region: 1 = upstream,

2 = after the incident shock but before the reflected shock,

3 = after interaction (not to confuse with vector indices, see context)

e the quantity is evaluated at the boundary-layer edge

i, j, k vector index: 1 = stream-wise, 2 = wall-normal

and 3 = span-wise direction

max quantity maximum-value

min quantity minimum-value

w the quantity is evaluated at the wall

Superscripts

∗ denotes the deviatoric part of the tensor it is applied to

⋆ denotes that the dimensional variable is used
+ denotes that the variable is expressed in wall-units, y+ = yuτ/νw

and u+ = u/uτ , or denotes the top side of region 2 in chapter 7

(see figure 7.1)

− denotes the bottom side of region 2 (see figure 7.1)
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Operators

ā time-averaged or grid-filtered variable (see context)

ã Favre-filtered variable, ρa/ρ̄ (not to confuse with the triple

decomposition, see context)

a′, a′′, ã triple decomposition, see (6.4a)

â test-filtered variable

̂̃a result from test-filtering the Favre-filtered variable

̂̄a result from test-filtering the grid-filtered variable

〈a〉α α-averaged value of a

〈·〉ε0,∆σ conditional-average operator, see (6.2c)

ǎ van-Driest transformed field,
∫ a(y)
a(y=0)

√
ρ/ρw da′

Im(a) imaginary part of a complex number a



1. Introduction

1.1 Motivation

On January 26, 1971, Concorde 001 was accomplishing its flight-test number 122 when

it experienced “the most damaging incident of its development time” (Turcat, 2003).

While cruising at Mach 2 over the Atlantic, upon switching off the reheat system, the

third-engine-variable-inlet ramp (which can be seen in figure 1.1) was blown out due to

“violent pressure fluctuations for about seven seconds”1. What Captain Defer and his

crew experienced is known as inlet buzz. It is a low-frequency, high-amplitude pressure

oscillation that is linked to shock-wave/boundary-layer and/or shock-wave/shock-wave

interactions, affecting the engine intakes. It can seriously impair the integrity of the

aeroplane, as demonstrated by Concorde 001.

According to Dolling (2001), the high-speed wind tunnel experiments on airfoils by

Ferri (1940) are probably the first published observations of a shock-wave/boundary-

layer interaction (SBLI). Although limited to a supersonic pocket embedded in a sub-

sonic flow, additional experiments by Donaldson (1944), Liepmann (1946), Fage and

Sargent (1947), Ackeret et al. (1947) quickly followed, demonstrating a sensitivity of

such interactions to the state of the incoming boundary layer. However, given the pecu-

liarity of the configuration (i.e. small supersonic pocket embedded in a subsonic flow

with streamwise pressure gradients and surface curvature), these investigations may not

have been sufficiently systematic to be conclusive.

In the late 1940’s and early 1950’s, further experiments were introduced to study

the aforementioned interaction. This time, the experiments were run at fully supersonic

speeds. The geometries used at that time consisted of an external shock generator,

flat plate/flat ramp configurations or flat plates with steps, and axisymmetric bodies

with flares/collars. Interestingly, these geometries are no different than the ones studied

nowadays. These studies yielded a large data base of SBLI at various Reynolds numbers,

Mach numbers and shock strengths, confirming the earlier observations of the impor-

tance of SBLI and their sensitivity to the state of the incoming boundary layer. Much

of that work is summarised in Holder et al. (1954). However, unlike inviscid interactions

between shocks and bodies, which have already been studied for more that two centuries

1Comments by the flight observer, Claude Durand.

1
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Figure 1.1: Concorde G-BOAE on final at LHR airport (October 10, 2003). Photo-
graph by Harm Rutten (www.airliners.net)

Figure 1.2: Photograph of a bullet in supersonic flight, published by Ernst Mach in
1887.

(see figure 1.2 and Anderson, 1990), no theory about viscous interaction is readily avail-

able, particularly in the case of turbulent interactions. Thus, not equipped with such

theories, researchers have run many experiments, driven by the fact that most (if not

all) of the supersonic flows involve, in one way or another, a (turbulent) SBLI.

www.airliners.net
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Figure 1.3: Sketch of the oblique shock / boundary-layer interaction

The broad aim of the present thesis is to use the technique of large-eddy simulation

to shed light on the interaction between a turbulent boundary layer and an impinging

oblique shock in order to identify the flow physics and develop modelling approaches for

the observed low-frequency shock motions.

1.2 Introduction to the SBLI issue

Over the last 60 years, most of the research on two-dimensional SBLI has focused on

three types of interaction: the case of an incident oblique shock wave impinging a flat-

plate boundary layer (in this case, the initial shock is formed from an external device,

like a wedge), the case of a normal shock interacting with a flat-plate boundary layer

(similar to the previous case but fundamentally different since this interaction neces-

sarily involves a large area of subsonic flow) and the case of a compression ramp or

corner (in this case, the “reflected” shock is induced by the flow-deviation due to the

ramp) — see Adamson and Messiter (1980) for a detailed review of all those cases. The

compression-ramp case is by far the most studied occurrence of SBLI (Settles and Dod-

son, 1991). However, the present work is devoted to the oblique-shock reflection case,

which is described below.

Figure 1.3 is a sketch of the shock-induced separation. If the pressure jump across

the incident shock is sufficiently large, the associated adverse pressure gradient can lead

to the separation of the incoming boundary layer which on average forms a separation

bubble. At the leading edge of the separation bubble, the flow is deflected away from

the wall, generating compression waves which eventually form the reflected shock, well

upstream of where it would have been located for inviscid flow (Pirozzoli and Grasso,
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2006). As the flow moves around the top of the bubble, an expansion fan is produced,

quickly followed by compression waves near reattachment. Downstream of the interac-

tion, the boundary layer is subject to a relaxation zone (Dupont et al., 2006), where it

gradually goes back to the state of equilibrium. The recirculation bubble gives rise to a

detached shear layer that is the focus of some more recent publications (Pirozzoli and

Grasso, 2006; Dupont et al., 2007; Piponniau et al., 2009).

The aforementioned broad picture has been known for some time (Adamson and

Messiter, 1980). As mentioned earlier, Ferri (1940) probably made the first observations

of SBLI. Most of the early work on SBLI was experimental (Dolling, 2001). In the

1950’s, the research focus was on mean wall-pressure and heating-rate measurements.

From today’s perspective, those measurements overlooked some of the key physics. How-

ever, the presence of a separation bubble was already identified and gave birth to the

so-called “free-interaction theory”, the basic ideas of which were first formulated by

Lighthill (1953). At that time, the first scaling law for the wall-pressure evolution in

the interaction zone was proposed and the question of the universal character of such

interactions was raised. Chapman et al. (1958) noted that “certain characteristics of

separated flows did not depend on the object shape or on the mode of inducing sepa-

ration” and that such flow characteristics “are termed free interactions”. The theory

of the separation of a supersonic laminar boundary layer through the free interaction

was first published by Stewartson and Williams (1969), who used triple-deck theory

to derive the theoretical change in wall pressure. As noted by Adamson and Messiter

(1980), Stewartson and Williams’s final problem formulation contains no parameters and

the solution is a universal solution. Later, Katzer (1989) confirmed through numerical

simulation the local scaling laws of the free interaction in the vicinity of the separation

point. Katzer distinguishes two mechanisms: a global mechanism that determines the

separation-bubble length Lsep and a local mechanism that controls the free-interaction

region, in the vicinity of the separation point. The former is found to depend linearly

on the shock strength, defined as the ratio between the downstream freestream pressure

p3 and the upstream freestream pressure p1, whereas the influences of the Mach number

M and Reynolds number Re (based on the distance from the plate leading edge) on Lsep

are given by the powers M−3 and Re1/2 for the range of values tested by Katzer (1989).

The linear influence of the shock strength is somewhat different from the asymptotic

theory (Neiland, 1971; Stewartson and Williams, 1973) where a power-law behaviour

(p3/p1)
3/2 is found. This could be due to a finite versus infinite Reynolds-number effect.

In contrast the free-interaction region is independent of the shock strength. The pressure

at the separation point and the pressure plateau (note that we are considering laminar

boundary layers here) are governed by the wall-shear stress at the beginning of the inter-

action region and the Mach number at the edge of the boundary layer, thus confirming

the local scaling laws of the free interaction. Unfortunately, the asymptotic theory of the
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triple deck could only be confirmed for the pressure scaling by Katzer whereas the length

scales could not be verified for finite Reynolds numbers: at finite Reynolds numbers, the

triple-deck theory tends to overestimate the length scale substantially, a discrepancy

which increases with increasing Mach numbers (Katzer, 1989). More recently, Pagella

et al. (2004) numerically investigated the cases of a 2D compression corner and 2D

impinging shock at Mach 4.8 where they matched the bubble lengths. They find that

the base flow properties were identical, in accordance with the free-interaction theory.

They note that the physics of such flows are not determined by the type of SBLI but

rather by the flow-field properties at the onset of the interaction. However, the authors

report that when they considered the same comparison in 3D, the two flows were found

to be different. Dolling (2001) notes that although the free-interaction theory appears

successful at predicting the correct pressure scaling, the physics implicit in the theory

are not what actually occurs.

In the 1950’s, SBLI were described as relatively steady (Dolling, 2001). Today, this

is known to be incorrect. In fact, some degree of unsteadiness could be seen in the

early Schlieren pictures, but researchers had no means to study it until the mid 1960’s,

when the very first high-frequency pressure transducers became available. Kistler (1964)

reports investigations on the unsteady aspect of shock-induced turbulent separation

upstream of a forward-facing step and finds that such flows are characterised by rela-

tively low frequencies (compared to ū1/δ0). Up until the early 1990’s, almost only surface

measurements have been performed since intrusive techniques interfere with the flow.

Nevertheless, those measurements clearly showed the existence of a low-frequency com-

ponent in SBLI, but its cause still remains unanswered (Dolling, 2001). Unfortunately,

the existence of low frequencies is a major issue in most (if not all) applications involv-

ing supersonic or hypersonic flows. As noted by Dolling (2001), the maximum mean

and fluctuating pressure levels and the thermal loads that a structure is exposed to are

found in regions of SBLI. The low-frequency unsteadiness of the reflected shock affects

the structural integrity as it is a main source of fatigue which in turn becomes a major

constraint in the choice of materials. Dolling (2001) writes: “the fluctuating pressure

loads generated by translating shock waves, pulsating separated flows and expansions/

contractions of the global flow field can be severe enough to cause structural damage

and cannot be ignored by designers of supersonic and hypersonic vehicles”. That issue

has thus been the major driver of SBLI research over the last decades. In the previ-

ous section, we mentioned the “buzz effect” in engine intakes, which is reported several

times by the French test pilot, André Turcat, in his book about the design of Concorde

(Turcat, 2003) as it was a major concern and the cause of important delays.

One of the fundamental questions about SBLI unsteadiness is to know whether or not

the emergence of the low-frequency oscillations is independent of the type of interaction,

like the pressure rise in the free-interaction theory for laminar interactions. Dussauge
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et al. (2006) note that “the free-interaction theory and the experimental work showed

that in such interactions the initial rise of mean pressure does not depend on the way

it has been produced” but that “the initial rise reflects the intermittent motion of the

initial shock”. Based on this remark, the authors argue that “it may be hoped that this

intermittent motion has rather general properties”. They then collect available SBLI

data for a wide range of Mach numbers and geometries and find that some aspects of

the data tend to support this argument. For example, Dupont et al. (2006) find that, if

scaled by the size of the interaction zone and the external velocity, the Strouhal number

related to the shock unsteadiness is similar for a wide range of geometries. However,

looking at figure 2 in Dussauge et al. (2006), one can argue that there exists a scattering

of the data which is acknowledged by the authors themselves.

The need for a deeper physical understanding of the driving mechanisms of SBLI

is not in doubt. Knight and Degrez (1998) looked at numerical prediction capabilities

and find that although “accurate prediction of both aerodynamic and thermal loads” is

achieved in the case of laminar interactions, turbulent interaction predictions are only

“correct in the mean-pressure distribution” and that “skin friction and heat transfer

distributions could differ by 100% for strong interactions”. The success in the pressure

distribution predictions may be related to the relative success of the free-interaction the-

ory. Indeed, the wall-pressure comes from the top two decks in the triple-deck theory,

whereas the heat transfer and skin friction are from the lower deck and thus will be sen-

sitive to the turbulence model used in the simulation. Furthermore, Reynolds-averaged

Navier–Stokes (RANS) simulations do not correctly capture the flow unsteadiness and

thus are not expected to give the correct mean fields. However, it may be possible to

add corrective terms in the RANS models to account for the low-frequency unsteadiness,

as in Pasha and Sinha (2008). Pirozzoli et al. (2009) have also shown that RANS could

be used to estimate the wall-pressure fluctuations at the shock foot.

With the recent rapid development of new laser-based methods (non-intrusive in

nature), the increase in data acquisition rate, the post-processing capabilities of large

volume data, not to mention the progress made in image processing of particle image

velocimetry (PIV) data, combined with the development of numerical methods such as

large-eddy simulation (LES), it is hoped that SBLI research will soon go from “a period

of observation to a period of explanation” (Dolling, 2001).

1.3 Known facts on SBLI

Dolling (2001) summarises the current state of knowledge in SBLI by noting that over

the last 60 years, “experiments from a wide range of facilities from continuous to inter-

mittent, from transonic to hypersonic, have generated a data set that currently cannot
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be understood within a common framework”. This illustrates the lack of a proper theory

and the following paragraphs aim at developing a picture of some important aspects of

SBLI.

Thivet et al. (2000) report that in an unswept, separated-compression-ramp flow in

which the free-stream velocity ū1 is almost 800 m s−1 and the incoming boundary-layer

thickness δ0 is about 18mm (giving a characteristic frequency ū1/δ0 ≈ 40 kHz), the

expansion and contraction of the separated flow (often referred to “breathing”) from

2δ0 to 4δ0 in extent is at a few hundred Hertz. The two orders of magnitude separating

the characteristic frequency of the incoming boundary layer from the frequency of the

“breathing” of the bubble is a common feature of all SBLI studies. This is the reason

why the unsteadiness is qualified as being low frequency, relative to the higher char-

acteristic frequency of the incoming turbulent boundary layer (TBL). The existence of

the low-frequency motions, as mentioned earlier, is found in different experiments: in

impinging-shock cases (Dussauge et al., 2006; Dupont et al., 2006, 2007; Souverein et al.,

2008, 2009b,a; Polivanov et al., 2009; Humble et al., 2009), and in compression-ramp

cases (Gramann, 1989; McClure, 1992; Ganapathisubramani et al., 2007b, 2009). Those

two cases have also been investigated numerically, both from Direct Numerical Simula-

tions (DNS) (Adams, 2000; Pirozzoli and Grasso, 2006; Wu and Martin, 2007, 2008a,b;

Priebe et al., 2009) and LES (Garnier et al., 2002; Teramoto, 2005; Loginov et al., 2006;

Pirozzoli et al., 2009; Garnier, 2009) point of view. However, most of the above numer-

ical investigations could not demonstrate the existence of low-frequency shock motions,

mainly because of integration times spanning at most one or two low-frequency cycles,

which is insufficient given the broadband nature of the unsteadiness.

Dussauge et al. (2006) used the interaction length L and the upstream velocity ū1 to

scale the low-frequency unsteadiness. They argue that the interaction length, defined

as the distance between the mean reflected-shock-foot position and the nominal inviscid

impingement location, is probably the correct length scale to use. They applied this

scaling to a wide range of data and find that it “would result in a sort of consensus

on the order of magnitude of the Strouhal number”. However, the frequencies found

based on this scaling exhibit some scatter in the values, as noted by the authors. They

then mention that one weak aspect of the scaling is probably the choice of the upstream

velocity. Based on the aforementioned scaling, it is found that the Strouhal number

(St = fLsep/ū1) of the low-frequency oscillations in SBLI falls in the 0.02–0.05 range.

Recently, Wu and Martin (2008a) have argued that the magnitude of the maximum-

mean-reversed flow would be a proper choice for the velocity scale, leading to a Strouhal

number of 0.8 in their DNS of a ramp-flow case. However, the Strouhal number would

be of the order of 0.1 in the shock-reflection case considered in the present work.

From experimental investigations, Dupont et al. (2006) find that the reflected shock

upstream of the interaction zone has an unsteady motion with St ≈ 0.03. Furthermore,
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they observe that the amplitude of the shock oscillations increases linearly with the

shock intensity p2/p1, where p2 is the freestream pressure behind the impinging shock

but before the reflected shock. They also note that the second part of the interaction

zone exhibits some degree of unsteadiness (St ≈ 0.04) which is in quasi-linear depen-

dence with the reflected-shock motion with a phase shift of π. This reinforces the idea

that the separation bubble is in a breathing motion, although the slight mismatch in

the two Strouhal numbers quoted suggests that the picture is not that straightforward.

Finally, the authors conclude that a scaling for the relaxation zone cannot be achieved

with only the upstream velocity and the interaction length scale. In fact, they notice

that downstream of the interaction zone, large-scale structures are formed, a develop-

ment which appears to be geometry-dependent (see also Dussauge, 2001).

The breathing motion of the bubble has been shown to contribute significantly to

the mean-flow fields. In his PhD dissertation, Gramann (1989) finds that for a 28◦

unswept compression ramp at Mach 5, the separation bubble pulses from 2δ0 to 4δ0

and that the fraction of the root-mean-square (RMS) pressure fluctuations generated

by frequencies lower than 5 kHz is as high as 60% to 70% of the total energy of the

fluctuations. Similarly, Dupont et al. (2006) find that the unsteadiness in the second

part of the interaction zone, responsible for the St ≈ 0.04 value, contributes up to 30%

of the total energy in the pressure fluctuations. It is tempting to say that the success of

the free-interaction theory in predicting the mean-pressure rise in the interaction zone

implies that the unsteadiness has a universal character, as argued earlier. This state-

ment remains weak in light of the observed scatter in the available data. In addition,

one must recall that the free-interaction theory makes use of the triple-deck theory and

never considers the unsteadiness and turbulent nature of the flow. It is thus probably

fortuitous that such a coincidence occurs, the physics implicit to the free-interaction

theory being significantly different of what is actually occurring in the interaction zone

(Dolling, 2001).

For laminar interactions, Katzer (1989) concluded that the length of the separation

bubble depends linearly on the shock strength p3/p1 and that the influences of Mach and

Reynolds numbers are given in powers of −3 and +1/2, respectively. For turbulent sepa-

ration, such scaling still needs to be determined, but as mentioned earlier, Dupont et al.

(2006) already observed that the amplitude of the shock oscillations and the interaction

length increases linearly with the shock intensity p2/p1 (at constant Mach and Reynolds

numbers), which would be consistent with the laminar scaling. Furthermore, Pagella and

Rist (2003) looked at wall temperature effects and found that the bubble was smaller

for cooled walls (they report bubble sizes up to 60% smaller) than for adiabatic walls.

Indeed, they show through linear-stability theory that the first instability mode could be

completely stabilised by wall cooling, but the authors also note that cooling destabilises

higher acoustic modes. In a recent review on time-dependent numerical approaches for
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SBLI, Edwards (2008) rightly points out the lack of, and need for, studies on the effect

of wall heating in unsteady computations.

Up to this point, the description of the interaction has focused on statistical aspects

of SBLI and the term unsteadiness was kept relatively vague. On the one hand, the

bubble was said to be breathing, on the other hand, the reflected shock as well as the

second part of the interaction were said to experience some degree of unsteadiness. One

legitimate question would then be to wonder if those are the same. In Dussauge et al.

(2006), one can read that the “flow separation is at the origin of the low-frequency fluc-

tuation”, and in Dupont et al. (2006) that there is “strong evidence of a statistical link

between low-frequency shock movements and the downstream interaction”, or again in

Dolling (2001), that the “large-scale motion of the shock is the result of the expansion

and contraction of the separation bubble”. Whether the reflected shock controls the

bubble or vice versa is an interesting question. The phase shift between the reflected-

shock oscillations and the reattachment region mentioned in Dupont et al. (2006) may

be an element of the answer.

What is known about shock-wave dynamics? Some useful insights are found from

linear theory (McKenzie and Westphal, 1968; Culick and Rogers, 1983; Robinet, 1999,

2001; Robinet and Casalis, 2001). First of all, it is known that a shock wave can move

under the influence of upstream and downstream conditions. Then, one can show that

the transfer function of shock waves depends on the downstream flow (in particular,

in the transonic regime). Depending on the downstream conditions, shocks may be

frequency-selective or not. In general, shocks are found to be stable or neutral and can

be seen as low-pass filters (i.e. they are less stable to lower frequencies). Their stability

deteriorates as they become weaker. When an oblique shock is disturbed, the perturba-

tions propagate along the shock with the direction of the tangential velocity (Robinet,

2001). With this in mind, Dussauge et al. (2006) give the following interpretation to

what is seen in experiments when looking at the reflected shock: “the turbulent struc-

tures perturb randomly the foot of the shock, in a part where it can be considered as

normal. It can be observed that the perturbations propagate along the shock to the

outer flow where it is oblique and therefore stronger and more stable”. Consequently,

the authors note that fluctuations are expected to be damped as they move outwards,

corresponding to usual observations or measurements in supersonic interaction. The

picture just drawn by Dussauge et al. (2006) is a good description of what is seen in the

current LES, to be discussed later.

From a more quantitative approach, Li (2007) has recently looked at the linear sta-

bility of a steady attached oblique shock wave from the Euler equations and analytically

confirmed the so-called “sonic point criterion”. The sonic-point criterion refers to a

“predicted drastic change in the behaviour of oblique shock waves as shock strength

increases such that the downstream flow becomes subsonic” (Li, 2007). In other words,
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this is the mathematical confirmation of the aforementioned picture given by Dussauge

et al. (2006): in the potential flow, the flow behind the oblique shock is supersonic

and all stability criteria (see theorem 2.1 in Li, 2007) are met so that the shock system

is linearly stable. However, as one approaches the near-wall region, the requirement

for the flow behind the shock to be supersonic can easily be challenged and one could

expect transition to Mach reflection. Since the sonic-point criterion is based on steady

and purely geometrical considerations, it should be placed in the unsteady context of a

turbulent boundary layer cautiously but one could argue that a particular disturbance

can locally and temporarily trigger the sonic-point criterion, thus locally affecting the

shock-reflection nature (from “regular” to “Mach” type). Large-scale/large-amplitude

motions of the shock tips, as seen in the present LES simulations, could thus be gener-

ated.

One might ask whether or not linear theory is a good starting point to describe SBLI.

If one thinks about the interaction as a whole, the answer is probably not, since SBLI

are known to be highly non-linear. However, if one thinks about the response of a shock

to disturbances, the answer is probably yes, as discussed in the previous paragraph.

One further aspect on which linear-studies have been successful and worth mentioning

here is the turbulence evolution behind a shock. Indeed, in the case of disturbances

from isotropic, homogeneous turbulence, the work of Lee et al. (1997) and Mahesh

et al. (1997) on comparing their DNS results with linear theory led the authors to con-

clude that “strikingly, linear theory is found to successfully reproduce most features

observed in the interaction of isotropic vortical turbulence with a shock wave, including

downstream turbulence evolution and turbulence modification across the shock wave”.

However, Boin et al. (2006) note that the amplification of isotropic and homogeneous

turbulence through a shock wave, predicted by rapid distortion theory (RDT) is not

valid for oblique interactions (see also Jacquin et al., 1993; Simone et al., 1997, amongst

others).

It is worth mentioning here that compressibility affects the level of velocity fluctua-

tions and the size of the energetic eddies (the contribution of small scales to the energy

is larger in supersonic flows than in subsonic flows — Dussauge, 2001; Lele, 1994), but

that the estimation of the timescales can be made from rules valid for solenoidal tur-

bulence, suggesting that acoustic phenomena are not developed enough to modify the

energy cascade. This is considered to be true for flows at convective Mach numbers

below 0.6 (Dussauge, 2001; Lele, 1994). In fact, the importance of the acoustic pressure

fluctuations in compressible turbulent boundary layers has been quantified by Borodai

and Moser (2001), where the authors show that the turbulence quantities are decoupled

from the acoustic fluctuations as long as the turbulent Mach number is small enough

(interestingly, this provides a broader range of applicability than Markovin’s hypothe-

sis). Borodai and Moser (2001) findings are important as they show that the acoustic
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fluctuations in the turbulent boundary layers considered in the present SBLI studies are

not expected to interact with the turbulence structures. However, it is important to

note that those results do not consider the presence of shock waves and are not valid

very near the wall.

The amplification mechanism of turbulence in the interaction is a research topic in

itself. In the past decade, there has been an increased interest in the shear layer that

forms at the separation bubble edge. Pirozzoli and Grasso (2006) have run a DNS of

an impinging shock on a Mach 2.25 and Reδ2 = 3725 turbulent boundary layer. They

find that the formation of the mixing layer is primarily responsible for the amplifica-

tion of turbulence, which relaxes to an equilibrium state downstream of the interaction.

From their compression-ramp LES, Loginov et al. (2006) conclude that the turbulence

amplification in the external flow above the detached shear layer is due to downstream

travelling shocklets. When comparing a ramp and a shock-reflection case at similar inter-

action strength p3/p1, Priebe et al. (2009) find significant differences in the turbulence

amplification levels. Dupont et al. (2006) note that the mixing layer reattaching near

the end of the interaction gives rise to developing large-scale structures as in subsonic

separations (vortex shedding). In subsonic flows, this phenomenon is known to generate

strong coupling between the shock zone and the flow far downstream (Dussauge et al.,

2006).

1.4 Current speculations on the low-frequency unsteadi-

ness in SBLI

1.4.1 Correlations with upstream events

1.4.1.1 Fast timescales

The previous paragraphs have mostly focused on observations and no attempt to describe

the mechanisms which govern the unsteady interaction was made. One good reason is

that until today, no such theory is available and only some speculations, sometimes con-

flicting, have been proposed. One of its kind, and probably the most common one, is to

try to relate the reflected-shock unsteadiness to the coherent structures of the incoming

turbulent boundary layer. For example, Andreopoulos and Muck (1987) suggest that the

frequency of the shock motion scales on the bursting frequency of the incoming bound-

ary layer. Indeed, when looking at high time-resolution animations of the interaction,

it appears that there exists a strong correlation between the impact of a large eddy into

the shock and the shock displacements. Erengil and Dolling (1993) have shown that the

small-scale motions of the shock are caused by its response to the passage of turbulence
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fluctuations through the interaction. The idea of a relationship between the shock-foot

velocity and velocity fluctuations in the incoming boundary layer is supported by the

very large-eddy simulation of Hunt and Nixon (1995). Similar high-frequency observa-

tions are made by Wu and Miles (2000), who looked at a Mach 2.5 compression corner

flow at a very high sampling frequency rate. They show that large velocity fluctuations,

due for example to the so-called hairpin structures, can have a significant impact on

the shock. However, such events occur at higher frequencies than the ones of interest

here and cannot yet be directly related to the large-scale/low-frequency motions of the

reflected shock. For example, Thomas et al. (1994) find “no discernible statistical rela-

tionship between burst events and span-wise coherent shock-front motion”.

The direct correlations between unsteady events due to the upstream turbulence and

the shock motion are clear, since the impact of an eddy onto the shock will inevitably

displace it. However, there is no particular reason to believe that such high-frequency

dynamics are related to the low-frequency ones. Nevertheless the idea is not that incon-

gruous since laminar interactions are not generally found to be unsteady2, suggesting

that the turbulent nature of the incoming boundary layer must play a role in the low-

frequency motions. Furthermore, in light of the previous section, the shock can be

thought of as a low-pass filter and one could imagine that the reflected shock filters

the fluctuations in the incoming boundary layer up to a given cutoff frequency, which

would lead to the observed low-frequency unsteadiness. This idea would be consistent

with the observed similar Strouhal numbers for a wide range of interactions with some

scatter due to the difference in geometry and shock strength, potentially modifying the

cutoff frequency. This argument was suggested for example by Dussauge et al. (2006),

as mentioned earlier.

The conceptual idea that the oblique shock could act as a low-pass filter was formally

expressed by Plotkin (1975) who first modelled the shock as being randomly perturbed

by upstream disturbances but subject to a relatively slow linear restoring mechanism,

forcing the shock to come back to its initial position. Based on such assumptions, the

shock motion follows a first-order ordinary equation which is forced stochastically to

mimic the effect of the turbulence. This allowed Plotkin (1975) to match the expected

wall-pressure spectra. Using experimental data to compute the model constants (i.e.

the timescales of the restoring mechanism and correlation function of the incoming tur-

bulence as well as the wall-pressure standard deviation at the shock foot) the obtained

spectra was found to agree with the experimental results for frequencies sufficiently lower

than the turbulence-related ones. Poggie and Smits (2001, 2005) have also compared

experimentally-obtained spectra with the one derived by Plotkin (1975) and have found

2To the author’s knowledge, the simulation by Robinet (2007) is the only reported case of unsteadiness
in laminar SBLI.
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excellent agreement in cases where the shock undergoes significant low-frequency oscilla-

tions. Conceptually, this mathematical model is attractive since it shows how broadband

low-frequency motions can emerge by simply forcing the system with white noise. How-

ever, it lacks physically-sound justifications about whether the oblique shock/boundary-

layer interaction can be modelled so simply and if so, on the key parameters responsible

for the cutoff frequency. Furthermore, the low-pass filter behaviour of the model can

only amplify existing low-frequency components from the forcing mechanism. In other

words, the energetically-significant high frequencies found in the incoming boundary

layer are not transferred to lower frequencies but instead are greatly damped while the

low-frequency components are amplified. It is not clear if the energetically-insignificant

low-frequency content from the upstream turbulent boundary layer is sufficient to be

solely responsible for the observed important low-frequency shock motions, once the

high frequencies have been cut off. Perhaps there exist alternative and more profound

sources of low-frequency disturbances.

1.4.1.2 Slow timescales

Ünalmis and Dolling (1994) have investigated the correlations in a Mach 5 compression-

corner flow between an upstream Pitot pressure and the shock-foot location, and found

that an upstream shock position was correlated with higher upstream pressure, and vice

versa. It was then argued that the shock position could be driven by a low-frequency

thickening and thinning of the upstream boundary layer. Later, Beresh et al. (2002)

looked at relatively low-frequency correlations in the same compression-corner flow and

found significant correlations between upstream velocity fluctuations and the shock

motions at 4–10 kHz, one order of magnitude smaller than the characteristic frequency

of the large-scale structure of their incoming turbulent boundary layer (ū1/δ0 ∼ 40 kHz).

It should be noted that in the shock-reflection case of interest in the present work, the

upstream boundary-layer characteristic frequency is about 50 kHz while the reported

most energetic low-frequency shock motions are at about 0.4 kHz (Dupont et al., 2006).

Although Beresh et al. (2002) could find correlations between the shock motions

and velocity fluctuations, they note that the “low-frequency thickening/thinning of the

upstream boundary layer does not drive the large-scale shock motion”, which seems to

be in contradiction with the earlier suggestion of Ünalmis and Dolling (1994). A short

time later, Hou et al. (2003) made a similar analysis as Beresh et al. (2002) but on a

Mach 2 compression-corner flow and were able to confirm the existence of a correlation

between the shock motion and a thickening/thinning of the upstream boundary layer.

To add to the confusion the recent study by Piponniau et al. (2009), this time applied

to shock-reflection experiments, does not show significant differences in the upstream
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conditionally-averaged velocity profiles. Nonetheless, it appears logical that a change in

the upstream mean boundary-layer properties would affect the shock position since a

fuller velocity profile would be less prone to separation under the same adverse pressure

gradient.

Despite some apparent desagreements, the aforementioned studies provide evidence

of a connection between the shock position and the upstream conditionally-averaged

boundary-layer profile. The events responsible for the substantial differences in the

conditionally-averaged profiles in the ramp experiments will have to be clarified, and

more importantly, the timescale on which they occur considered with care. Indeed,

to be compatible with the shock-motion timescales, those events must be at least an

order of ten-boundary-layer-thicknesses long. The emergence of time-resolved particle

image velocimetry approaches made such considerations possible. For example, Ganap-

athisubramani et al. (2007b) have reported very long coherent structures of about fifty

boundary-thicknesses long (termed “superstructures”), using PIV and Taylor’s hypoth-

esis (note that the use of Taylor’s hypothesis may be valid as shown by Dennis and

Nickels, 2008). In their paper, one can find the scaling argument that the low fre-

quency induced by the superstructure scales on ū1/(2λ), where ū1 is the upstream

freestream velocity and λ the size of the superstructure. In the shock-reflection case, the

energetically-significant low-frequency shock oscillations are at about ū1/(115δ0), where

δ0 is the upstream 99% boundary-layer thickness (Dupont et al., 2006). Using the above

superstructure-scaling argument, the energetically-significant low frequencies seen in the

shock-reflection experiment of Dupont et al. (2006) would be associated with structures

with a length of the order of 50δ0 long, consistent with the value quoted by Gana-

pathisubramani et al. (2007b). Interestingly, compression corner and shock-reflection

experimental studies show (Dolling, 2001; Dussauge et al., 2006; Dupont et al., 2006;

Piponniau et al., 2009) that for constant inflow conditions (and therefore for constant

superstructure sizes) but different corner and wedge angles, the physical most-energetic

low-frequency shock oscillations (not the Strouhal number) change markedly, making

the upstream superstructures argument questionable unless the shock truly acts as a

low-pass filter, as discussed earlier, with a cutoff frequency directly related to the corner

or wedge angle.

It should be noted that it is uncertain whether such long events as the aforemen-

tioned superstructures are caused by an experimental artifact (such as Görtler-like vor-

tices formed in the expansion section of the wind-tunnel nozzle, see Beresh et al., 2002).

Although numerical simulations could, in theory, answer that question, it is not yet pos-

sible to perform DNS which can allow the development of such superstructures and at

the same time cover long-enough time series to study the low-frequency shock motions.

Ringuette et al. (2008) report long coherent structures up to the maximum domain

size tested (48δ0) from their DNS investigations. However, it is also uncertain whether
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the recycling/rescaling technique used by the authors could be forcing such structures.

In the present work, particular care will be taken to avoid forcing any particular low-

frequency/large-wavelength motions that may directly affect the reflected-shock low-

frequency motions, if present in the simulations.

Furthermore, the following two remarks should be considered. First, it must be

emphasized that the way the correlation functions are built will inevitably govern the

level of understanding gained from the resulting correlation values. For example, the

correlations mentioned above were built as follows: the motion of the shock or a prede-

fined separation line is detected and then correlated to an earlier event in the incoming

boundary layer, assuming that the upstream event has travelled the separating distance

at a constant predefined velocity (usually the local mean velocity). This approach will

by construction remove the possibility that the shock motion may be related to a down-

stream event. Second, such an algorithm always involves in one way or another the

choice of arbitrary threshold values, which directly influence the level of correlations

seen. For example, Ganapathisubramani et al. (2007b) define as the separation front

the spanwise line from which the velocity is less than 187 m s−1, due to the difficulty

in finding the zero-velocity contour line from the PIV, and the impossibility of using a

criterion based on the zero skin-friction contour. With these assumptions, the authors

find that the motion of the separation line is correlated to the presence of low- and

high-speed regions. The analysis of DNS data allows the study of different possible

correlation approaches, which may be difficult or impossible to implement experimen-

tally, and the resulting effect on the interpretation of such correlations. For example,

Wu and Martin (2008b) find that “the streamwise shock motion is not significantly

affected by low-momentum structures in the incoming boundary layer”. However, using

a similar criterion as the one used by Ganapathisubramani et al. (2007b), the authors

found much higher correlation values, similar to the ones found in the experiment. This

demonstrates the sensitivity of the correlation techniques in the aforementioned experi-

mental compression-corner investigations. Of course, the ability of numerical simulations

to perform time- and space-resolved data greatly enhances the level of complexity the

data analysis can reach. For example, one can look at possible upstream-propagating

mechanisms using frequency/wave-number analysis of the wall-pressure distribution (as

shown later).

The possibility that the aforementioned superstructures are the main source of low-

frequency shock motions is still an active research topic. Emerging techniques such

as tomographic particle image velocimetry could be useful at providing instantaneous

three-dimensional snapshots of the interaction at Reynolds numbers not accessible to

DNS or LES (Humble et al., 2009). In fact, considering the interaction in its full three-

dimensional form raises one interesting question: are the low-frequency oscillations in

phase along the shock front? In other words, does the shock oscillate as a block or
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does it wrinkle in the spanwise direction? This is often not documented and the few

studies considering this aspect have been performed for the compression-ramp case. For

example, Wu and Miles (2000); Wu and Martin (2008a); Edwards et al. (2008) have

shown evidences of spanwise shock wrinkling due to the passage of turbulent structures.

Edwards et al. (2008) have computed the flow on a Mach 5 compression corner using a

hybrid LES/RANS approach and find that large streamwise structures affect the shock

front by producing spanwise wrinkles. These authors also report the existence of long

coherent structures that could account for the low-frequency motions but they remain

cautious about the use of Taylor’s hypothesis as well as the possible artificial effect of

the recycling technique used on the existence of those large-coherent structures. The

time scale involved with those studies on the shock wrinkles differ from the larger time

scales related to the low-frequency motions and the computational studies often suffer

from the use of periodic boundary conditions combined with relativelly small spanwise

extents (less than the separation-bubble length). Such spanwise confinements in the

numerical simulations can have a large effect, as will be shown in the present work. Sim-

ilarly, experiments are not free from artifacts produced by the wind-tunnel side walls,

as shown by Dussauge et al. (2006) and Dussauge and Piponniau (2008), where corner

flows are seen to produce “span-wise tornadoes” with associated timescales that can

be comparable with the low-frequency motions. Garnier (2009) has recently performed

stimulated detached eddy simulations to resolve the entire section of the wind tun-

nel. The corner-flow vortices present in his simulation are found to reduce the effective

wind-tunnel section and strengthen the interaction but the author could not statisti-

cally connect the corner-flow low-frequency unsteady motions with those of the main

separation.

1.4.2 Correlations with downstream flow features

The incoming boundary layer is not the only place where coherent structures occur.

The idea that the vortical structures emerging from the shear layer could play an impor-

tant role in the interaction is appealing. For example, Dussauge et al. (2006) write

that the “eddies in the separated zone may be the source of excitation”. Pirozzoli and

Grasso (2006) go further and, based on a DNS of an impinging shock at Mach 2.25 and

Reδ2 = 3725, argue that the interaction mechanism works as follows: large coherent

structures are shed close to the average separation point from the mixing layer, interact-

ing with the incident shock to produce acoustic disturbances that propagate upstream

(in the subsonic layer), thus inducing an oscillatory motion of the separation point and

a subsequent branching and flapping motion of the reflected shock, enhancing the for-

mation of discrete vortices. The large-scale low-frequency unsteadiness would then be
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sustained by an acoustic resonance mechanism. The authors relate the aforementioned

mechanism to the one responsible for the generation of tones in cavity flows. To support

this, they developed a simplified model for the acoustic resonance and were successful

at predicting the characteristic tones for the interaction they studied. Although appeal-

ing, this mechanism has not been explicitly confirmed using experimental or numerical

data. In fact, the possibility that a resonance can occur is bound to the sensitive and

selective nature of the shear layer. The receptivity of the particular shear layer to an

acoustic field must be addressed. As mentioned earlier, Borodai and Moser (2001) have

demonstrated the possible decoupling between the acoustic field and the turbulence so

that the effect of the acoustic field on the turbulence could be neglected. Moreover, it

is important to note that the integration time obtained by Pirozzoli and Grasso (2006)

was much too short to cover any low-frequency oscillation, making the interpretation

of the correlation functions subject to caution. Finally, the idea of a resonance-based

mechanism seems rather surprising as it appears to oppose the experimental evidences

of broadband oscillations.

Piponniau et al. (2009) have also considered the shear-layer as a key for the low-

frequency shock motions and proposed a model based on the mass-entrainement timescale

associated with the separation bubble and the developping mixing layer. The resulting

timescale is of the same order of magnitude as the dominant shock-motion timescale and

the model suggests that the main parameter controling the low-frequency shock motions

is the spreading rate of the compressible mixing layer. Therefore, the authors argue that

the low-frequency motions are closely related to the presence of a separated region down-

stream of the shock and that the geometry of the flow configuration (i.e. corner flow or

shock reflection) does not influence them much, as long as the mean separation-bubble

height is sufficiently large. Moreover, the authors find that the characteristic frequency

of the shock motions are affected by the shock intensity p2/p1 and not directly related

to any time scale from the upstream boundary layer.

Yet more alternative approaches have been suggested in the literature. One particu-

larly interesting approach is to look at possible hydrodynamic instabilities. Boin et al.

(2006); Boin and Robinet (2004) argue that the unsteadiness is intrinsic to the dynamics

of the separated zone. They show that laminar SBLI can, under some assumptions, be

the place of unsteady self-sustained low-frequency dynamics and that it is not necessary

to have upstream disturbances to generate the unsteady motion. Their 3D calculations

show that before becoming unsteady (when gradually increasing the shock angle), the

SBLI goes through a phase were the flow becomes three-dimensional and stationary and

that this state is unstable and leads to fully 3D and unsteady flows. They base their

scenario on Dallman’s conjecture (Dallmann, 1988), which states that before unsteady

vortex shedding occurs, multiple recirculation zones occur inside the primary bubble
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which finally leads to a global structural flow change with “multiple structurally unsta-

ble saddle-to-saddle connections”. Theofilis et al. (2000) linked the 3D global instabilities

in incompressible flows to Dallman’s conjecture. Boin and Robinet (2004) believe that

this extends to supersonic flows and SBLI and that it could explain the first stage of

the establishment of the unsteady low frequency. In a relativelly recent paper, Robinet

(2007) performs a BiGlobal analysis of the laminar shock-reflection case and reports that

there exists a global mode (in the BiGlobal sense) for sufficiently strong shock strengths.

The most unstable mode is reported to be three-dimensional with a wavelength scaling

on the separation length while the 2D mode is found to be stable.

Finally, it is recalled that despite the numerous studies cited above, there remain

uncertainties regarding possible external sources of unsteadiness. Dolling (2001) men-

tions possible stagnation chamber resonances, or vortices embedded with the test section

(like the “span-wise tornadoes” mentioned by Dussauge et al., 2006) that could lead to

the low-frequency unsteadiness. In fact, this led some researchers to believe that small

changes in the incoming boundary layer thickness could be the cause of the unsteadiness

(McClure, 1992; Ünalmis and Dolling, 1994). Beresh et al. (2002), Chan (1994) and

Dupont et al. (2006) could not find such correlations but the latter authors could not

rule out the idea that there could be “side wall effects” in their results. Similarly, numer-

ical simulations suffer from the inevitable need for boundary conditions. In particular,

LES and DNS of turbulent wall-bounded flows necessitate time-varying inflow boundary

conditions which often introduce characteristic frequencies that could be of the same

order of magnitude as the observed low-frequency oscillations. Would the simulations

and experiments be both wrong for different reasons but still give comparable results?

This is believed to be unlikely. Nevertheless, for the present simulations, a large amount

of time was devoted in order to define inflow conditions that could not introduce any

particular low frequency in the computational domain. This is thought to be the right

start for numerical investigations on SBLI unsteadiness.

1.4.3 Objectives and thesis outline

Based on the above discussion, it is clear that shock/turbulent-boundary-layer inter-

action, and in particular the associated low-frequency unsteadiness, is still an active

research field where no consensus on their origin can be found. The following work

intends to shed some light on this enigma, using large-eddy simulations as the primary

tool to generate the data that are then analysed to some extent. In particular we will:

• validate the LES approach through sensitivity studies and comparisons with exper-

imental data
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• adapt and assess a digital-filter based inflow generator to avoid forcing a particular

frequency

• perform a stability analysis of time-averaged flows

• investigate low-frequency features from long LES runs

• develop a model for the low-frequency shock-foot motions

The thesis is organised as follows. The next chapter will introduce the governing equa-

tions with an emphasis on the filtered 3D compressible Navier–Stokes equations and the

numerical strategy to solve them. In particular, the closure issue and the approxima-

tions made will be clearly stated in a first part, followed by a complete description and

discussion of the boundary conditions, and more specifically the inflow-generator devel-

oped for this SBLI study. Then, the first SBLI computations will be presented with a

grid, sub-grid-scale (SGS) model and domain sensitivity sensitivity study to gain confi-

dence in the numerical approach. The results will be compared with other existing data

wherever possible. The following chapter will then be devoted to time-averaged results

using LES at various Mach numbers and wedge angles, together with comparisons with

some available experimental data and some common properties between the different

cases will be highlighted. Several time-averaged LES results will then be used as a basis

for a linear-stability study to compare with the laminar interactions, which are found to

be globally unstable. From there, the following chapters will be devoted to the unsteady

data analysis, first by considering the wall-pressure fluctuations from four different LES

and one experiment. Then, the shock system and interaction-region dynamics will be

analysed, based on the generated LES data, by means of correlation functions, spectral

analysis and conditional averages. Finally, the last chapter will introduce an approach

to obtain a low-order stochastic model for the low-frequency shock motions and the pro-

posed model will be compared with the LES and experimental data. A discussion about

the low-frequency motions, based on the knowledge acquired from both the LES and

the low-order model will be provided, followed by the conclusions and some suggestions

for future work.



2. Governing equations and

numerical method

This chapter describes the numerical approach that was implemented in order to per-

form the shock/boundary-layer interaction simulations to be presented throughout this

dissertation. In particular, the large-eddy simulation technique used in this work will be

detailed together with the challenging issue of the generation of the incoming turbulent-

boundary-layer fluctuations.

2.1 Governing equations

2.1.1 The Navier–Stokes equations: DNS formulation

The dimensionless three-dimensional compressible Navier–Stokes equations (expressed in

conservative form) are composed of one continuity equation, three momentum equations

and the energy equation:

∂ρ

∂t
+
∂ρui

∂xi
= 0, (2.1a)

∂ρui

∂t
+
∂ρuiuj

∂xj
= − ∂p

∂xi
+

1

Re

∂τij
∂xj

, (2.1b)

∂Et

∂t
+
∂(Et + p)uj

∂xj
=

1

Re

∂uiτij
∂xj

− 1

(γ− 1)Re Pr M2

∂

∂xj

[
µ
∂T

∂xj

]
, (2.1c)

where ρ is the fluid density, ui the instantaneous velocity vector, p the pressure, T the

temperature, Et the total energy and t the time. The streamwise, wall-normal and

spanwise directions are denoted by x, y and z respectively. The fluid (air in practical

applications) is assumed to be ideal. The equation of state, the total energy/pressure

relation and the viscous shear-stress relation (for a Newtonian fluid) are:

p =
1

γM2ρT, (2.1d)

T = γ(γ − 1)M2(
Et

ρ
− 1

2
uiui). (2.1e)

τij = µ

(
∂uj

∂xi
+
∂ui

∂xj
− 2

3
δij
∂uk

∂xk

)
. (2.1f)

20
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The dynamic viscosity is taken to vary with temperature according to either a power

law or Sutherland’s law, depending on the simulation:

µ = TΩ (power law), with Ω = 0.67 (2.1g)

µ = T 3/2 1 + C

T + C
(Sutherland’s law), with C = S/T̄ ⋆

1, S = 110.4K. (2.1h)

The Einstein summation convention was used in the above equations (and will be used

everywhere in this report unless otherwise specified), δij denotes the Kronecker-δ func-

tion, Re the Reynolds number, Pr the Prandtl number (taken to be 0.72), M the Mach

number and γ the specific heat ratio (taken to be 1.4). The reference values to nor-

malise the flow variables are taken in the potential flow, upstream of the interaction

(ū⋆
1, ρ̄

⋆
1, T̄

⋆
1, µ̄

⋆
1). The reference length scale l⋆ will vary during the text and will be

explicitly defined where it is used. The pressure p is normalised with ρ̄⋆
1ū

⋆2

1 and the time

t with l⋆/ū⋆
1.

2.1.2 The Navier–Stokes equations: LES formulation

Large-eddy simulation approaches are based on the definition of a scale separation. The

conceptual idea is to fully resolve the large-scale most-energetic turbulence structures

and only model the effect of the unresolved smaller scales. The main motivation is to

reduce the number of degrees of freedom of the continuous system (2.1 a–h) as much as

possible while maintaining the closest representation of the continuous system in order

to reduce the computational cost associated with solving (2.1 a–h).

In practice, the scale separation is bound to the computational-grid resolution. From

the Nyquist theorem, if ∆x is the distance between two grid points on a homogeneous

grid, no scale smaller than 2∆x can be captured. The error associated with the exis-

tence of these unresolved scales is called the projection error. In Fourier space, this is

equivalent to cutting off the highest wavenumbers, where the cutoff wavenumber kc is

directly linked to the grid resolution: kc = π/∆x. This sharp low-pass filter is referred

to as the Nyquist filter.

The projection error should be made distinct from the resolution and discretisation

errors: the discretisation error is the one associated with the approximation of the partial

derivatives of the continuous problem by their discrete counterparts on the computa-

tional grid. The resolution error corresponds to the contribution of the missing scales via

the non-linear terms. While the projection error reflects the error associated with the

approximation of a continuous variable q by its discrete counterpart qd, the resolution

error is the difference between the exact solution F (q), where F is a non-linear function,

and its discrete counterpart F (qd), arising from the contribution of the unresolved scales
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through the non-linear terms. In a DNS, the resolution error must vanish but the pro-

jection error cannot be avoided. Furthermore, note that even if the discretisation error

is reduced to zero, the resolution error would still be present. Therefore, the best LES

approach possible is one where the resolution error cancels the discretisation error. This

is generally attempted using one of the two different families of approaches: the first one

where a forcing term (the sub-grid scale model) is introduced in the equations to cancel

the resolution error and a second one where no sub-grid scale model is introduced but

the numerical scheme is designed such that the discretisation error cancels the resolution

error. The present work will make use of the former approach.

The formulation of the LES problem is a complex one and the reader is referred to

Sagaut (2005) and Berselli et al. (2005) for much more complete descriptions. Mathemat-

ically, the LES problem is often formulated and modelled as the result of the application

of a low-pass convolution filter to the Navier-Stokes equations. This is the approach

undertaken here too. The properties of such filter are first described in the following

section and then applied to the compressible Navier–Stokes equations (2.1 a–h).

2.1.2.1 Convolution filter: definition

The spatial-scale separation is represented by the convolution product defined below:

q̄(x) =

∫

D
G
(
x− z ; ∆

)
q(z) d3z, (2.2a)

where q is a vector field, G the filter convolution kernel, and ∆ its associated character-

istic cutoff lengthscale. The integration is performed on a compact subset of R3, denoted

D. Typically, the filter function is an infinitely differentiable function of bounded sup-

port in a bounded domain and normalised such that:

∫

D
G
(
x− z ; ∆

)
d3z = 1. (2.2b)

The property (2.2b) is to ensure the conservation of constants. Moreover, it is straight-

forward to see that the filter-operator (2.2a) is linear, independently of the characteristics

of the kernel G. Finally, the filter is required to commute with the differentiation oper-

ator.

At this stage, it is important to distinguish the grid filter from the test filter. The

grid filter corresponds to the implicit low-pass filter arising from the use a computa-

tional grid which is too coarse to resolve the smallest scales of the turbulent flow. This

filter is represented as in (2.2 a,b) and denoted by the overline notation. The test filter

corresponds to an explicit filtering operation which is performed on the resolved field in

order to compute the subgrid-scale model terms. This filter is also of the same type as
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αG∗

i− 2 i− 1 i i+ 1 i+ 2

q

2∆x

Figure 2.1: Discretised top-hat filter (∆̂ = 2∆x)

(2.2 a,b). To avoid any confusion between the grid-filtered and test-filtered fields, the

test-filtered field will be denoted by the hat notation q̂. In the present work, the convo-

lution kernel used for the test filter is a top-hat function (which is infinitely differentiable

but not continuous):

G∗(x− z) =

{
1/∆̂ if ‖ x− z ‖≤ ∆̂/2,

0 otherwise.
(2.3)

Note that (2.3) satisfies (2.2b).

In the following sections, the top-hat kernel used has a characteristic lengthscale set

to 2∆ (i.e. in the case of a 1D homogeneous axis, ∆̂ = 2∆x where ∆x is the compu-

tational grid spacing). Since this test filter will only be applied in the homogeneous

directions, issues related to varying grid spacing (as in the wall-normal direction) will

not arise. However, the above definitions must be projected onto the discrete computa-

tional domain, as sketched in figure 2.1. If f denotes the integrand in (2.2a), its discrete

counterpart can be expressed gi+k = G∗ (xk − xi) × qi+k, so that using the trapezoidal

integration rule, one can write (2.2a) in the form:

q̂i =
∆x

2

∑

−∞<k<∞

{
gi+k−1/2 + gi+k+1/2

}
. (2.4)

Given the convolution kernel G∗ in figure 2.1, the only non-zero terms in (2.4) are:

q̂i = α∆x
(
qi−1/2 + qi+1/2

)
= α

∆x

2
({qi−1 + qi}+ {qi + qi+1})

= α
∆x

2
(qi−1 + 2qi + qi+1) . (2.5)

In order for G∗ to satisfy (2.2b) in the particular case of figure 2.1, we must have

α = 1/(2∆x). Hence:

q̂i =
1

4
(qi−1 + qi+1) +

1

2
qi. (2.6)
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2.1.2.2 Application of the filter to the governing equations

Starting from the grid-filtered field q̄, the following Favre-filtered field may be defined:

q̃ ≡ ρq

ρ̄
, (2.7)

where the overline notation is defined in (2.2). After some algebraic manipulation (see

Appendix A), the complete form of the grid-filtered dimensionless compressible Navier–

Stokes equations (expressed in conservative form) is composed of one continuity equa-

tion, three momentum equations and the energy equation:

∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0, (2.8a)

∂ρ̄ũi

∂t
+
∂ρ̄ũiũj

∂xj
+
∂p̄

∂xi
− 1

Re

∂τ̆ ij

∂xj
= −Ii + IIi, (2.8b)

∂Ĕt

∂t
+
∂(Ĕt + p̄)ũj

∂xj
− 1

Re

∂τ̆ ij ũi

∂xj

+
1

(γ− 1)Re Pr M2

∂

∂xj

[
µ̃
∂T̃

∂xj

]
= −B1 −B2 −B3 +B4

+B5 +B6 −B7, (2.8c)

where the resolved equation of state, the resolved total energy/pressure relation and the

resolved viscous shear-stress relations are:

p̄ =
1

γM2 ρ̄T̃ , (2.8d)

Ĕt =
p̄

γ− 1
+

1

2
ρ̄ũiũi, (2.8e)

τ̆ ij = µ̃

(
∂ũj

∂xi
+
∂ũi

∂xj
− 2

3
δij
∂ũk

∂xk

)
. (2.8f)

The resolved dynamic viscosity is assumed to vary with the resolved temperature accord-

ing to either a power law or Sutherland’s law, depending on the simulation:

µ̃ =
[
T̃
]Ω

(power law), with Ω = 0.67, (2.8g)

µ̃ =
[
T̃
]3/2 1 + C

T̃ + C
(Sutherland’s law), with C = S/T̄ ⋆

1, S = 110.4K. (2.8h)



Governing equations and numerical method 25

The subgrid-scale (SGS) terms in (2.8 b,c) are (following the work of Vreman, 1995):

Ii =
∂σij

∂xj
, (2.9a)

IIi =
1

Re

∂

∂xj
[τ̄ ij − τ̆ ij] , (2.9b)

B1 =
1

γ− 1

∂

∂xj
[puj − p̄ũj] , (2.9c)

B2 = p
∂uj

∂xj
− p̄∂ũj

∂xj
, (2.9d)

B3 =
∂σij ũi

∂xj
, (2.9e)

B4 = σij
∂ũi

∂xj
, (2.9f)

B5 =
1

Re

(
τij
∂ui

∂xj
− τ̄ ij

∂ũi

∂xj

)
, (2.9g)

B6 =
1

Re

(
∂τ̄ ij ũi

∂xj
− ∂τ̆ ij ũi

∂xj

)
, (2.9h)

B7 =
1

(γ− 1)Re PrM2

∂

∂xj

[
µ
∂T

∂xj
− µ̃ ∂T̃

∂xj

]
, (2.9i)

where the subgrid-scale stress tensor is defined as:

σij = ρ̄ (ũiuj − ũiũj) . (2.9j)

2.1.2.3 The compressible shear-layer approximation

In principle, one should solve the full set of filtered equations (2.8 a–h), (2.9 a–j ). How-

ever, this cannot be achieved unless the subgrid-scale terms (2.9 a–j ) are modelled and

related to the computed variables [ρ̄, ρ̄ũ, ρ̄ṽ, ρ̄w̃, Ĕt]
T. In practice, this is difficult and

one only models the most important terms. Vreman et al. (1995) looked at all the

above subgrid scale terms from DNS-data analysis of a plane compressible mixing-layer

at Mach numbers 0.2 and 0.6 (and Reynolds number 200). The DNS data were filtered

using a top-hat filter with characteristic length 2∆x. The authors categorised the sub-

grid scale terms as shown in table 2.1.

Although the classification was performed on a different flow at both lower Reynolds

and Mach numbers than the ones considered in the present SBLI studies, one could

assume that the classification by Vreman et al. (1995) still holds here, as suggested by

the relative success of earlier SBLI LES studies (see Garnier et al., 2002; Teramoto, 2005;

Loginov et al., 2006), which made use of the above classification. Furthermore, such an

assumption is more and more justified as the computational grid is refined.
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Relative importance Subgrid scale term

Medium O(10−1) Ii, B1, B2, B3

Small O(10−2) B4, B5

Negligible O(10−3) IIi, B6, B7

Table 2.1: Classification of the subgrid scale terms (see Vreman et al., 1995)

Since Ii will be modelled, or more precisely, since the subgrid stress tensor σij will

explicitly be modelled (rather than its divergence), terms B3 and B4 can both be mod-

elled. Thus, from the “small” term category, only B5 is neglected whereas B4 is inte-

grated to B3.

From the “medium” category, terms B1 and B2 have yet to be discussed. Vreman

et al. (1995) have shown from their DNS data of a compressible mixing layer that B1

and B2 can be of the same order of magnitude. Looking at B1 and B2, it appears that

those terms are directly related to compressibility effects and are thus expected to be

sensitive to the Mach number. In fact, one can write:

B2 = (γ− 1)B1 + ũj
∂p̄

∂xj
− uj

∂p

∂xj
, (2.10)

so that B1 and B2 are explicitly correlated. Vreman et al. (1995) do report a Mach-

number dependency for B1 and B2 and interestingly note that their relative magnitude

remains the same. Looking at (2.10) with this observation in mind, it is argued that

the global maximum of B1 (noted ||B1||) over the global maximum of B2 (noted ||B2||)
may be scaling like 1/(γ− 1). From figure 5 in Vreman et al. (1995) one can notice that

the time series of B1 and B2 peak at the same times and that the ratio ||B1||/||B2|| is
about 2.5, in excellent agreement with 1/(γ − 1) = 2.5. If one considers the sum of B1

and B2:

B1 +B2 =
γ

γ− 1

∂

∂xj
[puj − p̄ũj ]

︸ ︷︷ ︸
Φ

+ ũj
∂p̄

∂xj
− uj

∂p

∂xj︸ ︷︷ ︸
D

, (2.11)

the term D can be interpreted as the subgrid-scale pressure convection. Arguably, this

is expected to be relatively small as the most energetic convected pressure fluctuations

ought to be caused by large turbulence structures and acoustic radiations, two features

that are commonly resolved in LES. In fact, term D is the term that previous works

in compressible LES have neglected (Moin et al., 1991; Erlebacher et al., 1992; Garnier

et al., 2002). Term Φ can be rearranged using the equation of state (both the filtered
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and un-filtered versions):

Φ =
1

(γ− 1)M2

∂

∂xj


ρ̄
(
T̃ uj − T̃ ũj

)

︸ ︷︷ ︸
Ψj


 , (2.12)

where the vector labelled Ψj is known as the subgrid-scale Reynolds heat flux and is

commonly modelled through an eddy-diffusivity subgrid-scale model.

From the above discussion, the in-house SBLI code is set to only solve the approximate

form of the aforementioned filtered normalised 3D compressible Navier–Stokes equations

where terms IIi, B5, B6, B7 and D are neglected and only the subgrid-scale stress tensor

σij and the subgrid-scale Reynolds heat flux Ψi are modelled. The SGS stress tensor

and Reynolds heat flux modelling approach is the subject of the next section.

2.1.3 The closure problem

2.1.3.1 The SGS stress tensor

One of the most common approach to model the SGS stress tensor is to use an eddy

viscosity approach:

σij −
1

3
δijσkk = −2ρ̄νtS̃

∗
ij, (2.13a)

where νt is the eddy viscosity and S̃∗
ij the deviatoric part of the strain-rate tensor

computed from the filtered velocity field:

S̃ij =
1

2

(
∂ũi

∂xj
+
∂ũj

∂xi

)
, (2.13b)

S̃∗
ij = S̃ij −

1

3
δij S̃kk. (2.13c)

Note that the isotropic part of the SGS stress tensor should also be modelled. Formally,

the isotropic part of the SGS stress tensor can be included in the pressure term and

its effect then appears as a modified pressure field. However, one can assume that

the local turbulence Mach number is greater than the subgrid-scale turbulence Mach

number. Since the local turbulence Mach number is rarely above 0.6, the thermodynamic

pressure is expected to be the dominant term so that the isotropic part of the SGS stress

tensor is simply neglected (see Erlebacher et al., 1992; Moin et al., 1991). However,

the aforementioned argument is questionable in the SBLI context since the flow being

filtered has embedded shock waves in it. The additional assumption is then to say that

the significant numerical dissipation near the shocks is expected to exceed that of the



Governing equations and numerical method 28

SGS model and that it is not necessary to worry about the isotropic part of the SGS

stress tensor (see Garnier et al., 2002).

The eddy viscosity νt has been modelled in numerous ways. The present work will

only be using the Dynamic Smagorinsky model (Germano et al., 1991a,b) and the Mixed-

Time Scale model (Inagaki et al., 2005).

The Dynamic Smagorinsky eddy viscosity model In the Dynamic Smagorinsky

(DS) case, the test filter is applied to the Favre-filtered field (see 2.1.2.1 and (2.7) for

definitions), leading to the following hat-bar notation:

̂̃qi(x) =

∫

D
G∗(x− z ; ∆̂)




∫

D
G(x − z ; ∆) [ρ(z)qi(z)] d3z
∫

D
G(x− z ; ∆) ρ(z) d3z


d3z. (2.14)

In practice, the test filter is such that its characteristic width is larger than the grid

filter in order to be able to test-filter the grid-filtered quantities. In this work, we have

∆̂ = 2∆. Upon application of the test filter to the SGS stress tensor, one finds:

σ̂ij = ρ̂uiuj −̂̄ρũiũj. (2.15a)

Moreover, given the Favre-filtered field, it is possible to compute explicitly the non-

linearity associated with test-filtering the velocity-velocity correlations:

Lij = ̂̄ρũiũj −
̂̄ρũi
̂̄ρũj

̂̄ρ . (2.15b)

By analogy with the SGS stress tensor, the test-filtered stress tensor can be defined:

Fij = ̂̄ρũiuj −
̂̄ρũi
̂̄ρũj

̂̄ρ , (2.15c)

which is nothing but the sum of (2.15a) and (2.15b):

Lij = Fij − σ̂ij. (2.16)

Then, the SGS stress tensor and the test-filtered stress tensor are both assumed to relate

to the deviatoric part of the respective strain-rate tensor via an eddy-viscosity model
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using the same Smagorinsky constant CS :

σ∗ij ≡ σij −
1

3
δijσkk = −2ρ̄νtS̃

∗
ij, F ∗

ij ≡ Fij −
1

3
δijFkk = −2̂̄ρν ′t ̂̃S∗

ij,

νt = CS∆
2|S̃∗|, ν ′t = CS∆̂

2
| ̂̃S∗|,

S̃ij =
1

2

(
∂ũi

∂xj
+
∂ũj

∂xi

)
, ̂̃Sij =

1

2

(
∂ ̂̃ui

∂xj
+
∂ ̂̃uj

∂xi

)
,

S̃∗
ij = S̃ij −

1

3
δij S̃kk,

̂̃S∗
ij = ̂̃Sij −

1

3
δij
̂̃Skk,

|S̃∗| =
√

2S̃∗
ij S̃

∗
ij, | ̂̃S∗| =

√
2 ̂̃S∗

ij
̂̃S∗

ij.

(2.17)

Using the above system in (2.16) and assuming that both Cs and ∆ are constants over

the test-filter characteristic length ∆̂ yields:

L∗
ij = −2CS

[
∆̂

2 ̂̄ρ | ̂̃S∗| ̂̃S∗
ij −∆

2 ̂
{
ρ̄ |S̃∗|S̃∗

ij

}]

︸ ︷︷ ︸
Mij

. (2.18)

Since the tensors in (2.18) are symmetric, (2.18) corresponds to a system of six equations

for the single unknown CS . In the SBLI code, as in most publications (Germano et al.,

1991a; Moin et al., 1991; Erlebacher et al., 1992), a least-square approach is used to

solve for CS :

CS = −1

2

L∗
ijMij

MklMkl
. (2.19)

To avoid possible numerical instabilities arising from the dynamical approach, the above

equation is averaged in the homogeneous (i.e. spanwise) direction (denoted by 〈.〉z) and

any negative value for CS is set to zero:

CS(x, y, t) = max

{
−1

2

〈L∗
ijMij〉z

〈MklMkl〉z
; 0

}
. (2.20)

The successive use of the convolution product (see (2.14)) with the kernels G and G∗

having respectively a characteristic lengthscales ∆ and ∆̂ raises the question of what the

characteristic lengthscale ∆̂ of the resulting test filter is. Following the work of Vreman

(1995) (pages 32–33), the best approximation of ∆̂ is:

∆̂ =

√
∆

2
+ ∆̂2. (2.21)

Assuming that the characteristic length of the grid filter is
√

∆x∆z and using ∆̂ = 2∆

yields:

∆̂ = ∆
√

5, ∆ =
√

∆x∆z. (2.22)

This completes the Dynamic Smagorinsky model.
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The Mixed-Time Scale eddy viscosity model The Mixed-Time Scale (MTS)

model is essentially based on a dimensionally-consistent physical argument relating to

the asymptotic behaviour of the eddy viscosity as one approaches the wall and the

potential flow (see Inagaki et al., 2005). Similarly to the DS model, the MTS model

makes use of a test filter. The eddy viscosity νt in (2.13a) is modelled as:

νt = CMkesTS , (2.23a)

where:

kes =
[
ũi − ̂̃ui

] [
ũi − ̂̃ui

]
, (2.23b)

T−1
S =

(
∆√
kes

)−1

+

(
CT

|S̃∗|

)−1

, (2.23c)

and ̂̃ui and ∆ are defined by (2.14) and (2.22), respectively. The constants CM and

CT were originally set to 0.05 and 10, respectively, by Inagaki et al. (2005) based on

a priori tests in channel and backward-facing step flow data. However, in the current

implementation of the model, we have used:

CM = 0.03, CT = 10, (2.23d)

based on application of the SBLI code to compressible turbulent channel flow (Li, 2003).

This completes the MTS model. The main advantage of the MTS model over the DS

one is that it is computationally less expensive because the constants are not computed

dynamically. However, the DS approach is more elegant in the sense that it does not

require any ad-hoc modelling constant.

2.1.3.2 The SGS heat flux

Once the eddy viscosity is obtained (from either one of the above SGS stress tensor

models), the SGS heat flux (see (2.12)) is modelled as:

Ψi ≡ T̃ uj − T̃ ũj = − νt

Prt

∂T̃

∂xi
, (2.24)

where νt is taken from the SGS stress-tensor model. The SGS turbulent Prandtl number

Prt should in theory be computed dynamically as in Moin et al. (1991). However, it is

considered constant in this study (as in Garnier et al., 2002). The value commonly used

is Prt = 0.9 but the current implementation has the SGS turbulent Prandtl number set

to 1.0. This is exact in the SRA context but could lead to a slight underestimation of
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the SGS heat flux in the more general case (assuming that an eddy-viscosity approach

is valid and properly estimated by the SGS model).

2.1.4 Final problem formulation and numerical approach

Based on what was presented in the previous sections, the work described in this thesis is

based on the solution of the following approximate form of the filtered 3D compressible

Navier–Stokes equations:

∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0, (2.25a)

∂ρ̄ũi

∂t
+
∂ρ̄ũiũj

∂xj
+

∂p̄

∂xi
− 1

Re

∂τ̆ ij

∂xj
≈ −∂σij

∂xj
, (2.25b)

∂Ĕt

∂t
+
∂(Ĕt + p̄)ũj

∂xj
− 1

Re

∂τ̆ ij ũi

∂xj

+
1

(γ− 1)Re Pr M2

∂

∂xj

[
µ̃
∂T̃

∂xj

]
≈ −ũi

∂σij

∂xj
− 1

(γ− 1)M2

∂

∂xj
[ρ̄Ψj] , (2.25c)

with:

p̄ =
1

γM2 ρ̄T̃ , (2.25d)

Ĕt =
p̄

γ− 1
+

1

2
ρ̄ũiũi, (2.25e)

τ̆ ij = µ̃

(
∂ũj

∂xi
+
∂ũi

∂xj
− 2

3
δij
∂ũk

∂xk

)
. (2.25f)

µ̃ =
[
T̃
]Ω

or, (2.25g)

µ̃ =
[
T̃
]3/2 1 + C

T̃ + C
, (2.25h)

Ψj = − νt

Prt

∂T̃

∂xj
, (2.25i)

σij −
1

3
δijσkk = −2ρ̄νtS̃

∗
ij , (2.25j)

S̃ij =
1

2

(
∂ũi

∂xj
+
∂ũj

∂xi

)
, (2.25k)

S̃∗
ij = S̃ij −

1

3
δij S̃kk. (2.25l)

νt = CMkesTS , (2.25m)

kes =
[
ũi − ̂̃ui

] [
ũi − ̂̃ui

]
, (2.25n)

T−1
S =

(
∆√
kes

)−1

+

(
CT

|S̃∗|

)−1

, (2.25o)

∆ =
√

∆x∆z, (2.25p)

|S̃∗| =
√

2S̃∗
ij S̃

∗
ij, (2.25q)
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where Pr = 0.72, Prt = 1.0, Ω = 0.67, C = S/T̄ ⋆
1, S = 110.4K, CM = 0.03 and CT = 10.

The bar, tilde and hat notations are defined in (2.2), (2.7) and (2.14), respectively.

The equations above are solved using an explicit 4th-order central spatial differencing

scheme for the spatial derivatives and the 3rd-order explicit Runge–Kutta scheme to

integrate in time. The boundary treatment is also of 4th order (see Carpenter et al.,

1998). The code makes use of entropy splitting of the Euler terms (based on the work of

Gerritsen and Olsson, 1996, 1998) and the laplacian formulation of the viscous terms to

enhance the stability of the non-dissipative central scheme (see Sandham et al., 2002).

In addition, a variant of the standard total variation diminishing scheme is used for

shock capturing (Yee et al., 1999), coupled with the Ducros sensor (Ducros et al., 1999).

At regular time intervals, the entire flow field is filtered using a 6th-order explicit filter

to remove possible grid to grid-point oscillations. The SBLI code was made parallel

in all three directions using MPI libraries. Specific details on the implementations of

the aforedescribed numerical strategy can be found in Jones (2008) and Li (2003). The

choice of boundary conditions is the subject of the following section.

2.2 Boundary conditions

2.2.1 Wall, top and outflow boundary conditions

At the wall, the no-slip condition is enforced (i.e. ui = 0). Furthermore, the wall is con-

sidered isothermal with a temperature close to the upstream adiabatic one (assuming a

recovery factor of 1). Note that the test filter is not applied in the wall-normal direction

so that the no-slip condition is directly applicable to the filtered velocity field. The top

(free-stream) and outflow boundaries make use of an integrated characteristic scheme

(see Thompson, 1987; Sandhu and Sandham, 1994) in order to minimise unwanted reflec-

tions from the computational-box boundaries. The oblique shock is introduced at the

top boundary using the Rankine–Hugoniot relationships. The inflow condition is the

boundary condition to which particular attention was devoted at the early stage of this

work and is the subject of the remainder of this chapter.

2.2.2 The inlet boundary condition issue

Both LES and DNS approaches, when used to compute fully turbulent flows, are faced

with one common issue: the need to prescribe realistic inflow conditions. Ideally, these

conditions should be time and space dependent, with the correct statistical moments,

phase information and spectrum of the real turbulent flow they reproduce. In practice,

this is impossible and one needs to cope with a certain level of approximation. The
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amount of publications on this issue is probably as dense as the number of publications

on the different LES sub-grid scale models. However, almost all the methods proposed

to date fall into two subcategories: precursor methods and synthetic turbulence methods

(the explanations will follow). This reflects two issues. First, that a sufficiently accu-

rate and efficient general inflow-generation method does not exist. Then, that the two

families of techniques both suffer from serious drawbacks. There is no intention here to

establish a complete and detailed literature review on the subject, but rather to recall

some important facts.

The precursor type of technique consists essentially in running an auxiliary calcula-

tion to provide the correct and targeted inflow conditions of an actual simulation. They

achieve among the most realistic results (in the sense that they are the most accurate

solutions) and are easy to control (meaning that it is easy to match the inflow char-

acteristics, e.g. skin friction and integral parameters like the displacement thickness).

Furthermore, they are relatively easy to implement. A good introduction on the topic

can be found in Lund et al. (1998). We focus here on the case of turbulent bound-

ary layers. Perhaps the most famous approach is the one initiated by Spalart (1988),

later extended and greatly simplified by Lund et al. (1998). These are the so-called

periodic and recycling techniques. The main idea is to extract an instantaneous plane

from an auxiliary simulation and rescale it to the correct flow properties of the inflow

plane of the actual simulation. The auxiliary simulation would typically generate its own

inflow conditions by means of periodic boundary conditions in the stream-wise direction.

The auxiliary simulation is thus, by construction, limited to homogeneous flow in the

stream-wise direction. However, Spalart (1988) elegantly applied it to a boundary-layer

simulation by a change of variables accounting for the spatial growth of the boundary

layer. This resulted in the addition of source terms in the equations, which is the main

reason for Spalart’s method to be said to be complex, as one needs to evaluate the

growth terms beforehand. However, this was greatly simplified by Lund et al. (1998),

who allowed the auxiliary simulation to be quasi-periodic. Their idea was to only work

with the inflow and outflow boundary conditions of the auxiliary simulation. In practice,

the outflow plane is rescaled back to the inflow by decomposition of the fields into the

mean and fluctuating components, both rescaled in a different and ingenious way (see

Lund et al., 1998). To make it work, one only needs an empirical relation to relate the

inflow wall shear to the solution downstream. By doing so, Lund et al. (1998) were able

to generate inflow data for boundary layers at Reδ2 ∈ [1530–2150] with reported high

accuracy and little or no adjustment of the flow at the inlet (due to errors introduced

when rescaling the fields).

The drawbacks of such methods are readily mentioned in the literature – see Smirnov

et al. (2001); Keating et al. (2004); Kornev and Hassel (2007); Klein et al. (2003); di

Mare et al. (2006); Kempf et al. (2005); Veloudis et al. (2007); Jarrin et al. (2006) and
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the references therein. Some of these are not relevant to the case of a fully turbulent

boundary layer (e.g. issues with complex geometries, non-fully developed flows etc. . . )

so that only the ones of direct relevance to the SBLI study are mentioned here. One of

these is known as the pressure-drift issue. The method was first developed for incom-

pressible boundary layers, and later extended to compressible boundary layers by Urbin

and Knight (2001) and others – see Sagaut et al. (2004) for details. It is known that the

compressible-boundary-layer versions of the method of Lund et al. (1998) can produce

a drift either in the targeted boundary-layer thickness or in the displacement thick-

ness. The rescaling of the thermodynamic quantities is in fact an issue and a correction

was proposed by Sagaut et al. (2004). Perhaps the most significant drawback of the

recycling/rescaling technique for the purposes of studying the possible low-frequency

oscillations in SBLI, is the low frequency content introduced by the recycling process

(for interesting plots of the velocity spectrum, see Keating et al., 2004). This could

impair and mislead the SBLI investigations1 (Adams, 1997; Edwards et al., 2008). This

is the main motivation for not using this approach in the current work.

The second family of inflow-generation methods is fundamentally different. The idea

here is to prescribe an artificial inflow field which mimics real turbulence (hence the

name “synthetic”). The matching is usually performed on the first/second order statis-

tical moments and on the velocity spectrum. One major consequence of the high level

of approximation used is that the flow will be unphysical for some distance downstream

of the inflow plane. In the boundary-layer case, such unphysical transients are usually

of the order of ten to twenty inflow-boundary-layer thicknesses long. Indeed, although

one can easily prescribe the right statistical moments and spectrum, it is unlikely that

the phase information contained by such synthetic fields will also match that of real

turbulence. The unphysical prescribed phase information will thus have to adjust itself

downstream of the inlet plane until it becomes physically correct. Moreover, it is inher-

ently difficult to predict the skin-friction and displacement-thickness values downstream

of this transient regime. Despite the aforementioned drawbacks, synthetic inflow con-

ditions are increasingly popular and numerous current research efforts seem to head

towards synthetic methods. The number of papers on such techniques over the last five

years is rather convincing.

The simplest approach would be to add random disturbances to the mean profiles and

let them evolve to turbulence. Unfortunately, this is known to lead to relaminarisation

of the flow (see Keating et al., 2004; Veloudis et al., 2007). Indeed, such an approach

uniformly distributes the energy in the wave-number space and not enough energy is

put into larger wavelengths. One possibility is to prescribe the correct spectral densities

with random phase and perform an inverse Fourier transform (see Lee et al., 1992). This

yields good results but applicable at reasonable cost only on uniform grids and it is not

1Private communication with Dr. Eric Garnier, ONERA (2007)
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clear how to cope with non-homogeneous fields (Jarrin et al., 2006). However, Smirnov

et al. (2001) have successfully enhanced a variant of the spectral approach for inhomo-

geneous, anisotropic turbulence. They were also able to achieve close to divergence-free

velocity fields for inhomogeneous turbulence and truly divergence-free velocity fields for

homogeneous turbulence, which may be of interest for aeroacoustic studies.

An alternative technique is to filter a random data field to achieve targeted spatial

and temporal correlations. This technique is often called the “Digital Filter” approach

(see the original paper of Klein et al., 2003). Improvements of the digital filter technique

have been made by di Mare et al. (2006) where a more detailed method to obtain the

coefficients of the filter is given. Veloudis et al. (2007) looked at the influence of using

various filter widths in an attempt to better describe the different length-scales present

in boundary layers as one moves in the wall-normal direction and concluded that the

results with a single filter length-scale could still produce good-quality results. They also

proposed an elegant way of decreasing the computational cost of the method (where a

full 3D field has to be filtered) by performing the convolution in Fourier space. Xie

and Castro (2008) have also greatly reduced the computational cost of the digital-filter

approach by avoiding filtering in 3D. Instead, they correlate the previous 2D inflow plane

data with the new one using an exponential function based on two weight factors.

It is worth mentioning a couple of other interesting approaches. For example, Kempf

et al. (2005) have proposed to filter a random field using a diffusion equation and have

found that it can lead to the same result as the digital-filter approach (which usually

makes use of Gaussian filters), but with the interesting advantage of its simple use in

complex geometries and inhomogeneous turbulence (as opposed to the use of a set of

filters in the digital-filter approach which can be expensive on refined grids). Jarrin

et al. (2006) report relatively short transients with their synthetic-eddy approach, which

brings advantages over the digital-filter approach for complex geometries and inhomo-

geneous turbulence. Attempts to provide the right phase information rather than the

first/second order one-point statistics were made by focusing more on known structures

of turbulent boundary layers, as in Sandham et al. (2003) (discussed in more details in

the next section). Johansson and Andersson (2004) also published an interesting alter-

native, somehow bridging the gap between the two families. In their paper, they use an

auxiliary simulation to compute the evolution of the most energetic eddies using proper

orthogonal decomposition. They then add random low-energy small-scale modes for the

inflow condition of the actual simulation. The transient is thus relatively small since it

only affects the small-scale modes, which recover relatively fast. However, this approach

suffers from the need for a large enough database to compute the proper orthogonal

decomposition basis. Finally, it is important to note that synthetic-inflow conditions

based on filtering random numbers must use sufficiently large filters to represent the

large-scale turbulent structures. It is shown in Keating et al. (2004) for example that
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if eddies at least four times larger than the integral length-scale are not included, the

flow can exhibit a longer transient or worst, relaminarise. The smaller the characteristic

length of the filter is, the more random the perturbation field becomes, which is known

to potentially lead to the relaminarisation issues.

In the following sections, the detailed procedure to generate both the mean inlet pro-

files and the fluctuating fields using either the synthetic turbulence or the digital filter

approaches is provided.

2.2.2.1 Mean inflow profiles

In the following paragraphs, we will need to distinguish dimensional variables from

normalised ones. The dimensional variables will be denoted by the superscript star as

in a⋆, whereas the non-dimensional variables will have no superscript. Let us define the

following integral transform:

q̌(y) =

∫ q(y)

q(y=0)

√
ρ

ρw
dq′, (2.26)

which will be referred to as the van Driest transform. In the SBLI code, the reference

lengthscale used is the inflow van Driest displacement thickness, defined as:

δ̌1 =

∫ ∞

0
[1− ǔ(y̌)] dy̌. (2.27)

One main motivation to use the van Driest transform is that it is known to provide a

useful approximation to transform the mean velocity profile of a compressible turbulent

boundary layer into its incompressible counterpart (at least for the range of Mach num-

bers considered in this work).

The superscript plus as in a+ will be used when the variable a is expressed in the

standard wall-unit system. The subscript e denotes that the variable is evaluated at the

boundary-layer edge while the subscript w indicates that the evaluation is performed at

the wall. Stagnation variables are denoted by the subscript zero.

Mean velocity profile in the van Driest coordinate system — ǔ(y̌) The semi-

analytical mean velocity profile2 in the van Driest coordinate (VD) system is generated

following the operations below, for which the original motivations can be found in Sand-

ham (1991) and its extension to compressible flows in Li’s PhD thesis (Li, 2003):

2In this work, time-averaged quantities will usually be explicitly indicated using the usual overline

notation (e.g. ū). However, since this paragraph focuses on the mean inlet profiles, the overline notation
is not used to lighten the notation but it is implied that the variables considered in this paragraph are
the time-averaged quantities (e.g. u ≡ ū).
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1. Guess the value of the edge velocity (in the VD coordinate system), which will be

denoted ǔ+
e throughout this section.

2. Lay out a grid (in terms of velocity), i.e. spread out velocities between 0 and ǔ+
e :

ǔ+ ∈ [0, ǔ+
e ].

3. Compute the corresponding ξ+(ǔ+) according to the formula proposed by Spalding

(1961):

ξ+(ǔ+) = ǔ+ + e−κb

[
e−κǔ+ − 1−

(
κǔ+

)
− 1

2

(
κǔ+

)2 − 1

6

(
κǔ+

)3
]
, (2.28)

where κ is the von Karman constant and b the additive constant in the log-law

(we assume κ = 0.41 and b = 5.17).

4. Change coordinate system according to:

y̌+(ǔ+) =
ξ+(ǔ+)ξ+e
ξ+e − ξ+(ǔ+)

, where ξ+e = ξ+(ǔ+
e ). (2.29)

5. Let y̌⋆ be the physical distance from the wall. In the code, the reference length-

scale is the displacement thickness computed on the VD velocity profile (δ̌1). The

Reynolds number is defined as:

Řeδ̌⋆
1
≡ ρ̌eǔ

⋆
e δ̌

⋆
1

µ̌e
. (2.30)

Then, note that in the incompressible-like VD-space, thermodynamic quantities

are fixed so that ρ̌⋆
e = ρ̌⋆

w and µ̌⋆
e = µ̌⋆

w. By definition, ǔ+
e = ǔ⋆

e/ǔ
⋆
τ . One can write

that y̌+ ≡ y̌⋆ǔ⋆
τ/ν̌

⋆
w = y̌⋆Řeδ̌⋆

1
/(ǔ+

e δ̌
⋆
1). Hence:

y̌ ≡ y̌⋆

δ̌⋆
1

=
y̌+ǔ+

e

Řeδ̌⋆
1

. (2.31)

6. The boundary thickness δ0 (normalised by δ̌⋆
1) is computed from:

δ0 =
ǔ+

e ξ
+
e

αŘeδ̌⋆
1

with
1

2
ln (1 + α) =

Řeδ̌⋆
1

690 + 1.5Řeδ̌⋆
1

. (2.32)

7. The velocity profile (normalised by the free-stream velocity) in the VD coordinate

system is obtained from:

ǔ(y̌) = 1− f +
ǔ+

ǔ+
e
f, (2.33)

where:

f = exp
{
−c
[
exp

(
η1/κ

)
− 1
]}

, η =
y̌

δ0
and c = 3.0. (2.34)



Governing equations and numerical method 38

8. The aforementioned process is repeated by changing the guessed edge-velocity

value ǔ+
e in step 1 until:

δ̌1 =
δ̌⋆
1

δ̌⋆
1

=

∫ ∞

0
(1− ǔ(y̌)) dy̌ = 1. (2.35)

Mean velocity, temperature and density profiles — u(y), T (y), ρ(y). The

mean velocity profile computed in the previous paragraph is expressed in the VD space

and one now needs to perform the inverse transform. The adiabatic wall temperature

is:

Taw = 1 +
γ− 1

2
M2

1. (2.36)

The temperature-velocity relation is given by the Crocco–Busemann equation (White,

1991):

T = Tw + (Taw − Tw)u− γ− 1

2
M2

1u
2. (2.37)

If the wall is adiabatic, then Tw = Taw. To remain general, let us proceed as if the wall

was not adiabatic. The Crocco–Busemann relation is:

T = a+ bu+ cu2 with a = Tw, b = Taw − Tw, c = 1− Taw. (2.38)

The VD transform is defined by the following integral:

ǔ+ =

∫ u+

0

√
ρ

ρw
du′+. (2.39)

Assuming that the pressure is constant across the boundary layer (the usual boundary-

layer-equation approximation), the ideal gas law can be written ρT = constant, so that

the Crocco–Busemann relation can be substituted into the above integral to give:

ǔ+ = u+
e

√
Tw

∫ u

0

du′√
a+ bu′ + cu′2

= u+
e

√
Tw

−c

[
sin−1

(
b√

b2 − 4ac

)
− sin−1

(
2cu+ b√
b2 − 4ac

)]
. (2.40)

Solving the above equation at the boundary-layer edge yields:

u+
e =

ǔ+
e

√−c
√
Tw

[
sin−1

(
b√

b2 − 4ac

)
− sin−1

(
2c+ b√
b2 − 4ac

)] . (2.41)
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The x-component of the velocity profile is then:

u(ǔ) =

√
b2 − 4ac sin

[
sin−1

(
b√

b2 − 4ac

)
− ǔ ǔ

+
e

u+
e

√−c
Tw

]
− b

2c
. (2.42)

The temperature and density profiles can then be computed from the velocity profile

using the above Crocco–Busemann relation and the ideal-gas law (assuming the pressure

to be constant across the boundary layer). One last operation is needed, however, to

transform the VD coordinate y̌ back to the normal coordinate y. As seen in the previous

paragraph:

y̌+ =
y̌Řeδ̌⋆

1

ǔ+
e

. (2.43)

Recall the following definitions:

y+ =
y⋆u⋆

τ

ν⋆
w

, u⋆
τ =

u⋆
e

u+
e

, Řeδ̌⋆
1

=
ǔ⋆

e δ̌
⋆
1

ν̌⋆
e

, y =
y⋆

δ̌⋆
1

. (2.44)

Using these definitions, one can write:

y+ =
yŘeδ̌⋆

1

u+
e

ν̌⋆
e

ν⋆
w

u⋆
e

ǔ⋆
e

. (2.45)

With ν̌⋆
e/ν

⋆
w = ν⋆

e/ν
⋆
w = ρw/µw, u⋆

e/ǔ
⋆
e = 1 and y̌+ = y+:

y =
u+

e

ǔ+
e

µw

ρw
y̌. (2.46)

Assuming a power-law dependence for the dynamic viscosity (µ = TΩ, see (2.1g)):

y =
u+

e

ǔ+
e
TΩ+1

w y̌. (2.47)

Mean profile for the wall-normal component of the velocity — v(y). Despite

the fact that boundary-layer growth is an important feature to be simulated, it is com-

mon practice to set the wall-normal velocity to zero at the inflow plane. Such a crude

approximation will unavoidably result in an unphysical boundary-layer growth in the

first grid points of the computational box. In addition, the inconsistency produced by

this approximation can generate an oblique shockwave at the inlet plane that will mod-

ify the targeted upstream flow conditions. However, one may argue that the synthetic

turbulent inflow boundary conditions will also generate unphysical results and that it

is questionable whether prescribing the correct BL growth is of significant importance.

Nevertheless, although the added disturbances will result in unphysical fields, it is felt

that prescribing the correct growth in the mean profile is helpful to reduce the inflow
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transient and the strength of the aforementioned shockwave emanating from the inflow

plane.

To prescribe the BL growth, a second stream-wise velocity profile is generated slightly

downstream of the first profile. From those two profiles u(y), one can evaluate the

stream-wise velocity gradient. Once determined, this gradient is then used to integrate

the continuity equation (the mean span-wise velocity being zero). The second velocity

profile needs to be related to the first one. Unfortunately, this can only be done with the

help of empirical relations. For the present simulations, we have used equations (6.68)

and (6.69) on page 430 of White (1991): Reδ0 = (Cf/0.02)
−6 and Rex = (Reδ0/0.16)

7/6 .

For further details, please refer to the copy of the in-house routine to generate the afore-

mentioned inflow mean profiles, made available in Appendix B.

Once the inflow mean profiles are obtained using the above method, the fluctuat-

ing fields can be generated and added to the mean profiles to produce the final time-

dependent inflow conditions.

2.2.2.2 Fluctuations

Added perturbations: the synthetic turbulence approach In this section, the

synthetic turbulence (ST) approach to generate the fluctuations for the TBL generation

is described in detail. The general idea of the method is to prescribe inflow disturbances

that mimic the accepted deterministic features of turbulent boundary layers by intro-

ducing specific inner- and outer-layer disturbances with associated phase information

(see Yao and Sandham, 2002; Sandham et al., 2003). Disturbances in the inner region

(denoted ui<) represent lifted streaks (with a peak location at d̊+
1 ) while the outer-region

disturbances (denoted ui>) represent three-dimensional vortices.

In Sandham et al. (2003), these disturbances were expressed as for an incompress-

ible boundary layer and the method was then extended to supersonic boundary-layer

flows (Mach 2) by Li (2003). The extension to compressible boundary layer is based on

the semi-local scaling proposed by Huang et al. (1995) and demonstrated for example

by Coleman et al. (1995) in channel-flow simulations. Data expressed using this semi-

local scaling appear to match well with incompressible data (Morkovin’s hypothesis) as

shown for example in the Mach 2.5 DNS of a turbulent boundary layer by Guarini et al.

(2000). Therefore, the disturbances previously expressed for an incompressible turbulent

boundary layer can be simply re-scaled to the case of a compressible boundary layer.
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Inner-layer modes Semi-local quantities will be denoted3 by å. We have:

ů⋆
τ ≡

√
µ⋆

w

ρ⋆(y)

∂u⋆

∂y⋆

∣∣∣∣
y⋆=0

=

√
ρw

ρ(y)
u⋆

τ , (2.48)

ẙ+ ≡ y⋆ů⋆
τ

ν(y)⋆
=

√
ρw

ρ(y)

y⋆u⋆
τ

ν⋆
w

ν⋆
w

ν(y)⋆
= y+µwρ(y)

µ(y)ρw

√
ρw

ρ(y)
=
yŘeδ̌⋆

1

u+
e

ρ(y)
√
ρw

µ(y)
√
ρ(y)

. (2.49)

Assuming the power-law relation µ = TΩ and recalling that ρ = 1/T (if the pressure is

assumed constant across the boundary layer), one finds:

ẙ+ =
yŘeδ̌⋆

1

u+
e

1√
TwT (y)Ω+1/2

. (2.50)

Note that we have u+
e in the above expression and not ǔ+

e .

Similarly:

ů+ =
u⋆

ů⋆
τ

, u+ =
u⋆

u⋆
τ

, (2.51)

ů+ = u+

√
Tw

T (y)
. (2.52)

The angular frequency ̟1 of the disturbances sets the stream-wise distance λx they

cover at a convective velocity uc over one period τ :

̟1 =
2π

τ
, τ =

λx

uc
. (2.53)

Note the following:

λ̊+
x ≡

λ⋆
xů

⋆
τ

ν(y)⋆
=
λxŘeδ̌⋆

1

u+
e

ρ(y)
√
ρw

µ(y)
√
ρ(y)

, (2.54)

ů+
c = u+

c

√
ρ(y)

ρw
= u+

e uc

√
ρ(y)

ρw
, (2.55)

τ =
λ̊+

x

ů+
c

u+2

e

Řeδ̌⋆
1

µ(y)

ρw
. (2.56)

The convective velocity ů+
c can be expressed as a fraction of the friction velocity:

ů+
c = χů+

τ , ů+
τ = u+

τ

√
ρ(y)

ρw
≡ u⋆

τ

u⋆
τ

√
ρ(y)

ρw
=

√
ρ(y)

ρw
. (2.57)

3Most of the notations introduced in this paragraph are not reported in the nomenclature since their
use is strictly limited to this paragraph.
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In Sandham et al. (2003), χ = 10 and λ̊+
x = 500π.

Hence (using a power law for µ):

̟1 =

[
2πχ

λ̊+
x

]

︸ ︷︷ ︸
ω1

Řeδ̌⋆
1

u+
e

2

√
ρ(y)ρw

µ(y)
= ω1

Řeδ̌⋆
1

u+
e

2

1√
TwT (y)Ω+1/2

. (2.58)

Finally, we want N1 near-wall streaks in the span of length Lz spaced by λ̊+
z (̊λ+

z = 100

in Sandham et al., 2003). The z-dependence of the disturbances is in cos(ζ1z). Hence:

ζ1 =
2πN1

Lz
and λ̊+

z =
LzŘeδ̌⋆

1

u+
e

ρw

µw
=
LzŘeδ̌⋆

1

u+
e

1

TΩ+1
w

. (2.59)

Lz should thus be chosen such that λ̊+
z is of the order of 100.

The inner-layer perturbations in Sandham et al. (2003) (equations (5) and (6)) are

(in their incompressible-like form):

ů+
<(x = 0, y, z, t) = c1,1ẙ

+ exp
(
−ẙ+/d̊+

1

)
sin(̟1t) cos(ζ1z + φ1), (2.60a)

v̊+
<(x = 0, y, z, t) = c2,1ẙ

+2

exp

[
−
(
ẙ+/d̊+

1

)2
]

sin(̟1t) cos(ζ1z + φ1). (2.60b)

Note that the velocities are expressed in wall units. The conversion to normal units is:

ůi< =
1

u+
e

√
Tw

T (y)
ů+

i<
= ui< . (2.61)

In the present simulations, the above original equations were slightly modified, based

on the argument that the second mode used in Li (2003) is also located in the inner-

layer. The definition of the coefficients was also modified to make them Reynolds-

number independent. A summary of the equations being currently used to generate the

perturbations will follow.

Outer-layer modes The modifications from the incompressible form of the outer-

layer modes (Sandham et al., 2003) is straightforward as one only needs to ensure that

lengths are made dimensionless using the displacement thickness computed on the VD

velocity, which is the case here.

The equations at glance and the parameter values The present variant of the

ST approach proposed by Sandham et al. (2003) is given below. In the original version,

the span-wise fluctuations were computed from the stream-wise and wall-normal fluctu-

ations via the continuity equation. However, this is found to produce rather sharp and
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severe oscillations in the RMS profile of the spanwise fluctuations. Instead, the conti-

nuity equation is not used and spanwise fluctuations are prescribed in the same manner

as for the streamwise and wall-normal fluctuations.

Inner-layer mode:

ui<(0, y, z, t) = 2 exp(1)

√
ρw

ρ(y)

2∑

j=1

ci,j

[
F (y)

y

dj

]pi,j

exp

[
−
(
F (y)

y

dj

)pi,j
]

× sin

[
ωj
F (y)

u+
e
t

]
cos

[
2πNj

Lz
z + φj

]
, (2.62a)

where:

F (y) =
Řeδ̌⋆

1

u+
e
√
TwT (y)Ω+1/2

, Ω = 0.67, (2.62b)

u+
e = ǔ+

e

√
(Taw − 1) /Tw

sin−1


 Taw − Tw√

(Taw + Tw)2 − 4Tw


− sin−1


 2− Taw − Tw√

(Taw + Tw)2 − 4Tw



, (2.62c)

Taw = 1 +
γ− 1

2
M2

1. (2.62d)

Outer-layer mode:

ui>(0, y, z, t) = 2 exp(1)

√
ρw

ρ(y)

4∑

j=3

ci,j

[
y

dj

]pi,j

exp

[
−
(
y

dj

)pi,j
]

× sin (ωjt) cos

[
2πNj

Lz
z + φj

]
. (2.62e)

j c1,j c2,j c3,j p1,j p2,j p3,j dj ωj Nj φj

Inner modes 1 0.10 -0.025 -0.09 1 2 2 12.0 1/25 8 0.00
2 0.10 -0.06 -0.09 1 2 2 45.0 1/4 6 0.00

Outer modes 3 0.05 -0.05 -0.07 2 2 2 2.0 1/8 4 0.10
4 0.08 -0.045 -0.05 2 2 2 4.0 1/16 3 0.15

Table 2.2: Parameters used for the synthetic turbulence inflow conditions (2.62 a,e)

Results from the above procedure will be given together with the results from the sec-

ond technique that was implemented. This second method is the digital-filter approach

and is the subject of the next paragraph.
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Added perturbations: the digital filter approach The digital-filter (DF) method

is a statistical approach to the inflow-condition specification problem where the turbu-

lence first- and second-order statistical moments are imposed by means of filtered random

data sets. It offers the possibility to prescribe both the Reynolds-stress tensor and the

energy spectra. However, it does not allow for a direct control on the instantaneous

fields, which are generally unphysical and responsible for the observed transient states

downstream of the inflow plane. This will be discussed further, after the following DF-

approach presentation, in a comparative study between the DF and ST methods.

Let {rk}1≤k≤p be a set of p random numbers with zero-mean (rk ≡
∑p

k=1 rk/p = 0)

and unit-variance (rkrk =
∑p

k=1 r
2
k/p = 1)4. Let N be a positive integer and FN the

following discrete filter operator5:

υk ≡ FN (rk) =

N∑

j=−N

bjrk+j, (2.63)

where {bj}−N≤j≤N is a set of real numbers to be defined later. Noting that the above

filter operator is linear, making the averaging and filtering operations commute, and

that the set {rk}1≤k≤p is composed of zero-mean and unit-variance random numbers,

one can easily show that:

υk = 0, and υkυk+q =

N∑

j=−N+q

bjbj−q. (2.64)

The two-point-correlation function is modelled (in 1D for simplicity):

R(xk + x) = exp

(
− πx

2Ix

)
, (2.65)

where xk is a reference point, x some distance away from the reference point and Ix a

given integral length scale. Note that in the original paper of Klein et al. (2003), the

authors assume a Gaussian auto-correlation function. However, Xie and Castro (2008)

argue that auto-correlation functions have a form closer to exponential than Gaussian,

hence the current choice of exponential correlation function. This will inevitably pro-

duce an energy-decay rate of -2 in place of the expected -5/3 law. However, it is argued

that this choice of function is correct for the large-scale structures and that most of the

discrepancies will occur at the smallest scales (Xie and Castro, 2008), which are found

to recover the modelling errors more rapidly than the large-scale structures.

4Note that the overline notation has a different meaning in this paragraph where it no longer stands
for the grid-filter operator but for the arithmetic mean operator.

5Similarly to the previous paragraph, most of the numerous notations introduced here are not reported
in the nomenclature since their use is strictly limited to this paragraph.
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On the computational grid, if n is such that Ix = n∆x and that x = q∆x, the

two-point-correlation function becomes:

R(xk + q∆x) ≡ υkυk+q

υkυk
= exp

(
−πq

2n

)
, (2.66)

leading to the system: ∑N
j=−N+q bjbj−q
∑N

j=−N b2j
= exp

(
−πq

2n

)
, (2.67)

the solution of which can be approximated by:

bk ≈
b′k(∑N

j=−N b′j
2
)1/2

with b′k = exp

(
−πk

n

)
. (2.68)

Klein et al. (2003) find the above approximation to be good if N ≥ 2n (this is not found

to be a computationally expensive requirement).

Upon application of the FN -operator with the above definition for the convolution

coefficients, the initial random field of zero-mean and unit-variance has been given a

coherence integral length scale Ix. Note that the above 1D description can be extended

to 2D by simply defining the 2D convolution coefficients as: bjk = bjbk.

The step-by-step procedure to produce the inlet flow-variable fluctuations is as fol-

lows. First, the integral lengthscales Ix, Iy, Iz to prescribe must be known. Given the

grid spacing, these lengthscales are converted into an equivalent number of grid points,

i.e. nIx = Ix/∆x. This sets the filter size: NFx = 2nIx. In the current implementation,

a zonal approach is used by defining two different sets of filters in the near-wall region

and the outer-region, as in Veloudis et al. (2007). Then, the convolution coefficients

{bk}−NFx≤k≤NFx
are computed as shown in the above equation (in 1D).

Next, a set of random numbers with a normal distribution about zero and unit vari-

ance is acquired. Since a large number of such sets will be needed, it is worth noting

the following improvement over the commonly used approach to obtain a normal dis-

tribution. Most pseudo-random number generators will generate uniformly distributed

numbers and one usually achieves a normal distribution simply by adding many (12

in Xie and Castro, 2008) of those uniformly distributed sets and invoking the central

limit theorem. However, using the Box–Muller transform, one only needs two sets: if

a and b are two independent numbers uniformly distributed in (0, 1], combining them

such that c = cos(2πb)
√
−2 ln(a) and d = sin(2πb)

√
−2 ln(a) will make c and d be two

independent numbers from a normal distribution of unit standard deviation.

Once the normally-distributed random numbers with zero-mean and unit-variance

are obtained, they are filtered using the previously-computed convolution coefficients:

υk ≡ FNFx
(rk) =

∑NFx

j=−NFx
bjrk+j (in 1D). The pseudo velocity field υk has now the

prescribed lengthscale Ix. Next, the computed field υk is correlated with the previous
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p
ow

er
sp

ec
tr

u
m

−2

Figure 2.2: Spectrum of ̺k(t) obtained from (2.69) using Ix = δ0 and ū = 0.6ū1

one, υold
k . (Except of course when performing the very first time step.) The following

correlation function was suggested by Xie and Castro (2008) to avoid having to filter a

3D field as in the original paper of Klein et al. (2003):

̺k = ̺old
k exp

(
−π∆t

2τ

)
+ υk

√
1− exp

(
−π∆t

τ

)
, (2.69)

where ∆t is the time step and τ the Lagrangian timescale (τ = Ix/ū in the present

implementation, where ū and Ix are the prescribed inlet mean stream-wise velocity and

integral length scale, respectively). Figure 2.2 illustrates the power spectrum obtained

using (2.69). As mentioned earlier, the spectrum rolls off with a −2 slope in place of the

expected −5/3 law.

The field ̺k now contains all the enforced two-point correlation functions as well

as the prescribed stream-wise correlation. The single-point correlations can now be
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specified, as originally proposed by Lund et al. (1998). In 3D, it can be written:



u(0, y, z, t)

v(0, y, z, t)

w(0, y, z, t)


 =



〈u(0, y, z)〉t
〈v(0, y, z)〉t
〈w(0, y, z)〉t




︸ ︷︷ ︸
ūi(0, y)

+




√
R11 0 0

R21/
√
R11

√
R22 −

(
R21/

√
R11

)2
0

0 0
√
R33







̺1(y, z)

̺2(y, z)

̺3(y, z)




︸ ︷︷ ︸
u′i(0, y, z, t)

, (2.70)

where {Rij}(i,j)∈{1,2,3} is the prescribed Reynolds-stress tensor.

The inflow time-dependent velocity field has now been built and there remains to

specify the thermodynamic variables. To generate the thermodynamic fluctuations, the

previously determined velocity perturbations u′i are used, invoking the Strong Reynolds

Analogy (SRA):

T ′

T̄
= −(γ− 1)Ma2u

′

ū
, with Ma2 =

ū⋆2

γ⋆R⋆T̄ ⋆
= M2 ū

2

T̄
, (2.71)

where the overline notation is used to denote that the variable is time averaged.

The validity of the SRA is debatable. In fact, from the DNS of Guarini et al. (2000),

it is known that the above equation is wrong in general. However, it is also shown to be

correct in a weaker sense, in that it provides the correct RMS correlation (see Guarini

et al., 2000). Recently, Martin (2007) obtained good results using the SRA as a means

to initialise the flow in a DNS. The use of the SRA is thus deemed acceptable as a first

approach.

Once T ′ is computed from the above equation, assuming that the pressure is constant

across the boundary layer (invoking the boundary-layer approximation) and that the

pressure fluctuations are negligible compared to the velocity, density and temperature

fluctuations (an hypothesis already used in the SRA), one finds:

ρ′

ρ̄
= −T

′

T̄
. (2.72)

All the inflow variables are now prescribed and one can go through the above procedure

again at the following time step.

In this work, the uniformly-distributed pseudo-random numbers are obtained from

the Mersenne Twister generator (see Matsumoto and Nishimura, 1998). Using the Box–

Muller transform, each time step will require two sets of 3×Ny ×Nz random numbers

(3 velocity components in the inflow plane with Ny and Nz both in the order of 102).
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Given the Mersenne Twister generator period of 219937 − 1, we are guaranteed not to

introduce any cyclic behaviour in the computational domain, which is a desired feature

for the low-frequency study in SBLI. In addition, the combined use of the Box–Muller

theorem, the Mersenne Twister generator and the 2D filtering approach of Xie and Cas-

tro (2008) (as opposed to the 3D approach by Klein et al., 2003) produce an efficient

method which is not found (in practice) to be slower than the analytical ST approach

of Sandham et al. (2003).

The digital-filter coefficients used in the current simulations are provided in table

2.3. Note that a TBL simulation is performed prior to the SBLI simulations in order

to compare the DF and ST approaches for a computationally less expensive configura-

tion. The DF settings differ slightly between the TBL and SBLI cases. However, it was

found while implementing the DF approach that this technique is relatively robust to

the choice of filter coefficients, which is an interesting and desirable feature. This is true

as long as the prescribed coherence lengthscales are larger than the integral lengthscales

of the real flow. Failing to meet that requirement can lead to laminarisation issues

(Keating et al., 2004; Veloudis et al., 2007), as when only white noise is added to the

flow (see the earlier discussion on this issue). The prescribed mean-velocity profile is

obtained from the semi-analytical method described at the beginning of this section and

the prescribed Reynolds stresses were obtained from an earlier simulation under similar

flow conditions as the ones to be considered here. A copy of the digital-filter Fortran

routines is available in appendix C.

Velocity component u v w

TBL SBLI TBL SBLI TBL SBLI

Ix/δ̌1 10 10 4 4 4 4

NFy = 2Iy/∆y, if y ≤ δ̌1 35 20 45 25 30 15

if y > δ̌1 65 35 85 45 40 20

NFz = 2Iz/∆z 15 20 15 20 30 30

Table 2.3: Digital Filter coefficients

2.2.2.3 Test on a flat plate turbulent boundary layer

The previously described DF and ST inflow-generation techniques are compared for a

Mach 2 and Reδ̌1
≈ 2500 turbulent flat-plate boundary-layer flow. The numerical details

are given in table 2.4.
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Axis direction x y z

Domain size Lx, Ly, Lz in δ̌1 400 50 20
Lx, Ly, Lz in δ0 28 3.5 1.7

Number of points Nx, Ny, Nz 401 151 81

Grid resolution ∆x+, ∆y+
min, ∆z+ 33 1.6 10

Table 2.4: Numerical details for the turbulent-boundary-layer simulations

Figure 2.3 compares the skin-friction evolution obtained for both the DF and the

ST inlet methods. The two techniques produce a transient of about 20 boundary-layer

thicknesses, as expected for such approaches (Keating et al., 2004). Despite the fun-

damental differences in the formulation of each technique, the skin friction appears to

converge to the expected levels at a similar stream-wise location. This indicates that the

near-wall region is not sensitive to the prescribed inlet method. This is probably because

the near-wall turbulence structures recover from the modelling errors fairly quickly and

neither of the two approaches perform better there. However, figure 2.4 compares the

van Driest velocity profiles obtained at x/δ0 ≈ 15 and some differences are found in

the outer-region. Although both approaches produce the expected near-wall asymptotic

behaviour of a turbulent flow, the wake-region does not appear to be realistic in the case

of the synthetic turbulence. This is further seen in the turbulence statistics at the same

stream-wise station, as shown in figures 2.5 and 2.6. In figure 2.5, the inner-layer scaling

with the compressibility correction of Huang et al. (1995) is used for comparison with

the DNS data of an incompressible turbulent boundary layer (Spalart, 1988) whereas

figure 2.6 is plotted using the displacement thickness. Both figures exhibit the pres-

ence of a second spurious peak in the RMS profiles for the synthetic-turbulence method.

This unexpected distribution of the turbulence energy is due to the presence of a low-

frequency, large-wavelength mode, which was introduced at the inlet, and is found to

survive for long stream-wise distances, even up to the outflow boundary. Further down-

stream, the ST results eventually converge to the DF ones. The ability of the last outer

mode to survive for such distances was not observed in Sandham et al. (2003). This may

be due to the higher Mach and Reynolds numbers used here, potentially stabilising this

outer mode, since the method was found to be successful for a subsonic boundary layer.

With respect to the SBLI simulations, we clearly do not wish to force a particu-

lar low-frequency/long-wavelength mode as this could directly impair the low-frequency

study in the interaction. This is the main reason for choosing the DF, since it is able

to produce realistic inflow conditions with the guarantee to avoid any cyclic pattern. In

fact, the DF formulation is convenient since it provides a direct control on the size of

the coherent structures introduced at the inlet. In the present SBLI study, the integral
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lengthscale used in the exponential correlation function is set to be less than 0.6δ0. Of

course, larger structures can develop in the domain by the time the flow reaches the

interaction. However, since the available domain before the interaction will be of the

order of 10δ0 long, no structure longer than about ten boundary-layer-thicknesses long
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Figure 2.6: Turbulence intensities at x/δ0 ≈ 15: digital filter vs synthetic turbulence

can form upstream of the interaction. Evidences on the absence of any upstream low-

frequency forcing will be provided in a later chapter.
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In this chapter, the numerical procedure and in particular the LES formulation

together with the choice of inlet conditions has been described in detail. Now, equipped

with the numerical strategy, the first SBLI LES can be performed in order to validate

and gain confidence in this approach. Thus, the next chapter is devoted to the validation

of the code through grid/domain convergence studies, SGS-model-effect studies as well

as comparisons with existing data (LES and PIV).



3. Validation of the numerical

strategy

In this chapter, eight different LES of the same flow configuration will be presented

as the basis for the code validation, together with PIV and LES results from earlier

independent studies. The main objective is to gain sufficient experience and confidence

with the numerical approach to justify the choices of grid resolution, sub-grid scale model

and domain sizes to be used in the final shock/boundary-layer simulations.

3.1 Flow conditions and numerical settings

The flow considered in this chapter corresponds to an experiment performed by the

supersonic research group at the “Institut Universitaire des Systèmes Thermiques Indus-

triels” (IUSTI). It consists in a Mach 2.3 flat-plate TBL impinged by an oblique shock-

wave generated by an 8◦ turning angle wedge placed in the potential flow. The Reynolds

number based on the displacement thickness δimp
1 evaluated at the impingement point

in the absence of the shock is about 21 × 103. The PIV data used in this chapter for

this configuration are described in Dupont et al. (2008). The same shock-reflection con-

figuration was studied using LES by Garnier et al. (2002), where the authors had also

looked at grid-size and SGS-model effects on the time-averaged results.

As shown in tables 3.1 and 3.2, the eight LES differ in the choice of grid resolution,

SGS model and spanwise extent. The choice of the reference grid is largely based on the

findings of Garnier et al. (2002). The grid refinement study is limited to one direction

at a time. In addition to limiting the increase of the computational cost of each single

refinement, this approach is advantageous in that it allows for the identification of the

most sensitive direction. Moreover, this can highlight situations where errors cancel in

a favourable way. Refining the grid in all three directions at a time by the same amount

may fail to detect such patterns. However, the refinement in the wall-normal direction

is not uniquely defined because of the grid stretching. As shown in table 3.1, it was

decided to use the additional grid points to relax the stretching coefficient so that the

near-wall resolution stayed the same whereas the outer-region resolution was improved

by nearly a factor two. The benefit of this is to focus on the effect of the shock-system

53
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Case Reference Refined in x Refined in y Refined in z

Domain size

Lx, Ly, Lz in δ̌1 450, 70, 24 450, 70, 24 450, 70, 24 450, 70, 24

Lx, Ly, Lz in δimp
1 71.9, 11.2, 3.8 71.9, 11.2, 3.8 70.0, 10.7, 3.6 72.3, 11.3, 3.8

Lx, Ly, Lz in δ0 25.4, 4.0, 1.4 25.5, 4.0, 1.4 25.4, 4.0, 1.4 25.4, 4.0, 1.4

Number of points
Nx, Ny, Nz 451, 81, 73 901, 81, 73 451, 161, 73 451, 81, 145

Grid resolutiona

∆x+, ∆y+
min, ∆z+ 40.6, 1.6, 13.5 20.3, 1.6, 13.5 40.6, 1.5, 13.5 40.6, 1.6, 6.8

Grid stretchingb βy 5.50 5.50 4.75c 5.50

Statistics
sampling rated 5 5 5 5

∆t ū1/δ̌1 0.025 0.045 0.045 0.045
number of FTTe 9 6 11 7

SGS model MTS MTS MTS MTS
Dynamic viscosity PLf PLf PLf PLf

a measured upstream of the interaction and at the wall for the y direction
b the stretching function used is: y = Ly sinh (βy(j − 1)/(Ny − 1))/ sinh (βy)
c note that the stretching is relaxed to keep the same reference near-wall resolution

while doublingNy to increase the outer-layer resolution and better capture the shocks
d the quoted number corresponds to the number of time steps between each record
e Flow-Through-Time: time it takes to go across the computational domain at the

upstream freestream velocity
f power law, see (2.25g)

Table 3.1: Numerical details for the grid sensitivity study

resolution on the results rather than on the near-wall-resolution effects since the set-

tings used do not differ from the usual LES values for wall-bounded flows. To study the

SGS-model effects, the MTS model will be compared to the DS model. In addition, the

case where the SGS terms are simply neglected is considered to gain some insights about

their overall contribution to the solution. This case will be labelled “implicit” LES but

it must be noted that the numerical scheme was not modified in any particular way so

that the discretisation error would act as a SGS model. Finally, the choice of the domain

spanwise extent is critical in separated turbulent flows and this effect will be quantified.

Before comparing the LES cases, it is interesting to see how the LES approach performs

as a predictive tool with respect to PIV experimental data.
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Case Large span Small span DS Implicit

Domain size

Lx, Ly, Lz in δ̌1 450, 70, 120 450, 70, 12 450, 70, 24 450, 70, 24
Number of pointsa

Nx, Ny, Nz 451, 81, 361 451, 81, 37 451, 81, 73 451, 81, 73

Grid stretchingb βy 5.50 5.50 5.50 5.50

Statistics
sampling ratec 5 5 5 5

∆t ū1/δ̌1 0.045 0.045 0.045 0.045
number of FTTd 9 73 16 8

SGS model MTSe MTSe DSe Nonee

Dynamic viscosity PLf PLf PLf PLf

a the grid resolutions are kept the same as the reference grid (see table 3.1)
b the stretching function used is: y = Ly sinh (βy(j − 1)/(Ny − 1))/ sinh (βy)
c the quoted number corresponds to the number of time steps between each record
d Flow-Through-Time: time it takes to go across the computational domain at the

upstream freestream velocity
e a 6th-order filter was applied every 5 iterations to remove spurious numerical oscil-

lations
f power law, see (2.25g)

Table 3.2: Numerical details for the domain and SGS model sensitivity study

3.2 Comparison with PIV data

In this section, the flow statistics obtained from the large-span LES are compared against

the PIV data from Dupont et al. (2008). Figure 3.1 gives the time-averaged1 streamwise-

velocity field. The left-hand side of the figure is a superposition of the PIV field (in filled

contours) and the LES field (thick solid lines). The contours were taken at exactly the

same levels to allow a direct comparison of both the spatial structure and amplitude

level of the velocity fields. The right-hand side of the figure provides a comparison of

the PIV and LES velocity profiles at four different streamwise locations. Overall, the

LES results are in good agreement with the PIV data. One noticeable difference is

in the separation area (highlighted in the contourmaps) where the PIV shows a taller

mean separation bubble with a slightly stronger reversed flow (about 5% of the upstream

freestream velocity in the PIV against 3% in the LES). The boundary-layer thickening,

however, is well captured.

Figure 3.2 is a similar comparison to the one in the previous paragraph but for the

wall-normal velocity component. The initial part of the interaction is in good agree-

ment with the PIV. In the recovery region the agreement near the wall is satisfactory,

1In this chapter, the overline notation refers to the time-averaged field and not to the grid-filtered
field. Of course, for the LES data, the time average is performed on the resolved field, which is grid-
filtered.
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Figure 3.1: Mean streamwise velocity: PIV vs LES. Two-dimensional distribution
showing the PIV in filled contours and the LES in solid lines at exactly the same
contour levels (left). The solid and dashed red/yellow lines correspond to ū = 0 in the
LES and the PIV fields, respectively. Profiles at different streamwise locations (right)
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Figure 3.2: Mean wall-normal velocity: PIV vs LES. Two-dimensional distribution
showing the PIV in filled contours and the LES in solid lines at exactly the same
contour levels (left). The solid and dashed red/yellow lines correspond to ū = 0 in the
LES and the PIV fields, respectively. Profiles at different streamwise locations (right)

but deteriorates in the outer part of the boundary layer. Larger differences are seen

in the separation bubble, as mentioned in the previous paragraph. It should be noted

that the PIV is less well converged for the wall-normal velocity than for the streamwise

velocity and that near-wall PIV measurements are usually less reliable. Furthermore,

the flow inside the bubble is highly unsteady and the bubble can be nonexistent at

times and much bigger than its mean size at other times. The velocity fluctuations

inside the bubble can thus be large compared to the mean velocity value, producing

high Reynolds-stress values. Therefore, a good agreement between the LES and the

PIV inside the mean separation region is not expected.

Figure 3.3 gives the streamwise-velocity RMS fluctuation map. The LES results are

seen to capture a structure similar to the PIV inside the interaction. In particular,
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the inclination angle of the high-intensity ridge found inside the interaction region is in

good agreement with the PIV findings. The ridge corresponds to the energetic shear

layer formed at the bubble interface. However, the LES shear layer is slightly thinner

than the PIV one. It should also be noted that the fluctuations in the LES upstream

of interaction do not penetrate as far into the flow as in the PIV. This is due to the

digital-filter settings, which assigned too little energy in the outer part of the boundary

layer. This was improved in a second large-span LES, which is described in the following

chapter. However, the lack of incoming outer-layer fluctuations does not seem to survive

past the interaction and the profiles at x⋆ = 340mm are in good agreement.

Figure 3.4 shows a comparison of the wall-normal velocity fluctuations. It can be seen

that the comparison deteriorates compared to the previous figures: the LES fluctuations

are slightly stronger in the post-interaction region and the local maximum seems to be

closer to the wall than in the PIV. The shift in the height of the ridge of maximum

wall-normal velocity fluctuations seems to correlate well with the taller PIV bubble. It

is unclear why the experimental bubble is taller, but one can speculate this to be related

to the presence of the wind-tunnel side walls, which tend to enhance the size of the

separation bubble2. However, note that the contourmap indicates a good match for the

shock-system position, suggesting that the size of the interaction as found by the LES

is in good agreement with the experiment.

Finally, figure 3.5 gives the Reynolds shear-stress distributions. It must be empha-

sised that the shear stress is not easily obtained using PIV. Nevertheless, despite the

lack of convergence in the PIV data, the qualitative and to some extent the quantitative

agreement between the PIV and the LES is remarkably good. It is interesting to note

2Private communication with Dr. Jean-Paul Dussauge, IUSTI (2008).
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the small but clear region of high positive shear-stress values (near x⋆ = 320mm and

y⋆ ∈ [7mm, 10mm]). This corresponds to the flapping motion of the incident-shock

tip. Also, one can detect the mean position of the reflected shock, which is seen to be

correctly predicted by the LES.

Generally speaking, the PIV and LES data agree sufficiently well to deem the LES

approach capable of reproducing this complex flow field. Also, the good agreement

with the PIV data, taken from the median plane of the wind tunnel, suggests that

the 8-degree-wedge-angle experiment is close to being statistically two-dimensional, as

claimed by Dussauge and Piponniau (2008), and that the wind-tunnel-corner flows are

not too important in this case. However, it was shown here that the separation-bubble
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predictions were good with respect to the bubble length but that the bubble height

was underpredicted by the LES. This is believed to be a sign of some level of three-

dimensionality in the experiment. In fact, the interaction-length prediction would not

agree so well if the experiment had been strongly affected by the side walls, as shown for

example in the 9.5-degree case (see Dussauge and Piponniau, 2008). In the 9.5-degree

case, the success of a statistically two-dimensional LES would not be guaranteed and

would probably have to account for the wind-tunnel side-wall effects.3

3.3 Grid-refinement, domain- and subgrid-scale-sensitivity

study

In this section, the effects of the tested grid resolutions, choice of domain widths and

SGS model on the interaction length are presented. Figure 3.6 gives the skin friction evo-

lution inside the interaction for different grid resolutions and domain widths, as defined

in tables 3.1 and 3.2. Although the statistics were not acquired over the same amount

of samples, the number of samples used in this study was large enough to consider the

results to be statistically converged. From figure 3.6(a), it is seen that the tested grid

resolutions do not produce significant differences in the size of the separation bubble

and skin-friction levels. In table 3.3 the length of the separation bubble is reported to

be insensitive to the different grids tested to within 7%, suggesting that the solution is

nearly grid converged. Garnier et al. (2002) also looked at the sensitivity of their results

to the grid resolution and could not find any significant differences at similar resolutions

to the present ones (note that they used the local boundary-layer-edge conditions to

normalise the skin friction and Sutherland’s law for the dynamic viscosity whereas the

upstream boundary-layer-edge conditions and a power law is used in this study). We

are thus confident that the grid resolution used for the present work is sufficiently fine

to only have marginal effects on the statistical results.

Figure 3.6(b) compares the skin-friction evolution for the different domain widths

considered (see table 3.2). Contrary to the grid-resolution sensitivity tests, the results

are found to be very sensitive to the computational-box width. Previous simulations of

the IUSTI 8-degree shock-reflection case made use of spanwise widths of 1.4δ0 (Garnier

et al., 2002) and 2.2δ0 (Pirozzoli and Grasso, 2006), whereas the experimental separation-

bubble length is O(4δ0)-long (Dupont et al., 2006). In this domain-size effect study, the

tested spanwise lengths range from 0.7δ0 to 7δ0. The separation point is found to move

upstream as the spanwise extent is reduced while the reattachment point moves further

downstream, leading to longer bubbles and slower recovery rates. Figure 3.7(a) further

3Private communication with Dr. Eric Garnier, ONERA (2007).
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Figure 3.6: Skin-friction sensitivity to the grid resolution and the domain width. The
skin friction is normalised with the upstream potential-flow properties and the dynamic
viscosity is computed using the power law

confirms the changes by looking at the wall-pressure distribution (normalised by the

upstream pressure). The wall-pressure distribution is seen to develop a plateau as the

domain width is reduced. This is reminiscent of laminar interactions, but we are certain

that the flow remained fully turbulent in the small-span simulations. In fact, the small-

span LES was chosen such that despite the increased spanwise coherence (forced by the

periodic boundary conditions) a fully turbulent flow could be maintained. The existence

of a pressure plateau is thus a direct consequence of the bubble extension due to the

high level of spanwise coherence. Finally, it is interesting to note that the increased

interaction length due to the reduced size of the domain width does not seem to affect

the initial rate of change of the wall-pressure distribution. This is reminiscent of the

free-interaction theory in laminar interactions (Stewartson and Williams, 1969; Katzer,

1989).

Table 3.3 shows the bubble and interaction lengths for the different grids and domain

sizes, compared with the values obtained by Garnier et al. (2002) (LES) and Dupont

et al. (2006) (experiment). This further quantifies the sensitivity of the bubble to the

domain width, with an extension of the bubble of about 35% between the large and

small-span cases. In addition, table 3.3 suggests that the simulated normalized shock

intensity is higher than in the experiment, probably due to a slightly lower level in the

incoming skin friction. In the table, p2 refers to the theoretical freestream pressure

after the incident shock but before the reflected shock and τw is the wall shear-stress

before the interaction. Finally, table 3.3 quantifies the differences found between the

interaction length L and the separation length Lsep. The interaction length is defined

as the distance between the location of the reflected-shock extension to the wall x̄0 and
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Figure 3.7: Wall pressure sensitivity to the domain width and the subgrid-scale model

Case Ref. 2Nx 2Ny 2Nz Lz/2 5Lz LESa Expb

(p2 − p1)/(2τw) 50.2 50.9 50.5 48.6 49.3 48.9 47.5 40.5
L/δ0 5.1 5.4 5.3 5.1 5.9 4.8 4.5 4.2
Lsep/δ0 4.5 4.8 4.8 4.5 6.1 3.9 3.1 3.5c

(x̄sep − x̄0)/δ
imp
1 2.0 2.4 2.1 1.7 2.1 2.0 2.5 –

(x̄at − x̄imp)/δ
imp
1 0.2 0.7 0.7 0.0 2.7 −0.7 −1.8 –

a from Garnier et al. (2002)
b from Dupont et al. (2006)
c this value is not in the original paper of Dupont et al. (2006) but was estimated

based on the LES results taking (x̄sep − x̄0)/δ
imp
1 ∼ 2, giving an experimental value

of Lsep ≈ 39mm

Table 3.3: Interaction lengths and normalised shock intensity

the inviscid-impingement location of the incident oblique shock x̄imp, while the sepa-

ration length is the distance between the separation point x̄sep and the reattachment

point x̄at. Experimentalists prefer to use the interaction length while computationalists

favor the use of the separation length, which is readily available. To allow a consis-

tent comparison with the experiment, the experimental separation length was evalu-

ated to be around 39mm. This will be used when considering the unsteady aspects.

The SGS model effect was investigated by comparing the MTS model with the DS

model and an implicit LES approach. Figure 3.7(b) gives the wall-pressure rise in the

interaction obtained from the different models. The MTS and DS models give similar

results, whereas the implicit LES appears to stand out. The good agreement between

the two SGS models suggests that the grid is fine enough so that the particular choice

of eddy-viscosity model has little importance. However, the larger separation found by

the implicit LES, as shown in figure 3.8(a), and steeper increase in the wall-pressure

streamwise evolution (figure 3.7(b)) suggests that simply neglecting the SGS terms for
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Figure 3.8: SGS model effect on the interaction length and upstream velocity profile

that particular grid and numerical approach would not be adequate.

The SGS model effect on the incoming velocity profile is shown in figure 3.8(b).

The DS model gives a slightly lower friction velocity than the MTS and implicit LES,

as already noticed from the upstream skin-friction values. The apparent overshoot of

the log-law constant is not believed to be related to a resolution issue, since the grid-

refinement study did not show any strong deviations in the results as the grid was refined.

In fact, the overshoot seems mainly due to the choice of dynamic-viscosity law. In the

present LES, a power law with exponent 0.67 was used. If instead, one uses Sutherland’s

law (as in Garnier et al., 2002), it can easily be shown that the dynamic viscosity at

the wall would be about 13% greater. To estimate the effect of a 13% difference in

the dynamic-viscosity value at the wall, the van Driest velocity profile from the MTS

model was re-processed using Sutherland’s law and the result is shown in figure 3.8(b).

The difference is noticeable and the agreement with the log-law appears to be improved.

Furthermore, it should be noted that there exists some variations on the value of the

additive constant used in the literature (van Driest used 5.24 van Driest, 1956). Based

on the above discussion about the improvement of Sutherland’s law over the power law

used in the current simulations, all new large-eddy simulations to be presented in the

following chapters will be performed using Sutherland’s law.

Finally, figure 3.9 provides the eddy-viscosity field for the two SGS models tested. The

asymptotic behavior of the models in the upstream boundary layer as one approaches

the wall differ, as shown in figure 3.9(a). The eddy viscosity from the MTS model

approaches the wall as y+2

, which is a factor y+ away from the expected asymptotic

behavior, which is properly captured by the DS model. This issue is reported in Inagaki

et al. (2005). Despite the wrong near-wall behavior of the MTS model, the skin friction

in the relaxation part of the interaction (see figure 3.7(a)) is close to the DS result, sug-

gesting that the incorrect asymptotic behavior of the MTS model has little importance.
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Figure 3.9: SGS model effect on the eddy viscosity to kinematic viscosity ratio

Figure 3.8(b) confirms the overall similar eddy-viscosity distribution between the two

models inside the interaction, with some discrepancies near the shocks.

Since the DS model is significantly more computationally intensive than the MTS

model, for no obvious additional improvements in the SBLI predictions, and that the

implicit-LES results differ from the ones with the SGS model on, the choice of the MTS

model in the present SBLI studies appears justified.

In this chapter, we have demonstrated that the numerical approach presented in

chapter 2 is capable of producing results in good agreement with earlier experimental

(PIV) and numerical (LES) data. Furthermore, grid resolutions of 4.1·101×1.6×1.4·101

were shown to produce nearly grid-independent results with the choice of eddy-viscosity

model having no noticeable influence on the interaction. The use of a subgrid-scale

model, however, was seen to be preferable to an implicit LES approach. By contrast,

the choice of domain width was found to strongly influence the interaction length. With

the experience gained from the above validation campaign, the numerical approach is

now applied to actual SBLI investigations.



4. Time-averaged flow-field

characteristics

This chapter focuses on the properties of the time-averaged flow fields of three different

shock-reflection configurations. All cases were obtained using the large-eddy simulation

approach presented in the previous chapters. Unsteady aspects of those simulations

are covered in chapter 6. Each case is based on actual experimental configurations

studied in the context of the UFAST project (discussed below). The simulation results

are first compared with their experimental equivalents and a cross-comparison is then

performed with a particular section on the properties of the developing mixing layer in

the interaction.

4.1 Description of the UFAST project

As mentioned in the acknowledgement section, this work was partially funded by the

European Union with the Sixth Framework program through the UFAST project. From

the project presentation page (http://www.ufast.gda.pl/), one can read: “the UFAST

project aims to foster experimental and theoretical work in the highly non-linear area

of unsteady shock wave boundary layer interaction”. The University of Southampton

(SOTON) was one among 21 partners involved in this project. Our particular role was to

make use of the LES approach in order to simulate three different shock-reflection con-

figurations. The simulations were run in parallel with experiments from three partners:

the “Institut Universitaire des Systèmes Thermiques Industriels” (IUSTI) — Marseille

(France), the “Institute of Theoretical and Applied Mechanics” (ITAM) — Novosibirsk

(Russia), and the TUD - Aerodynamics Laboratory, Faculty of Aerospace Engineering,

Delft University of Technology — Delft (Netherlands). The aim was twofold: first, to

assess the capabilities and limitations of LES to simulate these three experimental cases.

Second, to provide physical insights (not available from RANS/URANS approaches but

at a lower cost than DNS approaches) into the driving mechanisms of the unsteadiness

observed in SBLI.

The experimental and numerical flow conditions are summarised in table 4.1. Because

of the prohibitive computational cost of the TUD case, the LES of this flow case was

not run at the actual experimental Reynolds number, and a value close to the ITAM

64
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Flow case IUSTI ITAM TUD

Mach number 2.3 2.0 1.7
Wedge angle 8◦ 7◦ 6◦

Stagnation pressure P0 (bar) 0.5 0.8 2.3
Stagnation temperature T0 (K) 300 288 273
Reynolds numbera, Reδ1 × 104 2 1 12b/1c

Sutherland’s law C valued 0.76 0.68 0.64

a based on the upstream freestream velocity ū1, the boundary-layer edge dynamic
viscosity and the boundary-layer displacement thickness δ1 (upstream of interaction)

b experimental value
c simulated value
d see (2.25h)

Table 4.1: UFAST experimental and numerical flow conditions

flow case was chosen instead. The IUSTI case is the strongest interaction studied, fol-

lowed by the ITAM and the TUD cases. Figure 4.1 provides an instantaneous side-view

of the temperature field for the three cases. One can see that the interaction length

(relative to δimp
0 , the boundary-layer 99% thickness at the inviscid shock-impingement

point, x̄imp, in the absence of the shock) reduces going from IUSTI to ITAM to TUD.

The δimp
0 value could be evaluated from a separate canonical boundary-layer simulation.

However, in the present work, it was evaluated based on a linear extrapolation of the

upstream-of-interaction boundary layer (where it is no longer under the influence of the

inlet condition but not yet under the influence of the interaction). Such an approach

is reasonable given the short streamwise distances considered (only few boundary-layer

thicknesses).

Table 4.2 gives the relevant numerical details of the grid and domain size of each LES

as well as information about the timestep and runtime. Such grid resolutions were shown

in the previous chapter to be sufficient for the results to be considered nearly grid and

SGS-model independent. In fact, it was shown in chapter 3 that the most critical grid

parameter at such grid resolutions is the spanwise extent of the computational domain,

and that the simulated bubble can artificially increase in size if the domain width is too

small. This occurs when the computational-box width is too narrow to resolve the low

and energetically significant spanwise wavenumbers found in the interaction region. It

is recommended that the domain spanwise extent be longer than the separation-bubble

length. Unfortunately, such constraints on the grid greatly reduce the possibility to

integrate the LES over many low-frequency cycles. The following section focuses on the

individual three time-averaged flow fields by comparing the obtained statistics with other

experimental and/or computational results wherever possible. Then, a cross comparison

of the present LES data is presented.
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Figure 4.1: Instantaneous side views of the temperature field from the present LES

4.2 Case by case comparisons

4.2.1 The IUSTI case

A comparison between LES and PIV results of the IUSTI 8◦ case was already provided

in chapter 3 for the large-span case presented in table 3.2. Since a new large-span case

is introduced in table 4.2, the PIV/LES comparison is repeated here. The new large-

span LES1 differs from the earlier one mostly in an enhanced resolution in the wall-

normal direction (longer Ly, smaller stretching βy for a doubled Ny value), the choice of

Sutherland’s law for the dynamic viscosity and a modification of the imposed upstream

Reynolds stress profiles used in the digital-filter approach to improve the observed lack

of fluctuations in the outer-layer part of the incoming TBL (see chapter 3).

1From this chapter onward, the large-span LES refers to the IUSTI case described in table 4.2.
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Flow case IUSTI ITAM TUD

Domain size

Lx, Ly, Lz, in δimp
0 20.3, 4.1, 4.7 23.9, 4.8, 2.7 26.9, 5.4, 3.0

Lx, Ly, Lz, in Lsep 6.9, 1.4, 1.6 11.6, 2.3, 1.3 20.3, 4.1, 2.2
Lx, Ly, Lz, in L 5.6, 1.1, 1.3 7.9, 1.6, 0.9 10.5, 2.1, 1.2

Number of points, Nx, Ny, Nz 451, 151, 281 451, 151, 141 451, 151, 141
Grid stretching coefficienta, βy 5.0 5.0 5.0

Grid resolution
∆x+, ∆y+

min, ∆z+ 33, 1.3, 12 30, 1.2, 11 39, 1.6, 14

Runtimeb, Tsim

Tsimū1/δ
imp
0 2.65 × 103 2.25 × 103 2.18× 103

Tsimū1/L 726 748 852

∆tū1/δ
imp
0 2.0× 10−3 2.4 × 10−3 2.7× 10−3

Number of cyclesc, N 25.4 26.2 29.8
Sampling rate for the statisticsd, n 5 5 5

Dynamic viscosity law Sutherland Sutherland Sutherland

a where y = Ly sinh (βy(j − 1)/(Ny − 1))/ sinh (βy), j ∈ {1, . . . , Ny}
b excluding the relatively long start-up transient
c number of low-frequency cycles covered by a sine wave beating a frequency f =

0.035ū1/L
d the flow is probed once every n iteration(s)

Table 4.2: UFAST simulation settings

Figures 4.2 and 4.3 compare the LES reference profiles (at x⋆ = 260mm) with the

PIV results. One can see that the agreement for the velocity profiles is excellent, while

the agreement for the velocity fluctuations is reasonably good. The reduced streamwise

fluctuations around y⋆ = 5mm in the LES is mainly due to the recovery effects due to

the digital-filter approach. If the reference station was moved further downstream, the

LES profile would be expected to fill in, as found in earlier simulations without shocks.

Figures 4.4 and 4.5 show the time-averaged streamwise and wall-normal velocity fields

from the PIV (grey-colour background) and the LES (super-imposed solid lines). The

selected contour levels in the LES field are exactly the same as in the PIV field. The over-

all agreement is satisfactory. The most striking differences are the taller PIV bubble and

the unexplained poorer agreement in the x⋆ ∈ [320mm, 360mm], y⋆ ∈ [6mm, 13mm]

region.

Figures 4.6 and 4.7 give the velocity-fluctuation fields, where the qualitative agree-

ment is found to be satisfactory. The amplitude can be slightly off, for example in the

recovery region of the wall-normal velocity-fluctuation map, where the LES levels are

found to be higher. However, the streamwise velocity-fluctuation levels are in better

agreement and the spatial distribution of the ridge of maximum fluctuation is seen to
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match the PIV results. Furthermore, the modification of the imposed Reynolds stress

profiles in the digital-filter approach has improved the comparison of the upstream RMS

distribution (see figure 3.3 for reference). From figure 4.7, it is possible to infer the

position of the reflected shock, which is in good agreement.

Figure 4.8 shows the Reynolds shear-stress field, with a satisfactory agreement between

the LES and the PIV, despite the difficulties in measuring it experimentally. Similarly

to figure 4.7, the location of the shock system agrees well, leading to the conclusion

that the interaction length found in the LES matches with the experimental one. The

separation length should also be close to the experimental one and, although the PIV
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does not come close enough to the wall to verify this, the trends look similar. However,

it is recalled that the bubble heights found in the LES and the PIV differ by a significant

amount.

The aforementioned figures were generated using the PIV data presented in Dupont

et al. (2008). It is interesting to note that an earlier PIV data set exists, correspond-

ing to the wall-pressure measurements published in Dupont et al. (2006). Although

those two2 PIV sets are supposed to be performed under the same experimental flow

conditions, significant differences are found, as shown in figure 4.9. The interaction

2The older PIV set will be referred as the 2006 PIV set.
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length in the 2006 PIV data is seen to expand about 1 cm more upstream than the later

set, with a much larger and taller bubble. The IUSTI group relates these differences

to a slight change in the inflow conditions between 2006 and 2008 (a 10% decrease in

boundary-layer thickness) which may result from a modification in the way the particles

are injected in the windtunnel3. Unfortunately, more details would be needed to explain

such a large modification of the interaction itself but it reflects the sensitivity of the

interaction to the flow conditions.

Figure 4.10 compares the 2006 experimental wall-pressure evolution (see Dupont

et al., 2006) with the LES results. Since the LES inflow is matched to the 2008 exper-

imental campaign (Dupont et al., 2008), the LES wall-pressure increase is delayed by

about 1 cm, which is consistent with the shift between the 2006 and more recent PIV

fields. It is speculated that the wall-pressure evolution in the newer experimental run

(unfortunately not available) would be closer to the LES findings based on the relatively

good comparison between the LES and PIV fields. In addition, a pressure plateau can

be observed in the experimental data towards the end of the figure. This feature is not

present in the LES data and could be a consequence of the influence of the expansion fan

originating from the trailing edge of the wedge, which is not included in the simulation.

3Private communication with Dr. J.-P. Dussauge, December 2008.
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Figure 4.11: Wall-pressure fluctuations distribution

Figure 4.11 gives the root-mean-square distribution of the wall-pressure fluctuations.

Here again, a shift of O(1 cm) is expected. Aside from the separation-point-location

issue, there are other significant differences between the LES and the experiment. One

striking difference is the disagreement in the levels of pressure fluctuations. It is sus-

pected that the main reason for such disagreement in the RMS levels originates in the

way the experimental signals were acquired. In particular, the high-frequency content

may not have been resolved. To test that idea, the LES signals were low-pass fil-

tered with a 6th-order low-pass non-causal Butterworth filter with a cutoff frequency

of 80 kHz. The computed RMS from the filtered signals are in much better agreement

with the experimental results, suggesting that the non-resolved higher frequencies in

the measurements may significantly contribute to the overall energy of the wall-pressure

fluctuations. However, near the shock foot, it is known that the low-frequency fluctua-

tions can be responsible for up to a third of the total energy (Dupont et al., 2006).

It is not just in experiments where large variations of the separation-bubble size

occur, despite the use of similar flow conditions. As shown in chapter 3, varying

the computational-domain width can modify the predicted separation by significant

amounts. For example, figure 4.12 shows the large difference between the earlier narrow-

span LES and the latest large-span LES where the span was increased by almost a factor
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nine. The effect on the bubble is impressive, with the narrow-span bubble about 60%

longer and 300% taller. One other striking aspect is that the narrow-span bubble height

is very close to the 2006 experimental campaign.

The bubble sensitivity to the spanwise length may be related to the level of span-

wise coherence. Figure 4.13 illustrates the important difference between the two LES

by looking at the Fourier transform of the spanwise correlation function of the stream-

wise velocity component. One can see that the narrow-span LES is sufficiently wide

to resolve all the significant structures of the incoming TBL but that the most ener-

getic spanwise modes are cut-off inside the interaction, forcing the bubble to remain two

dimensional. This artificial two-dimensional bubble topology was shown to lead to sig-

nificant differences in the predicted interaction lengths. It is therefore possible that the

spanwise coherence between the 2006 and newer experiments was significantly affected

by a change in the seeding conditions which eventually lead to a 25% change in the

interaction length. We shall come back to some properties of the bubble topology in

chapters 5 and 6.



Time-averaged flow-field characteristics 75

(x – x̄imp)/δ
imp
0

k
z
×
δi

m
p

0

large-span LES

−15 −10 −5 0 5

10
0

10
1

narrow-span LES

(x – x̄imp)/δ
imp
0

−15 −10 −5 0 5

10
0

10
1
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Contours show kz · |Euu|, where Euu(kz) = (1/Lz)
∫ Lz/2

−Lz/2
Ruu(z) exp (−2iπkzz)dz, with

Ruu(z) = u′(z0, t)u′(z0 + z, t)/u′(z0, t)u′(z0, t). The white dashed lines indicate the
location of separation and reattachment

4.2.2 The ITAM case

In the early stages of the UFAST project, the ITAM case was set up with a wedge

angle at 8◦ and an even lower Reynolds number, but the first half of the project raised

a number of difficulties. First, the choice of a low Reynolds number resulted in major

experimental issues, where it was not possible to obtain a canonical incoming TBL.

Second, preliminary simulation runs evidenced large discrepancies between the simu-

lated and experimental interaction lengths. Therefore, it was decided to increase the

Reynolds number and reduce the shock strength by setting the wedge angle to 7◦. This

thesis only briefly reports the latest results from the 7◦ case. Figure 4.14 provides the

incoming reference profiles. Although the comparison is better than in the early stages of

the project, it is not completely satisfactory. Note that the 2D/3D RANS results from

the partner Podgorny Institute for Mechanical Engineering Problems (UAN) are also

reported in the figure. Those 2D/3D RANS simulation results were performed using the

UAN in-house solver FlowER. The 3D compressible Reynolds-averaged Navier–Stokes

equations are solved using an implicit time-integration scheme combined with a second-

order accurate finite volume approach for the spatial discretisation. The code uses an

exact Riemann-problem solver. The turbulence model chosen for this study is the k-ω

SST model.

Figure 4.15 compares the streamwise RMS velocity fluctuations from the hot-wire

anemometry (HWA) measurements and the LES. The RMS levels are scaled accord-

ing to Morkovin’s scaling and compared with the incompressible DNS data of Spalart

(1988). The disagreement between the LES and HWA was discussed at length in the
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Figure 4.14: Upstream velocity profiles (at x⋆ = 260mm)

course of the UFAST project. In summary, the lack of fluctuations in the HWA data

is due to poor performance of the constant-temperature-anemometry (CTA) system at

high frequencies, therefore cutting off the near-wall high-frequency turbulent fluctua-

tions. ITAM has corrected the high-frequency response of the CTA measurements using

a transfer function. The data presented in figure 4.15 include this correction. It can

be seen that the fluctuations in the inner region are still underestimated. However, the

outer-layer region is close to the DNS data and the correction seems to be applicable

there. The LES shows the opposite trend. The inner layer is relatively near the DNS

data but the outer region is overestimated. The higher LES levels can be explained by

the position of the reference plane, which is too close to the inflow plane. The boundary

layer at the reference station is still recovering from the inlet conditions. It was shown in

chapter 2 that the outer-layer region recovers more slowly than the inner layer. In fact,

if the reference plane had been further downstream from the inlet plane, the outer profile

would have a shape closer to the DNS. Finally, the LES inflow plane produces a weak

shock in addition to being relatively noisy, with values of
√
p′wp

′
w/τw ≈ 5, artificially

increasing the RMS levels.

Figure 4.16 compares the wall-pressure evolution along the interaction for the experi-

ment, the LES and the 2D/3D RANS calculations of UAN. Despite the use of a reduced
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wedge angle, the interaction length in the experiment is still longer than in the simu-

lations. There are several interesting observations to make here. First, the interaction

length is seen to correlate with the back-pressure level. In this respect, the experiment

overshoots the theoretical back-pressure value which could force the separation to move

upstream. The reason why the back pressure overshoots the theoretical value is not fully

understood but the 3D RANS calculations of UAN offer some useful insight since the

presence of the side-wall boundary layers and the associated corner flows is responsible

for at least part of this pressure overshoot, as shown in the 3D RANS wall-pressure

distribution, compared to the 2D RANS findings. The 3D-RANS pressure overshoot

is not as strong as in the experiment, but is sufficient to produce a pressure gradient

that is closer to the experiment, perhaps bringing the separation point closer to the

experimental one. This is further shown in the skin-friction distribution in figure 4.17.

One other aspect of the wall-pressure distribution is the apparent pressure decrease

near the end of the graph, a feature not captured by the LES. This is believed to be

due to the expansion fan originating from the wedge trailing edge, which is included

in the RANS but not in the LES. This can be seen in figure 4.18. It should be noted

that the incident-shock impingement point found in the experiment does not exactly
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Figure 4.18: LES pressure field vs Schlieren picture

match the theoretical values. After discussing this with the ITAM group, the experi-

mental incident-shock impingement point was found to be about 2.2mm earlier than the

expected theoretical location. The difference mainly comes from the fact that the actual

leading edge of the wedge is not perfectly sharp. All the plots presented here already

account for this shift. Figure 4.18 clearly illustrates the difference in the predicted inter-

action length by the LES and experimental findings. The 3D RANS investigations of

UAN tend to suggest that the failure of statistically 2D simulations (as in the LES)

to reproduce the wind-tunnel experiments is related to the presence of strong side-wall

corner flows inside the wind tunnel.

4.2.3 The TUD case

As mentioned at the beginning of this chapter, the TUD case is the only LES where the

experimental flow conditions are not fully matched. The Reynolds number, based on the

momentum thickness, is about 3× 103 in the LES while it is about 5× 104 in the actual

setup. A detailed description of the experimental data that are reproduced here can be

found in Souverein et al. (2008) and Souverein et al. (2009b). The large Reynolds-number

difference is easily seen in figure 4.19 with the van Driest velocity profiles, expressed in

wall units. The Reynolds-number effect is not visible using the velocity-defect scaling,

where the profiles collapse well on one single profile (see figure 4.19). This confirms

the turbulent character of both the simulated and the actual boundary layers. Simi-

larly, using Morkovin’s scaling for the friction velocity and the boundary-layer thickness



Time-averaged flow-field characteristics 80

10
0

10
1

10
2

10
3

10
4

0

5

10

15

20

25

30

y+

U
+ v
d

y+

log
(y
+ )/

0.4
1 +

5.2
5

05101520
0

0.5

1

1.5
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as the reference lengthscale, one can make the streamwise-velocity fluctuation profiles

obtained with the LES agree reasonably well with the PIV results (figure 4.20). The

wall-normal-velocity fluctuations give greater differences. It is believed that the PIV

underestimates the wall-normal-velocity fluctuations near the wall while the LES may

be over-estimating them. The higher levels of fluctuations found by the PIV outside the

boundary layer can be inferred to the wind-tunnel freestream turbulence4.

Figure 4.21 gives a side-by-side comparison of the defect-velocity field across the inter-

action, where the same contours are plotted and the defect-velocity scale makes use of the

upstream boundary-layer properties (as in figure 4.19, which we term reference profiles

– hence the superscript “r” in the figure captions). Note that the reference lengthscale

used here is the 99% boundary-layer thickness and that the streamwise axis has its ori-

gin at the incident-shock-impingement location. Overall, the two figures look similar,

although one can note the larger boundary-layer thickening and interaction length in

the LES. However, the larger interaction length in the LES is relative to the choice of

reference lengthscale. For example, figure 4.22 compares the mean wall-normal-velocity

field using the reference boundary-layer thickness (left) or the reference displacement

thickness (right). Since the Reynolds numbers are significantly different, the ratio δ0/δ1

4Private communication with Louis Souverein, December 2008.
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0 = −4.5

in the experiment is different from the LES, making the choice of lengthscale important

for the interpretation. In figure 4.22, the displacement thickness seems to perform well at

collapsing the LES on top of the PIV. However, in figure 4.20, the boundary-layer thick-

ness was clearly seen to be a good choice for the Reynolds stresses. This is why figures

4.23 to 4.25 make use of the boundary-layer thickness. Overall, the velocity-fluctuation

contour plots give similar qualitative distributions. However, there are some differences.

For example, near the reflected-shock foot, the PIV field has more energetically signif-

icant fluctuations. Similarly, the fluctuations due to the presence of the shockwaves in

the potential flow are more visible in the PIV. The fact that the incident shock can

be seen in the PIV fields suggests that the PIV may overestimate the fluctuations near

shocks.

In addition to studying each flow case separately, it is interesting to compare all

the LES results and see whether a consistent picture arises from the different flow cases.

This is the focus of the following sections.



Time-averaged flow-field characteristics 82

(x – x̄imp)/δ0

y
/
δ 0

−3 −2 −1 0 1

0

0.5

1

1.5

2

2.5

(x – x̄imp)/δ0
y
/
δ 0

−3 −2 −1 0 1

0

0.5

1

1.5

2

2.5

Figure 4.21: Mean streamwise velocity field: PIV (left) vs LES (right). Contours are
based on the velocity defect field (ū1 − ū)/(ur
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4.3 Cross comparisons

In this section, the time-averaged properties of the previously defined LES are com-

pared. In addition to the UFAST cases, a 4◦-wedge-angle ITAM case has been added,

where the simulation was set up such that the impingement point matches the one in the

7◦ case. The upstream van Driest-transformed velocity profiles are shown in figure 4.26.

The IUSTI case has the highest Mach and Reynolds numbers, while the ITAM and TUD

cases have similar Reynolds number, but different Mach number. It should be noted

that at constant Reynolds number, the constraint on the grid resolution increases as the

Mach number decreases, simply because of the temperature dependence of the dynamic

viscosity. Therefore, running the ITAM case at the TUD resolution is less expensive

than running the TUD case.

Figure 4.27 provides the Reynolds stresses at the same station as for the velocity

profiles. Apart from being rescaled to the simulated displacement thickness, all the

digital-filter settings were exactly the same in all three cases. It is shown in chapter

2 that the digital-filter approach requires approximately ten to twenty boundary-layer

thicknesses to recover the introduced modelling errors at the inlet. In particular, the

outer region of the boundary layer was found to exhibit the slowest recovery and this

effect appeared to be stronger as the Mach number was increased. This can explain the

small hump one can see in the outer-layer region of the IUSTI Reynolds stress profile.

As the reference station is moved further downstream, an equilibrium state is reached

and the hump slowly disappears. A trade-off between the domain size and the possibility
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to run the simulation for very long times is required.

Figures 4.28 and 4.29 give the time- and span-averaged skin-friction and wall-pressure

distributions. The Reynolds number effect on the skin friction upstream of interaction

is clearly seen. All flow cases exhibit a mean separation although the TUD case could

be considered as marginally separated. The separation length relative to the boundary-

layer thickness is: Lsep/δ
imp
0 = 2.97 (IUSTI), 2.06 (ITAM 7◦) and 1.33 (TUD). The

interaction length, computed from the theoretical inviscid impingement point and the

mean position of the reflected-shock (determined by linearly extrapolating to the wall

the ridge seen in the Reynolds-shear-stress field inside the potential flow) is found to be:

L/δimp
0 = 3.64 (IUSTI), 3.01 (ITAM 7◦) and 2.56 (TUD). Note the relatively large differ-

ences (93% for the TUD case) between the separation length and the interaction length.

Those differences should be considered with care when comparing shock-reflection con-

figurations with ramp-corner flows.

Interestingly, the rate of decrease in skin friction (figure 4.28) is similar in all cases

compared to the differences in the recovery rates. The apparent similarity in the skin-

friction drop is reminiscent of the free-interaction theory (Stewartson and Williams,

1969; Katzer, 1989). However, contrary to what figure 4.28 could suggest, the sepa-

ration point is not solely governed by the incoming skin-friction level, and of course
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the pressure increase plays a significant role and should be accounted for. This is for

example confirmed by the ITAM 4◦ and 7◦ cases where the upstream boundary-layer is

identical but subject to a significantly different pressure increase (see figure 4.29). In

fact, figure 4.29 shows that separation occurs at the same excess-pressure level p̄w/p̄1 in

the ITAM 7◦ and 4◦ cases. Interestingly, the IUSTI and TUD cases also separate at a

similar excess-pressure level to the ITAM case (p̄sep/p̄1 = 1.19 for IUSTI, p̄sep/p̄1 = 1.20

for ITAM, p̄sep/p̄1 = 1.29 for TUD), with the TUD case slightly departing from the other

cases. Since the TUD-case Reynolds number is closer to the ITAM one than the ITAM

one is to the IUSTI one, this difference could be interpreted as a small Mach-number

effect.

One other aspect of the mean separation bubble is its height. Figure 4.30 shows the

span- and time-averaged zero streamwise-velocity contours of the different flow cases.

The bubbles are found to be very shallow, with aspect ratios from 5×101 to 5×102. The

TUD bubble does not even rise above the incoming viscous-sublayer height (y+ = 8),

making its experimental detection rather challenging. Of course, instantaneous snap-

shots (as in figure 4.1) exhibit occurrences of much taller bubbles and what is shown
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in figure 4.30 is a time and span average. The maximum reversed flow recorded in the

instantaneous LES flowfields was .60ū1 (IUSTI), .43ū1 (ITAM) and .58ū1 (TUD) while

the span- and time-averaged maximum reversed flow is .027ū1 (IUSTI), .007ū1 (ITAM)

and .0007ū1 (TUD). Therefore, the intermittent and marginal nature of the TUD sepa-

ration bubble does not prevent the occurrence of similar reversed-flow magnitudes to the

IUSTI case. This is important to note when considering the low-frequency shock oscilla-

tions (discussed in chapter 6). Finally, the bubble contours (at least for the IUSTI and

ITAM cases) are found to exhibit a section which grows exponentially in the streamwise

direction, before the maximum height is reached.

Dupont et al. (2008) have synthesised the experimental investigations performed at

IUSTI (figure 7 in Dupont et al., 2008) for various flow conditions and measurement

techniques. Despite the data scatter, their figure suggests a possible linear relationship

(for the weakest interactions) between the interaction length (expressed in upstream

boundary-layer thickness) and the ratio between the pressure jump across the imping-

ing shockwave and the upstream wall-shear stress. The same relation is plotted in figure

4.31 with both the LES and the experimental data (only for adiabatic-wall conditions).
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It can be argued that in the absence of the shock (p̄2 − p̄1 = 0), the interaction length

vanishes and therefore the origin of the graph is also a data point. Using the LES data

(including the ITAM 4◦ case), a best-fit line passing through the origin was computed

(dashed line) and the LES data points do not seem to be far off the linear relationship. It

must be noted that the experimental data from Dupont et al. (2008) have been rescaled

using the LES boundary-layer-thickness and wall-shear-stress values, which are more

reliably obtained from the simulation than measured experimentally. This resulted in a

shift (of about 5% along the y-axis and 10% along the x-axis) towards the suggested lin-

ear relationship. However, the experimental data are seen to depart from the suggested

linear relationship for stronger interactions. This could be due to some wind-tunnel

side-wall effects which are known to considerably change the topology of the separation

bubble for strong interactions (Dussauge and Piponniau, 2008), leading to an increased

interaction length. The grey region in the figure delimits the region spanned by the
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solid black line assuming a realistic level of uncertainty in the data (±5% in evaluating

L and δ0 combined with an error of ±10% in evaluating the wall-shear stress – with the

worst-case combination considered). Finally, the case where the chosen reference length

is the separation length is shown. The intersection of the line with the abscissa indicates

the onset of separation and the (p̄2 − p̄1)/(2τw) ≈ 17 value is found to correspond well

with the p̄w/p̄1 values at separation from figure 4.29 (taking p̄2 = p̄w).

4.4 Mixing-layer properties

As mentioned in chapter 2, Piponniau et al. (2009) have recently considered the shear

layer forming above the separation bubble as playing a key role in the observed low-

frequency shock motions and proposed a model based on the mass-entrainement timescale

associated with the separation bubble and the developing mixing layer. With this scal-

ing argument and empirical relations, the authors find that the resulting timescale is of

the same order of magnitude as the dominant low-frequency shock-motion timescale. In

this section, the shear-layer properties as found in the LES data are reported, to check

whether the scaling arguments and empirical relations used by Piponniau et al. (2009)

agree with the numerical results.

Figure 4.32 gives the location of the mixing-layer centreline for all three cases (IUSTI,

ITAM and TUD). It was computed following the local inflection point in the wall-normal

distribution of the mean streamwise momentum component5. The distances in figure

4.32 were normalised by the respective interaction length L to remove the important

differences in the L/δimp
0 values between the three simulated cases. Using this scaling,

the mixing-layer centreline in all three cases follows a similar pattern with two main sec-

tions: a first one ranging from the reflected-shock foot to the incident-shock tip with a

relatively important inclination angle with respect to the wall (O(20◦)) and a second one

starting at the incident-shock tip and continuing in the recovery region with a smaller

inclination angle. Note that as the incident-shock strength is weakened (from IUSTI to

TUD), the transition from the first to the second section of the mixing-layer centreline

is smoother.

In this section, the path described by the mixing-layer centreline defined in figure

4.32 will be used as local coordinate system with ξ and ζ the local tangential and nor-

mal components, respectively. Therefore, the time-averaged velocity components in this

curvilinear system are denoted ūξ and ūζ . The velocity distribution ūξ(ζ) at several ξ

locations (along the mixing-layer centreline) is provided in figure 4.33. Those profiles are

5Note that several inflection points occur in the ρu(y) profiles, especially in the recovery region where
three inflection points may be found. In this study, we chose the one that is the farthest from the wall
as this is the one that was most likely used in Piponniau et al. (2009).
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Figure 4.32: Shear-layer centreline location: IUSTI (left), ITAM (middle), TUD
(right). The filled contours give the ∂ρu/∂y field. The solid lines indicate the location
of inflection points of interest (i.e. ∂2ρu/∂y2 = 0)

used to define several quantities of interest, which are needed to estimate some param-

eters employed in Piponniau et al. (2009). The high velocity ūu
ξ is defined as the first

local maximum of the relative velocity component ūξ − ū c
ξ as one goes in the positive ζ

direction, where ū c
ξ is the ξ-component of the mean velocity at the mixing-layer centre-

line (ζ = 0). The low velocity ū d
ξ is defined as the relative velocity at the next inflection

point in the ūξ − ū c
ξ velocity profile as one goes to negative ζ values. If no inflection

point is found, the first local minimum in ūξ − ū c
ξ is used instead. Those two definitions

are identified by the black dots in figure 4.33. The difference between the high veloc-

ity ū d
ξ and the low velocity ū d

ξ is called the velocity deffect accross the mixing layer.

The shear-layer vorticity thickness is defined as the ratio between the velocity deffect

and the rate of velocity increase at the mixing-layer centreline: (ūu
ξ − ū d

ξ )/ [dūξ/dζ]ζ=0.

The mixing-layer velocity profiles on the left of figure 4.33 are rescaled using the local

velocity deffect and the vorticity thickness. The results are shown on the right of figure

4.33. If the mixing layer were canonical, this choice of similarity scaling would make

the profiles collapse onto one single curve which is represented by the error function

(shown in dashed line in the figure). The particular configuration due to the presence

of the shockwaves does not allow the mixing layer to be of a canonical nature and the

similarity scaling is not found to be effective at collapsing the profiles, except near the

centreline.

Figure 4.34 shows the vorticity-thickness evolution along the mixing-layer centreline

as well as the isentropic convective Mach number Mc, defined as the ratio between the

velocity deffect and the sum of the local speeds of sound evaluated at the same loca-

tions as the velocities used to compute the velocity deffect (see Piponniau et al., 2009).

Furthermore, the velocity ratio r = (ū c
ξ + ū d

ξ )/(ū c
ξ + ūu

ξ ) and density ratio s = ρ̄ d/ρ̄u as
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(ūξ – ūc
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(ūξ – ūc
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ξ – ūd
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ξ

ūc
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Piponniau et al., 2009) (right)

a function of the position ξ along the mixing-layer centreline are also provided. These

quantities are consistent with the notations introduced by Piponniau et al. (2009) which

are used to evaluate the growth rate of the mixing layer following the empirical relation:

δ′ω ≡
dδω
dξ

=
δ′ref

2

(1− r)(1 +
√
s)

1 + r
√
s

Φ(Mc), (4.1)

with δ′ref ≈ 0.16 and where Φ(Mc) is the normalised spreading rate (see Piponniau et al.,

2009).

The above empirical relation can be compared against the LES results shown in figure

4.35 (for all the flow cases). Let us assume that Φ is 0.3, 0.35 and 0.45 for the IUSTI,

ITAM and TUD cases respectively, based on Mc values of 0.9, 0.8 and 0.7 (see figure 4.34

at ξ = 0) and figure 2 in Piponniau et al. (2009). Combined with the results for r and

s, one finds that δ′ω ∼ 5× 10−2 using the empirical relation from canonical compressible

mixing layers. This is different from the results shown in figure 4.35 where the LES

spreading rates are significantly larger. The faster growth rate of the mixing layer in

the SBLI case is believed to be due to the presence of the reflected shock, significantly

affecting the flow at least on the faster-velocity side of the mixing layer.

In Piponniau et al. (2009), the most energetic low-frequency oscillations are evaluated

using:

St ≡ fL/ū1 =
L

H
δ′ω

[
(1− r)C +

r

2

]
, (4.2)

where C ≈ 0.14 and H is approximately the largest height reached by the shear-layer

centreline inside the interaction. From figure 4.32, one finds H/L ∼ 0.15 (to compare

with 0.12 in Piponniau et al., 2009). From figure 4.34, we have (for the IUSTI case) at
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Figure 4.35: LES shear-layer spreading rates

the begining of the interaction: s ∼ 0.8 and r ∼ 0 (to compare with 0.56 and −0.11 in

Piponniau et al., 2009). The convective Mach numbers are similar in both the LES and

the experiment, hence Φ(Mc) ≈ 0.3 in both cases. This gives δ′ω ∼ 0.05 using the values

from Piponniau et al. (2009), 0.05 using (4.1) with the r and s LES values6, and 0.3

using the LES data directly (see figure 4.35 at ξ ≈ 0). From (4.2), one finds St ∼ 0.042

in Piponniau et al. (2009), against 0.046 using the LES data with (4.1) to estimate δ′ω

or 0.28 if δ′ω is computed directly from the LES data. The actual Strouhal number is

0.03 in the experiment (see Dupont et al., 2006) as well as in the LES (as will be shown

in chapter 6).

The above shear-layer analysis thus reveals that the empirical relationship for the

mixing-layer growth rate is not supported by the LES results with a difference of almost

one order of magnitude. Therefore, the success of (4.2) to predict the low-frequency

shock unsteadiness in Piponniau et al. (2009) seems fortuitous as it is bound to the use

of (4.1) for the estimation of the growth rate. If the actual growth rate were used, the

scaling for the low-frequency insteadiness would be about an order of magnitude larger

than it actually is. This does not mean that the mechanism proposed by Piponniau

et al. (2009) does not exist, but in light of the above results, it is believed to be acting

at a higher frequency than the one of interest in this thesis.

6Note the good but fortuitous agreement at this point since there exist large differences in the s and
r values.
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In this chapter, we have focused on the time-averaged fields of three different shock-

impingement configurations for which experimental data are available. It appeared that

although the large-eddy simulation results of the IUSTI 8◦ case compared relatively

well with the experimental findings, comparing LES results with experimental data is

generally difficult. For example, it was shown that a change in the seeding of the PIV

could greatly affect the interaction region and that the flow could be strongly influenced

by the presence of the wind-tunnel side walls. The expansion fan originating from the

wedge, and which is not included in the LES, could also interact with the boundary

layer to modify the back pressure which can then influence the primary interaction.

Therefore, the relative sensitivity of the interaction to experimental artifacts makes the

comparison between experimental and numerical results rather uncertain. To reduce the

level of uncertainties it is best to simulate the full experimental setup (i.e. include the

wind-tunnel geometry). Unfortunately, the computational cost of such approach is not

currently acceptable. Moreover, attempting to include potential experimental artifacts

in simulations is not necessarily the correct approach if the purpose of the simulation

is to study and understand the underlying mechanism responsible for the low-frequency

shock motions.

Thus, a more consistent comparison was performed by comparing the LES with itself.

Given the range of separation bubbles, including a marginal separation, it was best to

use L as the reference lengthscale instead of Lsep. This distinction should be considered

when comparing shock-reflection configurations with ramp flows. Upon plotting the

L/δ0 ratio against (p̄2 − p̄1)/(2τw), a linear relationship (as suggested in figure 7 of

Dupont et al., 2008) is possible. Of particular interest was the remark that the very

beginning of the interaction is rather similar in all the tested cases, which is reminiscent

of the free-interaction theory. In all cases, separation occurred at about the same excess-

pressure level of p̄/p̄1 ∼ 1.2, independently of the wedge angle and Mach number. This

demonstrates that the onset of separation is primarily related to the boundary-layer

properties and its ability to sustain adverse pressure gradients.

In all cases, the separation bubbles were very shallow with aspect ratios of the order

of fifty to five hundred. The maximum height achieved was in the IUSTI case with

the top of the bubble reaching the beginning of the logarithmic region of the incoming

boundary layer. This is to contrast with instantaneous snapshots, where the bubble can

be much taller, giving an indication of the relatively intermittent nature of the separated

flow.

Finally, particular attention was given to the mixing layer that develops inside the

interaction. It is composed of two main sections: an inclined upstream section going

from the reflected-shock foot to the incident shock tip (with an inclination angle of about

twenty degrees) and a more horizontal section in the recovery region. The mixing-layer

growth was found to be greater than for canonical compressible cases (at least in the
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first section). This is probably due to the strong pressure gradient imposed by the

shock. Consequently, the mechanism proposed in Piponniau et al. (2009) would in fact

be acting at a Strouhal number nearly one order of magnitude larger than the value

associated with the low-frequency motions of interest and which are the main focus of

this thesis from this point onward. The next chapter will not be directly concerned by

the unsteady aspects of the LES data but will instead present some stability-analysis

results which will often be referred to in the subsequent chapters.



5. Linear-stability analysis

Before focusing on the unsteady aspects of the previously introduced LES runs, it is

of interest to consider the linear-stability properties of the time-averaged flowfields.

As mentioned in the introduction, Robinet (2007) has recently performed a Bi-Global

analysis of an oblique shock impinging on a laminar boundary layer, and found that for

a sufficiently large wedge angle, the flow could become absolutely unstable to span-wise

wavelengths of the order of the separation-bubble length. It is then questionable whether

an absolute instability could be playing an important role in the origin of the low-

frequency oscillations. This chapter considers the base-flow linear-stability properties

of the IUSTI flow case to see if it shares similar properties to its laminar counterpart,

provided that the linear-stability analysis can be extended to this turbulent flow. To

address this issue, the same SBLI code as the one used to run the LES will be used,

but in a slightly modified form, to allow the detection of the most unstable and/or least

damped mode of any given (3D) base flow.

5.1 Description of the method

As described in chapter 2, the in-house code solves the 3D compressible Navier–Stokes

equations, which may be written in the following generic way:

∂q

∂t
= RHS(q), (5.1)

where q is the conservative variable vector [ρ, ρu, ρv, ρw, ρEt]
T. Let qb be the time and

span-averaged field obtained from the LES results, which will be referred to as the base

flow. If this base flow is used as the initial condition of a simulation, one can obtain the

rate of change of q needed to satisfy the equilibrium. In other words:

∂qb

∂t
= RHS(qb). (5.2)

If the flow q is decomposed into its base-flow component qb and a perturbation q′ (i.e.

q = qb + q′), one can write:

∂q′

∂t
= RHS(q)− RHS(qb), (5.3)

97
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where RHS(qb) acts like a forcing term in the governing equations. Thus, it is possible

to track the time and spatial evolution of the prescribed initial disturbance on the base

flow, while maintaining the base flow at its initial state. Therefore, the most unstable

(or least damped) mode can directly be detected. The above forcing was introduced

in the code with no inclusion of the SGS terms to run the stability analysis as a DNS.

However, the TVD-Ducros filter and the integrated characteristic schemes were used

and modified in a similar way to the governing equations given above.

By definition, the base flow is the span- and time-averaged flowfield, which is not

a solution to the Navier-Stokes equations (otherwise the left-hand side of (5.2) would

strictly be zero). In fact, the forcing term introduced can be thought of as the divergence

of a Reynolds-stress tensor in the RANS equations. Thus, the above stability-analysis

formulation is at first sight similar to the linear-stability analysis of the RANS equations,

if the perturbations considered are sufficiently small. It could then be argued that such

analysis corresponds to the initial stage of an unsteady RANS calculation started from

the steady-RANS solution, but with the major difference that no modelling is applied to

the disturbances. There are cases where the large-scale flow unsteadiness are found to

be relatively well predicted by linear theory. For example, Gaster et al. (1985) compare

their experimental measurements of a forced turbulent mixing layer with the results of

classical linear-stability theory, and report a good agreement between the two in both the

amplitude and phase distribution. A more recent successful attempt is the application

of the BiGlobal analysis to predict the shock-induced transonic-buffet onset by Crouch

et al. (2007). It can thus be argued that the SBLI case may also be a candidate for

the application of linear-stability theory. Indeed, the low-frequency shock motions are

known to occur on timescales two orders of magnitude larger than the characteristic

timescale of the turbulence. The separation of timescales, which appears to be needed

for a successful extension of linear-stability theory, is clearly present in the SBLI case.

In such a framework, the turbulent nature of the flow would only be needed to produce

the base flow.

5.2 Results

To check the validity of the above modifications of the code, the stability simulation was

first performed with no initial disturbance and the base flow could be maintained for

as long as the test was run for (about six flow-through-times, longer than is needed for

this study). Then, white noise disturbances were introduced with a maximum amplitude

four, six or eight orders of magnitude smaller than the free-stream quantities. The white

noise was introduced upstream of the interaction inside a square cylinder of section five



Linear-stability analysis 99

7 8 9 10 11 12 13 14 15 16
10

−8

10
−7

10
−6

10
−5

10
−4
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Figure 5.1: Example of the disturbances exponential growth (linear stage) for three
different span-wise wavelengths λz

by five grid points and spanning the entire simulation-domain spanwise extent. Alter-

natively, specific spanwise wavenumbers were excited using sine waves for the initial

condition. The linear-stability simulations were performed for various domain widths,

ranging from 0 to 8 times the separation-bubble lengths. The original LES grid res-

olution was kept in the streamwise and wall-normal directions whereas the spanwise

resolution was set to 20 and 40 points per separation-bubble wavelength (two resolu-

tions were tested to make sure that the results are grid independent). The base flows

considered here were obtained by time and span-averaging the conservative variables of

the small (see table 3.2) and large-span (see table 4.2) IUSTI 8◦ LES runs. To remove

spurious oscillations in the time- and span-averaged data, the base flows were all low-

pass filtered prior running the stability simulations.

After a transient state, all the tested cases have shown that the disturbances end up

picking up a globally unstable mode (following an exponential growth in time as shown

in figure 5.1), the structure of which is shown in figure 5.2. The mode was found to be

stationary until saturation of the linear regime was reached.

Contrary to the results of Robinet (2007) for a laminar interaction, the global mode

is found to be present in 2D (i.e. at zero spanwise wavenumber) for the current turbu-

lent SBLI case. Furthermore, when trying to enhance higher wavenumbers in the initial

disturbance, the smaller spanwise wave-numbers were consistently seen to grow faster.

Figure 5.3 provides the growth rates obtained at different wavenumbers from the time

evolution of the amplitude of different spanwise-Fourier modes. First, the 2D mode is

found to be the most unstable, although 3D modes with wavelengths of the order of, or



Linear-stability analysis 100

y
/L

s
e
p

(x – x̄imp)/Lsep

−0.5 0 0.5 1 1.5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

z/
L

s
e
p

(x – x̄imp)/Lsep

−0.5 0 0.5 1 1.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Figure 5.2: Global-mode amplitude function for the streamwise momentum distur-
bance (ρu mode): side view (left) and top view (right). The solid line indicates the
base-flow zero-velocity contour while the dashed line gives the position of the plane cut
for the side and top views. The contours are taken between ±1.3× 10−6 and shown on
a non-linear scale to highlight the positive (yellow) and negative (blue) regions

0 2 4 6 8 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
small-span case

large-span case

wavenumber, β × Lsep (with β = 2π/λz)

gr
ow

th
ra

te
,
Im

(ω
)
×
L

se
p
/ū

1

Figure 5.3: Global-mode growth rates for different spanwise wavenumbers, where
{ρu}′ = A(x, y) exp(iβz−iωt), with A(x, y) the amplitude function and i the imaginary
number ; for the different base flows tested



Linear-stability analysis 101

−0.5 0 0.5 1 1.5
−3

−2

−1

0

1

2

3

(x – x̄sep)/Lsep

sk
in

-f
ri
ct

io
n

d
is
tu

rb
an

ce
,
C

′ f
×

10
8

extension
compression

(a)

−0.5 0 0.5 1 1.5

−5

0

5

10

15

(x – x̄sep)/Lsep

to
ta

l
sk

in
fr

ic
ti
on

,
[C̄

f
+
C

′ f
]×

10
4

extension

compression

(b)
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(a) Global mode fingerprint on the skin friction (curves plotted at different times) (b)
Global change in the skin friction (amplified to a non-linear level for demonstration
purpose)

larger than, the separation-bubble length have quite similar growth rates. Second, the

growth rates are low compared to the inverse time scales involved in the turbulence. In

fact, the growth rates are found to be smaller than an inverse time scale based on the

free-stream velocity and the separation length. However, the values provided in figure

5.3 should be considered with care as they are shown to be sensitive to the base flow

used. Nevertheless, it may be argued that if the 2D global mode is active, the associated

amplification mechanism would scale on several bubble-flow-through times.

If we now consider the 2D structure of the global mode, it is worth noting that the

sign of the amplitude function is arbitrary. Indeed, changing the sign of the initial dis-

turbance leads to the same picture as in figure 5.2 with the difference that the sign of

the amplitude function is reversed. The effect of the global-mode structure on the skin

friction is given in figure 5.4. Depending on the sign of the amplitude function, one

can show that the separation and reattachment points are either moved upstream or

downstream (in phase). Furthermore, as shown in figure 5.4(b), the bubble can either

break up or the separation can be amplified in the initial portion of the separation

under the influence of the global mode (note that the disturbance amplitude levels were

increased to a non-linear level to make the global-mode effect visible). The relevance of

this remark will be made clearer later in the discussion of the LES data.
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Thus, an unstable global mode was found in the span- and time-averaged flow field

of the turbulent SBLI, the growth rate of which is greatest at zero spanwise wavenum-

ber. Based on the above study, the global-mode growth rates are found to be at most

O(0.5Lsep/ū1), which converts to ωi ∼ O(0.1δ0/ū1) (assuming Lsep ∼ O(5δ0)). This

implies that if we consider the case where the initial disturbance was four orders of mag-

nitude smaller than the base flow, the linear regime will span a time t ≈ ln(103)/ωi ∼
O(70ū1/δ0). Therefore, the linear regime involves timescales about two orders of mag-

nitude larger than the characteristic timescale associated with the incoming turbulence.

This is consistent with the earlier argument that the stability analysis would be mean-

ingful if it involved timescales larger than the turbulence, so that the turbulence only

acts to produce the base flow but does not play a significant role in the development

of large-scale motions, just like in the investigations of Gaster et al. (1985). Of course,

this does not constitute a proof, but the stability results are found to be consistent with

the underlying assumptions made earlier. Based on the results of Gaster et al. (1985)

and Crouch et al. (2007), one cannot rule out the possibility that the aforementioned

global mode is meaningful and plays a role in the observed low-frequency shock motions

in the IUSTI 8-degree shock-reflection case. Note that at this stage, the existence of the

low-frequency shock motions is based on the available experiment evidence (see Dupont

et al., 2006). Characterising the LES low-frequency content is the main point of interest

of the following chapter.



6. Unsteady aspects

In chapter 1, the need for a better understanding of the driving mechanism for the

observed low-frequency unsteadiness in shock wave/turbulent boundary layer was dis-

cussed. This was shown to have been driving research in this area for several decades.

However, as noted by Dolling (2001), this period can be considered as a period of obser-

vation rather than a period of explanation, and the unsteady character of SBLI remains

an important practical challenge for external and internal flow problems such as airframe

design and turbomachinery. Moreover, the case of the reflected shock was shown to have

received much less attention than the case of a ramp flow, despite being more academ-

ically suited, at least in appearance, due to the absence of wall curvature which can

remove complexities related to the inherent flow topology and associated instabilities.

Additionally, for a given incoming turbulent boundary layer, ramp-flow cases usually

exhibit higher low-frequency shock motions compared to the shock-reflection configura-

tion (by about one order of magnitude). The latter configuration is advantageous in the

sense that the low-frequency shock motions are more decoupled from the timescales of

the incoming turbulence. This can be good from the point of view of an experimentalist,

because of difficulties in measuring higher frequencies, but it is more challenging from a

computational point of view due to the need to obtain longer time series to resolve the

low-frequency motions.

At the time of this project and to the best of the author’s knowledge, no simulation of

the shock-impingement case had been performed to confirm the experimental evidence

by unambiguously showing that the SBLI region is indeed the place of significant low-

frequency oscillations. Among the flow cases considered in this thesis (see chapter 4)

only the IUSTI 8◦ case had been studied using LES by Garnier et al. (2002) and DNS

by Pirozzoli and Grasso (2006) (but at a lower Reynolds number). These two earlier

works are compared to the present simulations in table 6.1. Of main interest is the last

line of the table, where the times spanned by the various simulations are compared.

Based on the scaling proposed in Dupont et al. (2006) for St, the relevant scales are the

freestream velocity ū1 and separation-bubble length Lsep. From Dupont et al. (2006),

the most energetic low frequencies are expected to occur at St ∼ 0.035. The comparison

is thus based on the number of periods of this particular frequency covered by the sim-

ulation. As mentioned in chapter 1, the reflected-shock motions are not harmonic but

broadband in nature. Therefore, one should cover several (if not many) periods of this

103
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and experimental data have been filtered with a 6th-order low-pass Butterworth filter
with a cutoff Strouhal number of 2, and the LES signal has then been projected – via
linear interpolation – on the experimental time axis

particular frequency to properly capture it1. As can be seen from table 6.1, the earlier

simulations by Garnier et al. (2002) and Pirozzoli and Grasso (2006) could not properly

capture the low-frequency shock motions. In the present work, we have tried to run the

simulations as long as possible, given the computing power available, while following

the constraint on the spanwise extent of the computational box that was presented in

chapter 3, with the exception of the narrow-span case, where the relatively inexpensive

grid allowed the simulation to cover about 60 low-frequency cycles. Due to the need to

resolve most of the turbulence timescales, the present LES typically cover a dynamic

range of 7 decades, representing in the narrow-span case over 5× 106 time steps.

This chapter is comprised of three main sections. In the first section, the LES results

are investigated from wall-pressure signals and compared to the available experimental

results. At this point, we will comment on the effect of using short time series and on

the performances of the digital-filter approach to generate the inflow data. The sec-

ond section will focus on the mass flow rate per unit width of the reversed flow with

particular attention given to the spanwise distribution. In the last section, the LES

database is used to extract the shock position in time. This is then used to produce

conditionally-averaged data, which will be extensively used in chapter 7.

6.1 Wall-pressure data analysis

6.1.1 Narrow-span case and experimental results

Figure 6.1 provides an experimental wall-pressure signal obtained from Dupont et al.

(2006) and its LES equivalent obtained from the narrow-span case. Both signals were

1We shall be more specific about what is meant by “many” in this chapter.
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normalised with the upstream pressure and filtered with a 6th-order low-pass Butter-

worth filter with a cutoff Strouhal number of 2. Note that we use the separation-bubble

length as the reference length and not the interaction length. Then, the filtered LES

pressure signal was projected by linear interpolation onto the experimental time axis.

This allows a direct comparison of the two signals. One can see that they share similar

properties, suggesting that the LES reproduces the dynamics reasonably well. A closer

look at the signals reveals that the experimental signal is slightly richer at frequencies

near cutoff, but overall, the resemblance is striking.

Figure 6.2 compares the two signals in a more rigorous way, from a spectral point of

view. Figure 6.2(a) gives the power spectral density (PSD) of the aforementioned two

signals, with an additional LES wall-pressure signal taken upstream of the interaction.

This time, the LES signals were not low-pass filtered so that the high-frequency content

is retained. However, all signals were segmented using Welch’s method (with 50% over-

laps and Hanning windows). In order to obtain a smooth PSD at high frequencies, the

LES signal was processed several times with an increasing number of segments, going

from about ten segments for the lowest frequency end to several thousands for the high-

est frequencies. The entire frequency range was reconstructed to obtain the plots in

figure 6.2(b). Figure 6.2(a) confirms the good agreement suggested in figure 6.1 between

the experiment and the LES at low-frequencies. Furthermore, the upstream probe from

the LES confirms that the energetic low-frequencies observed near the reflected shock

were not introduced by the inlet conditions and thus that the digital-filter approach met

our expectations in that aspect.

Figure 6.2(b) gives the weighted PSD. It is obtained by multiplying the PSD by the

frequency (the Strouhal number in our case) and normalising by the integration of the

PSD over a given frequency (Strouhal number) range. This representation is convenient

to highlight the frequencies which contribute most to the variance of the signal. How-

ever, the normalization is arbitrary and one should be careful when comparing the LES

and the experiment as the available frequency ranges of the two signals differ. In figure

6.2(b), a hybrid normalisation is provided (labelled “hybrid norm”), where one accounts

only for the common frequency range covered between the experimental and LES signals

(i.e. between the lowest frequency covered by the LES up to the cutoff frequency of the

experimental signal). As can be seen from this figure, the agreement between the LES

and the experiment using the hybrid-frequency range is satisfactory.

These results imply the following. First, that the region under the reflected shock

exhibits significant low-frequency oscillations. These so-called low frequencies are broad-

band and cover at least one frequency decade around St ≈ 0.03, giving the reflected shock

a very random-like motion. Furthermore, these frequencies are two orders of magnitude

smaller than the energetic frequencies related to the turbulence. Since the fluctua-

tions related to the turbulence contribute to the signal-variance nearly as much as the
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low-frequencies, it makes the distinction between low-frequency and turbulence-related

events extremely difficult when looking at a raw time-signal as in figure 6.1. Second, the

good agreement of the LES with the experimental data suggests that the present LES

does capture the important dynamics of this interaction: namely, the frequency of the

most energetic low-frequency unsteadiness and the bandwidth of the low-frequency con-

tent. However, the LES slightly underestimates the amount of energy around St ≈ 0.3.

Nevertheless, the overall good agreement suggests that the experimental observations of

the existence of low-frequency shock motions are not due to an artifact of the experi-

mental arrangement.

However, it should be recalled that the present low-frequency analysis is obtained

from the narrow-span LES, which was shown to significantly overestimate the separation-

bubble length. One could wonder why the agreement with the experiment is so good.

As mentioned in chapter 1, Dussauge et al. (2006) have shown that the low-frequency

unsteadiness scaled relatively well with the interaction length2 and it is possible that

the narrow-span LES benefits from this choice of lengthscale in the definition of the

Strouhal number. In fact, the agreement would be poor if we had used the boundary-

layer thickness as the reference lengthscale. Second, assuming that the global mode

found in the previous section is related to the low-frequency oscillations, and in light of

the experienced sensitivity of the growth rates to the amount of reversed flow, it would

not be surprising that the low-frequency oscillations are related to the separation-bubble

properties, and more precisely, to the amount of reversed flow, which is related to the

bubble height. It was shown earlier that the large-span LES underestimated the bub-

ble height and consequently the magnitude of the reversed flow. Since the narrow-span

bubble is longer and taller than the one found in the large-span case, it is likely that

the amount of reversed flow in the narrow-span LES closely matches the experiment,

artificially leading to a good agreement for the low-frequency dynamics.

The LES wall-pressure signals are further analysed from two sets of wall-pressure

probes. The first set, which is referred to as the high-spatial/low-temporal resolution

one, is made of the 451 available grid points in the streamwise direction, along the

median-line of the computational-box floor, where the pressure was recorded every one

hundred iterations. The second set, which is referred to as the low-spatial/high-temporal

resolution one, is made of one pressure measurement every five grid points along the same

line, but at a sampling rate of one record every ten iterations.

Figure 6.3(a) is obtained from the low-spatial/high-temporal resolution array and

is simply an extension of figure 6.2(b) to all the available streamwise locations. The

contours are isovalues of the weighted PSD. This is similar to figure 5 in Dupont et al.

(2006), except that the high-frequency end of the current figure is higher than in their

paper, owing to the inclusion of the energetically significant high-frequency oscillations

2In this flow configuration, the interaction length and separation length are similar.
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Figure 6.3: Energetically significant frequencies as found in the wall-pressure signals
(a) weighted-power-spectral density map (b) frequency/wave-number diagram (where
the contour levels – shown on a logarithmic scale – are the premultiplied PSD levels
obtained from the two-dimensional Fourier transform of the space-time correlation func-
tion of the wall-pressure probe array. The reference probe to compute the space-time
correlation function was located at (x− x̄sep)/Lsep = 0.3). The PSDs are premultiplied
by (a) the frequency divided by the total resolved power (as in figure 6.2(b)) for each
individual streamwise location, (b) the frequency)

related to the turbulence. Figure 6.3(a) can be interpreted as the map of the most dom-

inant wall-pressure fluctuations as one moves along the streamwise direction. From this

point of view, the separation region clearly stands out. More precisely, it is worth notic-

ing that the energetic broadband low-frequency peak mentioned earlier is very localised

about the separation point x̄sep. In the remaining part of the separation bubble, the

energy is distributed over three decades of Strouhal numbers. This is in good agree-

ment with Dupont et al. (2006). After the interaction, a new ridge starts forming,

similar to the upstream ridge, but at lower Strouhal numbers. This is due to the thicker

post-interaction boundary layer, where similar turbulence structures to the upstream

boundary-layer ones are produced, but of larger sizes, leaving a similar footprint in the

spectrum but at lower Strouhal numbers.

Figure 6.3(b) was obtained from the high-spatial/low-temporal resolution array. First,

a reference point is chosen at (x−x̄sep)/Lsep ≈ 0.3 and the two-point correlation function

in space and time is computed. The resulting space-time correlation function is then

Fourier-transformed in space, with a Hanning window to remove end-effects, followed

by a Fourier transform in time to obtain the PSD at different streamwise wavenumbers

kx, using Welch’s method (with 50% overlaps and Hanning windows). Finally, the PSD
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was filtered to remove spurious oscillations with a non-causal filter and weighted by the

frequency. This gives the frequency/wavenumber diagram shown in figure 6.3(b) where

the contours are the weighted PSD levels. In addition, all possible acoustic dispersion

relations are indicated on the figure, where ūi, ci, i ∈ {1, 2, 3} refer to the theoretical

potential freestream velocities and local speeds of sound, where region 1 is upstream

of interaction, 2 after the incident shock but before the reflected shock and 3 after the

interaction. cw is the speed of sound at the wall3.

Several observations can be made from figure 6.3(b), firstly, on the positive wavenum-

ber side, where a large amount of energy is found for wave speeds ranging from ū1−c1 to

ū1 +c1. Looking more closely at this region, a ridge corresponding to waves propagating

at 0.65ū1 seems to emerge. This ridge is related to the shedding of coherent structures

in the shear-layer at the bubble interface. It must be recalled that the reference point to

build the correlation function was at (x− x̄sep)/Lsep ≈ 0.3 so that in this case, the shed-

ding of the shear-layer structures at the beginning of the interaction turns out to be the

most important contributor to the wall-pressure fluctuations. However, if we had used

as the reference point a position upstream of the interaction, the downstream acoustic

waves ū1 +c1 would have been relatively more important than the shear-layer structures

(this is not shown here). This remark is important to stress that the relative importance

(amplitude level) of the structures seen in figure 6.3(b) depends on the choice of reference

point and should thus be considered carefully. However, the structure of the frequency-

wavenumber diagram itself does not depend on the location of the reference point within

the region considered. In addition to the aforementioned distinct ridges on the positive-

wavenumber side, one can see more spatially-distributed structures such as the wide

lobe for positive wavenumbers which is related to the turbulence-induced pressure fluc-

tuations. The second set of observations concerns the negative-wavenumber side of the

figure, where upstream acoustic waves are clearly detected, supporting the possibility

of the feedback-loop mechanism proposed by Pirozzoli and Grasso (2006). However,

for such a mechanism to be present, one would need to explicitly show that the shear

layer is sensitive to this upstream-propagating acoustic field. Finally, of interest to the

present discussion is the ridge at low frequencies corresponding to upstream-propagating

low-frequency waves. A best fit to the ridge gives a convection speed of −0.05ū1. Note

that replacing the freestream velocity by this convection speed in the definition of the

Strouhal number would make the energetic low-frequency oscillations have a Strouhal

number of the order of unity.

One disadvantage of the frequency/wavenumber diagram is that it cannot tell us

where the aforementioned slowly-upstream propagating waves come from. It could, if

3The speed of sound at the wall is constant along the flat plate due to the choice of isothermal
boundary condition.
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we were to restrict the streamwise extent on which the analysis is performed and suc-

cessively move this frame downstream, since past the source point of those waves one

would not find their presence in the diagram anymore. However, this is not a conve-

nient approach. Instead, we prefer to look at the phase evolution of the wall-pressure

disturbances at a given frequency. For this, a reference point at (x− x̄sep)/Lsep ≈ −0.2

is picked using the pressure probes from the high-spatial/low-temporal resolution array.

The results for three different frequencies are given in figure 6.4. Note that the phase

data were unwrapped so that jumps of 2π were removed. In addition, the phase evo-

lution was filtered to remove the noise. One disadvantage of this approach is of course

that the obtained phase is contaminated by all streamwise wavenumbers (note that the

level of contamination can be estimated from the frequency-wavenumber map described

in the previous paragraph).

One can see in figure 6.4 that for the St ≈ 1 case, the phase increases nearly linearly.

The convection velocity uc can be deduced from the slope since uc/ū1 = 2πSt/ [dϕp/dξ
′],

where ξ′ = (x − x̄sep)/Lsep. However, at lower Strouhal number, interesting changes in

the phase evolution can be observed, which cannot be explained by the modulo-2π

factor. In particular, for (x − x̄sep)/Lsep ∈ [−0.3, 0.3], the phase decreases linearly
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while it increases linearly everywhere else. Furthermore, the change of slope around

(x − x̄sep)/Lsep ∼ 1/3 is abrupt with a phase-jump of about π. Before the jump, an

upstream propagation speed is found whereas after the jump, one finds a downstream

propagation speed. This means that the source of the slow-upstream propagating wave

discovered in the frequency/wavenumber diagram is located about one third of the way

down the bubble. Interestingly, this is reminiscent of the global-mode effect on the initial

part of the bubble as described in chapter 5. Hudy et al. (2003) have investigated the

flow behind a fence by mean of wall-pressure measurements and report the existence of

a phase jump of π in the middle of the separation bubble, similar to the one observed

here. Moreover, the authors suggest that this jump could be related to the presence of a

globally unstable mode. Our stability analysis results combined with the above analysis

of the LES data seem to argue in favour of such a connection.

6.1.2 Short-signal length effects

As shown in the above section, the low-frequency pressure fluctuations near the shock

foot are broadband in nature. This implies that in order to guarantee the convergence

of the spectral-analysis results, one must capture “several times” the most significant

period. Although the term several times is relatively vague, the above results suggest

that covering about 60 cycles can give a good estimate. However, in order to obtain the

smooth spectra shown in figures 6.2 and 6.3, different window sizes were successivelly

applied. Generally, a single window size is employed. In the remainder of this work,

the classical single-size windowing approach will be mostly used and it is therefore of

interest to evaluate the level of confidence one can have on the final spectrum on the

basis of the number of low-frequency cycles covered by the LES (as indicated in table

6.1).

In this section, we make use of the large-span LES of the IUSTI case and the LES of

the ITAM and TUD cases. Figure 6.5 shows the evolution of the streamwise momentum

(ρu) at a fixed point near the reflected shock and inside the potential-flow region (at

the simulation-box midplane). The shock wave is either upstream or downstream of the

numerical probe. All signals have also been low-pass filtered with the same 6th-order

low-pass noncausal Butterworth filter with cutoff frequency 0.5L/ū1 to highlight the

low-frequency content. The autocorrelation functions obtained from the filtered signal

were computed and are provided in figure 6.6. High levels of correlations are seen over

time lags of order 100ū1/L. Undoubtedly, the reflected shocks in all three configurations

exhibit energetic low-frequency shock motions which are significantly below the charac-

teristic frequencies of structures the size of the boundary layer.
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The shape of the autocorrelation functions is of particular interest. Wavy structures

with clear local maxima and minima are characteristic of harmonic motions. However,

it is known from the previous section that the shock motions are broadband. If the low-

frequency motions had really been broadband, then the autocorrelation would not have

produced a wavy structure and would decay to zero (this is shown later in figure 6.7).

This indicates either that the LES finds the low-frequency shock motions to be made of

harmonic motions or that the LES is not yet converged at low frequencies. Given the

earlier results, the latter is the most likely to be true. To illustrate this, we shall make

use of the long near-shock-foot wall-pressure experimental signal from Dupont et al.

(2006).

The experimental signal was cut into 79 segments and each segment was post-

processed in exactly the same way as for the LES data. The choice of the individual

segment length is such that it matches the length of the large-span LES data. In par-

allel, the post-processing was applied to the full experimental signal. This gives the set

of grey lines and the thick dashed black line in figure 6.7. For comparison, the LES

auto-correlation function from figure 6.6 is superimposed (dash-dotted blue line). The

difference between the full experimental signal and the LES is large, with the experimen-

tal correlation function remaining at low correlation levels for long time lags. However,

the individual experimental segments resemble the LES results. This illustrates the

limitation of the short-signal analysis. Indeed, the apparent disagreement between the

analysis of the LES and the full experimental signal does not mean that the LES did

not correctly capture the flow unsteadiness. In fact, some of the experimental segments

would suggest it did (see segment 45).

By definition, the PSD corresponds to the Fourier transform of the autocorrelation

function. The lack of convergence of the LES data and the associated wavy structure

of the autocorrelation function (as seen in figure 6.6) will have severe consequences on

the PSD analysis by producing peaky structures in the spectra (see figure 6.7). It is

tempting to associate those peaks with a physical explanation, all the more since the

spikes can sometimes appear as harmonics of a main one. In light of the analysis of the

experimental results, it appears that interpreting individual spikes in the LES spectra is

not meaningful. From the narrow-span LES and experimental results, a longer (at least

twice as long) LES signal is required in order to fill in the low-frequency spectra. This

remark is important since it shows that covering more than 60 cycles is required to be

able to quantify the most energetic low frequencies. Although the large-span LES were

run for about 30 low-frequency cycles (which is already longer than previous works), the

low-frequency data analysis can only provide estimates.
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Figure 6.7: Effect of short-length signals on the analysis of broadband low-frequency
motions. The top plot gives the correlation function obtained from various time series.
All listed time series have been low-pass filtered in the same manner as for figure 6.5.
The experimental signal corresponds to the IUSTI wall-pressure measurements near
the reflected-shock foot as described in Dupont et al. (2006). It spans a time about 79
times longer than the time covered by the LES of the IUSTI case. The autocorrelation
functions obtained from the 79 sequential experimental segments spanning the LES time
are provided in light grey. The thick dashed line corresponds to the result obtained using
the full experimental signal. The autocorrelation function of the LES of the IUSTI case
provided in figure 6.6 is repeated with a dash-dotted line. A particular segment (labelled
segment #45) is provided for illustration purposes (red solid line). The bottom plot is
the premultiplied Fourier transform of the autocorrelation functions shown on the top
figure

6.1.3 Upstream influence and digital filter

Before investigating the different LES results, the upstream influence and the use of the

digital-filter approach are briefly discussed in this section. Figure 6.8 shows snapshots

of the streamwise velocity-fluctuation field in a plane parallel to the wall at two different

altitudes: at y+ ≈ 12 and y/δ0 ≈ 0.2. The colourmap highlights the region of the flow

with a velocity deficit. At y+ ≈ 12, a streaky structure is clearly seen. However, the

timescales associated with these near-wall turbulence structures are small compared to

the timescales associated with the low-frequency shock oscillations. At y/δ0 = 0.2, no

obvious large-scale coherent structure is apparent. To be more convinced of the absence

of such structure in the present LES investigations, one can develop the time history
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Figure 6.8: Instantaneous snapshot of u′/ū1 from the (old) large-span LES case at
two different heights. The dash lines indicate the mean separation and reattachment
positions

of the velocity fluctuations seen along a numerical wire just before the interaction (cor-

responding to x⋆ = 260mm) and at y/δ0 = 0.2, as shown in figure 6.9, where time is

converted into space assuming the fluctuations are convected at the local mean veloc-

ity uc, as in figure 4 in Ganapathisubramani et al. (2007a) (Taylor’s hypothesis). The

colormap was designed to highlight any large-scale velocity deficit in the reconstructed

flow field. The longest structures one can see are of order 10δ0 long.

An autocorrelation function (computed from the narrow-span LES at x⋆ = 260mm,

y/δ0 = 0.2 and in the middle plane of the computational box) is shown in figure 6.10,

where the same time-to-space transform as in the previous paragraph was applied. Note

that the space axis is given on a logarithmic scale to cover long distances. The correla-

tion function is seen to drop to zero in about one boundary-layer thickness. Note that it

drops faster than the prescribed correlation in the digital filter. This is expected since

the correlation lengthscales were deliberately overestimated to ensure that the simulated
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Figure 6.9: Reconstructed u′/ū1 field from a numerical transverse wire located at
x⋆ = 260mm and y/δ0 = 0.2. uc is the mean streamwise velocity at x⋆ = 260mm and
y/δ0 = 0.2 (uc/ū1 ≈ 0.73)
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flow does not relaminarise (see chapter 2). Also, it is expected that the correlation func-

tion in a turbulent boundary layer drops slightly faster than the prescribed exponential

function at the inlet. What is most important for the present study is that the correla-

tion function remains at zero for large time intervals. This was the main objective that

motivated the choice of the digital-filter approach, where no cyclic pattern is enforced,

as shown by the correlation function. In contrast, the correlation function in the DNS

of Wu and Martin (2007) (figure 4) does not drop to zero and does not extend to the

period of the recycling/rescaling technique used by the authors.

From the point of view of the digital filter, the current settings ensured that no

structure longer than O(δ0) was introduced and this is confirmed by the observed cor-

relation function. However, once inside the computational domain, nothing can pre-

vent larger structures developing, and from figure 6.9 one can see that structures up

to 10δ0 long may develop, corresponding to the size of the available computational

domain before interaction. As shown earlier, the narrow-span bubble is about 6δ0 long,

while the most energetic low-frequency oscillations are at fLsep/ū1 ≈ 0.03. Using the

boundary-layer thickness as the lengthscale, the energetic low-frequency oscillation con-

verts to fδ0/ū1 ≈ 0.005. The timescale associated with this frequency is 200ū1/δ0.

Since uc/ū1 ≈ 0.73, the lengthscale covered during this time using Taylor’s hypothesis

is about 150δ0. Using the scaling argument of Ganapathisubramani et al. (2007b), one

would thus need to have 75δ0-long superstructures in the narrow-span LES to explain

the observed energetic low-frequency oscillations. This is nearly ten times the size of

the longest structures present in the present LES, making the superstructures or the

incoming flow unlikely to be directly responsible for the low-frequency shock motions

observed in this study. This does not mean that long coherent upstream disturbances

are not important when present in practical applications but they are not found to be

necessary to observe the low-frequency shock motions.

6.1.4 All three large-span LES

In this section, the LES wall-pressure fluctuations are analysed in the same way for all

three flow cases in order to highlight possible common characteristics. It was shown in

figure 4.31 that the interaction length could be linearly correlated with the ratio between

the pressure jump and the wall-shear stress. Therefore, the interaction length appears to

be the prefered choice of lengthscale for a cross comparison, as opposed to the separation

length, which is nearly zero in the TUD case. Hence the choice of L in the following

figures.

The wall-pressure signals were recorded at every streamwise and spanwise grid points

in all three LES. At each station, the autocorrelation was computed and then averaged
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ū

1
/
L

T
U

D

−
40

0
−

20
0

0
20

0
40

0
−

2

−
1.

5

−
1

−
0.

50

0.
5

F
ig

u
r
e

6
.1

1
:

W
a
ll
-p

re
ss

u
re

a
u
to

co
rr

el
a
ti
o
n

fu
n
ct

io
n
s,

a
s

a
fu

n
ct

io
n

o
f

st
re

a
m

w
is

e
lo

ca
ti
o
n
.

T
h
e

a
u
to

co
rr

el
a
ti
o
n

fu
n
ct

io
n

w
a
s

co
m

p
u
te

d
in

th
e

sa
m

e
w

ay
a
s

in
fi
g
u
re

6
.6

w
it
h

th
e

w
a
ll

p
re

ss
u
re

in
st

ea
d

o
f

th
e

st
re

a
m

w
is

e
m

o
m

en
tu

m
fl
u
x
.

A
ls

o
,

a
ll

th
e

sp
a
n
w

is
e

st
a
ti
o
n
s

a
re

in
cl

u
d
ed

so
th

a
t

th
e

co
rr

el
a
ti
o
n

fu
n
ct

io
n

is
a
ls

o
av

er
a
g
ed

in
th

e
sp

a
n
w

is
e

d
ir

ec
ti
o
n
.

A
s

in
fi
g
u
re

6
.6

,
th

e
si

g
n
a
ls

w
er

e
lo

w
-p

a
ss

fi
lt
er

ed
p
ri

o
r

to
co

m
p
u
ti
n
g

th
e

a
u
to

co
rr

el
a
ti
o
n

fu
n
ct

io
n

u
si

n
g

th
e

sa
m

e
fi
lt
er

.
T

h
e

gr
ey

sc
a
le

is
li
n
ea

rl
y

d
is

tr
ib

u
te

d
b
et

w
ee

n
co

rr
el

a
ti
o
n

le
v
el

s
ra

n
g
in

g
fr

o
m

-0
.1

(b
la

ck
)

to
+

0
.1

(w
h
it
e
)

u
si

n
g

2
5
6

in
te

n
si

ty
in

cr
em

en
ts

.
T

h
e

d
a
sh

ed
li
n
es

d
el

im
it

a
re

g
io

n
ex

h
ib

it
in

g
si

g
n
ifi

ca
n
t

lo
w

-f
re

q
u
en

cy
m

o
ti
o
n
s.

T
h
o
se

li
m

it
s

w
il
l
b
e

u
se

d
in

fi
g
u
re

6
.1

2
.

T
h
e

d
a
sh

-d
o
tt
ed

li
n
es

in
d
ic

a
te

th
e

m
ea

n
se

p
a
ra

ti
o
n

a
n
d

re
a
tt

a
ch

m
en

t
p
o
si

ti
o
n
s



Unsteady aspects 120

in the spanwise direction to obtain the autocorrelation maps shown in figure 6.11. A

clear band with large-scale black and white structures, corresponding to high levels of

correlation over large time lags, is seen for all three cases4. These larger-scale structures

are seen to stop in the middle of the interaction for all three cases but their starting

points differ. This implies that the low-frequency motions are more energetic in the first

part of the interaction and that the shock-foot low-frequency motions do not span the

same distance relative to the interaction length in each case. A clear streaky structure

is also seen in the second part of interaction, with what would correspond to a richer

frequency content in the IUSTI case given the greater level of “noise”.

The absence of large-scale structures upstream of the interaction reflects the absence

of particular low-frequency modes, which is expected given the digital-filter settings (see

previous section). Furthermore, the fact that in all three cases the large black and white

bands stop before (x−x̄imp)/L = 0.5 suggests that the source of the low-frequency source

is inside the interaction region. This is consistent with the narrow-span LES results (fig-

ure 6.4), where low-frequency wall-pressure fluctuations were shown to originate in the

first section of the separation bubble, a property that was found to be consistent with

the presence of a globally unstable mode, suggesting that the low-frequency motions

could be originating from a hydrodynamic instability mechanism. From figure 6.11, the

large-span LES results seem consistent with this idea given the spatial confinement of

the energetically significant frequencies.

Figure 6.12 gives the contribution of each frequency band to the wall-pressure vari-

ance relative to the upstream wall-pressure fluctuations. In this way, the build-up of

low-frequency fluctuations, as perceived in figure 6.11, is further quantified. Significant

fluctuations for fL/ū1 < 0.03 emerge in the initial part of the interaction. Furthermore,

the fact that all three cases exhibit a relatively similar build-up below this Strouhal

number implies that the choice of the velocity-scale ū1 and length-scale L to quantify

the low-frequency motions (as proposed by Dussauge et al., 2006) is appropriate.

A frequency/streamwise-wavenumber analysis of the wall-pressure fluctuations inside

the interaction, similar to the one in figure 6.3(b), has been performed and is shown

in figure 6.13. Features common to all three cases can be found, namely, the presence

of convecting coherent structures such as the vortices shed by the shear layer as well

as acoustic radiation. In addition, one can see relatively similar lobed contours char-

acteristic of the broadband time and spatial scales of the turbulence. The presence

of upstream propagating acoustic waves can also be detected in all cases as well as

upstream-propagating waves at a convective speed of about uc/ū1 = −0.05. Replacing

ū1 by uc for the velocity-scale in the Strouhal-number definition for the most energetic

4Note that the presence of those stripes is symptomatic of short-signal effects when the spectral
content should be broadband, as shown in section 6.1.2. However, despite the lack of convergence of the
LES data, it is still possible to study some aspects of the low-frequency motions.
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ITAM

10
−3

10
−2

10
−1

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

fL/ū1
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Figure 6.12: Difference in the weighted PSD between the first half of the interaction
region with the region immediately upstream of interaction. ∆E(f) = GI(f)−GU (f)
where GI(f) is the premultiplied PSD (f × PSD(f)) integrated over the region
embedded between the two dashed lines in figure 6.11 and normalised by the total
resolved power in the same region. GU (f) is computed in the same manner as GI(f)
with the difference that the integration is performed other the region spanning from
(x− x̄imp)/L = −2 to the first dashed line in figure 6.11. The resulting quantity high-
lights the contribution of each frequency band to the wall-pressure variance in the initial
part of interaction relatively to the incoming boundary layer. It is aimed at quantifying
the build-up of significant low-frequency oscillations as perceived in figure 6.11

low-frequency motions would make this close to unity.

From the above results, all the tested cases have shown evidence of the presence of

low-frequency shock oscillations, including the case with a marginal separation. At the

wall, the low-frequency oscillations are mainly confined in the first half of the interac-

tion region and no energetically significant low-frequency motions were introduced in the

upstream boundary layer. Although the spectral analysis is not fully converged at low

frequencies, the build-up of energetic low-frequency motions was found to occur below a

Strouhal number of 0.03 (St = fL/ū1). In the next section, additional comparisons will

be provided on the basis of other quantities than the wall pressure. In particular, some

of the HWA and Schlieren-image-processing results from the ITAM group will be used.

Then, the narrow- and large-span LES of the IUSTI flow case will be used to comment

on the three-dimensionality of the flow and the possible effect of the domain spanwise

extent on the low-frequency unsteadiness.

6.2 Additional cross comparisons and 3D aspects

6.2.1 The ITAM case

As shown in chapter 4, the interaction length predicted by the LES of the ITAM flow

case did not match the experimental findings. This discrepancy was mainly attributed

to the presence of corner flows produced by the wind-tunel side walls. Independently of
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Figure 6.14: LES and experimental correlation functions of the momentum fluctua-
tions at a station crossed by the reflected shock (a) and associated spectra (b). The
effect of the short LES signal is highlighted by cutting the experimental signal in seg-
ments spanning the same time as the one covered by the LES. The analysis of one
particular segment (the 4th one) is shown for comparison

this mismatch, it is of interest to check whether the low-frequency dynamics are simi-

lar. As discussed earlier, the low-frequency study is challenging for LES due to the fact

that the most energetic low frequencies are found to be two orders of magnitude smaller

than the characteristic frequency of the incoming boundary layer (ū1/δ0). In addition,

those low frequencies are broadband in nature and it is necessary to cover several cycles

(ideally more than 50 from the earlier discussion) to achieve a proper convergence of

the spectral analysis. Consequently, in order to resolve both the turbulence and the

broadband low-frequency motions, the LES must span times of the order of 104δ0/ū1

with a time resolution of about 10−3δ0/ū1, leading to an impressive frequency range of

7 decades. In practice, the LES of the ITAM signal covers about 20ms (at a rate of

47MHz) whereas the HWA measurements span about 350ms (at a rate of 0.75MHz).

Thus, the LES signal is about 17 times shorter than its experimental counterpart and can

only cover about 10 periods of a wave beating at 500Hz. Therefore, the low-frequency

spectral analysis of the LES is not fully converged and comparisons with the HWA

results should be undertaken with care. Nevertheless, the signals are sufficiently long to

provide reasonable trends.

Figure 6.14(a) compares the auto-correlation functions computed from the momen-

tum time series obtained by a hot wire probe and the numerical equivalent at a fixed

point along the reflected shock wave (Rρu = [ρu]′ (t0) [ρu]′ (t0 + τ)/[ρu]′ (t0) [ρu]′ (t0)),

upstream of the shock-crossing point in the experiment and downstream of the shock-

crossing point in the LES. As mentioned in the previous paragraph, the hot-wire signal
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Figure 6.15: Shock-foot probability density function

is about 17 times longer than the LES one. To see the short-signal effect on the interpre-

tation of the LES data, the experimental signal was cut into segments the same length

as in the LES. One particular segment (the 4th one) is provided in the figure for illustra-

tion purposes. It shows that for the frequencies of interest here, the LES signal, and to

some extent the experimental signal, are too short to consider the statistics to be fully

converged. Nevertheless, it is possible to infer that the experimental and LES signals

both exhibit similar low-frequency content.

Figure 6.14(b) is the Fourier transform of the auto-correlation functions shown in

figure 6.14(a). By definition, this corresponds to the power spectral distribution. It is

clear that both the LES and the experiment are experiencing significant low-frequency

“tones”. As the time spanned by the signals is increased, the spiky aspect of the spectra

will be reduced (as shown ealier) and the spectra will become more and more broadband.

In figure 6.14(b), significant oscillations are found around 0.3 kHz, consistent between

experiment and LES. Finally, the PSD levels below 0.1 kHz suggest there might be sig-

nificant very low-frequency oscillations but, given the relatively poor convergence for

that end of the spectrum, it is premature to draw any conclusion.

One additional quantity made available by ITAM is the post-treatment of high-speed

Schlieren images, allowing tracking of the reflected-shock motions. From the Schlieren
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snapshots, the shock was extracted using an algorithm based on the color intensity and

then the shock foot was determined by a best-fit line. A similar procedure was applied

to the LES data, using the divergence of the velocity as the basis for the shock detec-

tion (more details will be provided in the last section of this chapter). The resulting

shock-foot time series were then analysed to compute the shock-foot probability-density

functions, shown in figure 6.15. The probability-density functions of both the experi-

mental and numerical shock-foot motions are found to agree remarkably well (despite

the poor agreement in the time-averaged fields). Interestingly, they both seem to match

the normal distribution (although one could argue that a slight skewness may be per-

ceptible). Unfortunately, the time resolution of the Schlieren images does not allow a

comparison based on the spectral content of the shock-foot motions.

Despite the limited direct comparisons with the experimental results and the dis-

crepancies due to the presence of the wind-tunnel side walls which are not included in

the LES, the numerical results share similar low-frequency dynamics with the experi-

ments. Together with the success in reproducing the IUSTI data, LES are found capable

of accurately reproducing the key mechanism responsible for the low-frequency shock

motions.

6.2.2 Probability of separation

In chapter 4, it was shown that the separation bubbles in the IUSTI, ITAM and TUD

cases differed significantly with span- and time-averaged maximum reversed flow of

0.27ū1, 0.007ū1 and 0.0007ū1, respectively. However, it was noted that despite those

differences, all bubbles are intermittent with recorded instantaneous negative velocities

of O(ū1/2), independently of the size of the mean separation. Using the LES database,

it is possible to compute the probability of separation, a result which is also accessible

to PIV data. The probability of finding a negative u velocity is provided in figure 6.16.

Unfortunately, the TUD case is the only case for which we have the required PIV data

to perform a comparison. Note that all distances are normalised using δimp
0 .

Although the IUSTI case exhibits occurences of reversed flow further away from the

wall (O(δimp
0 /3)) than the ITAM (O(δimp

0 /5)), which in turn reaches further away from

the wall than the TUD case (O(δimp
0 /10)), the overall maps appear as rescaled ver-

sions of each other, suggesting the possible existence of a similarity law. The PIV data

should be considered with care, given the increasing uncertainties as one approaches the

wall region but if we focus on the peak of the 10% and 20% contours, the shape and

lengthscales are not found to be significantly different from the LES (despite the large

difference in Reynolds numbers). Finally, it is worth noting that the contour of ū = 0

is found in regions where the velocity is negative approximately 50% of the time. This
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Figure 6.16: Side view of the probability of finding a reversed flow. The probability
isolines are shown by increments of 10% for all three LES cases and the PIV data of
TUD. The white solid lines correspond to the ū = 0 contour

may reflect the observed symmetry in the shock-foot PDF of the shock motions shown

in the ITAM case.

So far, the results reported in this chapter did not consider three-dimensional effects.

The next two sections will focus on the effect of the spanwise domain extent using the

large- and narrow-span LES of the IUSTI case.

6.2.3 Narrow-span vs large-span LES

In this section, the wall-pressure fluctuations from the narrow- and large-span LES of the

IUSTI case (see table 6.1) are compared. Using a complex set of windowing operations, it

was shown in figure 6.2 that the narrow-span LES results are in good agreement with the
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Figure 6.17: Narrow-span (solid line) vs large-span (dashed line) wall-pressure spec-
tra near the reflected-shock foot. The experimental results are also provided (grey
dash-dotted line)

experimental results. In the following comparison, we also make use of Welch’s method

(50% overlaps and Hanning windows) but the window size is kept fixed at 50Lsep/ū1 for

all the signals presented.

The wall-pressure power-spectral density in the vicinity of the reflected-shock foot

is presented in figure 6.17. Two main differences can be seen: for fLsep/ū1 > 0.5, the

large-span LES exhibits more energetic fluctuations than the narrow-span case whereas

the converse can be observed for fLsep/ū1 < 0.5. The more energetic high-frequency

content of the large-span case can be explained by the differences in the inlet condi-

tions. As discussed in chapter 4, the digital-filter settings in the large-span LES were

modified such that the energy of the fluctuations in the outer region of the bound-

ary layer was increased to overcome their observed underestimation in the narrow-span

LES upstream of interaction, when compared to the experimental results. However, the

significant reduction by almost one decade of the PSD levels of the large-span LES low-

frequency fluctuations is not easily explained. Nevertheless, some tentative explanations

will be suggested in both this section and the following one.

In order to try to explain the significant damping of the low-frequency motions in

the large-span LES, it is interesting to look at the one-dimensional weighted spectra
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ū 1

 

 

−20 −10 0 10 20

0

1

2

3

4

5

6

7

8

9

10

−10 −9.5 −9 −8.5 −8 −7.5 −7 −6.5

(a) narrow span

wavenumber, kx × L

S
tr

o
u
h
a
l
n
u
m

b
er

,
f
L
/
ū
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ū 2
–
c 2
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ū 1

 

 

−20 −10 0 10 20

0

1

2

3

4

5

6

7

8

9

10

−10 −9.5 −9 −8.5 −8 −7.5 −7 −6.5

(b) large span

Figure 6.18: Wall-pressure dispersion relations: narrow-span vs large-span LES. The
above maps were obtained similarly to figure 6.13 and the labelled dispersion relations
are the same as the ones described in the caption of figure 6.13. Note that the contours
are based on a logarithmic scale and shown at exactly the same levels in both the
narrow-span and large-span cases to facilitate the comparison
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of the spanwise autocorrelation function (computed on the streamwise-velocity compo-

nent) as a function of the streamwise position, as was shown in figure 4.13. While all the

relevant scales of the incoming turbulent boundary layer are correctly resolved in both

simulations, it is clear that the narrow-span configuration does not capture all the ener-

getically significant spanwise wavelengths within the interaction. This artificially forces

the separation region to be mostly of a two-dimensional nature. The narrow-span time-

averaged flow properties were analysed in chapter 5 and the flow topology was found to

be globally unstable. Moreover, the global mode was shown to act on timescales two

orders of magnitude longer than the characteristic timescale of the upstream boundary

layer. By confining the separation bubble so that it remains mostly two-dimensional,

one forces the flow to be closer to the one studied in the stability analysis. Therefore,

the narrow-span LES could have greatly enhanced the possibility for the global mode to

exist. Since the most unstable global-mode structure was found to be two dimensional

with a tendency to enhance or reduce the separation, it could have made the narrow-

span bubble follow more significant expansion/compression motions, leading to more

pronounced low-frequency oscillations and enhanced separation. Although the large-

span time-averaged flow field is found to be globally unstable, the growth rate is about

an order of magnitude smaller than that found in the narrow-span case. This picture is

consistent with the aforementioned explanation and the observed drop in the PSD levels

at low frequencies, although it does not explain why the experimental results are closer

to the narrow-span results than the large-span ones, despite the ample spanwise extent

of the wind tunnel, unless the experimental bubble also suffers from confinement effects

such as strong corner flows or the presence of coherent spanwise structures originating

either from the upstream concave walls (Görtler-like vortices) or the way the flow is

seeded from the wall, or a combination of both5.

Figure 6.18 gives a comparison of the dispersion relations of the wall-pressure fluctu-

ations of the two LES. The reference point to build the correlation function was taken

at (x − x̄sep)/Lsep ≈ 0.3 in both cases. Both dispersion maps are plotted on a loga-

rithmic scale using the same contours to allow a direct comparison between the two

cases. Although a similar structure emerges in both cases, one can see a few differences.

First, the shear-layer vortical footprint, responsible for the dominant elongated ridge (in

white), is more pronounced in the narrow-span case. This is believed to be related to

the enhanced two-dimensionality of the flow due to the spanwise confinement which can

lead to more coherent and more energetic vortical structures inside the mixing layer.

5Although not shown here, the IUSTI group has looked at the spanwise auto-correlation function
upstream of the interaction, which was seen to exhibit high levels of correlations at wavelengths shorter
than the wind-tunnel width, providing clear evidence of significant levels of inhomogeneity in the span-
wise direction. At the time, the IUSTI team suggested that those coherent spanwise structures were due
to the use of periodic V-shaped Dynmo-tape roughness elements placed just upstream of the sonic neck
(see Dussauge and Piponniau, 2008).



Unsteady aspects 130

Similarly, both the downstream- and upstream-propagating acoustic waves are more

clearly identified in the narrow-span case. Additionally, although still present in the

large-span case, the ridge corresponding to slow upstream-propagating pressure fluctu-

ations is more noticeable in the narrow-span case. Those observations confirm the more

two-dimensional behaviour of the narrow domain. Despite the ability of the narrow-span

case to reproduce the experimental low-frequency unsteadiness, it is of interest to look

at the three dimensionality of the flow from the point of view of the large-span case.

This is the focus of the next section.

6.2.4 Formation of large cells within the interaction

The three-dimensionality of the interaction is studied through the reversed mass flow

rate per unit with ṁ, defined by:

ṁ(x, z, t) =

∫ ∞

0
ρu−(x, z, z, t)dy, where: u− =

{
u if u < 0,

0 otherwise.
(6.1)

This quantity was recorded during the large-span LES for all x and z grid points at

a high frequency rate of once every twenty time steps. This can allow a well-resolved

study of the evolution in time of pockets of reversed flow. Figure 6.19 was obtained by

following the time variation of the ṁ records from a fixed streamwise position located

half the way down the mean separation bubble. Regions of strongest reversed mass flow

rates are shown in yellow. It is found that large regions of reversed flows can form, some

of which are highlighted in the subfigures (b) and (c). Such pockets of reversed flow

can survive for more than 30Lsep/ū1 and grow in the spanwise direction by as much as

one separation-bubble length Lsep. In addition, they are often seen to meander in the

spanwise direction6. Occasionaly, two of these structures can merge and form an even

larger structure. It is clear that the narrow-span LES cannot capture the aforementioned

dynamics, as is for example illustrated in subfigure (d) where the size of the narrow-span

domain is highlighted. It is also of importance to note that the structures described here

are generated inside the interaction itself and do not correspond to the long structures

described by Ganapathisubramani et al. (2007b) in the upstream supersonic turbulent

boundary layer.

Due to the meandering of the above long-lived cells of reversed flow, it is legitimate

to question the meaning of single-point spectra such as the ones shown in figure 6.17.

Indeed, if one such structure moves about a fixed probe, its footprint on the resulting

spectra will be one of a higher frequency than that associated with the structure lifes-

pan. In the narrow-span LES, it was shown that the flow topology inside the interaction

6This is more clearly seen in the animations of the LES fields.
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Figure 6.19: Time series of the reversed mass flow rate per unit width ṁ at (x −
x̄sep)/Lsep ≈ 0.5. The yellow regions correspond to ṁ/(ρ̄1ū1L) ≤ −0.4. The embedded
quantities λ⋆ ≡ λ/Lsep, τ

⋆ ≡ τū1/Lsep and St ≡ 1/τ⋆ provide indications on the length-
and time-scales associated with the highlighted coherent structures. The bottom figure
(d) illustrates the spanwise extent covered by the narrow-span case
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is nearly two dimensional because of the domain-confinement effect. In this case, the

spanwise homogeneity of the flow allows the fixed-point observations to be relatively

unbiased. Conversely, one can question the level of bias in the spectrum obtained from

a fixed position in the large-span LES. To estimate this bias, we have tried to capture

the meandering of the cells and have recorded the time series as seen by the moving

probe. The tracking algorithm was based on a simple gradient method where the probe

followed the valley formed by the function
√

[∂ṁ/∂x]2 + [∂ṁ/∂z]2/|ṁ|α with α = 0.4.

The choice for α was made on heuristic grounds by visualy investigating the effect of

its value on the resulting path. This is not necessarily an optimal choice but it gives

satisfactory results, as shown in figure 6.20.

Using this tracking algorithm, time series of ṁ obtained by a fixed probe, coincind-

ing with the initial position of the tracking probe, and the one obtained by the moving

station were recorded and compared. The resulting spectra are shown in figure 6.21.

One can see that low frequencies contain more energy when the probe accounts for the

meandering effects than when it is fixed. This confirms the idea that the narrow-span

LES results are similar to the case of a moving probe due to the artificial confinement

and thus, that the weaker low-frequency oscillations found by the large-span LES (see

figure 6.17) can be partially explained by the fact that the large-span results did not

include the meandering effects. However, from figure 6.21, it appears that the correction

can hardly explain the difference of one decade in the PSD levels (see figure 6.17). Thus,

the meandering corrections are not likely to be the unique explanation for the PSD dif-

ferences between the large- and narrow-span LES and the earlier discussion about the

possible global-mode effects is still relevant.

The mechanisms responsible for the formation and destruction of the coherent struc-

tures described in this section are not known. However, looking at animations based

on the LES data, a tentative description may be briefly given. Indeed, it appears that

the mixing layer, in addition to the adverse pressure gradient imposed by the shockwave

system, may be playing an important role in the birth and growth of such structures.

Some recognisable and repeatable patterns may be seen when looking at flow animations

from the LES data and an attempt to describe them is shown in figure 6.22.

First, consider the shock system, the mean mixing-layer centreline (discussed in chap-

ter 4) and a region of reversed flow (see figure 6.22(a)). Then consider one coherent vor-

tex developing along the mixing-layer centreline7. As the vortex is convected, it grows

until it reaches a sufficient size to interact with the reversed flow. As a result of this

interaction, an eruption of the recirculation bubble occurs (see figure 6.22(b)), similar to

the vortex-induced eruptions described in Peridier et al. (1991a,b) and Doligalski et al.

(1994). This eruption is followed by an enhancement of the separation bubble. In some

instances, while the initial coherent vortex is convected away and no longer influences

7We assume the vortex to be sufficiently coherent in the spanwise direction.
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Figure 6.20: Tracking pockets of reversed flow. The coherent structures are tracked
in time using a gradient-based algorithm. For each new time step, the selected path

is one that minimises the function

√
[∂ṁ/∂x]

2
+ [∂ṁ/∂z]

2
/|ṁ|α where α = 0.4. The

white line gives the resulting path
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the separation bubble, a second coherent vortex starts interacting with the enlarged

bubble, in a similar way as the previous one (figure 6.22(c)). Depending on the time

separating the two vortex-induced eruptions, a favourable (dynamical) enhancement of

the bubble can take place, leading to a separation bubble which has grown significantly

larger than its initial state (figure 6.22(d)). This would translate into events of signif-

icant reversed mass-flow rates (see figure 6.19). To validate this idea, one should first

study the statistical validity and significance of the vortex-induced eruptions, and then

check whether the width of the structures shown in figure 6.19 can be correlated to the

typical spanwise extent of the mixing-layer coherent vortices.

While the previous paragraph described a possible mechanism that can lead to a

build up of the recirculation bubble, it is equally important to consider an opposing

mechanism, which is also based on noticeable patterns in the flow animations. A built-

up bubble can reach a size where a significant downwash occurs on its backside. This

downwash can then deviate the shear-layer coherent vortices toward the wall, as shown

in figure 6.22(e)8. As the vortex is forced to impinge on the wall, it can split the bubble

into two sections. The upstream section is no longer fed from the back and progres-

sively weakens, while the second section is lifted up by the vortex and transported into

the faster stream, which rapidly destroys it (figure 6.22(f)). At this stage, the separa-

tion bubble can be nonexistant or severely damped and the whole process can repeat

itself. The aforementioned mechanism is solely descriptive and its quantitative relevance

should be examined in the future. It is possible that the associated timescales are of

the same order of magnitude as the most significant low frequencies, or are comparable

to the timescale from the model by Piponniau et al. (2009). Nevertheless, the coherent

structures described in this section are found to be correlated with the reflected-shock

motions.

One important consequence of the presence of long-lived and wide recirculation cells

is the constraint such flow features put on the numerics. Indeed, because of the presence

of energetically-significant large spanwise wavelengths evolving on timescales more than

two orders of magnitude longer than the typical timescales of the upstream turbulence,

it is sometimes difficult to achieve spanwise-homogeneous flow statistics, as one would

expect given the flow configuration and the use of periodic boundary conditions. Figure

6.23 illustrates this issue by comparing the mean velocity field obtained by averaging

over the full runtime and the one obtained by averaging over a timescale of the order of

the most energetic low-frequency motions9 (35Lsep/ū1). It is found that the two aver-

ages can differ by O(0.1ū1). The regions of largest differences form streaky and cell-like

patterns. For example, in figure 6.23(a), two large cells of width 0.5Lsep are clearly

visible. This is consistent with the presence of the long-lived structures discussed in this

8This is also seen in the flow animations.
9Note that this is longer than the time covered by Garnier et al. (2002).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.22: Descriptive sketch of some recognisable patterns in flow animations. The
two solid lines represent the incident and reflected shocks, the dashed line represents
the time-averaged mixing-layer centreline as shown in figure 4.32. The filled yellow
area represents the region of negative streamwise velocity u. All events (a) to (f) are
described in the text

section. Moreover, long streaky structures extending long before the interaction are also

noticeable (see figure 6.23(b)) with magnitudes not exceeding a couple of percent. A

correlation between a low-speed upstream streaky structure and the presence of a large

recirculation cell may be seen, although one can also find counter examples. This is

similar to the arguments of Ganapathisubramani et al. (2007b) and more data analysis

would be needed to quantify the level of such correlation.

Irrespective of the mechanisms responsible for the formation of the long-lived struc-

tures, they will interact with the reflected shock. From flow animations, the reflected-

shock is found to experience large spanwise-wavelength wrinkles that are correlated with

the patterns of the recirculation region. This leads us to focus on the reflected shock

itself, a study which will then be the starting point for a deeper analysis to be presented

in chapter 7.
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Figure 6.23: Large-cell effects on the flow-statistic convergence. Top views of 〈u〉T −ū
where 〈u〉T is the time-average of u during a time T , with T being 35Lsep/ū1 (about

five FTT). The planar views are taken at y/δimp
0 ≈ 0.27. The white marks 0.8 to 0.4

indicate the local mean velocity ū/ū1. Cases (a) and (b) are two different time intervals

6.3 Shock motions and conditional averages

6.3.1 Detection of the shock location

In order to study the shock-system position in time, one first needs to extract its position

from the LES database using an automatic algorithm. This section briefly describes the

algorithm used for that purpose, a copy of which is provided in appendix D.

First, the shock system is identified using a carefully chosen threshold value of the

dilatation rate. While this approach is robust in the potential flow, it becomes less and

less reliable as one penetrates in the boundary layer, where the shock is significantly

weaker and compressible turbulence structures may match the selected threshold value.

Nevertheless, spurious data points can be kept to a minimum. Furthermore, the choice

of dilatation rate was found to produce smoother results than specific sensors such as

the one from Ducros et al. (1999), which gave step-like results in the potential flow due

to the high level of grid stretching.
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Figure 6.24: Instantaneous side view of the large-span-simulation interaction with
the detected shock-system. The grey colour scheme linearly maps the temperature field
ranging from hot (black) to cold (white) with Tw/T̄ 1 ≈ 2.06. The black lines indicate
the shock system which was captured using the detection algorithm. The thick white
ticks incorporated in the wall show the time-averaged separation and reattachment
positions

Then, the extracted instantaneous shock positions are averaged to estimate the

streamwise extent along which the shock extraction can be deemed successful. This

choice is manual and rather subjective but it aims at selecting a range of streamwise

positions which occur a significant number of times. Therefore, extreme but rare shock

positions are not considered. Following this choice, the raw data are then clipped to the

selected domain and we are left with the final step, consisting of removing most of the

remaining spurious points. The last step is performed automatically, where the decision

is based on how far a data point is from the mean value. It was decided to remove

points departing by more than four times the local standard deviation and to replace

them using a linear interpolation from the closest instants where the position is reliably

known.

A snapshot of the end-result is provided in figure 6.24, where one can see the detected

shock system and the ability of the method to capture the oscillatory nature of the

reflected shock.

6.3.2 Some characteristics of the shock motions

The aforedescribed shock-detection algorithm was applied to the IUSTI narrow- and

large-span LES as well as to the ITAM and TUD cases. Given the instantaneous

reflected-shock position, it is straightforward to compute the reflected-shock foot posi-

tion variation in time by means of a best-line fit to its position which is then extended

all the way to the wall. From there, the shock-foot probability-density function can be

derived, as shown in figure 6.25. Interestingly, none of the cases is found to depart signif-

icantly from the normal-law distribution, perhaps with the exception of the ITAM case,

where a slight asymmetry was already mentioned in this chapter (figure 6.15). There-

fore, the reflected-shock motions can be said to be symmetrically distributed around
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Figure 6.25: Shock-foot probability density function

the mean position. Any proposed mechanism responsible for the low-frequency shock

motions should be able to reproduce this symmetry in the shock-foot PDF.

Looking at animations from the LES, one can notice that the reflected shock is sub-

ject to both spanwise wrinkles and traveling longitudinal waves. The extracted shock

positions can be used to help characterise the traveling waves. In particular, their dis-

persion properties are of interest. Of course, it must be kept in mind that due to the

oblique nature of the shock, the transverse waves are traveling on a non-uniform grid

and the effect of inevitable numerical errors needs to be considered when looking at the

obtained dispersion relations and amplitude evolutions. In addition, the use of peri-

odic boundary conditions significantly affects the wave pattern on the shock surface

since any spanwise-component into the propagation front is forced to come back in the

computational domain to eventually form interference patterns. With these numerical

constraints in mind, we proceed (with care) with analysing the large-span LES data of

the IUSTI case.

First, let us use the time-averaged reflected shock to define a curvilinear system asso-

ciated with the shock. The longitudinal position along the shock is denoted ξr with ~t

and ~n respectively the associated tangential and normal unit-vector components. Fortu-

itously, the resulting curvilinear system is nearly a straight line and will be approximated



Unsteady aspects 139

as such for convenience in the wavenumber/frequency analysis. Once the aforementioned

reflected-shock axis is defined, for each instantaneous reflected-shock position one can

compute the shock-normal displacement ηr(ξr, t). From there, the ηr time series for each

position along the shock is used to compute the shock-displacement PSD as a function

of the distance along the shock, as shown in figure 6.26(a).

From figure 6.26(a), one can see that high-frequency oscillations (i.e. fL/ū1 > O(1))

are rapidly damped (for ξr < L/5) whereas low-frequency oscillations (i.e. fL/ū1 <

O(10−1)) are almost not damped. Therefore, the reflected shock acts as a low-pass fil-

ter, a feature which is in agreement with earlier works (see Robinet and Casalis, 2001;

Dussauge et al., 2006, and references therein). Of course, some of the high-frequency

damping may be related to the grid stretching.

Furthermore, ηr(ξr, t) can be used to evaluate the dispersion relations in the direction

of the shock, the result of which is given in figure 6.26(b). Because of the fast decay

of high-wavenumber components it is difficult to extend the dispersion-relation maps to

high values of wavenumbers kξr
. Nevetheless, favoured convective speeds may be seen.

If one denotes by ̟2 and ς2 the tangential (to the shock) components of the region-two

freestream velocity ū2 and speed of sound c2, respectively, and by ϑ2 the shock-normal

component of ū2, one can identify travelling waves at ̟2±ς2 and ̟2±
√
|ϑ2

2 − ς22 |. While

convective speeds of ̟2±ς2 may be reasonably expected, the second family of convective

speeds (̟2 ±
√
|ϑ2

2 − ς22 |) is less intuitive. However, it can be explained in light of the

work by Robinet and Casalis (2001) on the receptivity of a normal shock to the down-

stream acoustic field, based on classical linear-stability theory. They showed that there

exists a critical angle at which the incindent acoustic waves are completely reflected in

the form of transverse waves (i.e. along the shock) and that if an acoustic source emitting

waves in all directions exists in the flow, the shock will preferentially respond to incident

waves close to that critical angle. In the case of a normal shock, the resulting transverse

waves are shown to follow a dispersion relation in kξr
= 2πf/

√
|ϑ2

2 − ς22 |. Naturally, in

the case of an oblique shock, the contribution of the tangential-velocity component ̟2

must be added.

Therefore, the transverse waves along the shocks appear to have two main origins.

First, from direct perturbation of the reflected shock by the acoustic field coming from

region 2. Second, as a result of the impingement from the bottom side of the shock by

acoustic waves at the critical angle at which they are completely reflected in the form

of transverse waves along the shock.

Although the aforementioned transverse waves are an interesting feature of the shock

dynamics, they occur on timescales that cannot be directly related to the low-frequency

shock oscillations. In an attempt to understand the mechanism responsible for the low

frequencies, we propose to make use of conditionaly averaged fields. The following sec-

tion will thus describe the procedure and the conditionally averaged fields while chapter
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Figure 6.26: Power-spectral density and dispersion-relation maps of the shock dis-
placements with respect to the mean reflected-shock axis system (based on the IUSTI
large-span LES case). Both maps are shown on a logarithmic scale. The thick dashed
line in (a) indicates the location along the shock where the incident shock crosses. In
(b) the spectrum is premultiplied by the frequency and computed from the 2D Fourier
transform of the two-point correlation function. The thick solid lines indicate the̟2±ς2
dispersion relations whereas the dashed lines indicate the ̟2 ±

√
|ϑ2

2 − ς22 | dispersion
relations



Unsteady aspects 141

−0.1

−0.05

0

0.05

0.1

ε/
L

0 200 400 600 800 1000 1200 1400 1600 1800
−0.1

−0.05

0

0.05

0.1

t ū1/L
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Figure 6.27: Shock-foot-displacement time series from the narrow-span (top) and
large-span (bottom) simulations. The dashed lines indicate the location of the variance
±σ/L (ε̄ = 0, σ2 = εε)

7 will refer to these conditional averages in order to guide a more theoretical approach

to the issue of the low-frequency shock oscillations.

6.3.3 Conditional averages

The conditional averages that will be extensively used in the remainder of this work

are based on the shock-foot motions. As described earlier, the time-dependent reflected-

shock position was extracted from the LES data allowing for a straightforward derivation

of the time series of the reflected-shock foot displacement with respect to its mean posi-

tion, denoted ε(t), as shown in figure 6.27. The time spanned by the large-span LES is

shorter than that covered by the narrow-span LES, due to the computational overhead

in the large-span configuration.

Nevertheless, the mean and standard deviation (σ) of both raw time series can be

computed. The standard deviation is then used as a selection criterion. First, the space

spanned by the possible shock-foot positions is split into 12 equally-sized bins between

−3σ and +3σ. Then, for each available instant in the LES database, the flow fields are

averaged according to which bin they belong to.

Let Aε0,∆σ be the set of all the instants t ∈ [0, T ] such that the shock-foot displace-

ment is located between ε0 and ε0 +∆σ, where T , ε0 and ∆σ are some predefined values.

Let N (Aε0,∆σ) be a measure associated with this set, consisting of the time spanned by

Aε0,∆σ. This can be written:

Aε0,∆σ = {t ∈ [0, T ] : ε(t) ∈ [ε0, ε0 + ∆σ]} , (6.2a)

N (Aε0,∆σ) =

∫

Aε0,∆σ

1 dt. (6.2b)
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The set Aε0,∆σ and its associated measure N being specified, it is possible to define the

conditional-average operator 〈·〉ε0,∆σ:

〈ui〉ε0,∆σ =
1

N (Aε0,∆σ)

∫

Aε0,∆σ

ui(t) dt. (6.2c)

It is straightforward to see that this operator is linear and conserves constants. Note

that in the definition of Aε0,∆σ, no distinction about the sign of dε/dt is made, but this

could easily be specified to separate the cases where the shock is moving in the upstream

direction from the cases where it is moving in the downstream direction.

Idealy, the LES data could provide 〈ui〉ε0,∆σ for any given values of ε0 and ∆σ. In

practice, this is impossible due to the finite and short time spanned by the LES; and

ε0, ∆σ are chosen such that the range [−3σ, 3σ] can be split into 12 segments. Figure

6.28 is a plot of the resulting conditionally-averaged data. It features the different shock

positions (expect for the extreme bins), the respective positions of the sonic line as

well as the contours where the streamwise velocity is −0.02ū1. To ease the reading of

the figure the upstream displacements are in dashed lines. Note that in the case of

figure 6.28 no effort is made to distinguish the positive dε/dt events from their negative

counterparts. The most interesting aspects of both figures 6.28(a) and 6.28(b) are: (i)

the clear correlation between a stronger separation and an upstream position of the

reflected shock and (ii) the fact that the reflected-shock angle does not stay constant

between upstream and downstream positions. Note that in both cases, the conditionally-

averaged shocks are nearly linear and therefore it was decided to approximate them by

their best-fit lines. Some differences between the narrow-span and large-span cases may

be seen, namely, the smaller shock excursions and separation bubbles in the large-span

LES (discussed earlier) and the behaviour of the sonic line which seems to rotate around

a different fixed point. The correlation between the size of the separation and the

shock position is a well-established result (see Piponniau et al., 2009). Moreover, the

reduction of the streamwise excursions of the shock as one moves further away from the

wall was also documented by Dupont et al. (2006). The LES results thus confirm those

experimental observations.

From this point onward, we wish to associate the conditional averages with the notion

of phase averaging, although we stress that the shock motions are not harmonic so that

the notion of phase is different from its usual meaning. At any given position, the

velocity-vector time series ui(t) can be decomposed in its time-averaged value ūi and

a time-dependent component u′i(t). This is the classical Reynolds decomposition. Now

suppose that the time dependency of u′i occurs on two distinct timescales, a fast one

denoted tf and a slow one denoted ts such that tf/ts ≪ 1. In the present case, tf is

associated with the timescales of turbulent structures in the upstream boundary layer

whereas ts is associated with the timescales of the low-frequency shock motions. This
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Figure 6.28: Conditional averages of the SBLI based on the probability density func-
tion of the shock-foot position, which is split into 12 bins in the range ±3σ. The
conditionally-averaged shocks are nearly linear but only the best-fit lines are shown
in this figure for clarity. Furthermore, the best-line fits are extended to the wall but
in reality the shocks do not penetrate the subsonic region, which is also indicated in
the figure. The total number of samples are 160, 000 and 64, 990 in the narrow-span
and large-span cases, respectively. The normal-law PDF is shown on top of the black
histograms
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can be made more formal by setting:

{
tf ≡ δ0/ū1,

ts ≡ tf/r0, with r0 ≪ 1.
(6.3)

From this chapter, it is known that for the shock-reflection case considered in this

work, r0 ∼ 10−2. Thus, the time-dependent component u′i is decomposed into the low-

frequency (ũi) and high-frequency (u′′i ) contributions:

ui(t) ≡ ūi + ũi(ts) + u′′i (tf ). (6.4a)

By definition, the time average of all fluctuations is zero, i.e. u′i = 0. This implies that

u′′i = −ũi, which is still too general for the present purposes. Thus, it is also required

that each mean contribution vanishes:

ũi = 0, (6.4b)

u′′i = 0. (6.4c)

At this stage, it is tempting to try to relate ũi with the conditionally-averaged fields

〈ui〉ε0,∆σ, but this is not trivial. The main difficulty in reconciling the two resides in the

temporal dependence of ũi, as opposed to the dependence of 〈ui〉ε0,∆σ on the selected

shock-foot position. To remove this difficulty, the following (strong) hypothesis will be

used:

Hypothesis 6.1. For a given reflected-shock-foot position taken from a low-pass filtered

signal (with cutoff frequency O(0.1ū1/δ0)), the associated flow field ũi is uniquely defined:

ũi(ts) = ũi(ε(ts)). (6.5)

The validity of the above hypothesis is debatable but it may be justified in the light of

the LES results. While it is clear that there exists an infinite number of different flow

fields ui yielding the same shock-foot position x0 (when for example considering the

transverse waves along the shock and the turbulence), it is argued that when only the

low-frequency motions are retained, the picture may become uniquely defined. One sup-

porting observation is that the conditionally-averaged LES data, where the distinction

between upstream and downstream shock motion was made, do not show any significant

level of hysteresis. In other words, for a given shock position, the fact that the shock-

foot was moving upstream or downstram does not matter, giving one example where

hypothesis 6.1 is satisfied. Once again, it is believed that the above arguments strongly

depend on the observed scale separation between the low-frequency shock motions and

the turbulence-related fluctuations.



Unsteady aspects 145

If hypothesis 6.1 is satisfied, and assuming that the turbulence fluctuations do not

correlate with the shock-foot motions, making the conditional-averaging operation sim-

ilar to a time integration (i.e. 〈u′′i 〉ε0,∆σ = u′′i = 0), the following two corollaries may be

written (the details of which are provided in appendix E):

Corollary 6.1.

〈ui〉ε0,∆σ − ūi = ũi(ε0) +O(∆σ). (6.6a)

Corollary 6.2.

∫

Aε0,∆σ

ũi(ε(ts))ũj(ε(ts)) dts = [ũi(ε0)ũj(ε0) +O(∆σ)]N (Aε0,∆σ). (6.6b)

As mentioned earlier, the term phase average will be used here to refer to ũi(ts). To

quantify the spatial and energetic relevance of the phase fluctuations, it is of interest to

compute the phase-fluctuation stress tensor ũiũj. By invoking the previous corollaries,

one can easily show that the phase-fluctuation stress tensor may be evaluated from the

following sum (see appendix E):

ũiũj ≈
1

T

N−1∑

k=0

[〈ui〉εmin+k∆σ,∆σ − ūi] [〈uj〉εmin+k∆σ,∆σ − ūj ]N (Aεmin+k∆σ,∆σ), (6.7)

where N = (εmax − εmin) /∆σ with εmax = max (ε(t)), εmin = min (ε(t)), t ∈ [0, T ].

Figure 6.29 compares the distribution of the kinetic energy associated with the

phase fluctuations alone with the kinectic energy associated with all fluctuations. In

the narrow-span case, the contribution of the phase fluctuations to the total energy rep-

resents about 30% whereas in the large-span case, where the low-frequency motions were

found to be less energetic (see earlier section), the contribution of the phase fluctuation

is less than 10%. In both cases, the contribution of the phase fluctuations is restricted

around the mean reflected-shock position and in the vicinity of the first section of the

mixing layer, as one would expect.

Similarly to figure 6.29, the shear stress is provided in figure 6.30, where the con-

tribution of the phase fluctuations is of the order of 50% and 25% in the narrow-span

and large-span cases, respectively. As for the kinetic energy, the significance of the

phase fluctuations in the total shear stress is restricted to the reflected-shock region and

the first section of the mixing layer. Of particular interest is the change of sign: the

shear stress near the shock is negative for the total field whereas it is positive for the

phase fluctuations. The positive contribution of the phase fluctuations is expected if one

considers an oblique shock moving about a fixed point, due to shock-jump relations.
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ũiũi

 

 

0

1

2

3

x 10
−3

−0.5 0 0.5 1 1.5

0

0.1

0.2

0.3

0.4

0.5

(x – x̄0)/L

u′iu
′

i/12

 

 

0

1

2

3

x 10
−3

(b) large-span case (note the factor 1/12 on the right figure)

Figure 6.29: Kinetic-energy fields from all fluctuations (right) and from the phase
fluctuations only (left)
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Figure 6.30: Shear-stress fields from all fluctuations (right) and from the phase fluc-
tuations only (left)
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6.4 Summary

In summary, this chapter first established the ability of LES to properly reproduce the

observed low-frequency shock motions. It is therefore assumed that the simulations cap-

ture the underlying key mechanisms at the origin of the low-frequency shock motions.

Moreover, the good agreement with the wall-pressure experimental spectra suggests that

the observed motions are unlikely to be solely caused by experimental artifacts. The

region under the reflected shock exhibits the most significant low-frequency fluctua-

tions. These are found to be broadband and to cover at least one decade of frequencies

(around St = 0.03) about two orders of magnitude below the turbulence-related fluc-

tuations. The choice of L and ū1 for the definition of the Strouhal number appears

justified in the light of the three flow cases considered in this chapter. The wall-pressure

fluctuations attributed to the low frequency shock motions and to the turbulence are

both significantly contributing to the signal variance, making the distinction between

the two difficult. In all cases considered the most energetic low-frequency wall-pressure

fluctuations were localised in the first part of the interaction whereas the energy was

more evenly distributed between the low frequencies and the higher turbulence-related

frequencies in the second section.

The dispersion relation of the wall-pressure fluctuations was characterised by organ-

ised convective structures such as shear-layer vortical structures and acoustic-wave prop-

agation on top of more broadband dispersions which are characteristic of the turbulence.

Upstream convecting pressure waves could be detected in the first third of the interac-

tion with wavelengths exceeding the interaction length. Of particular interest was the

phase evolution of such low-frequency pressure waves where a phase jump about one

third down the interaction region could be detected, potentially indicating the source

point of these waves. Following Hudy et al. (2003), the observed phase structure may

be related to a global mode such as the one described in chapter 5.

Although the mean separation bubbles of the flow cases considered in this chapter

were shallow (with heights not exceeding the beginning of the log-law region), the proba-

bility of encountering locally reversed flow could still be around 10% at y/δ0 ∼ 1/3. One

main challenge in performing time-resolved simulations of SBLI is the significant dynam-

ical range required to resolve both the turbulence and the broadband low-frequency. One

direct consequence is that achieving well-converged spectra for the low frequencies is still

prohibitive in terms of computational cost. The short-signal effects were considered in

this chapter and it was shown that at least an order of fifty low-frequency cycles are

needed to achieve acceptable levels of convergence. An additional constraint is the choice

of computational spanwise extent which can affect both the time-averaged flow fields (see

chapter 4) and the amplitude of the low-frequency dynamics. It was argued that the

computational domain should at least be wider than the interaction length itself, greatly
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adding to the computational cost of resolving the low-frequency motions.

In cases where the computational domain was sufficiently wide, cells of reversed flow

with preferential dimensions could form. These cells were found to be capable of persist-

ing for more than 102δ0/ū1 with spanwise extents of the order of the interaction length.

They were seen to meander in the spanwise direction which can occasionally lead to

the merging of two cells. The presence of such structures and their spanwise motions

has direct consequences on the interpretation of fixed-point wall-pressure spectra, for

example where the low-frequency end of the spectrum can be artificially underestimated

while the high-frequency end is artificially enhanced. This can account for some but not

all the differences between the large- and wide-span wall-pressure spectra.

This chapter was also concerned with the choice of the digital-filter approach described

in chapter 2 to generate the inflow turbulence. It was shown that this approach could

prevent long coherent structures from developing at the inflow plane. Consequently, the

length of the coherent structures approaching the interaction region was mainly gov-

erned by the computational extent available upstream of interaction. In the present

work this was set to be about 10δ0. The main idea behind such a choice was to pre-

vent long coherent structures such those described in Ganapathisubramani et al. (2007b)

from interfering with the interaction. The present chapter provides evidence of a flow

deprived of upstream long coherent structures, but still exhibiting low-frequency shock

motions. This leads us to suggest that although long-coherent upstream structures are

likely to enhance the low-frequency shock motions they are not necessary to the exis-

tence of the aforementioned shock motions.

Finally, the motions of the reflected shock were extracted from the simulation data.

It was shown that the observed transverse waves along the shock have two main origins:

direct perturbations by the upstream acoustic field and reflections in the form of trans-

verse waves by the acoustic field from the bottom side of the shock, impinging at the

critical angle studied in Robinet and Casalis (2001). Moreover, the spectral analysis of

the shock motions confirmed that the oblique shock acts like a low-pass filter with the

oscillations at the lowest frequencies propagating along the shock more easily than at

the highest frequencies. Based on the shock-foot displacement, conditionally-averaged

fields could be computed and phase-averaged flow fields could be defined. These phase

averages were used to estimate the kinetic energy of the low-frequency motions. In the

case of the narrow-span LES of the IUSTI case, we found that the low-frequency motions

could account for up to 30% of the total energy of the fluctuations, which is in agreement

with the findings from the wall-pressure data analysis.

Guided by the aforementioned LES data, the following chapter will propose an ana-

lytic approach to the problem of the reflected-shock low-frequency motions. As we shall

see, the derivations will lead to a stochastic ordinary differential equation which will

then be discussed in light of the presented numerical and experimental observations.



7. Low-order stochastic model

The variety of mechanisms proposed in the literature as being potentially responsible for

the low-frequency shock motions, together with the subsequent debate about the merits

of one approach relative to another is symptomatic of the difficulty one has in identifying

and then separating individual events from a (supposedly) non-linear (chaotic) system,

where actual causal events may well be impossible to detect. Instead of attempting

to check the relevance of one assumed mechanism against numerical/experimental data

with the inherent complexity of extracting this from fully turbulent flow, it could be

more useful to identify the properties of the dynamical system arising from the cou-

pling between the shock and the boundary layer. To some extent, this is the approach

followed by Plotkin (1975), who postulated that the shock displacement was obeying a

first-order stochastic Ordinary Differential Equation (ODE) with an associated charac-

teristic timescale. Plotkin shows that such a mathematical model is capable of reproduc-

ing the wall-pressure low-frequency spectrum. This interesting point has been verified

in two subsequent papers by Poggie and Smits (2001, 2005). Two main reasons why

Plotkin’s model has not been widely adopted are: (i) it is a postulate and therefore

lacks a physical basis for its ability to reproduce experimental wall-pressure spectra; (ii)

it is impractical since the key parameter, the characteristic timescale of the ODE, needs

to be determined a posteriori from existing data.

Nevertheless, it is intriguing that a relatively simple ODE is capable of reproduc-

ing the low-frequency spectra. The mathematical implications of this observation have

been considered only at a superficial level. For example, one can read that Plotkin’s

model is a mathematical explanation of how relatively broadband perturbations, caused

by the incoming turbulence, can lead to relatively low-frequency motions; or that it

assumes that the restoring mechanism ensuring the shock stability is linear. But there

are more subtle implications. First, the analytical expression given by Plotkin for the

spectrum is based on the response to white noise, meaning that the model does not

assume as an input a turbulent signal but instead one which is equally composed of high

and low frequencies. Second, while it is true that the postulated governing equation

is linear, it is possible that the time constant associated with the restoring mechanism

already incorporates non-linear interactions between a velocity fluctuation and the cou-

pled shock/boundary-layer system. This latter point is clearly indicated by Poggie and

Smits (2001).

149
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This chapter aims at deriving an equation describing the shock low-frequency motions,

in the spirit of Plotkin’s pioneering work, but from a completely different approach. The

same case of a shock-impingement configuration as described in the previous chapters is

chosen but this work could be extended to compression-ramp flows in the future. A com-

bined LES/analytical approach is used, where the LES results are extensively employed

to support and guide each step of the derivations. The chapter is organised as follows.

The first section presents the derivations of the shock-foot dynamical equation, the con-

stituents of which are then modelled in the subsequent section. The closed form of the

model is then summarised and its solutions to particular forcing examined. Finally, the

last section discusses the low-frequency shock motions in the light of the model.

7.1 Derivation of model equations

7.1.1 Initial form of the momentum integral equation

To derive the model, the streamwise component of the unsteady momentum equation

is first integrated in the wall-normal direction. After some algebraic manipulations

(provided in appendix F), one can obtain the following exact form of the momentum

integral equation:

ρh (h− δ1)
[
∂uh

∂t
+ uh

∂uh

∂x

]
+ uh

∂

∂t
[ρh(δρ − δ1)]−

∂

∂x

[
ρhu

2
hδ2
]
+

∂

∂z

[∫ h

0
ρuw dy

]

− uh
∂

∂z

[∫ h

0
ρw dy

]
=

∂

∂x
[ph (δp − h)] +

µh

Re

[
∂v

∂x

∣∣∣∣
y=h

+
∂u

∂y

∣∣∣∣
y=h

]
− 1

2
Cfρhu

2
h

+
1

Re

∂

∂x

[∫ h

0
τxx dy

]
+

1

Re

(
∂

∂z

[∫ h

0
τxz dy

]
− τxz|y=h

∂h

∂z

)
, (7.1)

where the following thicknesses are defined (displacement, momentum, pressure and

density thicknesses, respectively):

δ1 =

∫ h

0

(
1− ρu

ρhuh

)
dy, (7.2a)

δ2 =

∫ h

0

ρu

ρhuh

(
1− u

uh

)
dy, (7.2b)

δp =

∫ h

0

(
1− p

ph

)
dy, (7.2c)

δρ =

∫ h

0

(
1− ρ

ρh

)
dy, (7.2d)
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Figure 7.1: Sketch of the interaction with the definition of the notations in use

and:

Cf =
2µw

ρhu
2
hRe

∂u

∂y

∣∣∣∣
w

, (7.3)

where the subscripts h and w denote that variables are evaluated at y = h and at the

wall, respectively.

7.1.2 Change of variable

It is convenient to introduce a new coordinate system by moving the origin of the

streamwise x axis to the instantaneous shock-foot position and then normalising with the

distance covered from the instantaneous shock-foot to the instantaneous shock-crossing

point (denoted C in figure 7.1). Note that l0 is the absolute distance between the mean

shock-foot position and the mean streamwise cross-point position whereas x, s and ε

can be either positive or negative distances. With the upstream movement of the shock

foot sketched in figure 7.1, s and ε are negative. The distance from the origin of the axis

system O to the instantaneous shock-foot location is l0 − ε and the distance separating

the instantaneous shock foot from the instantaneous crossing point is l0−ε+s. Therefore,

the new coordinate system, denoted ξ, is:

ξ ≡ x+ l0 − ε
l0 − ε+ s

or equivalently, x ≡ (l0 − ε)(ξ − 1) + sξ. (7.4)
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Hence, in the following sections, ξ = 0 will be the instantaneous shock-foot position, ε the

shock-foot displacement with respect to its mean position and ξ = 1 the instantaneous

location of the shock crossing.

Because of the integration in the wall-normal directions, the terms in (7.1) are only

functions of x, z and t. This can be expressed in a generic way by writing that the terms

in (7.1) are of the type f(x, z, t). Equation (7.4) will transform f(x, z, t) into f(ξ(z, t)).

From the chain rule:

∂f

∂t
=

∂f

∂ξ

∂ξ

∂t
, (7.5a)

∂f

∂x
=

∂f

∂ξ

∂ξ

∂x
, (7.5b)

∂f

∂z
=

∂f

∂ξ

∂ξ

∂z
. (7.5c)

From (7.4), it is straightforward to compute the following derivatives:

∂ξ

∂t
=

1

l0 − ε+ s

[
(ξ − 1)

∂ε

∂t
− ξ ∂s

∂t

]
, (7.6a)

∂ξ

∂x
=

1

l0 − ε+ s
, (7.6b)

∂ξ

∂z
=

1

l0 − ε+ s

[
(ξ − 1)

∂ε

∂z
− ξ ∂s

∂z

]
. (7.6c)

Using (7.5 a–c) and (7.6 a–c), one can express (7.1) in the new coordinate system:

ρh (h− δ1)
l0 − ε+ s

[
(ξ − 1)

∂ε

∂t
− ξ ∂s

∂t
+ uh

]
∂uh

∂ξ

+
1

l0 − ε+ s

[
uh

(
(ξ − 1)

∂ε

∂t
− ξ ∂s

∂t

)
∂

∂ξ
[ρh(δρ − δ1)]−

∂

∂ξ

[
ρhu

2
hδ2
]]

+
1

l0 − ε+ s

[
(ξ − 1)

∂ε

∂z
− ξ ∂s

∂z

]{
∂

∂ξ

[∫ h

0
ρuw dy

]
− uh

∂

∂ξ

[∫ h

0
ρw dy

]}

=
1

l0 − ε+ s

∂

∂ξ
[ph (δp − h)] +

µh

Re

[
1

l0 − ε+ s

∂v

∂ξ

∣∣∣∣
y=h

+
∂u

∂y

∣∣∣∣
y=h

]
− 1

2
Cfρhu

2
h

+
1

Re

1

l0 − ε+ s

∂

∂ξ

[∫ h

0
τxx dy

]

+
1

Re

1

l0 − ε+ s

[
(ξ − 1)

∂ε

∂z
− ξ ∂s

∂z

]{
∂

∂ξ

[∫ h

0
τxz dy

]
− τxz|y=h

∂h

∂ξ

}
. (7.7)

The form of (7.7) will prove to be convenient in deriving an approximate form of the

momentum integral equation for the shock-reflection problem.
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7.1.3 Approximate form of the momentum integral equation

In principle, if one could find all the appropriate necessary closure terms, (7.7) would be

used to resolve the shock dynamics. However, in its current state, (7.7) is unpractical

and one needs to make further assumptions in order to simply it. Some reasonable

assumptions are:

1. the study shall be restricted to ξ < 1

2. the potential flow is assumed constant (e.g. the acoustic field is neglected) so that

u1, ρ1, and p1 are true constants (ρ1 = ρ̄1, u1 = ū1, p1 = p̄1)

3. the top boundary (delimited by h in figure 7.1) is assumed to be always inside the

potential flow, i.e. h > δ0 at all times

4. the shock system is considered two-dimensional (i.e. spanwise variations are not

considered) so that h = h(t), s = s(t), ε = ε(t) (three-dimensional effects could be

considered in a future study)

With the above assumptions, the subscripts h can be replaced by 1 (e.g. uh = u1)

since h is inside the potential flow (assumption 3) and the study restricted to the sec-

tion upstream of the shock-crossing point (assumption 1). Furthermore, for a constant

potential flow (assumption 2), one can write ∂uh/∂ξ = ∂u1/∂ξ = 0. For similar reasons,

multiplicative terms like ρh, uh or ph can be pulled out of derivatives. The 2D assump-

tion (assumption 4) is used to zero out terms with ∂/∂z. Finally, the shear-stress term

τxz|y=h vanishes under assumptions 2 and 3. Implementing the above simplifications

to (7.7) eventually leads to the following approximate form of the momentum integral

equation (MIE):

1

u1l0

[
(1− ξ) dε

dt
+ ξ

ds

dt

]
∂

∂ξ
[δρ − δ1]

︸ ︷︷ ︸
(i)

+
1

l0

∂δ2
∂ξ︸ ︷︷ ︸

(ii)

+
p1

ρ1u
2
1l0

∂δp
∂ξ︸ ︷︷ ︸

(iii)

=
1

2

(
1− ε

l0
+
s

l0

)
Cf

︸ ︷︷ ︸
(iv)

− 1

ρ1u2
1l0Re

∂

∂ξ

[∫ h

0
τxxdy

]

︸ ︷︷ ︸
(v)

. (7.8)

In a canonical boundary layer, term (v) would be neglected and it is worth checking if

this would also hold for the current SBLI configuration. Each term in (7.8) is therefore

evaluated using the LES data and the magnitudes are shown in figure 7.2(a). It can

be seen that upstream of interaction, (v) is O(10−7) whereas all the other terms are

greater than O(10−5), justifying the common assumption made in canonical boundary
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Figure 7.2: Evaluation of the contribution from each term in (7.8) to the time-
averaged balance (a) and their relative importance to the energy of the fluctuations
(b). Note that most of the data smaller than O(10−5) are subject to noise

layers. Upon entering the interaction region, the amplitude of (v) rises, as one would

expect, to reach a maximum (for the region considered here) near separation. However,

it may be argued that this maximum remains small compared to the other terms, with

the exception of the skin-friction term (iv) right at separation, where it is strictly zero.

Because the analysis of the time-averaged data is not sufficient to judge the relevance

of (v) in the unsteady context, the relative importance of the variance of each terms in

(7.8) is also considered in figure 7.2(b). It is found that term (v) only makes a marginal

contribution to the energy of the fluctuations and it appears justified, as a leading-order

approximation, to neglect (v) from (7.8) and use the following approximate form of the

momentum integral equation as the starting point for the shock-motion model:

1

u1l0

[
(1− ξ) dε

dt
+ ξ

ds

dt

]
∂

∂ξ
[δρ − δ1]

︸ ︷︷ ︸
(i)

+
1

l0

∂δ2
∂ξ︸ ︷︷ ︸

(ii)

+
p1

ρ1u2
1l0

∂δp
∂ξ︸ ︷︷ ︸

(iii)

≈ 1

2

(
1− ε

l0
+
s

l0

)
Cf

︸ ︷︷ ︸
(iv)

.

(7.9)

In figure 7.2(a), it is also interesting to note that on average within the interaction,

there is an approximate balance between the rate of changes of momentum and pressure

thicknesses (terms (ii) and (iii)). At leading order, those two terms control the interac-

tion length by setting the necessary equilibrium between the adverse pressure gradient

and the rate of change of momentum thickness. We shall come back to this point later.
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7.1.4 Hypothesis of the existence of a similarity solution

Equation (7.9) is not yet in a closed form but some interesting features are already

emerging. The final dynamical equation which is sought is the governing equation for ε

and, looking at (7.9), some terms in ε can already be identified amongst terms involving

the streamwise evolutions of the various thicknesses. One common approach to transform

a partial differential equation into an ordinary one is to seek similarity solutions. In this

particular case, one can attempt to map terms in ∂/∂ξ into a family of functions playing

the role of coefficients in the final governing equation for the shock motions. Such

families can indeed arise if the following hypothesis is invoked.

Hypothesis 7.1. There exists a similarity function (F ) that describes the streamwise

evolution of the various boundary-layer thicknesses independent of the time variable, i.e.





F (ξ) ≡ δi(ξ)− δi(ξ = 0)
∆i

,

∆i(t) ≡ δi(ξ = 1)− δi(ξ = 0),
(7.10)

where the subscript i is any of the following: 1, 2, ρ, p.

Mathematically, hypothesis 7.1 corresponds to the supposed existence of a separation of

variables. From (7.10):

δi(ξ) = F (ξ)∆i(t) + δi(ξ = 0),
∂δi
∂ξ

=
dF

dξ
∆i ≡ F ′∆i, (7.11)

so that the MIE becomes:

1

u1l0

[
(1− ξ) dε

dt
+ ξ

ds

dt

] (
F ′∆ρ − F ′∆1

)
+

1

l0
F ′∆2 +

p1

ρ1u2
1l0
F ′∆p

=
1

2

(
1− ε

l0
+
s

l0

)
Cf . (7.12)

The validity of hypothesis 7.1 can be tested using conditionally-averaged LES data, as

shown in figure 7.3. In subfigure (a), the δi functions are shown from the stationary axis

ξ̄. The same functions are then plotted in the moving coordinate system ξ (see subfigure

(b)), making the local extrema in the δi distributions centred at ξ = 1. Finally, the δi

functions are shifted by δi(ξ = 0) and normalised by their respective amplitudes ∆i

to give the F functions shown in subfigure (c). It is argued that the thirty curves

represented in subfigure (c) collapse reasonably well onto the hypothesised universal

function F . However, evaluating the thicknesses from the LES fields, and in particular

at the shock-crossing point streamwise station ξ = 1, is difficult due to the shock-

smearing and grid-stretching effects, reducing the accuracy of these quantities at this

particular station. The plots in figure 7.3 should thus be regarded as indicative only.



Low-order stochastic model 156

−0.25 0 0.25 0.5 0.75 1

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

ξ̄

δ i
/L

δp

δρ

δ2

δ1
(a)

0 0.5 1

−0.2

−0.15

−0.1

−0.05

0

0.05

ξ

(δ
i
–
δ i

,
ξ
=

0
)/
L

δp

δρ

δ2

δ1

(b)

0 0.5 1
0

0.2

0.4

0.6

0.8

1

F′(0) ≈ 0.12

ξ

F

(c)

Figure 7.3: Validity of hypothesis 7.1 from the conditionally-averaged LES data, see
text for details

Furthermore, one can see in figure 7.3 that the time-averaged displacement thickness

does not increase much between ξ = 0 and ξ = 1, compared to the other thicknesses,

making the division by ∆1 in (7.10) sensitive to numerical errors. Therefore, the case of

the δ1 distributions was not included in subfigure (c).

Despite the issues outlined above, the LES data provide good support for hypothesis

7.1. Looking at (7.12), one also needs to consider the ∆i functions and these quantities

are also difficult to obtain numerically. Nevertheless, figure 7.4(a) gives an idea of how

the ∆i functions depend on the shock-system position. The numerical results suggest

that, as a first approximation, the overall changes of the different thicknesses considered

here may be approximated by the mean value plus a linear dependence on η, defined as

the shock-crossing point wall-normal displacement (see figure 7.1):

∆i = Θi + κi η(t). (7.13)

The above approximation will be further discussed in section 7.2. Next, it is easily seen

from geometrical considerations (see figure 7.1) that:

η(t) = −s(t) tanβ. (7.14)

From equations (7.12) and (7.14), it is clear that a relationship between the shock-

foot displacement ε and the shock-crossing-point streamwise displacement s is needed.

This relation is reported in figure 7.4(b) using the LES data sets. Again, a linear relation

seems appropriate and reflects the earlier impressions on the conditionally-averaged data

in figure 6.28:

s(t) = k ε(t). (7.15)
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Figure 7.4: Thicknesses-amplification dependency on the shock-system position (a)
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The theoretical line in (b) will be described in section 7.2

The rationale behind (7.15) will be further discussed in section 7.2 and the theoreti-

cal line in figure 7.4(b) will be explained.

Using (7.13), (7.14) and (7.15) in (7.12), one can write:

1

u1
k tan β (κ1 − κρ)F

′(ξ) [1 + ξ (k − 1)]︸ ︷︷ ︸
c1(ξ)

dε

dt
ε+

L

u1

(
Θρ

L
− Θ1

L

)
F ′(ξ) [1 + ξ (k − 1)]

︸ ︷︷ ︸
c2(ξ)

dε

dt

+

[
1

2
Cf (1− k)− k tan β

(
κ2 +

p1

ρ1u
2
1

κp

)
F ′(ξ)

]

︸ ︷︷ ︸
c3(ξ)

ε

= L

(
1

2

l0
L
Cf −

Θ2

L
F ′(ξ)− p1

ρ1u
2
1

Θp

L
F ′(ξ)

)

︸ ︷︷ ︸
c4(ξ)

. (7.16)

If one introduces the following non-dimensional variables:





ζ ≡ ε/L,
t⋆ ≡ tu1/L,

ζ̇ ≡ dζ/dt⋆,

(7.17)

equation (7.16) becomes:

(c1ζ + c2) ζ̇ + c3ζ = c4. (7.18)
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Equation (7.18) constitutes the governing equation for the unforced reflected-shock-foot

motions, where the coefficients c1 to c4 are defined in (7.16) and are functions of the

choice of ξ station. Since the location of interest in this study is the shock foot, the

coefficients should be evaluated at ξ = 0. Allowing for F ′(0) being non-zero (figure 7.3),

one can write:

k tan β (κ1 − κρ) ζζ̇ +

(
Θρ

L
− Θ1

L

)
ζ̇

+

[
Cf (0)

2F ′(0)
(1− k)− k tan β

(
κ2 +

p1

ρ1u2
1

κp

)]
ζ =

l0Cf (0)

2LF ′(0)
− Θ2

L
− p1

ρ1u2
1

Θp

L
. (7.19)

Equation (7.19) is a first-order non-linear ordinary differential equation representing the

shock-foot motions in the presence of the forcing term Cf (ξ = 0)1. For particular cases

the constants could be computed from the LES, but for more general applications we

need to model them. Prior to discussing some tentative modelling efforts, it is of interest

to use the LES data to perform a leading-order analysis.

7.1.5 Leading-order equations

To further simplify the equation for the shock-foot motions, it is convenient to apply

the triple decomposition approach introduced earlier (see (6.4a)) to decompose the skin-

friction time-series at the shock foot:

Cf (ξ = 0) = C̄f0
+ C̃f0

(ts) + C ′′
f0

(tf ). (7.20)

Terms C̃f0
and C ′′

f0
correspond to the skin-friction fluctuations at the shock foot asso-

ciated with the low-frequency motions and the high-frequency fluctuations due to the

turbulence, respectively. From the LES time series, it is found that both C̃f0
and C ′′

f0

contribute to the skin-friction fluctuations and therefore one cannot neglect C ′′
f0

in (7.20).

Furthermore, using the LES conditional averages and invoking corollary 6.1, it is pos-

sible to evaluate the correlation between C̄f0
+ C̃f0

and the shock displacement ζ, as

shown in figure 7.5. Although there is some departure at larger ε, it is argued that, as

a first approximation, the variations in C̃f0
are linearly correlated with the shock-foot

displacement:

C̃f0
≈ Λζ, (7.21)

1Note that separation occurs for ξ > 0 (figure 7.2(a)) so that Cf (ξ = 0) > 0.
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and ζ = ε/L

with Λ in the range 2×10−3 to 3×10−3 for the case considered. Using (7.20) and (7.21)

in (7.19) gives:

k tan β (κ1 − κρ) ζζ̇ +

(
Θρ

L
− Θ1

L

)
ζ̇

+

[
1− k
2F ′(0)

(
C̄f0

+ Λζ + C ′′
f0

)
− k tan β

(
κ2 +

p1

ρ1u2
1

κp

)]
ζ

=
l0

2LF ′(0)

(
C̄f0

+ Λζ + C ′′
f0

)
− Θ2

L
− p1

ρ1u2
1

Θp

L
. (7.22)

Each term in (7.22) can now be quantified. This is performed in the case of an

upstream Mach number M1 = 2.3 and a wedge angle θ set to 8◦, which gives α ≈ 29◦

and β ≈ 32◦ from inviscid theory. The orders of magnitude of all the constituents in

(7.22) are provided in table 7.1 and the governing equation is:
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k tan β︸ ︷︷ ︸
O(10−1)


 κ1︸︷︷︸
O(1)

− κρ︸︷︷︸
O(1)


 ζζ̇︸︷︷︸
O(10−4)

+




[
Θρ

L

]

︸ ︷︷ ︸
O(10−1)

−
[
Θ1

L

]

︸ ︷︷ ︸
O(10−2)




ζ̇︸︷︷︸
O(10−3)

+





 C̄f0︸︷︷︸
O(10−3)

+ Λζ︸︷︷︸
O(10−4)

+ C ′
f0︸︷︷︸

O(10−4)




[
1− k
2F ′(0)

]

︸ ︷︷ ︸
O(1)

− k tan β︸ ︷︷ ︸
O(10−1)




κ2︸︷︷︸
O(10−1)

+

[
p1

ρ1u2
1

κp

]

︸ ︷︷ ︸
O(10−1)







ζ︸︷︷︸
O(10−1)

=

[
l0

2LF ′(0)

]

︸ ︷︷ ︸
O(1)


 C̄f0︸︷︷︸
O(10−3)

+ Λζ︸︷︷︸
O(10−4)

+ C ′
f0︸︷︷︸

O(10−4)


−

[
Θ2

L

]

︸ ︷︷ ︸
O(10−2)

−
[
p1

ρ1u2
1

Θp

L

]

︸ ︷︷ ︸
O(10−2)

. (7.23)

Neglecting all the O(10−5) terms, (7.23) reduces to:

Θρ

L
ζ̇ +




1

2F ′(0)

(
C̄f0

(1− k)− l0
L

Λ

)

︸ ︷︷ ︸
Σ

−k tan β

(
κ2 +

p1

ρ1u
2
1

κp

)

 ζ

=
l0C

′′
f0

2LF ′(0)
+

l0C̄f0

2LF ′(0)
− Θ2

L
− p1

ρ1u2
1

Θp

L︸ ︷︷ ︸
Υ

. (7.24)

Equation (7.24) is now a linear first-order ODE with both a forcing term C ′′
f0

and

a steady term Υ on the right-hand side. It is well known from the LES and from the

experiments that the reflected shock oscillates about a mean position (in a non-harmonic

manner). In other words, the reflected-shock foot motions must be governed by a stable

dynamical system and in the absence of any external forcing, the shock must remain

at its equilibrium position. In the current coordinate system, this means that we must

have ζ = 0 in the absence of any forcing (i.e. C ′′
f0

= 0). Applying this condition to (7.24)

leads to Υ = 0. Hence the system is governed by:

l0C̄f0

2LF ′(0)
− Θ2

L
− p1

ρ1u2
1

Θp

L
= 0, (7.25a)
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Variable Amplitude Justification

ζ O(10−1) figure 6.27

ζ̇a O(10−3) (6.3), (7.17) with t ≡ ts
k, k tan β O(10−1) figure 7.4(b), β ≈ 32◦

C̄f0
O(10−3) configuration input, figure 7.5

C ′′
f0

O(10−4) from LES data

Λ O(10−3) figure 7.5
F ′(0) O(10−1) figure 7.3
p1/(ρ1u

2
1)

b O(10−1) for γ = 1.4 and M1 = 2.3
l0/(2L)c O(10−1) by geometry with α ≈ 29◦, β ≈ 32◦

κ1, κρ, κp O(10+0) figure 7.4(a)
κ2 O(10−1) figure 7.4(a)
Θ1/L, Θ2/L O(10−2) figure 7.4(a)
Θρ/L, Θp/L O(10−1) figure 7.4(a)

a ζ̇ = dζ/dt⋆ ∼ Lζ/(u1ts) = ζr0L/δ0 with r0 ∼ 10−2, L/δ0 ≈ 4 (Dupont et al., 2006)
b p1/(ρ1u

2
1) = 1/(γM2

1) from ideal-gas law
c l0/(2L) = tan β/ [2(tanα+ tanβ)] by construction (see figure 7.1)

Table 7.1: Amplitudes of all the constituents found in (7.23) for M1 = 2.3 and θ = 8◦

and

Θρ

L
ζ̇ +

[
Σ

2F ′(0)
− k tan β

(
κ2 +

p1

ρ1u2
1

κp

)]
ζ =

l0C
′′
f0

2LF ′(0)
. (7.25b)

Equation (7.25a) is the reflected-shock foot steady state equation whereas (7.25b) is

its dynamical equation in the presence of fluctuations. Equation (7.25a) shows that,

on average, the most significant balance is the balance between the rate of changes

of momentum and pressure thicknesses (as previously noted in connection with figure

7.2(a)). As one could have anticipated, the error in this statement scales with the mean

skin friction and is of the order of 10−3 in the present case. Equation (7.25b) is the

main equation of interest (although we shall use (7.25a) later) and can be written in the

following more generic way:

ζ̇ + φζ = ψ(t), (7.26a)

where:

φ =
L

Θρ

[
1

2F ′(0)

(
C̄f0

(1− k)− l0
L

Λ

)
− k tan β

(
κ2 +

p1

ρ1u
2
1

κp

)]
, (7.26b)

ψ(t) =
l0C

′′
f0

(t)

2LF ′(0)
. (7.26c)

Quite remarkably, equation (7.26a) is similar to the model proposed by Plotkin (1975)

and the above may be viewed as a derivation of his model. This is discussed in more
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detail later. Generally speaking, equation (7.26a) is a stochastic differential equation

resembling a Langevin equation for Brownian motions (see chapter 3 of Risken, 1989),

where φ is the damping coefficient and ψ(t) the Langevin force, with zero mean (i.e.

ψ(t) = 0). However, the main difference with the classical Langevin equation resides in

the time-correlation properties of the forcing, which is not proportional to a Dirac func-

tion, at least for time scales of the order of δ0/ū1
2. One interesting property of (7.26a) is

that it is sufficient to know the two-time correlation of the forcing (i.e. C ′′
f0

(t)C ′′
f0

(t+ τ))

to calculate the correlation function of ζ (i.e. ζ(t)ζ(t+ τ)), which is our ultimate goal.

Therefore, if the time-correlation function of the skin-friction turbulence-related fluctu-

ations is known, and provided that one can calculate the damping factor φ, the derived

governing equation (7.26a) is sufficient to predict the low-frequency shock-motion spec-

trum.

In the present case, the aforementioned results (i.e. Θρ/L = −0.104, F ′(0) = 0.12,

C̄f0
= 1.35 × 10−4, k = 0.32, l0/L = tanβ/(tanα + tanβ) = 0.55, Λ = 3 × 10−3,

k tan β = 0.2, κ2 = 0.27, κp = −1.23 and p1/(ρ1u
2
1) = 0.134) can be used to find that

the damping factor φ is roughly 0.23. It will be shown later that the premultiplied spec-

trum of ζ when subject to a white-noise forcing is broadband with a peak at φ/(2π). For

φ ≈ 0.23, one finds φ/(2π) ≈ 0.037, which is reminiscent of the Strouhal-number value

observed in the LES weighted spectrum (see figure 6.2(b)). However, before discussing

this encouraging result further, it is of importance to try to model the coefficients Θρ,

k, κ2 and κp to overcome the need for some prior LES results.

7.2 Modelling the ODE coefficients

7.2.1 The k coefficient

If the shock maintains its inclination angle at all times, one could write s = ε tanα/(tanα+

tan β). However, this is not the case. For example, Dupont et al. (2006) note that “the

reflected shock appears as a low-frequency unsteady sheet with a length of excursion

vanishing far from the wall”. This implies that the reflected-shock angle with respect to

the wall changes as the shock moves back and forth. This picture may also be observed

in the conditional averages, as shown in figure 6.28 and also in side-view animations

of the LES. At high frequencies, the shock cannot be considered to be a straight line

(or sheet) because of transverse travelling waves (analysed in figure 6.26) and defining

an inclination angle may be difficult and not meaningful. However, at sufficiently low

frequencies, the reflected shock appears to move as a whole and may be thought of a

2We shall see that for the timescales considered in the present problem (i.e. O(102δ0/ū1)), the forcing
may be considered similar to a white noise.
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Figure 7.6: Sketch of the interaction with the notations used to compute k

straight line (or sheet) with a given foot position and inclination angle. The quantitative

relationship between s and ε seen in figure 7.4(b) can be combined with the aforemen-

tioned comments to justify relating s and ε as in (7.15), if the study is restricted to

the low-frequency motions. An analytical expression for k in (7.15) is derived in the

following paragraph.

From the notation defined in figure 7.6, one can write the following geometric rela-

tions: 



K = H/ tanα,

K − ε = H/ tan ι,

tan ι = (h0 + η) / (l0 − ε+ s) ,

η = −s tan β,

(7.27)

to find that:

ε = H

(
1

tanα
− l0 − ε+ s

h0 − s tan β

)
, (7.28a)

which is re-arranged:

ε (h0 −H) +H

(
l0 −

h0

tanα

)
= s

[
ε tan β −H

(
1 +

tan β

tanα

)]
. (7.28b)
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Noting that tanα = h0/l0, the second term on the left-hand side of (7.28b) vanishes and

the equation can be re-written:

s =
(ε/h0) (h0 −H)

(ε/h0) tanβ − (H/h0)
(
1 +

tan β
tanα

) . (7.29)

Assuming ε/h0 ≪ 1, one can expand the above equation in series of ε/h0 to find:

s =
H/h0 − 1

(H/h0)


1 +

tan β

tanα



ε+O(ε2/h0), (7.30a)

Following the aforementioned remark by Dupont et al. (2006), which is supported by

figure 6.28, one can say that H is significantly larger than the incoming boundary-layer

height δ0. One way to look at H is to see it as a penetration lengthscale corresponding to

the wall-normal distance a perturbation associated with a shock-foot displacement can

travel along the shock during half of a low-frequency cycle. If V is the propagation speed

and T the typical period of a low-frequency cycle, one could write H = (T/2)V sinα.

Roughly, the propagation speed can be thought to scale with u1 cosα and the charac-

teristic frequency of the system with u1/L so that H ∼ πL sinα cosα = Lπ sin(2α)/2.

Considering that π sin(2α)/2 ∼ 1, one finds that H ∼ L. Therefore, one could replace

H with L in (7.30a) and write:

s ≈
L/h0 − 1

(L/h0)


1 +

tan β

tanα



ε. (7.30b)

Noting the geometrical relation h0/L = tanα tan β/(tanα + tanβ), one finds that the

theoretical value for k is:

k =
1− tanα tan β/ (tanα+ tanβ)

1 + tan β/ tanα
. (7.31)

For M1 = 2.3 and a wedge angle of 8◦, inviscid theory gives that β ≈ 32.4◦ and α ≈ 29.4◦

so that the theoretical k value is about 0.33, to compare with 0.38 in the large-span LES

and 0.32 in the narrow-span LES (see figure 7.4(b)). The average error is less than 6%

and therefore (7.31) is considered a good first-order approximation.



Low-order stochastic model 165

7.2.2 The Θi coefficients

The Θ coefficients represent the mean changes of thicknesses (i.e. δ1, δ2, δρ, δp) between

the shock foot ξ = 0 and the shock crossing point3 ξ = 1. Although such quantities are

not generally known, this section will introduce a model to estimate Θp and show how

it can be related to Θρ and Θ2 in a useful way.

In canonical boundary layers, the pressure is considered constant in the wall-normal

direction. In the presence of the oblique shock, this approximation is obviously inade-

quate. However, upstream of the interaction, the boundary layer is a typical turbulent

boundary layer and one can write:

p̄(ξ < 0, y) ≈ p1, (7.32)

which is easily verified from figure 7.7. Inside the interaction, the picture is more com-

plex. At ξ = 1 and y = h0, the pressure is discontinuous, jumping from p1 to p̄3 (where

p̄3 refers to the mean pressure downstream of the interaction) whereas at the wall, the

pressure continuously increases from p1 to p̄3 over a streamwise distance ranging from

ξ ≈ 0 to well beyond the reattachement point. However, based on figure 7.7, we argue

that the isobar in the vicinity of ξ = 1 can be modelled as a straight line given its

actual “S” shape in the figure (see white dots), with the straight line chosen such that

it averages the S. From the data, this idealised isobar would take a value between p+
2

and p̄3 (see the dash-dotted isobar corresponding to p+
2 ), hence:

p̄(ξ = 1, y) ≈ (1− r) p+
2 + r p̄3, (7.33)

with r a weighting factor. In the present case, r ≈ 0.2 gives satisfactory results. Assum-

ing the distributions (7.32) and (7.33), one finds:

Θp

L
≡ 1

L

[∫ h0

0

(
1− p̄(ξ = 1−, y)

p1

)
dy −

∫ h0

0

(
1− p̄(ξ = 0, y)

p1

)
dy

]

≈
{

1− (1− r) p
+
2

p1
− r p̄3

p1

}
tanα tan β

tanα+ tanβ
, (7.34)

noting from geometrical considerations in figure 7.6 that:

h0

L
=

tanα tan β

tanα+ tanβ
. (7.35)

Applying (7.34) to the M1 = 2.3 and 8◦-wedge-angle case gives Θp/L = −0.233 (with

r = 0.2) to compare with the LES value of −0.243 from figure 7.4(a). Of course, the

3Note that rigorously, we should write ξ = 1− owing to the discontinuity at this station. However,
the thicknesses being integral quantities, the presence of the discontinuity is in fact irrelevant and we
can write ξ = 1.
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Figure 7.7: Mean pressure field p̄/p1 (left-hand side) and mean momentum-thickness-
integrand field [ρu/(ρ1u1)− ρuu/(ρ1u1u1)] (right-hand side). Both the narrow-span (a)
and large-span (b) LES data are shown. The thick solid and dash-dotted lines indicate
the contours equal to the inviscid-theory results, using the upper-region values (e.g. p+

2 ,
ρ+
2 , u+

2 ) for the dash-dotted lines and the bottom-region values (e.g. p−2 , ρ−2 , u−2 ) for
the solid lines. The shock-system location is indicated by the set of dashed lines. The
white dots in the pressure fields show the contours (1− r) p+

2 /p1+ r p̄3/p1 with r = 0.2
and 0.1 for (a) and (b) respectively

choice of r was based on the LES data whereas generally one has no prior knowledge of

this value. However, note that the existence of a similarity function (see figure 7.3(c))

suggests that the weighting factor r does not change during the shock motions and can

thus be treated as a true constant.

In the previous section it was shown that, on average, the changes of pressure and

momentum thicknesses between ξ = 0 and ξ = 1 are close to equilibrium with an error

scaling on the skin friction (see (7.25a)). Therefore, as a first approximation:

Θ2 ≈ −
p1

ρ1u2
1

Θp, or equivalently:
Θ2

Θp
≈ − 1

γM2
1

, (7.36)

where the ideal-gas law was used to transform p1/(ρ1u
2
1) in 1/(γM2

1). Using (7.36) with

M1 = 2.3 and γ = 1.4, one finds Θ2/Θp = −0.135 whereas from figure 7.4(a), the LES

gives −0.132, which is a satisfactory agreement. This result confirms that the error in

(7.36) scales with l0C̄f0
/(2LF ′(0)) ≈ 3 × 10−3, providing an encouraging consistency

check.
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Figure 7.8: Percentage error between the temperature field computed from the veloc-
ity field using the Crocco–Busemann equation and the actual LES temperature field
for the narrow-span (left) and large-span (right) simulations

Finally, to relate Θρ to Θp, the Crocco–Busemann relation will be used (see White,

1991). The temperature field computed using the Crocco–Busemann relation is labelled

Tc and defined as:
Tc

T1
= 1 +

γ− 1

2
M2

1

(
u

u1

)2

, (7.37)

assuming the wall to be isothermal and equal to the upstream adiabatic-wall condition

(as in the current LES settings). The validity of (7.37) is tested using the LES results and

the error contour levels are shown in figure 7.8. Overall, the use of (7.37) is remarkably

accurate with errors not exceeding 7%.

Starting from the definition of the pressure thickness and using the ideal-gas law, one

finds:

δp =

∫ h

0

(
1− p

p1

)
dy =

∫ h

0

(
1− ρT

ρ1T1

)
dy, (7.38a)

which with (7.37) may be approximated by:

δp ≈
∫ h

0

{
1− ρ

ρ1

[
1 +

γ− 1

2
M2

1

(
1− u2

u2
1

)]}
dy, (7.38b)

which can be expressed in terms of the density, displacement and momentum thickness

definitions:

δp ≈ δρ

(
1 +

γ− 1

2
M2

1

)
− γ− 1

2
M2

1 (δ1 + δ2) . (7.38c)

Using (7.38c) in the definition of ∆i (see (7.10)) and time-averaging, one finds:

Θp ≈ Θρ

(
1 +

γ− 1

2
M2

1

)
− γ− 1

2
M2

1 (Θ1 + Θ2) . (7.39a)
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Using (7.36), (7.39a) becomes:

Θp ≈ Θρ

(
1 +

γ− 1

2
M2

1

)
− γ− 1

2
M2

1

(
Θ1 −

1

γM2
1

Θp

)
. (7.39b)

From figure 7.4(a), it is found that for the configuration studied here |Θp/(γLM2
1)| ≈

3 × 10−2 whereas Θ1/L ≈ 6 × 10−3. Therefore, as a leading-order approximation, the

term in Θ1 in (7.39b) may be neglected:

Θp ≈ Θρ

(
1 +

γ− 1

2
M2

1

)
+

γ− 1

2γ
Θp. (7.39c)

Equation (7.39c) is re-arranged:

Θp ≈ χΘρ, with: χ =
2γ + γ (γ− 1) M2

1

γ + 1
. (7.39d)

For M1 = 2.3, (7.39d) gives χ = 2.40 while the LES data in figure 7.4(a) give χ =

2.34. It should be stressed that the Crocco–Busemann equation used to derive (7.39d)

was assumed to be applicable to the unsteady velocity field, the displacement-thickness

contribution was neglected and the momentum-thickness contribution was related to the

pressure-thickness using (7.36). Despite those gross assumptions, only a 3% difference

with the LES can be found for the present configuration.

7.2.3 The κp and κ2 coefficients

By definition, the κp and κ2 coefficients in (7.13) correspond to the rate of change of

the pressure and momentum thickness between ξ = 1 and ξ = 0 as the shock moves

back and forth (i.e. κp = d∆p/dη, κ2 = d∆2/dη). Although not explicitly written in

(7.13) the shock motions of interest for this study are the low-frequency ones. Therefore,

the reflected shock is considered to remain straight and to rotate around its foot as it

oscillates. One direct consequence of such a motion is a modification of the pressure field

in the region 2− as well as in region 3 (i.e. p−2 and p3 in figure 7.6), whereas p+
2 remains

unchanged. We wish to express those changes in terms of the variable η, which is made

possible by developing a series expansion of the classical oblique-shock jump relations,

considering that η/h0 is sufficiently small. The details of such expansions are provided

in appendix G and only the final result is reported here. For the pressure in region 3,

we find:
p3

p1
=
p̄3

p1
+
p+
2

p1

γM2
2κ

1 + γ

η

h0
+O

(
η2

h2
0

)
, (7.40)

where κ = (tanα+ tanβ) sin (2α) sin [2 (α+ θ)] / (tanβ (1− 1/ tanα)− 1). Assuming

that the distributions (7.32) and (7.33) can be extented to the low-frequency oscillations,
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it is possible to write:

∆p =

[
1− (1− r)p

+
2

p1
− rp3

p1

]
(h0 + η) . (7.41a)

Using the series expansion (7.40) and (7.34), the above equation becomes:

∆p = Θp +

{
1− r p̄3

p1
− p+

2

p1

[
1− r

(
1 +

γM2
2κ

1 + γ

)]}
η +O

(
η2

h0

)
. (7.41b)

Thus,

κp ≈ 1− r p̄3

p1
− p+

2

p1

[
1− r

(
1 +

γM2
2κ

1 + γ

)]
,

with κ =
tanα+ tanβ

tan β (1− 1/ tanα)− 1
sin (2α) sin [2 (α+ θ)] , r = 0.2. (7.42)

For M1 = 2.3 and θ = 8◦, the modelled κp using (7.42) gives −1.21 whereas the measured

value on the narrow-span LES data is −1.23. The difference is thus less than 2% for the

particular choice of weighting factor r = 0.2. As mentioned earlier, the weighting factor

is based on time-averaged LES data and its use here is justified based on the similarity

hypothesis, combined with (7.33) and the above series expansion.

The case of κ2 is more complex than κp mainly because the quantity M ≡ ρu(1 −
u/u1)/(ρ1u1) at ξ = 0 and ξ = 1 is not constant along the wall-normal direction,

even approximatively, as shown in figures 7.7 and 7.9(b). From the definition of the

momentum thickness (7.2b), we have:

∆2

h
=

1

h

∫ h

0
M|ξ=1 dy

︸ ︷︷ ︸
δ2,ξ=1/h

− 1

h

∫ h

0
M|ξ=0 dy

︸ ︷︷ ︸
δ2,ξ=0/h

. (7.43)

Decomposing M(ξ = 1, y) in its steady (M(ξ = 1, y)) and time-dependent (M′(ξ =

1, y)) component, one can write:

δ2,ξ=1

h
=

1

h

∫ h

0
M
∣∣
ξ=1

dy +
1

h

∫ h

0
M′
∣∣
ξ=1

dy. (7.44)

SinceM(ξ = 1, y) is a continuous function on y ∈ [0, h[, the mean-value theorem states

that there exists a positive real number R such that:

1

h

∫ h

0
M
∣∣
ξ=1

dy = (1−R) min
0≤y<h

[
M
∣∣
ξ=1

]
+R max

0≤y<h

[
M
∣∣
ξ=1

]
, R > 0. (7.45)
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Let us denote by M3 andM3 the following quantities:

M3 ≡
ρ3u3

ρ1u1

(
1− u3

u1

)
,M3 ≡

ρ̄3ū3

ρ1u1

(
1− ū3

u1

)
. (7.46)

From figure 7.9(b) one can see that M
∣∣
ξ=1

does not exceed M3 whereas inside the

separation bubble, it is possible that it becomes negative. Recalling that the separation

bubble height is very small compared to h (see chapter 4), it is argued that the possible

negative contribution ofM in (7.45) remains small so that (7.45) becomes:

1

h

∫ h

0
M
∣∣
ξ=1

dy = RM3. (7.47a)

Similarly, the fluctuating component M′|ξ=1 (shown in figure 7.9(c)) is related to M′
3

by invoking the mean-value theorem:

1

h

∫ h

0
M′
∣∣
ξ=1

dy = r′
(
M3 −M3

)
, (7.47b)

where r′ is a real number. As for the pressure p3, when the reflected shock moves back

and forth, M3 will fluctuate and those changes can be expressed in terms of a series

expansion in η/h0:

M3 =M3 +D
η

h0
+O

(
η2

h2
0

)
, (7.48)

where D is a constant defined in (G.18) in appendix G. Using (7.44), (7.47) and (7.48)

in (7.43) gives:

∆2 = RM3h0 − δ̄2,ξ=0︸ ︷︷ ︸
Θ2

+
(
RM3 + r′D

)
︸ ︷︷ ︸

κ2

η +O
(
η2

h0

)
, (7.49)
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assuming that the fluctuations of the momentum thickness at ξ = 0 are negligible

compared to the variations at ξ = 1 (i.e. δ̃2,ξ=0 ≈ 0) and where terms Θ2 and κ2

are identified according to (7.13). To be consistent with (7.36), we must take R such

that:

R =
1

M3

(
δ̄2,ξ=0

h0
− 1

γM2
1

Θp

h0

)
. (7.50)

The term in δ̄2,ξ=0 is problematic since the momentum thickness at the shock foot is

different from that of the incoming boundary layer and therefore needs to be modelled.

The noticeable linear relationship between L/δ0 and (p+
2 − p1)/(2τw) in figure 4.31 sug-

gests that the momentum thickness at the shock foot may be related to the pressure

jump p+
2 − p1 as follows:

δ̄2,ξ=0

h0
= r′′

2τw

p+
2 − p1

L

h0
, (7.51a)

where the ratio δ̄2,ξ=0/δ0 was considered constant and r′′ is a positive real number to

determine from the LES data. Noting that 2τw = C̄f0
p1γM2

1 and h0/L = tanα tan β/(tanα+

tan β), one finds:

δ̄2,ξ=0

h0
= r′′

γM2
1C̄f0

p+
2 /p1 − 1

tanα+ tanβ

tanα tan β
. (7.51b)

Hence the following expression for κ2:

κ2 = r′′
γM2

1C̄f0

p+
2 /p1 − 1

tanα+ tanβ

tanα tan β
− 1

γM2
1

Θp

h0
+ r′D. (7.52)

The factors r′ and r′′ are computed from the LES. Using the narrow-span LES results,

one finds r′ = −0.14 and r′′ = 0.2 (giving κ2 ≈ 0.27). Similarly to r in (7.34), r′ is

assumed to remain constant in time. This completes the modelling of the unknowns k,

Θρ, κ2 and κ1 in (7.26).

7.3 Final form of the model

Upon substituting (7.31), (7.34), (7.39d), (7.42) and (7.52) into (7.26), one can write

the following closed form of the model:

1

ū1

dε

dt
+ φ

ε

L
= ΠC ′′

f0
(t), (7.53a)

with:

Π =
tan β

2F ′(0) (tanα+ tanβ)
, (7.53b)
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φ =
2γ + γ (γ− 1) M2

1

(γ + 1) [1 + (1− r)P2 − rP3]

{
Π

[(
1

tanα
+

1

tan β

)(
C̄f0
− Λ

)

+C̄f0

tanα

tan β

]
+

(
1− tanα tan β

tanα+ tanβ

)[
r′′

γM2
1C̄f0

P2 − 1
− r′D

−r P2κ

γ + 1

(
M2

M1

)2
]}

, (7.53b)

κ =
tanα+ tanβ

tan β (1− 1/ tanα)− 1
sin (2α) sin [2 (α+ θ)] , (7.53c)

D =
M3

M1

{(
1

2

√
R3

P3
− M3

M1

)
A+

1

2

√
P3

R3
B +

(
M1

M3

√
R3P3 − 2P3

)
C

}
(7.53d)

A =
γκM2

2

1 + γ
P2 (7.53e)

B = κ

[
1

2 sin2 (α+ θ)
− (γ− 1) M2

2

4 + 2 (γ− 1) M2
2 sin2 (α+ θ)

]
R3 (7.53f)

C =
M3

M1

{
κ

[
(γ− 1) M2

2

8 + 4 (γ− 1) M2
2 sin2 (α+ θ)

− γM2
2

2 (1− γ) + 4γM2
2 sin2 (α+ θ)

]

− (tanα+ tanβ) cos2 α

tan β (1− 1/ tanα)− 1

}
, (7.53g)

where α, β, P2 ≡ p+
2 /p1, P3 ≡ p̄3/p1, R3 ≡ ρ̄3/ρ1, M2 and M3 are computed from

the inviscid shock reflection problem for a given pair of wedge angle θ and upstream

Mach number M1. Factors F ′(0), r, r′ and r′′ are assumed to take the values of 0.12,

0.2, −0.14 and 0.2, respectively. Term C̄f0
is an input parameter, together with the

upstream Mach number M1 and wedge angle θ. The coefficient Λ, although of the same

order as C̄f0
, is not an input parameter and is not generally known. In this work, it

is taken to be 3 × 10−3 (from the LES). The term C ′′
f0

corresponds to the skin-friction

turbulence-related variations at the reflected-shock foot and therefore constitutes the

dynamical-system input signal.

7.4 Solutions to the derived stochastic model

7.4.1 Solution to white noise: shock-foot and pressure spectra

As mentioned earlier, the model system (7.53 a–h) is a first-order linear stochastic dif-

ferential equation resembling the Langevin equation for Brownian motion, written:

ε̇+ Φε = Γ(t), (7.54a)
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where in the present case Φ = ū1φ/L and Γ = ū1ΠC
′′
f0

. If Γ is taken to be a Langevin

force with zero mean and a correlation function proportional to a Dirac function (δ),

Γ(t) = 0, and Γ(t)Γ(t′) = qδ(t− t′), (7.54b)

with q the proportionality coefficient, then (7.54a) is equivalent to equation (3.1) in

Risken (1989) and the system (7.54 a,b) can be solved with the correlation function of

the shock-displacement ε given by (see (3.9) in Risken, 1989):

ε(t0)ε(t0 + τ) = ε2(t0)e
−Φ(2t0+τ) +

q

2Φ

[
e−Φ|τ | − e−Φ(2t0+τ)

]
, (7.55a)

where t0 is a chosen time and τ the time lag separating the actual time from t0. To

remain general, τ can be taken both positive and negative. If t0 is taken such that

ε(t0) = 0, (7.55a) becomes:

ε(t0)ε(t0 + τ) =
q

2Φ
e−Φ|τ |

[
1− e−2Φt0

]
. (7.55b)

Note that, dimensionally speaking, the damping coefficient Φ ≡ 1/τs is the inverse of a

time so that Φt0 is the ratio between t0 and the system characteristic timescale τs. If t0

is chosen long after the initial transients from starting up the flow, t0 will be significantly

larger than τs so that Φt0 ≫ 1. The autocorrelation function of the shock-foot motions

in response to a white-noise forcing with amplitude 2q will therefore become:

ε(t0)ε(t0 + τ) =
q

2Φ
e−Φ|τ |. (7.55c)

By definition, the power spectral density (denoted S) is the Fourier transform of the

autocorrelation function, hence:

S(f) =
q/Φ2

1 + (2πf/Φ)2
=

A0

1 + (St/φmax)
2 , (7.56)

where A0 ≡ q [L/(ū1φ)]2, φmax ≡ φ/(2π) and St is the previously defined Strouhal num-

ber St = fL/ū1.

In general, one is interested in the wall-pressure PSD near the mean shock-foot posi-

tion rather than the PSD of the shock-foot position itself. Let us assume that the

instantaneous pressure at the mean shock-foot position x̄0 may be approximated by the

mean pressure at x̄0 − ε:

pw(x̄0, ts) ≈ p̄w(x̄0 − ε). (7.57a)

The above equation is not expected to be correct on fast timescales, hence the use of ts

which was defined in (6.3). Since the shock motions in this study are considered small
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compared to the interaction length, one can expand (7.57a) using the first term in ε:

pw(x̄0, ts) ≈ p̄w(x̄0)−
dp̄

dx

∣∣∣∣
x̄0

ε. (7.57b)

For the slow timescales considered here, we have p(ts)− p̄ ≈ p̃, hence:

p̃w(x̄0, ts) ≈ −
dp̄w

dx

∣∣∣∣
x̄0

ε. (7.57c)

Therefore, the autocorrelation of the pressure fluctuations near the mean shock-foot

position can be approximated by the shock-foot autocorrelation function using:

p̃w(x̄0, t0)p̃w(x̄0, t0 + τ) ≈
(

dp̄w

dx

∣∣∣∣
x̄0

)2

ε(t0)ε(t0 + τ), (7.58)

for sufficiently large time lags τ . Then, the wall-pressure PSD near the mean shock-foot

position, denoted Sp is:

Sp(St) ≈
A0

(
dp̄w/dx|x̄0

)2

1 + (St/φmax)
2 . (7.59)

7.4.2 Solution for forcing by synthetic turbulence

It is emphasised that (7.59) is the response of the model to white-noise forcing and

that the solution is only valid for sufficiently low frequencies (typically, St < 1). As an

alternative, in the event that the forcing term C ′′
f0

is known, one can numerically integrate

(7.54a). In practice, this may not be needed and (7.59) may be sufficiently accurate. To

convince ourselves, we will use an artificial signal for C ′′
f0

, representative of the incoming

turbulence. To do so, one can employ a digital-filter approach, similar to the one used to

generate the inflow conditions for the LES. In this case, the problem is one-dimensional

and starting fromN normally-distributed random numbers {an}0≤n≤N−1 with zero mean

and unit variance (i.e. an = 0, anan = 1 and anam = 0 if n 6= m), the following synthetic

turbulence series is produced:

C ′′
f0

(t0 + n∆t) = C ′′
f0

(t0 + (n− 1)∆t) exp

(
−π∆t

2τc

)
+ an

√
q

(
1− exp

(
−π∆t

τc

))
,

C ′′
f0

(t0) = a0
√
q and, n ∈ {1, . . . , N − 1} , (7.60)

where q is the imposed variance of C ′′
f0

(i.e. q = C ′′
f0
C ′′

f0
) and τc is the characteristic

timescale of the correlation. In the present case, we take q ≈ 7×10−4, τc = 5×10−2ū1/L,

∆t = 5× 10−3ū1/L and N = 5× 108.
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Once the synthetic signal C ′′
f0

is obtained using (7.60), (7.53a) is integrated numer-

ically using a fourth-order Runge–Kutta method, giving ε(t), which is then used to

compute S(f). If the wall-pressure PSD near the mean shock-foot position is of inter-

est, the pressure-gradient conversion factor may be applied (see (7.58)). Note that for

the weighted spectra, the correction is not necessary since the pressure-gradient factor

term will appear in both the numerator and denominator. This equivalence between the

shock-displacement and wall-pressure weighted spectra will be used to directly compare

the model predictions with the experimental and numerical results which are based on

the pressure rather than the shock-displacement itself.

7.5 Model performances and discussion

7.5.1 Model results compared with LES and experimental findings

Before comparing the predicted spectrum with experiment and LES, it is important to

consider the effect of the choice of forcing as this may have implications for the dis-

cussion. First, the analytical solution to white noise (see section 7.4.1) is considered.

Second, the synthetic turbulence signal described in section 7.4.2 is used to integrate the

governing equation (7.53a). Finally, a high-pass filtered version of the same synthetic

turbulence signal is examined. In all cases, the flow conditions correspond to the IUSTI

8◦ case. Results are reported in figure 7.10.

First of all, it is seen that in the case of the white-noise and synthetic-turbulence forc-

ing, the resulting shock motions exhibit significantly amplified low-frequency motions

whereas the contributions of the higher frequencies are weaker than in the forcing itself.

Moreover, it is found that at low frequencies the analytical solution to white noise is

identical to the response to the synthetic-turbulence forcing. This is due to the par-

ticular synthetic-turbulence spectrum resembling that of white noise at low frequencies

(see figure 7.10(a)). These results suggest that the model is not sensitive to the high-

frequency content of the forcing, but to whether or not a level of noise is present at low

frequencies. To test this idea, the synthetic turbulence was high-pass filtered to remove

the low-frequency noise. As a consequence, the low-frequency motions disappear and

the high-frequency content is reduced compared to the level of the forcing. Therefore,

one important property of the system is that it acts as a low-pass filter. As such, it does

not transfer energy from the higher to the lower frequencies but simply damps any fluc-

tuations greater than a cutoff frequency while it amplifies any fluctuations smaller than

this cutoff frequency. In fact, this is clear from (7.56) and figure 7.10 simply provides

numerical evidence of the low-pass filtering property of (7.53a).
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Figure 7.10: Spectra from the stochastic ODE using different forcing: a synthetic
turbulence signal based on a one-dimensional digital-filter approach (see section 7.4.2),
the same synthetic turbulence signal but high-pass filtered with cutoff frequency fc =
5ū1/L, and white noise (see section 7.4.1)

From (7.56) or (7.59), it is straightforward to see that the system is a first-order

low-pass filter with cutoff Strouhal number φ/(2π). The power spectral density of the

shock motions or wall-pressure fluctuations near the mean shock foot rolls off as S−2
t .

Moreover, considering the premultiplied spectra (i.e. f ×S(f)), one can show that there

exists a maximum at φ/(2π) which will be denoted φmax. Note that it coincides with

the frequency (i.e. Strouhal number here) where the PSD is tangent to S−1
t , as indicated

in figure 7.10. This is the frequency typically quoted when characterising the property

of the low-frequency oscillations (see Dupont et al., 2006, for example). Incidentally, it

corresponds to the cutoff frequency of the dynamical system (7.53).

Based on the above results, it appears justified to simply use a white-noise forcing to

predict the wall-pressure weighted spectra and directly compare the result with the low-

frequency motions observed both numerically and experimentally. Such a comparison

is provided in figure 7.11, where the model is seen to be capable of not only predicting

reasonably well the frequency of the most energetic low-frequency motion but also the

broadband nature of the dynamics, which is an important aspect of the problem. This

encouraging result and the implications for understanding the underlying source of the

low-frequency motions will be discussed in section 7.5.3. Before doing so, we would like

to take advantage of the model to describe the map of φmax for any given combination

of upstream Mach number and wedge angle and discuss the sensitivity of the model to

the choice of the constant values.
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Figure 7.11: Weighted spectra from the model compared with the LES and experi-
mental results. The LES spectrum is taken from figure 6.2 and the experimental data
from Dupont et al. (2006). Both the LES and experimental data are from wall-pressure
probes near the mean shock-foot position. The experimental signal was low-pass fil-
tered with cutoff frequency fc = 2.5ū1/L. The premultiplied spectra were normalised
using the power available at low-frequencies only (i.e. for the LES signal, the peak at
higher frequencies is not included in the normalisation)

7.5.2 Cutoff-frequency map and sensitivity to the model constants

One great advantage of the present model is the possibility to use it for any given values

of M1 and θ. Figure 7.12(a) shows the map of φmax for M1 ranging from 1 to 6 and θ

from 2◦ to 30◦, whenever a regular reflection exists. The first remark is that most values

are within the range 10−2 to 10−1, which is consistent with the experimental observa-

tions of SBLI (see Dussauge et al., 2006, for example). Additionally, it is found that for

a constant wedge angle, φmax increases with increasing Mach number and for a constant

upstream Mach number, φmax decreases with increasing wedge angle. The latter trend

can be tested against the experimental results of Dupont et al. (2006)4, as shown in

figure 7.12(b). The agreement is well within the model and measurement uncertainties.

One should point out that φmax is expected to depend on the boundary-layer prop-

erties. Indeed, φ is explicitly related to the boundary-layer skin friction in (7.53b) and

this could affect the results presented in figure 7.12(a), where C̄f0
= 1.35 × 10−3. In

addition, the modelling constants F ′(0), r, r′, r′′ and Λ may all have significant impacts

4Note that those are to the author’s knowledge the only data available to date on reflected-shock
unsteadiness with sufficiently long sample size.
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Figure 7.12: Predicted most energetic low frequency φmax for different (M1, θ) pairs.
In (a), the solid white line gives the φmax = 0.035 contour. The dashed line and
dash-dotted line delimit two regions, labelled 1 and 2. Region 1 corresponds to Mach
reflection cases and region 2 to cases where no oblique incident shock is formed. In (b),
the Mach 2.3 case of IUSTI is described for a wide range of wedge angles. The cases
where M1 = 2 and M1 = 3 are also provided. For all cases, a variation of ±0.1 in the
upstream Mach number value is applied to look at the sensitivity of the result to M1.
The narrow-span LES result is also indicated together with the experimental results of
Dupont et al. (2006). In both (a) and (b), the boundary-layer skin-friction properties
were those of the IUSTI flow case

on the map of φmax. To estimate the relative sensitivity to each of those constants, one

can introduce an error with respect to their chosen values and look at the modifications

of figure 7.12(a).

The results of such sensitivity study are presented in figure 7.13, where each constant

is successively doubled and halved. Overall, the aforedescribed monotonic trends are pre-

served with steeper/more gradual slopes and/or increased/reduced levels of φmax. To

go into this in more detail, let us first note that the contour-plot is split into 10 equally-

spaced levels between 0 and 0.1. In addition, both the original and new φmax = 0.035

contours are displayed. By looking by how much the new contour is displaced relative

to the original one, it is possible to provide a qualitative judgement on the sensitivity

of φmax to a significant error in each individual model parameters. If a change by a

factor two or one half of the parameter value introduces less than a 5% change in the

φmax = 0.035 contour, the model is deemed not sensitive to this particular parame-

ter. If the effect is between 5% to 20%, the model is qualified weakly sensitive to the

parameter in question; from 20% to 50% it is said to be sensitive and if beyond 50%

strongly sensitive. The characterisation of each model parameter is reported in table 7.2.
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Variable Response of φmax to a: characteristisation

100% increase in 50% decrease in

r′′ < 5% < 5% not sensitive
C̄f0

, Λ < 15% < 15% weakly sensitive
F ′(0) < 15% < 15% weakly sensitive
r < 40% < 40% sensitive
r′ < 40% < 70% strongly sensitive

Table 7.2: Gross estimate of the sensitivity of the model to significant individual
errors in the choice of the model parameters

Two important results arose from the sensitivity study. First, the sensitivity of the

model to the mean boundary-layer properties is weak for C̄f0
and insignificant for r′′,

suggesting that the map in figure 7.12(a) is a good estimate for other mean boundary-

layer properties (as long as the hypotheses used to derive the model hold). The mean

boundary-layer properties thus play a major role in setting the interaction length (see

the steady-state equation (7.25a)) but their effect on the final dynamical equation is

only weak. Second, the accuracy of the model for κ2 and to a lesser extent for κp is

crucial. While r can be easily determined to a relatively good accuracy (see section 7.2),

r′ is the most critical aspect of the present model and further improvements could be

sought in the future. Nevertheless, the overall monotonicity of the map of φmax and the

order of magnitude of the predicted φmax are maintained even for these sensitive cases.

This demonstrates that the Strouhal-number value for the most energetic low-frequency

shock motions is robust with values remaining below 0.1 for a wide range of configura-

tions, as argued by Dussauge et al. (2006).

Finally, it is important to bear in mind that the model is based on an approximate

form of the momentum integral equation which itself relies on four assumptions (see

section 7.1.3), among which two are of primary importance. First, the interaction must

be sufficiently large for the shock-crossing point to be above the incoming boundary

layer. Therefore, one does not expect the model to be correct for weak interactions

(i.e. for the smallest (p+
2 − p1)/τw values). Second, the interaction was considered to

be two dimensional. Thus, any large spanwise wrinkling of the shock is not considered.

In both cases, it would be possible to extend the model and release those constraints

but this is left for future work. We now proceed to a more general discussion about the

contribution of the model to the understanding of the low-frequency shock motions.
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Figure 7.13: Sensitivity of the predicted φmax map to variations in the model con-
stants. Same legend as in figure 7.12(a) at the difference that the additional white dots
indicate the position of the φmax = 0.035 contour when using the reference values
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7.5.3 Discussion and implications with respect to the low-frequency

unsteadiness

Plotkin (1975) first postulated that the reflected-shock could obey a stochastically forced

first-order ordinary equation which is mathematically identical to the one derived here

(see (7.53a))5. The fact that the above lengthy derivations lead to the same governing

equation as the one proposed by Plotkin (1975) is comforting given the completely dif-

ferent approaches undertaken. In the present approach the final governing equation is

derived from the Navier–Stokes equations. To some extent, it may be seen as a proof

of Plotkin’s postulate (although this was not our original intention), with two distinct

advantages that the underlying assumptions may be more clearly identified and that the

timescale of the restoring mechanism is formally expressed as a function of the prob-

lem input parameters. In Plotkin (1975), one needs to determine this constant exper-

imentally, resulting in a lack of applicability of the model, despite its mathematically

appealing form. To the best of the author’s knowledge, since the original publication

of Plotkin (1975), only the two papers by Poggie and Smits (2001, 2005) offer careful

comparisons between Plotkin’s model and experimental data, in each case with success.

Poggie and Smits (2001) argue that, although the final model is described by a lin-

ear equation, it does not mean that the non-linearities of the system are not accounted

for. Their argument is that if one had considered a linearised theory (i.e. linearised

Euler equations), the shock-motion spectrum would be the same as that of the incom-

ing turbulence, which is not the case in the model. In the present derivation, one can

see that, while the governing equation for the shock motions was clearly linearised (see

steps between (7.22) and (7.24)) on the basis of sufficiently small shock displacements

relatively to the interaction size, other significant non-linear effects are mechanically

embedded in the timescale φ−1. Indeed, looking at the constituents of φ, one can see

that although the model is expressed in the form of point-particle dynamics (i.e. the

shock foot position), it does not convey a direct relation between a given velocity fluctu-

ation and the shock response to it, as linearised Euler would do, but instead it accounts

for integrated effects by means of the different thicknesses (see (7.2 a–d)) which are non-

linear functions of the velocity perturbations. In other words, the model accounts for

the non-linear coupling between the shock-system and the boundary layer.

As mentioned in the previous section, the model describes this coupled shock/boundary-

layer system as a low-pass filter with characteristic timescale φ−1. One remarkable result

is that this timescale is significantly larger than any characteristic timescales of the

incoming boundary layer (φ/(2π) is in the 10−2 to 10−1 range giving ts ∼ 10 to 100L/ū1

to compare with tf = δ0/ū1 ∼ L/ū1 assuming that the interaction length scales with δ0).

This conforms to experimental observations (Dupont et al., 2006), and the known issue

5Note that Plotkin (1975) developed his model in the context of the compression-corner configuration.
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in numerical simulations that such flows have long initial transients, even for laminar

cases (indeed, in the absence of forcing, the convergence to the steady solution would

be as exp (−t/ts)).
The low-pass filtering property of the system indicates that, strictly speaking no

transfer of energy from the higher to the lower frequencies is occurring. Instead, any

high frequency is damped and any low frequency is amplified, with the frontier between

high and low being determined by φ. This was shown mathematically through the

model response to white-noise forcing and numerically through direct integration of the

response to synthetic turbulence signals. Therefore, the system itself is simply amplifying

existing low-frequency fluctuations, even if energetically insignificant, while it filters out

the high-frequency fluctuations, even if energetically significant. Moreover, the resulting

broadband spectrum about a particular Strouhal number is not a property of the forcing

but a characteristic of the shock/boundary-layer system itself.

Based on the preceding discussion, it is inferred that the origin of the low-frequency

oscillations is not in the forcing but in the dynamics of the system formed by the

shock/boundary-layer interaction. Of course, if one applies any specific forcing below

the natural frequency of the system, such forcing will be picked up and magnified. A

specific forcing could be any significantly-long upstream coherent structures (see Gana-

pathisubramani et al., 2007b, 2009, and references therein) or particular flow features

within the interaction itself (see Dussauge and Piponniau, 2008; Piponniau et al., 2009;

Pirozzoli and Grasso, 2006, and references therein). However, we stress that, mathe-

matically speaking, these are not necessary and the low-frequency motions can simply

arise from a background (white) noise, as successfully demonstrated in figure 7.11. This

leads to the final question of flow control.

In the light of the current discussion, there are no reasons to believe that a peri-

odic oscillation could be of any help in order to inhibit the low-frequency motions.

From the dynamical-system point of view, there are two possible approaches: remove

any low-frequency forcing or modify in some ways the natural frequency of the sys-

tem. The first option seems rather impracticable and it is better to focus on the second

option. Obviously, one cannot modify the Navier–Stokes equations and the only alter-

native in practical applications is to modify the boundary conditions. Thus, one would

need to implement wall-boundary conditions such that the net effect on the coupled

shock/boundary-layer system may be written in the form of a first-order linear ODE for

ε so that (7.53a) becomes:

1

ū1

dε

dt
+ (φ− Ξ)

ε

L
= ΠC ′′

f0
(t), (7.61)

with ideally Ξ = φ. One possible solution is through blowing/sucking upstream and

downstream of the mean shock-foot position with a decision based on the shock-foot
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motion, if of course this is technically feasible. Supposing that such an algorithm could be

implemented, (7.61) would lead to ε(t) = ū1Π
∫ t
0 C

′′
f0

(t′)dt′ and the shock-foot weighted

PSD would be that of C ′′
f0

. The key point is that such an actuation would need to be

based on the instantaneous (low-pass filtered) shock-foot motion and would therefore be

occurring on timescales of the order of φ−1, which is typically O(10δ0/ū1). Failing to be

out-of-phase with the low-frequency shock motions would be catastrophic as one would

then potentially be exciting the system natural frequency.

A stochastic ODE for the reflected-shock foot motions has been derived in this chap-

ter, starting from the Navier–Stokes equations and based on some assumptions that were

checked using LES data. The general form (7.19) of the governing equation relies on the

assumed existence of a separation of variables (7.10), which is well supported by the LES

data, allowing a transformation of what was initially a partial differential equation into

an ordinary one. The derivation assumes two-dimensional motions (i.e. the spanwise

wrinkling of the shock was not considered) with the shock crossing point located above

the incoming boundary-layer height δ0. Under such conditions, (7.19) was derived and

then linearised on the basis of sufficiently small shock displacements and the analysis of

LES data. This final form of the governing equation was found to be mathematically

identical to the one postulated by Plotkin (1975) and capable of reproducing the wall-

pressure low-frequency spectrum in the vicinity of the mean shock-foot position.

Upon modelling the constituents of the derived governing equation, the dynamical

system could be closed and expressed in terms of its input parameters: the upstream

Mach number M1, the wedge angle θ and the upstream boundary-layer properties (i.e.

skin friction and momentum thickness). Although the upstream boundary-layer proper-

ties are found to be important at setting up the interaction length, the dynamical system

was shown to be mainly controlled by M1 and θ. A wide range of input (M1, θ) pairs was

tested and the predicted most energetically significant low-frequency motions, expressed

in the form of the Strouhal number St = fL/ū1, were shown to remain in the range 0.01

to 0.1, confirming the experimental evidence collected in Dussauge et al. (2006). The

most energetic Strouhal number was found to increase with increasing M1 for a constant

wedge angle θ, whereas it decreased with increasing wedge angle for constant M1.

Mathematically speaking, the derived governing equation was shown to correspond to

a first-order low-pass filter and the analytical spectrum derived from forcing the system

with white noise was shown to be in excellent agreement with the available experimen-

tal and numerical spectra. This result is consistent with the findings of Plotkin (1975)

and Poggie and Smits (2001, 2005) and leads to the suggestion that the low-frequency

motions observed in SBLI need not be a characteristic of the forcing but simply the

result of the low-pass filtering property of the dynamical system formed by the coupling

between the boundary layer and the reflected shock, as demonstrated by the white-noise
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forcing. This does not mean that specific forcing from upstream (see Ganapathisub-

ramani et al., 2007b, amongst others) or downstream (see Pirozzoli and Grasso, 2006;

Piponniau et al., 2009; Robinet, 2007, and chapters 5 and 6) does not play a role, but

that they are not necessary. Obviously, if present and acting below the system cutoff

frequency, they will inevitably be picked up by the system.

Finally, one obvious possible application of the closed form of the low-order model

presented in this chapter is in the field of aerodynamic design where shockwaves inter-

act with turbulent boundary layers. In this case, designers may be concerned with the

fatigue induced by the shock low-frequency motions. This model can potentially predict

the frequency of the most energetic low-frequency motions as well as the amplitude of

the shock motions, given the magnitude of the forcing.



8. Conclusion

A major concern in practical high-speed aerospace applications is the occurrence of

energetically-significant low-frequency shock motions when shock waves interact with

turbulent boundary layers, potentially leading to undesirable unsteady pressure loads

on the airframe. Understanding the origin of such low-frequency motions was the prin-

cipal motivation of this dissertation.

When this project started, and to the best of the author’s knowledge, no numerical

evidence on the existence of low-frequency shock motions in shock-reflection configura-

tions was available and all initial efforts were therefore aimed at establishing whether

the experimental observations could be confirmed using large-eddy simulations. To this

end, an inflow-turbulence generator that could cover integration times of the order of

104δ0/ū1 was needed, with the principal constraint that it would not introduce any

particular mode into the computational domain which were susceptible of interacting

with the shock/boundary-layer system. Thus, a modified version of the digital filter was

introduced in the SBLI code (see chapter 2). The ability of this approach to produce

statistical results in good agreement with earlier results was demonstrated in chapters 3

and 4 via grid-, domain- and subgrid-scale-model-sensitivity studies. It was established

that, given the chosen final grid resolution, results were only marginally affected by the

choice of eddy-viscosity model and that the most critical parameter for the prediction

of the interaction length was the choice of the domain spanwise extent.

In the process of establishing whether one could reproduce the low-frequency dynam-

ics observed in experiments, three different flow cases were used with a particular focus

on the experiments of the IUSTI group in Marseille, for which two simulations covering

long integration times were run. In particular, the first one was performed on a narrow

domain to allow for the longest integration time possible, covering about sixty cycles of

the most energetic low-frequency motions. Despite the artificial confinement due to the

short spanwise extent used, this first LES clearly established that numerical simulations

could exhibit low-frequency motions that are similar to the experimental findings. These

motions were found to be most prominent in the vicinity of the reflected-shock foot and

characterised by a broadband spectrum covering more than one decade of frequencies

with a peak in the weighted spectrum located about two orders of magnitude below the

peak associated with the upstream boundary-layer turbulence.

Upon studying the unsteady wall-pressure distributions of all (four) LES, it was con-

firmed that using L and ū1 as reference scales for the Strouhal number gave values of

185
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about 0.03 for the most energetic oscillations. Moreover, looking at dispersion maps, all

cases were characterised by broadband contours typical of the turbulence but also by

linear dispersion relations due to the organised shedding of shear-layer vortical struc-

tures and propagation of acoustic waves (in both upstream and downstream directions).

Of particular interest was the detection of upstream-propagating pressure waves with

wavelengths exceeding the interaction length and confined within the first third of the

interaction.

The phase-evolution of the pressure fluctuations at different frequencies was studied

in the case of the narrow-span IUSTI case. For sufficiently low Strouhal numbers (near

0.05), a phase jump of π was found about one third of the way down the interaction.

Following Hudy et al. (2003), it was argued that this jump could be an indication of the

existence of a global mode, similar to the one found in chapter 5 where the stability of

the time-averaged flow was studied. Although the validity of such a stability analysis

is debatable, the highest global-mode growth rate was for the 2D mode (i.e. for zero

spanwise wavenumber) with a linear regime which could scale on timescales similar to

the timescale of the most significant low-frequency shock motions. It was argued on the

basis of a decoupling between the global-mode characteristic timescale and the timescales

associated with the incoming turbulence that the turbulent nature of the flow may only

be required to produce the base-flow profiles and that it is not playing a significant role

in the development of the large-scale motions.

It is manifest from looking at the LES flow fields that the interaction region is the

place of high levels of intermittency. Of particular interest is the separation bubble

which in fact is better viewed as a mixture of reversed and non reversed flow forming

what were called cells or pockets of reversed flow. These cells were found capable of

persisting for more than 102δ0/ū1 with spanwise extents of the order of the interaction

length, setting important constraints on the simulation cost to capture them. They

were seen to meander in the spanwise direction, followed occasionally by the merging

of two of such cells. The presence of such structures and their spanwise motions has

direct consequences on the interpretation of fixed-point wall-pressure spectra where, for

example, the low-frequency end of the spectrum can be artificially underestimated while

the high-frequency end is artificially enhanced. This can account for some of the differ-

ences between the wall-pressure spectra obtained from a computational domain that is

sufficiently wide to resolve such structures and from a computational domain that is too

narrow to capture such patterns.

The choice of the computational-box spanwise extent can be critical to the accuracy

of the predicted flow fields. In the course of this work this difficulty was combined

with other pitfalls arising from attempts to compare simulation data with experimental

data. While the occurrence of low-frequency shock motions appeared to be a relatively

robust feature, the topology of the interaction was seen to be rather sensitive to both
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experimental and numerical artifacts such as the presence of the wind-tunnel side walls,

spanwise-confinement effects and inflow conditions to name a few. Fundamental studies

on the origin of the low-frequency motions are therefore difficult. However, the digital-

filter approach used in this study allowed the manipulation of the incoming boundary

layer and a numerical exercise, consisting in restricting the size of the upstream coherent

structures, led to the conclusion that independently of the existence of long coherent

structures the low-frequency motions would persist. Therefore, although the structures

described in Ganapathisubramani et al. (2007b, 2009) are likely to enhance the low-

frequency shock motions, they are not found essential to the low-frequency dynamics

of shock-reflection configurations. In the author’s view, this may be an illustration of

an artifact obscuring the actual mechanism sought. Unfortunately, the need to cover

a significant dynamical range to resolve both the turbulence and the broadband low

frequencies at satisfying levels of convergence makes sensitivity studies unrealistic due

to the associated prohibitive computational cost. Finally, to add to the complexity of

the problem, it has been illustrated that both the turbulence and the low-frequency

fluctuations significantly contribute to the total energy of the fluctuations. Decoupling

events related to low-frequency motions from purely turbulence-related events, as per-

haps pointed out by the stability-analysis results, is not achievable in a purely dynamical

framework. This led us to look at conditional averages, which were then used for a more

theoretical study.

As exposed in the beginning of this study, the physical mechanisms at the origin

of the low-frequency shock motions are not understood. A number of tentative expla-

nations were considered in chapter 1 and usually fall into one of two categories. The

first relates the low-frequency motions to specific events or flow structures from the

upstream turbulent boundary layer, whereas the second looks for causal mechanisms

within the interaction itself (i.e. downstream of the shock). In both cases, the difficulty

resides in identifying a mechanism that can span timescales of the order of 101δ0/ū1 to

102δ0/ū1. In the author’s view, the variety of the mechanisms proposed in the liter-

ature, together with the subsequent debate about the merits of one approach relative

to another is symptomatic of the difficulty one has in identifying and then separating

individual events from a (supposedly) non-linear (chaotic) system, where actual causal

events may well be impossible to detect. Instead of attempting to check the relevance

of one assumed mechanism against numerical/experimental data with the inherent com-

plexity of extracting this from fully turbulent flow, an attempt to characterise in a useful

way the properties of the dynamical system arising from the coupling between the shock

and the boundary layer was offered.

This led to the development of a stochastic ODE for the reflected-shock foot motions,

starting from the Navier–Stokes equations and based on assumptions that were all sup-

ported by the LES data. The most simplified form of the derived ODE was found to be
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mathematically identical to the one postulated by Plotkin (1975) and capable of repro-

ducing the wall-pressure low-frequency spectrum in the vicinity of the mean shock-foot

position. All the constituents of the final ODE were modelled and the closed system

could be solved. It was found that although the upstream boundary-layer properties are

important at setting up the interaction length, the dynamical system is mainly controlled

by M1 and θ. A wide range of input (M1, θ) pairs was tested and the predicted most

energetically significant low-frequency motions, expressed in the form of the Strouhal

number St = fL/ū1, were shown to remain in the range 0.01 to 0.1, confirming the

experimental evidence collected in Dussauge et al. (2006) and the present LES results.

The Strouhal number was found to increase with increasing M1 for a constant wedge

angle θ, whereas it decreased with increasing wedge angle for constant M1.

Mathematically speaking, the derived governing equation was shown to correspond to

a first-order low-pass filter and the analytical spectrum derived from forcing the system

with white noise was shown to be in excellent agreement with the available experimen-

tal and numerical spectra. This result leads to the suggestion that the low-frequency

motions observed in SBLI need not be a characteristic of the forcing but can simply

be the result of the low-pass filtering property of the dynamical system formed by the

coupling between the boundary layer and the reflected shock. Of course, this does not

mean that a specific forcing either from upstream or downstream does not play a role,

but that it is not necessary.

In summary, the principal results and conclusions of this study are:

• large-eddy simulation is capable of reproducing the observed reflected-shock low-

frequency motions at a lower cost than direct numerical simulation and is therefore

a good tool to investigate the key mechanisms involved in SBLI

• the digital filter is an effective approach to control the size of the incoming turbu-

lence structures

• low-frequency motions appear near the shock foot even when the inflow is carefully

controlled to exclude upstream forcing at these frequencies

• the occurrence of broadband low-frequency shock motions is a robust feature of

SBLI despite their sensitivity to small variations in the configuration

• great care must be taken to minimise possible numerical and experimental artifacts

(side-wall effects, inflow turbulence, meandering effect of coherent structure on the

interpretation of the spectrum obtained from a static probe, short-signal effects. . . )

• the time-averaged flow field in the interaction is globally unstable with growth

rates compatible with timescales characteristic of the low-frequency motions
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• the LES results support the idea that the interaction length L/δ0 may be linearly

related to the ratio (p2 − p1)/τw, in connection with the approximate balance

between the rates of change of momentum and pressure thicknesses in the initial

part of the interaction

• a phase jump of π is observed in the propagation of wall-pressure fluctuations at

low frequencies with a spatial distribution in agreement with that of the global

mode

• the low-frequency shock motions can be modelled by a first-order stochastic ODE

which is derived from the Navier–Stokes equations

• the closed form of the proposed model supports the experimental finding that the

Strouhal number of the most energetic fluctuations is similar over a wide range of

Mach numbers and wedge angles

• the low-frequency shock motions need not be a characteristic of the forcing and

can simply be the result of the coupled shock/boundary-layer system acting as a

low-pass filter

In future work it would be of particular interest to improve and extend the model pro-

posed in this dissertation. More specifically, the 2D assumption could be relaxed to

allow for the shock to have spanwise wrinkles. More LES results could be acquired at

higher Mach numbers and different wedge angles to improve some of the crude modelling

approaches (e.g. κ2). The model could also be extended to compression-ramp configu-

rations. In addition, wall-boundary conditions for the temperature could be modified to

include cold- or hot-wall configurations. The model may also be used to look at active-

control approaches. As a byproduct of the model derivations, we have also obtained a

steady-state equation which can in principle be closed to obtain a useful predictive tool

for the interaction length, in connection with the suggested linear trend between L/δ0

and (p2−p1)/(2τw) in chapter 4. In the course of this study, the question of wind-tunnel

side-wall effects was raised and it would be of interest to run simulations which account

for the presence of the side walls as this would also be relevant for practical applications

(e.g. engine intakes). Finally, one immediate possible work would consist in further

analysis of the present LES database to investigate the dynamics of the reversed-flow

pockets in relation with the low-frequency motions (see figure 6.22).



A. Filtering the Navier–Stokes

equations

One can apply the grid-filter operator defined in section 2.1.2.1 to (2.1 a–c). For example,

the filtered continuity equation is

∂ρ̄

∂t
+
∂ρui

∂xi
= 0, (A.1)

following the linearity and commutativity properties of the filter (see 2.1.2.1). Further-

more, using the Favre-filter notation (defined page 24), (A.1) can be written

∂ρ̄

∂t
+
∂ρ̄ũi

∂xi
= 0. (A.2)

Similarly, the momentum equation becomes:

∂ρ̄ũi

∂t
+
∂ρ̄ũiuj

∂xj
= − ∂p̄

∂xi
+

1

Re

∂τ̄ ij

∂xj
. (A.3)

Notice that the second term in (A.3) cannot be known (this is a direct consequence

of the application of the filter operator onto non-linear terms). The stress tensor σij is

thus introduced (defined below) and will have to be modelled and related to the resolved

fields. Similarly, the viscous stress tensor (see (2.1f)) is composed of non-linear terms

that cannot be computed explicitly so that the following tensor dij is also introduced.

σij = ρ̄ (ũiuj − ũiũj) , (A.4)

dij = τ̄ ij − µ̃
(
∂ũj

∂xi
+
∂ũi

∂xj
− 2

3
δij
∂ũk

∂xk

)

︸ ︷︷ ︸
τ̆ ij

. (A.5)

With those notations, the Favre-filtered momentum equation is:

∂ρ̄ũi

∂t
+
∂ρ̄ũiũj

∂xj
+
∂p̄

∂xi
− 1

Re

∂τ̆ ij

∂xj
= −∂σij

∂xj
+

1

Re

∂dij

∂xj
, (A.6)
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where the right-hand side cannot be computed solely from the resolved fields and thus

must be modelled. Following the approach used for the momentum equation, the fol-

lowing scalar and vectors are defined:

Ĕt =
p̄

γ− 1
+

1

2
ρ̄ũiũi, (A.7a)

αi
j = Etuj − Ĕtũj, (A.7b)

αii
j = puj − p̄ũj, (A.7c)

αiii
j =

1

Re
(τijui − τ̆ ijũi) , (A.7d)

αiv
j = µ

∂T

∂xj
− µ̃ ∂T̃

∂xj
. (A.7e)

Notice the relation:

Ēt = Ĕt +
1

2
σii. (A.8)

The Favre-filtered energy equation can then be expressed as:

∂Ĕt

∂t
+
∂(Ĕt + p̄)ũj

∂xj
− 1

Re

∂τ̆ ij ũi

∂xj
+

1

(γ− 1)Re Pr M2

∂

∂xj

[
µ̃
∂T̃

∂xj

]

= −1

2

∂σii

∂t
− ∂

∂xj

[
αi

j + αii
j − αiii

j

]
− 1

(γ− 1)Re Pr M2

∂αiv
j

∂xj︸ ︷︷ ︸
B7

(A.9)

In theory, the entire right-hand side of the above equation should be modelled. In

practice, this is difficult and the smallest terms are neglected. To do so, (A.9) is written

in a different way to give more physical meaning to each subgrid scale terms. First, the

divergence of equations (A.7b) and (A.7c) is rearranged:

∂αi
j

∂xj
=

1

γ− 1

∂

∂xj
[puj − p̄ũj]

︸ ︷︷ ︸
B1

+
1

2

∂

∂xj
[ρuiuiuj − ρ̄ũiũiũj] , (A.10)

∂αii
j

∂xj
= p

∂uj

∂xj
− p̄∂ũj

∂xj︸ ︷︷ ︸
B2

+uj
∂p

∂xj
− ũj

∂p̄

∂xj
. (A.11)

Upon multiplication of the momentum equation by ui, one obtains the kinetic energy

equation:
1

2

∂ρuiui

∂t
+

1

2

∂ρuiuiuj

∂xj
= −ui

∂p

∂xi
+

1

Re
ui
∂τij
∂xj
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Filtering (A.12) yields:
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Similarly, multiplying the filtered momentum equation (A.6) by ũi gives:
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. (A.14)

Subtracting (A.14) to (A.13) and using the definitions (A.4) and (A.5), one finds:
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The quadruple product in (A.10), which is not convenient and certainly difficult to

model, can be replaced using (A.15) so that the sum of (A.10) and (A.11) may be

written:

∂αi
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j
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. (A.16)

Using the chain rule, (A.16) is rearranged:
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and then injected into (A.9), together with (A.7d), to give:
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This completes the Favre-filtered energy equation. The terms B1 to B7 are consistent

with the findings of Vreman et al. (1995).



B. Fortran routine to generate

the mean inflow profiles
! ******************************************************************************
! This program generates the semi-analytic mean inflow profiles for the
! turbulent compressible boundary layer.
!
! Emile :: January 2007
! ******************************************************************************

PROGRAM main

IMPLICIT NONE

! ==============================================================================
! Declaration section
! ==============================================================================

! --- parameters ---

integer, PARAMETER :: DBL=8 !SELECTED_REAL_KIND(15) ! Double precision parameter
integer, PARAMETER :: Ny=81 ! Number of points to use
real(DBL), PARAMETER :: gamma=1.4 ! Specific heats ratio
real(DBL), PARAMETER :: kapa=0.41 ! V--K constant
real(DBL), PARAMETER :: b=5.17
real(DBL), PARAMETER :: omega=0.67 ! power law coeff. for dynamic visco.
real(DBL), PARAMETER :: Csuth=0.76 ! S/Tref. ratio for Sutherland law
real(DBL), PARAMETER :: eps=0.25 ! distance between the two x-planes

! --- global variables ---

real(DBL) :: Uchk_eplus ! edge velocity+ in Van Driest space
real(DBL) :: Uchk_eplus2 ! edge velocity+ in Van Driest space
real(DBL) :: U_eplus ! edge velocity+ in Normal space
real(DBL) :: U_eplus2 ! edge velocity+ in Normal space
real(DBL) :: xi_eplus ! xi_edge+ value
real(DBL) :: xi_eplus2 ! xi_edge+ value

real(DBL) :: delta0 ! BL thickness
real(DBL) :: delta1vd ! BL VD disp. thickness
real(DBL) :: delta1 ! BL disp. thickness
real(DBL) :: Taw, Tw ! Adiabatic wall & wall temperature

real(DBL), DIMENSION(1:Ny) :: Uchk_plus ! velocity+ in Van Driest space
real(DBL), DIMENSION(1:Ny) :: xi_plus ! xi+ coord.
real(DBL), DIMENSION(1:Ny) :: y_plus ! y+ coord. (same in both spaces)
real(DBL), DIMENSION(1:Ny) :: yCHK ! y coord. in Van Driest space
real(DBL), DIMENSION(1:Ny) :: y ! y coord.
real(DBL), DIMENSION(1:Ny) :: Uchk ! Van Driest velocity profile
real(DBL), DIMENSION(1:Ny) :: U ! u-velocity profile
real(DBL), DIMENSION(1:Ny) :: rho ! density profile
real(DBL), DIMENSION(1:Ny) :: T ! temperature profile

! --- for second x-plane ---
real(DBL), DIMENSION(1:Ny) :: Uchk_plus2 ! velocity+ in Van Driest space
real(DBL), DIMENSION(1:Ny) :: xi_plus2 ! xi+ coord.
real(DBL), DIMENSION(1:Ny) :: y_plus2 ! y+ coord. (same in both spaces)
real(DBL), DIMENSION(1:Ny) :: yCHK2 ! y coord. in Van Driest space
real(DBL), DIMENSION(1:Ny) :: y2 ! y coord.
real(DBL), DIMENSION(1:Ny) :: Uchk2 ! Van Driest velocity profile
real(DBL), DIMENSION(1:Ny) :: U2,Uint ! u-velocity profile
real(DBL), DIMENSION(1:Ny) :: T2, Tint ! temperature profile

! ------
real(DBL), DIMENSION(1:Ny) :: V ! v-velocity profile
real(DBL), DIMENSION(1:Ny) :: dudx ! dU/dx

! --- dummy variables ---

integer j, kk, n
real(DBL) :: alpha, eta, f, a1, b1, c1, K, Cf1, Re1, ReX1, X1, ReX2, ReVD2
real(DBL) :: Re2, Cf2, level, dif1, dif2, dist

! --- specific to user ---

real(DBL), PARAMETER :: ReVD=2950.0 ! Reynolds # based on VD disp. thickness
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real(DBL), PARAMETER :: M=2.3 ! Mach number

! ==============================================================================
! Main program
! ==============================================================================

! --- guess for veplus ---

WRITE(*,*) ’Guessed edge velocity+ (Re=2950, Uchk_eplus=23.64254613498937):’
READ(*,*) Uchk_eplus

! --- generate uniform grid (in terms of velocity!) ---

DO j=1,Ny
Uchk_plus(j)=Uchk_eplus*REAL(j-1)/REAL(Ny-1)

END DO

! --- compute xi-coord ---

DO j=1,Ny
f=Uchk_plus(j)
xi_plus(j)=f+EXP(-kapa*b)*(EXP(kapa*f)-1.-kapa*f-0.5*((kapa*f)**2)- &

((kapa*f)**3)/6.)
END DO
xi_eplus=xi_plus(Ny)

! --- transform to y+ units ---

DO j=1,Ny-1
y_plus(j)=xi_plus(j)*xi_eplus/(xi_eplus-xi_plus(j))

END DO
y_plus(Ny)=1.e6 ! a big number to represent infinity

! --- transform to yCHK units ---

DO j=1,Ny
yCHK(j)=y_plus(j)*Uchk_eplus/ReVD

END DO

! --- compute delta0 ---

alpha=EXP(2.*ReVD/(690.+1.5*ReVD))-1.
delta0=Uchk_eplus*xi_eplus/(alpha*ReVD)

! --- compute VD velocity profile ---

Uchk(1)=0_DBL
DO j=2,Ny

eta=yCHK(j)/delta0
f=EXP(-3.*(EXP(eta**(1./kapa))-1.))
Uchk(j)=1.-f+(Uchk_plus(j)/Uchk_eplus)*f

END DO

! --- compute VD disp. thickness ---

delta1vd=0_DBL

DO j=1,Ny-1
delta1vd=delta1vd+0.5*(2.-Uchk(j)-Uchk(j+1))*(yCHK(j+1)-yCHK(j))

END DO

WRITE(*,*) ’The Van Driest displacement thickness is: ’,delta1vd

! --- compute the adiabatic wall & wall temperatures ---
! we assume that the wall is adiabatic so Taw=Tw

Taw=1.+0.5*(gamma-1.)*(M**2)
Tw=Taw
a1=Tw
b1=1.+0.5*(gamma-1.)*(M**2)-Tw ! b1=0 (Taw=Tw) but in future modification...
c1=-0.5*(gamma-1.)*(M**2)

! --- compute u, rho, T profiles ---

K=SQRT(-Tw/c1)*(ASIN(b1/SQRT(b1**2-4.*a1*c1))- &
ASIN((2.*c1+b1)/SQRT(b1**2-4.*a1*c1)))

U_eplus=Uchk_eplus/K

WRITE(*,*) ’ueplus=’,U_eplus

DO j=1,Ny
f=Uchk(j)*Uchk_eplus/U_eplus
K=ASIN(b1/SQRT(b1**2-4.*a1*c1))-f*SQRT(-c1/Tw)
U(j)=(SQRT(b1**2-4.*a1*c1)*SIN(K)-b1)/(2.*c1)
T(j)=a1+b1*U(j)+c1*(U(j)**2)
rho(j)=1./T(j)

END DO
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! --- go from yCHK to y coord. ---

DO j=1,Ny
! power law version
! y(j)=U_eplus*(T(1)**(omega+1.))*yCHK(j)/Uchk_eplus
! Sutherland law version
y(j)=U_eplus*((T(1)**(5./2.))*((1.+Csuth)/(T(1)+Csuth))) &

*yCHK(j)/Uchk_eplus
END DO

! --- compute disp. thickness ---

delta1=0_DBL

DO j=1,Ny-1
delta1=delta1+0.5*(2.-rho(j)*U(j)-rho(j+1)*U(j+1))*(y(j+1)-y(j))

END DO

WRITE(*,*) ’The displacement thickness is: ’,delta1
WRITE(*,*) ’Re_delta1=’,delta1*ReVD

! ******************************************************************************
! --- compute mean V(y) profile! ---
! ******************************************************************************

! *** move downstream ***

!> skin friction:
Cf1=2./(Uchk_eplus**2)

!> Re_delta99 (White - eqn (6.68) page 430):
Re1=(Cf1/0.020)**(-6)

!> Re_x (White - eqn (6.70) page 430):
ReX1=(Re1/0.16)**(7./6.)

!> Get position from plate egde
X1=ReX1/ReVD

!> Move slightly downstream...
ReX2=ReX1*(1.+eps/X1)

!> Get new Re_delta99
Re2=0.16*(ReX2**(6./7.))

!> Get new Cf
Cf2=0.02*(Re2**(-1./6.))

!> Get new Uchk_eplus
Uchk_eplus2=SQRT(2./Cf2)

!> Get new ReVD
ReVD2=ReX2/(X1+eps)

! *** generate new U(y) ***

! --- generate uniform grid (in terms of velocity!) ---

DO j=1,Ny
Uchk_plus2(j)=Uchk_eplus2*REAL(j-1)/REAL(Ny-1)

END DO

! --- compute xi-coord ---

DO j=1,Ny
f=Uchk_plus2(j)
xi_plus2(j)=f+EXP(-kapa*b)*(EXP(kapa*f)-1.-kapa*f-0.5*((kapa*f)**2)- &

((kapa*f)**3)/6.)
END DO
xi_eplus2=xi_plus2(Ny)

! --- transform to y+ units ---

DO j=1,Ny-1
y_plus2(j)=xi_plus2(j)*xi_eplus2/(xi_eplus2-xi_plus2(j))

END DO
y_plus2(Ny)=1.e6 ! a big number to represent infinity

! --- transform to yCHK units ---

DO j=1,Ny
yCHK2(j)=y_plus2(j)*Uchk_eplus2/ReVD2

END DO

! --- compute delta0 ---

alpha=EXP(2.*ReVD2/(690.+1.5*ReVD2))-1.
delta0=Uchk_eplus2*xi_eplus2/(alpha*ReVD2)

! --- compute VD velocity profile ---

Uchk2(1)=0_DBL
DO j=2,Ny

eta=yCHK2(j)/delta0
f=EXP(-3.*(EXP(eta**(1./kapa))-1.))
Uchk2(j)=1.-f+(Uchk_plus2(j)/Uchk_eplus2)*f
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END DO

! --- compute u, rho, T profiles ---

K=SQRT(-Tw/c1)*(ASIN(b1/SQRT(b1**2-4.*a1*c1))- &
ASIN((2.*c1+b1)/SQRT(b1**2-4.*a1*c1)))

U_eplus2=Uchk_eplus2/K

DO j=1,Ny
f=Uchk2(j)*Uchk_eplus2/U_eplus2
K=ASIN(b1/SQRT(b1**2-4.*a1*c1))-f*SQRT(-c1/Tw)
U2(j)=(SQRT(b1**2-4.*a1*c1)*SIN(K)-b1)/(2.*c1)
T2(j)=a1+b1*U2(j)+c1*(U2(j)**2)

END DO

! --- go from yCHK to y coord. ---

DO j=1,Ny
! power law version
!y2(j)=U_eplus2*(T2(1)**(omega+1.))*yCHK2(j)/Uchk_eplus2
! Sutherland law version
y2(j)=U_eplus2*((T2(1)**(5./2.))*((1.+Csuth)/(T2(1)+Csuth))) &

*yCHK2(j)/Uchk_eplus2
END DO

! *** Interpolate U2(y2) on U2(y) ***

Uint(1)=0.0
Tint(1)=T2(1)
DO j=2,Ny

! --- find two nearest y2’s of y_j ---
level=y(j)
n=0
DO kk=1,Ny-1

dif1=level-y2(kk)
dif2=level-y2(kk+1)
IF (dif1*dif2.LT.0.0) n=kk

END DO
! --- linear interpolation

dif1=level-y2(n)
dif2=y2(n+1)-level
dist=dif1+dif2
Uint(j)=U2(n)*(dif2/dist)+U2(n+1)*(dif1/dist)
Tint(j)=T2(n)*(dif2/dist)+T2(n+1)*(dif1/dist)

END DO

! *** Integrate continuity to get V(y) ***

! --- compute d(rho*U)/dx ---

DO j=1,Ny
dudx(j)=(Uint(j)/Tint(j)-U(j)/T(j))/eps

END DO

! --- integrate ---

V(1)=0.0
DO j=2,Ny

V(j)=V(j-1)-0.5*T(j)*(dudx(j)+dudx(j-1))*(y(j)-y(j-1))
END DO

! ******************************************************************************

! --- write profiles in ASCII files ---

OPEN(UNIT=10,FILE=’4matlab.txt’,STATUS=’REPLACE’,ACTION=’WRITE’)
REWIND(10)

DO j=1,Ny
WRITE(10,900) y(j),U(j),T(j),yCHK(j),Uchk(j),y_plus(j),Uchk_plus(j),V(j)

END DO

CLOSE(10)

OPEN(UNIT=10,FILE=’inflow.txt’,STATUS=’REPLACE’,ACTION=’WRITE’)
REWIND(10)

DO j=1,Ny
WRITE(10,901) y(j),U(j),T(j),V(j)

END DO

CLOSE(10)

900 FORMAT(8f22.14)
901 FORMAT(4f22.14)

END PROGRAM main



C. Digital-filter Fortran routines

This appendix reproduces parts of the code used to generate the inflow turbulence.

Although it is not shown in complete form for conciseness, it ought to be sufficiently

accurate to see how the digital-filter approach described in chapter 2 was implemented

in the in-house code and how one could use it in a future code.

C.1 Main digital-filter routine

! -------1---------2---------3---------4---------5---------6---------7--
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This subroutine generates the inflow conditions for a (compressible)
! turbulent boundary layer based on the technique of Klein in JCP 186,
! (2003).
!
! Emile :: March 07’
! Modified in Sep. 07’: MPI-friendly in all directions
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SUBROUTINE digi_filt(l,lstr)

USE incl3d ! common array/parameter declarations
USE stdtypes ! definitions of common & standard integer &

! real types used in 32/64-bit architectures
USE mersenne_twister ! pseudo-random number generator
USE mppvars ! MPI common declarations

IMPLICIT NONE

! **********************************************************************
! - oOo - :: Declaration section :: - oOo -
! **********************************************************************

real*8 randx(1-yhalo:nyp_m+yhalo,1:nzp_m-1)
real*8 randy(1-yhalo:nyp_m+yhalo,1:nzp_m-1)
real*8 randz(1-yhalo:nyp_m+yhalo,1:nzp_m-1)

real*8, DIMENSION(1:3,1:3) :: lund
real*8 :: R11, R12, R22, R33

real*8 :: Txu, Txv, Txw

real*8 :: rnd1, rnd2
real*8 :: sumz, sumyi, sumyo
real*8 :: delta99, tmp1, tmp2, tmp3

integer :: j, k, l, lstr, jj, kk, qz, qy, tst
integer :: tsti, tsts, jjinf, jjsup

type(mtprng_state) :: state

! **********************************************************************
! - oOo - :: Program section :: - oOo -
! **********************************************************************

! Re-seed the random number generator

IF (l.EQ.1) THEN

CALL mtprng_init(1,state)

ELSE

CALL restart_gen(iseed,iarray,state)

END IF
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! Initialize random fields

DO k=1,nzp_m-1
DO j=1-yhalo,nyp_m+yhalo

randx(j,k)=0.0
randy(j,k)=0.0
randz(j,k)=0.0

END DO
END DO

! Harvest random numbers (normal distribution)
! O-mean and unit-variance (checked)

! Collect two numbers from a uniform distribution
! Add them as follows to get a normal distribution
! Cf. Box-Muller theorem

DO k=1,nzp_m-1
DO j=1-yhalo,nyp_m+yhalo

rnd1=mtprng_rand_real3(state)
rnd2=mtprng_rand_real3(state)

randx(j,k)=SQRT(-2.*LOG(rnd1))*COS(2*pi*rnd2)

rnd1=mtprng_rand_real3(state)
rnd2=mtprng_rand_real3(state)

randy(j,k)=SQRT(-2.*LOG(rnd1))*COS(2*pi*rnd2)

rnd1=mtprng_rand_real3(state)
rnd2=mtprng_rand_real3(state)

randz(j,k)=SQRT(-2.*LOG(rnd1))*COS(2*pi*rnd2)

END DO
END DO

! Save generator’s state

CALL save_gen(iseed,iarray,state)

! CALL randstat(randx)
! CALL randstat(randy)
! CALL randstat(randz)

! **********************************************************************
! |-------------------- :: Filters’ coeff. :: ------------------------|
! **********************************************************************

! No need to compute the coeff. at each iteration, only the first time

! Compute the convolution coeff.

IF (l.eq.lstr+1) THEN

! Z-dir.

sumz=0.0
kk=(NfzU/2.)
DO k=-NfzU,NfzU

sumz=sumz+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumz=SQRT(sumz)
DO k=-NfzU,NfzU

buz(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumz
END DO

sumz=0.0
kk=(NfzV/2.)
DO k=-NfzV,NfzV

sumz=sumz+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumz=SQRT(sumz)
DO k=-NfzV,NfzV

bvz(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumz
END DO

sumz=0.0
kk=(NfzW/2.)
DO k=-NfzW,NfzW

sumz=sumz+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumz=SQRT(sumz)
DO k=-NfzW,NfzW

bwz(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumz
END DO

! Y-dir
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! -- zone 1 (inner) --

sumyi=0.0
kk=(NfyUi/2.)
DO k=-NfyUi,NfyUi

sumyi=sumyi+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumyi=SQRT(sumyi)
DO k=-NfyUi,NfyUi

buyi(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumyi
END DO

sumyi=0.0
kk=(NfyVi/2.)
DO k=-NfyVi,NfyVi

sumyi=sumyi+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumyi=SQRT(sumyi)
DO k=-NfyVi,NfyVi

bvyi(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumyi
END DO

sumyi=0.0
kk=(NfyWi/2.)
DO k=-NfyWi,NfyWi

sumyi=sumyi+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumyi=SQRT(sumyi)
DO k=-NfyWi,NfyWi

bwyi(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumyi
END DO

! -- zone 2 (outer) --

sumyo=0.0
kk=(NfyUo/2.)
DO k=-NfyUo,NfyUo

sumyo=sumyo+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumyo=SQRT(sumyo)
DO k=-NfyUo,NfyUo

buyo(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumyo
END DO

sumyo=0.0
kk=(NfyVo/2.)
DO k=-NfyVo,NfyVo

sumyo=sumyo+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumyo=SQRT(sumyo)
DO k=-NfyVo,NfyVo

bvyo(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumyo
END DO

sumyo=0.0
kk=(NfyWo/2.)
DO k=-NfyWo,NfyWo

sumyo=sumyo+EXP(-2.*pi*REAL(ABS(k))/REAL(kk))
END DO
sumyo=SQRT(sumyo)
DO k=-NfyWo,NfyWo

bwyo(k)=EXP(-pi*REAL(ABS(k))/REAL(kk))/sumyo
END DO

! Build the 2D filter

! --- zone 1 ---

DO j=-NfyUi,NfyUi
DO k=-NfzU,NfzU

buyzi(j,k)=buz(k)*buyi(j)
END DO

END DO

DO j=-NfyVi,NfyVi
DO k=-NfzV,NfzV

bvyzi(j,k)=bvz(k)*bvyi(j)
END DO

END DO

DO j=-NfyWi,NfyWi
DO k=-NfzW,NfzW

bwyzi(j,k)=bwz(k)*bwyi(j)
END DO

END DO

! --- zone 2 ---
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DO j=-NfyUo,NfyUo
DO k=-NfzU,NfzU

buyzo(j,k)=buz(k)*buyo(j)
END DO

END DO

DO j=-NfyVo,NfyVo
DO k=-NfzV,NfzV

bvyzo(j,k)=bvz(k)*bvyo(j)
END DO

END DO

DO j=-NfyWo,NfyWo
DO k=-NfzW,NfzW

bwyzo(j,k)=bwz(k)*bwyo(j)
END DO

END DO

END IF

! --------------- :: filters’ coeff. are computed :: -------------------

! **********************************************************************
! |------------------- :: Filter random data :: ----------------------|
! **********************************************************************

! Initialize the new filtered data planes

DO k=1-zhalo,nzp+zhalo
DO j=1-yhalo,nyp+yhalo

urn(j,k)=0.0
vrn(j,k)=0.0
wrn(j,k)=0.0

END DO
END DO

! :::::::::::::::::::::::::::: Filter u ::::::::::::::::::::::::::::::::

DO j=1-yhalo,nyp+yhalo

IF (y(1,j,1).LT.ylzone) THEN

! --- Zone 1 (inner) ---

! Check if filter is out of bound
jjinf=-NfyUi
jjsup=NfyUi
jj=j+(jbegin(sy)-1) ! global jj, local j
tsti=jj-(1-yhalo+NfyUi)
tsts=jj+NfyUi-(nyp_m+yhalo)
IF (tsti.LT.0) jjinf=-NfyUi-tsti
IF (tsts.GT.0) jjsup=NfyUi-tsts

! End of check
DO k=1-zhalo,nzp+zhalo

DO kk=-NfzU,NfzU
qz=k+kk+(kbegin(sz)-1)

! periodic in z
IF (qz.lt.1) qz=qz-1+nzp_m
IF (qz.gt.(nzp_m-1)) qz=qz-nzp_m+1

DO jj=jjinf,jjsup
qy=j+jj+(jbegin(sy)-1)
urn(j,k)=urn(j,k)+buyzi(jj,kk)*randx(qy,qz)

END DO
END DO

END DO

ELSE

! --- Zone 2 (outer) ---

! Check if filter is out of bound
jjinf=-NfyUo
jjsup=NfyUo
jj=j+(jbegin(sy)-1) ! global jj, local j
tsti=jj-(1-yhalo+NfyUo)
tsts=jj+NfyUo-(nyp_m+yhalo)
IF (tsti.LT.0) jjinf=-NfyUo-tsti
IF (tsts.GT.0) jjsup=NfyUo-tsts

! End of check
DO k=1-zhalo,nzp+zhalo

DO kk=-NfzU,NfzU
qz=k+kk+(kbegin(sz)-1)

! periodic in z
IF (qz.lt.1) qz=qz-1+nzp_m
IF (qz.gt.(nzp_m-1)) qz=qz-nzp_m+1

DO jj=jjinf,jjsup
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qy=j+jj+(jbegin(sy)-1)
urn(j,k)=urn(j,k)+buyzo(jj,kk)*randx(qy,qz)

END DO
END DO

END DO

END IF

END DO

! :::::::::::::::::::::::::::: Filter v ::::::::::::::::::::::::::::::::

DO j=1-yhalo,nyp+yhalo

IF (y(1,j,1).LT.ylzone) THEN

! --- Zone 1 (inner) ---

! Check if filter is out of bound
jjinf=-NfyVi
jjsup=NfyVi
jj=j+(jbegin(sy)-1) ! global jj, local j
tsti=jj-(1-yhalo+NfyVi)
tsts=jj+NfyVi-(nyp_m+yhalo)
IF (tsti.LT.0) jjinf=-NfyVi-tsti
IF (tsts.GT.0) jjsup=NfyVi-tsts

! End of check
DO k=1-zhalo,nzp+zhalo

DO kk=-NfzV,NfzV
qz=k+kk+(kbegin(sz)-1)

! periodic in z
IF (qz.lt.1) qz=qz-1+nzp_m
IF (qz.gt.(nzp_m-1)) qz=qz-nzp_m+1

DO jj=jjinf,jjsup
qy=j+jj+(jbegin(sy)-1)
vrn(j,k)=vrn(j,k)+bvyzi(jj,kk)*randy(qy,qz)

END DO
END DO

END DO

ELSE

! --- Zone 2 (outer) ---

! Check if filter is out of bound
jjinf=-NfyVo
jjsup=NfyVo
jj=j+(jbegin(sy)-1) ! global jj, local j
tsti=jj-(1-yhalo+NfyVo)
tsts=jj+NfyVo-(nyp_m+yhalo)
IF (tsti.LT.0) jjinf=-NfyVo-tsti
IF (tsts.GT.0) jjsup=NfyVo-tsts

! End of check
DO k=1-zhalo,nzp+zhalo

DO kk=-NfzV,NfzV
qz=k+kk+(kbegin(sz)-1)

! periodic in z
IF (qz.lt.1) qz=qz-1+nzp_m
IF (qz.gt.(nzp_m-1)) qz=qz-nzp_m+1

DO jj=jjinf,jjsup
qy=j+jj+(jbegin(sy)-1)
vrn(j,k)=vrn(j,k)+bvyzo(jj,kk)*randy(qy,qz)

END DO
END DO

END DO

END IF

END DO

! :::::::::::::::::::::::::::: Filter w ::::::::::::::::::::::::::::::::

DO j=1-yhalo,nyp+yhalo

IF (y(1,j,1).LT.ylzone) THEN

! --- Zone 1 (inner) ---

! Check if filter is out of bound in y
jjinf=-NfyWi
jjsup=NfyWi
jj=j+(jbegin(sy)-1) ! global jj, local j
tsti=jj-(1-yhalo+NfyWi)
tsts=jj+NfyWi-(nyp_m+yhalo)
IF (tsti.LT.0) jjinf=-NfyWi-tsti
IF (tsts.GT.0) jjsup=NfyWi-tsts

! End of check
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DO k=1-zhalo,nzp+zhalo
DO kk=-NfzW,NfzW

qz=k+kk+(kbegin(sz)-1)
! periodic in z

IF (qz.lt.1) qz=qz-1+nzp_m
IF (qz.gt.(nzp_m-1)) qz=qz-nzp_m+1

DO jj=jjinf,jjsup
qy=j+jj+(jbegin(sy)-1)
wrn(j,k)=wrn(j,k)+bwyzi(jj,kk)*randz(qy,qz)

END DO
END DO

END DO

ELSE

! --- Zone 2 (outer) ---

! Check if filter is out of bound
jjinf=-NfyWo
jjsup=NfyWo
jj=j+(jbegin(sy)-1) ! global jj, local j
tsti=jj-(1-yhalo+NfyWo)
tsts=jj+NfyWo-(nyp_m+yhalo)
IF (tsti.LT.0) jjinf=-NfyWo-tsti
IF (tsts.GT.0) jjsup=NfyWo-tsts

! End of check
DO k=1-zhalo,nzp+zhalo

DO kk=-NfzW,NfzW
qz=k+kk+(kbegin(sz)-1)

! periodic in z
IF (qz.lt.1) qz=qz-1+nzp_m
IF (qz.gt.(nzp_m-1)) qz=qz-nzp_m+1

DO jj=jjinf,jjsup
qy=j+jj+(jbegin(sy)-1)
wrn(j,k)=wrn(j,k)+bwyzo(jj,kk)*randz(qy,qz)

END DO
END DO

END DO

END IF

END DO

! --------------- :: random fields are now filtered :: -----------------

! **********************************************************************
! |----------- :: Apply streamwise two-point correlation :: ----------|
! **********************************************************************

! Use previous filtered field

IF (l.GT.1) THEN

DO j=1-yhalo,nyp+yhalo

! Get mean velocity (stored in sv(j,k,1=rho,2=u,3=v,...)=u(y))
IF(sv(j,1,2).eq.0.) THEN

tmp1=0.000000000001
ELSE

tmp1=sv(j,1,2)/sv(j,1,1)
END IF

! Get Lagrangian time scale
Txu=Lxu/tmp1
Txv=Lxv/tmp1
Txw=Lxw/tmp1

DO k=1-zhalo,nzp+zhalo
urn(j,k)=uro(j,k)*EXP(-pi*dt/(2.*Txu))+urn(j,k)*SQRT(1-

+ EXP(-pi*dt/Txu))
vrn(j,k)=vro(j,k)*EXP(-pi*dt/(2.*Txv))+vrn(j,k)*SQRT(1-

+ EXP(-pi*dt/Txv))
wrn(j,k)=wro(j,k)*EXP(-pi*dt/(2.*Txw))+wrn(j,k)*SQRT(1-

+ EXP(-pi*dt/Txw))
END DO

END DO

END IF

! Save current filtered field

DO k=1-zhalo,nzp+zhalo
DO j=1-yhalo,nyp+yhalo

uro(j,k)=urn(j,k)
vro(j,k)=vrn(j,k)
wro(j,k)=wrn(j,k)

END DO
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END DO

! -------------- :: new filtered fields are now ready :: ---------------

! **********************************************************************
! |----------- :: Apply Lund’s transfo. to filtered data :: ----------|
! **********************************************************************

DO j=1,3
DO k=1,3

lund(j,k)=0.0
END DO

END DO

! Loop starts here ...

DO j=1-yhalo,nyp+yhalo

! Load the Reynold’s stress

R11=RStress(j,1)
R22=RStress(j,2)
R33=RStress(j,3)
R12=RStress(j,4)

c END IF

! Prepare Lund’s transformation array

lund(1,1)=R11
IF (R12.NE.0.0) THEN

lund(2,1)=(ABS(R12)/R12)*(R12**2)/R11
ELSE

lund(2,1)=0.0
END IF
tmp1=(R22**2)-(lund(2,1)**2)
IF (tmp1.GE.0.0) THEN

lund(2,2)=SQRT(tmp1)
ELSE

lund(2,2)=0.0
END IF
lund(3,3)=R33

! Get the synthetic fluctuations

DO k=1-zhalo,nzp+zhalo

upp(j,k)=urn(j,k)*lund(1,1)
vpp(j,k)=urn(j,k)*lund(2,1)+vrn(j,k)*lund(2,2)
wpp(j,k)=wrn(j,k)*lund(3,3)

END DO

END DO

! -------------- :: disturbances from DF method ready :: ---------------

! **********************************************************************
! |-------------- :: Get thermodynamic fluctuations :: ---------------|
! **********************************************************************

! We make use here of the Strong Reynolds Analogy (SRA) and assume that
! pressure fluctuations are small compared to density and temperature
! fluctuations. For a discussion about the validity of the SRA, see
! Guarini et al.’s JFM paper vol. 414 pp. 1-33.

DO j=1-yhalo,nyp+yhalo

tmp3=sv(j,1,1)
tmp1=tmp3*((xm*sv(j,1,2)/tmp3)**2)

DO k=1-zhalo,nzp+zhalo

tmp2=-(gamma-1)*tmp1*upp(j,k)*tmp3/sv(j,1,2)

rpp(j,k)=-tmp2*tmp3

IF (rpp(j,k).LT.-tmp3) rpp(j,k)=-0.99*tmp3

END DO
END DO

IF(ym_bound) then
DO k=1-zhalo,nzp+zhalo

DO j=1-yhalo,1
rpp(j,k)=0.

END DO
END DO
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END IF

RETURN

! :::::::::::::::::::::::::::: The End! ::::::::::::::::::::::::::::::::

END SUBROUTINE digi_filt

C.2 Some of the common arrays and parameters used

module incl3d
c

...
c

integer nx_m, ny_m, nz_m
integer nxp_m, nyp_m, nzp_m
integer nprocx, nprocy, nprocz
integer, parameter :: nhalo=2
integer, parameter :: xhalo=nhalo, yhalo=nhalo, zhalo=nhalo
integer nxp, nyp, nzp

parameter(nx_m=450 , ny_m=150, nz_m=280)
parameter ( nxp_m = nx_m+1, nyp_m = ny_m+1, nzp_m = nz_m+1 )
parameter ( nprocx=8, nprocy=4, nprocz=8 )

c
real*8 gamma,pi

c
...

c
! Inflow generator parameters

! :: Filter width || Z-direction ::
! ----------------------------------------------------------------------
! dz=zl/nz, Nfz=2*Lz/dz
! ----------------------------------------------------------------------
! --> Lz(u,v,w)= 0.75 | 0.5 | 1.5 <--
! ----------------------------------------------------------------------

integer, PARAMETER :: NfzU=20, NfzV=20, NfzW=30

! :: Filter width || Y-direction ::
! ----------------------------------------------------------------------
! dy=0.15, Nfy=2*Ly/dy
! ----------------------------------------------------------------------
! --> Ly(u,v,w)= 1.5 | 1.75 | 0.5 <--
! ----------------------------------------------------------------------

integer, PARAMETER :: NfyUi=20, NfyVi=25, NfyWi=15
integer, PARAMETER :: NfyUo=35, NfyVo=45, NfyWo=20
real*8, PARAMETER :: ylzone=1.0

! :: Filter width || X-direction ::
! ----------------------------------------------------------------------

real*8, PARAMETER :: Lxu=10., Lxv=4., Lxw=4.

! :: Filtered random data, n=new & o=old ::
real*8, DIMENSION(1-yhalo:nyd+yhalo,1-zhalo:nzd+zhalo) :: urn,

+ vrn,wrn
real*8, DIMENSION(1-yhalo:nyd+yhalo,1-zhalo:nzd+zhalo) :: uro,

+ vro,wro
real*8, DIMENSION(1-yhalo:nyd+yhalo,1-zhalo:nzd+zhalo) :: upp,

+ vpp,wpp, rpp

! :: Filter coeff. ::

real*8, DIMENSION(-NfzU:NfzU) :: buz
real*8, DIMENSION(-NfzV:NfzV) :: bvz
real*8, DIMENSION(-NfzW:NfzW) :: bwz

real*8, DIMENSION(-NfyUi:NfyUi) :: buyi
real*8, DIMENSION(-NfyVi:NfyVi) :: bvyi
real*8, DIMENSION(-NfyWi:NfyWi) :: bwyi
real*8, DIMENSION(-NfyUo:NfyUo) :: buyo
real*8, DIMENSION(-NfyVo:NfyVo) :: bvyo
real*8, DIMENSION(-NfyWo:NfyWo) :: bwyo

real*8, DIMENSION(-NfyUi:NfyUi,-NfzU:NfzU) :: buyzi
real*8, DIMENSION(-NfyVi:NfyVi,-NfzV:NfzV) :: bvyzi
real*8, DIMENSION(-NfyWi:NfyWi,-NfzW:NfzW) :: bwyzi
real*8, DIMENSION(-NfyUo:NfyUo,-NfzU:NfzU) :: buyzo
real*8, DIMENSION(-NfyVo:NfyVo,-NfzV:NfzV) :: bvyzo
real*8, DIMENSION(-NfyWo:NfyWo,-NfzW:NfzW) :: bwyzo
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! :: Prescribed Reynolds stress ::

integer, parameter :: nRS=81 ! number of lines in RStress.txt
integer, parameter :: ninflow=81 ! number of lines in inflow.txt

real*8, DIMENSION(1-yhalo:nyd+yhalo,4) :: RStress

! Random number generator

integer, parameter :: INT64 = selected_int_kind(18)
integer, parameter :: INT32 = selected_int_kind(9)

integer(INT32), parameter :: Ngene = 624_INT32
integer(INT32) :: iseed
integer(INT64), dimension(0:Ngene-1) :: iarray

c
...

c
end module incl3d

////////////////////////////////////////////////////////////////////////

module stdtypes

!---------------------------------------------------------------------
! From the Algorithmic Conjurings of Scott Robert Ladd comes...
!---------------------------------------------------------------------
!
! stdtypes.f90 (a Fortran 95 module)
!
! Definitions of common and standard integer and real types used in
! 32- and 64-bit architectures.
!---------------------------------------------------------------------
!
! COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
!
! This notice applies *only* to this specific expression of this
! algorithm, and does not imply ownership or invention of the
! implemented algorithm.
!
! If you modify this file, you may insert additional notices
! immediately following this sentence.
!
! Copyright 2001, 2002, 2004 Scott Robert Ladd.
! All rights reserved, except as noted herein.
!
! This computer program source file is supplied "AS IS". Scott Robert
! Ladd (hereinafter referred to as "Author") disclaims all warranties,
! expressed or implied, including, without limitation, the warranties
! of merchantability and of fitness for any purpose. The Author
! assumes no liability for direct, indirect, incidental, special,
! exemplary, or consequential damages, which may result from the use
! of this software, even if advised of the possibility of such damage.
!
! The Author hereby grants anyone permission to use, copy, modify, and
! distribute this source code, or portions hereof, for any purpose,
! without fee, subject to the following restrictions:
!
! 1. The origin of this source code must not be misrepresented.
!
! 2. Altered versions must be plainly marked as such and must not
! be misrepresented as being the original source.
!
! 3. This Copyright notice may not be removed or altered from any
! source or altered source distribution.
!
! The Author specifically permits (without fee) and encourages the use
! of this source code for entertainment, education, or decoration. If
! you use this source code in a product, acknowledgment is not required
! but would be appreciated.
!
! Acknowledgement:
! This license is based on the wonderful simple license that
! accompanies libpng.
!
!-----------------------------------------------------------------------
!
! For more information on this software package, please visit
! Scott’s web site, Coyote Gulch Productions, at:
!
! http://www.coyotegulch.com
!
!-----------------------------------------------------------------------

! Kind types for 64-, 32-, 16-, and 8-bit signed integers
integer, parameter :: INT64 = selected_int_kind(18)
integer, parameter :: INT32 = selected_int_kind(9)
integer, parameter :: INT16 = selected_int_kind(4)



Appendix C. Digital-filter Fortran routines 206

integer, parameter :: INT08 = selected_int_kind(2)

! Kind types for IEEE 754/IEC 60559 single- and double-precision reals
integer, parameter :: IEEE32 = selected_real_kind( 6, 37 )
integer, parameter :: IEEE64 = selected_real_kind( 15, 307 )

end module stdtypes

////////////////////////////////////////////////////////////////////////

module mersenne_twister

!---------------------------------------------------------------------
! From the Algorithmic Conjurings of Scott Robert Ladd comes...
!---------------------------------------------------------------------
!
! mtprng.f90 (a Fortran 95 module)
!
! An implementation of the Mersenne Twister algorithm for generating
! psuedo-random sequences.
!
! History
! -------
! 1.0.0 Initial release
!
! 1.1.0 6 February 2002
! Updated to support algorithm revisions posted
! by Matsumoto and Nishimura on 26 January 2002
!
! 1.5.0 12 December 2003
! Added to hypatia project
! Minor style changes
! Tightened code
! Now state based; no static variables
! Removed mtprng_rand_real53
!
! 2.0.0 4 January 2004
! Corrected erroneous unsigned bit manipulations
! Doubled resolution by using 64-bit math
! Added mtprng_rand64
!
! ORIGINAL ALGORITHM COPYRIGHT
! ============================
! Copyright (C) 1997,2002 Makoto Matsumoto and Takuji Nishimura.
! Any feedback is very welcome. For any question, comments, see
! http://www.math.keio.ac.jp/matumoto/emt.html or email
! matumoto@math.keio.ac.jp
!---------------------------------------------------------------------
!
! COPYRIGHT NOTICE, DISCLAIMER, and LICENSE:
!
! This notice applies *only* to this specific expression of this
! algorithm, and does not imply ownership or invention of the
! implemented algorithm.
!
! If you modify this file, you may insert additional notices
! immediately following this sentence.
!
! --> March 2007: This file was modified by Emile Touber to allow
! for stoping/restarting the generator
!
! Copyright 2001, 2002, 2004 Scott Robert Ladd.
! All rights reserved, except as noted herein.
!
! This computer program source file is supplied "AS IS". Scott Robert
! Ladd (hereinafter referred to as "Author") disclaims all warranties,
! expressed or implied, including, without limitation, the warranties
! of merchantability and of fitness for any purpose. The Author
! assumes no liability for direct, indirect, incidental, special,
! exemplary, or consequential damages, which may result from the use
! of this software, even if advised of the possibility of such damage.
!
! The Author hereby grants anyone permission to use, copy, modify, and
! distribute this source code, or portions hereof, for any purpose,
! without fee, subject to the following restrictions:
!
! 1. The origin of this source code must not be misrepresented.
!
! 2. Altered versions must be plainly marked as such and must not
! be misrepresented as being the original source.
!
! 3. This Copyright notice may not be removed or altered from any
! source or altered source distribution.
!
! The Author specifically permits (without fee) and encourages the use
! of this source code for entertainment, education, or decoration. If
! you use this source code in a product, acknowledgment is not required
! but would be appreciated.
!



Appendix C. Digital-filter Fortran routines 207

! Acknowledgement:
! This license is based on the wonderful simple license that
! accompanies libpng.
!
!-----------------------------------------------------------------------
!
! For more information on this software package, please visit
! Scott’s web site, Coyote Gulch Productions, at:
!
! http://www.coyotegulch.com
!
!-----------------------------------------------------------------------

use stdtypes

implicit none

!-------------------------------------------------------------------
! Everything is private unless explicitly made public

private

public :: mtprng_state,
+ mtprng_init, mtprng_init_by_array,
+ mtprng_rand64, mtprng_rand, mtprng_rand_range,
+ mtprng_rand_real1, mtprng_rand_real2, mtprng_rand_real3,
+ save_gen, restart_gen

!-------------------------------------------------------------------
! Constants

integer(INT32), parameter :: N = 624_INT32
integer(INT32), parameter :: M = 397_INT32

!-------------------------------------------------------------------
! types

type mtprng_state
integer(INT32) :: mti = -1
integer(INT64), dimension(0:N-1) :: mt
end type

contains
!-------------------------------------------------------------------
! Initializes the generator with "seed"

subroutine mtprng_init(seed, state)

! arguments
integer(INT32), intent(in) :: seed
type(mtprng_state), intent(out) :: state

! working storage
integer :: i
integer(INT64) :: s, b

! save seed
state%mt(0) = seed

! Set the seed using values suggested by Matsumoto & Nishimura,
! using a generator by Knuth. See original source for details.

do i = 1, N - 1
state%mt(i) = iand(4294967295_INT64,1812433253_INT64 *

+ ieor(state%mt(i-1),ishft(state%mt(i-1),-30_INT64)) + i)
end do

state%mti = N

end subroutine mtprng_init

!-------------------------------------------------------------------
! Initialize with an array of seeds

subroutine mtprng_init_by_array(init_key, state)

! arguments
integer(INT32), dimension(:), intent(in) :: init_key
type(mtprng_state), intent(out) :: state

! working storage
integer :: key_length
integer :: i
integer :: j
integer :: k

call mtprng_init(19650218_INT32,state)

i = 1
j = 0
key_length = size(init_key)

do k = max(N,key_length), 0, -1
state%mt(i) = ieor(state%mt(i),(ieor(state%mt(i-

+ 1),ishft(state%mt(i-1),-30_INT64) * 1664525_INT64))) +
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+ init_key(j) + j

i = i + 1
j = j + 1

if (i >= N) then
state%mt(0) = state%mt(N-1)
i = 1

end if

if (j >= key_length) j = 0
end do

do k = N-1, 0, -1
state%mt(i) = ieor(state%mt(i),(ieor(state%mt(i-

+ 1),ishft(state%mt(i-1),-30_INT64) *
+ 1566083941_INT64))) - i

i = i + 1

if (i>=N) then
state%mt(0) = state%mt(N-1)
i = 1

end if
end do

state%mt(0) = 1073741824_INT64 ! 0x40000000, assuring non-zero initial array

end subroutine mtprng_init_by_array

!-------------------------------------------------------------------
! Obtain the next 32-bit integer in the psuedo-random sequence

function mtprng_rand64(state) result(r)

! arguments
type(mtprng_state), intent(inout) :: state

!return type
integer(INT64) :: r

! internal constants
integer(INT64), dimension(0:1), parameter :: mag01 = (/ 0_INT64,

+ -1727483681_INT64 /)

! Period parameters
integer(INT64), parameter :: UPPER_MASK = 2147483648_INT64
integer(INT64), parameter :: LOWER_MASK = 2147483647_INT64

! Tempering parameters
integer(INT64), parameter :: TEMPERING_B = -1658038656_INT64
integer(INT64), parameter :: TEMPERING_C = -272236544_INT64

! Note: variable names match those in original example
integer(INT32) :: kk

! Generate N words at a time
if (state%mti >= N) then

! The value -1 acts as a flag saying that the seed has not
! been set.

if (state%mti == -1) call mtprng_init(4357_INT32,state)

! Fill the mt array
do kk = 0, N - M - 1

r = ior(iand(state%mt(kk),UPPER_MASK),
+ iand(state%mt(kk+1),LOWER_MASK))

state%mt(kk) = ieor(ieor(state%mt(kk + M),ishft(r,
+ -1_INT64)),mag01(iand(r,1_INT64)))

end do

do kk = N - M, N - 2
r = ior(iand(state%mt(kk),UPPER_MASK),iand(state%mt(kk+

+ 1),LOWER_MASK))
state%mt(kk) = ieor(ieor(state%mt(kk + (M - N)),ishft(r,

+ -1_INT64)),mag01(iand(r,1_INT64)))
end do

r = ior(iand(state%mt(N-1),UPPER_MASK),
+ iand(state%mt(0),LOWER_MASK))

state%mt(N-1) = ieor(ieor(state%mt(M-1),ishft(r,-1)),
+ mag01(iand(r,1_INT64)))

! Start using the array from first element
state%mti = 0

end if

! Here is where we actually calculate the number with a series
! of transformations

r = state%mt(state%mti)
state%mti = state%mti + 1
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r = ieor(r,ishft(r,-11))
r = iand(4294967295_INT64,ieor(r,iand(ishft(r, 7),TEMPERING_B)))
r = iand(4294967295_INT64,ieor(r,iand(ishft(r,15),TEMPERING_C)))
r = ieor(r,ishft(r,-18))

end function mtprng_rand64

!-------------------------------------------------------------------
! Obtain the next 32-bit integer in the psuedo-random sequence

function mtprng_rand(state) result(r)

! arguments
type(mtprng_state), intent(inout) :: state

!return type
integer(INT32) :: r

! working storage
integer(INT64) :: x

! done
x = mtprng_rand64(state)

if (x > 2147483647_INT64) then
r = x - 4294967296_INT64

else
r = x

end if

end function mtprng_rand

!-------------------------------------------------------------------
! Obtain a psuedorandom integer in the range [lo,hi]

function mtprng_rand_range(state, lo, hi) result(r)

! arguments
type(mtprng_state), intent(inout) :: state
integer, intent(in) :: lo
integer, intent(in) :: hi

! return type
integer(INT32) :: r

! Use real value to caluclate range
r = lo + floor((hi - lo + 1.0_IEEE64) * mtprng_rand_real2(state))

end function mtprng_rand_range

!-------------------------------------------------------------------
! Obtain a psuedorandom real number in the range [0,1], i.e., a
! number greater than or equal to 0 and less than or equal to 1.

function mtprng_rand_real1(state) result(r)

! arguments
type(mtprng_state), intent(inout) :: state

! return type
real(IEEE64) :: r

! Local constant; precalculated to avoid division below
real(IEEE64), parameter :: factor = 1.0_IEEE64 /

+ 4294967295.0_IEEE64

! compute
r = real(mtprng_rand64(state),IEEE64) * factor

end function mtprng_rand_real1

!-------------------------------------------------------------------
! Obtain a psuedorandom real number in the range [0,1), i.e., a
! number greater than or equal to 0 and less than 1.

function mtprng_rand_real2(state) result(r)

! arguments
type(mtprng_state), intent(inout) :: state

! return type
real(IEEE64) :: r

! Local constant; precalculated to avoid division below
real(IEEE64), parameter :: factor = 1.0_IEEE64 /

+ 4294967296.0_IEEE64

! compute
r = real(mtprng_rand64(state),IEEE64) * factor

end function mtprng_rand_real2
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!-------------------------------------------------------------------
! Obtain a psuedorandom real number in the range (0,1), i.e., a
! number greater than 0 and less than 1.

function mtprng_rand_real3(state) result(r)

! arguments
type(mtprng_state), intent(inout) :: state

! return type
real(IEEE64) :: r

! Local constant; precalculated to avoid division below
real(IEEE64), parameter :: factor = 1.0_IEEE64 /

+ 4294967296.0_IEEE64

r = (real(mtprng_rand64(state),IEEE64) + 0.5_IEEE64) * factor

end function mtprng_rand_real3

! Subroutine to save the current state of the generator

subroutine save_gen(iseed,iarray,state)

! arguments
integer(INT32), intent(out) :: iseed
integer(INT64), dimension(0:N-1), intent(out) :: iarray
type(mtprng_state), intent(inout) :: state

! working storage
integer :: i

iseed=state%mti

do i=0,N-1
iarray(i)=state%mt(i)

end do

return

end subroutine save_gen

! Subroutine to load the saved state of the generator

subroutine restart_gen(iseed,iarray,state)

! arguments
integer(INT32), intent(in) :: iseed
integer(INT64), dimension(0:N-1), intent(in) :: iarray
type(mtprng_state), intent(inout) :: state

! working storage
integer :: i

state%mti=iseed

do i=0,N-1
state%mt(i) = iarray(i)

end do

return

end subroutine restart_gen

end module mersenne_twister

C.3 Dependent subroutines

program main
c

use incl3d
use mppvars
use stdtypes

c
...

c
integer j,k,l,lstr

c
...

c
call bounds ! gives local/global index position conversion

c
...

c
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pi=4.*atan(1.)
c

...
c

if(readfrom) then ! if restarting simulation
c

...
c
c load random number generator status from last time step
c load the last filtered random field and last field of fluctuations

IF(xm_bound) CALL rand_load

else
c

lstr = 0
l = 1

c
...

c
c set disturbances to zero
c

IF (xm_bound) THEN
DO j=1-yhalo,nyp+yhalo

DO k=1-zhalo,nzp+zhalo
upp(j,k)=0.0
vpp(j,k)=0.0
wpp(j,k)=0.0

END DO
END DO

END IF
c

...
c

end if
c
c load the inflow prescribed Reynolds stress

IF (xm_bound) call loadRS
c

...
c
c iteration start
c

do l = lstr+1 , lstr+nstep
c

...
c
c get the inflow disturbances --
c ** do NOT call digi_filt again in the same time step! **

IF (xm_bound) CALL digi_filt(l,lstr)
c

...
c
c save state of the random number generator
c save last filtered random field

if(mod(l,100).eq.0) then
IF(xm_bound) CALL rand_dump(l)

end if
c

...
c

end do
c

...
c
c save state of the random number generator
c save last filtered random field

IF(xm_bound) CALL rand_dump(l)
c

...
c

end program main

////////////////////////////////////////////////////////////////////////

! -------1---------2---------3---------4---------5---------6---------7--
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This subroutine saves the current state of the random number generator
! That is: the seed and the last field of fluctuations
!
! Emile :: May 07’
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SUBROUTINE rand_load
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USE incl3d
USE mppvars

implicit none

! :: Variables :::::::::::::::::::::::::::::::::::::::::::::::::::::::::

real*8 t
real*8 qtmp(1-zhalo:nzp_m+zhalo,1-yhalo:nyp_m+yhalo,7)

integer jbeg, kbeg, nrec, j, k

character*19 file

! :: Main part :::::::::::::::::::::::::::::::::::::::::::::::::::::::::

file=’Last_filtered.bin’

nrec=(1+(nzp_m+2*zhalo)*(nyp_m+2*yhalo)*7)*8

open(123,file=file, status=’old’,
+ form=’unformatted’, access=’direct’,
+ recl=nrec)

c + convert=’BIG_ENDIAN’,recl=nrec)

read(123,rec=1) t,qtmp

close(123)

if (ioproc) then
print*, ’Read from file ’,file
print*, ’saved at t=’,t

endif

jbeg=jbegin(sy)-1
kbeg=kbegin(sz)-1

do k=1-zhalo,nzp+zhalo
do j=1-yhalo,nyp+yhalo

uro(j,k)=qtmp(k+kbeg,j+jbeg,1)
vro(j,k)=qtmp(k+kbeg,j+jbeg,2)
wro(j,k)=qtmp(k+kbeg,j+jbeg,3)
upp(j,k)=qtmp(k+kbeg,j+jbeg,4)
vpp(j,k)=qtmp(k+kbeg,j+jbeg,5)
wpp(j,k)=qtmp(k+kbeg,j+jbeg,6)
rpp(j,k)=qtmp(k+kbeg,j+jbeg,7)
if (.not.(abs(rpp(j,k)).lt.1.5)) rpp(j,k)=0.

end do
end do

! ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

c if(ioproc) then

OPEN(10,file=’randstate.dat’,status=’old’,
+ action=’read’, form=’formatted’)

READ(10,1111) iseed
DO j=0,Ngene-1

READ(10,1111) iarray(j)
END DO

CLOSE(10)

print*, ’Mersenne Twister state loaded!’

c end if

1111 FORMAT(I20)

RETURN

END SUBROUTINE rand_load

////////////////////////////////////////////////////////////////////////

! -------1---------2---------3---------4---------5---------6---------7--
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This subroutine saves the current state of the random number generator
! That is: the seed and the last field of fluctuations
!
! Emile :: May 07’
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

SUBROUTINE rand_dump(l)

USE incl3d
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USE mppvars

implicit none

integer l

! :: Variables :::::::::::::::::::::::::::::::::::::::::::::::::::::::::

integer j,k
real*8 qtmp(1-zhalo:nzp+zhalo,1-yhalo:nyp+yhalo,7)

integer accmod, bufsize, contig, subarray, real_mp_size,ier
integer hand, status(MPI_STATUS_SIZE), offset_r
integer(kind=MPI_OFFSET_KIND) disp, ioff, size
integer totaldims(3), blockdims(3), blockstart(3)
character*50 file
real*8 iobuf_r(2)

! :: Main part :::::::::::::::::::::::::::::::::::::::::::::::::::::::::

do k=1-zhalo,nzp+zhalo
do j=1-yhalo,nyp+yhalo

qtmp(k,j,1)=uro(j,k)
qtmp(k,j,2)=vro(j,k)
qtmp(k,j,3)=wro(j,k)
qtmp(k,j,4)=upp(j,k)
qtmp(k,j,5)=vpp(j,k)
qtmp(k,j,6)=wpp(j,k)
qtmp(k,j,7)=rpp(j,k)

end do
end do

if(l.le.9) then
write(file,’(’’Last_filtered_’’,i1)’) l

else if (l.le.99) then
write(file,’(’’Last_filtered_’’,i2)’) l

else if (l.le.999) then
write(file,’(’’Last_filtered_’’,i3)’) l

else if (l.le.9999) then
write(file,’(’’Last_filtered_’’,i4)’) l

else if (l.le.99999) then
write(file,’(’’Last_filtered_’’,i5)’) l

else if (l.le.999999) then
write(file,’(’’Last_filtered_’’,i6)’) l

else
write(file,’(’’Last_filtered_’’,i7)’) l

endif

if (procid==0) then
print*, ’writing to file ’,file

endif

accmod = ior(MPI_MODE_WRONLY,MPI_MODE_CREATE)
call MPI_FILE_OPEN(MPI_comm_self, file,

+ accmod, MPI_info_null, hand, ier)
c

bufsize = 1
call MPI_TYPE_CONTIGUOUS(bufsize, real_mp_type, contig,ier)
call MPI_TYPE_COMMIT(contig, ier)

c
iobuf_r(1) = time

offset_r = 1
c

ioff = 0
disp = 0
call MPI_FILE_SET_VIEW(hand, ioff, real_mp_type,

+ contig, ’native’, MPI_INFO_NULL, ier)
if(procid == 0) then

call MPI_FILE_WRITE_AT(hand, disp, iobuf_r,
+ bufsize, real_mp_type, status, ier)
endif
call MPI_TYPE_EXTENT(real_mp_type, real_mp_size, ier)

c
ioff = offset_r*real_mp_size
disp = 0

c
totaldims(1) = nzp_m+2*zhalo
totaldims(2) = nyp_m+2*yhalo
totaldims(3) = 7

blockdims(1) = nzp+2*zhalo
blockdims(2) = nyp+2*yhalo
blockdims(3) = 7

blockstart(1) = kbegin(sz)-1
blockstart(2) = jbegin(sy)-1
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blockstart(3) = 0

bufsize = product(blockdims)
c

call MPI_TYPE_CREATE_SUBARRAY(3,totaldims,blockdims,blockstart,
+ MPI_ORDER_FORTRAN, real_mp_type, subarray, ier)
call MPI_TYPE_COMMIT(subarray, ier)
call MPI_FILE_SET_VIEW(hand, ioff, real_mp_type, subarray,

+ ’native’, MPI_INFO_NULL, ier)
call MPI_FILE_WRITE_AT_ALL(hand, disp,

+ qtmp(1-zhalo:nzp+zhalo,1-yhalo:nyp+yhalo,1:7), bufsize,
+ real_mp_type, status, ier)
call MPI_FILE_CLOSE(hand,ier)
if (procid==0) then

print*, ’completed write, ier = ’, ier
endif

! ::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

if(ioproc) then

if(l.le.9) then
write(file,’(’’randstate_’’,i1)’) l

else if (l.le.99) then
write(file,’(’’randstate_’’,i2)’) l

else if (l.le.999) then
write(file,’(’’randstate_’’,i3)’) l

else if (l.le.9999) then
write(file,’(’’randstate_’’,i4)’) l

else if (l.le.99999) then
write(file,’(’’randstate_’’,i5)’) l

else if (l.le.999999) then
write(file,’(’’randstate_’’,i6)’) l

else
write(file,’(’’randstate_’’,i7)’) l

endif

print*, ’writing to file ’,file

OPEN(10,file=file,status=’unknown’,
+ action=’write’, form=’formatted’)

WRITE(10,1111) iseed
DO j=0,Ngene-1

WRITE(10,1111) iarray(j)
END DO
CLOSE(10)

print*, ’Mersenne Twister state is saved!’

end if

1111 FORMAT(I20)

RETURN

END SUBROUTINE rand_dump

////////////////////////////////////////////////////////////////////////

! -------1---------2---------3---------4---------5---------6---------7--
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
! This subroutine loads the prescribed Reynolds stresses
!
! Emile :: May 07’
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

subroutine loadRS

! ---
use incl3d
use mppvars

! ---

implicit none

! :: Declaration section :::::::::::::::::::::::::::::::::::::::::::::::

integer j

real*8, DIMENSION(nRS) :: rs1, rs2, rs3, rs4
real*8, DIMENSION(nRS) :: yfile, yf1, yf2, yf3, yf4
real*8 :: tmp1, tmp2, tmp3, tmp4

! :: Subroutine starts here... :::::::::::::::::::::::::::::::::::::::::

! It is assumed that lengths in ’RStress.txt’ are expressed in
! displacement thickness units
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! Load data

open(37,file=’RStress.txt’,status=’old’,form=’formatted’)

do j=1,nRS
read(37,*) yfile(j),rs1(j),rs2(j),rs3(j),rs4(j)

end do

close(37)

! Interpolate

do j=1-yhalo,nyp+yhalo

RStress(j,1)=0.
RStress(j,2)=0.
RStress(j,3)=0.
RStress(j,4)=0.

end do

call spline(yfile,rs1,nRS-1,0.,0.,yf1)
call spline(yfile,rs2,nRS-1,0.,0.,yf2)
call spline(yfile,rs3,nRS-1,0.,0.,yf3)
call spline(yfile,rs4,nRS-1,0.,0.,yf4)

do j=1-yhalo,nyp+yhalo

if((y(1,j,1).le.yfile(nRS)).and.(y(1,j,1).gt.0.)) then

call splint(yfile,rs1,yf1,nRS-1,y(1,j,1),tmp1)
call splint(yfile,rs2,yf2,nRS-1,y(1,j,1),tmp2)
call splint(yfile,rs3,yf3,nRS-1,y(1,j,1),tmp3)
call splint(yfile,rs4,yf4,nRS-1,y(1,j,1),tmp4)

RStress(j,1)=tmp1
RStress(j,2)=tmp2
RStress(j,3)=tmp3
RStress(j,4)=tmp4

end if

end do

return

end subroutine loadRS



D. Matlab/Fortran scripts to

extract the shock system

D.1 Step 1. Extraction from the raw data

% +-----------------------------------------------------------------+ %
% | | %
% | This program extracts the location of the shock system | %
% | | %
% | emile :: 21/10/08 | %
% | 05/03/09 | %
% +-----------------------------------------------------------------+ %

% -- clear workspace -- :::::::::::::::::::::::::::::::::::::::::::::::

close all
clear all

% -- load parameters -- :::::::::::::::::::::::::::::::::::::::::::::::

% > manual stuff

nfirst=100100;
nlast=1400000;
nstep=100;

dir1=’/mnt/HD1TB/XLES/Results/Inst/Planes/Reduced/’;
dir2=[’/home/emile/Soton/ControlCenter/IUSTI/XLES/MatScripts/’,...

’ShockSystem/binaries/’];

% > automatic stuff... enjoy! ... with care though

path=cellstr(’../../BinTreat/Stats/toplot.bin’);
filename=char(path);
fid=fopen(filename,’r’);
read=fread(fid,11,’double’);
nx=read(1);
ny=read(2);
nz=read(3);
clear read
ldata=nx;
x=fread(fid,ldata,’double’);
clear ldata
ldata=ny;
y=fread(fid,ldata,’double’);
clear ldata
ldata=nz;
z=fread(fid,ldata,’double’);
clear ldata
fclose(fid);

% -- load buffer info -- ::::::::::::::::::::::::::::::::::::::::::::::

path=cellstr([dir1,’Qplane_’,num2str(100100)]);
filename=char(path);
fid=fopen(filename,’r’);

nbuf=fread(fid,1,’single’);
nbuf=nbuf+5*3;
read=fread(fid,nbuf-1,’single’);
nvar=read(2);
t0=read(3);
xy=read(7:11);
clear read

fclose(fid);

% -- extract the shock system -- ::::::::::::::::::::::::::::::::::::::

for n=nfirst:nstep:nlast % -> loop over the data range

216
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if rem(n,10000)==0
n %#ok<NOPTS>

end

% > load data

path=cellstr([dir1,’Qplane_’,num2str(n)]);
filename=char(path);
fid=fopen(filename,’r’);

read=fread(fid,nbuf,’single’);
t1=read(4);
clear read

ldata=nx*ny*nvar*5;
plan1=fread(fid,ldata,’single’);
plan1=reshape(plan1,nx,ny,nvar,5);

clear ldata

fclose(fid);

div=zeros(ny,nx,5);

for i=1:nx
for j=1:ny

for nplane=1:5
div(j,i,nplane)=plan1(i,j,3,nplane);

end
end

end

clear plan1

% > open binary file where the data are dumped

path=cellstr([dir2,’shocksys_’,num2str(n)]);
filename=char(path);
fid=fopen(filename,’wb’);

fwrite(fid,single(t1-t0),’single’); % write time

%fclose(fid); % temporary clean

% > loop over planes

for nplane=1:5

% Find all contours where div(u)=-0.025
figure(99)
[C,h]=contour(x,y,div(:,:,nplane),-0.025*[1 1]);
clear h
close(99)

% Keep the longest contour, which should be the shock system
I=find(C(1,:)==-0.025);
[ii,jj]=max(C(2,I));
C(:,[1:I(jj),I(jj+1):end])=[];

clear ii
clear jj
clear I

% Retain only the points belonging to the y-axis
IX=[];
cp=0;
for p=1:length(C(2,:))

I=find(y==C(2,p)); %#ok<EFIND>
if isempty(I)
cp=cp+1;
IX(cp)=p; %#ok<AGROW>

end
clear I

end
C(:,IX)=[];
clear IX
clear cp
clear p

% Keep only cases with 4 points per y value
%Co=C;
IX=[];
for j=1:ny

I=find(C(2,:)==y(j));
if length(I)~=4
IX=[IX,I]; %#ok<AGROW>

end
end
C(:,IX)=[];
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clear IX

% Sort C array by same y value
[C(2,:),IX]=sort(C(2,:));
C(1,:)=C(1,IX);
clear IX

% Weak compression waves may have been captured... let’s remove
% occurences of points spaced by less than 1.5*dx to suppress them
IX=[];
k=1;
for j=1:length(C(1,:))/4

tmpo=C(1,k:k+3);
tmpo=sort(tmpo);
dtmpo=zeros(3,1);
for p=1:3
dtmpo(p)=tmpo(p+1)-tmpo(p);

end
I=find(dtmpo<=1.5*(x(2)-x(1))); %#ok<EFIND>
if ~isempty(I)
IX=[IX,k:1:k+3]; %#ok<AGROW>

end
k=k+4;
clear I
clear dtmpo
clear tmpo

end
clear k
clear p
C(:,IX)=[];
clear IX

% Split the obtained >< shape in the > and < side
left=zeros(2,length(C(1,:))/4);
right=zeros(2,length(C(1,:))/4);

k=1;
for i=1:length(C(1,:))/4

tmpo=C(1,k:k+3);
tmpo=sort(tmpo);

left(1,i)=0.5*(tmpo(1)+tmpo(2));
right(1,i)=0.5*(tmpo(3)+tmpo(4));

left(2,i)=C(2,k);
right(2,i)=C(2,k);

k=k+4;
end
clear k
clear tmpo

clear C

% Transform > and < into / and \
% locate turn in > and <
[m,I1]=max(left(1,:));
[m,I2]=min(right(1,:));
clear m
incident=[left(:,I1+1:end),right(:,1:I2-1)];
reflected=[left(:,1:I1-1),right(:,I2+1:end)];

[incident(1,:),IX]=sort(incident(1,:));
incident(2,:)=incident(2,IX);
clear IX
[incident(2,:),IX]=sort(incident(2,:),’descend’);
incident(1,:)=incident(1,IX);
clear IX

[reflected(1,:),IX]=sort(reflected(1,:));
reflected(2,:)=reflected(2,IX);
clear IX
[reflected(2,:),IX]=sort(reflected(2,:));
reflected(1,:)=reflected(1,IX);
clear IX

clear I1
clear I2

clear left
clear right

% shock lines must be surjective functions to avoid issues when
% interpolating... let’s remove multi-valued x-positions

dx=zeros(length(incident(1,:))-1,1);
for j=1:length(incident(1,:))-1

dx(j)=incident(1,j+1)-incident(1,j);
end
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I=find(dx<=0);
if ~isempty(I)

incident(:,I(1):end)=[];
end
clear I
clear dx

dx=zeros(length(reflected(1,:))-1,1);
for j=1:length(reflected(1,:))-1

dx(j)=reflected(1,end-j)-reflected(1,end-j+1);
end
I=find(dx>=0);
if ~isempty(I)

reflected(:,1:end-I(1))=[];
end
clear I
clear dx

% interpolate shock lines on x-axis values

I=find(x>=min(reflected(1,:)));
imin=I(1);
clear I
I=find(x>=max(reflected(1,:)));
imax=I(1)-1;
clear I
xr=x(imin:imax);

I=find(x>=min(incident(1,:)));
imin=I(1);
clear I
I=find(x>=max(incident(1,:)));
imax=I(1)-1;
clear I
xi=x(imin:imax);

clear imin
clear imax

yi=interp1(incident(1,:),incident(2,:),xi,’cubic’);
yr=interp1(reflected(1,:),reflected(2,:),xr,’cubic’);

clear incident
clear reflected

if 1==2

figure(1)
hold on

%plot(C(1,I(jj)+1:I(jj+1)-1),C(2,I(jj)+1:I(jj+1)-1),’b*’)
%plot(Co(1,:),Co(2,:),’r*’)
%plot(C(1,:),C(2,:),’b*’)

%plot(left(1,:),left(2,:),’ro-’)
%plot(right(1,:),right(2,:),’ko-’)

%plot(incident(1,:),incident(2,:),’m*’)
%plot(reflected(1,:),reflected(2,:),’y*’)

plot(xr,yr,’b’,’LineWidth’,2)
plot(xi,yi,’r’,’LineWidth’,2)

%plot([xr;xi],[yr;yi],’b.’,’LineWidth’,2,’MarkerSize’,14)

%axis([230 330 0 70])

end

fwrite(fid,single(z(xy(nplane))),’single’); % write xy-p. loc.
fwrite(fid,single(length(xi)),’single’); % write array size
fwrite(fid,single(length(yi)),’single’); % write array size
fwrite(fid,single(length(xr)),’single’); % write array size
fwrite(fid,single(length(yr)),’single’); % write array size

fwrite(fid,single(xi),’single’);
fwrite(fid,single(yi),’single’);
fwrite(fid,single(xr),’single’);
fwrite(fid,single(yr),’single’);

clear xr
clear yr
clear xi
clear yi

end
%pause(0.3)
%close(1)
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fclose(fid); % close binary data where we dumped the shock position
end

D.2 Step 2. Compute mean position

! +++++++1+++++++++2+++++++++3+++++++++4+++++++++5+++++++++6+++++++++7++
! This program computes the average location of the shock system
!
! Emile - Oct. 2008
! Mar. 2009
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

PROGRAM main

IMPLICIT NONE

! :: Declaration section :::::::::::::::::::::::::::::::::::::::::::::::

! parameters

integer, PARAMETER :: sp=kind(0.0E0) ! single
integer, PARAMETER :: dp=kind(0.0D0) ! double

integer, PARAMETER :: nfirst=100100
integer, PARAMETER :: nlast=1400000
integer, PARAMETER :: nfreq=100

integer, PARAMETER :: lbits=1

integer, PARAMETER :: nx=451,ny=151,nz=281

real(sp), PARAMETER :: eps=0.0001

! paths

character(LEN=150) :: path1=’/home/emile/Soton/ControlCenter/IUSTI/XLES/Grid/’
character(LEN=150) :: path2=’/home/emile/Soton/ControlCenter/IUSTI/XLES/

MatScripts/ShockSystem/binaries/’

! dummy variables

integer :: nrec,pos,ierror,nplane

integer :: nxi,nyi,nxr,nyr

integer :: n,i,ii

integer, DIMENSION(1:nx) :: cpi,cpr

real(sp) :: time,tmp

real(dp), DIMENSION(1:nx) :: x
real(sp), DIMENSION(1:nx) :: xg,yig,yrg

real(sp), DIMENSION(:), ALLOCATABLE :: xi,yi,xr,yr

character(LEN=200) file

! :: Main program ::::::::::::::::::::::::::::::::::::::::::::::::::::::

! :: Load global x-axis ::::::::::::::::::::::::::::::::::::::::::::::::

file=’axis’
file=TRIM(path1)//TRIM(file)

WRITE(*,*) ’Loading grid points...’

OPEN(UNIT=10,FILE=file,STATUS=’OLD’,ACTION=’READ’, &
FORM=’UNFORMATTED’,IOSTAT=ierror)

IF (ierror>0) THEN
WRITE(*,*) ’Error! -> could not open grid point data file’, ierror
STOP

END IF

REWIND(10)

READ(10) (x(i),i=1,nx)

CLOSE(10)

xg=x

WRITE(*,*) ’x(1)=’, xg(1), ’x(nx)=’,xg(nx)
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! :: Initialise ::::::::::::::::::::::::::::::::::::::::::::::::::::::::

DO i=1,nx
cpi(i)=0
cpr(i)=0
yig(i)=0.0
yrg(i)=0.0

END DO

! :: Average :::::::::::::::::::::::::::::::::::::::::::::::::::::::::::

nrec=lbits

DO n=nfirst,nlast,nfreq

IF (mod(n,100000).eq.0) THEN
WRITE(*,*) ’n=’,n

END IF

if(n.le.9) then
write(file,’(’’shocksys_’’,i1)’) n

else if (n.le.99) then
write(file,’(’’shocksys_’’,i2)’) n

else if (n.le.999) then
write(file,’(’’shocksys_’’,i3)’) n

else if (n.le.9999) then
write(file,’(’’shocksys_’’,i4)’) n

else if (n.le.99999) then
write(file,’(’’shocksys_’’,i5)’) n

else if (n.le.999999) then
write(file,’(’’shocksys_’’,i6)’) n

else
write(file,’(’’shocksys_’’,i7)’) n

endif

file=TRIM(path2)//TRIM(file)

pos=1

OPEN(11,file=file, status=’old’,form=’unformatted’, &
access=’direct’,recl=nrec)

READ(11,rec=pos) time

!WRITE(*,*) ’time =’, time

! loop over planes

DO nplane=1,5

pos=pos+1
READ(11,rec=pos) tmp
!WRITE(*,*) ’z(plane) =’, tmp

pos=pos+1
READ(11,rec=pos) tmp
nxi=tmp
!WRITE(*,*) ’nxi =’, nxi

pos=pos+1
READ(11,rec=pos) tmp
nyi=tmp
!WRITE(*,*) ’nyi =’, nyi

pos=pos+1
READ(11,rec=pos) tmp
nxr=tmp
!WRITE(*,*) ’nxr =’, nxr

pos=pos+1
READ(11,rec=pos) tmp
nyr=tmp
!WRITE(*,*) ’nyr =’, nyr

ALLOCATE(xi(1:nxi),yi(1:nyi),xr(1:nxr),yr(1:nyr))

DO i=1,nxi
pos=pos+1
READ(11,rec=pos) tmp
xi(i)=tmp

END DO
DO i=1,nyi

pos=pos+1
READ(11,rec=pos) tmp
yi(i)=tmp
!WRITE(*,*) i,xi(i),yi(i)

END DO
DO i=1,nxr

pos=pos+1
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READ(11,rec=pos) tmp
xr(i)=tmp

END DO
DO i=1,nyr

pos=pos+1
READ(11,rec=pos) tmp
yr(i)=tmp

END DO

! Accumulate where possible...

DO i=1,nx
DO ii=1,nxi

IF (abs(xi(ii)-x(i))<eps) THEN
yig(i)=yig(i)+yi(ii)
cpi(i)=cpi(i)+1

END IF
END DO
DO ii=1,nxr

IF (abs(xr(ii)-x(i))<eps) THEN
!IF (xr(ii).eq.x(i)) THEN

yrg(i)=yrg(i)+yr(ii)
cpr(i)=cpr(i)+1

END IF
END DO

END DO

DEALLOCATE(xi,yi,xr,yr)

END DO

CLOSE(11)

END DO

! average

DO i=1,nx
IF (cpi(i).ne.0) THEN

yig(i)=yig(i)/real(cpi(i))
END IF
IF (cpr(i).ne.0) THEN

yrg(i)=yrg(i)/real(cpr(i))
END IF

END DO

file=’shock_avg.bin’

file=TRIM(path2)//TRIM(file)

print*, ’writing single precision file:’,file

nrec=(nx*5)*lbits

OPEN(11,file=file, status=’unknown’,form=’unformatted’, &
access=’direct’,recl=nrec)

WRITE(11,rec=1) xg,yig,yrg,real(cpi),real(cpr)
CLOSE(11)

WRITE(*,*) ’Done!’

END PROGRAM main

D.3 Step 3. Select the data range to clip

% +-----------------------------------------------------------------+ %
% | | %
% | Use the computed mean shock system to pick the best common | %
% | x-range for the shocks | %
% | | %
% | emile :: 06/03/09 | %
% +-----------------------------------------------------------------+ %

% -- clear workspace -- :::::::::::::::::::::::::::::::::::::::::::::::

close all
clear all

% -- parameters -- ::::::::::::::::::::::::::::::::::::::::::::::::::::

nx=451;

dir1=[’/home/emile/Soton/ControlCenter/IUSTI/XLES/MatScripts/’,...
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’ShockSystem/binaries/’];

Inc1=194;
Inc2=293;

Ref1=285;
Ref2=377;

% -- load mean position of the shock system -- ::::::::::::::::::::::::

path=cellstr([dir1,’shock_avg.bin’]);
filename=char(path);
fid=fopen(filename,’rb’);
xg=fread(fid,nx,’single’);
yig=fread(fid,nx,’single’);
yrg=fread(fid,nx,’single’);
cpi=fread(fid,nx,’single’);
cpr=fread(fid,nx,’single’);
fclose(fid);

figure(1)
% ------------
subplot(1,2,1)
hold on
plot(xg,yig,’r’)
plot(xg,yrg,’b’)

plot(xg(Inc1),yig(Inc1),’m*’)
plot(xg(Inc2),yig(Inc2),’m*’)
plot(xg(Ref1),yrg(Ref1),’k*’)
plot(xg(Ref2),yrg(Ref2),’k*’)

% ------------
subplot(1,2,2)
hold on
plot(xg,cpi,’r’)
plot(xg,cpr,’b’)

plot(xg(Inc1),cpi(Inc1),’m*’)
plot(xg(Inc2),cpi(Inc2),’m*’)
plot(xg(Ref1),cpr(Ref1),’k*’)
plot(xg(Ref2),cpr(Ref2),’k*’)

D.4 Step 4. Clip the extracted data

! +++++++1+++++++++2+++++++++3+++++++++4+++++++++5+++++++++6+++++++++7++
! This program writes the shock system positions in the preselected
! x-range
!
! Emile - Mar. 2009
! ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

PROGRAM main

IMPLICIT NONE

! :: Declaration section :::::::::::::::::::::::::::::::::::::::::::::::

! parameters

integer, PARAMETER :: sp=kind(0.0E0)
integer, PARAMETER :: dp=kind(0.0D0)
integer, PARAMETER :: wp=sp

integer, PARAMETER :: lbits=1
integer, PARAMETER :: lbitd=2

integer, PARAMETER :: nfirst=100100 ! first restart file available

integer, PARAMETER :: nt=12999 ! number of files to load
integer, PARAMETER :: nfreq=100 ! number of time steps between

! each snapshots

integer, PARAMETER :: nx=451 ! full x-axis size
integer, PARAMETER :: nxi1=194,nxi2=293 ! extraction region
integer, PARAMETER :: nxr1=285,nxr2=377 ! extraction region

! real(sp), PARAMETER :: eps=0.1

! paths

character(LEN=150) :: path1=’/home/emile/Soton/ControlCenter/IUSTI/XLES/Grid/’
character(LEN=150) :: path2=’/home/emile/Soton/ControlCenter/IUSTI/XLES/
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MatScripts/ShockSystem/binaries/’
character(LEN=150) :: path3=’/home/emile/Soton/ControlCenter/IUSTI/XLES/

MatScripts/ShockSystem/incident/’
character(LEN=150) :: path4=’/home/emile/Soton/ControlCenter/IUSTI/XLES/

MatScripts/ShockSystem/reflected/’

! output arrays

real(sp), DIMENSION(1:nxi2-nxi1+1,1:nt) :: inc1,inc2,inc3,inc4,inc5
real(sp), DIMENSION(1:nxr2-nxr1+1,1:nt) :: ref1,ref2,ref3,ref4,ref5

real(sp), DIMENSION(1:nxi2-nxi1+1) :: xinc
real(sp), DIMENSION(1:nxr2-nxr1+1) :: xref

real(sp), DIMENSION(1:nt) :: t

! dummy variables

integer :: ierror,pos,nplane,nrec

integer :: nxi,nyi,nxr,nyr

integer :: step,n,i,ii

real(sp) :: time,tmp

real(dp), DIMENSION(1:nx) :: x

real(sp), DIMENSION(:), ALLOCATABLE :: xi,yi,xr,yr

character(LEN=200) file

! :: Main program ::::::::::::::::::::::::::::::::::::::::::::::::::::::

! :: Load x-axis :::::::::::::::::::::::::::::::::::::::::::::::::::::::

file=’axis’
file=TRIM(path1)//TRIM(file)

WRITE(*,*) ’Loading grid points...’

OPEN(UNIT=10,FILE=file,STATUS=’OLD’,ACTION=’READ’, &
FORM=’UNFORMATTED’,IOSTAT=ierror)

IF (ierror>0) THEN
WRITE(*,*) ’Error! -> could not open grid point data file’, ierror
STOP

END IF

REWIND(10)

READ(10) (x(i),i=1,nx)

CLOSE(10)

WRITE(*,*) ’x(1)=’, x(1), ’x(nx)=’,x(nx)

DO i=nxi1,nxi2
xinc(i-nxi1+1)=x(i)

END DO
DO i=nxr1,nxr2

xref(i-nxr1+1)=x(i)
END DO

! :: Initialise ::::::::::::::::::::::::::::::::::::::::::::::::::::::::

! step number to load
step=nfirst-nfreq

nrec=lbits

! :: Extract data ::::::::::::::::::::::::::::::::::::::::::::::::::::::

DO n=1,nt

step=step+nfreq

IF(step.LE.9) THEN
WRITE(file,’(’’shocksys_’’,i1)’) step

ELSE IF (step.LE.99) THEN
WRITE(file,’(’’shocksys_’’,i2)’) step

ELSE IF (step.LE.999) THEN
WRITE(file,’(’’shocksys_’’,i3)’) step

ELSE IF (step.LE.9999) THEN
WRITE(file,’(’’shocksys_’’,i4)’) step

ELSE IF (step.LE.99999) THEN
WRITE(file,’(’’shocksys_’’,i5)’) step

ELSE IF (step.LE.999999) THEN
WRITE(file,’(’’shocksys_’’,i6)’) step

ELSE IF (step.LE.9999999) THEN
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WRITE(file,’(’’shocksys_’’,i7)’) step
END IF

file=TRIM(path2)//TRIM(file)

pos=1

OPEN(11,file=file, status=’old’,form=’unformatted’, &
access=’direct’,recl=nrec)

READ(11,rec=pos) time

t(n)=time

! loop over planes

DO nplane=1,5

pos=pos+1
READ(11,rec=pos) tmp
!WRITE(*,*) ’z(plane) =’, tmp

pos=pos+1
READ(11,rec=pos) tmp
nxi=tmp
!WRITE(*,*) ’nxi =’, nxi

pos=pos+1
READ(11,rec=pos) tmp
nyi=tmp
!WRITE(*,*) ’nyi =’, nyi

pos=pos+1
READ(11,rec=pos) tmp
nxr=tmp
!WRITE(*,*) ’nxr =’, nxr

pos=pos+1
READ(11,rec=pos) tmp
nyr=tmp
!WRITE(*,*) ’nyr =’, nyr

ALLOCATE(xi(1:nxi),yi(1:nyi),xr(1:nxr),yr(1:nyr))

DO i=1,nxi
pos=pos+1
READ(11,rec=pos) tmp
xi(i)=tmp

END DO
DO i=1,nyi

pos=pos+1
READ(11,rec=pos) tmp
yi(i)=tmp

END DO
DO i=1,nxr

pos=pos+1
READ(11,rec=pos) tmp
xr(i)=tmp

END DO
DO i=1,nyr

pos=pos+1
READ(11,rec=pos) tmp
yr(i)=tmp

END DO

! store in output arrays if data is available
! if not, set y to 0
IF (nplane==1) THEN

DO i=1,nxi2-nxi1+1
DO ii=1,nxi

IF (xi(ii)==xinc(i)) inc1(i,n)=yi(ii)
END DO

END DO
DO i=1,nxr2-nxr1+1

DO ii=1,nxr
IF (xr(ii)==xref(i)) ref1(i,n)=yr(ii)

END DO
END DO

END IF

IF (nplane==2) THEN
DO i=1,nxi2-nxi1+1

DO ii=1,nxi
IF (xi(ii)==xinc(i)) inc2(i,n)=yi(ii)

END DO
END DO
DO i=1,nxr2-nxr1+1

DO ii=1,nxr
IF (xr(ii)==xref(i)) ref2(i,n)=yr(ii)

END DO
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END DO
END IF

IF (nplane==3) THEN
DO i=1,nxi2-nxi1+1

DO ii=1,nxi
IF (xi(ii)==xinc(i)) inc3(i,n)=yi(ii)

END DO
END DO
DO i=1,nxr2-nxr1+1

DO ii=1,nxr
IF (xr(ii)==xref(i)) ref3(i,n)=yr(ii)

END DO
END DO

END IF

IF (nplane==4) THEN
DO i=1,nxi2-nxi1+1

DO ii=1,nxi
IF (xi(ii)==xinc(i)) inc4(i,n)=yi(ii)

END DO
END DO
DO i=1,nxr2-nxr1+1

DO ii=1,nxr
IF (xr(ii)==xref(i)) ref4(i,n)=yr(ii)

END DO
END DO

END IF

IF (nplane==5) THEN
DO i=1,nxi2-nxi1+1

DO ii=1,nxi
IF (xi(ii)==xinc(i)) inc5(i,n)=yi(ii)

END DO
END DO
DO i=1,nxr2-nxr1+1

DO ii=1,nxr
IF (xr(ii)==xref(i)) ref5(i,n)=yr(ii)

END DO
END DO

END IF

DEALLOCATE(xi,yi,xr,yr)

END DO

CLOSE(11)

END DO

!DO n=1,nt
! write(*,*), t(n),inc1(1,n)
!END DO

! Write data to files

file=’buffer.bin’
file=TRIM(path3)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=(3+(nxi2-nxi1+1)+nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) real(nxi1),real(nxi2),real(nt),xinc,t
CLOSE(11)

file=’inc1.bin’
file=TRIM(path3)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxi2-nxi1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) inc1
CLOSE(11)

file=’inc2.bin’
file=TRIM(path3)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxi2-nxi1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) inc2
CLOSE(11)

file=’inc3.bin’
file=TRIM(path3)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxi2-nxi1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
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WRITE(11,rec=1) inc3
CLOSE(11)

file=’inc4.bin’
file=TRIM(path3)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxi2-nxi1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) inc4
CLOSE(11)

file=’inc5.bin’
file=TRIM(path3)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxi2-nxi1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) inc5
CLOSE(11)

file=’buffer.bin’
file=TRIM(path4)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=(3+(nxr2-nxr1+1)+nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) real(nxr1),real(nxr2),real(nt),xref,t
CLOSE(11)

file=’ref1.bin’
file=TRIM(path4)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxr2-nxr1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) ref1
CLOSE(11)

file=’ref2.bin’
file=TRIM(path4)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxr2-nxr1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) ref2
CLOSE(11)

file=’ref3.bin’
file=TRIM(path4)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxr2-nxr1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) ref3
CLOSE(11)

file=’ref4.bin’
file=TRIM(path4)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxr2-nxr1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) ref4
CLOSE(11)

file=’ref5.bin’
file=TRIM(path4)//TRIM(file)
print*, ’writing single precision file:’,file
nrec=((nxr2-nxr1+1)*nt)*lbits
OPEN(11,file=file, status=’unknown’,form=’unformatted’, &

access=’direct’,recl=nrec)
WRITE(11,rec=1) ref5
CLOSE(11)

WRITE(*,*) ’Done!’

END PROGRAM main
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D.5 Step 5. Remove most of the spurious points

% +-----------------------------------------------------------------+ %
% | | %
% | Remove spurious shock position data | %
% | | %
% | emile :: 06/03/09 | %
% +-----------------------------------------------------------------+ %

% -- clear workspace -- :::::::::::::::::::::::::::::::::::::::::::::::

close all
clear all

% -- parameters -- ::::::::::::::::::::::::::::::::::::::::::::::::::::

dirI=[’/home/emile/Soton/ControlCenter/IUSTI/XLES/MatScripts/’,...
’ShockSystem/incident/’];

dirR=[’/home/emile/Soton/ControlCenter/IUSTI/XLES/MatScripts/’,...
’ShockSystem/reflected/’];

% -- load data -- :::::::::::::::::::::::::::::::::::::::::::::::::::::

path=cellstr([dirI,’buffer.bin’]);
filename=char(path);
fid=fopen(filename,’rb’);
nxi1=fread(fid,1,’single’);
nxi2=fread(fid,1,’single’);
fread(fid,1,’single’);
xi=fread(fid,nxi2-nxi1+1,’single’);
fclose(fid);

path=cellstr([dirR,’buffer.bin’]);
filename=char(path);
fid=fopen(filename,’rb’);
nxr1=fread(fid,1,’single’);
nxr2=fread(fid,1,’single’);
nt=fread(fid,1,’single’);
xr=fread(fid,nxr2-nxr1+1,’single’);
t=fread(fid,nt,’single’);
fclose(fid);

t2=t(1):t(2)-t(1):t(end);
clear t
t=t2;
%clear t2

for nplane=1:5

t=t2;

path=cellstr([dirI,’inc’,num2str(nplane),’.bin’]);
filename=char(path);
fid=fopen(filename,’rb’);
inc=fread(fid,(nxi2-nxi1+1)*nt,’single’);
fclose(fid);
inc=reshape(inc,nxi2-nxi1+1,nt);

path=cellstr([dirR,’ref’,num2str(nplane),’.bin’]);
filename=char(path);
fid=fopen(filename,’rb’);
ref=fread(fid,(nxr2-nxr1+1)*nt,’single’);
fclose(fid);
ref=reshape(ref,nxr2-nxr1+1,nt);

if 1==1

icut1i=0;
icut2i=length(t)+1;

for i=1:length(inc(:,1))

% detect unusual points and set them to zero
% get unbiased mean by removing the zeros
sig=inc(i,:);
I=find(sig==0);
sig(I)=[]; %#ok<FNDSB>
clear I
moy=mean(sig);
sigma=std(sig,1);

sig=inc(i,:);

% detect data points beyond the avg +/- 4*std
I=find(sig>=moy+4*sigma);
inc(i,I)=zeros(size(I));
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clear I

I=find(sig<=moy-4*sigma);
inc(i,I)=zeros(size(I));
clear I

% locate bad data points
I=find(inc(i,:)==0);
tmpo1=inc(i,:);
tmpo1(I)=[];
tmpo=t;
tmpo(I)=[];
clear I

% replace bad points using a linear interpolation
inc(i,:)=interp1(tmpo,tmpo1,t,’linear’);

% t support starts earlier than tmpo... interpolation failed!
if tmpo(1)>t(1)
I=find(t<tmpo(1));
icut1i=max([icut1i,I(end)]);
clear I

end

% t support finishes after tmpo... interpolation failed!
if t(end)>tmpo(end)
I=find(t>tmpo(end));
icut2i=min([icut2i,I(1)]);
clear I

end

if 1==2
figure(1)
hold on
plot(t,sig,’b’)
plot(t,inc(i,:),’r’)

end

clear tmpo
clear tmpo1

end

end

if 1==1

icut1r=0;
icut2r=length(t)+1;

for i=1:length(ref(:,1))

% detect unusual points and set them to zero
% get unbiased mean by removing the zeros
sig=ref(i,:);
I=find(sig==0);
sig(I)=[]; %#ok<FNDSB>
clear I
moy=mean(sig);
sigma=std(sig,1);

sig=ref(i,:);

% detect data points beyond the avg +/- 4*std
I=find(sig>=moy+4*sigma);
ref(i,I)=zeros(size(I));
clear I

I=find(sig<=moy-4*sigma);
ref(i,I)=zeros(size(I));
clear I

% locate bad data points
I=find(ref(i,:)==0);
tmpo1=ref(i,:);
tmpo1(I)=[];
tmpo=t;
tmpo(I)=[];
clear I

% replace bad points using a linear interpolation
ref(i,:)=interp1(tmpo,tmpo1,t,’linear’);

% t support starts earlier than tmpo... interpolation failed!
if tmpo(1)>t(1)
I=find(t<tmpo(1));
icut1r=max([icut1r,I(end)]);
clear I

end
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% t support finishes after tmpo... interpolation failed!
if t(end)>tmpo(end)
I=find(t>tmpo(end));
icut2r=min([icut2r,I(1)]);
clear I

end

if 1==2
figure(1)
hold on
plot(t,sig,’b’)
plot(t,ref(i,:),’r’)

end

clear tmpo
clear tmpo1

end

end

cut=[1:max([icut1i,icut1r]),min([icut2i,icut2r]):length(t)];

t(cut)=[];
inc(:,cut)=[];
ref(:,cut)=[];

%clear cut
clear icut1i
clear icut2i
clear icut1r
clear icut2r

path=cellstr([’./matfiles/incident_shock_plane_’,...
num2str(nplane),’.mat’]);
filename=char(path);
save(filename,’t’,’inc’,’xi’);

path=cellstr([’./matfiles/reflected_shock_plane_’,...
num2str(nplane),’.mat’]);
filename=char(path);
save(filename,’t’,’ref’,’xr’);

end

%figure(1)
%plot(xi,inc(:,:))

%figure(2)
%plot(t,inc(:,:))

figure(99)
plot(t,ref(1:5:end,:))



E. Proof of the phase- and

conditional-average relationships

inherited from hypothesis 6.1

E.1 Proof of corollary 6.1

Starting from the triple decomposition (6.4a), invoking the linear and scalar-conserving

properties of the conditional-averaging operator and assuming that 〈u′′i 〉ε0,∆σ = 0, it is

straightforward to write:

〈ui〉ε0,∆σ =
1

N (Aε0,∆σ)

∫

Aε0,∆σ

(
ūi + ũi + u′′i

)
dt = 〈ũi〉ε0,∆σ + ūi. (E.1)

By introducing hypothesis 6.1 (see (6.5)) into the above equation, one finds:

〈ui〉ε0,∆σ − ūi =
1

N (Aε0,∆σ)

∫

Aε0,∆σ

ũi(ts) dts =
1

N (Aε0,∆σ)

∫

Aε0,∆σ

ũi(ε(ts)) dts (E.2)

Noting that the above integration is performed on the set Aε0,∆σ, by definition of Aε0,∆σ

one can write that:

ε(ts) = ε0 + ϕ(ts)∆σ, (E.3)

where ϕ is a bounded function in [0, 1]. If the phase-fluctuation velocity field ũi(ε) is

continuously differentiable on [ε0, ε0 + ∆σ], Taylor’s theorem with the Lagrange form of

the remainder may be written:

ũi(ε(ts)) = ũi(ε0) + ∆σ q0(ts),

with |q0(ts)| ≤ ϕ(ts) sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ ≤ sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ . (E.4)

The condition that ũi(ε) be continuously differentiable is questionable due to the pres-

ence of shocks, but this is purely a mathematical concern here, since the numerical

velocity fields are differentiated across shockwaves in the process of solving the Navier–

Stokes equations. Thus, we argue that in practice the remainder is well defined and

231
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bounded. Next, (E.4) is used in the integral (E.2):

〈ui〉ε0,∆σ − ūi =
1

N (Aε0,∆σ)

[∫

Aε0,∆σ

ũi(ε0) dts +

∫

Aε0,∆σ

∆σ q0(ts) dts

]
(E.5)

The first integral is trivial since the integrand does not depend on ts. Moreover, given

the definition of N (Aε0,∆σ) in (6.2b), the first term is simply ũi(ε0). The second integral

concerns a bounded function of ts ∈ Aε0,∆σ and is therefore controlled by the supremum

of the function times the integral range. Hence:

〈ui〉ε0,∆σ − ūi = ũi(ε0) + ∆σQ0(Aε0,∆σ), with |Q0(Aε0,∆σ)| ≤ sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ . (E.6)

For simplicity, (E.6) can be expressed in the Landau notation by noting that the remain-

der is of the order of ∆σ:

〈ui〉ε0,∆σ − ūi = ũi(ε0) +O(∆σ). (E.7)

In words, (E.7) simply expresses the idea that on Aε0,∆σ, the phase-fluctuation field ũi

may be approximated by 〈ui〉ε0,∆σ − ūi with an error of the order of ∆σ, provided that

hypothesis 6.1 is satisfied.

E.2 Proof of corollary 6.2

For the second corollary, we still consider that the phase-fluctuation velocity field is

continuously differentiable on [ε0, ε0 + ∆σ] and therefore start from (E.4) to write that

for ts ∈ Aε0,∆σ:

ũi(ε(ts))ũj(ε(ts)) = [ũi(ε0) + ∆σ q0(ts)] [ũj(ε0) + ∆σ s0(ts)] ,

with |q0(ts)| ≤ sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ , |s0(ts)| ≤ sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũj

∂ε

∣∣∣∣ . (E.8)

Equation (E.8) can then be integrated over Aε0,∆σ:

∫

Aε0,∆σ

ũi(ε(ts))ũj(ε(ts)) dts =

∫

Aε0,∆σ

[ũi(ε0) + ∆σ q0(ts)] [ũj(ε0) + ∆σ s0(ts)] dts

(E.9)
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Terms ũi(ε0), ũj(ε0) being independent of ts, and q0(ts), s0(ts) being bounded functions

on Aε0,∆σ, (E.9) becomes:

∫

Aε0,∆σ

ũi(ε(ts))ũj(ε(ts)) dts = [ũi(ε0)ũj(ε0) + ∆σ {Q0(Aε0,∆σ)ũj(ε0)

+S0(Aε0,∆σ)ũi(ε0)}+ ∆σ2M0

]
N (Aε0,∆σ),

with |Q0(Aε0,∆σ)| ≤ sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ , |S0(Aε0,∆σ)| ≤ sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũj

∂ε

∣∣∣∣

and |M0| ≤ sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũi

∂ε

∣∣∣∣ sup
ε∈[ε0,ε0+∆σ]

∣∣∣∣
∂ũj

∂ε

∣∣∣∣ . (E.10)

Using Landau’s notation, the second corollary can be expressed:

∫

Aε0,∆σ

ũi(ε(ts))ũj(ε(ts)) dts = [ũi(ε0)ũj(ε0) +O(∆σ)]N (Aε0,∆σ). (E.11)

E.3 Estimation of the phase-fluctuation stress tensor

Starting with the stress tensor computed from the conditionally-averaged fields,

I =
1

T

N−1∑

k=0

[〈ui〉εmin+k∆σ,∆σ − ūi] [〈uj〉εmin+k∆σ,∆σ − ūj ]N (Aεmin+k∆σ,∆σ), (E.12)

where N = (εmax − εmin) /∆σ with εmax = max (ε(t)), εmin = min (ε(t)), t ∈ [0, T ]; it is

possible to use corollary 6.1 to write:

I =
1

T

N−1∑

k=0

[ũi(εmin + k∆σ) + ∆σQ0(Aεmin+k∆σ,∆σ)] [ũj(εmin + k∆σ)

+∆σS0(Aεmin+k∆σ,∆σ)]N (Aεmin+k∆σ,∆σ), (E.13)

and re-arrange to:

I =
1

T

N−1∑

k=0

[ũi(εmin + k∆σ)ũj(εmin + k∆σ) + ∆σ {Q0(Aεmin+k∆σ,∆σ)ũj(εmin + k∆σ)

+S0(Aεmin+k∆σ,∆σ)ũi(εmin + k∆σ)}
+∆σ2Q0(Aεmin+k∆σ,∆σ)S0(Aεmin+k∆σ,∆σ)

]
N (Aεmin+k∆σ,∆σ), (E.14)

The form (E.10) of corollary 6.2 is introduced in (E.14) to find:

I =
1

T

N−1∑

k=0

∫

Aεmin+k∆σ,∆σ

ũi(ε(ts))ũj(ε(ts)) dts + J, (E.15)
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where:

J =
1

T

N−1∑

k=0

∆σ2 {Q0(Aεmin+k∆σ,∆σ)S0(Aεmin+k∆σ,∆σ)

−M0(Aεmin+k∆σ,∆σ)}N (Aεmin+k∆σ,∆σ). (E.16)

Since the functions Q0, S0, M0 are all bounded, the sum J can be crudely bounded by:

J ≤ ∆σ2

T
M

N−1∑

k=0

N (Aεmin+k∆σ,∆σ), (E.17)

with M a constant taken to be:

M = max
k∈{0,...,N−1}

[
sup

Aεmin+k∆σ,∆σ

|Q0(Aεmin+k∆σ,∆σ)S0(Aεmin+k∆σ,∆σ)|

+ sup
Aεmin+k∆σ,∆σ

|M0(Aεmin+k∆σ,∆σ)|
]
. (E.18)

By definition of N , the sum on all N (Aεmin+k∆σ,∆σ) is simply equal to T so that:

I =
1

T

N−1∑

k=0

∫

Aεmin+k∆σ,∆σ

ũi(ε(ts))ũj(ε(ts)) dts +K∆σ2, with K ≤M. (E.19)

Invoking the additivity properties of the integral, the sum over all the subsetsAεmin+k∆σ,∆σ

of [0, T ] can be changed into the integral over their union:

I =
1

T

∫
N−1

S

k=0

Aεmin+k∆σ,∆σ

ũi(ε(ts))ũj(ε(ts)) dts +K∆σ2. (E.20)

Given the definition of N , the union of the subsets Aεmin+k∆σ,∆σ spans the full time

interval [0, T ] only once, so that (E.20) becomes, using Landau’s notation:

I =
1

T

∫

T
ũi(ε(ts))ũj(ε(ts)) dts

︸ ︷︷ ︸
ũiũj

+O(∆σ2). (E.21)

Therefore, to second order in ∆σ, we have:

ũiũj ≈
1

T

N−1∑

k=0

[〈ui〉εmin+k∆σ,∆σ − ūi] [〈uj〉εmin+k∆σ,∆σ − ūj ]N (Aεmin+k∆σ,∆σ). (E.22)



F. Derivation of the momentum

integral equation

Let us start from the continuity equation and the streamwise component of the momen-

tum equation:

∂ρ

∂t
+
∂ρu

∂x
+
∂ρv

∂y
+
∂ρw

∂z
= 0, (F.1a)

ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρv

∂u

∂y
+ ρw

∂u

∂z
= −∂p

∂x
+

1

Re

[
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z

]
, (F.1b)

τij = µ

(
∂uj

∂xi
+
∂ui

∂xj
− 2

3
δij
∂uk

∂xk

)
. (F.1c)

Equation (F.1b) can be integrated in the wall normal direction up to h (see figure 7.1

for the notations):

∫ h

0

(
ρ
∂u

∂t
+ ρu

∂u

∂x
+ ρw

∂u

∂z

)
dy +

∫ h

0
ρv
∂u

∂y
dy

︸ ︷︷ ︸
A

=

∫ h

0

(
−∂p
∂x

+
1

Re

[
∂τxx

∂x
+
∂τxy

∂y
+
∂τxz

∂z

])
dy. (F.2)

Term A can be integrated by parts and together with (F.1a) gives:

A = [ρuv]h0 −
∫ h

0
u
∂ρv

∂y
dy = −uh

∫ h

0

(
∂ρ

∂t
+
∂ρu

∂x
+
∂ρw

∂z

)
dy

+

∫ h

0
u

(
∂ρ

∂t
+
∂ρu

∂x
+
∂ρw

∂z

)
dy, (F.3)
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where the no-slip boundary condition at y = 0 was used to eliminate ρuv|y=0. Equation

(F.2) can be re-written, using (F.3):

∫ h

0
ρ
∂u

∂t
dy − uh

∫ h

0

∂ρ

∂t
dy +

∫ h

0
u
∂ρ

∂t
dy

︸ ︷︷ ︸
a

+

∫ h

0
ρu
∂u

∂x
dy − uh

∫ h

0

∂ρu

∂x
dy +

∫ h

0
u
∂ρu

∂x
dy

︸ ︷︷ ︸
b

+

∫ h

0
ρw

∂u

∂z
dy − uh

∫ h

0

∂ρw

∂z
dy +

∫ h

0
u
∂ρw

∂z
dy

︸ ︷︷ ︸
c

=

∫ h

0
−∂p
∂x

dy

︸ ︷︷ ︸
d

+
1

Re

∫ h

0

∂τxy

∂y
dy

︸ ︷︷ ︸
e

+
1

Re

∫ h

0

∂τxx

∂x
dy

︸ ︷︷ ︸
f

+
1

Re

∫ h

0

∂τxz

∂z
dy

︸ ︷︷ ︸
g

. (F.4)

To re-arrange terms a to g, we have to commute the integration and derivation operators.

To do so, Leibnitz’s rule is recalled:

∂

∂α

[∫ h

0
f dy

]
=

∫ h

0

∂f

∂α
dy + f(y = h)

∂h

∂α
− f(y = 0)

∂0

∂α︸︷︷︸
= 0

. (F.5)

Term a can be re-arranged using Leibnitz’s rule:

a =

∫ h

0

∂ρu

∂t
dy − uh

∫ h

0

∂ρ

∂y
dy =

∂

∂t

[∫ h

0
ρudy

]
− ρhuh

∂h

∂t

− uh

(
∂

∂t

[∫ h

0
ρdy

]
− ρh

∂h

∂t

)

=
∂

∂t

[∫ h

0
ρudy

]
− uh

∂

∂t

[∫ h

0
ρdy

]
.

Equation (7.2a) can be re-arranged:

ρhuhδ1 = ρhuh

∫ h

0

(
1− ρu

ρhuh

)
dy =

∫ h

0
ρhuh

(
1− ρu

ρhuh

)
dy = ρhuhh−

∫ h

0
ρudy,

where the independence of ρh and uh on y (uh = uh(x, z, t)) was used. The same

manipulation can be performed with (7.2d) and term a becomes:

a = ρh (h− δ1)
∂uh

∂t
+ uh

∂

∂t
[ρh(δρ − δ1)] . (F.6)
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Similarly, term b is re-arranged using Leibnitz’s rule:

b =

∫ h

0

∂ρuu

∂x
dy − uh

∫ h

0

∂ρu

∂x
dy =

∂

∂x

[∫ h

0
ρuudy

]
− ρhuhuh

∂h

∂x

− uh

(
∂

∂x

[∫ h

0
ρudy

]
− ρhuh

∂h

∂x

)

=
∂

∂x

[∫ h

0
ρuudy

]
− uh

∂

∂x

[∫ h

0
ρudy

]
.

From (7.2b), one finds:

ρhu
2
hδ2 = ρhu

2
h

∫ h

0

ρu

ρhuh

(
1− u

uh

)
dy = uh

∫ h

0
ρudy −

∫ h

0
ρuudy

= ρhu
2
h (h− δ1)−

∫ h

0
ρuudy,

so that b becomes:

b = ρhuh (h− δ1)
∂uh

∂x
− ∂

∂x

[
ρhu

2
hδ2
]
. (F.7)

Invoking Leibnitz’s rule again, c is rearranged:

c =

∫ h

0

∂ρuw

∂z
dy − uh

∫ h

0

∂ρw

∂z
dy =

∂

∂z

[∫ h

0
ρuw dy

]
− ρhuhwh

∂h

∂z

− uh

(
∂

∂z

[∫ h

0
ρw dy

]
− ρhwh

∂h

∂z

)

=
∂

∂z

[∫ h

0
ρuw dy

]
− uh

∂

∂z

[∫ h

0
ρw dy

]
. (F.8)

Note that h is, by construction, allowed to depend on z but is independent of x, so that

term d becomes:

d = −
(
∂

∂x

[∫ h

0
p dy

]
− ph

∂h

∂x

)
= − ∂

∂x

[∫ h

0
p dy

]
.

From (7.2c), noting that ph does not depend on y, one finds:

phδp = ph

∫ h

0

(
1− p

ph

)
dy = phh−

∫ h

0
p dy,

so that:

d =
∂

∂x
[ph (δp − h)] . (F.9)
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Term e can be easily integrated to give (using the definition (7.3)):

e =
1

Re

{[
µ

(
∂v

∂x
+
∂u

∂y

)]

y=h

−
[
µ
∂u

∂y

]

y=0

}
=
µh

Re

(
∂v

∂x

∣∣∣∣
y=h

+
∂u

∂y

∣∣∣∣
y=h

)

− 1

2
Cfρhu

2
h. (F.10)

Terms f and g are rearranged, using Leibnitz’s rule and the independence of h on x:

f =
1

Re

(
∂

∂x

[∫ h

0
τxx dy

]
− τxx|y=h

∂h

∂x

)
=

1

Re

∂

∂x

[∫ h

0
τxx dy

]
, (F.11)

g =
1

Re

(
∂

∂z

[∫ h

0
τxz dy

]
− τxz|y=h

∂h

∂z

)
. (F.12)

Using (F.6) to (F.12) in (F.4) leads to (7.1):

ρh (h− δ1)
[
∂uh

∂t
+ uh

∂uh

∂x

]
+ uh

∂

∂t
[ρh(δρ − δ1)]−

∂

∂x

[
ρhu

2
hδ2
]
+

∂

∂z

[∫ h

0
ρuw dy

]

− uh
∂

∂z

[∫ h

0
ρw dy

]
=

∂

∂x
[ph (δp − h)] +

µh

Re

[
∂v

∂x

∣∣∣∣
y=h

+
∂u

∂y

∣∣∣∣
y=h

]
− 1

2
Cfρhu

2
h

+
1

Re

∂

∂x

[∫ h

0
τxx dy

]
+

1

Re

(
∂

∂z

[∫ h

0
τxz dy

]
− τxz|y=h

∂h

∂z

)
. (F.13)



G. Series expansions of the

oblique-shock relations

G.1 Expansion of sin2(ι + θ)

To derive the following series expansions in terms of η/h0, the notations presented in

figure 7.6 will be used. From this figure, one can write the geometrical relations:

tanα =
h0

l0
, (G.1a)

sin ι =
h0 + η√

(h0 + η)2 + (l0 − ε+ s)2
, (G.1b)

cos ι =
l0 − ε+ s√

(h0 + η)2 + (l0 − ε+ s)2
. (G.1c)

From (7.14) and (7.15) it is straightforward to show that:

s− ε = η

[
1− k
k tan β

]

︸ ︷︷ ︸
K0

. (G.2)

From trigonometric identities, one can write:

sin2 (ι+ θ) = sin2 ι cos2 θ + cos2 ι sin2 θ + sin ι cos ι sin (2θ) . (G.3a)

Using (G.1 b,c) and (G.2),

sin2 (ι+ θ) =
1

h2
0 + η2 + 2h0η + l20 +K2

0η
2 + 2l0K0η

{(
h2

0 + η2 + 2h0η
)
cos2 θ

+
(
l20 +K2

0η
2 + 2l0K0η

)
sin2 θ

+
(
h0l0 + h0K0η + l0η +K0η

2
)
sin (2θ)

}
. (G.3b)
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Upon multiplying both the numerator and denominator of the RHS of (G.3b) by 1/h2
0

and defining q ≡ η/h0, (G.3b) becomes:

sin2 (ι+ θ) =
1

1 + q2 + 2q + (l0/h0)2 +K2
0q

2 + 2(l0/h0)K0q

{(
1 + q2 + 2q

)
cos2 θ

+
(
(l0/h0)

2 +K2
0q

2 + 2(l0/h0)K0q
)
sin2 θ

+
(
l0/h0 +K0q + (l0/h0)q +K0q

2
)
sin (2θ)

}
. (G.3c)

Substituting (G.1a) into the above equation gives:

sin2 (ι+ θ) =
1

1 + q2 + 2q + 1/ tan2 α+K2
0q

2 + 2K0q/ tanα

{(
1 + q2 + 2q

)
cos2 θ

+
(
1/ tan2 α+K2

0q
2 + 2K0q/ tanα

)
sin2 θ

+
(
1/ tanα+K0q + q/ tanα+K0q

2
)
sin (2θ)

}
. (G.3d)

Factorising (G.3d) by 1/(1 + 1/ tan2 α) and noting that sin2 α = 1/(1 + 1/ tan2 α), one

finds:

sin2 (ι+ θ) =
sin2 α

1 + 2C1q + C2q2
{(

1 + 2q + q2
)
cos2 θ

+
(
1 + 2K1q +K2

1q
2
)
sin2 θ/ tan2 α

+
(
1 + q (1 +K1) +K1q

2
)
sin (2θ) / tanα

}
, (G.3e)

where C1 ≡
(
K1 + tan2 α

)
/
(
1 + tan2 α

)
, C2 ≡

(
K2

1 + tan2 α
)
/
(
1 + tan2 α

)
and K1 ≡

K0 tanα. If the study is restricted to shock oscillations such that q ≪ 1, one can expand

the fractional term, i.e. :

1

1 + 2C1q + C2q2
= 1− 2C1q +

(
4C2

1 −C2

)
q2 +O(q3). (G.4)

Using (G.4) in (G.3e) and retaining only terms up to the first order in q, one finds:

sin2 (ι+ θ) = sin2 α
{
[1 + 2q (1− C1)] cos

2 θ

+ [1 + 2q (K1 − C1)] sin
2 θ/ tan2 α

+ [1 + q (1 +K1 − 2C1)] sin (2θ) / tanα}+O(q2), (G.5a)

which upon regrouping terms of similar orders gives:

sin2 (ι+ θ) =

sin2 (α+ θ)︷ ︸︸ ︷
sin2 α cos2 θ + cos2 α sin2 θ + sin (2θ) sinα cosα

+
{
2 (1−C1) cos2 θ sin2 α+ 2 (K1 − C1) sin2 θ cos2 α

+ (1 +K1 − 2C1) sin (2θ) sinα cosα} q +O(q2). (G.5b)
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It is relatively straightforward to see that K1 − C1 = sin2 α (K1 − 1) and 1 − C1 =

(1−K1) cos2 α, which if combined gives 1 + K1 − 2C1 = (1−K1) cos (2α) using the

relation cos (2α) = cos2 α− sin2 α. Based on those remarks and after few manipulations

of trigonometric identities, (G.5b) simplifies to:

sin2 (ι+ θ) = sin2 (α+ θ) +

{
1−K1

2
sin (2α) sin (2α+ 2θ)

}
q +O(q2). (G.5c)

Using the definitions of K1 and K0, (G.5c) becomes:

sin2 (ι+ θ) = sin2 (α+ θ)

+
1

2

[
1 +

tanα

tan β

(
1− 1

k

)]
sin (2α) sin (2α+ 2θ) q +O(q2). (G.5d)

If we now assume that k can be modelled according to (7.31), (G.5d) becomes:

sin2 (ι+ θ) = sin2 (α+ θ) +
1

2
κ(α, β, θ) q +O(q2) with,

κ(α, β, θ) =
tanα+ tan β

tan β (1− 1/ tanα)− 1
sin (2α) sin [2 (α+ θ)] . (G.6)

G.2 Expansion of p3/p1

The pressure in region 3 varies according to:

p3

p1
=
p+
2

p1

{
1 +

2γ

1 + γ

[
M2

2 sin2(ι+ θ)− 1
]}

. (G.7)

Using (G.6), (G.7) can be expanded as:

p3

p1
=
p+
2

p1

{
1 +

2γ

1 + γ

[
M2

2

(
sin2 (α+ θ) +

1

2
κ(α, β, θ)

η

h0

)
− 1

]}
+O

(
η2

h2
0

)
, (G.8a)

where the mean pressure in region 3 (i.e. p̄3) can be identified:

p3

p1
=
p̄3

p1
+
p+
2

p1

γ

1 + γ
M2

2κ(α, β, θ)
η

h0
+O

(
η2

h2
0

)
. (G.8b)

Hence:
p3

p1
=
p̄3

p1
+A

η

h0
+O

(
η2

h2
0

)
, with A =

p+
2

p1

γκM2
2

1 + γ
. (G.9)
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G.3 Expansion of ρ3/ρ1

The density in region 3 varies according to:

ρ3

ρ1
=
ρ+
2

ρ1

{
(γ + 1) M2

2 sin2 (ι+ θ)

2 + (γ− 1) M2
2 sin2 (ι+ θ)

}
. (G.10)

Substituting (G.6) into (G.10) gives:

ρ3

ρ1
=
ρ+
2

ρ1

[
a0

b0
+

γ + 1

2b0
M2

2κ q +O(q2)

] [
1 +

γ− 1

2b0
M2

2κ q +O(q2)

]−1

, (G.11a)

where a0 ≡ (γ + 1) M2
2 sin2 (α+ θ), and b0 ≡ 2 + (γ− 1) M2

2 sin2 (α+ θ). The term with

power −1 can be expanded, leading to:

ρ3

ρ1
=

ρ+
2

ρ1

[
a0

b0
+

γ + 1

2b0
M2

2κ q +O(q2)

] [
1− γ− 1

2b0
M2

2κ q +O(q2)

]
, (G.11b)

=
ρ+
2

ρ1

a0

b0

[
1− γ− 1

2b0
M2

2κ q +
γ + 1

2a0
M2

2κ q

]
+O(q2). (G.11c)

Noting that a0/b0 = ρ̄3/ρ
+
2 , (G.11c) can be written:

ρ3

ρ1
=
ρ̄3

ρ1
+B

η

h0
+O

(
η2

h2
0

)
,

with B = κ

[
1

2 sin2 (α+ θ)
− (γ− 1) M2

2

4 + 2 (γ− 1) M2
2 sin2 (α+ θ)

]
ρ̄3

ρ1
. (G.12)

G.4 Expansion of M3/M1

The Mach number in region 3 is computed according to:

M3

M1
=

1

M1 sin ι

√
1 + (1/2) (γ− 1) M2

2 sin2 (ι+ θ)

γM2
2 sin2 (ι+ θ)− (γ− 1) /2

. (G.13)

Substituting (G.6) and denoting κ(α, β, 0) by κ0, one finds:

M3

M1
=

1

M1

[
sin2 α+

1

2
κ0 q +O(q2)

]− 1
2
[
1 +

γ− 1

2
M2

2

(
sin2 (α+ θ) +

1

2
κ q +O(q2)

)] 1
2

×
[
1− γ

2
+ γM2

2

(
sin2 (α+ θ) +

1

2
κ q +O(q2)

)]− 1

2

. (G.14a)
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Each terms in powers of ±1/2 can be expanded up to the first order:

M3

M1
=

1

M1

[
1

sinα
− κ0

4 sin3 α
q +O(q2)

] [√
b0
2

+
(γ− 1) M2

2κ

8
√
b0/2

q +O(q2)

]

×
[

1√
c0
− γM2

2κ

4 c
3/2
0

q +O(q2)

]
, (G.14b)

where b0 is the same as in (G.11a) and c0 = (1 − γ)/2 + γM2
2 sin2 (α+ θ). Regrouping

terms of similar orders in q, one finds:

M3

M1
=

M3

M1

{
1 +

1

4

[
(γ− 1) M2

2κ

b0
− γM2

2κ

c0
− κ0

sin2 α

]
q

}
+O(q2), (G.14c)

where M3 =
√
b0/(2c0 sin2 α). Hence:

M3

M1
=

M3

M1
+ C

η

h0
+O

(
η2

h2
0

)
,

with C =
M3

M1

{
κ

[
(γ− 1) M2

2

8 + 4 (γ− 1) M2
2 sin2 (α+ θ)

− γM2
2

2 (1− γ) + 4γM2
2 sin2 (α+ θ)

]

− (tanα+ tanβ) cos2 α

tan β (1− 1/ tanα)− 1

}
(G.15)

G.5 Expansion of ρ3u3(1− u3/u1)/(ρ1u1)

To expand ρ3u3(1− u3/u1)/(ρ1u1), let us first note that:

ρ3u3

ρ1u1

(
1− u3

u1

)
=

M3

M1

(√
ρ3p3

ρ1p1
− M3p3

M1p1

)
. (G.16)

Using (G.9), (G.12) and (G.15), (G.16) becomes:

ρ3u3

ρ1u1

(
1− u3

u1

)
=

[
M3

M1
+ C q +O(q2)

]{[(
ρ̄3

ρ1
+B q +O(q2)

)(
p̄3

p1
+Aq +O(q2)

)] 1
2

−
(

M3

M1
+C q +O(q2)

)(
p̄3

p1
+Aq +O(q2)

)}
. (G.17a)

Expanding the square root and the products inside the curly brackets leads to:

ρ3u3

ρ1u1

(
1− u3

u1

)
=

[
M3

M1
+ C q +O(q2)

]{√
ρ̄3p̄3

ρ1p1
+

1

2

√
ρ1p1

ρ̄3p̄3

(
ρ̄3

ρ1
A+

p̄3

p1
B

)
q

−M3p̄3

M1p1
−
(

M3

M1
A+

p̄3

p1
C

)
q +O(q2)

}
. (G.17b)
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The last product is then expanded to give:

ρ3u3

ρ1u1

(
1− u3

u1

)
=

M3

M1

(√
ρ̄3p̄3

ρ1p1
− M3p̄3

M1p1

)
+

M3

M1

{
1

2

√
p1ρ̄3

p̄3ρ1
A+

1

2

√
ρ1p̄3

ρ̄3p1
B

−M3

M1
A− p̄3

p1
C +

M1

M3

C

(√
ρ̄3p̄3

ρ1p1
− M3p̄3

M1p1

)}
q

+O(q2). (G.17c)

The first term in (G.17c) is ρ̄3ū3(1− ū3/u1)/(ρ1u1), so that:

ρ3u3

ρ1u1

(
1− u3

u1

)
=

ρ̄3ū3

ρ1u1

(
1− ū3

u1

)
+

M3

M1

{(
1

2

√
p1ρ̄3

p̄3ρ1
− M3

M1

)
A+

1

2

√
ρ1p̄3

ρ̄3p1
B

+C

(
M1

M3

√
ρ̄3p̄3

ρ1p1
− 2

p̄3

p1

)}
q +O(q2). (G.17d)

Hence:

ρ3u3

ρ1u1

(
1− u3

u1

)
=
ρ̄3ū3

ρ1u1

(
1− ū3

u1

)
+D

η

h0
+O

(
η2

h2
0

)
,

with D =
M3

M1

{(
1

2

√
p1ρ̄3

p̄3ρ1
− M3

M1

)
A+

1

2

√
ρ1p̄3

ρ̄3p1
B +

(
M1

M3

√
ρ̄3p̄3

ρ1p1
− 2

p̄3

p1

)
C

}
,

(G.18)

where A, B and C are defined in (G.9), (G.12) and (G.15).
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particle image velocimetry measurements of oblique shock reflection with separation.

AIAA Journal, 46(6).

Dupont, P., Piponniau, S., Sidorenko, A., and Debiève, J.-F. (January 2007). Investiga-
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