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Abstract

We consider string vacua formed by compactifying Type II string theories on

toroidal orbifolds and generalised Calabi-Yau manifolds and their transformations

under a set of non-perturbative dualities. The dualities are the Type IIA-IIB

exchanging T duality, the self-symmetry of Type IIB S duality, the non-trivial

combination of the two, U duality, and the generalisation of T duality to include

Calabi-Yaus, mirror symmetry. The requirement of the effective theory super-

potential being invariant under these dualities is used to justify additional fluxes

which do not descend via compactification from the ten dimensional action, which

form an N = 2 theory. Their non-geometric structures, Bianchi constraints and

tadpoles are determined and then classified in terms of modular S duality induced

multiplets. The Z2 × Z2 orientifold is used as an explicit example of the general

methods, with N = 1 Type IIB non-geometric vacua which possess T and S du-

ality invariance also constructed. These are then used to motivate the existence

of an exchange between moduli spaces on self mirror dual manifolds with N = 2.

Such an exchange is seen to result in flux structures which are schematically the

same as the standard formulation but with inequivalent flux constraints.
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Chapter 1

Introduction

1.1 Gravity and The Standard Model

The physics of the Twentieth Century has been dominated by two areas of

research; the description of gravity by general relativity, dominant at cosmo-

logical scales, and the description of the three forces dominant at subatomic

scales; electromagnetism, the weak force and the strong force, by quantum

field theory.

Einstein’s development of general relativity in 1915, building upon his

work in special relativity in 1905, views gravity as the deformation of the

geometry of space-time. The path traced out by an massive object is not

viewed as it being ‘tugged’ by gravity but rather that it traces out a geodesic

in space-time, the shortest path between its source and its destination. An

infinitesimal space-time interval is defined by a generalisation of the Eu-

clidean Pythagorian formula, ds2 = gabdx
adxb, with gab being the metric of

the space-time. In four dimensional Euclidean space the metric is positive

definite with gab = δab, the Kronecker Delta of signature (+ + ++), and in

special relativity gab = ηab, the Lorentzian metric of signature (− + ++).

1



General relativity linked the behaviour of space-time (and thus gravity) to

the contents of the spacetime, such as energy and matter, via the Einstein

field equations, written in terms of the metric dependent tensor Gab(g).

Gab(g) ≡ Rab(g)− 1

2
R(g)gab + Λgab Gab = 8πTab (1.1.1)

The conservation of energy and momentum follow from the constraint∇bG
ab =

∇bT
ab = 0. ∇a is a covariant derivative whose connection is generally set

to be the Levi-Cevita connection, making it ‘compatible’ with the metric,

∇agbc = 0. The Ricci tensor Rab and scalar R = gabRab are dependent on the

second derivatives of the metric, being defined by the Riemann curvature

tensor Ra
bcd, a measure of the non-commutativity of covariant derivatives.

[ ∇a , ∇b ] ξc = Rc
dab ξ

d (1.1.2)

With the curvature tensor defined in terms of [ ∇a , ∇b ] it contains first and

second derivatives of the metric. Since the stress-energy tensor Tab is defined

by the matter content of space it follows that the Einstein field equations

form a set of second order partial derivatial equations on the metric. Of

particular phenomenological interest are those cases where Tab = 0 as they

represent a universe without matter. The Einstein field equations reduce to

Gab = 0 and from which it follows that gabGab = 0 and the Ricci scalar is

dependent upon Λ, the cosmological constant.

0 = gabGab = −R + 4Λ ⇒ R = 4Λ (1.1.3)

For the majority of the Twentieth Century it was believed that Λ = 0 but

following observations of supernovae in the 1990s it was determined that

Λ > 0 and the universe is de Sitter over large distances. Over cosmo-

logical distances the domination of gravity has made general relativity the

defacto model for cosmologists but over shorter distances, particularly the

2



subatomic, the effects of gravity are so weak that it is largely neglected and

instead quantum field theory is used.

Maxwell’s unification of electric and magnetic effects into a single formal-

ism, electromagnetism, was the theoretical completion of the experimental

work done by Faraday in the mid Nineteenth Century. Though initially done

using the quaternions it was later reformulated into a gauge theory. A point

particle has associated to it a vector field Aa and from which a field strength

Fab can be defined by ∂[aAb]. Such a quantity is invariant under transforma-

tions Aa → Aa+∂aξ for some differentiable function ξ(xa) and any quantity

built from Fab will thus be gauge invariant. Maxwell’s equations and thus

electromagnetism follow from the Lagrangian density defined by Fab.

LEM = − 1

e2
FabF

ab (1.1.4)

The covariant and contravariant indices of the F differ by the metric and so

the extension of Maxwell’s equations in flat space-time to curved space-time

is forthcoming.

LEM = − 1

e2
FabFcdg

acgbd (1.1.5)

Over short distances, in the laboratory, the approximation gab ≈ ηab is suf-

ficient. However, by the beginning of the Twentieth Century a number of

phenomena had been observed which could not be explained by Maxwell’s

formulation of electromagnetism, in flat or curved space. One such phenom-

ena was the structure of the atom. Rutherford deduced, by means of firing

alpha particles at gold, that the atom had the majority of its mass con-

centrated in a small, positively charged, central region and Thompson had

discovered that much lighter, negatively charged, particles flittered about
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the edge of the atom and could, in some cases, be stripped off. Such par-

ticles, the electrons, appeared to be circulating around the atom in curved

paths but Maxwell’s work predicted any accelerating charge radiates energy,

yet atoms were stable. This problem was resolved by the work of people such

as Planck, Heisenberg, Bohr, Schrodinger and Dirac, who deduced phenom-

ena on sub-atomic scales did not exchange energy in continuous, infinitely

divisible, portions but in multiples of quanta. The size of these quanta

were determined by the properties of operators within the theory, namely

the measure of the non-commutativity of the position x̂ and momentum p̂

operators in terms of a quantity h, Planck’s Constant.[
x̂ , p̂

]
= i~ (1.1.6)

Classical predictions could be obtained by taking the h → 0 limit and the

precise value of h was determined by Planck’s analysis of black body spectra.

Initially this work was done without regard for special relativity but in the

1920s Dirac developed the special relativity extension of quantum mechan-

ics, quantum field theory. A procedure was developed whereby a classical

field theory could be ‘quantised’ by use of non-commutative operators. The

position and momentum operators of non-relativistic quantum mechanics

are conjugate variables and other conjugate field pairings obey the same

general form.[
φ(x, t) , Φ(y, t)

]
= i~ δ(3)(x− y) Φ(x, t) ≡ ∂L

∂φ̇
(1.1.7){

ψ(x, t) , Ψ(y, t)
}

= i~ δ(3)(x− y) Ψ(x, t) ≡ ∂L
∂ψ̇

(1.1.8)

The φ are bosonic fields and ψ fermionic and thus obey commutation and

anticommutation relations, respectively. This quantisation method applied

to electromagnetism, to construct quantum electrodynamics, accounted for
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high precision experiments such as the g − 2 factor of the electron or the

Lamb shift in emission spectra. With the advent of high energy colliders

distances smaller than the nucleus could be probed and it was discovered

that additional forces, not just electromagnetism, operated over such scales.

Nucleons were found to be composed of three quarks which are bound to-

gether by self interacting massless gauge bosons named gluons. Furthermore,

nuclear beta decays were explained as one of these quarks emitting an ad-

ditional kind of gauge boson, one with mass, which then promptly decayed

into a pair of leptons. The framework used for electromagnetism was insuf-

ficient as it could not account for massive gauge bosons or self interacting

massless gauge bosons. This was solved by generalising electromagnetism to

other gauge connections. In electromagnetism this is Da = ∂a+iAa and thus

[Da, Db] = ∂[aAb] = Fab. This represents the simplest case of a more general

construction of gauge theories, since it assumes [Aa, Ab] = 0. Upgrading the

gauge connection to be Lie algebra valued1 for some Lie algebra g, generated

by T τ , a non-abelian field strength is obtained.[
Da , Db

]
=
(
∂[aA

τ
b] + f τσρAσaA

ρ
b

)
T τ ≡ F τ

abT
τ (1.1.9)

This approach follows much the same schematic methodology as the descrip-

tion of curvature of gravity. The general relativity description of gravity is

formulated through the use of covariant derivatives whose connections are

metric dependent while gauge theories are formulated by covariant deriva-

tives whose connections are gauge field dependent. The strong force is de-

scribed by the g = su(3) case, known as quantum electrodynamics, and the

weak force by g = su(2) and the combination of these three into a single

theory is now known as the standard model. The fact this method applies so

1In the case of electromagnetism it is Lie algebra valued but for u(1) and thus has vanishing

structure constant.
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readily to the electromagnetic, weak and strong forces prompted a search for

a single gauge group within which to unify the three forces. In the late 1960s

and early 1970s partial success was had with the unification of the electro-

magnetic and weak forces into the electroweak force. Below approximately

90GeV the two forces are separate, with electromagnetism having a U(1)

gauge symmetry. Above the unification scale the three weak bosons and the

electromagnetic photon obtain an enhanced SU(2) × U(1) and form mass-

less superpositions. This is known as the electroweak model. By computing

the gauge coupling running for the electroweak and strong forces the energy

scale at which their unification might occur can be estimated and is of the

order 1016 GeV. Though far beyond any conceivable direct experimentation,

such gauge unification groups as SU(5) have already been excluded from be-

ing the unification group of the electroweak and strong forces as it predicts

too short a lifetime for the proton, due to massive gauge bosons mediating

non-SM processes. All of these forces are ‘renormalisable’, in that they re-

quire only finitely many inputs to make viable physical predictions over all

possible energy ranges. Non-renormalisable theories require infinitely many

inputs to make physical predictions if they are to be applied at all possible

energy scales and thus do not have useful predictive power. However, not all

renormalisable theories are consistent and not all non-renormalisable theo-

ries are without use. As a model on its own, quantum electrodynamics has

an inconsistency due to its Landau pole, the running coupling of the theory

flows to an infinite value at a finite energy scale. By embedding it within the

electroweak model the gauge unification at 90 GeV alters the gauge running

and removes the Landau pole.

Despite the similarity between the formulation of gravity within general
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relativity and the field theories of the SM, as well as the success in unifying

the gauge theories, there are a number of crucial differences between general

relativity and the standard model. The most important of these is the

non-renormalisability of gravity. This follows from power counting of the

gravitational coupling in the Einstein-Hilbert action of general relativity.

LG =
1

G

√
gR (1.1.10)

With units of (length)2 perturbation series in G are not valid at high energy

if the quantisation process is done in the same manner as used for the fields

of the standard model.[
gab(x, t) , pcd(y, t)

]
= i~ δ(3)(x− y) pcd ≡

∂L
∂(∂τgcd)

(1.1.11)

This does not preclude the usefulness of general relativity as an effective

theory, valid in a particular range of energies (or length scales), in a sim-

ilar way to quantum electrodynamics being valid for low energy processes

without regard to electroweak unification. Experiments probing the effect of

gravity from cosmological distances of order 1026 metres down to 10−4 me-

tres confirm the accuracy of general relativity. The lack of a quantised model

of gravity, to explain the interaction of gravitational quanta, gravitons, with

other particles on energy scales of 1018 GeV is a theoretical stumbling block.

A number of different approaches have been considered for the development

of a short range, high energy, gravitational theory whose large distance limit

is general relativity, including loop quantum gravity [1], twistor theory [2],

non-commutative geometry [3] and string theory, which we will consider in

this thesis.
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1.2 String Theory

Despite finding considerable applications in the realms of quantum gravity,

string theory began as an attempt to understand the behaviour of quarks

inside nucleons under the strong force, before and during the advent of

quantum chromodynamics. Experiments had found that the strength of

the coupling between two quarks increased with distance, in contrast to the

more familiar inverse square law of classical electromagnetism and gravity.

The behaviour of this coupling was found to be linear with distance before

suddenly disappearing, with the quark pair splitting and pair producing

new partners for themselves. This was noted to have the same qualitative

behaviour as a string or spring stretching between the quarks before even-

tually snapping once too much energy was introduced into the system. The

mass spectra of mesons and baryons were found to follow the Regge slope

behaviour of strings under tension [4]. This and the fact that the symme-

try between s and t channel meson interactions could be viewed as closed

strings scattering off one another [5] led to the initial idea that fundamental

processes might be described by extended objects. However, the flux tube

interpretation of quark couples within quantum chromodynamics demon-

strated itself to be a superior model of the strong force and string theory,

as a model of the strong force, was no longer a mainstream topic of research.

Development in the examination of wave mode mechanics on strings,

both open and closed, continued independently of the research into standard

model processes during the early 1970s. The Lagrangian for the oscillations2,

Xµ(σα), on a string with tension 1
α′

was well known from classical mechanics,

2σα = (τ, σ), the two parameters for the worldsheet swept out by the string.
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being the two dimensional extension of the concept of a worldline swept out

by a particle, the Nambu-Goto action.

S = T

∫
d2σ
√
|det(gαβ)| = 1

α′

∫
d2σ
√
|det(ηµν∂αXµ∂βXν)| (1.2.1)

The presence of a square root makes quantisation difficult and this was

avoided by using the classically equivalent Polyakov action [6], which intro-

duced a non-physical metric field h. Upon using the equation of motion

for h to remove it from the integrand the Polyakov action reduced to the

Nambu-Goto action. Additional advantages included manifest diffeomor-

phic, Poincare and Weyl conformal invariance which could be used to reduce

the action to a particular case, with hαβ = ηαβ.

SX =
1

2πα′

∫
d2σ
√
hhαβgµν∂αX

µ∂βX
ν =

1

2πα′

∫
d2σ ∂αXµ∂αXµ (1.2.2)

Applying the same quantisation processes to these bosonic oscillations re-

sults in a first quantised theory where the modes on the string are quantised

but the string is not.[
Xµ(τ, σ) , Πν(τ, σ′)

]
= i~ ηµνδ(σ − σ′) Πµ(τ, σ) ≡ ∂L

∂Ẋµ
(1.2.3)

Following through the implications of such a quantisation procedure it was

found that in order to prevent anomalies in the conformal symmetry present

in the Polyakov action the number of space-time dimensions the oscillations

exist within must be set to a particular value, twenty six [7]. Though a pre-

diction unique compared to other quantum field theories, this is markedly

different from the number of space-time dimensions observed in experiments,

on any scale, presenting an aesthetic as well as technical problem for the the-

ory. Further issues develop upon considering the tower of states formed by

the quantisation procedure. A string without oscillations was regarded as the
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quantum mechanical ground state but it was found to be tachyonic, throw-

ing the entire consistency of the theory into a questionable light. However,

the next set of states in the mass tower, those which are massless, provided

motivation for further work due to them containing a massless spin 2 par-

ticle which obeyed the Einstein field equations, the graviton. Not only did

string theory stipulate the number of space-time dimensions, it required the

existence of gravity also. The existence of the tachyonic ground state was

remedied by the inclusion of fermionic modes on the string, which allowed

for the existence of supersymmetry. While the number of space-time dimen-

sions is also altered it still requires the existence of extra dimensions. A

number of choices exist in how these fermionic modes can be added into the

bosonic theory and of primary interest to this work are the Type II super-

string theories formed of closed strings whose modes are supersymmetric.

1.3 Type II String Theories

The field theory of open strings with both fermionic ψµ and bosonic Xν

modes can be described by adding a fermionic set of terms to the preexisting

bosonic ones. It is convenient to define the complexified coordinate z =

σ1 + iσ2 and ∂ ≡ ∂z and likewise for its conjugate.

S = SX + Sψ =
1

4π

∫
d2z

( 2

α′
∂αXµ∂αXµ + ψµ∂ψµ + ψ̃ν∂ψ̃ν

)
Parametering the string length by σ1 ∈ [0, π] the construction of closed

strings is obtained by stipulating the string end points to be at the same

space-time point, Xµ(z) = Xµ(z + π). The fermionic modes have two pos-

sible conditions which are consistent with Lorentz invariance.

Ramond : ψµ(z) = ψµ(z + π) ψ̃µ(z) = ψ̃µ(z + π)

Neveu-Schwarz : ψµ(z) = −ψµ(z + π) ψ̃µ(z) = −ψ̃µ(z + π)
(1.3.1)
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Sector SO(8) spin Representation

NS+ 8v vector

R− 8c spinor

R+ 8s spinor

Table 1.1: Open string modes classified by SO(8) representations.

These can be summarised by doubling the range of σ and expressing the

anti-analytic modes in terms of the analytic ones, ψ̃µ(σ, τ) = ψµ(2π − σ, τ)

which in complex worldsheet coordinates is ψ̃µ(z) = ψµ(2π − z).

Ramond : ψµ(z) = ψµ(z + π)

Neveu-Schwarz : ψµ(z) = −ψµ(z + π)
(1.3.2)

With the addition of fermionic modes it is possible to build up the tower of

states formed of string oscillations in more ways than those of the bosonic

construction. Constructions using only bosonic modes possess tachyonic

states but with the inclusion of fermionic modes the stipulation of super-

symmetry causes this state to be projected out by the GSO operator, causing

the lightest superstring modes to be massless. The dimensionality of space-

time is also altered by the fermionic modes, from 26 to 10. The massless field

content obtained from the string oscillations are classified by SO(8) represen-

tations. This is the little group which leaves null and time-like oscillations

unchanged as their removal is a requirement for gauge and conformal κ in-

variance on the string oscillations. The three possible SO(8) representations

relate to the three independent choices of fermion field periodicity and the

sign of the worldsheet fermionic counter (−1)F . The closed string states are

then constructed from the tensor product of two of these open string states,

the left moving and the right moving. The GSO projection can be applied
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independently on these two sets of states and there are two possible choices

for how this might be done; the projections are equivalent, Type IIB, or

they are inequivalent, Type IIA. We follow the notation of [8].

Type IIA : (8v ⊕ 8s) ⊗ (8v ⊕ 8c)

Type IIB : (8v ⊕ 8s) ⊗ (8v ⊕ 8s)
(1.3.3)

These representations define the massless field content of the two theo-

ries, with their group theoretic decompositions being classifiable in terms

of bosonic and fermionic fields. The SO(8) representations expand into

terms which fall into three generic categories; the NS-NS sector, the R-R

sector and the mixed NS-R or R-NS sectors. Three of these four sectors are

common to both theories, they only differ in the R-R sector.

(8v ⊕ 8s)⊗ (8v ⊕ 8c) = (8v ⊗ 8v)⊕ (8v ⊗ 8s)⊕ (8c ⊗ 8v)⊕ (8c ⊗ 8s)

NS-NS NS-R R-NS R-R

(8v ⊕ 8s)⊗ (8v ⊕ 8s) = (8v ⊗ 8v)⊕ (8v ⊗ 8s)⊕ (8s ⊗ 8v)⊕ (8s ⊗ 8s)

(1.3.4)

The NS-NS sector defines a symmetric traceless rank 2 tensor Gµν , an anti-

symmetric rank 2 tensor Bµν and a scalar singlet Φ, all of which are bosonic.

8v ⊗ 8v = Φ⊕Bµν ⊕Gµν = 1⊕ 28⊕ 35 (1.3.5)

These fields define the metric G, the potential associated to the string charge

B and the dilaton Φ which determines the string coupling by gs = e−Φ. The

fields defined by mixed periodicity conditions are common to each theory,

representing fermionic fields and due to the expansion of (1.3.4) there is a

two-fold symmetry giving a pair of gravitini, which have equal chiralities in

Type IIA but opposite chiralities in Type IIB.

8v ⊗ 8c = 8s ⊕ 56c 8v ⊗ 8s = 8c ⊕ 56s

The remaining multiplets are the dilatini which have a spinorial SO(8) rep-

resentation 8c/s. With a pair of gravitini the theories are N = 2 supersym-
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metric in ten dimensions and it is this which gives rise to their name Type

II. By supersymmetry the remaining fields in either theory must be bosonic

and we consider them in turn.

1.3.1 Type IIA String Theory

Type IIA has an R-R sector defined by 8c ⊗ 8s which decomposes in terms

of [n], the antisymmetric representations of SO(8) of rank n, following the

notation of [8].

8c ⊗ 8s = [1]⊕ [3] = 8v ⊕ 56t

The NS-NS sector included Bµν ∼ B2, the bi-vector potential associated to

the string charge. The fields of the R-R sector define extended objects in the

same manner; [p+ 1] is the potential Ap+1 with field strength Fp+2 = dCp+1

(in the simplest cases) associated to an p dimensional object, the Dp-brane.

As a result of the decomposition of the R-R sector it is observed that the

Type IIA theory possesses Dp-branes for p = 0, 2 but this can be extended to

include other even dimensional branes through the fact that in 10 dimensions

the potential Cp+1 can couple electrically to a Dp-brane but magnetically to

a D(6− p)-brane via Hodge dual field strengths3.

∗ : Dp-brane 3 dCp+1 = Fp+2 ←→ F ′8−p = dC ′7−p ∈ D(6− p)-brane

Therefore in a ten dimensional space-time the fields coupling electrically to

the D2 and D0-branes couple magnetically to D4 and D6 branes. The field

strength associated to a D8-brane is non-dynamical, being dual to a scalar

and arises in the context of massive Type IIA. More generally in an N di-

mensional space-time p-branes4 are related to (N − 4 − p)-branes by this

3The formal definition of the Hodge dual will be given in the next section.
4We make the distinction between general ‘branes’ and D-branes deliberately as we shall later

consider other kinds of dynamical extended objects.
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kind of duality. Unfortunately the massless field content of the Type IIA

string theory is not sufficient to construct the string theory action itself.

However, it is possible to construct the α′ → 0 effective theory of Type

IIA, Type IIA supergravity, by dimensional reduction on the unique eleven

dimensional supergravity. The nature of the spin of fields in supermultiplets

is dependent upon the dimensionality of space-time and this is sufficiently

stringent in eleven dimensions to preclude the kind of choice in field config-

urations which distinguish Type IIA and Type IIB. In eleven dimensional

supergravity the bosonic fields of the theory are the metric G and the 3-

form A3, which defines a field strength F4 = dA3, and possess a total of 128

degrees of freedom. These have fermionic partners in the 128 dimensional

SO(9) vector-spinor gravitino and from these fields the bosonic action for

eleven dimensional supergravity can be constructed.

S11 =
1

2κ2
11

∫
d11x
√
−G

(
R− 1

2
|F4|2

)
− 1

3!

∫
A3 ∧ F4 ∧ F4

Since this action is defined by supersymmetry, Lorentz and gauge symmetries

and does not involve α′ in anyway it is not a string theory action. Nor can

it be viewed as the α′ → 0 limit of a string theory as it exists in more

dimensions than any supersymmetric string theory does. However, it is the

low energy limit of M theory which is totally constrained by symmetries

and contains only two types of branes, the M2 and its eleven dimensional

magnetic dual, the M5. Upon compactifying one of the spacial dimensions to

a circle the eleven dimensional fields decompose into ten dimensional fields.

All eleven dimensional p-forms contribute to their ten dimensional versions

but also give rise to the fields associated to the stringy fields such as B2.

The metric decomposes via the Kaluza-Klein method, contributing a gauge
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field and a scalar field.

A
(11)
3 → A

(10)
3 , B2 G(11) → G(10) , A

(10)
1 , Φ

Applying this decomposition and relabelling A
(10)
n → Cn the reduced ten

dimensional action is obtained in three parts; pure NS-NS sector terms SNS,

pure R-R sector terms SR and the Chern-Simons terms, which are not of

pure flux sector due to contributions from both NS-NS and R-R fields.

SIIA = SNS + SR + SCS

SNS =
1

2κ2
10

∫
d10x
√
−Ge−2Φ

(
R+ 4∇µΦ∇µΦ− 1

2
|H3|2

)
SR = − 1

4κ2
10

∫
d10x
√
−G

(
|F2|2 + |F̃4|2

)
SCS = − 1

4κ2
10

∫
B2 ∧ F4 ∧ F4

This action contains a number of field strengths defined from the fields

obtained by examining the massless states of the theory.

• NS-NS field strength H3 ≡ dB2.

• R-R field strengths by F2 ≡ dC1 and F̃4 ≡ dC3 +H3 ∧ C1.

• Chern-Simons contributing field strength F4 ≡ dC3.

The three contributions to the Type IIA action are individually gauge in-

variant, though in the case of the Chern-Simons term gauge transformations

alter the integrand by an exact form5. The potentials Cn and B2 define two

types sets of equations; the Euler-Lagrange equations due to the action and

the Bianchi constraints associated to d, though only in the case of F̃4 is

the Bianchi constraint non-trivial. The basis in which we expand the fields

must satisfy these equations. This action and its field content is incomplete

5Their contribution to the Lagrangian is topological in nature as it depends on the structure

of space-time.
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if we wished to examine the full string theory but is sufficient for examining

effective theories of Type IIA string theory.

1.3.2 Type IIB String Theory

The R-R sector of Type IIB is defined by 8c ⊗ 8c which also decomposes in

terms of [n], the antisymmetric representations of SO(8) of rank n but the

representations are not entirely complete.

8c ⊗ 8c = [0]⊕ [2]⊕ [4]+ = 1⊕ 28⊕ 35+

Following the same method as the Type IIA case the [0] and [2] are the

potentials C0 and C2 and they couple to Dp-branes. In the case of [2]

the branes are one dimensional and known as D-strings and is noteworthy

that in the same way as the fundamental strings (or F-strings) having the

NS-NS [2] potential B2. The magnetic dual of the D-strings are the D5-

branes and the NS-NS fields also have this magnetic dualisation, giving an

NS5-brane as the magnetic dual of the F-string. The brane upon which C0

resides is neither extended in time nor space and so is an instanton and

has D7-branes as its magnetic dual. The remaining case is [4], associated

to the F5 living on D3-branes. Due to the relationship between electric-

magnetic relationship of Dp−D6−p branes the C4 couples to D3-branes both

electrically and magnetically and therefore there is a 5-form field strength,

which is self dual F̃5 = ∗F̃5. This self duality reduces the number of degrees

of freedom by half, [4] = 70→ [4]+ = 35+. A ten dimensional supergravity

theory with this field content in its massless sector cannot be constructed by

dimensional reduction and instead is obtained by requiring gauge, Lorentz

and supersymmetry transformations invariance. The resultant action has

the same three part decomposition as in Type IIA and the NS-NS sector is
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indeed the same.

SIIB = SNS + SR + SCS

SNS =
1

2κ2
10

∫
d10x
√
−Ge−2Φ

(
R+ 4∇µΦ∇µΦ− 1

2
|H3|2

)
SR = − 1

4κ2
10

∫
d10x
√
−G

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
SCS = − 1

4κ2
10

∫
C4 ∧H3 ∧ F3

The non-standard field strengths are not the same as the Type IIA case due

to different R-R content.

• R-R field strength F̃3 ≡ F3 − C0 ∧H3.

• Self dual R-R field strength F̃5 = F5 − 1
2
C2 ∧H3 + 1

2
B2 ∧ F3.

The Euler-Lagrange equations follow in the same manner as the Type IIA

case except for F̃5. There is no covariant way in which to write the Type IIB

supergravity action such that F̃5 = ∗F̃5 follows from its equations of motion.

1.3.3 Flux Compactifications

The Type II superstring theories and their low energy supergravity limits

exist in ten dimensional space-time which is not the observed dimensionality

of space-time at large and to reconcile these two facts the extra six spacial

dimensions are curled up into a small compact structure. With a radius of

the order 10−35 metres the small nature of space makes the direct probing of

string scale physics out of reach of any current, planned or even realistically

possible particle colliders. However, the properties of the compact space have

effects on observed phenomena in the external space via a four dimensional

effective theory.

• Amount of supersymmetry and the scale at which it is broken.
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• Vacuum potential determining the cosmological constant.

• Cosmic microwave background power spectrum.

• Inflation and reheating in the early universe.

Both Type II theories have N = 2 in their uncompactified ten dimensional

formulation but the number of gravitini in a compactified supersymmet-

ric theory is dependent on the space-time configuration. Upon the naive

compactification of the extra dimensions onto a six dimensional torus this

increases to N = 8. It is not possible for N > 1 theories to have chiral

fermions in their low energy standard model limit, even if the supersymme-

try is spontaneously broken. As a result the internal space must have ad-

ditional restrictions applied to it in order to break the compactified N = 8

theory down to N = 1.

With string theory naturally including the graviton, whose equations of

motion are the Einstein field equations, the structure of the internal space is

dynamical and must be consistent with such a relativistic point of view. The

field content of the full ten dimensional string theory descends to the effective

theory and plays a role in defining the structure of the internal space. The

field configurations associated to charges living on strings or branes define

‘fluxes’, constant quantised fields which contribute to the properties of the

internal space. An internal space whose non-trivial fluxes led to a stable

space-time configuration defines a space-time vacuum state for the effective

theory and the general construction is known as a flux compactification.
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1.4 Thesis Overview

The subject of this thesis is to examine the kinds of fluxes which descend

from the ten dimensional string actions upon compactification on a large

class of compact spaces. Of primary interest will be the effect that stringy

dualities have upon these fluxes and the kind of generalisations, beyond those

configurations obtained purely by compactification, required of the fluxes in

order to obtain a general N = 2 superpotential. These equivalences be-

tween different stringy constructions, generally referred to as dualities, link

the different ten dimensional Type II string theories, as well as the heterotic

and Type I string theories and the eleven dimensional supergravity, together

into a single framework. Though the dualities can be used to obtain any

particular string theory from a given string construction we shall restrict

ourselves to the Type II string theories. However, the Type I string theory

is obtainable in a straight forward manner from a particular Type IIB con-

struction but this will only be mentioned in passing.

We begin in Chapter 2 with an overview of compact spaces. We shall

outline our differential geometry notation and basic results in exterior calcu-

lus and give motivation in terms of string phenomenology for the particular

properties of the internal spaces we wish to consider and how to construct

such spaces in terms of orbifolds and orientifolds. We shall define the pa-

rameter spaces associated with compact six dimensional spaces, outside of

a string theory context, and then interpret them in terms of string vacua.

Finally, the fluxes obtained by direct compactification of the ten dimensional

actions are given and the contributions they make to the dynamics of the

internal space via a superpotential stated. Chapter 3 outlines the dualities
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which arise in string theory which are not seen in standard quantum field

theories, those of T, S and U duality. The T duality link between the Type

II theories compactified on a torus is illustrated and the Calabi-Yau general-

isation to mirror symmetry discussed. The weak-strong self duality of Type

IIB, S duality, is illustrated on the level of the ten dimensional action as

well as the effective theory’s superpotential. These chapters are an overview

of the background to flux compactifications and are provided to give the

main work context. No claim of originality is made, other than slight modi-

fications to notation commonly found in the literature where it is convenient.

In Chapter 4 the different Type II superpotentials are compared and

the existence of additional fluxes due to the dualities motivated and the

form of their contributions to the superpotential constructed. A number of

different ways of representing the fluxes are discussed, as well as the differ-

ences obtained by considering only ‘light’ modes and their associated fluxes

as compared to all possible modes. Having motivated the existence and the

structure of duality induced fluxes Chapter 5 discusses their consistency con-

straints. These come in two general types, Bianchi constraints and tadpole

constraints. The transformation properties of the fluxes under the dualities

and coordinate redefinitions are considered, with the constraints being clas-

sified in terms of their SL(2,Z) multiplet representations. In the restricted

case of the orientifolded Type IIB T duality induced fluxes are given a Lie

algebra interpretation, with S duality viewed as a deformation of the algebra

and the Bianchi constraints seen as integrability and cohomology conditions.

The methods thus far outlined are applied to a Type IIB compactification

on the Z2×Z2 orientifold in Chapter 6, where Lie algebra methods are used

to provide a set of general solutions to the T and then S duality induced

20



constraints and example vacua are constructed. Finally we make note of a

number of symmetries observed in the flux constructions of the Type II the-

ories, including in the Z2×Z2 orientifold, and in Chapter 7 we examine ways

in which to construct superpotential-like expressions in a manner similar to

that given in previous chapters but with the roles of the moduli exchanged.

Motivation is given from the Z2×Z2 orientifold and the inequivalence of the

Bianchi constraints of such a construction demonstrated. The same T and

S duality induced structures are observed in the Bianchi constraints, which

are again classified by SL(2,Z)S multiplets.

In the summary an overview of main results and a brief discussion of

possible future paths of research is given. The Appendix provides a short

overview of algebraic geometry terminology, methods and results used through-

out, as well as derivation of particular differential form identities used in the

main body of work.
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Chapter 2

Compact Dimensions

This chapter is to outline the notation used throughout for the properties of

compact spaces, the properties such spaces are required to have in order to

be candidates for a phenomenologically viable string compactification, how

spaces with properties can be constructed and finally the dynamics of such

spaces and the fields with live in them.

2.1 Properties of Internal Spaces

The notation and basic definitions are taken to follow in the main Refs.

[12, 15] and in places Ref. [13], where all assumed results we make use of

are proven. In order to be able to make use of a number of important or

useful differential geometry results we immediately restrict our attention to

compact orientated connected six dimensional spaces with all six dimensions

being space-like and whose generic member we shall denote asM. Orienta-

tion is required such that physical quantities like volume can be well defined,

while connectedness is argued on the grounds of physicality. Compactness

is not required in general for consistent compactifications, despite the name,

as non-compact Calabi-Yau manifolds can be defined [14]. Such spaces are
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beyond the scope of this work but we will develop notation such that their

definition can be stated in passing.

2.1.1 Differentiable Structure

The six dimensions of M are given the coordinates Xm and the bases of

the tangent bundle TM and the cotangent bundle fibres T ∗M are ∂
∂Xm and

dXm respectively. The space of p-forms constructed from the cotangent

basis is denoted in the literature as Ωp(M). Using the cotangent basis we

can define a second set of 1-forms, ηm, which define a new basis for the fibre

and exterior products thereof.

ηm = Nm
n (Xp) dXn , ηm1...mp = ηm1 ∧ . . . ∧ ηmp (2.1.1)

These ηm are linear combinations of the dXn where the linear combination

can depend on the internal coordinates and the space of possible basis choices

form the fibre of a frame bundle. The coordinate induced basis is obtained

by the simplest choice for Nm
n but we will wish to distinguish between this

basis and a different (but particular) choice of Nm
n . As such we shall depart

slightly from the standard notation for p-forms so as to make it clear which

basis we are using. To that end we consider a general element in Ωp(M), λ.

λ =
1

p!
λn1...np(X) dXn1...np =

1

p!
λ′n1...np

(X) ηn1...np ∈ Ωp(M)

Of interest to the examination of fluxes will be the special case where the

fluxes have support in constant sections of Ωp(M), the p-form coefficients

λn1...np are constant1. Since the coefficients transform under a change of ba-

sis this vector subspace of Ωp(M) is dependent on the basis ηa and it is not

1In this context ‘constant’ is taken to mean independent of the coordinates ofM, dependency

on other parameters is allowable.
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automatic that such a particular set of 1-forms, {ηm(0)}, can be globally de-

fined. Those spaces for which there exists such a basis are parallelisable and

restricting to constant coefficients requires us to be clear which cotangent

basis we use, η rather than dX. As such we we shall refer to the cotangent

space as T ∗M when using the dX basis for the fibres and E∗ when using

the η basis for the fibres. The space of forms will then be denoted as either

Ωp(T ∗M) or Ω∗(E∗) respectively. This deviation from standard notation is

redundant for the space of forms withM dependent coefficients but not for

the spaces obtained by the restriction to constant coefficients, Λp(T ∗M) and

Λp(E∗) respectively. We can define a set of interior forms which form the

basis of a new space, E, by their action on elements of E∗ and are in some

way their dual.

ιm(ηn) = δnm , {ιm, ιn} = 0 , E = 〈ιm〉 (2.1.2)

The basis of E is anticommuting and the elements of Ωp(E) follow the same

structure as those of Ωp(E∗), which contains Λp(E) in the same way.

λ∗ =
1

p!
λ̃n1...np(X) ιn1...np ∈ Ωp(E)

The action of elements of Λp(E) on elements of Λp(E∗) are defined by (2.1.2),

which we demonstrate explicitly for p = 2.

ιpq(η
ab) = ιp(δ

a
qη

b − ηaδbq) = δaq δ
b
p − δbqδap

Generalisations to p > 2 follow in a straightforward manner. The bases of

E and E∗ define an O(6, 6) Clifford algebra via Γm = ιm and Γn = ηn∧.

{Γm,Γn} = 0 , {Γm,Γn} = 0 , {Γm,Γn} = δnm (2.1.3)
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Ω∗(E∗) is the ring of all Ωp(E∗) and we take its dual Ω∗(E) as the ring of all

Ωp(E), which can be split into even and odd subrings.

Ω∗(E∗) = Ω+(E∗)⊕ Ω−(E∗) =

(
3⊕

n=0

Ω2n(E∗)

)
⊕

(
2⊕

n=0

Ω2n+1(E∗)

)

The exterior derivative d is defined in terms of the Xm coordinates in Ω∗(E∗).

d(A(Xm) dXm1 ∧ . . . dXmp) = (∂nA) dXn ∧ dXm1 ∧ . . . dXmp

In terms of the Ωp(E∗) subspaces of Ω∗(E∗) the exterior derivative has the

action d : Ωp(E∗) → Ωp+1(E∗) and due to the anticommuting nature of the

dXn, in contrast to the commuting partial derivatives, it satisfies d2 = 0.

The exterior derivative naturally defines two subsets of Ωp(E∗), Bp(E∗) and

Zp(E∗).

• Closed p-forms : Bp(E∗) =
{
ψ ∈ Ωp(E∗) s.t. dψ = 0

}
• Exact p-forms : Zp(E∗) =

{
dψ ∈ Ωp(E∗) s.t. ψ ∈ Ωp−1(E∗)

}
These two subspaces of Ωp(E∗) allow for the construction of an equivalence

relation and from the resultant quotient space is defined Hp(E∗), the p’th

cohomology of M.

Hp(E∗) ≡ Bp/Zp ⇔
[
ψ
]
∼
[
φ
]

iff ψ = φ+ dξ ξ ∈ Ωp−1(E∗)

Since the equivalence classes are well defined under exterior multiplication

the ring H∗(E∗) is formed from Hp(E∗) in the same way that Ω∗(E∗) is formed

from the Ωp(E∗). The cohomologies are dual to sets of submanifolds of M

known as chains. Cp is the set of p-dimensional chains and by defining the

boundary operator d such that for γ ∈ Cp the p− 1 dimensional chain dγ is

its boundary. γ is a cycle if dγ is empty and is itself a boundary if there is

a p+ 1 dimensional chain β such that dβ = γ. It can be shown that d2 = 0,
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a boundary has no boundary and thus we have the same algebraic structure

as the H∗(E∗).

• p-cycles : Bp =
{
γ ∈ Cp s.t. dγ = 0

}
• p-boundaries : Zp =

{
γ ∈ Cp s.t. γ = dβ , β ∈ Cp+1

}
These two sets of cycles allow for the construction of an equivalence relation

and from the resultant quotient space is defined Hp(M), the p’th homology

of M.

Hp(M) ≡ Bp/Zp ⇔
[
γ
]
∼
[
γ′
]

iff γ = γ + dβ β ∈ Cp+1

This Hp
∼= Hp vector space duality is determined through integration.[

γ
]
·
[
φ
]
≡
∫

[γ]

[φ] (2.1.4)

By the use of Stoke’s theorem it follows that this inner product is inde-

pendent of the representative element used and so is well defined. This

relationship links the topological non-triviality of M, as measured by the

homology, with the algebraic structure of forms defined onM, as measured

by the cohomology. As a result the dimension of Hp(E∗) is bp, the p’th Betti

number. It is possible to make a second p-form equivalence class dual to [γ],

the Poincaré dual, which is the following [ψ] equivalence class.[
γ
]
·
[
φ
]

=

∫
[γ]

[φ] ≡
∫
M

[φ] ∧ [ψ]

For a given M there are many possible metrics which can be defined on

it and we denote the metric space obtained by a choice of the metric as

(M, G). On (M, G) it is possible to construct an inner product between

two p-forms in terms of their components by using the metric to define a

contraction.〈〈
ψ, φ

〉〉
≡ 1

p!
ψn1...npφ

n1···np =
1

p!
ψn1...npg

n1m1 . . . gnpmpφm1···mp
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This provides a natural isomorphism Hp(E∗) ∼= H6−p(E∗) by noting a p-form

must be combined with a (6 − p)-form to define an integral over M and it

is this which defines the Hodge duality operator ?.

Hp 3 φ =
1

p!
φn1···np η

n1···np

Ωp 3 ?φ =
1

(6− p)!
1

p!
ε n1···np
np+1...n6

φn1···np η
np+1···n6

The Hodge star defines an inner product on Hp(E∗), separately on each p,

which is symmetric, a result easily seen from the component form of the

inner product.

〈〈
ψ, φ

〉〉
≡
∫
M
ψ ∧ ?φ =

〈〈
φ, ψ

〉〉
ψ, φ ∈ Hp(E∗) (2.1.5)

As a result it follows from Hp(E∗) ∼= H6−p(E∗) that bp = b6−p. The in-

ner product and exterior derivative together define an adjoint derivative d†

whose Ωp(E∗) action is d† : Ωp(E∗)→ Ωp−1(E∗), in contrast to the d action,

and is not Leibnitz.

〈〈
dψ, φ

〉〉
≡
〈〈
ψ, d†φ

〉〉
ψ ∈ Hp−1(E∗) , φ ∈ Hp(E∗)

The adjoint derivative can be expressed in terms of d and ?, though the

specific proportionality factor depends on the signature of the bilinear form

associated to the inner product. We will later consider an explicit case

where the sign structure will be clarified but the general form is taken to be

d† = ±? d ?. It follows from the definition of d† that (d†)2 = 0. Combinations

of d and d† can be constructed that are endomorphisms on Ωp(E∗) and of

particular note is the Laplacian.

∆ ≡ dd† + d†d = (d + d†)2 ≡ D2
d

In the second equality we have used d2 = (d†)2 = 0 and d + d† is a Dirac

operator Dd. The harmonic p-forms, Hp(E∗), are the elements ψ ∈ Ωp(E∗)
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satisfying ∆ψ = 0.

0 =
〈〈

(dd† + d†d)ψ, ψ
〉〉

=
〈〈

d†ψ, d†ψ
〉〉

+
〈〈

dψ, dψ
〉〉
≥ 0

Both terms are non-negative due to the positive definite nature of the inner

product and therefore must separately vanish if ∆ψ = 0 and it follows

they are both closed, dψ = 0, and co-closed, d†ψ = 0. Furthermore we

have Ddψ = 0, which can also be seen by the fact Dd and ∆ share zero

eigenvalues. Though a cohomology class can be represented by infinitely

many different closed p-forms there is a unique harmonic representative ξ

and so the dimension of Hp(E∗) is bp. As a result if φ ∈ Hp(E∗) ⊂ Hp then

∗φ ∈ H6−p(E∗) ⊂ H6−p.

2.1.2 Complex Structure

A complex manifold is a real 2n dimensional manifold with additional struc-

ture to it. The coordinates can be taken to be {xµ, yν} for µ, ν ∈ {1, . . . , n}

and these define the canonical tangent space basis { ∂
∂xµ

, ∂
∂yν
}. This tangent

space basis can be complexified, TpM→ TpM⊗ C ≡ TpMC.

∂
∂zµ

= 1
2

(
∂
∂xµ

+ i ∂
∂yµ

)
, dzµ = dxµ + i dyµ

∂
∂zµ

= 1
2

(
∂
∂xµ
− i ∂

∂yµ

)
, dzµ = dxµ − i dyµ

If a real manifold M possesses an Jp at p ∈M which satisfies J2
p = −idTpM

on TpM then it admits an almost complex structure.

Jp

(
∂

∂xµ

)
=

∂

∂yµ
, Jp

(
∂

∂yµ

)
= − ∂

∂xµ
(2.1.6)

A local change of basis to complex coordinates has the effect of diagonalising

Jp, with eigenvalues ±i.

J
(

∂
∂zµ

)
= i ∂

∂zµ

J
(

∂
∂zµ

)
= −i ∂

∂zµ

}
⇒ Jp = i dzµ ⊗ ∂

∂zµ
− i dzν ⊗ ∂

∂zν
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The almost complex structure is upgraded to complex structure if Jp is

integrable or equivalently the Nijenhuis tensor disappears idenitically. In

such cases the complex structure is globally defined, so Jp on TpMC defines

J on TMC and global coordinates on M can be defined.

zµ = xµ + iyµ , zµ = xµ − iyµ

However, this choice of complex structure is by no means unique and, like the

metric on M, since M can have many different complex structures we use

(M, J) to specify the complex structure on M. In such cases it is possible

to extend the differential geometry results we have considered thus far for

M to (M, J).

dzµ1 ∧ . . . ∧ dzµp ∧ dzν1 ∧ . . . ∧ dzνq ∈ Λp,q(T ∗M) ⊂ Ωp,q(E∗)

The complexification can be absorbed into the E∗ frame definition and we

shall always take E∗ to include this, neglecting the C label. Expressing

such (p, q)-forms in terms of the real basis it is immediate that Ωp,q(E∗) ∈

Ωp+q(E∗) and we have a decomposition of the set of real p-forms into complex

subspaces.

Ωp(E∗) =

p⊕
n=0

Ωn,p−n(E∗)

The exterior derivative’s action on Ωp,q(E∗) can be determined by using the

real basis and it splits into two parts, the Dolbeault operators.

d = ∂ + ∂ : Ωp,q(E∗)→ Ωp+1,q(E∗)⊕ Ωp,q+1(E∗)

By expanding d2λ = 0 in terms of these operators their properties can be

seen by noting which Ωp,q(E∗) each term belongs to, if λ ∈ Ωr,s(E∗).

d2λ = ∂2λ + (∂∂ + ∂∂)λ + ∂
2
λ

∈ Ωr+2,s(E∗) ∈ Ωr+1,s+1(E∗) ∈ Ωr,s+2(E∗)
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These terms vanish separately and so both operators are nilpotent and they

anticommute, ∂∂+∂∂ = 0. Each operator defines a separate set of subspaces

of Ωp,q(E∗) by those (p, q)-forms which are closed or exact under their action.

• ∂ closed (p, q)-forms : Bp,q

∂
=
{
ψ ∈ Ωp,q(E∗) s.t. ∂ψ = 0

}
• ∂ exact (p, q)-forms : Zp,q

∂
=
{
∂ϕ ∈ Ωp,q(E∗) s.t. ϕ ∈ Ωp,q−1(E∗)

}
The ∂ cases only differ by having ψ ∈ Ωp−1,q(E∗) and a pair of cohomology

rings follow from these subspaces of Ω∗(E∗).

Hp,q(E∗)∂ ≡ Bp,q

∂
/Zp,q

∂
⇔
[
ψ
]
∼
[
φ
]

iff ψ = φ+ ∂ξ ξ ∈ Ωp,q−1(E∗)

A holomorphic p-form χ is an element of Ωp,0(E∗) satisfying ∂χ = 0 and

conversely an anti-holomorphic q-form ϕ is an element of Ω0,q(E∗) satisfying

∂ϕ = 0. The dimension of Hp,q(E∗) is the Hodge number hp,q and because

the Hp(E∗) can be written in terms of the Hn,p−n(E∗) in the same way as

the Ωp(E∗) the hp,q are related to Betti numbers.

Hp(E∗) =

p⊕
n=0

Hn,p−n(E∗) ⇒ bp =

p∑
n=0

hn,p−n

The symmetries of the Hodge numbers can be expressed in a convenient

manner by arranging them into the Hodge diamond, where topological sym-

metries of M lead to symmetries in the Hodge diamond’s Hodge number

components.

h0,0

h0,1 h1,0

h0,2 h1,1 h2,0

h0,3 h1,2 h2,1 h3,0

h1,3 h2,2 h3,1

h2,3 h3,2

h3,3
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The number of independent Hodge numbers can be generically reduced by

considering the properties we have thus far assumed about M.

• Poincare duality between Hp(E∗) and H6−p(E∗) implies hr,s = h3−s,3−r.

• Complex conjugation between Hr,s(E∗) and Hs,r(E∗) implies hr,s = hs,r.

• Compact, connected and simply connected implies h0,0 = 1, h1,0 = 0.

The first condition gives the diamond reflection symmetry about the central

row while the second condition gives the diamond a reflection symmetry

about the central column. Further conditions will arise due to additional

symmetries on those M of primary interest to us but we defer that until a

later section.

2.1.3 Kähler Manifolds

If M has a metric G and a complex structure J then G is Hermitian with

respect to J if its arguments are invariant under J and the Kähler form J is

defined by this Hermitian metric and its complex structure.

Hermitian metric : G(v1, v2) = G(J · v1, J · v2)

Kähler form : J(v1, v2) ≡ G(J · v1, v2)
, vi ∈ E

As with the complex structure the metric is not automatically unique unless

constrained by other conditions. Since G, J and J are all non-degenerate

and interdependent only two of the three are needed to reconstruct the full

set and so we denote a particular choice of complex structure and metric

(and thus Kähler form) on M as (M, J, G). By using the complexified

coordinates the components of J can be written in terms of those of G.

G = Gmn dzm ⊗ dzn + Gmn dzm ⊗ dzn

J = iGmn dzm ⊗ dzn − iGmn dzm ⊗ dzn = iGmn dzm ∧ dzn
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The components of G which are of pure form, Gmn and Gmn, are zero due

to the Hermiticity conditions. The Kähler form of a 2n dimensional space

determines a nowhere vanishing 2n form by n exterior products of itself. By

the nature of 2n-forms dJn = 0 but this is not synonymous with dJ = 0.

If this more stringent condition is satisfied then (M, J, G) is Kähler. Using

the definitions of (2.1.7) this can be reexpressed as constraints on the metric

components.

dJ = 0 ⇔ Gmn,p = Gpn,m , Gmn,p = Gmp,n

These equations can be solved locally by defining the metric in terms of the

Kähler potential K, which naturally incorporates a gauge freedom due to

the (anti)holomorphic mixed derivatives.

Gmn =
∂2

∂zm∂zn
K =

∂2

∂zm∂zn
K , K = K + f1(zm) + f2(zn)

Though we have approached this definition from the point of view of G

being the space-time metric the definitions apply for other kinds of manifolds

whose coordinates are degrees of freedom other than space-time position, a

point we will return to. The symmetries of a Kähler manifold are quite

stringent and greatly reduce the independent components of such objects as

the Christofell symbol in torsion-less M and the Riemann curvature [16].

2.2 String Compactifications

Having covered the basic properties of a large class of compact spaces we now

consider what physical implications such spaces have if we partly compactify

a ten dimensional string theory onto them.
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2.2.1 Field Content

Under the compactification M10 →M4 nM the ten dimensional metric de-

composes into a number of smaller fields, including a metric for the external

space GKL and a metric for the internal space Gmn, as was observed in the

construction of Type IIA supergravity from its eleven dimensional parent.

Restrictions due to supersymmetry and Lorentz invariance do not preclude

GKL being dependent on the coordinates of the internal space through a

warp factor A(Xp).

ds2 = e2A(Xp)GKL(xM)dxKdxL +Gmn(Xp)dXmdXn

We will only be considering those space-time configurations where the exter-

nal space is entirely independent of the internal coordinates, so A(Xp) = 0.

Assuming an external space that is Minkowski the nine dimensional Lapla-

cian undergoes the same disjoint splitting as the metric, ∆→ ∆3 + ∆6, and

therefore the Klein Gordon equation for scalar fields is also altered.

∂a∂a +M2 = −∂2
t + ∆ +M2 → −∂2

t + ∆3 + ∆6 +M2

Since the Laplacian is positive definite the four dimensional theory views

the mass of a field to be greater than or equal to the ten dimensional mass.

To analyse this we follow the method of Kaluza-Klein reduction but for six

periodic directions, rather than one. With that in mind we consider a Fourier

decomposition of a general ten dimensional p-form χ into combinations of

(p− q)-forms dependent on external coordinates xK and q-forms dependent

on the internal coordinates Xm, for q = 0, . . . , p ≤ 6.

χ(xK , Xm) =

p∑
q=0

∑
n

ϕp−q,n(xK) ∧ ψq,n(Xm) (2.2.1)

In the simplest cases, particularly toroidal compactifications, the resultant

Kaluza-Klein field content has clear distinctions between the different levels
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in the mass tower. We take this tower to be parameterised by the n in ψq,n

and the length scale of the compact dimensions R such that the masses of

ψq,n are of order n
R

and the basis in which ψq,n is expanded we denote by

∆q
(n), which complex subspaces ∆p,q−p

(n) as previously defined. Of note is the

n = 0 case as toroidal Kaluza-Klein field decompositions include massless

forms if Hq(E∗) is not empty and the lightest modes define the field content

of the effective theory. Generically we shall denote the p-forms onM which

are sufficiently light to enter into the effective theory as ∆p(E∗) ⊂ Ωp(E∗).

In cases where Hp(E∗) is not empty we have ∆q
(0) ≡ ∆q(E∗) = Hq(E∗) and

the field content of the effective theory in the non-compactified dimensions

is clearly defined by the massless forms.

Compactification causes a similar decomposition of the fermionic sector

of the Type II fields and of primary interest are the gravitini, as they quantify

the amount of supersymmetry. In the same way as the bosonic fields a ten

dimensional spinor splits into four and six dimensional sections, ψ → η4⊗ξ6.

The spinor in the six dimensional space, ξ6 = ξ, transforms under the holon-

omy group of M, H ⊆ SO(6). The spinorial transformations are obtained

by noting that the Lie algebras of SO(6) and SU(4) are isomorphic and

ξ transforms in terms of a su(4) multiplet, specifically the fundamental 4.

This four-fold multiplicity manifests itself in the four dimensional effective

theory as a quadrupling of the space-time supersymmetry from the non-

compactified case, thus providing the source of the N = 8. If N = 2 is to

be obtained then the holonomy group of M must be restricted to one of

the subgroups of SO(6) which admits spinor singlets, thus preventing the

four-fold increase in supersymmetry generators.
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The fundamental 4 of SU(4) can be broken to the fundamental SU(3)

triplet 3 and an SU(3) singlet 1 and the components of the ten dimensional

gravitini which become associated to the internal space’s gravitini belong to

this singlet. Clearly this prevents the four-fold increase in supersymmetry

generators and so the SU(3) holonomy can be regarded as breaking 3/4 of

the supersymmetry. However, it does not break the N = 2 down to the

required N = 1 but we shall first consider the specifics of SU(3) holonomy

before progressing further.

2.2.2 SU(3) Holonomy and Calabi-Yaus

It is possible to deduce an important property of spaces with SU(3) holon-

omy by considering how vectors change under parallel transport in terms

of the geometry of (M, J, G). Given a path beginning at x0 ∈ M defined

by a small parallelogram whose sides are the vectors ϕρ and χσ the linear

transformation on a vector ζµ associated to the holonomy can be expressed

as a function of the Riemann curvature tensor [12, 20].

ζµ → ζ ′µ = ζµ +Rµ
νρσζ

νϕρχσ = (δµν +Rµ
νρσϕ

ρχσ)ζν = hµνζ
ν

A general 6 dimensional Kähler manifold has hνµ ∈ U(3) and thus (h− δ)νµ ∈

u(3), which can be written as u(3) = su(3)⊕ u(1) near the identity element

of U(3). The u(1) term is responsible for the trace contributions and if

H ⊆ SU(3) then these u(1) associated terms must be zero, the combination

Rρ
µρσ = Rρσ of the curvature tensor components must vanish. As a result

(M, J, G) must be Ricci flat, as well as Kähler. This can be done in terms

of spinors by using the fact that SU(3) holonomy requires the existence of

a covariantly constant spinor ξ6 = ξ, ∇ξ = 0. It can be shown that the

commutation relations of the covariant derivatives on spinors take a similar
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form to those on vectors, through the use of Γab = γ[aγb], elements of the

Clifford algebra of M [20, 21].

[ ∇a , ∇b ] ξ =
1

4
RabcdΓ

cdξ = 0 ⇒ Rab = 0

A compact orientated space with no singularities and SU(n) holonomy is,

by definition, a Calabi-Yau manifold. It implies the existence of a unique

non-vanishing holomorphic n-form which in turn results in hn,0 = 1. These

symmetries further reduce the independent Hodge numbers.

• Calabi-Yau symmetries Hp(E∗) ∼= Hn−p(E∗) implies hp,0 = hn−p,0.

These symmetries are sufficiently stringent for n = 1, 2 to uniquely determine

all Hodge numbers but for the case of primary interest to us, n = 3, there

are two independent Hodge numbers. Despite the uniqueness of the Hodge

diamonds in the n = 1 and n = 2 cases there are more than one compact

Calabi-Yau manifolds of dimensions 2 or 4. The two dimensional torus

T2 is Calabi-Yau and by the factorisation Tn+m = Tn × Tm so are all T2n.

Other generic examples are the submanifolds of the complex projective space

CPn+1 defined by the roots of homogeneous polynomials of degree n+ 2. In

the n = 2 case a K3 manifold is obtained. The non-unique specification

of a manifold by its Hodge numbers continues in the n = 3 case and it is

possible to have several distinct Calabi-Yau manifolds for a given pair of
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Hodge numbers.

(M, J, G) Calabi-Yau ⇒

1

0 0

0 h1,1 0

1 h2,1 h2,1 1

0 h1,1 0

0 0

1

It is not currently known if there are infinitely many distinct Calabi-Yaus

nor are many explicit cases known in terms of their metrics. Over and above

their supersymmetry breaking properties they are of interest to string theo-

rists because they admit sets of harmonic forms. Since all χ ∈ Hp(E∗) satisfy

dχ = 0 = d?χ this background is a good effective theory string background,

providing massless modes on M as well as a basis which automatically sat-

isfies the equations of motion and constraints on the fluxes which descend

from the ten dimensional action. Furthermore such compactifications have

important phenomenological implications. Rµν = 0 is a solution to the

Einstein field equations in the case of vanishing cosmological constant and

zero stress-energy tensor. There is still the issue of breaking the N = 2

to N = 1 but this can be solved by considering a set of spaces closely re-

lated to Calabi-Yaus and other restricted holonomy spaces; orbifolds and

orientifolds.

2.2.3 Orbifolds

The compactification of a Type II string theory down onto a six dimensional

torus, T6, using Kaluza-Klein methods, has the disadvantage that it has too

much supersymmetry but benefits from the properties of the torus, that it
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has a known Ricci flat metric. The metric is the Euclidean metric and is

obtained by viewing the T6 as a quotient of C3 and an equivalence relation

defined by discrete translations in C3 by six linearly independent vectors Rj.

x ∼ x+
∑
j

njR
j nj ∈ Z

The holonomy group can be altered by imposing additional discrete sym-

metries on the space by further use of equivalence relations to construct

orbifolds [19]. Given a discrete group G with generators gi the orbifold

equivalence relation is defined by making all images of a point in the space

equivalent, x ∼ gi(x). The choice of G is restricted to those whose generators

preserve the lattice structure by acting crystalographically and such groups

take the general form G = ZN or G = ZN × ZM . Not all possible choices

of abelian group act crystalographically and the complete classification of

the properties of T6 defined orbifolds has been done [22, 23]. The standard

way of expressing the action of these generators on the field content of the

orbifold is to define their actions in terms of the E∗ basis, giving the orbifold

group’s generators gi a matrix representation, (gi)
m
n.

ηm → gmnη
n ⇒ ηm1...mp → gm1

n1
. . . gmpnpη

n1...np

When the orbifold group has a fixed point the resultant quotient space pos-

sess a conic singularity. Closed loops around these singularities are not

contractable and as a result modify the holonomy group of the orbifold. For

the case of G = ZN with generator g = e2πi/N the holonomy group formed

from such loops is precisely ZN , while the group associated with loops not

circumnavigating the singularity remains trivial. In general Calabi-Yaus the

cohomologies are defined by the exterior derivative while the analogous forms

in orbifolds are those which form a space invariant under the orbifold group

[24]. More restrictive orbifold groups reduce the size of such sets and this
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allows for a much simpler description of the internal space. However, the

price paid is the singular nature of the orbifold at a finite number of points.

In certain cases it is possible to remove these singularities by replacing them

with Eguchi-Hanson spaces [8], resulting in a space which is Calabi-Yau but

it no longer possesses a Euclidean metric. Taking this process in reverse,

orbifolds can be viewed as singular limits of Calabi-Yau manifolds, where

all the Riemann curvature of the manifold is ‘pushed’ into a finite number

of regions, which are then shrunk to become singularities.

2.2.4 Orientifolds

In Type II compactifications both orbifolds and Calabi-Yaus have N = 2

supersymmetry in their effective theories and in order to obtainN = 1 super-

symmetry half of their supersymmetry generators need to be removed. This

is acheived by imposing an additional Z2 constraint on the space, formed

from a number of different string properties and operators.

• Worldsheet parity : P(σ) = 2π − σ

• A Z2 grading by left or right fermion counters FL and FR : (−1)FL/R .

• Orientifold involution : σ̂(ηm) = σ̂mnη
n with σ̂mrσ̂

r
n = δmn .

There is no freedom in the definition of P and FL/R but σ̂ is only constrained

by the requirement it is an involution, that the Kähler 2-form is +1 eigenval-

ued eigenfunction of it and its action on Ω is one of three possible choices.

These Z2 operators combine to form three possible orientifold projection

generators gO. This projection has the effect on Type IIB of turning certain

closed strings into open ones, whose end points lie on regions of space-

time which are invariant under gO, as stated in Table 2.1. Open string end

points define D-branes in those theories lacking an orientifold projection and
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IIB1 IIA IIB2

σ̂(Ω) : Ω Ω −Ω

gO : (−1)FLΩσ̂ Ωσ̂ Ωσ̂

O-planes : O5/O9 O6 O3/O7

Table 2.1: Possible orientifold actions and planes in Type II compactifications.

therefore we can associate with these string ends produced by the orientifold

projection a set of extended objects known as O-planes. The dimensionality

of an Op-plane is determined in the same manner as a Dp-brane but due

to it being defined by a non-dynamical projection, as stated in Table 2.1,

they are static. Despite O-planes being non-dynamical objects they carry

tension and charge in the same way as D-branes. However, it is important to

note that they carry negative tension, relative to a D-brane, which allows for

contruction of stable brane configurations without the requirement of anti-

branes, which break supersymmetry. The effect of these planes on the field

content of the theory is obtained by applying a change of basis to ∆p(E∗)

such that the basis elements are eigenforms of gO, whose eigenvalues are ±1

and the resultant forms with eigenvalue +1 (−1) are known as even (odd)

forms. By definition the Kähler form is an eigenfunction of eigenvalue +1

but not all elements of the eigenbasis of ∆2(E∗) have eigenvalue +1 under

the projection. The effect of this is the splitting of the h1,1 dimensional basis

of ∆2(E∗) into h1,1
+ even forms and h1,1

− odd forms and only the even forms

survive the projection. As a result the general Kähler form has some degrees

of freedom removed but the rest are left unchanged. The number of degrees

of freedom that are projected out is h1,1 − h1,1
+ but it is not automatic that

h1,1 − h1,1
+ = h1,1

+ , in that there is not an equal splitting of the cohomology
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by the two eigenvalues of the projection. In some cases h1,1 = h1,1
+ and the

Kähler form is left unchanged by the orientifolding. This is independent of

the property that half of the supersymmetry generators are removed by the

projection, to give N = 1.

2.3 Moduli Spaces

The notation of this section and all discussion of moduli spaces closely, but

not exactly, follows that of Ref. [17, 74, 75]. We previously commented that

it is currently unknown if there are infinitely many distinct Calabi-Yau but

we did not clarify what ‘distinct’ means. Given a particular Calabi-Yau it

is possible to smoothly deform it without breaking its SU(3) holonomy and

while this means it is possible to construct infinitely many Calabi-Yaus, given

one, they are not distinct in the topological sense. Two Calabi-Yaus with

different Hodge numbers are considered distinct and if their Hodge numbers

are equal then they are distinct if they cannot be smoothly deformed into one

another. The fields which parameterise these deformations are scalars known

as moduli and two non-equal but equivalent Calabi-Yaus are considered to

be at different points in the moduli parameter space. The ways in which

a Calabi-Yau can be deformed can be obtained by considering the freedom

in the metric, Gmn → Gmn + δGmn, such that the properties of (M, J, G),

being Kähler and Ricci flats, are preserved.

Rmn(Grs) = 0 → Rmn(Grs + δGrs) = 0

Under a metric compatibility condition of∇, ∇nδGmn = 0, the Ricci flatness

preservation condition becomes the Lichnerowicz equation.

∇m∇mδGpq + 2R r s
p q δGrs = 0
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In terms of the complexified coordinates (zρ, zσ) this equation is separately

true for those perturbation metric components which are of pure degree,

δGρσ, and those which are of mixed degree δGρσ. With those perturbations

of pure degree we can associate a variation in Ω which belongs to ∆2,1(E∗)

and for those of mixed degree a variation of J in ∆1,1(E∗).

δΩ ∼ Ω τ
ρσ δGλτdz

ρ ∧ dzσ ∧ dzλ ∈ ∆2,1(E∗)

δJ ∼ iδGρσdzρ ∧ dzσ ∈ ∆1,1(E∗)
(2.3.1)

These different variations define a metric on the moduli space and an ad-

ditional set of variations can be applied to the 2-form B associated to the

fundamental strings.

ds2 =
1

2V

∫
M
GρσGτλ

[
δGρτδGσλ −

(
δGρλδGτσ − δBρλδBτσ

)]√
Gd6X(2.3.2)

The quantity V is the volume of M. The fact the interval decomposes into

terms entirely dependent upon variations with pure indices and another

dependent upon variations in mixed indices implies that locally the two

moduli spaces do not mix.

MU ⊗MT ⊂MM

This motivates us to consider the different moduli variations separately. It

is noteworthy that the number of independent ways in which such pertur-

bations can occur are the moduli and of note is the fact that dimensionality

of the moduli spaces are defined by the topological properties of M. Since

we are considering supersymmetric theories the moduli can be viewed as the

scalar fields of supermultiplets which in the four dimensional effective the-

ory are massless. The number of massless scalar fields is determined by the

dimension of H∗(E∗) but they form different structures depending on which

∆p,q(E∗) ≡ Hp,q(E∗) they are associated to.
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The definitions of the special Kähler manifolds and their associated su-

permultiplets are given in Appendix A and also follow the methods and

notation, for the most part, of Refs. [74, 75]. Those definitions are done in a

general manner rather than considering explicit moduli spaces or holomor-

phic forms but for clarity and completeness we also consider them explicitly

here. The inclusion of the dilaton alters the Kähler structure of one of the

moduli spaces but we shall initially examine both moduli spaces from the

point of view that they are not dilaton dependent.

2.3.1 The Complex Structure Moduli Space

The complex structure moduli are defined on ∆3(E∗) and since forms in such

spaces anticommute there is a natural symplectic structure, which is seen in

the two inner products of Section A. As a result we do not need not consider

the choice in
〈 〉
± in our discussions.

Every Calabi-Yau has a unique, up to an overall factor, holomorphic

3-form Ω ∈ ∆3,0(E∗). Since it is defined in terms of dzρ it is deformed

by any changes to the complex structure of the space. Rather than work

with the Ωp(E∗) defined components of (2.3.1) it is preferable to use ∆3(E∗)

defined components. In order to define the moduli associated to the complex

structure deformations we can define h2,1 +1 pairs of 3-cycles AI , BJ , I, J =

0, · · · , h2,1 with a symplectic structure in their intersection numbers.

AI ∩BJ = −BJ ∩ AI = δIJ AI ∩ AJ = BI ∩BJ = 0

The (αI ,β
J) basis of ∆3(E∗) is defined as the dual of the (AI , BJ) homology

3-cycles.∫
AJ
αI =

∫
M
αI ∧ βJ = δIJ

∫
BJ

βI =

∫
M
βI ∧ αJ = −δIJ (2.3.3)
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These 3-forms are a natural basis in which to examine moduli dynamics and

overall they possess a Sp(h2,1+1) symmetry. The set of h2,1+1 coordinates UI

are defined by the 3-cycles and the holomorphic 3-form Ω and the remaining

3-cycles define UJ , a set of degree 2 homogeneous functions in the UI .

UI ≡
∫
AI

Ω , UJ ≡
∫
BJ

Ω ⇒ Ω = UIαI − UJβJ

By definition Ω can be written in terms of the dz up to an overall factor

f(zρ) which is unconstrained, other than being holomorphic in the zρ, due

to the projective definition of the moduli.

Ω ≡ f(zρ) dz1 ∧ dz2 ∧ dz3 (2.3.4)

Since the coordinates are defined as Ui = Ui
U0

and the section of ds2 in (2.3.2)

dependent on the U can be written as the second derivatives of a U de-

pendent function (KU)IJ = ∂UI∂UJKU , it follows that the complex structure

moduli space is a local special Kähler manifold of dimension h2,1. The Kähler

potential KU can be written succinctly using a Hitchin function, as defined

in Appendix A, on Ω. The Kähler derivative can include U0 terms as indices

can range over I, J , not just i, j, due to the fact δU0 = 0 and makes no

contribution to the interval. All functions dependent upon U0 are evaluated

at U0 = 1, after any U0 derivatives are taken.

KU = − lnH(Ω) = i

∫
M

Ω ∧ Ω ⇒ ds2 = 2(KU)IJ δUI δUJ + . . .

For future reference we also define a set of vector spaces in terms of the

symplectic forms for future reference.

∆3(E∗) = 〈α0〉 ⊕ 〈αi〉 ⊕ 〈βj〉 ⊕ 〈β0〉

≡ H3,0(E∗) ⊕ H2,1(E∗) ⊕ H1,2(E∗) ⊕ H0,3(E∗)
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2.3.2 Kähler Moduli

The second type of deformation are those to Kähler form J parameterised

by h1,1 real scalar coefficients of the ∆1,1(E∗) basis elements ωa. However,

by generalising this to include contributions from the 2-form B2 the Kähler

moduli are made complex, which is consistent with the ds2 of the moduli

space in (2.3.2). The basis elements of ∆1,1(E∗) have a set of h1,1 2-cycles

associated to them, Aa with a, b = 1, · · · , h1,1, which are dual to a set of

4-cycles Bb partners that define the set of h1,1 basis elements for ∆2,2(E∗),

ω̃b. These two sets of forms have non-trivial intersection numbers g b
a and

gab. ∫
Ab
ωa =

∫
M
ωa ∧ ω̃b = g b

a

∫
Bb
ω̃a =

∫
M
ω̃a ∧ ωb = gab

We can expand this basis to include the ∆0,0(E∗) and ∆3,3(E∗) forms, ω0 ≡ 1

and ω̃0 ≡ vol6. The 6-form ω̃0 is associated with B0 ≡ M itself, which is

the only 6-cycle if M is connected. In the case of ω0 we have to associate

it with a 0-cycle point A0, which can be any point other than singularities,

should M contain any.∫
A0

ω0 =

∫
M
ω0 ∧ ω̃0 = 1

∫
B0

ω̃0 =

∫
M
ω̃0 ∧ ω0 = 1

An additional sets of intersection numbers are defined by expressing the

elements of ∆+(E∗) in terms of the elements of ∆2(E∗).∫
M
ωa ∧ ωb ∧ ωc = κabc , ω̃a = fabcωb ∧ ωc , gab = facdκbcd (2.3.5)

Following the lead of the complex structure moduli space we will find it more

convenient to work with a set of projective coordinates TA from which the

standard Kähler moduli can be reconstructed by Ta ≡ Ta
T0 . The intersection

numbers of these basis can be simplified by constructing the Kähler moduli
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holomorphic form, obtained by exponentiating the complexified Kähler form,

eJ ≡ f and defining J (n) = 1
n!
J n ∈ ∆n,n(E∗).

f =
∞∑
n=0

1

n!
J n =

∞∑
n=0

J (n) = J (0) + J (1) + J (2) + J (3)

= T0 ω0 + Ta ωa +
1

2!
TaTb ωa ∧ ωb +

1

3!
TaTbTc ωa ∧ ωb ∧ ωc

This expansion for f can be put into a form similar to that of the Ω expansion

in ∆−(E∗). The specific sign structure we choose to define the expansion of

the holomorphic form in depends on the sign structure of the inner product

we will make use of. The inner product discussed in Appendix A has the

option of being symmetric or antisymmetric. If antisymmetric then the

construction of the Kähler moduli space is as the complex structure space

but U → T , Ω → f etc. However the literature that considers T and S

duality transformations on the superpotential and fluxes on the Z2 × Z2

orientifold [52, 53, 54, 60, 61, 92], which will be our explicit example in

later chapters, has the Kähler moduli sector defined with a symmetric inner

product. We will keep our discussion as general as possible but will reduce

to the symmetric case when considering explicit examples. As such the ±

sign ambiguities are associated to the
〈 〉
± inner product.

Ω = U0α0 + Uiαi − U jβj − U0β0 , f = T0 ω0 ± Ta ωa + T bω̃b ± T 0ω̃0

By comparing the coefficients we can express T a in terms of the derivatives

of T 0 and in doing so reduce the intersection numbers to the simplest case

of gba → δba.

T 0 =
1

3!
κabcTaTbTc ⇒ T bgba =

1

2!
κabcTbTc =

∂T 0

∂Ta

If we set T a = ∂T 0

∂Ta the expansion of f simplifies. However the
〈 〉

+
in-

ner product has a sign structure which does not admit a manifest special
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Kähler construction. This is seen more explicitly by constructing the Kähler

potential for the moduli space. For either inner product we require a refor-

mulation of the Kähler moduli contributions to ds2 in (2.3.2) so as to be in

the standard form.

ds2 = 2(KT )AB δTA δT B

This MT Kähler potential is related to the volume of M by KT = − lnV .

V =

∫
M

vol6 =
23

3!

∫
M
J ∧ J ∧ J =

23

3!
κabcτaτbτc

In Appendix A, specifically (A.1.10), it is demonstrated that such expres-

sions arise in terms of the Hitchin function H(eψ) on both the symmetric

and antisymmetric inner products. The symmetric inner product is depen-

dent only on Re(ψ) and thus we define our Kähler form to be J = J+ iB. If

we opt to make the special Kähler structure manifest we set J = −B + iJ .

KT = − ln

∫
M

〈
f,f

〉
+

= − lnH(f)+ = − ln
(

2 Re
(
TBT

B
))

KT = − ln i

∫
M

〈
f,f

〉
− = − lnH(f)− = − ln

(
2 Im

(
TBT

B
))(2.3.6)

This confirms that we can use the symmetric inner product and retain the

structure of a local Kähler manifold of dimension h1,1 but it is associated

to an O(h1,1 + 1, h1,1 + 1) vector bundle rather than a Sp(h1,1 + 1) vector

bundle. Other ways in which the analysis would change if we used the

antisymmetric inner product on the Kähler moduli will be commented upon

at the appropriate time. As with ∆3(E∗) the basis of ∆+(E∗) decomposes

into subspaces of ∆∗(E∗).

∆+(E∗) = 〈ω0〉 ⊕ 〈ωa〉 ⊕ 〈ω̃b〉 ⊕ 〈ω̃0〉

= ∆0(E∗) ⊕ ∆2(E∗) ⊕ ∆4(E∗) ⊕ ∆6(E∗)

≡ H0,0(E∗) ⊕ H1,1(E∗) ⊕ H2,2(E∗) ⊕ H3,3(E∗)
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2.3.3 The Dilaton

The moduli thus far considered are, for the most part, geometric in nature.

The topological non-triviality of M determines the kinds of deformation

that (M, J, G) can undergo without breaking particular properties such as

Ricci flatness. Aside from the inclusion of the 2-form field B2 in order to

complexify the Kähler moduli little reference to string theory has been made.

However, there is an additional scalar field which is stringy in origin, not

geometric, known as the dilaton and it too can be viewed in a string theory

context as the scalar field in a supermultiplet. In a Kaluza Klein orientifold

reduction of the N = 2 theory there is no unique way of projecting down the

N = 2 degrees of freedom into the N = 1 multiplets but the generic N = 1

structures these degrees of freedom arrange themselves into is not orientifold

dependent. The specific construction varies slightly between Type IIA and

Type IIB and since Type IIB is the most straight forward due to its brane

content we consider it explicitly.

Type IIB possesses R-R fields of the form C2n and for the case n = 0 the

field is a scalar. Such a field implies that the brane it electrically couples to

is an instanton D(-1)-brane, a brane localised in both time and space. This

scalar combines with the four dimensional dilaton which has descended from

the ten dimensional action. Since they share their NS-NS sector the descent

is the same in each Type II theory and as such we recall two terms from ten

dimensional Type II supergravity action from the previous chapter.

SG,Φ =

∫
d10x
√
−Ge−2Φ

(
R+ 4∇µΦ∇µΦ

)
(2.3.7)

Using the block diagonal splitting of the metric G → G4 ⊕ G6 to apply a

Weyl rescaling to just G4 the action can be reformulated [75] such that the
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kinetic terms of the scalar define a new dilaton, φ.

e−2φ =
23

3!

∫
M
e−2ΦJ ∧ J ∧ J =

∫
M
e−2Φvol6 (2.3.8)

For Φ constant on M this relationship reduces to eΦ =
√
Veφ. In Type

IIB these two scalars, C0 and φ, combine to form a complex scalar which is

associated to a hypermultiplet.

S = C0 + ieφ (2.3.9)

The four dimensional effective theory kinetic terms for the dilaton are ob-

tained from the compactification, having originally been the kinetic terms

for the ten dimensional dilaton Φ and due to being only a single field the

construction of a Kähler potential for just the dilaton is straightforward.

L 3 ∂µS∂µS

2 Im(S)2
⇒ e−KS =

1

2i
(S − S) (2.3.10)

This expression suggests that the dilaton defines a third moduli space,MS,

along side MT and MU . However it is the case that the inclusion of the

dilaton causes one of these two moduli spaces to become dilaton dependent,

they combine to form a more elaborate moduli space. The total moduli space

of the effective theory is reformulated into the local product of two special

Kähler manifolds but such that the dilaton dependent one is embedded

within a larger quaternionic manifold.

MM =MK ⊗MQ

Which moduli are in which special Kähler manifold is dependent on which

Type II theory is being considered, withMQ =MQ(T , φ) in Type IIB and

MQ =MQ(U , φ) in Type IIA [74]. In Type IIA the C3 R-R potential plays

an analogous role to the C0 of Type IIB just described and their effective

theory holomorphic forms take schematically similar forms [53, 47, 56, 60,
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75]. This is done generically, so as to apply to both Type IIA and Type IIB,

for a finite dimensional set of forms in Appendix A.

Type IIA : Ω→ Ωc , Type IIB : f→ fc

It is also demonstrated that the holomorphic forms of MQ can be used to

construct a Kähler potential which factorises the dilaton dependence out.

This factorisation gives rise to the dilaton kinetic contribution of (2.3.10)

as well as the standard Kähler potential of the associated special Kähler

moduli space MK′ .

K(MQ) ∼ K(MK′) +K(MS) (2.3.11)

In preserving this N = 1 structure the O-planes produced by the orientifold

are linked toMQ [75]. This can be seen by noting that O-planes of dimension

p have support in the three external spacial directions and in p− 3 internal

directions. For even p ≥ 3 the affected cycles correspond to elements in

∆+(E∗) and therefore those moduli which combine with the dilaton to make

MQ are the Kähler moduli of f ∈ ∆+(E∗). Conversely, for odd p ≥ 3 the

complex structure moduli of Ω ∈ ∆−(E∗) combine with the dilaton to make

MQ. This can be seen explicitly in terms of the ∆∗(E∗) defined fields in

each Type II theory.

2.3.4 Twisted Moduli

There is an additional complication to the analysis of orbifolds brought

about the discrete symmetry group. It is possible for open string states in

the parent space to become closed string states upon orbifolding the space

by G = 〈gi〉, which wrap around any conic singularities in the orbifold.

giX
µ(τ, σ) = Xµ(τ, σ + 2π)

50



These are the twisted strings and have associated to them a set of twisted

moduli, the number of which are determined by the number and type of

singularities in the orbifold and which are in turn defined by the orbiold

group. As a result the number of twisted moduli are known for all viable

string orbifolds [22, 23]. However, in cases where we examine orbifolds we

will restrict our discussions to the untwisted moduli.

2.4 Vacua

The Lagrangian associated to the moduli is obtained by reducing the Type II

supergravity actions to their four dimensional effective theories. For N ≤ 2

theories the moduli have a scalar potential2 determined by two functions;

the Kähler potential for all moduli spaces K and the superpotential W . The

construction of these depends on the amount of supersymmetry preserved

in the effective theory. In the N = 2 case sets of Killing prepotentials

[71, 72, 74] are used which arise by considering the variation of the gravitini.

These are projected down into an N = 1 theory by orientifolding but it

is not a unique reduction, with many N = 1 theories descending from the

same N = 2 theory. The orientifold projection effect is determined by the

number of +1 eigen p-forms of the involution and this is related to breaking

the SU(2) R symmetry of the N = 2 theory to the U(1) R symmetry of

N = 1 [74, 75]. However, we shall use the N = 1 formulation [25] directly

and instead consider the effect of the orientifold projection operators once a

potential is constructed.

V = eK
(
KMNDMWDNW − 3|W |2

)
(2.4.1)

2We do not include in our analysis D terms, so gauge kinetic functions are neglected.
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The indices are such that they range over all moduli and the partial deriva-

tive has been generalised to the Kähler derivative DM , defined by DM =

∂M + ∂MK. This can be more succinctly expressed in terms of a different

function G = K + ln |W |2.

V = eG
(
GMN∂MG∂NG − 3)

The fact G entirely determines V and vice versa leads to the existence of

a gauge freedom between the Kähler potential and the superpotential. We

previously noted that the Kähler potential has a gauge freedom in terms

of the Kähler metric it defined because the metric is determined by the

potential’s second, mixed, derivatives. Such a transformation does not leave

G invariant unless there is a corresponding change in the superpotential also.

G(K,W ) = G(K + f + f, e−fW )

The Kähler potential K is determined from the Kähler potentials of the

individual moduli spaces. We previously saw that the dilaton’s kinetic term

takes a simple form and a Kähler potential can be defined for it. As a

result we can regard the total moduli space as locally a direct product of

the individual moduli spaces.

MM =MU ⊗MT ⊗MS ⇒ K = KU +KT +KS

The moduli are constant in time if their values are associated to a local

minimum of V and due to the singular nature of eK for vanishing moduli

values it is only possible to have local minima if the moduli have a non-

zero VEVs. Such moduli values are, in principle, obtained by solving the

equations of motion for the moduli but it is more natural to consider the

turning points of the potential as a function of the moduli. For a given

scalar potential the vacua are those values of moduli which solve ∂MV = 0
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and have ∂M∂NV > 0. This can be rephrased in terms of algebraic geometry

[26, 27] by viewing the set of polynomials ∂MV as the generating functions

of an ideal and any vacuum state will belong to the variety associated to

this ideal.

I = 〈∂TaV , ∂UiV , ∂SV 〉 ↔ VI ⊂ Cdim(MM)

Not all points in VI correspond to stable vacua, unstable ones are included

and the methods by which algebraic geometry separates these are given in

Appendix C, along with an overview of relevant algebraic geometry termi-

nology and methods. Phenomenological properties of the effective theory

can be obtained from the vacuum expectation values of two sets of terms;

the potential itself and the Kähler derivatives.

• Cosmological constant, Λ ≡ 〈V 〉.

• Supersymmetry breaking scale defining F-term, FM ≡ 〈DMW 〉.

The immediate implication of these two definitions is that if the theory has

no supersymmetry breaking then the external space is Anti de Sitter (AdS)

or Minkowski.

∀M FM = 0 ⇒ Λ = 〈V 〉 = 〈−3eK |W |2〉 = 〈−3eG〉 ≤ 0

For supersymmetric vacua the equality, and therefore Minkowski space-time,

occurs only if 〈W 〉 = 0. This in turn reduces the F-term expressions as the

Kähler derivatives simplify down to partial derivatives. By considering the

expansion in terms of K and W of ∂MV it can be seen that 〈W 〉 = 〈∂MW 〉 =

0 are sufficient for a stable vacuum and they represent considerably simpler

equations than the first derivatives of the scalar potential.

〈W 〉 = 0 = 〈∂MW 〉 ⇒ 〈∂MV 〉 = 0 = 〈V 〉
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Unbroken supersymmetry and non-positive cosmological constant are not

phenomenological but because their associated constraints are simpler than

the ∂MV expressions they have received a great deal more attention in model

building. Regardless of which constraints are solved to construct a vacuum

state the scalar potential must first be obtained, which amounts to finding

K and W for a particular space. K is, up to gauge freedoms, completely

determined through the properties of the moduli spaces ofM but this is not

so for the superpotential.

2.5 Fluxes and the Superpotential

Since we are not considering non-perturbative effects the scalar potential

is a polynomial in the moduli and the coefficients are known as fluxes and

since the Kähler potential is set by the internal space the flux dependence

resides entirely in the superpotential. We previously discussed the effect

the compactification of a ten dimensional theory onto a six dimensional

internal space has on the field content and those components which exist in

the internal space contribute to the equations of motion of the moduli as

fluxes. A generic contribution to the superpotential due to an element of

Ωp(E∗) is expressed in terms of an integral overM, so any element of Ωp(E∗)

must be paired with Ω6−p(E∗) to contribute. This differs from how the inner

product (2.1.5) combines two forms of the same degree. Taking the Hitchin

function’s definition in terms of elements in Ω±(E∗) as a guide we instead

consider elements in the subspaces Ω±(E∗) ⊂ Ω∗(E∗), or more specifically

the light forms ∆±(E∗) ⊂ Ω±(E∗).

W 3
∫
M

〈
ψ, φ

〉
s

ψ ∈ ∆p(E∗)

φ ∈ ∆6−p(E∗)

}
∈ ∆±(E∗)
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The individual flux components defined by a ∆∗(E∗) expansion are constant

but this is not automatically the case if the fluxes are written in terms of

the Ω∗(E∗) basis. Only in parallelisableM is it possible to choose a E∗ basis

such that the Ω∗(E∗) defined flux components are constant over M, thus

having the fluxes belong to a particular Λp(E∗) ⊂ Ωp(E∗). This is discussed

further in Appendix B.1.2.

The two Type II theories possess different field content on the ten di-

mensional level and this is carried through to the effective theory upon com-

pactification. As a result the superpotential definitions differ in their R-R

sectors but it is also true that they differ in their NS-NS sectors and so we

shall consider each Type II theory in turn. Strictly speaking since we wish

to ultimately examine N = 1 compactifications we should be considering

only those fluxes which survive the orientifold projection but at present we

will neglect any constraints on the fluxes and talk about fluxes which might

arise. Comprehensive review of flux compactifications, their phenomenology

and their properties are given in [28, 29], as well as the phenomenology of

including branes and orientifold planes in [30]. It is from these which we

take our initial superpotential and tadpole constructions.

2.5.1 Type IIB Fluxes

The ten dimensional 3-form NS-NS flux strength descends to the effective

theory and if we are restricted to the massless field content the H3 defined

on M is expanded in the ∆3(E∗) basis.

H3 ≡ hIαI − hJβJ
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For N = 1 compactifications this contributes to the superpotential by com-

bining with Ω in the form of the Gukov-Vafa-Witten equation [31], which

stipulates the inclusion of the dilaton, and hence provides a non-zero poten-

tial for the complex structure moduli and the dilaton.

W 3
∫
M

〈
Ω,−S H3

〉
± = −S

(
hIU I − hJUJ

)
(2.5.1)

The GVW superpotential integrand is the combination of two 3-forms we

can define it in terms of the generalised inner product (A.1.4) without having

to set the sign structure as ∆3(E∗) is antisymmetric in each. A second 3-

form descends from the ten dimensional theory, the R-R sector’s F3, which

can also be written in the ∆3(E∗) basis.

F3 ≡ fIαI − fJβJ

These fluxes do not couple to the dilaton but otherwise contribute to the

superpotential in the same manner.

W =

∫
M

〈
Ω,
(
F3 − S H3

) 〉
±

=
(
fIU I − fJUJ

)
− S

(
hIU I − hJUJ

)
(2.5.2)

If M is Calabi-Yau then ∆1(E∗) and ∆5(E∗) are empty and so we do not

need to consider other contributions to the superpotential from fluxes in

Type IIB.

2.5.2 Type IIA Fluxes

The Type IIA 3-form field strength descends to the effective theory in the

same manner as the Type IIB case and thus combines with a holomorphic

3-form. In Type IIA the complex structure moduli combine with the dilaton

to formMQ and so the 3-form flux couples to the complexified holomorphic
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3-form, Ω → Ωc. The complexified holomorphic form combines with the

∆3(E∗) flux to provide a non-zero potential for the complex structure moduli

and the dilaton but not the same one obtained in the Type IIB case.

W 3
∫
M

〈
Ωc, H3

〉
± = −S U0h0 + U ihi + S U0h

0 − Ujhj (2.5.3)

The effective theory in Type IIA differs, at least in terms of flux structures,

from Type IIB in a more manifest manner in its R-R sector. Type IIA does

not contain a 3-form flux in the R-R sector, only field strengths of the form

F2m. The formal sum of these fluxes is written using the ∆+(E∗) basis and

we again keep the sign choice manifest in the expansion.

FRR =
3∑

n=0

F2n = f0ω0 ± faωa + fbω̃b ± f0ω̃0

In Type IIA the R-R fluxes obtained by compactification do not contribute

a dilaton dependency as the Kähler moduli make up the local special Kähler

manifold MK and therefore these R-R fluxes contribute to the superpoten-

tial by combining with f.

W 3
∫
M

〈
f, FRR

〉
± = f0T 0 ± fAT A + fBTB ± fBTB (2.5.4)

2.5.3 Branes and Tadpoles

Thus far we have been considering the effective field theory obtained by

compactifications of a Type II supergravity theory and have not consid-

ered quantum corrections to this. Additional constraints follow from the

construction of tadpoles from fluxes and R-R potentials. Due to the rela-

tionship between dimensionality of potentials, the branes they live on and

the definitions of the Type II theories, the expressions for the tadpole con-

straints will not be common between the two theories. However, the method

of analysing them can be applied to either Type II theory and because of
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this we shall first consider the tadpoles of Type IIB. A much studied [32, 21]

Type IIB tadpole is that which arises for F5, whose equation of motion is

already modified by the inclusion of fluxes, as given in Section 1.3.2. In

the compactified effective theory the insertion of D3-branes which fill the

external space-time contributes to the energy momentum tensor a charge

density3 ρ3 which modifies the F5 equation of motion.

dF̃5 = H3 ∧ F3 + 2κ2T3ρ3

Integration over the internal space causes the left hand side to vanish by

virtue of it being exact and a relationship between the fluxes and the total

charge Q3 is obtained.

1

2κ2T3

∫
M
H3 ∧ F3 +Q3 = 0

Both D3-branes and O3-planes can contribute to Q3, the branes in a positive

way and the O-planes in a negative way due to their negative tension, and

this tadpole constraint on the fluxes can be expressed in terms of the number

of three dimensional objects living in the external space-time.

1

2κ2T3

∫
M
H3 ∧ F3 +N3 = 0 N3 = ND3 −

1

2
NO3

The general extension of this is that if a Dp-brane is allowed by the sym-

metries of a space and the Type II theory being considered then the Cp+1

potential it couples to can contribute a tadpole constraint.∫
M4×M

(
Cp+1 ∧X9−p + 2κ2Tρp

)
= 0

Due to our assumption that the internal and external spaces are not in-

terdependent any Cp+1 for p ≥ 3 factorises into a term relating to the ex-

ternal space and terms relating to the cycles the Dp-brane is wrapping,

3Delta functions associated to the point in each dimension M the D3 is located at [21] are

surpressed.
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Cp+1 → vol4 ∧ C̃p+1. If a set of branes are wrapping a q-cycle γ in M with

total charge Nγ then X6−q must have support in the dual cycle ?γ.

0 =
1

2κ2T

∫
?γ

X6−p +Nγ

By considering how these terms descend from the full ten dimensional theory

it follows that the Xp+1 are dF̃p, the contribution of brane sources alters the

R-R sector’s dynamics by modifying their closure properties.

2.6 Generalised Calabi-Yaus

We motivated our examination of fluxes via harmonic forms by using the

properties of Calabi-Yaus; their Ricci flatness and symmetry breaking SU(3)

holonomy group. Our entire analysis has been based on requiring the com-

pactified Type II theory to admit a pair of SU(3) holonomy spinors, each

associated to a gravitino. The Calabi-Yau admits a non-zero set of harmonic

forms in Ω1,1(E∗) and Ω2,1(E∗) and the effective theory is dependent upon

their associated moduli. In the fluxless case the space possesses a standard

exterior derivative and we can use it to construct our Hp,q(E∗) and thus have

∆p,q(E∗) = Hp,q(E∗). However, the inclusion of fluxes alters the compact

space such that Hp,q(E∗) is empty or at the very least reduced in dimension-

ality and therefore ∆p,q(E∗) is not harmonic. The inclusion of non-zero fluxes

feeds through into curvature of (M, J, G) and thus modifies the holonomy

group such that (M, J, G) is no longer of SU(3) holonomy but instead can

possess SU(3) structure.

2.6.1 Breaking SU(3) Holonomy

The breaking of SU(3) holonomy does not signal a removal of the SU(3)

singlet the effective theory gravitini belong to nor a breaking of Ricci flat-
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ness. The stipulation of SU(3) holonomy is a sufficient but not necessary

requirement for these conditions, it is a particular case of a more general set

of spinor transformations which provide SU(3) singlets and Ricci flatness.

To see this we consider the variations of N = 1 supersymmetry spinorial

fields of the gravitino ψM , the dilatino λ and the gluino χa at the vacuum

in terms of a spinor η and the bosonic fields and couplings, following the

notation of [20].

δψM = 1
κ
∇Mη + κ

32g2φ

(
Γ NPQ
M − 9 δNMΓPQ

)
HNPQ η = 0

δχa = − 1
4g
√
φ
ΓMNF a

MN η = 0

δλ = − 1√
2φ

(ΓM∂Mφ)η + κ
8
√

2g2φ
ΓPQRHPQR η = 0

Turning off H, thus making φ constant, reduces these to a pair of equations

on η as the δλ case becomes trivial.

δψM = 0 ⇒ ∇Mη = 0

δχa = 0 ⇒ ΓMNF a
MN η = 0

The δψM condition is precisely the one which we have previously seen lead

to the curvature constraint RMNPQΓPQη = 0. Under the assumption the ten

dimensional space-time splits into Minkowski space-time and M it follows

that the RMNPQ for M,N,P,Q ∈ {0, 1, 2, 3} vanishes and thus ∇Mη → ∂Mη

for M ≤ 3. Therefore the spinor is independent of the larger space-time and

covariantly constant on M and (M, J, G) has SU(3) holonomy as a result.

In deriving such a result we had to assume that the field strength H is

turned off and the dilaton is constant. Both of these are not true in the

general analysis of flux compactifications. Turning on H makes η no longer

covariantly constant due to the δψ equation of motion, nor can the dilaton

be constant due to the δλ equation of motion. The inclusion of the second
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term in the δψ equation of motion can be seen to be schematically similar

to the addition of a torsion term to ∇, provided H is constant.

δψM =

(
1

κ
∇M +

κ

32g2φ

(
Γ NPQ
M − 9 δNMΓPQ

)
HNPQ

)
η ≡ 1

κ
∇̂Mη

The δλ equation of motion can also be reduced to an expression on φ.

ΓM∂Mφ−
κ

8g2
ΓPQRHPQR = 0

The SU(3) holonomy case is now seen to be mearly a particular solution to

the problem of the internal space admitting a single spinor to the effective

theory for each spinor of the uncompactified theory. In fact, there is a

much larger class of compactifications which could provide the same kind

of phenomenology. With the Riemann curvature associated to ∇ no longer

being exactly zero it is possible to build space-times which are curved, with

de Sitter and Anti de Sitter being those of primary interest to cosmologists.

Such spaces can be obtained in restricted cases, where the compactification

is such that the metric splits into external and internal parts which are only

linked via a warp factor dependent on the internal space.

ds2 = eA(X)gµν(x)dxµdxν + gKL(X)dXKdXL

However, we wish to phrase these generalisations in terms of our effective

theory, the fluxes and the superpotential.

2.6.2 Effective Theory Light Fields

Although fluxes may deform the space such that they no longer admit har-

monic forms the fluxless Calabi-Yau provides a convenient initial ansatz for

what p-forms define a consistent basis for ∆p,q(E∗). This can be seen by

considering a generic expansion of a field dependent on the coordinates of
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M in terms of a Kaluza-Klein tower. Recalling the field decomposition of

(2.2.1) we examine a p-form with only M dependence.

Ψq =
∑

n ψq,n = ψq,0 + ψq,1 + . . .

∈ ∆q
(0) ∈ ∆q

(1)

∆Ψq =
∑

n ∆ψq,n = ∆ψq,0 + ∆ψq,1 + . . .

(2.6.1)

For a six dimensional torus the quantisation of the momentum of the fields

on the circles gives a clear tower of states such that
〈〈
ψq,n,∆ψq,n

〉〉
∼
(
n
R

)2
.

The massless nature of the ψq,0 state corresponds to it being harmonic and

thus ∆q
(0)
∼= Hq(E∗). These modes also satisfy the fields’ equations of motion

and Bianchi constraints and so provide a valid basis for the effective theory.

With the inclusion of fluxes, which we generically denote as f, the bases

∆p,q(E∗) are not longer the Hp,q(E∗) due to the deformations of metric of

(M, J, G) via the stress-energy tensor. As a result the tower expansion of

Ψq is altered and dependent on the fluxes.〈〈
ϕ,∆ϕ

〉〉
≡M2

ϕ(f) (2.6.2)

By definition, if ϕ ∈ Hp(E∗) then M2
ϕ = 0. Generically we must allow for the

possibility that M2
ψq,0

could be sufficiently large to become comparable to the

M2
ψq,1

and in such a case the effective theory field content is no longer clear.

However, for small values of the fluxes we can suppose that the deformation

is sufficiently small so as to maintain the excitation splittings in the mass

tower. We shall continue denote the corresponding space of p-forms spanned

by these elements as ∆p(E∗) whose definition we can now state more formally.

∆p(E∗) ≡
{
ϕ ∈ Ωp(E∗) s.t. M2

ϕ(0) = 0
}

(2.6.3)

In constructing a basis for ∆p(E∗) we require that supersymmetry can still

be obtained, as it is the guiding principle for our examination of Calabi-

Yaus. N = 2 supersymmetry is associated to the existence of special Kähler
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moduli manifolds [74] and the definition of such manifolds given in Appendix

A does not require the finite basis to be harmonic. Instead the special Kähler

conditions were related to the intersection numbers defined by the basis

elements (the $ used in Appendix A). Provided those are met it is possible

to construct the associated holomorphic section. Therefore if we truncate

[74] the Kaluza-Klein expansion to such a basis we allow for the possibility

of preserving supersymmetry in some way. Further algebraic properties of

this truncation, over and above this special Kähler preserving structure,

such as being closed under the exterior derivative are outlined in Appendix

B.1.1. By definition the harmonic forms on a Calabi-Yau satisfy all of these

conditions and we make the assumption that the small deformations caused

by the inclusion of fluxes do not reduce the associated intersection numbers

to being degenerate.

g J
I (f) =

∫
αI(f) ∧ βJ(f) ⇒ det(g J

I (f)) 6= 0 (2.6.4)

This suggests that an ansatz basis for the space obtained by the slight de-

formation of a Calabi-Yau is comprised of elements of Ω∗(E∗) which become

harmonic if the fluxes are set to zero.

∆∗(E∗) = 〈ωA(f), ω̃B(f), αI(f), β
J(f)〉 ⇒ ∆∗(E∗)

∣∣∣
f=0

= H∗(E∗) (2.6.5)

The alternative way to consider the small flux limit is the large volume

or complex structure limit and in these limits this basis ansatz is justified

[79]. This generalisation beyond the Calabi-Yau case is known as general

geometry [66, 67] and the resultant spaces are twisted and/or generalised

Calabi-Yaus [28] whose holomorphic pure forms are no longer closed. The

fluxes can be regarded as parameterising the deviation of the ∆∗(E∗) ele-

ments from being closed under exterior differentiation [63, 64, 65, 74, 30].

We shall compare this definition of the fluxes to an alternative construction
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in terms of gauge Lie algebras in more detail later and in the explicit exam-

ple of the Z2 × Z2 orientifold we will see that fluxes allow the construction

of non-Minkowski vacua [68, 69, 93, 94]. The Z2 × Z2 orientifold has empty

∆1(E∗) and ∆5(E∗) and although a generic deformation of a Calabi-Yau

would be expected to have non-empty ∆1(E∗) and ∆5(E∗) we shall restrict

our considerations to truncated bases which do not contain such forms.

Summary

We have reviewed the three different types of moduli which arise in string

compactifications; the complex structure moduli U , the Kähler moduli T and

the dilaton modulus S. In the case of the U and T they are associated to the

topological non-triviality of M, with a direct correspondence between the

number of (2,1) and (1,1) cycles and the number of harmonic ways (M, J, G)

can be deformed while remaining a Calabi-Yau. The distinction in how the

Type II theories construct their effective theory superpotentials has been

stated, as well as the different ways in which the fluxes contribute to possi-

ble tadpoles due to branes. Irrespective of how the superpotential is written

in terms of fluxes we have noted the constraints on the superpotential re-

quired for stable vacua, with the supersymmetric Minkowski case being of

particular interest due to its greatly simplified nature when compared to

the fully general approach. These simplified constraints will be used in our

examination of the Z2×Z2 orientifold. Finally we have taken into consider-

ation the fact that turning on fluxes will deform the space and non-trivialise

the question of what fields descend into the four dimensional effective the-

ory. Having stated the fluxes and their superpotentials obtained from direct

compactification of the ten dimensional string actions we now consider the
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dualities and symmetries these string actions possess.
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Chapter 3

String Dualities

Symmetries are a fundamental concept within physics, such as defining con-

served quantities via Noether’s theorem or protecting gauge boson masses

from renormalisation effects. Generally they are constructed by considering

variations in fields ξ → ξ + δξ which leave an action or equations of motion

invariant and thus relate two physically equivalent constructions within the

same theory. Dualities differ from this in that they are exact equivalences

between two theories or constructions which have different equations of mo-

tion or actions. An example of this outside of string theory is Seiberg duality

[33], which relates two different supersymmetric non-abelian gauge theories.

SD : L1 = L(τ 2, Fab) ↔ L2 = L(−τ−2, F̃ab)

The Lagrangian density L1 is that of the standard gauge theory, while L2 is

its Seiberg dual. If the gauge coupling g is such that L1 is a weakly coupled

theory then L2 must be strongly coupled due to its inverse relationship. The

utility of such an equivalence arises by being able to convert strongly coupled

problems into a weakly coupled regime, find a perturbative solution and then

convert into a solution to the strongly coupled problem. Such a weak-strong

duality in string theory, the AdS/CFT correspondence [34] based on the
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concept of holography [35], has received considerable interest because of its

possible applications into understanding strongly coupled gauge theory [36].

In the original correspondence the N = 4 supersymmetric Yang-Mills gauge

theory due to open strings ending on D3-branes have a dual description in

the gravitational theory of the AdS5 × S5 space-time, following from the

closed string description. Though N = 4 SYM is unphysical due to confor-

mality and excessive supersymmetry, modifications to the space-time feed

back into the gauge theory, breaking the gauge theory to a less symmetric

and thus more realistic one. Though a gravity dual to quantum chromo-

dynamics is not currently known, or even known to exist, it has provided

insight into confinement [37], hadronisation [38], flavour physics [39], tech-

nicolour induced Higgs mechanisms [11] and finite temperature physics [40].

In this chapter we will consider dualities which arise in a more direct

fashion than the AdS/CFT correspondence, appearing at the level of the

actions or mode expansion of the fields in the Type II theories. The first

case we shall consider is T duality, which is the relationship between Type

II theories when they are compactified on a toroidal space and is demon-

strated on the level of mode expansion in the oscillation modes of the string.

Toroidal spaces are not the only possible spaces upon which string theory

can be compactified on, as commented in the previous chapter, and the

extension of T duality to cover Calabi-Yau manifolds, mirror symmetry, is

considered after T duality. The third duality is one whose existence follows

from the action of Type IIB supergravity and is S duality, a strong-weak

coupling equivalence between Type IIB formulations. This has applications

to the AdS/CFT correspondence because Type IIB is the gravity dual of

N = 4 supersymmetry Yang-Mills theory. Finally we briefly cover a combi-
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nation of T and S dualities known as U duality, which arises from the fact T

duality makes Type II theories dual yet only one of them possesses S duality

invariance.

3.1 T Duality

We first consider T duality between Type IIA and Type IIB. Though we are

considering supersymmetric string theories and thus have fermionic modes

in such constructions the motivation for the symmetry is done using bosonic

modes. The effects of T duality on such things as branes occurs in bosonic

string theory as well as supersymmetric string theories. However, since it

is the fermionic sector which defines the two Type II theories T duality in

the bosonic string theory is not a duality in the same way it is between

supersymmetric string theories.

3.1.1 A Stringy Phenomenon

T duality is a fundamentally string phenomenon arising from the fact the

string has length, unlike standard quantum field theories, which comes into

play when considering compactified dimensions. To see this in ten dimen-

sional space-time we can make a generic expansion of the bosonic modes on

the string without taking the α′ → 0 limit and using z = σ1 + iσ2 = σ + iτ .

Xµ(z, z̄) =
xµ

2
+
x̃µ

2
+

√
α′

2
(αµ0 + α̃µ0 )τ +

√
α′

2
(αµ0 − α̃

µ
0 )σ + . . . (3.1.1)

The string momentum pµ can be determined in terms of the coefficient of τ .

pµ =
1√
2α′

(αµ0 + α̃µ0 )

Compactifying x9 onto a circle of radius R quantised the momentum and

the scalar field is no longer single valued in σ, making the field dependent

68



on two integers; n and w.

p9 =
n

R
, X9(σ + 2wπ, τ) = X9(σ, τ) + 2πw

√
α′

2
(αµ0 − α̃

µ
0 )

Expressing the momentum in terms of the zero modes provides a pair of

simultaneous equations dependent on the two integers.

2n

R

√
α′

2
= α9

0 + α̃9
0 α9

0 =

(
n

R
+
wR

α′

)
(3.1.2)

wR

√
2

α′
= α9

0 − α̃9
0 α̃9

0 =

(
n

R
− wR

α′

)
The interpretation of w is that it is the string winding number. An open

string can wrap around a circular dimension but can be smoothly shrunk

down to a length much smaller than R. This is not the case for closed

strings, they can be viewed as open strings which have circumnavigated the

circular dimension, before joining their ends and w is the number of times it

has wrapped the dimension. w < 0 can be viewed in terms of an orientated

string wrapped in the opposite direction to the w > 0 cases. As with any

other relativistic theory the mass-energy formula of the string can be written

in terms of the momentum by pµp
µ = −M2 and the contribution due to the

x9 direction is of primary interest, all other terms are independent of n and

w.

M2 =
n2

R2
+
w2R2

(α′)2
+ . . . ≡M2(n,w,R)

This mass formula has a symmetry between the two integers provided we

also change the circumference of the circle.

M2(n,w,R) = M2

(
w, n,

α′

R

)
We can define a T duality transformation T9 in the circular x9 direction of

radius R9 in terms of these exchanges.

T9 : n9 ↔ w9 , R9 ↔
α′

R9

(3.1.3)
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There are additional implications of these transformations, as can be seen

by noting that the zero modes of the field depend on the momentum and

winding numbers.

T9 : α9
0 → α9

0 , α̃9
0 → −α̃9

0

The scalar field as a whole has this sign change in the right moving modes,

the T duality transformation can be viewed as a parity operator in the those

modes.

X9(z, z̄) = X9(z) +X9(z̄)→ X9(z)−X9(z̄)

If the string theory is a superconformal one then in order to have invariance

in such terms as Xµψµ under a T duality in x9 the change in sign in the

bosonic term induces the same change in sign in the fermion fields. This

parity-like change in sign alters the chirality of the theory. If the left and

right moving modes have equal chirality before T duality in a single direction

then afterwards they have different chiralities and vice versa. This difference

in chirality is the distinguishing features in the boundary conditions of Type

II definitions and so T duality exchanges Type IIA and Type IIB.

This can be further justified by the brane content of a Type II theory. If T

duality exchanges Type IIA and Type IIB then it must alter the dimensional

of the branes in those theories and to confirm this we consider the definition

of the branes; they are the space-time regions on which an open string’s

end may end on and so the end points obey a set of Neumann or Dirchlet

boundary conditions.

• Dirichlet condition : ∂τX
µ = 0

• Neumann condition : ∂σX
µ = 0
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Appling the transformations in (3.1.3) to the mode expansion ofXµ in (3.1.1)

we can see the coefficients of τ and σ are exchanged and therefore T duality

exchanges the boundary conditions of the end points. If the string could pre-

viously move in the xµ compact dimension then its T dual cannot and vice

versa and therefore a Dp-brane either increases or decreases in dimension by

one. This is precisely the relationship required if T duality exchanges the

brane content of the Type II theories. Though we have outlined the deriva-

tion of T duality in the perturbative regime of string theory this symmetry

holds for all orders and non-perturbatively.

3.1.2 Background Fields : R-R Sector

The effective theory is defined in terms of background fields and in order to

understand how T duality might affect the effective theory we address how

the ten dimensional stringy fields behave under T duality. The simplest case

is that of the R-R fluxes in either theory as we already have a geometric

interpretation of how D-branes are affected by T duality and the R-R fluxes

reside on these branes and to illustrate this we consider the Type IIA 1-form

Cµ under a T duality in the x9 direction. This singles out the C9 component

of the Type IIA field and it becomes the Type IIB 0-form C0, while the

remaining components of Cµ can be regarded as being the Cµ9 components

of the Type IIB 2-form C2. The inclusion of non-zero NS-NS background

fields alters this relationship slightly but the general transformations are

known as the Buscher Rules. We shall only be considering a simplified case,

following the notation of [32] in both flux sectors.

F̃µ1...µn−19 = Fµ1...µn−1 , F̃µ1...µn−1µn = Fµ1...µn9 (3.1.4)
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3.1.3 Background Fields : NS-NS Sector

The R-R sectors of the two Type II theories are different and we have seen

how they are exchanged by a single T duality. The NS-NS sector is com-

mon between the two theories and therefore T dualities do not change the

generic structure of these fields. These fields arise from the 8v × 8v SO(8)

representations of the string polarisation modes and as a result the trans-

formation rules for these fields can be written in a succinct manner in terms

of ξµ ↔ 8v.

8v × 8v = (35 + 1) + 28 = 35 + 28 + 1

ξµξν = gµν + Bµν = Gµν + Bµν + 1
D
δµνTr(g)

The two rank two tensors define a traceless tensor Eµν = Gµν +Bµν , which

can be decomposed into G and B by their symmetric and antisymmetric

index structure. We take the circular directions to be xi for i ∈ {1, . . . , n},

all of which we T dualise, the xα to be the non-compact directions and the

new fields are obtained from Ẽ by the same decomposition as used for E.

Ẽij = Eij , Ẽαj = EαkE
kj , Ẽαβ = Eαβ − EαiEijEjβ (3.1.5)

The dilaton changes under T duality and it too is dependent on E.

e2Φ̃ = e2Φdet(Eij)

These transformations form a T duality symmetry group O(6, 6) whose ex-

istence can be seen by reformulating the mass formula. In this we follow

[21] and we take our indices to range over the compact directions M,N =

1, . . . , 6. The winding modes around XM are WM and the momentum modes

are KM . The metric G and 2-form B define a 12× 12 matrix G.

G−1 =

2(G−BG−1B) BG−1

−G−1B 1
2
G−1

 , G =

 1
2
G−1 −G−1B

BG−1 2(G−BG−1B)


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The matrix G−1 acts as the quadratic form for the mass formula of M0.

1

2
M2

0 =

(
W K

)
G−1

W
K


This expression is invariant under two kinds of transformations, which form

the generators of O(6, 6,Z). The first is the generalisation of the R ↔ 1
R

,

which is known to exchange the winding and momentum modes and the

corresponding transformation on G is easily deduced.

WM ↔ KM , G ↔ G−1

This is then extended by discrete shifts in the 2-form, which induce shifts in

the momentum.

BMN → BMN +
1

2
bMN , WM → WM , KM → KM + bMNW

N(3.1.6)

These can be summarised in terms of O(6, 6,Z) elements, which we denote

generically by A.

G → AG A> ,

W
K

→ A

W
K


This is the maximal symmetry group of the momentum and winding modes

due to the requirement of level matching, which requires KMW
M be invari-

ant. The O(6, 6,Z) element A can be formed by two kinds of generators.

inversion : A =

 0 I6

I6 0

 shift : A =

 I6 0

bMN I6


3.2 Mirror Symmetry

In constructing T duality we assumed that the compact dimensions were

circular, making the internal space toric. Since orbifolds are constructed
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from tori the application of T duality to them is straightforward but this

is not so clear in the case of Calabi-Yaus as they are not generally toric.

However, there is a conjectured symmetry which generalisas T duality to a

larger class of spaces, including Calabi-Yaus, known as mirror symmetry. A

technical of mirror symmetry is given in Refs. [13, 70] but we will follow

the less technical approach of considering moduli symmetries, as outlined in

Ref. [21].

T duality exchanges a Type IIA theory defined on M1 for a Type IIB

theory defined on M2, where Mi are toroidal. Mirror symmetry is a con-

jectured extension of this such that Mi are not required to be toroidal. A

number of important statements about the properties of theMi can be made

by considering the field content of the two Type II theories when compacti-

fied on a generic Calabi-Yau M with Hodge numbers hp,q, as given in [21].

The massless field contents of each theory are given in Table 3.1 where the

coordinates for the ten dimensions of M4×M are (xa, zρ, z̄σ̄) and other than

for the gravity multiplet fermions are not stated. Each Type II theory has a

gravity multiplet, with a pair of gravitini for N = 2, and a hypermultiplet.

This hypermultiplet is the universal hypermultiplet which is responsible for

the dilaton in each theory, as mentioned in Section 2.3.3, with the symme-

try in the NS-NS and R-R fields evidence in the Type IIB case, a point we

will return to shortly. The remaining fields form different multiplets in each

theory, with the h2,1 metric components of pure degree belonging to hyper-

multiplets in Type IIA but vector multiplets in Type IIB. Conversely, those

metric components of mixed degree belong to vector multiplets in Type IIB

but hypermultiplets in Type IIB. Overall there are 2h1,1 + 4(h2,1 + 1) mass-

less scalars in Type IIA yet 2h2,1 +4(h1,1 +1) in Type IIB, again illustrating
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the h1,1 ↔ h2,1 symmetry between the theories. Therefore, if Type IIA is

compactified onM and Type IIB on W we have a relationship between the

cohomologies of each compact space.

Hp,q(M) = H3−p,q(W)

Therefore, except in very special cases, Type IIA and Type IIB compactified

string theories can only be dual to one another if they are defined on different

spaces, as seen by obtaining the Hodge numbers of W from those of M.

h1,1(M) = h2,1(W) , h2,1(M) = h1,1(W)

With the supermultiplet field content defining the moduli of each theory by

their scalar components we have a similar relationship between the moduli

of each theory as determined for their cohomologies.

MT (M) =MU(W) , MU(M) =MT (W) (3.2.1)

These are necessary conditions for the Type II compactified theories to be

dual to one another but they are not sufficient. In the same way that T

duality provides a bijection between the structures of Type IIA and Type

IIB on different tori Type IIA onM is dual to Type IIB on W if their field

contents are isomorphic to one another. It is important to note that because

of the relationship (3.2.1) between moduli spaces the mirror dual theories

will label their moduli in different manners. This was not seen in our review

of T duality but is none-the-less also seen in T duality because on toroidal

spaces mirror symmetry is equivalent to the combination of three distinct

T dualities [41]. This is seen by noting how the orientifold action works in

Table 2.1, where the O-planes of the different σ cannot be related by a single

T duality due to their dimensionality. It has been studied explicitly for the
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Type IIA

# Multiplet Fields

1 gravity Gab,Ψa, Ψ̃a, Ca

h1,1 vector Caρσ̄, Gρσ̄, Bρσ̄

h2,1 hyper Cτρσ̄, Gρσ

1 hyper Φ, Bab, Cτρσ

Type IIB

# Multiplet Fields

1 gravity Gab,Ψa, Ψ̃a, Caτρσ

h2,1 vector Caτρσ̄, Gρσ

h1,1 hyper Cabρσ̄, Gρσ̄, Bρσ̄, Cρσ̄

1 hyper Φ, Bab, C0, Cab

Table 3.1: Type II massless supermultiplets on a Calabi-Yau.

Z2 × Z2 orientifold [10, 60, 61] and is a point we shall return to later. It is

important to distinguish between two different but similar conjectures.

• Type IIA on a Calabi-Yau M is mirror dual to Type IIB on W .

• Type IIB on a Calabi-Yau W is mirror dual to Type IIA on M.

This difference arises from the the properties of Calabi-Yaus in terms of their

Hodge numbers, h1,1 ≥ 1 and h2,1 ≥ 0. If h2,1(M) = 0 then h1,1(W) = 0

and thusW cannot be Calabi-Yau. As a result the conjecture is in reference

to a slightly larger space of manifolds, tautologically defined as Calabi-Yaus

and their mirror duals, but this is a technicality we will not address in any

further detail.

In order to simplify our algebraic notation when comparing Type IIA

theories on M to Type IIB theories on W we will only ever make refer-

ence to the Hodge numbers of M, hp,q ≡ hp,q(M). The Type IIB complex

structure moduli space of W therefore has h1,1 dimensions and moduli ŨA,

while the dimension of the Type IIB Kähler moduli space of W is h2,1, with

indices I, J ranging over 0 to h2,1. This labelling convention is summarised
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in Table 3.2. It is important to note that we cannot automatically make the

assumption that UI = T̃I as the relationship between the moduli of M and

W depends on the specific mirror symmetry action.

If two effective theories compactified on M and W are mirror dual to

one another they require equivalent superpotentials. In general this is not

simply the relabelling the moduli in the manner of Table 3.2 because of

quantum corrections. A superpotential onM linear in T need not map into

a superpotential onW linear in Ũ unless the background is exact and needs

no corrections, such as toroidal orbifolds. Although this will mean we can’t

use moduli dependency to compare two superpotentials defined on M and

W it does not alter the fact that mirror dual superpotentials should have

the same number of independent fluxes. This allows us to compare super-

potentials on M and W without having to give too much attention to the

explicit stringy origins of the individual fluxes themselves.

We will see that due to the manner in which the superpotential is depen-

dent on the holomorphic forms Ω and f it is possible to construct the most

general superpotential without having to necessarily know the origin of all

contributions. As such, the existence or not of particular moduli terms will

be used as a guide in determining the structure of the induced fluxes if not

their string theoretic origins. An important contribution to that approach

is the fact that mirror symmetry exchanges the holomorphic forms Ω ↔ f

as well as their dilaton complexified extensions Ω
(′)
c ↔ f(′)

c [78, 79, 74, 64].
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Type IIA on M Type IIB on W

UI , UJ I, J = 0, · · · , h2,1 T̃I , T̃ J

TA , T B A,B = 0, · · · , h1,1 ŨA , ŨB

Table 3.2: The moduli of mirror pair M and W in terms of hp,q(M)

3.3 S Duality

There is a second non-perturbative duality which arises in Type IIB string

theory which we are able to examine independently of T duality, that of S

duality. It is hinted at in Table 3.1, where the universal hypermultiplet of

Type IIB contains a pair of scalars and a pair of 2-forms1 and one member

of each pair is associated to NS-NS fields and the other is associated to R-R

fields. This symmetry is not unique to the compactified theory, it arises

in the full ten dimensional supergravity action and is conjectured to be a

symmetry of the full string theory.

3.3.1 Type IIB SL(2,R) Invariance

It is not immediately clear from the Type IIB supergravity action there exists

an SL(2,R) symmetry in the theory. To make this symmetry manifest we

must transform the Type IIB supergravity action into the Einstein Frame,

where (GE)µν = e−
Φ
2 Gµν , and put certain fluxes into doublets.

Mij =
1

Im(S)

 1 −Re(S)

−Re(S) |S|2

 , Fi =

F3

H3


The rescaling of the metric decouples the dilaton from the Ricci scalar and

in doing so has motivated the complexified dilaton definition given in (2.3.9).

1Technically when building the hypermultiplet Bab and Cab are regarded as scalars too but

the salient point is that there is a pairing between NS-NS and R-R objects.
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Substituting these definitions into the supergravity action and using RE as

the Ricci scalar associated to the new metric GE we obtain a formulation

which has the symmetry manifest.

SIIB =
1

2κ2
10

∫
d10x

√
−GE

(
RE −

∂µS∂µS

2(Im(S))2
− 1

2
Fi ·Mij · Fj −

1

4
|F̃5|2

)
+

εij
8κ2

10

∫
C4 ∧ Fi ∧ Fj (3.3.1)

With RE independent of the dilaton all derivatives of S arise in the kinetic

term. This kinetic term is of the same form as a two dimensional hyperbolic

metric ds2 ∼ dx2+dy2

y2 , known to possess a modular invariance. This becomes

a symmetry of the entire action if the Fi transform in such a way as to make

the third term in the integral invariant, while the metric and 5-form are

unchanged.

S → aS + b

cS + d
, F→ L · F where L =

a b

c d

 ∈ SL(2,R) (3.3.2)

This invariance in the supergravity action is not automatically an invariance

in the string theory, we neglected the stringy contributions to the action

when we took the supergravity α′ → 0 limit and any quantisation require-

ments which follow from the fact the Fi are associated to charged objects.

When we include such constraints the continuous symmetry is broken its

maximal discrete subgroup, SL(2,Z).

3.3.2 Type IIB SL(2,Z) Invariance

In the Type IIB superpotential there are two contributions, both of which

are of the same rank and have the same number of coefficients. As a result

it is possible to construct well defined linear combinations of the two flux

multiplets. Both of these fluxes exist in the full ten dimensional supergravity

action and they formed a doublet under the SL(2,R) transformations so we
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can consider the same in the superpotential. The continuous group can be

seen to be broken to the discrete subgroup SL(2,Z) by noting that the Dirac

quantisation condition requires any flux formed by the redefinitions to be

integers.

S → aS + b

cS + d
, F→ L · F where L =

a b

c d

 ∈ SL(2,Z) (3.3.3)

This can be viewed in terms of stringy objects through the fact the 3-form

fluxes couple to either F or D-strings. The F-string carries NS-NS charge

with field strength H3 and the D-string carries R-R charge with field strength

F3. Under a general SL(2,Z)S transformation linear combinations of these

field strengths, pH3+qF3, are formed. The physical object this field strength

couples to is the (p, q)-string, a bound state of p F-strings and q D-strings,

though this interpretation is only strictly valid at weak or strong coupling

where one of the two string types becomes massive compared to the other.

For couplings which are neither weak or strong, gs ∼ 1, they form a single

object which carries p lots of NS-NS charge and q lots of R-R charge. Their

magnetic duals follow the same pattern, the D5 and NS5-branes form a

bound state which is only viewable in terms of these constituents in the

weak or strong coupling limit.

3.3.3 AdS/CFT Correspondence

The existence and behaviour of S duality in Type IIB string theory has a

more well known formulation, via the use of the standard formulation of the

AdS/CFT correspondence linking a gauge theory with a gravity theory.

N = 4 SYM ↔ Type IIB in AdS5 × S5
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The correspondence is justified by equating structures from each side of the

correspondence and thus there is an equivalent of the dilaton within the

N = 4 gauge theory. This is the complexified gauge coupling τ , written in

terms of the standard gauge coupling g and θ, which parameterised a CP

violating term in the Lagrangian, Lθ.

τ =
θ

2π
+

4πi

g2
Lθ = − θg2

32π2
Tr
(
Fµν(?F

µν)
)

The parameter θ is dual to the Type IIB scalar C0. C0 arises from instanton

charges and the same is true of θ, it is a topological quantity associated to

the non-abelian gauge group of Fµν .

3.4 U Duality

There is a non-trivial extension of these dualities known as U duality which

can be expressed entirely in terms of T and S duality transformations but

represent a space of transformations GU which are more than the disjoint

sum of T duality transformations GT = O(6, 6,Z) and S duality transfor-

mations GS = SL(2,Z)S. For compactification of Type II theories on T 6 the

discrete group is denoted as E7(Z) [21].

GT ×GS = O(6, 6,Z)× SL(2,Z)S ⊂ GU ≡ E7(Z)

The existence of an extended symmetry can be seen by noting that if T

duality reduces the two Type II theories to being equivalent to one another

on tori then the same structures should exist in each Type II theory. How-

ever, the fact Type IIA lacks the S duality symmetry appears to violate

this equivalence. Never the less, modular transformations on the dilaton in

Type IIA can be obtained by first T dualising into Type IIB, performing

an S duality transformations and then applying the same T duality trans-
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formation to obtain the original Type IIA construction [21, 32]. Strongly

coupled Type IIA theory can be viewed in a geometric manner as M theory

compactified on S1, which combines the SL(2,Z)S symmetry of the dilaton

into the M theory internal T 7 symmetry. The modular symmetry group of

T n is SL(n,Z) and as a result SL(7,Z) ⊂ E7(Z). U duality is then obtained

by the M theory modular group and the Type II T duality group knitting

together to give a symmetry group which provides both kinds of symmetry

and is denoted as E7(Z). Its precise definition in terms of maximal non-

compact subgroups of the continuous groups is given in Refs. [21, 32].

In terms of the superpotential defined effective theory the resultant trans-

formations on the fluxes of Type IIA go beyond the fluxes forming doublet

pairs of an NS-NS flux and an R-R flux, else it would be self S-dual natu-

rally. To examine the specific effect this has on Type IIA fluxes we are first

required to construct a T duality invariant theory, so that the relationship

between Type IIA and Type IIB are known in terms of the fluxes, and then

extend the Type IIB construction to include S duality. Since Type IIB is

self S-dual the R-R sector has all the same structures and properties as the

NS-NS sector but this is not true in the Type IIA case. Modular transfor-

mations in Type IIA result in highly non-trivial transformations in the Type

IIA fluxes, there is no way to consider T duality seperately from SL(2,Z)S

transformations. The explicit difference between the construction of the two

U duality invariant R-R sectors will be obtained in the next chapter.
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3.5 The Web of Dualities

We have seen how Type IIA and Type IIB can be made dual to one an-

other by compactifying them onto toroidal or Calabi-Yau internal spaces.

We have also seen how Type IIB possesses a self duality. However, this is

not the totality of links between different quantum field theories involving

extended objects. The supersymmetric open string theory known as Type I

can be constructed from Type IIB through the use of the O9-plane generat-

ing orientifolding discussed in the previous section. Such a theory includes

open strings, whose end points transform under the SO(32) gauge group.

This is not as general a duality as that between Type IIA and Type IIB and

this follows by considering the amount of supersymmetry possible in each

theory. Type I possesses N = 1 supersymmetry, its name following the same

convention as the Type II theories, and thus upon compactification to the

same class of spaces as Type II theories it will possess half the amount of

supersymmetry. This is resolved through the use of the orientifold projec-

tion in Type IIB and space-filling O9-planes and D9-branes give rise to the

possibility of open strings which are able to move through all of space-time.

The Type I theory does not possess the self S duality of Type IIB but

it does possess an S dual, that of a heterotic string theory with the same

SO(32) gauge group, the HO string. This is not restricted to those Type

I constructions obtained from some compactified Type IIB model, Type I

and HO are S dual on any kind of space-time. However, when compactified

on toroidal spaces T duality transformations can be applied to HO and it

is transformed into the other heterotic string theory, whose gauge group is

E8 × E8, the HE string.
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Despite their differences, Type IIA and HE can both be viewed as ten

dimensional ‘stringy’ limits of an eleven dimensional theory built of two

dimensional membranes, M theory. We have previously seen how the low

energy limit of M theory in eleven dimensions, 11d supergravity, can be di-

mensionally reduced on S1 to give the Type IIA supergravity action and the

same process on the orbifold S1/Z2 results in HE.

Further relationships between M and string theories exist when we con-

sider the gravity/gauge duality of the AdS/CFT correspondence previously

discussed in the context of Type IIB. A stack of N coincident D3-branes,

carrying N lots of D3-brane charge or flux, leads to a background which

gives AdS5×S5 space-time in the large N limit. A gauge theory is definable

on the four dimensional boundary of the AdS5 space and in the large N limit

this is conformal. For D3-branes this is the well studied N = 4 supersym-

metric Yang-Mills theory. The familiarity of this gauge theory and the fact

it is defined in four dimensional space-time makes it of central interest to

the investigation of phenomenological strongly coupled gauge theories. More

physically viable models are constructed by breaking the symmetry of the

string theory construction, such as by the insertion of D7-branes which fed

through into the gauge theory as a reduction in the supersymmetry. This

is not unique to Type IIB but since in Type IIA p must be even it is not

possible to have an AdS space whose boundary is four dimensional. How-

ever, D4-brane Type IIA constructions have received attention [42], with the

extra dimension being compactified. This is not restricted to string theories,

stacking large quantities of M2- or M5-branes in M theory leads to space-

times which tend to AdS4×S7 and AdS7×S4 respectively [21]. All of these
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dualities and relations are summarised in Figure 3.1.

Summary

In this chapter we have reviewed a number of dualities which are inherent

to Type II string theories. T duality links the two Type II string theories

when compactified on toriodal internal spaces and as many T dualities can

be applied as there are toroidal directions. Mirror symmetry generalised this

to Calabi-Yau internal spaces, where the non-toroidal nature of the inter-

nal space does not make the same T duality transformations clear. Mirror

symmetry is such that when the internal space is a toroidal one it becomes

equivalent to simultaneous application of three distinct T dualities. On the

level of the ten dimensional action Type IIB possesses a symmetry between

its NS-NS sector and R-R sector in the form of the weak-strong S dual-

ity but is not shared with Type IIA due to their differing brane content.

However, since T duality links Type IIA and Type IIB if both T and S du-

alities are used they combine to provide Type IIA with the same SL(2,Z)

modular invariance of Type IIB, resulting in U duality. At present we have

only considered these dualities on the level of the ten dimensional action

or mode expansions. If the effective theories obtained by compactification

are to have the same dualities then the superpotential must be invariant

in the same way the original action is and it is the implications of such a

requirement we consider next.
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Figure 3.1: String and M theory dualities. Dashed lines require a particular space-

time topology. T duality requires compact spaces. Not all Type II AdS/CFT

correspondences stated.
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Chapter 4

Duality Induced Fluxes

The four dimensional effective theory is invariant under a duality if the

Kähler functional G = K + ln |W |2 is invariant, which occurs if the effect on

the superpotential can be reduced to a gauge transformation W → e−fW . In

the context of mirror symmetry the two flux sectors can be treated separately

because the symmetry does not mix them. The approach we will take to

obtaining a duality invariant Type II superpotential is to consider the set of

fluxes known to exist in Type IIA NS-NS constructions and using arguments

of symmetry obtain additional fluxes within that sector. These induce fluxes

in the Type IIB NS-NS sector on the grounds of requiring the superpotentials

to be the same, up to moduli relabellings. Given a full NS-NS sector in Type

IIB S duality can then be used to induce the entire R-R sector of Type IIB

and these finally induce the R-R sector of Type IIA by T duality. The

methods used implicitly assume that M is a toroidal space and the fluxes

have their components defined in terms of indices in the generalised frame

bundle E = E ⊕ E∗. This allows the simple application of T duality to the

effective theory so that the form of induced fluxes can be summised. To

make it clear when we are referring to parallelisable spaces we shall denote
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the vector space the fluxes belong to as Λ∗(E∗), rather than the more general

∆∗(E∗) ⊂ Ω∗(E∗) of non-parallelisable spaces. Once we have obtained the

general superpotential of each Type II theory we will be able to convert

it into a formalism which can be applied to Calabi-Yaus and the action of

mirror symmetry is clearer. Work in this chapter is found in [9].

4.1 The Type IIA NS-NS Flux Sector

We begin with the Type IIA NS-NS flux sector due to the manner in which

the Kähler moduli dependence arises, an issue which will be of importance

in the Type IIB case. As will shortly be demonstrated, the Type IIA super-

potential can be dependent on all three moduli types by including only those

NS-NS fluxes with geometric interpretations. It is this ability to provide a

non-flat potential in all moduli which motivated considerable work in Type

IIA constructions and phenomenology [43, 44, 45, 46, 47, 48]. However, a

series of no-go theorems exist in Type IIA which preclude the construction

of phenomenologically viable vacua given only such fluxes. Fortunately the

Type IIA fluxes which arise beyond those obtained by compactification pro-

vide motivation for how T duality invariance between Type IIA and Type

IIB can be acheived and these no-go theorems evaded. It is this we shall

outline and examine now. We follow the construction of Type IIA orientifold

theories in terms of E flux components as done for the Z4 [56] and Z2 × Z2

[60] orientifolds.

4.1.1 T Duality Induced Parallelisable Fluxes

The 3-form flux H3 of (2.5.3) is obtained by compactification of the full ten

dimensional string action but the existence of an additional flux multiplet
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can be obtained by recalling the definition of the frame basis ηp and allowing

N to be dependent on the coordinates of M.

dηm = d
(
Nm
n (Xp)dXn

)
=

(
∂Nm

n

∂Xr
(N−1)rq(N

−1)np

)
ηqp

By allowing ∂XpNm
n 6= 0 the 1-forms define a ‘twisted’ internal space. Given

the index structure of the dηm expression we can associate this twisting with

a new flux f whose components are fmpq .

1

2!
fmpq ≡

∂Nm
n

∂Xr
(N−1)r[q(N

−1)np] ⇒ dηm =
1

2!
fmpqη

qp

This definition in terms of a geometric property, the exterior derivative’s

effect on tangent forms, results in f being known as a metric or geometric

flux and belongs to the NS-NS sector. The existence of such fluxes has

been known independently of T duality [49, 50] and contribute to the Type

IIA superpotential in a natural way [44]. Given that the Type IIA NS-

NS superpotential’s integrand can be generally written as
〈

Ωc, G3

〉
, where

G3 ∈ Λ3(E∗), it follows that f can only contribute to the superpotential if a

3-form can be constructed from its components. The natural approach is to

lower the raised subscript of fmpq and the metric with regards to such indices

is the Kähler form J .

Λ3(E∗) 3 (f · J ) =
1

3!
(f · J )pqrη

pqr where (f · J )pqr ≡ fm[pqJr]m

The components of J are Kähler moduli dependent and so f · J is linear in

T , which allows us to write its generic contribution to the superpotential.

W 3
∫
M

〈
Ωc, (f · J )

〉
≡ TaP(a)

f (S,U)

The 3-form G3 now has two contributions, H3 and f , and it can be written

in a symmetric manner if we explicitly introduce T0 dependence to the H3
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term by contracting1 it with the T0 dependent J (0) = T0ω0. The result

of this is that G3 can be factorised into two parts; one of which is moduli

independent and the other flux independent.

G3 = H3 · J (0) + f · J (1) =
(
H3 ·+f ·

)(
J (0) + J (1)

)
We can add additional terms to this and not alter the superpotential if those

terms do not belong to the same Λp(E∗) as J (0) or J (1). A natural choice

for such terms is seen by recalling that f = eJ =
∑
J (n).

G3 =
(
H3 ·+f ·

)(
J (0) + J (1) + J (2) + J (3)

)
=
(
H3 ·+f ·

)
(f)

These two terms allow G3 to be expressed as a function of the Kähler mod-

uli holomorphic form and if T B contributions are to arise in the Type IIA

NS-NS superpotential then the flux dependent factor of G3 is not yet com-

plete. The inclusion of extra terms can be further motivated by viewing the

flux dependent factor of G3 as a differential operator, a viewpoint already

justified by the definition of f .

D ≡ d +H3 ∼ H3 ·+f ·

This covariant derivative can have its action on elements of Λ∗(E∗) written

in terms of the componenets of its constituent fluxes by expanding in terms

of ηm and ιn bases.

D = H3 ·+f · =
1

3!
Hmpqη

mpq +
1

2!
fmpqη

pqιm

SinceD is an extension of the exterior derivative it is required to be nilpotent,

d2 → D2 = 0, and in writing this in terms of the components we observe

1Since H3 is already a 3-form in this case contraction is simply multiplication but we refer to

it as such so as to fit in with other possible terms.
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that the components satisfy constraints similar in form to those of a Lie

algebra.

D2 = 0 ⇔ fm[pqf
s
r]m = 0 = Hm[pqf

m
rs] = 0

The Lie algebra interpretation is obtained from the gauge sector of the ten

dimensional string theory [51]. Upon compactification the theory has diffeo-

morphism generators Zm for the metric G and gauge symmetry generators

Xn for the 2-form potential B. In the absense of fluxes these generators

form a U(1)12 abelian algebra but this is made non-abelian by the inclusion

of fluxes, tautologically so in the case of f . The frame bundle definition

of the ηm leads to an explicit construction of vector fields Zm and in the

absense of H3 fluxes these form a six dimensional algebra.

ηm = Nm
n dxn ⇒ Zm = (N−1)nm∂n ⇒

[
Zm, Zn

]
= −fpmnZp (4.1.1)

This relationship between the ηm and Zm structures is the Cartan-Maurer

equation. Including the gauge generators and turning on H3 extends this

commutation relation into the twelve dimensional algebra, with Zm no longer

forming a subalgebra.[
Zm , Zn

]
= Hmnp X

p − fpmn Zp[
Zm , Xn

]
= fnmp Xp[

Xm , Xn
]

= 0

(4.1.2)

In this formulation it is clear that additional terms can be included for

a more general algebra [52]. This is further motivated by noting that the

expansion of D in (4.1.1) includes both E∗ and E elements and we would wish

to reformulate them in terms of the generalised frame bundle E = E⊕ E∗.

H3 ∈ Λ3(E∗) ∧ Λ0(E) , f ∈ Λ2(E∗) ∧ Λ1(E) (4.1.3)
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Because of the fact their components are constant the fluxes belong to com-

binations of Λ3(E(∗)) ⊂ Ω3(E(∗)). It is important to note that despite H3

acting more generally as H3 : Λp(E∗) → Λp+3(E∗) the fact D(f) couples to

Ω ∈ Λ3(E∗) the only case of interest is the p = 0 one and this logic extends

to f too. The inclusion of two further spaces makes the reformulation into

the generalised frame basis particularly simply.

Λ3(E⊕ E∗) =
3⊕

n=0

(
Λ3−n(E∗) ∧ Λn(E)

)
(4.1.4)

This suggests that if it is possible to reformulate the effective theory in terms

of E we would expect two further sets of fluxes to exist. Two of the three

gaps in the commutation relations of (4.1.2) have the same index structure,

with two raised indices and one lowered. In the same way f appears twice

these two gaps are filled by the same flux [52, 56].[
Zm , Zn

]
= Hmnp X

p − fpmn Zp[
Zm , Xn

]
= fnmp Xp + Qnp

m Zp[
Xm , Xn

]
= Qmn

p Xp − Rmnp Zp

(4.1.5)

Under Ta, the T duality in the ηa direction, the algebra’s generators are

exchanged Xa ↔ Za. The resultant change in the index structure leads to

a sequence of T duality induced fluxes starting from the NS-NS 3-form [52].

Habc
Ta←→ fabc

Tb←→ Qab
c

Tc←→ Rabc (4.1.6)

These fluxes have not arisen by compactification or by twisting the E∗ basis,

they are non-geometric in nature [53, 54, 55]. The NS-NS Buscher rules of

(3.1.5) for a T duality Tr allow for a decomposition of Epq into the metric

and 2-form if Epq is independent of Xr. In cases where E is dependent on

particular Xr the Buscher rules break down. Such an example on a three

dimensional torus is explored in [54] in detail, one with fxyz = N .

ds2 = (dx−Nzdy)2 + dy2 + dz2
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The relation (x, y, z) ∼ (x+Ny, y, z+1) twists the space. Further T duality,

in the y direction, gives a less pleasant metric.

ds2 =
1

1 +N2z2
(dx2 + dy2) + dz2

There is no simple relation for z → z + 1 now, the metric is not globally

defined but provided the variation in z is confined to a small region this is

not a problem and the metric is locally valid for Qxy
z . T dualising Tz cannot

be done under the Buscher rules and no ds2 can be defined, losing all notion

of a geometry for the space [52]. The Tz image of Qxy
z is Rxyz and so it,

along with Q, is referred to as a non-geometric flux. We can revert back

to the differential operator formalism by the stipulation that the Q and R

contribute two terms to D such that the Bianchi constraints of D2 = 0 are

equal to the Jacobi constraints of the gauge sector’s algebra [56].

D = H3 ·+f ·+Q ·+R ·

=
1

3!
Hmpqη

mpq +
1

2!
fmpqη

pqιm +
1

2!
Qmp
q ηqιpm +

1

3!
Rmpqιqpm (4.1.7)

The factors of p! are chosen to account for antisymmeterising indices and are

such that they match the definitions of [56] when it comes to the fluxes acting

on a general q-form Aq. This can be expressed in terms of the components
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of Aq, Aq = 1
q!
Ai1...iqη

i1...iq .

0! (H · A)i1...iq+3 =

q + 3

3

H[i1i2i3Ai4...iq+3]

1! (f · A)i1...iq+1 =

q + 1

2

 f j[i1i2A|j|i3...iq+1]

2! (Q · A)i1...iq−1 =

q − 1

1

Qjk
[i1
A|jk|i2...iq−1]

3! (R · A)i1...iq−3 =

q − 3

0

RjklAjkl[i1...iq−3]

(4.1.8)

The derivative equivalent of the T duality induced Lie algebra generator

Xa ↔ Za exchange is the exchange of the ηa ∈ E∗ and ιa ∈ E basis elements.

The fluxes are associated to different subspaces of Λ3(E) in (4.1.4) and can

be viewed in terms of the ‘doubled geometry’ [57, 58, 59] of E = E ⊕ E∗.

From this point of view T dualities alter which sections of the doubled frame

bundle fibres the fluxes are associated to.

The two new terms contribute coefficients for T B in the Type IIA NS-NS

superpotential, which can be expressed in a simple manner.

W =

∫
M

〈
Ωc,D(f)

〉
(4.1.9)

To compress notation and to avoid confusion between the Type IIA fluxes

and the Type IIB fluxes considered in later sections we relabel the terms

of D in terms of flux dependent operators, Fm : J (m) → Fm · J (m) where

Fm · J (m) ∈ Λ3(E∗).

D = F0 + F1 + F2 + F3

=
1

3!
Fmpqηmpq +

1

2!
Fmpqηpqιm +

1

2!
Fmpq ηqιpm +

1

3!
Fmpqιpqm(4.1.10)
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We have dropped the subscripts in the Fn when considering components

since their index structures are unambiguous.

4.1.2 T Duality Induced Generalised Fluxes

Constructing the fluxes in terms of Λ3(E) is not always possible but due

to the ease of applying T duality transformations it is convenient for de-

ducing the existence of fluxes which do not descend from the ten dimen-

sional action easily. Having motivated their existence we now wish to re-

formulate our methods so as to not require the Λ3(E) notation. Much of

the analysis is the same as the parallelisable case but with the relabelling

Λp(E∗)→ ∆p(E∗) ⊂ Ωp(E∗) but there are a number of important differences

which we shall examine.

If all of the complex structure coefficients in Ωc ∈ ∆3(E∗) are to con-

tribute to the superpotential then potentially the Fn · J (n) must have non-

zero coefficients for any of the basis forms of ∆3(E∗). This provides us with

a general action for the fluxes in terms of the light forms, as the J (n) are

expanded in the ∆+(E∗) basis.

F0 : 〈ω0〉 → 〈αI , βJ〉 F3 : 〈ω̃0〉 → 〈αI , βJ〉

F1 : 〈ωa〉 → 〈αI , βJ〉 F2 : 〈ω̃b〉 → 〈αI , βJ〉

In this context we consider the fluxes simply as operators rather than defined

in terms of E elements. The components of the Fn defined in terms of the

light form are defined by applying them to their associated ∆2n(E∗).

F0(ω0) = (F0)I αI − (F0)J βJ

F1(ωa) = (F1)(a)I αI − (F1)
J

(a) βJ

F2(ω̃b) = (F2)
(b)

I αI − (F2)(a)J βJ

F3(ω̃0) = (F3)I αI − (F3)J βJ

(4.1.11)
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There are 4(h2,1 + 1)(h1,1 + 1) fluxes that can contribute to the NS-NS sec-

tor’s superpotential, illustrating the possibility of the symmetry between the

moduli spaces by the h2,1 ↔ h1,1 exchange. However this symmetry is not

quite manifest. This can be seen by noting that the complex structure mod-

uli indices take values in {0, . . . , h2,1} while the Kähler moduli indices range

only over {1, . . . , h1,1} and we would therefore wish to reformulate our nota-

tion to have the Kähler moduli index vary over {0, 1, . . . , h1,1}. This cannot

be done simply by extending the Kähler indices to include the A,B = 0 case

due to the algebraic properties of the ∆+(E∗) basis elements. This result is

obtained by considering the action of D on ∆3(E∗) elements, which we shall

now construct.

The Fn couple to J (n) ∈ ∆2n(E∗) and thus we defined their ∆∗(E∗)

components in (4.1.11) accordingly. However, in parallelisable spaces the

definition of the flux components given in (4.1.10) allows for D to be applied

to the basis elements of ∆−(E∗). Though this interpretation can not be used

in non-parallelisable spaces we still expect the operators Fn to have some

kind of well defined action on elements of ∆−(E∗) which depends on the

components in (4.1.11) but is not dependent on the inner product. We shall

consider the four fluxes in turn, beginning with the simplest case of F0.

F0 : ∆0,0(E∗)→ ∆3(E∗) : F0(ω0) = (F0)IαI − (F0)JβJ (4.1.12)

Due to the scalar nature of ω0 the action of F0 on ∆0,0(E∗) reduces to exterior

multiplication by 3-forms in ∆3(E∗). A particular term in the flux component

expansions such as αI∧ acts as both αI : 〈ω0〉 → 〈αI〉 and αI : 〈βI〉 → 〈ω̃0〉

and as a result of this the action of F0∧ on elements of ∆3(E∗) can be easily
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constructed by applying it to the basis elements.

F0(ω0) ∧ βK = (F0)IαI ∧ βK = (F0)Iδ
K
I ω̃

0 = (F0)I ω̃
0

F0(ω0) ∧ αK = −(F0)JβJ ∧ αK = (F0)JδJKω̃
0 = (F0)J ω̃0

These two sets of coefficients play the roles of flux components in F0 but

they can be expressed in two different ways, the first of which is (4.1.12).

F0 : ∆3(E∗)→ ∆3,3(E∗) s.t.
F0(αI) = (F0)J ω̃0

F0(βJ) = (F0)I ω̃
0

(4.1.13)

In this case we have made use of the fact ω̃0 ∼ vol6 = αI ∧ βI = −βI ∧ αI

(no sum) and this same factorisation can be used for the F3 case.

F3 : ∆3,3(E∗)→ ∆3(E∗) : F3(ω̃0) = (F3)IαI − (F3)JβJ (4.1.14)

The action of F3 can be viewed as the removal of one of the ∆−(E∗) terms

from the factorisation of ω̃0 ∼ vol6 and thus the action of F3 on ∆−(E∗) is

straightforward.

F3 : ∆3(E∗)→ ∆0,0(E∗) s.t.
F3(αI) = −(F3)Iω0

F3(βJ) = −(F3)Jω0

(4.1.15)

In the cases of F1 and F2 this simple addition or removal of 3-forms does not

occur and so we must use a different method. F1 arises from the non-closed

nature of the basis forms and due to its geometric nature it can be expressed

in terms of the exterior derivative d.

F1 : ∆1,1(E∗)→ ∆3(E∗) : F1(ωa) ≡ F(a)IαI −F J
(a) βJ ∼= d(ωa)

The two sets of coefficients can be extracted from this expression by inte-

grating over the appropriate 3-cycles and then converting these to integrals
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over the entire space2.∫
AJ

d(ωa) =

∫
AJ
F(a)IαI ⇒

∫
M

d(ωa) ∧ βJ =

∫
M
F(a)IαI ∧ βJ

By Stokes theorem and ∆5(E∗) being empty [56] the left hand side integral

with integrand d(ωa) ∧ βJ converts to an integral over M with integrand

−ωa ∧ d(βJ) but this can be reexpressed as an integral over a 4-cycle, that

which is associated to the ωa 2-form. Thus the right hand side is related to

the non-closure of βJ .

F(a)J = −
∫
M
ωa ∧ d(βJ) =

∫
M

d(−βJ) ∧ ωa =

∫
Ba

d(−βJ)

Therefore the action of F1 on the βJ , F1(βJ) ∼ d(βJ), has a contribution

in ∆2,2(E∗) of −F(b)J ω̃
b. Repeating this method but integrating over the

BI 3-cycle gives the contribution of the non-closure of αI , dαI ∼ F1(αI) in

∆2,2(E∗), F I
(b) ω̃b. These two results allow us to explicitly state the action

of F1 on ∆−(E∗) in terms of its action on ∆+(E∗).

F1 : ∆3(E∗)→ ∆2,2(E∗) s.t.
F1(αI) = −(F1)

I
(a) ω̃

a

F1(βJ) = −(F1)(a)J ω̃
a

The remaining case of F2 does not immediately lend itself to the same

methodology since the schematic action of the flux is F2 : ∆p(E∗)→ ∆p−1(E∗).

This is in contrast to the behaviour of F1 and the exterior derivative d,

F1 : ∆p(E∗)→ ∆p+1(E∗), and is a reflection of its non-geometric nature.

F2 : ∆3(E∗)→ ∆1,1(E∗) : F2(ω̃b) = (F2)
(b)

IαI − (F2)(a)JβJ

A method which views the non-geometric flux as some kind of adjoint deriva-

tive is given in Appendix B.1.5 but the question of whether such a derivative

2As commented in [56] integration over M can be non-trivial if M is not a manifold, such

as an orbifold or singular Calabi-Yau, but we neglect this technicality and will demonstrate the

derived identities for the Z2 × Z2 orbifold later.
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interpretation is well defined is beyond the scope of this work. However,

the result is consistent with the explicit Λ3(E) construction on parallelisable

spaces [56], a fact which will be seen in our analysis of the Z2×Z2 orientifold

in Chapter 6.

F2 : ∆3(E∗)→ ∆1,1(E∗) s.t.
F2(αI) = (F2)(b)Jωb

F2(βJ) = (F2)
(b)
Iωb

(4.1.16)

Despite the derivation of the alternative actions of each of the Fn using a

different method, they all share the feature that if a particular term f ∈ Fn

has an action f : 〈ξ〉 → 〈ζ〉 then it will also have an action f : 〈?ζ〉 → 〈?ξ〉,

where 〈χ〉 is the space spanned by the form χ.

In considering (4.1.13 - 4.1.16) we observe that the sign structure of

the flux actions on ∆−(E∗) basis differs in A,B = 0 case compared to the

A,B > 0 cases. (4.1.15) and (4.1.16) have a factor of −1, while (4.1.13)

and (4.1.16) do not. In order to obtain as symmetric an examination of the

two moduli spaces we are therefore motivated to do a change of basis in

the Kähler moduli space which addresses this sign structure. This change

of basis is constrained by two requirements; the intersection numbers of the

basis should not change and the dilaton dependence of holomorphic forms

associated toMQ is unchanged. Since the complex structure moduli on one

Type II theory are related to the Kähler of the other Type II theory via

mirror symmetry we redefine the complex structure also.

(αI , β
J ,U)→ (aI , b

J ,U) , (ωA, ω̃
B, T )→ (νA, ν̃

B,T) (4.1.17)

There is no unique way to do these redefinitions but in Table 4.1 we choose

the simplest one which will reduce later algebraic workings, makes symme-

tries clearer to see and and is such that the component expansion of f still
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Old ω0 ωa ω̃0 ω̃b α0 αi β0 βj

New ν̃0 νa ν0 ν̃b −b0 ai a0 bj

Old T0 Ta T 0 T b U0 Ui U0 U j

New ±T0 Ta ±T0 Tb U0 Ui −U0 Uj

Table 4.1: Redefined moduli and ∆∗(E∗) basis elements for
〈 〉
± bracket.

takes the same form as that of Ω.

Ω→ UIaI − UJbJ , f→ TAνA ± TB ν̃B (4.1.18)

Given this new set of ∆∗(E∗) basis elements we can define the action of D

explicitly such that the index structure of the components takes a particular

form.

D(νA) = F(A)IaI − F J
(A) bJ

D(ν̃B) = F (B)
IaI − F (B)JbJ

⇔
D(aI) = F (A)IνA − F I

(B) ν̃
B

D(bJ) = F (A)
JνA − F(B)J ν̃

B
(4.1.19)

Before using this explicit action of D to construct the T duality and mirror

symmetry invariant Type IIA NS-NS superpotential we consider a way of

expressing the fluxes such that the action of their individual flux components

is manifest and which makes the variance in the sign structure of the original

∆+(E∗) basis clearer.

4.1.3 Generalised Flux Operators

For parallelisableM we were able to define the Λ3(E) components of fluxes

in the manner of (4.1.10), without considering them to be acting on some

holomorphic form or basis element of ∆∗(E∗) as done in (4.1.8). The ad-

vantage of this was seen to be that the nilpotency condition D2 = 0 could

be expressed in terms of the flux components without having to apply it to
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some general element of Ω∗(E∗), as is done in Ref. [56]. We wish to extend

this in some way to non-parallelisable M. The motivation is discussed fur-

ther in Appendix B.1.3, where an analogue of Λ3(E) is defined, a number

of important algebraic identities obtained and a demonstration that this re-

duces to the Λ3(E) case when M is parallelisable. As a result we restrict

the discussion here to simply examining some of the results.

The fluxes in parallelisable M can be regarded as elements of Λ3(E), as

given in (4.1.3) and (4.1.4). For non-parallelisableM we extend this to the

light ∆∗(E). We initially consider the (ωA, ω̃
B) and (αI , β

J) basis so that

motivation for the change of basis can be demostrated more clearly.

F0 = (F0)IαIιω0 − (F0)JβJ ιω0

F1 = (F1)(a)IαIιωa − (F1)
J

(a) β
J ιωa

F2 = (F2)
(b)

IαIιω̃b − (F2)(a)JβJ ιω̃b

F3 = (F3)IαIιω̃0 − (F3)JβJ ιω̃0

(4.1.20)

We then make use of the results given in (4.1.13-4.1.16) so that the action

of the fluxes on elements of ∆−(E∗) is made manifest but at the expense of

the action on ∆+(E∗) no longer being manifest. The way in which the sign

structure of the individual flux components changes in this reformulation is

clear to see in comparing the two expressions.

F0 = (F0)I ω̃
0ιβI + (F0)J ω̃0ιαJ

F1 = − (F1)(a)I ω̃
aιβI − (F1)

J
(a) ω̃

aιαI

F2 = (F2)
(b)

IωbιβI + (F2)(a)JωbιαJ

F3 = − (F3)Iω0ιβI − (F3)Jω0ιαJ

(4.1.21)

The relationship between the two operator formulations is obtained to equat-

ing the two different operators which each flux component is associated to.
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In doing this we obtain an equivalence between different elements of ∆∗(E)

such that the different sign structure of the Kähler index 0 cases compared

to the a ∈ {1, . . . , h1,1} cases are manifest.

αIιω0 ' ω̃0ιβI βJ ιω0 ' −ω̃0ιαJ

αIιωa ' −ω̃aιβI βJ ιωa ' ω̃aιαJ

αIιω̃a ' ωaιβI βJ ιω̃a ' −ωaιαJ

αIιω̃0 ' −ω0ιβI βJ ιω̃0 ' ω0ιαJ

(4.1.22)

It is worth noting that this variation in the sign structure in the ∆+(E∗) ba-

sis is seen in the Mukai bracket definition stated in (A.1.4). We previously

noted that the use of
〈 〉
− makes the special Kähler structure of MT man-

ifest and later we will see how the choice of
〈 〉
− can simplify several more

expressions. Using the new basis of ∆∗(E∗) given in Table 4.1 we obtain a

more streamlined set of operator equivalences.

aIινA ' −ν̃AιbI bJ ινA ' ν̃AιaJ

aIιν̃B ' νBιbI bJ ιν̃B ' −νBιaJ
(4.1.23)

Generically expressions in both (4.1.22) and (4.1.23) have the same struc-

ture, which can be written in terms of the Hodge star ?.

ξ ιϕ ∼= ± ? ϕ ι?ξ (4.1.24)

The connection between the sign choice in this expression with the intersec-

tion numbers of
〈 〉
± can be made manifest through the use of an alternative

to the Hodge star, ∗, defined using
〈 〉
± rather than simple exterior multi-

plication defined in Appendix B.1.6.

ξ ιϕ ∼= − ∗ ϕ ι∗ξ (4.1.25)

Since we have changed the bases of ∆∗(E∗) the individual components of

the fluxes are relabelled into the form given in (4.1.19) and we can therefore
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extract from (4.1.19) the individual fluxes without viewing them as acting

on a particular element of ∆∗(E∗).

F3 ≡ F(0)IaIιν0 − F J
(0) bJ ιν0

F1 ≡ F(a)IaIινa − F J
(a) bJ ινa

F0 ≡ F (0)
IaIιν̃0 − F (0)JbJ ιν̃0

F2 ≡ F (b)
IaIιν̃b − F (b)JbJ ιν̃b

(4.1.26)

Given this set of components and elements of ∆∗(E) we can construct the

∆∗(E∗) version of the expansion of D in (4.1.10) except that we have two dif-

ferent but equivalent formulations, each associated to one of the two actions

of D in (4.1.19).

D=
(
F(A)IaI −F J

(A) bJ
)
ινA +

(
F (B)

IaI −F (B)JbJ
)
ιν̃B

=
(
−F (A)IνA +F I

(B) ν̃
B
)
ιaI +

(
−F (A)

JνA +F(B)J ν̃
B
)
ιbJ

(4.1.27)

The explicit dependency of the Fn on the components of (4.1.19) is not rele-

vant to the majority of the analysis of the superpotential and its comparision

to the Type IIB mirror. For such cases as the tadpoles, particularly in Type

IIB, the dependency requires more specific attention but this is a point we

shall return to later. Instead we focus our attention on the superpotential

itself for the time being.

4.1.4 T Duality Invariant Superpotential

Given (4.1.19) or (4.1.27) the G3 component of the Type IIA NS-NS su-

perpotential can be written explicitly in terms of its moduli, though a sign

choice is inherited from (4.1.18).

G3 = D(f) = TA

(
F(A)IaI −F J

(A) bJ
)
± TB

(
F (B)

IaI −F (B)JbJ
)

= aI

(
TAF(A)I ± TBF (B)

I

)
− bJ

(
TAF J

(A) ± TBF (B)J
)
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This couples to the MQ moduli space holomorphic form Ωc via the inte-

grand
〈

Ωc, G3

〉
± and performing the integral over M provides us with the

polynomial expression for W .

W = S
(
TAF 0

(A) ± TBF (B)0
)
U0 −

(
TAF i

(A) ± TBF (B)i
)
Ui

− S
(
TAF(A)0 ± TBF (B)

0

)
U0 +

(
TAF(A)j ± TBF (B)

j

)
Uj

(4.1.28)

An important point of note is the effect an orientifold projection has on this

superpotential. Thus far we have not considered constraints or restrictions

on the fluxes but rather what contributions to the superpotential might

exist in principle. In the case of the orientifold projection in Type IIA

the complexified holomorphic 3-form is split into those terms which are

even under the projection and those which are odd. A particularly simple

choice is the projection with the aI being even and the bJ odd and we

therefore obtain an N = 1 Type IIA superpotential by setting UJ = 0 in the

above expression. This is not a restriction we will consider in general as the

inclusion of all possible fluxes will be seen to make particular symmetries of

the superpotential clearer but it is of critical importance in how we relate

the Type IIA NS-NS superpotential to its Type IIB counterpart.

4.1.5 Scalar Product Representations

A short overview of the basic definitions and derivations of particular results

which we make use of in this section is given in Section B.2. Restricting our

attention entirely to the bases of the ∆∗(E∗) we are able to examine the

fluxes and superpotentials in terms of matrices. With ∆1(E∗) and ∆5(E∗)

being empty we can construct an exact sequence for D in terms of ∆3(E∗)

and ∆+(E∗).

· · · D−→ ∆3(E∗)
D−→ ∆+(E∗)

D−→ ∆3(E∗)
D−→ · · ·
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These subspaces of ∆∗(E∗) can be described using a pair of vectors whose

entries are defined by the basis elements of the ∆∗(E∗).

e(a) ≡
(
a0 ai b0 bj

)
, e(ν) ≡

(
ν0 νa ν̃0 ν̃b

)
(4.1.29)

With the entries of these vectors forming the basis for any harmonic differ-

ential form in M we can express the D image of any given form as a linear

combination of other ∆∗(E∗) basis elements, thus giving matrix representa-

tions to D [64, 28]. For later convenience we choose to write them in such a

manner that factors of h matrices are explicit.

D

e(ν)

e(a)

 =

 0 M

N 0


hν 0

0 ha


e(ν)

e(a)


To combine the two moduli spaces into a single description we define a

2h2,1 + 2h1,1 + 4 dimensional vector of p-forms e by combining e(a) and e(ν)

and the moduli vectors combine in the same manner.

e ≡ ( e(ν) e(a) ) ≡ ( ν0 νa ν̃0 ν̃b a0 ai b0 bj )

Φ> ≡ ( T> U> ) ≡ ( T0 Ta T0 Tb U0 Ui U0 Uj )
(4.1.30)

The action of the derivative thus defines a matrix D on this basis.

D(e) = D · h · e ⇒ D ≡

 0 M

N 0

 (4.1.31)

The entries of M and N can be obtained from (4.1.19), with the entries of

M defining the entries of N or vice versa.

M · ha =

F(A)I −F J
(A)

F (B)
I −F (B)J

 , N · hν =

F (A)I −F I
(B)

F (A)
J −F(B)J

 (4.1.32)

We have abused notation slightly since such expressions as F(A)I represent

a matrix of components. Strictly speaking if the entries of N are defined

by the entries of M then we should denote its components as transpositions
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but instead we rely on index structure to define summations of components.

However, since this schematic relationship between the two actions of a

derivative on the ∆±(E∗) is independent of which Type II theory, we find it

useful to express this relationship in a way which doesn’t use the Type IIA

NS-NS specific fluxes of (4.1.32) but instead generic matrices mi

M · ha =

m1 m2

m3 m4

 ⇒ N · hν =

−m>4 m>2

m>3 −m>1

 (4.1.33)

Inverting this such that we define the entries of N rather than those of M .

N · hν =

m1 m2

m3 m4

 ⇒ M · ha =

−m>4 m>2

m>3 −m>1

 (4.1.34)

In this formulation it is clear that the map Ad : M · ha → N · hν is an

involution. We can obtain this relationship between M and N in terms of

bilinear forms through the use of (4.1.23) or (4.1.32).

N · hν = ga · (M · ha)> · ga ⇒ N = Σa ·M> · g>a · hν (4.1.35)

Though the relationship betweenM andN is the result of algebraic identities

the bilinear forms are dependent on the inner product and so the formulation

of the relationship in (4.1.35) in terms of bilinear forms is also dependent

on this choice. If we decide on which inner product to use then (4.1.35) can

be simplified. 〈 〉
→
〈 〉
− ⇒ N = Σa ·M> · Σ>a〈 〉

→
〈 〉

+
⇒ N = Σa ·M> · g>a

(4.1.36)

To keep our analysis as general as possible we refrain from setting the in-

ner product at this point. Before considering how the dilaton couples to

particular fluxes via Ω → Ωc we examine a toy model of a superpotential

which has no dilaton dependence in that we view both moduli spaces as the
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standardMK manifolds described in Section 2.3. As a result this toy model

has a superpotential integrand is of the form
〈

Ω,D(f)
〉
±. For comparision

we also consider the superpotential which would be obtained from the inte-

grand
〈
f,D(Ω)

〉
± as this will arise later. Given any form χ ∈ ∆∗(E∗) the

associated vector is defined via the general factorisation χ = χ> · h · e and

we can define our moduli by T ≡ f and U ≡ Ω.

Ω = UIaI − UJbJ = Ω> · ha · e(a) = U> · ha · e(a)

f = TAνA ± TB ν̃B = f> · hν · e(ν) = T> · hν · e(ν)

To construct the superpotential, or expressions like it, we need the action of

the derivatives upon these holomorphic forms and to that end we consider

the two alternative actions of D on the basis elements of ∆+(E∗) and ∆−(E∗).

D · e(ν) ≡M · ha · e(a) , D · e(a) ≡ N · hν · e(ν)

These two expressions have followed from the two alternative ways of ex-

pressing the derivative’s action on the ∆∗(E∗) given in (4.1.27). The two

formulations of D on ∆∗(E) can be written in terms of the flux matrices of

(4.1.30) and the dual of the e sub-vectors.

D = e>(a) · h>a ·M> · ιe(ν)
= e>(ν) · h>ν ·N> · ιe(a)

The transpositions are done so as to make it clear the ι do not act on the

e p-forms. Since D, or any other derivative, must act on some q-form to

construct a scalar product expression this transposition can be undone once

such an expression is formed. To this end we shall write the holomorphic

forms in terms of their vector factorisations and using the above expressions

for the images of ∆+(E∗) and ∆−(E∗) basis elements under D construct the
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vectors associated to D(f) and D(Ω).

D(f) = D(T> · hν · e(ν))

= T> · hν · D(e(ν))

= T> · hν ·M · ha · e(a)

= D(f)> · ha · e(a)

D(Ω) = D(U> · ha · e(a))

= U> · ha · D(e(a))

= U> · ha ·N · hν · e(ν)

= D(Ω)> · hν · e(ν)

With these expressions we construct two expressions whose form is schemati-

cally similar to dilaton dependent superpotentials, which we ultimately wish

to examine.∫
M

〈
Ω,D(f)

〉
± = g

(
Ω,D(f)

)
= D(f)> · ga · Ω = T> · hν ·M · ga · U∫

M

〈
f,D(Ω)

〉
± = g

(
f,D(Ω)

)
= D(Ω)> · gν · f = U> · ha ·N · gν · T

(4.1.37)

The integrands are similar to one another and this can be examined further

by using (4.1.35) to write N in terms of M . This relationship depends on

the choice of
〈 〉
± via the identities given in Appendix B.2 and g>ν = ±gν .

As such we consider
〈 〉

+
first.∫

M

〈
f,D(Ω)

〉
+

= U> · ha ·
(
Σa ·M> · g>a · hν

)
· gν · T

= U> · ga ·M> · g>a · Σν · T

= T> · ha ·M · ga · U (4.1.38)

We have used the fact the Type IIA Σν is equal to the Type IIB Σa. Com-

paring this with (4.1.37) we see that the flux entries of M must satisfy

hν ·M = ha ·M if they are to be equal. In terms of the fluxes this is equiv-

alent to F0 = 0 = F2 but no restrictions on F1 or F3. The fact F1 can be

non-zero follows from the graded Leibnitz property of d ∼ F1.∫
d(Ω ∧ f) =

∫
f ∧ d(Ω)−

∫
Ω ∧ d(f) (4.1.39)

Since we are considering only F1 6= 0 we have dΩ ∈ ∆4(E∗) and the
〈 〉
±

of (A.1.4) is such that ψ2 ∧ ϕ4 =
〈
ψ2, ϕ4

〉
± and likewise for Ω ∧ d(f) =
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〈
Ω, d(f)

〉
±. With the left hand side of the above expression being zero

we obtain the result for the D → d ∼ F1 simplified case regardless of the

components of F1. The
〈 〉
− case allows us to make more use of the identities

in Appendix B.2, namely ga = gν and that the bilinear forms of each ∆±(E∗)

basis are equal, ha = hν etc.∫
M

〈
f,D(Ω)

〉
− = U> · ha ·

(
Σa ·M> · g>ν · hν

)
· gν · T

= T> · hν ·M · ga · U (4.1.40)

The different sign structure of
〈 〉
− results in ha = hν and (4.1.39) vanishes

for general D. Taking into account the antisymmetric nature of
〈 〉
− the

arguments can be exchanged in one of the expressions and since this result

is not dependent on the T and U vectors associated to the holomorphic forms

it is true for any ψ ∈ ∆+(E∗) and ϕ ∈ ∆3(E∗) and it follows that D is anti

self adjoint on
〈 〉
− for any combination of fluxes.∫
M

〈
ψ,D(ϕ)

〉
− = −

∫
M

〈
D(ψ), ϕ

〉
− (4.1.41)

Although we have constructed this result by working purely on the level

of the superpotential and the properties of the ∆∗(E∗) basis elements it is

possible to construct the same result for non-zero F0 and F1 by a direct com-

pactification of the ten dimensional string action [74, 75, 64, 63, 44, 29, 28]

but it is difficult to construct non-geometric fluxes using such methods.

It is worth noting that for either inner product the sum of these expres-

sions can be expressed in a very natural way in terms of Φ, D and the bilinear

forms defined on e, putting the two moduli spaces into a single expression.
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This follows from the identity f + Ω = Φ> · h · e.∫ 〈
f,D(Ω)

〉
± +

∫ 〈
Ω,D(f)

〉
± = gν(f,D(Ω)) + ga(Ω,D(f))

= g(f + Ω,D(Ω) +D(f))

= Φ> · h · D · g · Φ (4.1.42)

This superpotential-like expression treats the two moduli spaces in exactly

the same manner and in the case of
〈 〉
− they are in fact equal. However

this symmetry is broken when we consider the complexified holomorphic

forms. We shall return to this result later when considering a particular set

of internal spaces where such a symmetric formalism is possible even for the

complexified holomorphic forms.

To examine precisely how the inclusion of dilaton couplings in the com-

plexified holomorphic forms breaks this symmetry we recall the matrices

associated to the holomorphic forms in the e(a) and e(ν) bases.

Ω = Ω> · ha · e(a) , f = f> · hν · e(ν)

With the Type IIA fluxes defined as D images of ∆+(E∗) elements we con-

sider the complexification of Ω, with the f cases following the same general

method.

Ωc =



U0

Ui

U0

Uj



>

−SI1

Ih2,1

+SI1

−Ih2,1





a0

ai

b0

bj


(4.1.43)

This can be factorised so that the complexification is due to a single3 matrix,

3Infact there are two complexified holomorphic forms, Ωc and Ω′c and so we distinguish their

complexification matrices with a prime, C and C′ respectively.
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C, which modifies the original expressions for the holomorphic forms.

Ω = U> · ha · e(a) → Ωc ≡ U> · C · ha · e(a)

The matrix expression for C can be easily read off from the definition of Ωc,

factorising out the ha term from the matrix expression of (4.1.43). The C′

case for Ω′c follows in the same way.

C =



−SI1

Ih2,1

−SI1

Ih2,1


, C′ =



I1

−SIh2,1

I1

−SIh2,1


It will be useful for examining S duality later to express C and C′ as linear

combinations of a set of projection operators. The projection operators are

such that they separate out the ∆3,0(E∗) and ∆0,3(E∗) basis elements from

the ∆2,1(E∗) and ∆1,2(E∗) bases and are built from SO(n,m) metrics with

signature (+, · · · ,−, · · · ), which we shall denote as η(n,m).

An ≡ I2 ⊗ 1
2

(
η(n+1,0) − η(1,n)

)
= I2 ⊗

0

In

 = I2 ⊗ An

Bn ≡ I2 ⊗ 1
2

(
η(n+1,0) + η(1,n)

)
= I2 ⊗

1

0n

 = I2 ⊗Bn

(4.1.44)

Of note are the following set of identities for combining Am and Bn and

since the dimensionalities of the matrices are unambigious we suppress the

indices.

A · A = A , B ·B = B , A ·B = 0 = B · A (4.1.45)

The A and B inherit the same set of identities due to their definitions in

terms of A and B and it is these matrices which define the two complex
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structure complexified holomorphic forms.

C = Ah2,1 − SBh2,1 C′ = Bh2,1 − SAh2,1

With complexification having the effect4 of ha → C(′) ·ha on the expansion of

Ω the inner product expression for the T duality induced superpotential is

obtained by altering the toy model expression previously found in (4.1.37).∫
M

〈
Ωc,D(f)

〉
± = T> · hν ·M · ga · C · U =

∫
M

〈
f,D(Ωc)

〉
− (4.1.46)

For the choice of
〈 〉
→
〈 〉
− we have been able to move D to the other

argument of the inner product using (4.1.41). This change has the advantage

that it more closely resembles the Type IIB NS-NS superpotential, which we

will construct next. Unfortunately the flux index structure does not have

the manifest form required for the Lie algebra interpretation, which we will

examine further in the next chapter.

4.2 The Type IIB Superpotential

Having constructed a Type IIA NS-NS superpotential forM on the grounds

of the completion of the twelve dimensional algebra generated byX and Z we

can construct the corresponding Type IIB NS-NS superpotential for W by

the use of mirror symmetry. Given the self S duality nature of Type IIB the

R-R sector can then be obtained by performing a modular transformation on

the dilaton and considering resultant terms in the superpotential. We will

not yet concern ourselves with the explicit relationship between the fluxes of

each Type II superpotential, only the schematic form of the superpotentials.

To that end we recall that in our analysis of the algebraic properties of the

4As [C, ha] = 0 this could alternatively be written as ha ·C and likewise for other complexifi-

cation matrices.
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Type IIA on M Type IIB on W

UI , U
J I, J = 0, · · · , h2,1 TI , T

J

TA , T
B A,B = 0, · · · , h1,1 UA , U

B

Table 4.2: The new moduli of mirror pair M and W.

basis elements of ∆∗(E∗) inM we were forced to redefine our basis elements

and moduli used to expand the holomorphic forms of each moduli space,

partly through invoking mirror symmetry. The moduli ofM transformed as

(T ,U)→ (T,U) and we represent the moduli redefinitions ofW in a similar

manner, given in Table 4.2 which follows Table 3.2 in format. We use the

same notation for the bases of ∆3(E∗) and ∆+(E∗) but the index labels are

exchanged so as to illustrate the different dimensions of the moduli spaces.

4.2.1 The Type IIB NS-NS Flux Sector

As in the Type IIA case the Type IIB superpotential, in the absence of

dualities, is determined by the 3-form flux H3 which couples to the non-

complexified holomorphic 3-form but none-the-less the superpotential has

an overall factor of S.

W =

∫
W

〈
Ω,−S H3

〉
±

For parallelisableW the inclusion of geometric fluxes is obtained in the same

manner as in Type IIA onM and by extension of the twelve dimensional Lie

algebra globally and locally non-geometric fluxes are also induced [52, 53, 54].

[
Zm , Zn

]
= Hmnp X

p − fqmn Zq[
Zm , Xn

]
= fnmp Xp + Qnq

m Zq[
Xm , Xn

]
= Qmn

p Xp − Rmnq Zq

(4.2.1)
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Given these fluxes possess the same index structure as the Type IIA fluxes

to contribute to the superpotential via exterior multiplication with Ω they

couple to elements of ∆+(E∗). In Type IIA onM the moduli which coupled

to the dilaton were U0 and U0 via Ω→ Ωc andMQ =MQ(U, S). By mirror

symmetry the corresponding moduli in Type IIB on W are T0 and T0 via

f → fc as MQ = MQ(T, S). Therefore H and R couple to the dilaton in

their entirety and hence we denote their relabelled forms with a hat for later

algebraic convenience.[
Zm , Zn

]
= F̂mnp X

p − Fqmn Zq[
Zm , Xn

]
= Fnmp Xp + Fnqm Zq[

Xm , Xn
]

= Fmnp Xp − F̂mnq Zq

(4.2.2)

Following the same method as Type IIA we can construct a flux dependent

operator5 G such that its Bianchi constraints, G2 = 0, are synonymous with

the Jacobi constraints of the Lie algebra.

G = F̂0 ·+F1 ·+F2 ·+F̂3 ·

=
1

3!
F̂mpqη

mpq +
1

2!
Fmpqη

pqιm +
1

2!
Fmpq ηqιpm +

1

3!
F̂mpqιqpm (4.2.3)

The scalar product matrix expressions for this operator are defined by its

action on the ∆∗(E∗) bases, though we need only consider the action on

∆3(E∗) at present.

G · f(ν) ≡ G · ha · f(a) , G · ha =

G(I)A −G B
(I)

G(J)
A −G(J)B

 (4.2.4)

Given this matrix definition we could construct a scalar product expression

for the superpotential whose integrand is
〈

Ω,G(fc)
〉
± but this is not the

5We consider G rather than some derivative as in the Type IIA case for reasons explained

shortly.
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Type IIB superpotential. It is known that the non-geometric flux F2 con-

tributes a linear Kähler moduli dependency to the superpotential by coupling

to Jc = −Tiω̃i [52, 53, 60]. This is in contrast to F2 in Type IIA, which gave

quadratic Kähler dependence by coupling to J (2). Therefore the integrand

of the superpotential cannot be written as G(fc), the fluxes of F1 and F2

couple to the Kähler moduli in the wrong manner. To rectify this in a way

which leaves the Bianchi constraints invariant we consider two holomorphic

forms, Ω̌ and f̌, which are modifications of the standard expressions over

and above simple relabellings.

f = T> · hν · f(a) → T> · L> · hν · f(ν) = f̌

Ω = U> · ha · f(ν) → U> · K> · ha · f(a) = Ω̌
(4.2.5)

We include the possibility of the complex structure moduli being altered in

a similar way because it allows us to consider a more general formulation

and similar structures will be considered later. It is also convenient to define

f̌ in terms of J̌ (n) ∈ ∆2n(E∗), where J̌ (2) = Jc. We include n = 0, 3 even

though their moduli dependence are not an issue.

f̌ = J̌ (0) + J̌ (1) + J̌ (2) + J̌ (3)

G(f̌) = F̂0 · J̌ (0) + F1 · J̌ (1) + F2 · J̌ (2) + F̂3 · J̌ (3)
(4.2.6)

Given these modified holomorphic forms and G we are able to construct a

scalar product which is a generalisation of the usual Type IIB superpotential,

due to L and K, and which included the dilaton complexification f → fc

using the matrix C.

W =

∫
W

〈
Ω̌,G(f̌c)

〉
± = T> · L> · hν · C · G · ga · K · U (4.2.7)

To put this into the standard superpotential scalar product format of the

expressions in (4.1.38) we must move hν and C through L>. With regards to

C we make the assumption that L commutes with C, which will be justified
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later, because of its dilaton dependence which we don’t wish to move into

the fluxes in a non-trivial manner. In the case of hν we use the adjoint

operator defined in (B.2.3) and h2 = I such that L> · hν = hν ·Adhν (L
>). We

do likewise with K and ga.

W =

∫
W

〈
Ω̌,G(f̌c)

〉
±

= T> · hν · C ·
(

Adhν (L
>) · G · Adga(K)

)
· ga · U

≡ T> · hν · C ·M · ga · U

≡
∫
W

〈
Ω,D(fc)

〉
± (4.2.8)

The flux matrix M is defined in the same manner as M and has partner N.

D · f(ν) ≡ M · ha · f(a) , D · f(a) ≡ N · hν · f(ν)

The entries of M determine those of N and so we can define the entries of

both in the same manner as (4.1.32), but noting the change in index ranges.

M · ha =

F(I)A −F B
(I)

F
(J)

A −F(J)B

 , N · hν =

F(I)A −F A
(J)

F
(I)
B −F(J)B

 (4.2.9)

We can express this interdependence between M and N in the same manner

as their D counterparts in (4.1.35), that of a matrix equation.

N = Σ ·M> · g>a · hν , N = Σ ·M> · g>a · hν (4.2.10)

These determine the action of D on the light ∆∗(E∗) basis.

D(νI) = F(I)AaA − F
B

(I) bB

D(ν̃J) = F
(J)

AaA − F(J)BbB
⇔

D(aA) = F(I)AνI − F
A

(J) ν̃J

D(bB) = F
(I)
BνI − F(J)B ν̃

J
(4.2.11)

The two ways the superpotential is written in (4.2.8) provides us the link

between the entries of M defined above and the G matrix which is simplified

by the identity Ady(x
−1) = Ady(x)−1 and though not true in general the
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nature of the intersection numbers is such that Ady(x
>) = Ady(x)> if y is

one of the bilinear forms.

M ≡ Adhν (L
>) · G · Adga(K) , G ≡ Adhν (L

>1)−1 ·M · Adga(K)−1 (4.2.12)

The specific form of K and L is a matter of preference but they are con-

strained by a number of requirements. They are defined such that the

Bianchi constraints of G and D are equivalent but in order to alter dila-

ton complexification they cannot mix T0 and T0 with Ti and Tj, these two

sets of Kähler moduli must be transformed separately from one another.

These matrices will be discussed in more detail when we consider the Type

IIA R-R sector and the constraints when we consider Bianchi constraints.

At present we only require the additional fact that L commutes with the

dilaton complexification matrix. Due to the freedom in the choice of L and

K we cannot express the entries of the Type IIB fluxes in terms of these com-

ponents in the same manner as the Type IIA fluxes of (4.1.26). However,

we can still associate particular flux components with which of the Type

IIB fluxes they contribute to, even if we cannot explicitly state how they

contribute, by moduli coefficients.

To examine this further we define a new set of fluxes akin to (4.2.6) such

that we can discuss the individual contributions to the superpotential when

using the standard holomorphic forms.

D(f) = (?F̂0) · J (0) + (?F1) · J (1) + (?F2) · J (2) + (?F̂3) · J (3)

G(f̌) = F̂0 · J̌ (0) + F2 · J̌ (2) + F1 · J̌ (1) + F̂3 · J̌ (3)
(4.2.13)

Given this definition of the new fluxes and the action of D in (4.2.11) we

can give a component definition to each of the fluxes and determine which
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flux components of (4.2.11) relate to which F̂m and Fn.

?F̂0 ≡ F
(0)
AaAιν̃0 − F(0)BbBιν̃0 ∼ F̂0

?F1 ≡ F(i)AaAινi − F
B

(a) bBινi ∼ F2

?F̂3 ≡ F(0)AaAιν0 − F
B

(0) bBιν0 ∼ F̂3

?F2 ≡ F
(j)
AaAιν̃j − F(j)BbBιν̃j ∼ F1

(4.2.14)

This index structure for the components of the fluxes is completely the re-

verse of the index structures of (4.1.20). The Kähler moduli coupling affects

the F1 and F2 components while our redefinition of the ∆+(E∗) basis affected

the F̂0 and F̂3 components. The choice of a different basis such that ωa ↔ ω̃a

rather then ω0 ↔ ω̃0 would have countered this reversal but would lead to

less pleasant results later.

The components of Fn and those of ?Fn are generally different but due to

the manner in which we have defined K and L to mix the Kähler moduli they

do couple to the dilaton in the same way. In Type IIB we are able to drop

K from our considerations because it can be absorbed into the holomorphic

form via a symplectic transformation. The fact K has this property will

be demonstrated to follow from the requirement G and D define the same

Bianchi constraints in the next chapter. This is also the case for Type IIA,

we need not consider Ω→ Ω̌ as it can be transformed away. This seems at

odds with the fact mirror symmetry should map the modified Type IIB f̌c

into a modified Type IIA Ω̌c so exchanges of moduli should apply to both

Type II constructions. However, the exchange comes from the different

manner in which the Type II theories label their complex structure moduli.

This will be explored further in our analysis of the Z2 × Z2 orientifold as it

is self mirror dual [64, 61] and yet the E defined expressions for the ∆−(E∗)

basis are dependent on which Type II theory is being considered [60, 92].
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We shall keep an explicit dependence in our more general analysis in order

to illustrate additional symmetries in the superpotential and we return to

this in Chapter 6.

4.2.2 The Type IIB R-R Flux Sector

The R-R sector of Type IIB follows from the NS-NS sector by S duality

transformations. We have previously discussed these transformations in the

context of those fluxes which are obtained by compactification of the ten

dimensional action, H3 = F̂0 and F3 ≡ F0. These two fluxes transform as a

doublet and their D- and F-string charge quantisation conditions break the

SL(2,R) continuous symmetry of (3.3.3) to SL(2,Z)S.

S → n1S + n2

n3S + n4

⇔

F0

F̂0

→
n1 n2

n3 n4


F0

F̂0

 (4.2.15)

This symmetry is evident in the Type IIB superpotential (2.5.2), the fluxes

and the dilaton transform in precisely the same manner if the superpotential

is to be invariant, up to a gauge freedom.

F0 − SF̂0 →
1

n3S + n4

(n1n4 − n2n3) (F0 − SF̂0)

This doublet structure holds true for the other NS-NS fluxes, each of which

inducing a partner in the R-R sector. Given the identical index structure an

R-R partner to the Lie algebra (4.2.2) can be constructed from generators

X and Z, which are the magnetic duals of the X and Z [60].[
Zm , Zn

]
= Fmnp Xp − F̂pmn Zp[

Zm , Xn
]

= F̂nmp Xp + F̂npm Zp[
Xm , Xn

]
= F̂mnp Xp − Fmnp Zp

(4.2.16)

These can be seen to follow from fc, as all dilaton dependence in the NS-

NS superpotential arises through it. Under the modular inversion S →

119



− 1
S

the NS-NS fluxes are all exchanged to their R-R counterparts and the

corresponding dilaton dependent Kähler holomorphic form is f′c defined in

Appendix A.2. By considering this transformation on (4.2.13) we obtain the

new fluxes.

D′(f′c) = (?F0) · J (0) − S (?F̂1) · J (1) − S (?F̂2) · J (2) + (?F3) · J (3) (4.2.17)

The components of the R-R fluxes we shall denote in much the same manner

as (4.2.11), but with a hat, and the associated derivative as D′.

D′(νI) = F̂(I)AaA − F̂
B

(I) bB

D′(ν̃J) = F̂
(J)

AaA − F̂(J)BbB
⇔

D′(aA) = F̂(I)AνI − F̂
A

(J) ν̃J

D′(bB) = F̂
(I)
BνI − F̂(J)B ν̃

J
(4.2.18)

The relationship between these components and those of the R-R version of

G, G′, is precisely the same as the NS-NS case.

4.2.3 T and S Duality Invariant Superpotential

With the R-R superpotential being of the same schematic form as the NS-NS

superpotential the full T and S duality invariant Type IIB superpotential

can be succinctly stated in terms of an integral or a scalar product.∫
W

〈
Ω,
(
D(fc) + D′(f′c)

) 〉
± = T> · hν ·

(
C ·M + C′ ·M′

)
· ga · U (4.2.19)

To express this in terms of the components of M and M′ we first construct

the expressions for D(fc) and D′(f′c), taking into account the sign choice

in f and its complexifications. We collect the coefficients of aA and bB for

convenience when performing the superpotential integral.

D(fc) =
(
−ST0F(0)A+ TiF(i)A −S(±T0)F

(0)
A+ (±Tj)F(j)

A

)
aA

−
(
−ST0F

B
(0) + TiF

B
(i) −S(±T0)F(0)B+ (±Tj)F(j)B

)
bB

D′(f′c)=
(

T0F̂(0)A −STiF̂(i)A + (±T0)F̂
(0)
A −S(±Tj)F̂(j)

A

)
aA

−
(

T0F̂
B

(0) −STiF̂ B
(i) + (±T0)F̂(0)B −S(±Tj)F̂(j)B

)
bB
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Exterior pre-multiplication by Ω and performing the integral over W pro-

vides us with the polynomial expression for the superpotential, which we

split into the NS-NS and R-R parts and collect the coefficients of T so as to

simplify the sign structure for
〈 〉
±.

WNS = S
(
UBF

B
(0) − UAF(0)A

)
T0 +

(
UAF(i)A − UBF

B
(i)

)
Ti

±S
(
UBF

(0)B − UAF
(0)
A

)
T0±

(
UAF

(0)
A − UBF

(j)B
)
Tj

WR =−
(
UBF̂

B
(0) − UAF̂(0)A

)
T0 + S

(
UBF̂

B
(i) − UAF̂(i)A

)
Ti

±
(
UAF̂

(0)
A − UBF̂

(0)B
)
T0 ±S

(
UBF̂

(j)B − UAF̂
(0)
A

)
Tj

(4.2.20)

4.3 The Type IIA R-R Flux Sector

4.3.1 U Duality Induced Fluxes

Type IIA does not possess the same SL(2,Z)S self-duality as Type IIB and

even allowing for the possibility that Type IIA supergravity might have

symmetries Type IIA string theory does not, it is clear from the Type IIA

superpotential in (2.5.4) that the flux structure of the two sectors are not

schematically the same. To examine the R-R sector of Type IIA we view

it as the T dual of the Type IIB sector. Before we considered S duality

in Type IIB we obtained the R-R sectors of each theory from the SO(8)

representations of string oscillations and these were seen to couple to branes.

Under T duality the brane content of theory is exchanged due to T duality’s

effects on the boundary conditions and hence the R-R sector of the two

theories are T duality invariant without the inclusion of any further fluxes

[52, 60]. This can be seen in a straight forward manner by recalling from

Section 2.5 the R-R fluxes of each Type II theory which descend from the
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ten dimensional actions.

FRR ≡ fAνA ± fB ν̃B ⇒
∫
M

〈
f, FRR

〉
± = fAT

A ± fBTB

F3 ≡ fAαA − fBβB ⇒
∫
W

〈
Ω, F3

〉
± = fAU

A − fBUB

(4.3.1)

With the inclusion of S duality the Type IIB side is greatly extended by

the NS-NS sector inducing the entire R-R sector and these feed through to

the Type IIA R-R side by T duality. In Section 3.2 we commented that

mirror dual superpotentials need not have the same moduli dependency due

to quantum corrections, a Type IIA superpotential linear in T might be

dual to a Type IIB superpotential quadratic in U. However the number of

independent fluxes should be equal and thus we can infer the existent of

further fluxes in the Type IIA R-R sector because of the larger number of

independent fluxes in the Type IIB R-R sector. Despite not being usable in

determing mirror paired superpotentials moduli dependency still provides a

guide in how to reformulate the superpotential integrands of each Type II

construction. As such, the lack of any complex structure or Kähler mod-

uli dependency in the first and second expressions, respectively, in (4.3.1)

prompts us to make the dependency on the projective coordinates U0 = U0

and T̃0 = T0 explicit.∫
M

〈
f, FRR

〉
± = U0(fAT

A ± fBTB) ,

∫
W

〈
Ω, F3

〉
± = T0(fAU

A − fBUB)

Though we have not stated it this relationship makes the assumption that

the three T dualities or mirror symmetry used is such that the Type IIA f0

coefficient of ν0 in FRR is mapped to the coefficient of a0 in F3. This is seen

more clearly if we revert back to the original ∆∗(E∗) basis and note that

there are two ways to map between Type IIA and Type IIB which preserve

the schematic dilaton dependence of the MQ holomorphic form. For the
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N = 1 construction this is akin to the choice of the orientifold projection.

M : α0 ∈ IIA →

{
ω0 ∈ IIB : IIA/O6→ IIB/O3

ω̃0 ∈ IIB : IIA/O6→ IIB/O9
(4.3.2)

As previously commented in regards to mirror symmetry this is not always

the case due to quantum corrections because it does not always preserve the

moduli polynomial order of the superpotential. For toroidal, and thus par-

allelisable, spaces this is not an issue as they receive no such corrections. As

such we can define the directions which are transformed by stipulating the

∆+(E∗)(M) and ∆3(E∗)(W) bases or we can define our basis of ∆3(E∗)(W)

by stipulating ∆+(E∗)(M) and the directions T duality or mirror symmetry

are applied to. In the latter case for parallelisable spaces the R-R Buscher

rules of (3.1.4) are used. We examine this further in Section 6.2.3 for the

Z2 × Z2 orientifold whose orbifold symmetries make for greatly simplified

algebra.

In the Type IIA NS-NS flux sector and both flux sectors of Type IIB the

Kähler moduli are obtained by the fluxes contracting with J (n) terms in f,

or its dilaton complexifications, but this cannot be the case for the Type

IIA R-R superpotential. Instead the inclusion of U0 = U0 suggests that FRR

is formed by a flux acting upon the first term in the expansion of Ω, U0α0,

which is the last term in the new basis, U0b0. Using this as motivation we

define a new expansion for Ω akin to that of f’s expansion in the J (n).

Ω = J(0) + J(1) + J(2) + J(3)

= U0α0 + Uiαi − U jβj − U0β0

= −U0b0 + Uiai − U jbj + U0a0

(4.3.3)

If FRR is to have U0 = U0 dependence then it must be formed from an

operator acting on J(0) and so we have a contribution to the R-R derivative
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D′′.

U0FRR ≡ D′ · J(0) = D′ · (U0α0) = D′ · (−U0b0)

In Type IIB the R-R fluxes coupled to a second dilaton dependent holomor-

phic form f′c and thus D′ couples to a second dilaton dependent holomorphic

3-form Ω′c. Their schematic structure is discussed in Appendix A.2.2, where

they are generically denoted as Φ′c. Just as we denoted those Type IIB fluxes

which couple to the dilaton with a hat we are able do the same with the

Type IIA case as both have contributions of the form D(Φ′c).

D′ = F0 ·+F̂1 ·+F̂2 ·+F3· (4.3.4)

Due to the fact D′ : ∆3(E∗) → ∆+(E∗) the individual fluxes do not have a

simple index structure as that seen in (4.1.4).

Fn ∈ Λ3−n(E∗) ∧ Λn(E) 63 Fn (4.3.5)

As a result we cannot give the same Λ3(E) component structures to the

individual terms in D′.

D′ 6= 1

3!
Fmpqη

mpq +
1

2!
F̂mpqη

pqιm +
1

2!
F̂mpq ηqιpm +

1

3!
Fmqpιpqm (4.3.6)

This is the disadvantage illuded to in (4.1.46) when we change which holo-

morphic form the derivative acted on. As a result of this fact, that we define

the components of the fluxes of D′ by the action of the derivative on the

∆3(E∗) bases, we have a sign ambiguity steming from how we define the

components of fluxes with regards to
〈 〉
± and this filters through to the

action of D′ on ∆+(E∗).

D′(aI) = F̂(I)AνA ± F̂
B

(I) ν̃B

D′(bJ) = F̂
(J)

AνA ± F̂(J)B ν̃B
⇔
D′(νA) = ∓F̂(I)AaI ± F̂

A
(J) bJ

D′(ν̃B) = F̂
(I)
BaI − F̂(J)Bb

J
(4.3.7)
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The flux matrices associated with these actions are defined in the standard

manner, D′(e) = D′ · h · e, where the entries of D′ are defined as in (4.1.31)

but with primes.

N ′ · hν =

F̂(I)A ±F̂ B
(I)

F̂
(J)

A ±F̂(J)B

 , M ′ · ha =

∓F̂(I)A ±F̂ A
(J)

F̂
(I)
B −F̂(J)B

 (4.3.8)

These flux matrices are related to one another in the same way as the NS-NS

flux matrices in (4.1.34) and (4.1.35) and we surpress transpositions, trusting

in the index constractions to prevent ambiguity. We define the Type IIA

R-R superpotential’s integrand to be of the same form as the Type IIB R-R

superpotential but with the holomorphic forms exchanged, as suggested by

(4.3.1).

WR =

∫
M

〈
f,D′(Ω′c)

〉
± = U> · ha · C′ ·M ′ · gν · T (4.3.9)

In the consideration of flux constraints in the next chapter we will find it

convenient to regroup these fluxes such that the R-R sector is written in the

same manner as the NS-NS sector. To that end we redefine the components

of M ′ so as to match the structure of the components of M .

M ′ · ha =

∓F̂(I)A ±F̂ A
(J)

F̂
(I)
B −F̂(J)B

 ≡
F̂(A)I −F̂ J

(A)

F̂ (B)
I −F̂ (B)J

 (4.3.10)

This reformulation allows us to use the NS-NS sector’s results simply by

applying the relabelling F ↔ F̂ on all flux expressions. Furthermore on

parallelisable spaces we are more easily able to express D′ in terms of flux

multiplets defined by their mutual E = E⊕ E∗ index structures.

D′ = F̂0 + F̂1 + F̂2 + F̂3 = e>(a) · h>a ·M ′> · ιe(ν)

=
1

3!
F̂mpqηmpq +

1

2!
F̂mpqηpqιm +

1

2!
F̂mpq ηqιpm +

1

3!
F̂mpqιpqm (4.3.11)
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4.3.2 U Duality Invariant Superpotential

Using the integral definition of the Type IIA R-R superpotential given in

(4.3.9) we can obtain the polynomial form by using the flux components

defined in (4.3.8) to construct D′(Ω′c) for the inner product
〈 〉
±.

D′(Ω′c)=
(
U0F̂(0)A−S UiF̂(i)A−U0F̂

(0)
A+S UjF̂

(j)
A

)
νA

±
(
U0F̂

B
(0) −S UiF̂

B
(i) −U0F̂(0)B+S UjF̂(j)B

)
ν̃B

Combining this with f via
〈
f,D′(Ω′c)

〉
± and performing the integral over

W provides us with the polynomial expression for the superpotential and

we collect the coefficients of T so as to make for an easy comparison with

(4.1.28).

WR =
(
TAF̂(0)A ± TBF̂

B
(0)

)
U0− S

(
TAF̂(i)A ± TBF̂

B
(i)

)
Ui

−
(
TAF̂

(0)
A ± TBF̂

(0)B
)
U0 +S

(
TAF̂

(0)
A ± TBF̂

(j)B
)
Uj

(4.3.12)

Although this superpotential is of the same order in each modulus as (4.1.28)

the structure of the flux components are different. Instead the structure is

closer to the Type IIB superpotential (4.2.20) and so we now turn to equating

the Type II superpotentials in each flux sector to examine this further.

4.4 Type II Flux Interdependency

We have used S, T and U duality to motivate the existence and structure

of four derivatives associated to the flux sectors of each Type II theory but

thus far we have labelled the components of the derivatives independently.

In our discussion of this we will find it convenient to refer to the various

superpotential constructions of each flux sector in each Type II construction

in terms of their moduli dependence. As a result we elaborate slightly on
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the superpotential expressions, begining with the NS-NS case.

WNS
IIA(UI ,TA) =

∫
M

〈
Ωc(U, S),D(f)(T)

〉
±

WNS
IIB(TI ,UA) =

∫
W

〈
Ω(U),D(fc)(T, S)

〉
±

(4.4.1)

Since we wish to consider both
〈 〉
± we have not altered the Type IIA case

through the result of (4.1.41) on
〈 〉
− so as to bring it inline with the other

flux sector superpotentials where the derivative acts on theMQ holomorphic

form.

WRR
IIA (UI ,TA) =

∫
M

〈
f(T),D′(Ω′c)(U, S)

〉
±

WRR
IIB (TI ,UA) =

∫
W

〈
Ω(U),D′(f′c)(T, S)

〉
±

(4.4.2)

If the Type II superpotentials are to be equivalent then the fluxes of D define,

and are defined by, the fluxes of D and likewise for D′ and D′. To obtain

the explicit expressions we use two methods;

• Compare polynomial coefficients in the superpotentials.

• Compare scalar products in terms of the flux matrices.

The latter method is considerably more compact in its algebraic method-

ology and allows us to consider quantum corrections to the moduli equiv-

alences. The former method cannot accomodate quantum corrections in a

convenient manner but for cases where no such corrections exist, such as the

Z2 × Z2 orientifold case we examine later, it is more convenient for explicit

calculations.

4.4.1 Moduli Equivalences

It is important to note that this comparision of mirror dual superpotentials

is dependent upon how we choose to relate the moduli ofM to those of W .

In the simplest cases of (M,W) pairs, such as toroidal compactifications,
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they take the form of exact solutions to the background equations of motion.

As a result of this the superpotentials associated to their moduli receive no

quantum corrections and they match order by order in the moduli once the

relabelling has been accounted for.

UI ≡ ςI ≡ TI , TA ≡ %A ≡ UA (4.4.3)

We have used new moduli labels ς and % so as to avoid possible confusion

in labelling a superpotential on M with moduli defined in W or vice versa.

This can be stated in a straightforward manner using the expressions in

(4.4.1) and (4.4.2).

WNS
IIA(ςI , %A) = WNS

IIB(ςI , %A) , WRR
IIA (ςI , %A) = WRR

IIB (ςI , %A) (4.4.4)

In the majority of cases this moduli equivalence is not the case and mirror

dual superpotentials need not have manifest matching moduli dependency

and thus comparing superpotentials under the relabelling T↔ U and U↔ T

is not in general appropriate. However, in our discussion of the Type IIB

superpotential we had to take into account the fact that the fluxes did not

couple to the Kähler moduli in the same manner as their E index structure

might have suggested. This caused us to effectively redefine the Type IIB

moduli in (4.2.5) via T → T′ = L · T and U → U′ = K · U. Refactorising

D(fc) such that the new fc depended on T′ and U′, f̌c, provided a new flux

matrix given in (4.2.12). Quantum corrections can be viewed in the same

manner, modifying the moduli definitions and we use Q and Q̃ to distinguish

from the differently sourced K and L alterations.

Exact : U → ς , T → % , T → ς , U → %

Quantum : U → ς , T → % , T → Q · ς , U → Q̃ · %
(4.4.5)

Strictly speaking the modifications due to quantum corrections occur in one

moduli space of each Type II theory but we can absorb the effects on the
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Type IIA case into the new moduli (ς, %). As a result of this we can use the

Type IIB results of (4.2.12). Rather than refactorising D(fc) = G(f̌c) we

alter the moduli T → Q · T and U → Q̃ · U and then refactorise the 3-form

to G(fc). This absorbs the quantum corrections to the moduli equivalences

into the flux matrices, so that if we replace the flux matrices of D with

those of G we can then use the exact moduli equivalences of (4.4.5). To

demonstrate this explicitly we consider the different flux sectors and the

different inner products in turn.

4.4.2 NS-NS Fluxes

To investigate the different ways of associating the moduli of each Type II

theory we first consider the flux matrix dependent scalar product expres-

sions. The simplest case is the
〈 〉
− inner product as it allows us to make

use of (4.1.41) and the Type II NS-NS scalar product expressions of (4.4.1)

have the same schematic forms, (4.1.37) and (4.2.8).

WNS
IIA(U,T) =

∫
M

〈
f,D(Ωc)

〉
− = U> · ha · C ·N · gν · T

WNS
IIB(T,U) =

∫
W

〈
Ω,D(fc)

〉
− = T> · hν · C ·M · ga · U

(4.4.6)

The two complexification matrices are equal due to the relationship between

the Hodge numbers of M and W , C = C, and it is straightforward to see

that as a result they do not factor into the issue of how to relate the fluxes of

each theory and we ignore them from this point onwards. Under the exact

moduli equivalence of (4.4.5) and the fact the choice of
〈 〉
− has h = h and

g = g for both ∆±(E∗) bases it follows that the flux matrices are equal.

WNS
IIA(ς, %) = WNS

IIB(ς, %) ⇒ N = M ⇒ M = N (4.4.7)

Since
〈 〉

+
does not admit the anti-self adjoint property of the derivative

seen for
〈 〉
− in (4.1.41) we cannot use the same expression for WNS

IIA(U,T)
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as given in (4.4.6) and instead recall the standard definition of the Type IIA

NS-NS superpotential.

WNS
IIA(U,T) =

∫
M

〈
Ωc,D(f)

〉
+

= T> · hν ·M · C · ga · U

WNS
IIB(T,U) =

∫
W

〈
Ω,D(fc)

〉
+

= T> · hν · C ·M · ga · U
(4.4.8)

This choice of ordering in the arguments of
〈 〉

+
is consistent with the

〈 〉
−

case. Equating the scalar product expressions of (4.4.8) is done by setting

the equivalence in the moduli of (U,T)↔ (T,U) and we must transpose one

of the two expressions as a result.

T> · hν ·M · C · ga · U = T> · hν · C ·M · ga · U

⇒ hν ·M · ga =
(
hν ·M · ga

)> (4.4.9)

Despite D not acting on the dilaton dependent holomorphic form, in con-

trast to D, the dilaton complexification matrix can be neglected since the

important fact is that mirror dual moduli couple to the dilaton in the same

manner. This equation reduces to M = ga ·M> ·ga using the identities of the

bilinear forms but the flux matrix expression M> arises in the definition of

N in terms of M , providing us with simpler relationships between the Type

II fluxes.

M = −ha ·N · hν , M = −ha · N · hν (4.4.10)

We have explicitly included the factors of hν and hν for future comparision

with the R-R sector results and again note that these relationships represent

the action of an involution, as expected for mirror symmetry. If we include

quantum corrections then we alter the way in which the moduli are related

by modifying the Type IIB side.

WNS
IIB(Q · ς, Q̃ · %) = ς> · Q> · hν · C ·M · ga · Q̃ · % (4.4.11)
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Type IIA F(A)I F J
(A) F (A)

I F (A)I

Type IIB ∓F(I)A F
A

(I) F
(I)
A ∓F(I)A

Table 4.3: Type II NS-NS fluxes mirror equivalences defined by
〈 〉
±.

Comparing this with the standard Type IIA superpotential, reordering the

matrices to the standard form, as in (4.2.8), and dropping the complexifica-

tion matrices we obtain the more general expression linking N and M and

by symmetry the relationship between M and N follows.

N = Adhν (Q
>) ·M · Adga(Q̃) ⇒ M = Adhν (Q

>) · N · Adga(Q̃)

Without knowing the specific form of Q and Q̃ we cannot express these in

terms of flux components and so we consider only the exact case. We can

construct the flux component expressions either by inserting the component

definitions of the flux matrices into the above relations or compare the super-

potential polynomials in (4.1.28) and (4.2.20). In Table 4.3 we summarise

the relationship between the flux components of D and D and note that the

fact the sign structure is not changed by this equivalence the sign structure

of D and D expressions of (4.4.12) and (4.4.13) are unchanged. However,

despite the result N = M and M = N the index structures are different.

This is the result of the fact we defined by set of components by the action

of the derivatives on the ∆+(E∗) basis, in contrast to the implication of mir-

ror symmetry where if one is defined on ∆+(E∗) then the other should be

defined on ∆−(E∗). As a result we defined the components of M and M ,

which aren’t mirror related. Never the less it is possible to state the actions

of D and D in terms of one anothers components for
〈 〉
± in a simple way.
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• Type IIA in terms of Type IIB on
〈 〉
±.

D(νI) =F(I)AaA −F
B

(I) bB

D(ν̃J) =F
(J)

AaA−F(J)BbB

D(aA) =F(I)AνI −F
A

(J) ν̃J

D(bB) =F
(I)
BνI −F(J)B ν̃

J

⇒

D(aI) =∓F(I)AνA −F
B

(I) ν̃B

D(bJ) = F
(J)

AνA±F(J)B ν̃B

D(νA) =∓F(I)AaI −F
A

(J) bJ

D(ν̃B) = F
(I)
BaI ±F(J)Bb

J

(4.4.12)

• Type IIB in terms of Type IIA on
〈 〉
±.

D(νA) =F(A)IaI −F J
(A) bJ

D(ν̃B) =F (B)
IaI −F (B)JbJ

D(aI) =FA(I)νA−F I
(B) ν̃

B

D(bJ) =F (A)
JνA−F (B)J ν̃B

⇒

D(aA) =∓F(A)IνI −F J
(A) ν̃J

D(bB) =F (B)
IνI ±F (B)J ν̃J

D(νI) =∓FA(I)aA−F I
(B) bB

D(ν̃J) =F (A)
JaA ±F (B)JbB

(4.4.13)

For the case of
〈 〉
− these relations make the action of mirror symmetry

particularly simple, as it reduces to relabellings of the ∆±(E∗) bases between

M and W and their associated moduli.

Type IIA on M

f ∈ MK(νA, ν̃
B,TA)

Ωc ∈ MQ(aI , b
J ,UI , S)

←→

Type IIB on W

Ω ∈ MK(aA, b
B,UA)

fc ∈ MQ(νI , ν̃
J ,TI , S)

(4.4.14)

More specifically we define the mirror map M for
〈 〉
− by these relationship,

due to the fact we have labelled the basis elements of the ∆∗(E∗) onM and

W in the same way.

M :
(νN , ν̃

M) ↔ (aN , b
M)

Kähler ↔ Com. Str.
(4.4.15)

We have labelled the flux components of D and D in different ways but

we now see that if
〈 〉
± →

〈 〉
− then F = F and we only really have one

derivative for the Type II NS-NS sector, thus recovering the results of Refs.

[74, 75].
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4.4.3 R-R Fluxes

We restrict our considerations to the exact moduli equivalence, neglecting

quantum corrections. Unlike the NS-NS case we do not need to use the

adjoint properties of D with respect to
〈 〉
− as the fluxes take a more man-

ifestly mirror symmetric structure due to their D-brane definitions and we

need only to state the superpotentials once.

WRR
IIA (U,T) =

∫
M

〈
f,D′(Ω′c)

〉
± = U> · ha · C′ ·M ′ · gν · T

WRR
IIB (T,U) =

∫
W

〈
Ω,D′(f′c)

〉
± = T> · hν · C′ ·M′ · ga · U

(4.4.16)

The R-R sector’s scalar product expressions are more easily equated than

the NS-NS sector case by the fact that transposition is not required and as

in the NS-NS case the dilaton dependency is unimportant because C′ = C′.

U> · ha · C′ ·N ′ · gν · T = T> · hν · C̃′ ·M′ · ga · U

⇒ ha ·N ′ · gν = hν ·M′ · ga
(4.4.17)

As with the NS-NS case the inner product
〈 〉
− sets the bilinear forms of

∆±(E∗) to be the same structure and the same result as the NS-NS sector

is obtained.

WRR
IIA (ς, %) = WRR

IIB (ς, %) ⇒ N ′ = M′ ⇒ M ′ = N′ (4.4.18)

For
〈 〉

+
we cannot make this simplification but can use hν = I and that

gν = Σ to simplify down (4.4.17) and then use flux matrix identities.

M′ = ha ·N ′ · ha , N′ = −hν ·M ′ · hν (4.4.19)

Comparing coefficients of (4.3.12) and (4.2.20) and using the same moduli

equating as in the NS-NS sector we obtain the flux relations given in Table

4.4. With these results we can state the defining action of the derivatives

D′ and D′ in (4.3.7) and (4.2.18) in terms of only one set of fluxes.
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Type IIA F̂(I)A F̂
A

(I) F̂
(I)
A F̂(I)A

Type IIB F̂(I)A ∓F̂ A
(I) ∓F̂(I)

A F̂(I)A

Table 4.4: Type II R-R fluxes mirror equivalences defined by
〈 〉
±.

• Type IIA in terms of Type IIB on
〈 〉
±.

D′(νI) = F̂(I)AaA − F̂
B

(I) bB

D′(ν̃J) = F̂
(J)

AaA− F̂(J)BbB

D′(aA) = F̂(I)AνI − F̂
A

(J) ν̃J

D′(bB) = F̂
(I)
BνI − F̂(J)B ν̃

J

⇒

D′(aI) = F̂(I)AνA − F̂
B

(I) ν̃B

D′(bJ) =∓F̂(J)
AνA± F̂(J)B ν̃B

D′(νA) = ∓F̂(I)AaI − F̂
A

(J) bJ

D′(ν̃B) = ∓F̂(I)
BaI − F̂(J)Bb

J

(4.4.20)

• Type IIB in terms of Type IIA on
〈 〉
±.

D′(aI) = F̂(I)AνA ± F̂
B

(I) ν̃B

D′(bJ) = F̂
(J)

AνA± F̂(J)B ν̃B

D′(νA) = ∓F̂(I)AaI ± F̂
A

(J) bJ

D′(ν̃B) = F̂
(I)
BaI − F̂(J)Bb

J

⇒

D′(νI) = F̂(I)AaI ± F̂
B

(I) bJ

D′(ν̃J) =±F̂(J)
AaI ± F̂(J)BbJ

D′(aA) =∓F̂(I)AνI ± F̂
A

(J) ν̃J

D′(bB) = F̂
(I)
BνI − F̂(J)B ν̃

J

(4.4.21)

Similar ± ambiguity in the relationships defined by
〈 〉
± defined fluxes have

arisen as in the NS-NS case but due to the different way in which the R-R

sector fluxes of Type IIA are defined, by the action of D′ on ∆−(E∗), the

specific location of the ± signs are different when compared to the NS-NS

case. Never the less, the
〈 〉
± →

〈 〉
− case again results in the equivalences

of (4.4.15) and we have only one Type II R-R derivative.

4.4.4 Flux Induced Moduli Masses

On Calabi-Yaus the existence of harmonic forms allowed for the effective

theory to be easily defined and the (co)-closed nature of harmonic forms

lead to the fields of the effective theory readily satisfying the equations of
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motion and constraints associated to them. With the inclusion of fluxes the

basis elements of ∆∗(E∗) are no longer closed and thus no longer harmonic.

As an example we consider the Type IIA NS-NS derivative D and its Lapla-

cian, as the other derivatives follow in the same manner, and since the inner

product being considered is the natural one on Ω∗(E∗) the results are inde-

pendent of the
〈 〉
± choice or quantum corrections to moduli equivalences.

With the inclusion of fluxes the Laplacian defined contribution to the

masses of fields in the effective theory becomes non-zero, with the fluxes

essentially parameterising this quantity and we wish to construct this de-

pendence explicitly. We previously outlined in Section 2.6.2 that our choice

of ∆∗(E∗) basis elements is such that they reduce to harmonic forms on a

Calabi-Yau in the case of all fluxes being set to zero, the condition of (2.6.3).

We have also constructed flux dependent extensions of the exterior deriva-

tive as well as their action on the various different ∆∗(E∗) basis elements

and found that the extension of Calabi-Yaus to generalised Calabi-Yaus is

often a matter of d → D. This suggests that the explicit form of the flux

dependent Laplacian associated to D is obtained by this substitution.

∆d ≡ d d† + d† d → ∆D ≡ DD† +D†D (4.4.22)

To obtain this in terms of the flux matrices of D we consider its action on

φ ∈ ∆+(E∗) and χ ∈ ∆3(E∗).

D(φ) = φ> · hν ·M · ha · e(a) D(χ) = χ> · ha ·N · hν · e(ν)

D†(φ) = φ> · hν ·M † · ha · e(a) D†(χ) = χ> · ha ·N † · hν · e(ν)

It should be noted that M † and N † are not the hermitian conjugates of M

and N but the flux matrices associated to D† instead of D. The adjoint
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actions are found by using the definition of the adjoint derivative.

φ> · hν ·M · χ =
〈〈
χ,D(φ)

〉〉
≡
〈〈
φ,D†(χ)

〉〉
= χ> · ha ·N † · φ

χ> · ha ·N · φ =
〈〈
φ,D(χ)

〉〉
≡
〈〈
χ,D†(φ)

〉〉
= φ> · hν ·M † · χ

Comparing coefficients in each expression we obtain the flux matrices which

represent the adjoint action of the standard flux matrices.

N † = ha ·M> · hν , M † = hν ·N> · ha

From this the two terms of the Laplacian can be constructed for both ∆3(E∗)

and ∆+(E∗).

D†D(φ) = φ> · hν ·M · ha ·N † · hν · e(ν) = φ> · hν ·M ·M> · e(ν)

DD†(φ) = φ> · hν ·M † · ha ·N · hν · e(ν) = φ> ·N> ·N · hν · e(ν)

D†D(χ) = χ> · ha ·N · hν ·M † · ha · e(a) = χ> · ha ·N ·N> · e(a)

DD†(χ) = χ> · ha ·N † · hν ·M · ha · e(a) = χ> ·M> ·M · ha · e(a)

Using (4.1.35) the Laplacian for each flux sector can be written entirely in

terms of the ∆+(E∗)→ ∆3(E∗) defining fluxes.〈〈
φ, (DD† +D†D)(φ)

〉〉
= φ> · hν ·

(
M ·M> +N> ·N

)
· φ

= φ> · hν ·
(
M ·M> + ga ·M ·M> · g>a

)
· φ〈〈

χ, (DD† +D†D)(χ)
〉〉

= χ> · ha ·
(
M> ·M +N ·N>

)
· χ

= χ> · ha ·
(
M> ·M + gν ·M> ·M · g>ν

)
· χ

(4.4.23)

These two disjoint sections determine the properties of the Laplacian of D

over the entire ∆∗(E∗) of M and from which we can define a set of matrix

expressions whose eigenvalues are the masses of the ∆∗(E∗) basis element.

∆
(ν)
D ≡ hν ·

(
M ·M> + ga ·M ·M> · g>a

)
∆

(a)
D ≡ ha ·

(
M> ·M + gν ·M> ·M · g>ν

) }
∆D ≡ ∆

(ν)
D ⊕∆

(a)
D

The cases of ∆D′ and the Type IIB derivatives follow in the same manner

and if
〈 〉
± →

〈 〉
− then we manifestly have that ∆

(ν)
D ∈ IIA is equal to
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∆
(a)
D ∈ IIB and likewise ∆

(ν)
D ∈ IIB is equal to ∆

(a)
D ∈ IIA. This is further

complicated in the case of Type IIB as they mix non-trivially under S dual-

ity but we shall not consider that here.

In constructing these expressions we have made the assumption that the

flux induced Laplacian in (4.4.22) is indeed how the Laplacian generalises

with the inclusion of fluxes. To prove this we would have to do a full Kaluza-

Klein reduction of the ten dimensional Laplacian in line with the space-time

decomposition M → M4 × M and the inclusion of non-geometric fluxes

renders such an approach extremely difficult as the origins of non-geometric

fluxes from a ten dimensional point of view are unknown. We shall instead

consider the simplest non-trivial case, the inclusion of non-zero 3-form fluxes,

which we denote by the standard H such that D = d +H∧, and all ∆∗(E∗)

elements are otherwise closed and co-closed. Under this assumption and the

fact ∆3(E∗) ∧∆2(E∗) = 0 = ∆3(E∗) ∧∆4(E∗) we need only consider ∆0(E∗),

∆3(E∗) and ∆6(E∗). We denote the individual terms of D† as D† = d† +H†

and note that H† : ∆p(E∗)→ ∆p−3(E∗) by definition.

For 1 ∈ ∆0(E∗) it follows that D†(1) = 0 and thus the Laplacian reduces

to D†D(1). Since this is a 0-form we can consider its inner product with

1 without loss of generality and make use of the definition of an adjoint

operator.

D†D(1) =
〈〈

1,D†D(1)
〉〉

=
〈〈
D(1),D(1)

〉〉
=
〈〈
H,H

〉〉
As expected this quantity is related to the fluxes of H and is only zero if H is

turned off. From this the ∆6(E∗) case follows since the Laplacian commutes
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with the Hodge star and vol6 = ?1.

∆D(vol6) = ?∆D(1) =
〈〈
H,H

〉〉
vol6

This is useful for the ∆3(E∗) case as it defines the D† action on vol6. With

D(vol6) = 0 the Laplacian reduces to DD†(vol6), an element of ∆6(E∗) and

we can use the inner product without loss of generality again viaDD†(vol6) =

vol6
〈〈

vol6,DD†(vol6)
〉〉

.〈〈
H,H

〉〉
=
〈〈

vol6,DD†(vol6)
〉〉

=
〈〈
D†(vol6),D†(vol6)

〉〉
For ∆3(E∗) it follows from the definition of the adjoint and H† : ∆3(E∗) →

∆0(E∗) that H†(aI) = HI and H†(bJ) = −HJ .〈〈
aI ,∆aJ

〉〉
= HIHJ +HIHJ〈〈

bI ,∆aJ
〉〉

= HIH
J −HIHJ〈〈

aI ,∆bJ
〉〉

= HIHJ −HIH
J

〈〈
bI ,∆bJ

〉〉
= HIHJ +HIHJ

All of these expressions vanish if and only if H = 0. Of particular interest

is the case of M2
H .〈〈

H,∆DH
〉〉

=
〈〈
D(H),D(H)

〉〉
+
〈〈
D†(H),D†(H)

〉〉
With D(H) = 0 the first term vanishes and the second term can be evaluated

by noting H†(H) ∈ ∆0(E∗) and thus it follows that H†(H) =
〈〈
H,H

〉〉
.〈〈

H,∆DH
〉〉

=
〈〈
D†(H),D†(H)

〉〉
=
〈〈
H,H

〉〉2

We can express these three results in the same way by normalising.〈〈
ξ,∆Dξ

〉〉〈〈
ξ, ξ
〉〉 =

〈〈
H,H

〉〉
ξ ∈ {1, vol6, H} (4.4.24)

By using the component definitions of the flux matrices of D in (4.1.19) we

obtain the same expressions, thus demonstrating the validity of (4.4.22) for

the simplest non-trivial case.
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Summary

In this chapter we have examined the effect of a number of dualities on the

superpotentials of Type II theories and in doing so have deduced the ex-

istence of fluxes which do not appear naturally in the full ten dimensional

string actions. These fluxes allow for the possible stablisation of all mod-

uli types by giving a generic superpotential dependent on all moduli types

simultaneously without the requirement for non-perturbative effects. The

number of fluxes and their contribution to the various superpotentials was

most conveniently expressed by using as our basis the elements of the ∆p(E∗)

light forms defined on the internal space in the absence of fluxes. The in-

clusion of fluxes required the use of generalised geometry, within which the

basis elements are no longer closed and thus the moduli obtain masses, for

which analytic expressions in terms of the fluxes were obtained.

Thus far we have only concerned ourselves with the construction of the

most general superpotentials under T, S and U duality transformations.

Having done so we must consider the constraints upon such fluxes and it is

to this we now turn.
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Chapter 5

Flux Constraints

Since the Type IIA and Type IIB theories are dual to one another a set of

fluxes which satisfy the constraints in one Type II theory should map to a

set of fluxes in its mirror partner which satisfy their constraints. We shall

consider the NS-NS sector of each theory first, where only T duality needs be

considered, and then using it as a guide we then extend our considerations

to the R-R sector induced by U duality, followed by the S duality mixing of

the two sectors.

5.1 T Duality Bianchi Constraints

We have formulated our analysis of the flux components in two ways; the

parallelisable Λp(E∗) components of (4.1.6) and the light form ∆∗(E∗) com-

ponents. Each of these approaches have advantages and disadvantages. The

parallelisable construction is extremely restrictive to whichM it can be ap-

plied to but the fluxes can be acted on both Λ±(E∗) without having to be

reformulated. The constraints on the fluxes also have a Lie algebra formu-

lation whose structure we will make considerable use of and which include

contributions which are missed if we restrict ourselves to the lightest forms.
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An additional disadvantage of the ∆∗(E∗) construction is that the fluxes have

to be reformulated to act on the different ∆±(E∗) bases. This is required

in order to determine the nilpotency constraints and even then the nilpo-

tency constraints on the ∆∗(E∗) forms do not provide sufficient conditions

for nilpotency on Λ∗(E∗), as we will see both in general and specifically for

the Z2 × Z2 orientifold later.

5.1.1 Type IIA NS-NS Flux Sector

We recall for M a parallelisable space the Type IIA NS-NS Lie algebra,

which we shall refer to as L(D), in terms of the F fluxes [56, 60].

[
Zm , Zn

]
= Fmnp Xp − Fpmn Zp[

Zm , Xn
]

= Fnmp Xp + Fnpm Zp[
Xm , Xn

]
= Fmnp Xp − Fmnp Zp

These fluxes define terms in the covariant derivative D of (4.1.10) and are

such that its Bianchi constraints are equivalent to the Jacobi constraints of

this algebra [56]. As such we shall refer to the algebra as L(D). Constructing

the Jacobi constraints of this algebra and considering the coefficients of the

X and Z provides five schematically different expressions [54, 56, 61].

0 = Fe[abF ecd]

0 = Fde[aF ebc] + Fe[abFdec]

0 = F [ab]
e F e[cd] − 4F [a

e[cF
b]e
d] + Fe[cd]F [ab]e

0 = F e[ad F
bc]
e + F e[abF c]de

0 = F e[abF cd]
e

(5.1.1)

The constraints of (5.1.1) can be taken to be the generating functions of an

ideal, which we shall denote as 〈L(D)〉. These conditions are not dependent

on our choice of
〈 〉
± as we are not defining the components to match some

141



kind of intersection number structure on the basis of forms. This is not the

case for the derivative flux components of (4.1.19) defined on the ∆∗(E∗)

but the nilpotency conditions on such components are still constructed by

combining the two actions of D [64]. Dependent upon which light subspace

∆±(E∗) is being considered different moduli space indices are summed; for

D acting on ∆±(E∗) the contracted indices relate to ∆∓(E∗). In the case of

∆+(E∗) it is the complex structure indices.

D2(νA) =
(
F(A)IF (B)I −F J

(A) F
(B)

J

)
νB +

(
F J

(A) F(B)J −F(A)IF I
(B)

)
ν̃B

D2(ν̃B) =
(
F (B)

IF (A)I −F (B)JF (A)
J

)
νA +

(
F (B)JF(A)J −F (B)

IF
I

(A)

)
ν̃A

(5.1.2)

Conversely, in the case of ∆+(E∗) it is the Kähler indices.

D2(aI) =
(
F (A)IF(A)J −F I

(B) F
(B)

J

)
aJ +

(
F I

(B) F (B)J −F (B)IF J
(B)

)
bJ

D2(bJ) =
(
F (A)

JF(A)I −F(B)JF (B)
I

)
aI +

(
F(B)JF (B)I −F (A)

JF
I

(A)

)
bI

(5.1.3)

It is worth commenting that due to the sympletic construction of these

expressions they are invariant under redefinitions of the (aI , b
J) basis which

leave the intersection numbers of ∆3(E∗) invariant. This illustrates that the

(αI , β
J) basis could just as easily have been used but we include such a

redefinition by following mirror symmetry on the change of basis of ∆+(E∗).

These constraints can be written in a more compact form in terms of the flux

matrices M and N by noting how they define the exact sequence associated

to D.

· · · M ·ha−−−→ ∆3(E∗)
N ·hν−−−→ ∆3(E∗)

M ·ha−−−→ ∆3(E∗)
N ·hν−−−→ · · ·

The Bianchi constraints follow by constructing the matrix expression for D2

in terms of D and the h bilinear forms.

D2(e) = D · h · D · h · e =

M · ha ·N · hν 0

0 N · hν ·M · ha


e(ν)

e(a)

 (5.1.4)
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The flux polynomials associated to the Type IIA NS-NS flux sector nilpo-

tency D2 = 0 define a new ideal, which we shall denote as 〈D2〉, by having

each of the components of D · h · D · h as a generating function for the ideal.

〈D2〉 = 〈 M · ha ·N · hν , N · hν ·M · ha 〉 (5.1.5)

Since the ha and hν are non-degenerate those on the ‘outside’ of the matrix

expressions can be neglected without changing the ideal the matrix expres-

sions define. Since ∆∗(E∗) is a truncated basis for Kaluza-Klein reductions

we would not expect the constraints we construct using such a basis to be

sufficient for the full untruncated theory. The truncation is not an issue

for parallelisable spaces as the parallelisability is sufficiently restrictive on

the flux components in its own right, Ω∗(T ∗M) → Λ∗(E∗). However, as we

will discuss shortly, the constraints in these two formulations are not equal,

〈D2〉 6= 〈L(D)〉, but we would expect that they reduce to one another on

the ∆∗(E∗) of a parallelisable M. This can be expressed using the operator

L : Λ∗(E∗) → ∆∗(E∗), which projects down from the space of parallelised

p-forms to the light form truncated basis.

〈D2〉 = L (〈L(D)〉) (5.1.6)

5.1.2 Type IIB NS-NS Flux Sector

The derivation of the T duality induced fluxes of Type IIB followed the same

method as the Type IIA fluxes; for parallelisableW we use the completion of

a Lie algebra’s commutation relations, resulting in the algebra (4.2.2) which

we recall here, to deduce additional fluxes [52, 61].[
Zm , Zn

]
= F̂mnp X

p − Fpmn Zp[
Zm , Xn

]
= Fnmp Xp + Fnpm Zp[

Xm , Xn
]

= Fmnp Xp − F̂mnp Zp
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The fluxes define terms in the flux operator G of (4.2.3) in the same way as

D was defined from the fluxes of the Type IIA NS-NS algebra and so this

algebra we denote as L(G). The Jacobi constraints of this algebra, 〈L(G)〉

take the same schematic form as the Type IIA case, 〈L(D)〉.

0 = F̂e[abF
e
cd]

0 = Fde[aF
e
bc] + F̂e[abF

de
c]

0 = F
[ab]
e Fe[cd] − 4F

[a
e[cF

b]e
d] + F̂e[cd]F̂

[ab]e

0 = F
e[a
d F

bc]
e + F̂e[abF

c]
de

0 = F̂e[abF
cd]
e

(5.1.7)

It is a noteworthy aside that if we were to apply an orientifold projection

which removed either the pair (F1, F̂3), to give Type IIB/O3, or the pair

(F̂0,F2), to give Type IIB/O9 the algebra and its Bianchi constraints reduce

in such a manner to admit a six dimensional subalgebra. In the original

construction of the Type IIA f in (4.1.1) this was explicitly seen for the

algebra generated by the Z. In Type IIB/O3 the subalgebra is generated by

the X with structure constant F2 and in Type IIB/O9 F1 is the structure

constant for generators Z. The Type IIA orientifold projection does not ad-

mit a manifest subalgebra as the orientifold action acts on the holomorphic

form of MQ and in Type IIA the fluxes are not defined as acting on this

holomorphic form. We shall return to this point later but until then we do

not consider orientifold projections any further.

Though the T duality induced fluxes follow by completion of L(G) they

do not couple to the individual terms in fc in the same nature way as the

fluxes of D do to f. We wish to work with Type IIB superpotentials defined

in terms of the standard holomorphic forms and thus D rather than G. To

do this in a consistent manner we require that any analysis of the fluxes
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and their constraints in terms of D is equivalent to the same analysis in

terms of G, namely that 〈G2〉 = 〈D2〉 and for a parallelisable W 〈L(G)〉 =

〈L(D)〉. When we first defined G in order to examine its flux components’

relationship to D we were forced to use the ∆∗(E∗) bases and so we do the

same here. The Bianchi constraints of D, 〈D2〉, are of the same form as 〈D2〉

in terms of flux matrices and we can use (4.2.10) to write N in terms of M.

The immediate corrollary of this result is that we can express 〈G2〉 in terms

of G.

〈D2〉 = 〈 M · ha · N , N · hν ·M 〉

= 〈 M · ga ·M> , M> · ga ·M 〉

〈G2〉 = 〈 G · ga · G> , G> · ga · G 〉

(5.1.8)

We can then compare these constraints by using (4.2.12) to convert the

generating functions of 〈D2〉 into being dependent on G. We again neglect

any pre- or post-multiplication by non-degenerate matrices.

〈D2〉 → 〈 G · ga · K · ga · K> · ga · G> , G> · L · ga · L> · G 〉 (5.1.9)

It therefore follows that the cohomology restricted Bianchi constraints of D

and G are equivalent if L and K are symplectic matrices, though we have

the option of an additional overall factor of −1.

K · ga · K> = ±ga , L · ga · L> = ±ga (5.1.10)

Given the overall factor of −1 is physically irrelevant we set the sign to be

+ in the above expressions. There are restrictions on K and L over and

above these expressions. We previously required L to commute with the

complexification matrices and to not mix the Kähler moduli other than to

exchange the Ti and Tj in some manner. We consider a specific case; on the

grounds of treating the two moduli types in the same manner we restrict K
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to be of a similar form and we can make a more explicit ansatz for the two

matrices.

L =



1 0 0 0

0 0 0 L1

0 0 1 0

0 L2 0 0


, K =



1 0 0 0

0 0 0 K1

0 0 1 0

0 K2 0 0


(5.1.11)

The sympletic constraints now reduce to skew-orthogonality of the subma-

trixes, L2 · L>1 = −I and K2 · K>1 = −I. The simplest specific solution is

L1 = −L2 = I which has the effect J (2) = ±T jω̃j → ∓Tjω̃j = Jc, the

standard definition used for the Kähler 4-form [60, 61, 93]. Provided these

conditions are met we can be sure that when restricted to the light modes

the Bianchi constraints of D are equivalent to those of G, 〈D2〉 = 〈G2〉.

These constraints can be stated explictly using (4.2.11) to obtain the Type

IIB versions of (5.1.12) and (5.1.13). As in the Type IIA case different

moduli space indices are summed dependent upon which ∆±(E∗) light form

subspace the nilpotency is being considered on. In the case of ∆+(E∗) it is

the complex structure indices.

D2(νI) =
(
F(I)AF

(J)A − F
B

(I) F
(J)

B

)
νJ +

(
F

B
(I) F(J)B − F(I)AF

A
(J)

)
ν̃J

D2(ν̃J) =
(
F

(J)
AF

(I)A − F(J)BF
(I)
B

)
νI +

(
F(J)BF(I)B − F

(J)
AF

A
(I)

)
ν̃I
(5.1.12)

Conversely, in the case of ∆3(E∗) it is the Kähler indices.

D2(aA) =
(
F

A
(J) F

(J)
B − F(I)AF(I)B

)
aB +

(
F(J)AF

B
(J) − F

A
(J) F(J)B

)
bB

D2(bB) =
(
F(J)BF

(J)
A − F

(I)
BF(I)A

)
aA +

(
F

(I)
BF

A
(I) − F(J)BF

(J)A
)
bA
(5.1.13)

We now consider this relationship for the parallelisable W , where we can

define the flux expansion of D in terms of the ?F and ?F̂ in (4.2.13).

D = f>(a) · h>a ·M> · ιf(ν)
(5.1.14)

=
1

3!
(?F̂)mpqη

mpq +
1

2!
(?F)mpqη

pqιm +
1

2!
(?F)mpq ηqιpm +

1

3!
(?F̂)mqpιpqm
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As with the D in Type IIA and the natural flux operator G the Bianchi

constraints of this derivative can be reformulated into Jacobi constraints of

a Lie algebra L(D), the specific form of which follows previous examples but

the generators are not those seen in L(G).[
Zm , Zn

]
= (?F̂)mnp Xp + (?F)pmn Zp[

Zm , Xn
]

= − (?F)nmp Xp + (?F)npm Zp[
Xm , Xn

]
= (?F)mnp Xp + (?F̂)mnp Zp

(5.1.15)

The Jacobi constraints of L(D) take the same schematic form as the previous

cases.

0 = (?F̂)e[ab(?F)ecd]

0 = (?F)de[a(?F)ebc] + (?F̂)e[ab(?F)dec]

0 = (?F)
[ab]
e (?F)e[cd] − 4(?F)

[a
e[c(?F)

b]e
d] + (?F̂)e[cd](?F̂)[ab]e

0 = (?F)
e[a
d (?F)

bc]
e + (?F̂)e[ab(?F)

c]
de

0 = (?F̂)e[ab(?F)
cd]
e

(5.1.16)

Through the use of matrix expressions for the ∆∗(E∗) definitions of G and

D we have explicitly demonstrated the equivalence 〈G2〉 = 〈D2〉 on a general

W . If W is parallelisable then we would also require that this equivalence

lifts to the Λ∗(E∗).

〈G2〉 = 〈D2〉 ⇒ L−1(〈G2〉) = L−1(〈D2〉)

It is not manifest that this is the case, the relationship between G and D is

dependent on the intersection numbers of ∆∗(E∗) basis elements and which

are structures not seen in the Λ∗(E∗) construction. Justifying this for a

general W and determining possible constraints on K and L is beyond the

scope of this work. Instead we examine the parallelisable equivalent of the

Sp(n) and O(m,m) invariances associated to the intersection numbers of the

∆±(E∗) bases.
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5.1.3 GL(6,Z) ⊂ O(6, 6) Covariant Bianchi Constraints

The Bianchi constraints defined in terms of Λp(E∗) components for the

〈L( · )〉 are defined in terms of contracted E and E∗ indices. As a specific

case we consider 〈L(D)〉 defined in (5.1.1) and the fluxes Fn of Type IIA.

These fluxes are defined by the ηp and ιq and we consider a constant1 trans-

formation on this pair of dual bases.

ηp → η̃p = Ppqη
q ⇔ ιq → ι̃q = (P−>) p

q ιp (5.1.17)

We have denoted the inverse of P> as P−> and shall use (P−>) p
q = (P−1)pq.

This choice of transformation is motivated by the knowledge that the mod-

ular symmetry group of a six dimensional torus is SL(6,Z) and we wish to

explicitly extract this symmetry from our construction of fluxes on a par-

allelisable space. Since we are taking the bases to transform in opposite

ways P must be non-singular. Such a transformation on the bases induces

a transformation on the fluxes and we consider two example cases, F0 and

F1.

F0 = 1
3!
Fpqrηpqr = 1

3!
F̃pqrη̃pqr ⇒ Fpqr = F̃tuvPtpPuqPvr

F1 = 1
2!
Fpqrηqrιp = 1

2!
F̃pqrη̃qr ι̃p ⇒ Fpqr = (P−1)ptF̃ tuvPuqPvr

Some of the constraints on the Fn include the contraction between F0 and

F1, Fe[abF ecd], and we consider the effect the change of basis has on this

expression.

Fe[abF ecd] → F̃e[abF̃ ecd] = (P−1)eFFEABFFCDPEePA[aP
B
bP

C
cP

D
d]

The contracted indices transform in opposite ways and since P is non-

singular the free indices are transformed in a non-degenerate way. The fact

1We do not consider M dependent transformations so as to not affect the nature of dη.
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they are transformed in non-degenerate ways means that the constraints on

the fluxes are unchanged.

〈Fe[abF ecd]〉 = 〈F̃e[abF̃ ecd]〉 (5.1.18)

This extends to the other expressions in (5.1.1) and the ideals are indeed

tensorial as they are coordinate independent. The P are further restricted,

over and above being non-singular, by the symmetries of the compact space.

In the case of orbifolds P must be invariant under the generators of the orb-

ifold group and we shall examine this explicitly for the Z2 × Z2 orientifold

[10, 92, 93, 94].

This symmetry is in fact a special case of the much larger set of trans-

formations which leave parallelisable flux constructions invariant. The bases

of E∗ and E define the Clifford algebra of (2.1.3) whose bilinear form is the

Kronecker delta. The contractions between different parallelisable flux com-

ponents are determined by this Kroncker delta and thus (5.1.17) is seen to

be embedded within O(6, 6) [81], which is associated to the T duality group

[50, 58, 66]. It is clear that general O(6, 6) transformations on E = E ⊕ E∗

would mix the different flux multiplets of (4.1.7), thus inducing the sequence

in (4.1.6). The subgroups which leave the flux multiplets unchanged are

thus which do not mix E and E∗ and so define a pair of O(6) subgroups

[51, 52, 56, 57].

We therefore have two formulations of the effective theory on a parallelis-

ableM which manifest different kinds of symmetry. The Λ∗(E∗) formulation

makes the GL(6,Z) invariance manifest while the ∆∗(E∗) has the symme-

tries of the intersection numbers manifest. These types of transformations
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are disjoint, a constant transformation in the Λ∗(E∗) defining basis of E∗

does not alter the intersection numbers or vice versa.

αI = 1
3!

(αI)pqrη
pqr → 1

3!
(α̃I)pqrη̃

pqr = α̃I

βJ = 1
3!

(βJ)pqrη
pqr → 1

3!
(β̃J)pqrη̃

pqr = β̃J
s.t.

〈
αI , β

J
〉

=
〈
α̃I , β̃

J
〉

This is particularly simple for the case of P ∈ SL(6,Z) as vol6 transforms

as vol6 → (detP)vol6 and the Λ3(E∗) formulation of the ∆−(E∗) basis is

unchanged and we therefore have seen the modular group symmetry of a six

dimensional parallelisable space.

P ∈ SL(6,Z) ⇒ (αI)pqr = (α̃I)pqr , (βJ)pqr = (β̃J)pqr

This construction is only possible on parallelisable M and so we return to

the ∆∗(E∗) defined components and their constraints.

5.1.4 Equivalent Type II Bianchi Constraints

Using (4.4.7) for
〈 〉
± →

〈 〉
− and (4.4.10) for

〈 〉
± →

〈 〉
+

we can convert

one set of Type II NS-NS expressions into its T duality partner and thus

illustrate their equivalence [54] for both
〈 〉
± inner products. In the case

of (4.4.7) for
〈 〉
− it is trivial that they are equivalent as the flux matri-

ces and flux components are equal. For
〈 〉

+
this is not the case but the

constraints are still equivalent as the flux matrix expressions differ only by

non-degenerate bilinear forms.

〈 〉
− : 〈D2〉 =

〈 N · hν ·M

M · ha · N

〉
→
〈 M · ha ·N

N · hν ·M

〉
= 〈D2〉

〈 〉
+

: 〈D2〉 =
〈 N · hν ·M

M · ha · N

〉
→
〈 ha · (M · ha ·N)

ha · (N · hν ·M)

〉
= 〈D2〉

(5.1.19)

These equivalent constraints can be further examined by using (4.2.10) and

(4.4.10) to write each of the flux matrix combinations in (5.1.19) in terms of
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a single flux matrix. Given each derivative has two flux matrices there are

four choices for each combination.

〈M · ha ·N〉 =
{ 〈N> · ga ·N〉 〈M · ga ·M>〉

〈M> · ga ·M〉 〈N · ga · N>〉

}
= 〈N · hν ·M〉

〈N · hν ·M〉 =
{ 〈M> · ga ·M〉 〈N · ga ·N>〉

〈N> · ga · N〉 〈M · ga ·M>〉

}
= 〈M · ha · N〉

(5.1.20)

These results are independent of our choice of
〈 〉
±, in both cases the nilpo-

tency conditions become quadratic in one flux matrix, with a symplectic

bilinear form between them. This form of the constraints suggests they can

be rephrased to be in terms of an integrand defined by a pair of exact forms.

Precisely how this is done depends on our choice of
〈 〉
±. To examine this

we use a pair of vectors χ and ϕ of dimension 2h1,1 + 2 and a pair of vectors

φ and ψ of dimension 2h2,1 + 2, which then allow us to define sets of forms

in either Type II theory.

IIA
{ χ ≡ χ> · hν · e(ν) ↔ χ̃ ≡ χ> · ha · f(a)

φ ≡ φ> · ha · e(a) ↔ φ̃ ≡ φ> · hν · f(ν)

}
IIB

In the case of
〈 〉
− the anti self adjoint nature of the derivatives immediately

imply the result for both sets of expressions in (5.1.20).

〈M · ha ·N〉 =

{∫
M

〈
χ,D2(ϕ)

〉
−=

∫
M

〈
D(ϕ),D(χ)

〉
−∫

W

〈
χ̃,D2(ϕ̃)

〉
− =

∫
W

〈
D(ϕ̃),D(χ̃)

〉
−

}
= 〈M · ga ·M>〉

〈N · hν ·M〉 =

{∫
M

〈
φ,D2(ψ)

〉
−=

∫
M

〈
D(ψ),D(φ)

〉
−∫

W

〈
φ̃,D2(ψ̃)

〉
− =

∫
W

〈
D(ψ̃),D(φ̃)

〉
−

}
= 〈M> · ga ·M〉

The fact that gν = ga and gν = ga for
〈 〉
− allows us to formulate both sets

of expressions as integrals over eitherM orW . This is not the case for
〈 〉

+

as gν 6= ga and gν 6= ga. Instead we note that the first set of expressions in
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(5.1.20) are defined with ga and the second set with ga and by constructing

the flux matrix expressions for combinations of 3-forms on M and W we

obtain the required result.∫
M

〈
D(χ),D(ϕ)

〉
+

= gν

(
χ,D

(
D(ϕ)

))
= ga

(
D(χ),D(ϕ)

)
= 0∫

W

〈
D(φ̃),D(ψ̃)

〉
+

= gν
(
φ̃,D

(
D(ψ̃)

))
= ga

(
D(φ̃),D(ψ̃)

)
= 0

(5.1.21)

We can express these results for both inner products
〈 〉
± in a single way.

〈D2〉 =
〈
ga

(
D( · ),D( · )

)
, ga
(
D( · ),D( · )

)〉
= 〈D2〉 (5.1.22)

5.2 T Duality Tadpole Constraints

We previously considered how the inclusion of branes and other extended

objects can alter the dynamics of R-R fluxes living on those extended objects,

giving rise to tadpole constraints. At present we are restricting our attention

to only those fluxes induced by T duality and so the R-R sector has only F3 =

F0 in Type IIB and FRR = F0 in Type IIA [54, 56, 60, 61] but these couple

to the geometric and non-geometric fluxes induced by T duality [82, 83].

5.2.1 Type IIB

Recalling the example of D3-branes extended through the external space-

time we note how the flux dependent expression can be written as an exact

form.

N3 +

∫
W
H3 ∧ F3 = N3 +

∫
W

dF̃
(0)
5 = 0 (5.2.1)

Here we are taking F̃
(0)
5 to be the field strength in the case where there are

no branes. Although we have made the explicit assumption that F5 is trivial

in W we can none-the-less express the H3 ∧ F3 expression as an exact form
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by using D and for later convenience we revert to our F, F̂ notation.∫
W
H3 ∧ F3 →

∫
W
F̂0 ∧ F0 =

∫
W
D(F3) (5.2.2)

This can be taken a step further by noting that F0 can be also written as an

exact form in D′, F0 = D′(ν̃0), and that we can project out the coefficient of

a 6-form using ιν0 we have a differential expression for N3.

F̂0 ∧ F0 → DD′(ν̃0) ⇒ N3 + ιν0DD
′(ν̃0) = 0 (5.2.3)

This expression motivates further analysis of quadratic derivatives; the DD′

expressions take a form similar to those expressions already obtained for D2

and D′2 in the context of Bianchi constraints from T duality. In the case

where F0 is the only R-R flux the only non-zero expressions follow from

DD′(ν̃0).

DD′(ν̃0) =
(
F̂

(0)B
F

(J)
B − F̂

(0)
AF

(J)A
)
νJ +

(
F̂

(0)
AF

A
(J) − F̂

(0)B
F(J)B

)
ν̃J (5.2.4)

With ιν0 projecting out the coefficient of ν0 we obtain the flux expression

for the tadpole contributions living on D3-branes which couple to the C4.

ιν0

(
F̂0 · F0

)
= ιν0

(
F̂0 ∧ F0

)
= ιν0DD

′(ν̃0) = F̂
(0)B

F
(0)
B − F̂

(0)
AF

(0)A(5.2.5)

The next set of Type IIB tadpoles follow from the D5-branes coupling elec-

trically to C6. Due to the fact the Type IIB fluxes contribute to the superpo-

tential in a way different from their index structure, when compared to Type

IIA, we cannot automatically assume that the tadpoles due to the C6 will be

obtained by projecting out the 4-forms of DD′(ν̃0). Instead we restrict our

attention to parallelisable W so as to revert back to the p-form component

formulation and consider how the C6 tadpole would be constructed in terms

of such components.

F1 : F0 → F1 · F0 ∝ FmpqFrsmη
pqrs ∈ Λ4(E∗) (5.2.6)
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In the absence of additional fluxes this is the only way to construct a 4-

form from a combination of an NS-NS flux and an R-R flux. Despite not

being able to explicitly express F1 in terms of the components of M, we

have previously determined which components of M F1 is dependent upon

and thus we can use the parallelisable Λ∗(E∗) case to determine the general

Ω∗(E∗) one. Such fluxes arise in (5.2.4) in the coefficients of νj terms.

ινjDD
′(ν̃0) = F̂

(0)B
F

(j)
B − F̂

(0)
AF

(j)A (5.2.7)

As a result of this non-standard Kähler moduli coupling we would expect to

construct the standard tadpoles by using G and G′, with the C6 tadpoles

being the coefficients ιν̃jGG′(ν̃0). In our examination of Bianchi constraints

we commented that the construction of the p-form components of G requires

explicit choices for the L and K matrices of (4.2.8). However, we also demon-

strated that the ∆∗(E∗) formulation does not need the explicit form of K and

L, they only needed to be symplectic and commute with the complexification

matrices C(′). Their symplectic nature results in the analysis of DD′ Bianchi

expressions being equivalent to an analysis of GG′ Bianchi expressions. For

the time being we assume this carries through into the tadpoles, we shall

prove this assumption shortly for general U duality constructions. For the T

duality only case it can be seen explicitly by considering (5.2.7). K defined

a symplectic transformation on the ∆3(E∗) basis and the expression is man-

ifestly invariant under such a transformation. L exchanges ν̃i dependence

for νj dependence and this is the difference in how the C6 tadpole arises in

DD′(ν̃0) compared to GG′(ν̃0). As such we shall use D and D′ rather than

G and G′ and use the same method as (5.2.6) to guide how we relate flux

polynomials to the Cp tadpoles. Given an R-R potential Cp the symmetries

of the space-time require it be of the form Cp ∼ vol4 ∧ ξ for ξ ∈ ∆p−4(E∗).

154



n Cn Cycles Fluxes Tadpole contribution

4 vol4 ∧ ν̃0 A0 ιν0DD
′(ν̃0) ∝ F̂(0)BF

(0)
B − F̂

(0)
AF

(0)A

6 vol4 ∧ νi Ai ινiDD
′(ν̃0) ∝ F̂

(0)
AF

(j)A − F̂(0)BF
(j)
B

8 vol4 ∧ ν̃j Bj ιν̃jDD
′(ν̃0) ∝ F̂(0)BF(i)B − F̂

(0)
AF

A
(i)

10 vol4 ∧ ν0 B0 ιν̃0DD′(ν̃0) ∝ F̂
(0)
AF

A
(0) − F̂(0)BF(0)B

Table 5.1: Type IIB T duality tadpoles flux polynomials

Naively we would expect this to couple to ?ξ ι(?ξ)

(
DD′(ν̃0)

)
but we have

now seen this is not the case for all fluxes, instead we expect it to couple to

?ξ ι(?ξ)

(
GG′(ν̃0)

)
. With L relating these two constructions we can construct

the schematic tadpole couplines for the derivatives.

tad (Cp+4 ∼ vol4 ∧ ξp) ∝ ι(?L·ξ)

(
GG′(ν̃0)

)
(5.2.8)

The case for F2 follows in the same manner, with F2 · F0 coupling to C8 ∼

vol4 ∧ ω̃i, which has support on D7-branes wrapping 4-cycles in W but the

relevant flux polynomials arising in DD′(ν̃0) not as the coefficients of ?ω̃i but

as the coefficients of ?(L · ω̃)i ∼ ω̃i = ν̃i.

ιν̃iDD
′(ν̃0) = F̂

(0)
AF

A
(i) − F̂

(0)B
F(i)B (5.2.9)

The final case is C10, found by projecting out the ν̃0 component of DD′(ν̃0).

ιν̃0DD′(ν̃0) = F̂
(0)
AF

A
(0) − F̂

(0)B
F(0)B (5.2.10)

All of the Type IIB results are summarised in Table 5.1.

5.2.2 Type IIA

The Type IIA side has only one kind of tadpole, that which arises from

C7 on D6-branes, due to our stipulation that ∆1(E∗) and ∆5(E∗) are empty
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p C
(p)
7 Cycles Fluxes Tadpole contribution

0 vol4 ∧ b0 A0 ιa0DD′(b0) ∝ F̂
(0)
AF(A)0 ± F̂

(0)BF (B)
0

1 vol4 ∧ ai Ai ιbiDD′(b0) ∝ F̂
(0)
AF

i
(A) ± F̂

(0)BF (B)i

2 vol4 ∧ bj Bj ιajDD′(b0) ∝ F̂
(0)
AF(A)j ± F̂

(0)BF (B)
j

3 vol4 ∧ a0 B0 ιb0DD′(b0) ∝ F̂
(0)
AF

0
(A) ± F̂

(0)BF (B)0

Table 5.2: Type IIA flux dependent Type IIA T duality tadpoles.

[60]. However, this does not result in Type IIA having a more trivial tadpole

sector than its Type IIB counterpart. As in the Type IIB case the tadpoles

are determined by the non-closure of the R-R fluxes which in the Type IIA

case is FRR and like F3 = F0 it can be written as an exact form, FRR = F0 ·b0.

This, coupled with the T duality induced d→ D leads to the same kind of

expressions as the Type IIB case, dFRR → DD′(b0) but we include the sign

choice of
〈 〉
± as this is relevant to the definition of flux components of D′

acting on ∆−(E∗).

DD′(b0) = D
(
F̂

(0)
AνA ± F̂

(0)B
ν̃B
)

(5.2.11)

=
(
F̂

(0)
AF(A)I ± F̂

(0)BF (B)
I

)
aI −

(
F̂

(0)
AF

J
(A) ± F̂

(0)BF (B)J
)
bJ

Since we are considering both inner products we have different index struc-

tures of the flux components of D and D′. Following the same methodology

as the Type IIB case DD′(b0) can be split into four parts, each associated

to the cycles A0, Ai, B0, Bj which are symplectic in their intersection num-

bers, unlike the Type IIB tadpole cycles. As a result we obtain the Type IIA

version of Table 5.1, Table 5.2. The conversion to different flux component

definitions can be done using the results of Section 4.3 such that F→ F̂ or

vice versa. Since we will ultimately wish to compare the tadpoles of each
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Type II theory, after the inclusion of SL(2,Z)S transformations, we can use

the results of (4.4.20) and (4.4.12) to express the Type IIA tadpole in terms

Type IIB fluxes.

DD′(b0) =
(
F̂

(0)
AF

(J)A± F̂(0)AF
(J)

A

)
aJ ±

(
F̂

(0)
BF

B
(J) ± F̂(0)AF(J)A

)
bJ

Splitting this expression using the same cycle decomposition we obtain Table

5.3; a version of Table 5.2 but with the fluxes now being the Type IIB ones.

Comparing the flux polynomials in Table 5.3 with those of Table 5.1 we see

that for
〈 〉
± →

〈 〉
− the same polynomials, up to overall factors of ±1, are

obtained. This is to be expected given the action of T duality or the mirror

map M on the brane content of each construction. We previously noted in

Section 4.3 that for spaces which do not receive quantum corrections the

M action is set by the definitions of the ∆∗(E∗) bases of M and W . This

was explicitly stated in terms of the original ∆∗(E∗) basis in (4.3.2) and we

convert that into the new basis, though only consider one of the two maps.

M(b0) ∝ ν̃0 ⇒ M(a0) ∝ ν0 (5.2.12)

This is indeed the structure seen in the tadpole constraints of Tables 5.1 and

5.3. The C4 expression of Table 5.1 and the C
(0)
7 expression of Table 5.3 are

equal, the D6s wrapping the A0 cycle of W are mirrored to D3s which have

no support inM. Conversely the D6s wrapping the dual B0 cycle of W are

mapped to D9s which fill the entirity ofM. We also observe that the effect

of the Type IIB non-standard Kähler moduli coupling has been mirrored in

the Type IIA construction. The C
(1)
7 and C

(2)
7 flux polynomials of Table 5.3

should be exchanged if the Type IIA tadpoles are to be manifestly the mirror

of the Type IIB tadpole expressions. This is related to the different ways in

which Type IIA and Type IIB define their complex structure moduli. This

exchange can be done by a symplectic transformation, the Type IIA version
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p C
(p)
7 Cycles Fluxes Tadpole contribution

0 vol4 ∧ b0 A0 ιa0DD′(b0) ∝ F̂
(0)
AF

(0)A ± F̂(0)AF
(0)
A

1 vol4 ∧ ai Ai ιbiDD′(b0) ∝ F̂
(0)
BF

B
(i) ± F̂(0)AF(i)A

2 vol4 ∧ bj Bj ιajDD′(b0) ∝ F̂
(0)
AF

(j)A ± F̂(0)AF
(j)
A

3 vol4 ∧ a0 B0 ιb0DD′(b0) ∝ F̂
(0)
BF

B
(0) ± F̂(0)AF(0)A

Table 5.3: Type IIB flux dependent Type IIA T duality tadpoles.

of K, and thus the motivation for a transformation of the ∆3(E∗) basis is not

immediately apparent. This has been motivated by moduli dependency but

for parallelisable spaces it can be done explicitly in terms of flux components

using (3.1.4), a result we will see in our analysis of the Z2 × Z2 orientifold.

Until then we shall not concern ourselves too much with which cycles the

tadpoles are associated to, only that tadpole polynomials of the forms given

in Tables 5.1 and 5.3 exist. With this basic framework constructed for a T

duality invariant Type II effective theory we can now extend our analysis to

the more general case of including S duality and its non-trivial union with

T duality, U duality.

5.3 U Duality

Due to Type IIB being self S-dual its R-R sector can be examined in precisely

the same way as its NS-NS sector, irrespective of which
〈 〉
± we consider.

A Type IIB theory with only R-R fluxes can be analysed in the same way

as a Type IIB theory with only NS-NS fluxes, though when both flux types

are non-zero these constraints extend due to non-trivial mixing. This allows

us to examine U duality in Type IIB in progressive steps [32], which is not
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possible in Type IIA for
〈 〉

+
, and so we begin our analysis extending the

T duality invariant constraints of Type IIB by performing modular trans-

formations on the dilaton. The examination of Type IIB will then guide

our analysis of Type IIA and its full U duality invariance. We have already

seen that for the T duality only case the Bianchi constraints on Λ∗(E∗) and

∆∗(E∗) have entirely different structures and this is particularly important

for the inclusion of S duality. We shall begin with the restricted parallelis-

able case but some of the analysis will be carried over into the more general

∆∗(E∗) case. A guiding principle in our analysis will be to construct SL(2,Z)

multiplets from the constraints under the two SL(2,Z) generators; the dila-

ton inversion S → − 1
S

and a real shift S → S + 1 and it is this which is

common between the Λ∗(E∗) and ∆∗(E∗) constructions.

5.3.1 Parallelised Type IIB S Duality Bianchi Constraints

The fluxes must satisfy the constraints following from the SL(2,Z)S image

of (5.1.15). We previously used the modular inversion S → − 1
S

to obtain

the pure R-R sector from the NS-NS sector and the R-R Lie algebra (4.2.2).

The Jacobi constraints for the R-R sector follow the same schematic form

as the NS-NS sector [60].

0 = Fe[abF̂
e
cd]

0 = F̂de[aF̂
e
bc] + Fe[abF̂

de
c]

0 = F̂
[ab]
e F̂e[cd] − 4F̂

[a
e[cF̂

b]e
d] + Fe[cd]F̂

[ab]e

0 = F̂
e[a
d F̂

bc]
e + Fe[abF̂

c]
de

0 = Fe[abF̂
cd]
e

(5.3.1)

The R-R fluxes satisfying (5.3.1) and NS-NS fluxes (5.1.7) is not sufficient for

full S duality invariance. As yet we have not considered the effect the second

SL(2,Z) generator corresponding to S → S + 1 has on the constraints; the
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two flux sectors become mixed. Furthermore, we cannot simply consider all

possible SL(2,Z)S images of (5.1.7) and declare them to be the necessary

and sufficient conditions for S duality invariance, there is a subtly in how the

expressions arrange themselves into SL(2,Z)S multiplets. This can be seen

by considering the possible combinations of fluxes which arise in Bianchi

constraints. The F do not couple to the dilaton, while the F̂ do. Therefore

a pair of fluxes, of the kind seen in (5.3.1) or (5.1.7), can either couple

to the dilaton in the same way or in a different way to one another. The

transformation on the dilaton is taken to be that of (4.2.15) and we define

nij ≡ ninj, noting that n14 − n23 = 1. For the purposes of clarity we shall

neglect the index structure of the expressions since we are only interested

in the schematic form of the induced constraints and thus is applicable to

non-parallelisable spaces too.

F̂ · F → n31F · F + n32F · F̂ + n41F̂ · F + n42F̂ · F̂

F · F̂ → n13F · F + n14F · F̂ + n23F̂ · F + n24F̂ · F̂

F · F → n11F · F + n12F · F̂ + n21F̂ · F + n22F̂ · F̂

F̂ · F̂ → n33F · F + n34F · F̂ + n43F̂ · F + n44F̂ · F̂

(5.3.2)

By comparing coefficients it follows that these four quadratic flux combina-

tions arrange themselves into a singlet and a triplet [60, 10].

1 = 〈F̂ · F− F · F̂〉 , 3 = 〈F · F , F̂ · F̂ , F̂ · F + F · F̂〉 (5.3.3)

Applying this transformation to (5.3.1) or (5.1.7) does not provide much

of an insight into the structures induced by S duality over and above T

duality. Instead we restrict our examination to one of the orientifolded

constructions, which we take to be one with O3-planes such that all basis

elements of ∆2(E∗) be eigenforms of eigenvalue +1 under the orientifold

involution, h1,1
+ = h1,1. We make this choice such that only H3

∼= F̂0, Q ∼= F2
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and their R-R partners F3
∼= F0 and P ∼= F̂2 are non-zero, rather than

allowing potentially all eight Type IIB flux multiplets to have some non-

zero components. This is sufficiently restricted to examine the SL(2,Z)S

multiplets in more detail and we explicitly state the Λ∗(E∗) indices.

1 :
〈
F̂e[abF

ed
c] − Fe[abF̂

ed
c]

〉
3 :

〈
F
e[a
d F

bc]
e , F̂

e[a
d F̂

bc]
e , F

e[a
d F̂

bc]
e + F̂

e[a
d F

bc]
e

〉 (5.3.4)

The motivation for our choice of orientifold projections is now seen to follow

from the fact that now the NS-NS non-geometric flux F2 playing the role of

a structure constant for a six dimensional subalgebra generated by the X.

Its S duality induced R-R partner, obtained under S → − 1
S

, also has this

property. Naively we might have expected the associated sets of constraints

for F2 and F̂2 to be satisfied separately if both T and S duality invariance

were enforced but instead we find they form an SL(2,Z)S singlet. The

triplet also illustrates a structure which results from the mixing of the two

flux sectors. This is extended by S duality such that both F2 and its R-

R partner F̂2 define separate six dimensional subalgebras, generated by X

and its magnetic dual X, but the third member of the triplet results in the

algebras being interdependent. This non-trivial mixing can be viewed in

terms of deformed Lie algebras and integrability conditions. To examine

this further we start with a general Lie algebra L defined by its brackets2.

[Xa, Xb] = Cab
c Xc (5.3.5)

These relations define an algebra if and only if the Jacobi identity on Cab
c is

fulfilled, namely C
[ab
e C

c]e
d = 0. Deformations to these commutation relations

can be written in terms of an element ϕ of the second cohomology class of the

2We define generators with an upper index in analogy with the orientifolded U duality induced

problem [Xa,Xb] = Qabc Xc we are dealing with.
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algebra, H2(L,L), with the 2-cocycles ϕ ∈ H2(L,L) being closed under the

action of an exterior derivation d without being coboundaries. The closure

of ϕ is not a trivial matter, being dependent upon both the co-cycle ϕ itself

and the properties of the generators of L.

0 = dϕ(Xa, Xb, Xc)

≡ [Xa, ϕ(Xb, Xc)] + [Xc, ϕ(Xa, Xb)] + [Xb, ϕ(Xc, Xa)] +

+ ϕ(Xa, [Xb, Xc]) + ϕ(Xc, [Xa, Xb]) + ϕ(Xb, [Xc, Xa])

(5.3.6)

The fact ϕ is not exact allows for the construction of a deformed Lie bracket

for the X without the deformation being trivial.

[Xa, Xb]ϕ = Cab
c Xc + ϕ(Xa, Xb) . (5.3.7)

This linear deformation L+ ϕ is not automatically a Lie algebra, which we

will denote as Lϕ. In order for ϕ to define a deformation of L that is also a

Lie algebra an additional integrability condition has to be imposed.

ϕ(ϕ(Xa, Xb), Xc) + ϕ(ϕ(Xc, Xa), Xb) + ϕ(ϕ(Xb, Xc), Xa) = 0 . (5.3.8)

If both the cohomology and the integrability conditions are fulfilled then the

new structure constant of Lϕ will automatically satisfy its Jacobi identity.

These results can be put into the context of T and S duality induced Lie

algebras by making a particular choice for the form of ϕ, ϕ(Xa, Xb) :=

αabc X
c with αabc = −αbac . Then the cohomology conditions of (5.3.6) and the

integrability conditions of (5.3.8) take on familiar forms.

(5.3.6) ⇒ α
[ab
e α

c]e
d = 0

(5.3.8) ⇒ C
[ab
e α

c]e
d + α

[ab
e C

c]e
d = 0

(5.3.9)

Comparing these deformed L with (5.3.4) we are led to identifying Cab
c = Fabc

and αabc = F̂abc or vice versa. Non-geometric NS-NS flux F2 defines the six

dimensional subalgebra while its R-R partner F̂2 flux defines a deformation.
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From this point of view, the F2 · F2 = 0 and F̂2 · F2 + F2 · F̂2 = 0 additional

constraints are simply the integrability and cohomology conditions. The T-

dual limit is trivially recovered when the deformation vanishes, ie. F̂2 = 0,

and just the original condition F2 ·F2 = 0 remains unchanged. A second, less

trivial, method of L and Lϕ being isomorphic is the nullity of H2(L,L), L

is then known as stable or rigid. At a later point we will examine an explicit

example of this, along with other non-stable and non-isomorphic examples,

for the case of the Z2 × Z2 orientifold. This ability to view the additional

fluxes induced by U duality as deformations of a T duality invariant Type

IIB theory allows a great deal of the machinery associated to Lie algebra to

be used in our analysis, a result we will make use of in the next chapter.

In order to construct these examples of new flux structures we have had

to orientifold out half of the fluxes, an approach which required us to make

specific choices about which fluxes to remove. In order to examine the S

duality induced fluxes as generally as possible we must work in the ∆∗(E∗)

construction. However, before doing that for the Bianchi constraints we first

turn to tadpole constraints as the Λ∗(E∗) and ∆∗(E∗) overlap in their results

for tadpoles. This was discussed previously for T duality induced tadpole

constraints due to the way the extended objects wrapped cycles in W .

5.3.2 Type IIB S Duality Tadpole Constraints

The simplest tadpole is that associated to C4, as it does not require the

consideration of T duality induced fluxes and can be written in a number of

ways due to being expressed in terms of 3-forms.

F̂0 ∧ F0 =

{
D(F0) = DD′(ν̃0)

−D′(F̂0) = −D′D(ν̃0)

}
=

1

2
(DD′ − D′D)(ν̃0) (5.3.10)
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The flux component version of this tadpole follows from the known actions of

D and D′. We have previously stated the DD′(ν0) terms but for completeness

we state all DD′ terms, as well as the D′D expressions in ∆+(E∗).

DD′(νI) =
(
F̂(I)AF

(J)A− F̂
B

(I) F
(J)

B

)
νJ +

(
F̂

B
(I) F(J)B − F̂(I)AF

A
(J)

)
ν̃J

DD′(ν̃J) =
(
F̂

(J)
AF

(I)A− F̂(J)BF
(I)
B

)
νI +

(
F̂(J)BF(I)B − F̂

(J)
AF

A
(I)

)
ν̃I

D′D(νI) =
(
F(I)AF̂

(J)A−F
B

(I) F̂
(J)

B

)
νJ +

(
F

B
(I) F̂(J)B −F(I)AF̂

A
(J)

)
ν̃J

D′D(ν̃J) =
(
F

(J)
AF̂

(I)A−F(J)BF̂
(I)
B

)
νI +

(
F(J)BF̂(I)B −F

(J)
AF̂

A
(I)

)
ν̃I

(5.3.11)

These expressions are independent of our choice of
〈 〉
±, as in the T duality

only case since they are determined entirely by (4.2.11). Relabelling the

derivatives as D = D1 and D′ = D2 we can note a number of algeraic identities

linking the coefficients of these quadratic derivatives on elements of ∆+(E∗).

ιν̃IDnDm(νJ) = −ιν̃JDmDn(νI)

ιν̃IDnDm(ν̃J) = +ινJDmDn(νI)

ινIDnDm(ν̃J) = −ινJDmDn(ν̃I)

(5.3.12)

All tadpoles in the T duality only case follow from acting DD′ on ν̃0, as

the only R-R fluxes required for T duality invariance are those associated to

D′(ν̃0). As a result of the inclusion of other fluxes due to S duality the action

of D′ on other elements of ∆+(E∗) is no longer zero and additional tadpole

expressions can be constructed. These tadpoles no longer take the form

of an NS-NS flux acting on the R-R 3-form, the initial R-R contributions

are the 3-forms of the NS-NS sector superpotential D′(f′c). Such fluxes

are induced by S duality and so we should not consider tadpole constraints

without regard for the SL(2,Z)S multiplets they form. As a result we cannot

regard each coefficient of (5.3.11) as a separate tadpole constraint, they will

form triplets or singlets by the same reasoning as the Bianchi constraints.

The C4 tadpole once again illustrates this in the simplest manner by virtue
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of the identities stated in (5.3.10). Since the modular inversion S → − 1
S

exchanges the flux sectors we would expect there to be a symmetry between

D and D′ in the multiplets and this is seen in the derivative expressions

for the C4 tadpole. Under an GL(2,Z)S transformation Γ on the (F0, F̂0)

doublet the 6-form combination F0 ∧ F̂0 is taken to |Γ|F0 ∧ F̂0 and thus for

Γ ∈ SL(2,Z)S this tadpole is a singlet. A tadpole triplet arises from the

SL(2,Z)S images of a T duality induced tadpole formed from two fluxes

which couple to the dilaton in the same manner, as was noted schematically

in (5.3.2). To illustrate this we consider F1 · F0 ∼ ιν̃iDD
′(ν̃0). Its modular

inversion partner is F̂1 · F̂0 ∼ ιν̃iD
′D(ν̃0) and there is an additional member

of the triplet which mixes the sectors further, F1 · F̂0 + F̂1 · F0. Given how

F1 and F̂0 both arise in D and likewise for F̂1 and F0 in D′ the derivative

construction can be easily deduced and we can write the tadpole flux triplet

in terms of quadratic derivatives.

〈 F1 · F0

F̂1 · F̂0

F̂1 · F0 + F1 · F̂0

〉
=

〈 ιν̃iDD
′(ν̃0)

ιν̃iD
′D(ν̃0)

ιν̃i(DD + D′D′)(ν̃0)

〉
(5.3.13)

It is clear that there is a fourth expression which can be constructed from

quadratic pairings of the derivatives and which will take the same form

as C4 singlet, except the projection operator used is ιν̃i rather than ιν0 ,

F̂1 · F0 − F1 · F̂0 ∼ ιν̃i(DD − D′D′)(ν̃0). This is precisely the ∆∗(E∗) defined

Bianchi constraint singlet we have previously seen in (5.3.4). This illustrates

how the ∆∗(E∗) is able to examine both of the T and S duality induced

Bianchi and tadpole constraints simultaneously, with the tadpoles being

those duality Bianchi constraints not equated to zero due to local sources.

However, in order to see this we have had to consider the explicit case of the

fluxes F1, F̂3 and their S duality partners so as to construct their SL(2,Z)S
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transformation properties. To generalise this method to all Type IIB fluxes

and other constraints3 we consider SL(2,Z)S on the flux matrices and how

this would affect the flux matrix constructions of the DnDm expressions.

5.3.3 Generalised Type IIB U Duality Constraints

If Type IIB is self S dual than an SL(2,Z)S transformation must leave the

Kähler functional G = K + ln |W |2 invariant and as such a transformation

on the superpotential must reduce to being an overall gaugeable factor. In

order to examine the flux structures induced by both T and S dualities we

make use of the flux matrices associated to D and D′ as such a formulation is

independent of which specific components are non-zero. This has the advan-

tage that orientifolds can be neglected during our analysis and it allows for

the method to be generalised to a U duality invariant Type IIA construction.

Under U duality all components of the flux matrices associated to D and D′

can potentially be non-zero and the fact that for the choice of
〈 〉
± →

〈 〉
+

the fluxes of Type IIA don’t form SL(2,Z)S doublets is irrelevant. In order

to examine how the flux matrices of Type IIB transform to provide S duality

invariant we define two matrices, one for each flux sector.

F
:

= A ·M + B ·M′ F̂
:

= A ·M′ + B ·M (5.3.14)

The A and B follow the same properties as the A and B of (4.1.44) but with

notation chosen to match the Type IIB matrices. These combinations are

chosen such that the Type IIB superpotential can be written with its dilaton

dependence manifest.

W = T> · hν ·
(
C ·M + C′ ·M′

)
· ga · U = T> · hν ·

(
F
:
− SF̂

:

)
· ga · U

3The tadpoles motivated an examination of the ∆+(E∗) expressions but Bianchi constraints

exist for ∆3(E∗) too and thus tadpole-like expressions can be constructed despite their physical

interpretation not being forthcoming.
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If the superpotential is to be invariant then F
:
− SF̂

:
must transform in the

same manner that F0 and F̂0 do in the original Type IIB action of (3.3.2)

and so their S duality transformation properties are known. Through the

use of the identities involving A and B this is easily inverted to express M

and M′ in terms of F
:

and F̂
:
.F

:

F̂
:

 =

A B

B A


M

M′

 ⇒

M

M′

 =

A B

B A


F

:

F̂
:

 (5.3.15)

Using the relationship between (F
:
, F̂

:
) and (M,M′) and the known transfor-

mation properties of (F
:
, F̂

:
) we obtain S duality transformation properties of

the flux matrices defining the actions of D and D′ on ∆+(E∗).M

M′

 →
A B

B A


a b

c d


A B

B A


M

M′

 (5.3.16)

=


a b

c d

⊗ A +

d c

b a

⊗ B


M

M′


=

aA + dB bA + cB

cA + bB dA + aB


M

M′

 (5.3.17)

If M transforms as M → m · M, where m is a matrix that commutes with

both ga and gν then the corresponding transformation on N is N→ N ·m>.

Both A and B satisfy this and are also symmetric, allowing us to express the

SL(2,Z)S transformations on each flux matrix in similar ways.(
N N′

)
→
(
N N′

)(
Γ>S ⊗ A +

(
σ · Γ>S · σ

)
⊗ B

)

=

(
N N′

)aA + dB cA + bB

bA + cB dA + aB

 (5.3.18)

Given these actions of SL(2,Z)S it is noteworthy that due to their linear in-

dependence, relationship A+B = I and projection-like multiplicative action
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we can use them to decompose any matrix into four disjoint submatrices.

X = (A + B) ·X · (A + B)

= A ·X · A + A ·X · B + B ·X · A + B ·X · B (5.3.19)

This decomposition is worthy of further examination due to how it relates

to SL(2,Z)S transformations. The simplest way to examine them is to note

that both A and B are square matrices of dimensions 2h2,1 + 2 and so in

Type IIB can be coupled to the Kähler moduli T. B · T contains only the

T0 and T0 moduli, while A · T contains only the Ti and Tj moduli. This

can be seen from the way in which the complexification matrix associated

to fc can be expressed in terms of A− SB. Reinterpreting this in terms of

fluxes B couples to the Fn, F̂m for n,m = 0, 3 and A couples to the fluxes

for n,m = 1, 2.

There are four ways to form expressions which are quadratic in the deriva-

tives D and D′ and each of these provide a pair of flux matrix dependent

expressions. To begin we consider the NS-NS sector constraints M · ha · N

and the SL(2,Z)S image we arrange in accordance with the A, B inspired

decomposition of (5.3.19) and for less cluttered notation use � ≡ ·ha· and

/ ≡ ·hν ·.

M · ha · N →



A · (aM + bM′) � (aN + bN′) · A

+ A · (aM + bM′) � (dN + cN′) · B

+ B · (dM + cM′) � (aN + bN′) · A

+ B · (dM + cM′) � (dN + cN′) · B


(5.3.20)

The corresponding SL(2,Z)S image of M′ � N′, M � N′ and M′ � N follow

the same schematic structure. Two transformations of particular note are

ΓS : S → S and ΓS : S → − 1
S

. The former implies that the NS-NS
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derivative is still nilpotent and the latter implies that the R-R derivative is

also nilpotent.

Γ1(M � N) = (A− B) ·M′ � N′ · (A− B)

Though the modular inversion has not mapped the NS-NS constraint ma-

trix exactly into the R-R version, due to the change of sign on B, the linear

independence of the submatrices make this irrelevant. With these two con-

ditions, (5.3.20) can be reduced down to only terms which mix the two

sectors.

M · ha · N →



A ·
(
abM � N′ + abM′ � N

)
· A

+ A ·
(
acM � N′ + bdM′ � N

)
· B

+ B ·
(
bdM � N′ + acM′ � N

)
· A

+ B ·
(
cdM � N′ + cdM′ � N

)
· B


(5.3.21)

Comparing this expression with the similarly reduced form of M′ �N′ we find

that in each case the SL(2,Z)S integers factorise out as overall factors in

both the A ·X ·A and B ·X ·B terms. Using this pre- and post-multiplication

by A or B we can project out particular parts of (5.3.20) to form SL(2,Z)S

multiplets.

3AA ≡ 〈 A ·M � N · A , A ·M′ � N′ · A , A · (M′ � N + M � N′) · A 〉

3BB ≡ 〈 B ·M � N · B , B ·M′ � N′ · B , B · (M′ � N + M � N′) · B 〉
(5.3.22)

With A projecting out the n,m = 1, 2 cases of Fn and F̂m we can see that the

triplet of (5.3.4) is of this form. The components of (5.3.20) yet to be put

into a multiplet are the B ·X ·A and B ·X ·A terms and by considering the

SL(2,Z)S integers for these parts we can construct another pair of triplets

associated to these components.

3AB ≡ 〈 A ·M′ � N · B , A ·M � N′ · B , A · (M � N + M′ � N′) · B 〉

3BA ≡ 〈 B ·M′ � N · A , B ·M � N′ · A , B · (M � N + M′ � N′) · A 〉
(5.3.23)
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The triplet of (5.3.13) corresponds to terms in 3AB. By considering the

triplets of (5.3.22) and (5.3.23) we can straightforwardly construct the four

singlets associated to the terms of (5.3.19).

1AA ≡ 〈 A · (M � N′ −M′ � N) · A 〉

1BB ≡ 〈 B · (M � N′ −M′ � N) · B 〉

1AB ≡ 〈 A · (M � N−M′ � N′) · B 〉

1BA ≡ 〈 B · (M � N−M′ � N′) · A 〉

(5.3.24)

With B projecting out the n,m = 0, 3 cases the C4 tadpole singlet (5.3.10)

is of the form 1BB. The triplet associated with the C4 tadpole is trivial since

F0∧F0 = 0 = F̂0∧ F̂0 and the remaining term F̂0∧F0 +F0∧ F̂0 = 0, all by an-

tisymmetry. The triplet 3BB is not trivial though, as it can include F abc and

Fabc combinations of terms. Given the four possible combinations of the flux

matrices and the four terms arising from the A, B induced decomposition the

multiplets of (5.3.22-5.3.24) make up all possible SL(2,Z)S multiplets. As

we have seen for a few explicit cases, not all of these expressions are Bianchi

constraints, some of them are tadpoles conditions and thus non-zero in gen-

eral. Only those expressions which are an SL(2,Z)S image of a T duality

Bianchi constraint are S duality constraints and not all expressions defining

the multiplets of (5.3.22-5.3.24) are of this form. The Bianchi constraints in

the T duality only case of the form we have thus far considered are M � N

and this can be decomposed using (5.3.19).

M � N = A ·M � N · A + B ·M � N · B + A ·M � N · B + B ·M � N · A

∈ 3AA ∈ 3BB ∈ 1AB ∈ 1BA

(5.3.25)

In the absence of R-R fluxes the S duality Bianchi constraints must reduce

to the T duality constraints and the decomposition (5.3.25) provides us

with the SL(2,Z)S multiplets which are Bianchi constraints. The remaining
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multiplets are not restricted to being zero and we can conclude they are

tadpole constraints. However, in some cases their physical interpretation

is not clear, they are simply the SL(2,Z)S multiplet which is the comple-

ment of the Bianchi constraints. To use a more explicit example we consider

the Bianchi triplet of Type IIB/O3 in (5.3.4). The combinations of two

non-geometric fluxes takes a p-form to a (p− 2)-form and if constructed ex-

plicitly it can be seen that the terms arise from derivative actions on ηpqrs.

The singlet complement’s flux polynomials can be written in the same man-

ner, F2 · F̂2− F̂2 · F2, but must therefore be constructed in the same manner,

from ινi(DD
′−D′D)(ν̃j). Thus far the only tadpoles we have considered are

those formed by the derivatives acting on ν̃0. However, we did obtain the

algebraic identities of (5.3.12) and this suggested acting the derivatives on

other basis elements of ∆+(E∗) to form new expressions. Having constructed

the SL(2,Z)S multiplets and determined what flux expressions are or are not

zero we now have additional justification for expanding our set of tadpole

conditions. The identities of (5.3.12) allow us to restrict our considerations

of the multiplets because they imply nAB = nBA. This is an issue we will

return to when we consider Type IIA tadpole conditions when U duality

fluxes are included. These results are summarised in Table 5.4.

We now turn our attention to the action of the derivatives of general

form D2 : ∆+(E∗) → ∆+(E∗). Unlike the quadratic action on ∆3(E∗) the A

and B are ‘internal’ to the flux matrix expressions, rather than projecting

out linearly independent sections of the constraints. A result of this is that

the induced transformations are not as straightforward and as in the M � N

case we find it convenient to express the flux matrix nilpotency expressions

as scalar products.
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Bianchi Tadpole

3AA 1AA

3BB 1BB

1AB = 1BA 3BA = 3AB

(5.3.26)

Table 5.4: Type of flux constraints classified into SL(2,Z)S multiplets.

N · hν ·M = N /M =

(
N N′

)I 0

0 0


hν 0

0 hν


M

M′


N′ · hν ·M′ = N′ /M′ =

(
N N′

)0 0

0 I


hν 0

0 hν


M

M′


(5.3.27)

For a general combination of pairs of flux matrices we can define a related

quadratic form, X , and we will consider how this transforms under SL(2,Z)S.

pN /M + qN /M′ + rN′ /M + sN′ /M′ ≡
(
N N′

)
(X ⊗ hν)

M

M′

(5.3.28)

The overall factor of the hν bilinear form reduces X to being a 2× 2 matrix

and it is convenient to factorise the X dependent term so as to use the

identity I = A + B .

X ≡

p q

r s

 , X ⊗ hν = X ⊗
(

(A + B) · hν
)

=
(
I2 ⊗ hν

)
·
(
X ⊗ (A + B)

)
We can construct the transformation properties of the X dependent factor

by using (5.3.16) and (5.3.18) and by their orthogonality, A · B = 0, the A

and B terms decouple. Since the h bilinear form commutes with A and B

we can construct the SL(2,Z)S multiplet structure by considering only the

172



X dependent factor.

X ⊗ I →
(

Γ>
S ⊗ A +

(
σ · Γ>

S · σ
)
⊗ B

)p q

r s

(ΓS ⊗ A +
(
σ · ΓS · σ

)
⊗ B

)

=

Γ>
S

p q

r s

ΓS


︸ ︷︷ ︸

ΞA

⊗A +

(σ · Γ>
S · σ

)p q

r s

(σ · ΓS · σ)


︸ ︷︷ ︸
ΞB

⊗B (5.3.29)

Proceeding as before we wish to obtain an SL(2,Z)S triplet by considering the

image of the T duality constraints and also combination of terms which form a

singlet. Due to the splitting of X by A and B the equations which are satisfied by

a singlet reduce to ΞA = X = ΞB. By using the fact that any element of SL(2,R)

is a symplectic matrix and both ΞA and ΞB are of the form m> · X ·m it follows

that if X is the canonical symplectic form then the equations ΞA = X = ΞB are

automatically satisfied for any SL(2,Z)S transformation and we obtain a singlet.

ΓS

(
N /M′ − N′ /M

)
= N /M′ − N′ /M

This can be taken a step further by noting that due to the linear independence of

A and B X can be written as two independent terms, which transform separately.

X =

p q

r s

 =

a1 a2

a3 a4

⊗ A +

b1 b2

b3 b4

⊗ B ≡ XA ⊗ A + XB ⊗ B (5.3.30)

With the decomposition of the SL(2,Z)S image of X in (5.3.29) we have that ΞA

depends on the ai only and ΞB depends on the bj only. Therefore the necessary

and sufficient conditions for a singlet become the pair of conditions ΞA = XA,

ΞB = XB and we can construct two separate non-trivial singlets by setting one of

XA or XB to zero and the other to the canonical sympletic form.

1A ≡ 〈N / A ·M′ − N′ / A ·M 〉 , 1B ≡ 〈N / B ·M′ − N′ / B ·M 〉 (5.3.31)

For the triplet we begin with the known NS-NS sector T duality constraint N/M =

0 and consider its images under particular elements of SL(2,Z)S , which in the case
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of Γ : S → S and Γ : S → − 1
S we obtain the T duality constraints of both the

NS-NS sector and the R-R sector.

ΓS =

0 −1

1 0

 :

p 0

0 q

 →
q 0

0 p

 (5.3.32)

Therefore we have that given S duality N /M = 0 implies N′ /M′ = 0. The other

generator of SL(2,Z)S , S → S + 1, on a general linear combination of these two

terms leads to different transformations in the A and B terms.

ΓS =

1 1

0 1

 :

p 0

0 q

 →
p 0

0 q

+ p

0 A

A A

+ q

B B

B 0

 (5.3.33)

Although setting the expressions associated with the second and third terms in the

above expression is a necessary condition for joint T and S duality invariance, it is

not sufficient. This can be seen by considering another SL(2,Z)S transformation,

that which is associated with the negative integer shift, S → S − 1.

ΓS =

1 −1

0 1

 :

p 0

0 q

 →
p 0

0 q

+ p

 0 −A

−A A

+ q

 B −B

−B 0

(5.3.34)

Given (5.3.32) is zero the requirement that both (5.3.33) and (5.3.34) are also

zero leads to stronger constraints, N /M = 0 is true by virtue of the I = A + B

decomposition terms both vanishing separately. Apriori we could not assume that

the A and B related terms form two separate, independent, systems but given the

singlet structures we would expect the triplets to follow with the same splittings.

3A ≡ 〈 N / A ·M , N′ / A ·M′ , N / A ·M′ + N′ · A ·M 〉

3B ≡ 〈 N / B ·M , N′ / B ·M′ , N / B ·M′ + N′ · B ·M 〉
(5.3.35)

As with the quadratic derivative actions of the form D2 : ∆+(E∗)→ ∆+(E∗) it is

possible that not all of these expressions automatically give Bianchi constraints.

However, unlike the previous case, we cannot express these flux matrix expressions

in terms of the natural Type IIB flux multiplets since they are not defined by

derivative actions on ∆3(E∗). The 3 triplets contain expressions which arise in
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the T duality only case while the 1 singlets do not. Neither can be Type IIB

tadpoles though, as they are expanded in the ∆3(E∗) basis and so can only couple

to the Type IIA C7 form. However, the use of flux matrices to examine the

effect of SL(2,Z)S transformations on the superpotential is independent of how

we might label the flux multiplets of the particular Type II theory they are defined

in. Hence SL(2,Z)S transformations in Type IIA will result in its flux matrices

forming the same set of multiplets. Therefore while the 1s we have constructed

here do not represent tadpole constraints in Type IIB they would in Type IIA and

conversely the tadpoles found in the ∆+(E∗) case would not be Type IIA tadpoles.

This can be further illustrated and examined by converting our analysis of Bianchi

contraints from being in terms of flux matrices to being in terms of exact forms,

as we previously considered in the context of Type IIA Bianchi constraints.

5.3.4 Generalised Type IIA U Duality Bianchi Constraints

The entirety of our analysis of the light mode truncated Type IIB structure in-

duced by U duality has been done using the flux matrices associated to D and D′.

This was independent of our choice for the inner product
〈 〉
± as both flux sectors

had their flux multiplets defined by the derivative actions on the ∆+(E∗) forms.

This is not the case in Type IIA, the flux sectors define their flux multiplets on

different ∆±(E∗). If the Type IIB results are to be carried over into Type IIA we

would need to modify one of the flux sectors so that both are defined by derivative

actions on the same ∆±(E∗). For the choice
〈 〉
± →

〈 〉
− this is trivial to do as

we have already seen that the derivatives become anti self adjoint on the ∆±(E∗)

and the flux matrices of each Type II theory are equal. The remaining case to

consider is the choice
〈 〉
± →

〈 〉
+

whose superpotential construction we must

modify slightly so as to be relatable to the Type IIB case. Type IIA is not self S

dual because of the different ways in which the flux sectors define their individual

fluxes. If Type IIA is to have the same method of analysis then its superpotential
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must be expressible in the same form as the Type IIB superpotential of (5.3.15).

W =

∫
M

〈
Ωc,D(f)

〉
+

+

∫
M

〈
f,D′(Ω′c)

〉
+

= T> · hν ·M · ga · C · U + U> · ha · C′ ·N ′ · gν · T (5.3.36)

We have two choices in how to reformulate the superpotential; alter the NS-NS

sector to match the R-R sector or alter the R-R sector to match the NS-NS sector.

The NS-NS sector’s formulation has the advantage that on parallelisable M its

fluxes can be used to define a Lie algebra but the reformulation of the fluxes given

in (4.3.11) allows the R-R sector to be put into the same Lie algebra context. If

the latter method is chosen then the Type IIA and Type IIB superpotentials then

match one another’s schematic form up to simple things such as moduli relabelling.

This was seen in Section 4.4, where we derived the flux interdependencies in each

flux sector. To that end we define a new derivative D in terms of D.∫
M

〈
Ωc,D(f)

〉
+
≡
∫
M

〈
f,D(Ωc)

〉
+

(5.3.37)

Given this definition D is some kind of adjoint to D with respect to
〈 〉

+
, though

given the (anti)symmetric nature of (∆−(E∗)) ∆+(E∗) it is not an adjoint in the

standard definition but we refer to it as such for convenience. Using the flux

matrix expressions of (4.1.37) and (4.1.37) we can express the flux matrices of D

in terms of those of D and make use of the fact the dilaton contribution can be

neglected since it does not alter the flux matrices.

T> · hν ·M · ga · U = U> · ha · N · gν · T

⇒ N = N · ha (5.3.38)

⇒ M = −ha ·M

We have used the simplification that the h bilinear form associated to ∆+(E∗) is

the identity. It immediately follows from these expressions that ∆∗(E∗) Bianchi

constraints of D are equivalent to those of D. The Type IIA superpotential as a
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whole can now be written in a way which matches (5.3.15).

W =

∫
M

f ∧
(
D(Ωc) +D′(Ω′c)

)
= U> · ha ·

(
C · N + C′ ·N ′

)
· gν · T (5.3.39)

Invariance under SL(2,Z)S transformations can now be examined in precisely the

same manner as the Type IIB case, except with (M,M′)→ (N, N ′) and (N,N′)→

(M,M ′). The transformation rules of the Type IIB flux matrices can then be

applied and then (5.3.38) used to convert back into the correct Type IIA fluxes.

As a result it possesses the same multiplet structure but due to the way in which

we have had to change the formulation of one of the two flux sectors it is not

possible to express them in terms of nature Type IIA fluxes in the same way as

was done in Type IIB.

5.3.5 Generalised Type IIA U Duality Tadpole Constraints

The light form defined Bianchi constraints of Type IIA and Type IIB are each

defined on both ∆±(E∗) bases. This is not the case for tadpoles due to the

differing brane content. The tadpoles of Type IIB are defined on the ∆+(E∗)

while those of Type IIA are defined on ∆−(E∗) and we can justify the existence of

the additional Type IIB tadpoles previously discussed through the examination of

their Type IIA mirrors. The D6-branes and possible O6-planes provide support

to the C7 field which couples to 3-forms in the internal space. In the absence of U

duality induced fluxes the tadpole conditions are, up to proportionality factors,

measured by D(FRR). In our analysis of the Type IIA flux sector we noted that

FRR could be written as an exact derivative in terms of D′ and so the tadpole

term can be written as a quadratic derivative.

FRR ≡ F0 · α0 = D′(α0) = D′(b0) ⇒ D(FRR) = DD′(b0) (5.3.40)

The fact FRR could be written in this way provided a natural extension of the

sector to include other F fluxes. Given the way in which the Type IIB fluxes
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couple differently to the Kähler moduli than expected from their parallelisable

component structure or the Type IIA manner we would expect its mirror to be a

non-standard coupling of the complex structure moduli of Type IIA. As such we

would expect the Ui and Uj of M to be exchanged in the same way Ti and Tj of

W. This is not relevant to the construction of tadpole constraints, as they follow

from the definitions of D and D′, other than to the label we assign to the Fn.

D(F0 · α0) =DD′(α0)∝DD′(b0) , D(F̂1 · αi) =DD′(αi)∝ DD′(ai)

D(F3 · β0) =DD′(β0)∝DD′(a0) , D(F̂2 · βj) =DD′(βj)∝DD′(bj)
(5.3.41)

As a result we are able to form additional 3-forms which have the schematic form of

being a D derivative of a D′ exact form. Since the ∆∗(E∗) defined components of D

and D′ are defined in different manners we use the mirror symmetry equivalences

to reexpress them to be in terms of Type IIB fluxes on
〈 〉
±.

DD′(aI) =∓
(
F̂(I)AF

(J)A± F̂
B

(I) F
(J)

B

)
aJ −

(
F̂(I)AF

A
(J) ± F̂

B
(I) F(J)B

)
bJ

DD′(bI) =
(
F̂

(I)
AF

(J)A± F̂(I)AF
(J)

A

)
aJ ±

(
F̂

(I)
BF

B
(J) ± F̂(I)AF(J)A

)
bJ
(5.3.42)

All of these expressions are constructed from applying DD′ to 3-forms and since

they are also expanded in terms of the ∆3(E∗) basis it follows that all of these

expressions can contribute tadpoles. The fluxes of FRR have a straightforward

definition in terms of the D-brane content of Type IIA but the remaining cases,

DD′(aI) and DD′(bj), do not. The FRR tadpole contributions can be decomposed

as aI ∧DD′(b0) and bJ ∧DD′(b0) and the physical interpretation is the D6-brane

wrapping particular 3-cycles in W. In order to justify considering these expres-

sions as new tadpole contributions we also construct the equivalent expressions

for D′D.

D′D(aI) =
(
F(I)AF̂

(J)A± F
B

(I) F̂
(J)

B

)
aJ ±

(
F(I)AF̂

A
(J) ± F

B
(I) F̂(J)B

)
bJ

D′D(bI) =−
(
F(I)AF̂

(J)
A± F

(I)
AF̂

(J)A
)
aJ −

(
F

(I)
BF̂

B
(J) ± F(I)AF̂(J)A

)
bJ
(5.3.43)

By considering (5.3.42) and (5.3.43) we observe a number of identities relating the

individual coefficients which allows us to link this standard tadpole to the new
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expressions. We use the relabellings D = D1 and D′ = D2 for simplicity.

ιbIDnDm(aJ) = −ιbJDmDn(aI)

ιbIDnDm(bJ) = +ιaJDmDn(aI)

ιaIDnDm(bJ) = −ιaJDmDn(bI)

(5.3.44)

Using these and the fact that on ∆3(E∗) we have 1 = aIιaI+bJ ιbJ we can reexpress

the FRR tadpole in a new way.

D(FRR) = DD′(a0) = aIιaIDD′(a0) + bJ ιbJDD′(a0)

= aIιb0D′D(bI) − bJ ιa0D′D(bJ)

(5.3.45)

Unlike the Type IIB case the tadpoles of Type IIA are of pure form since they

are expanded in terms of elements of ∆3(E∗) ⊂ ∆−(E∗) as we have restricted our

analysis to SU(3) ⊂ SU(3) × SU(3) structure. With elements of ∆3(E∗) being

interchangable via symplectic transformations and the identities of (5.3.44) we

can conclude that all coefficients in (5.3.42) and (5.3.43) are tadpole constraints.

Their T or mirror duality images in Type IIB are therefore also viable tadpole

constraints. However, in both cases the physical interpretations of the R-R fluxes

beyond those obtained by compactification of the ten dimensional actions are

unclear.

Summary

In this chapter we have formulated a number of ways of expressing constraints

on the fluxes of the internal space. The parallelisable case for the NS-NS flux

sectors of Type IIA and Type IIB and the R-R sector of Type IIB admitted a

set of Jacobi constraints from their Lie algebra interpretation and we made note

of the GL(6,Z) ⊂ O(6, 6) invariance the Lie algebras and the resultant super-

potential contributions possess. We addressed the issues which arise from the

non-standard way in which the Type IIB Kähler moduli couple to the fluxes and

found that provided the transformations f→ f̌ and Ω→ Ω̌ were symplectic then
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the Bianchi constraints associated to the fluxes are unchanged. By representing

the derivatives in terms of flux matrices we found that the
〈 〉

+
inner product

does not alter the equivalence between the Type II flux constraints and allows

the Type IIA R-R sector to be examined in the same manner as the other Type

II flux sectors. With the interpretation of the R-R fluxes as derivatives, in the

same manner as the NS-NS case, we reformulated the tadpole conditions in terms

of quadratic derivatives and explicitly demonstrated the relationship between the

Type II tadpoles known to exist due to their brane construction.

With the inclusion of S duality transformations the Type IIB NS-NS Lie al-

gebra formed by the fluxes on parallelisable W extended to include R-R fluxes

which also altered the Jacobi contraints forming SL(2,Z) multiplets. The R-R

fluxes were then interpreted in terms of deformations to the original T duality

only case, with the R-R only constraints defining cohomology conditions and the

mixing of flux sectors defining integrability conditions. We then examined S dual-

ity from the point of view of requiring the superpotential to be invariant and thus

constructed the way in which the flux matrices of the Type IIB derivatives trans-

formed under SL(2,Z)S . These transformations were then applied to the Bianchi

conditions formed by quadratic combinations of derivatives and their associated

flux matrices. As in the parallelisable case we classified the results by SL(2,Z)

multiplets and in doing so found that not all multiplets represented Bianchi con-

straints. We conjectured that those multiplets which were not Bianchi constraints

were instead tadpole constraints. It was not immediately clear that this was the

case because of the way in which the flux dependent expressions depended on

∆+(E∗) basis elements, which obscured the physical interpretation of some of

these expressions. The mirror dual case of Type IIA tadpoles made it clear that

such expressions were tadpoles due to the way in which Type IIA tadpoles are
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defined purely on ∆3(E∗). As a result we could construct explicit flux dependent

polynomials which represent tadpole conditions even though their string theoretic

origins were not known.
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Chapter 6

The Z2 × Z2 Orientifold

Thus far we have considered a general class of spaces upon which to compactify

Type II string theories, making particular restrictions on the space as and when

required. In order to illustrate some of the methods and results obtained thus far

we now consider a specific internal space upon which to construct a Type II string

compactification, that of the parallelisable Z2 × Z2 orientifold, M ≡MZ2
2
. This

space has received considerable interest in the context of flux compactifications,

serving as the canonical example in the context of NS-NS non-geometric fluxes due

to T duality [52, 53, 54], R-R non-geometric fluxes due to T and S duality [60], F

theory compactifications [61], and SU(3) structure [64]. These works also resulted

in it being the compact space whose T and S duality Bianchi constraints have been

extensively studied and solved [92, 10] and the existence of phenomenological

vacua obtained or no-go theorems stated [93, 94]. The work in this chapter is

found in Ref. [10], which follows on from the work of Ref. [92].

6.1 Orientifold Construction

We begin with the basic construction of the ∆p(E∗) bases and the moduli of each

Type II theory, allowing us to give an explicit Λp(E∗) expression for each basis
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element of ∆p(E∗). Our notation follows, for the most part, Refs. [92, 10].

6.1.1 Orbifold Group

We first construct the bases for the truncated basis of ∆p(E∗) in terms of the

Λp(E∗) elements. In the case of orbifolds this can be done explictly once the

action of the orbifold group’s generators are stated. These generators are most

easily stated in terms of the ηa and we define the generator actions purely in

terms of parity changes.

θ1 : ( η1 , η2 , η3 , η4 , η5 , η6 )→ ( η1 , η2 , −η3 , −η4 , −η5 , −η6 )

θ2 : ( η1 , η2 , η3 , η4 , η5 , η6 )→ ( −η1 , −η2 , η3 , η4 , −η5 , −η6 )

(6.1.1)

The orbifold group generated by θi includes an additional non-trivial term con-

structed by the combination of these two generators, θ3 = θ1θ2, and which has

similar action on the η.

θ3 : ( η1 , η2 , η3 , η4 , η5 , η6 )→ ( −η1 , −η2 , −η3 , −η4 , η5 , η6 ) (6.1.2)

The group is manifestly invariant under a three-fold permutation symmetry in

the η.

(η1, η2)→ (η3, η4)→ (η5, η6)→ (η1, η2) (6.1.3)

As a result this orbifold group leads to the 6 dimensional torus factorising into

three two dimensional sub-tori if we define our bases appropriately.

T6 = T2
1 × T2

2 × T2
3 .

(η1 , η2) (η3 , η4) (η5 , η6)

The actions of the orbifold group on Λ3(E∗) are such that only those 3-forms

which have an index on each sub-torus survive the orbifolding, of which there are

eight.

η135 , η235 , η145 , η136 , η246 , η146 , η236 , η245 (6.1.4)

183



∆+(E∗) ω0 ω1 ω2 ω3 ω̃1 ω̃2 ω̃3 ω̃0

Λ̃3(E∗) 1 η12 η34 η56 η3456 η1256 η1234 η123456

∆+(E∗) ν0 ν1 ν2 ν3 ν̃1 ν̃2 ν̃3 ν̃0

Λ̃3(E∗) η123456 η12 η34 η56 η3456 η1256 η1234 1

Table 6.1: (ωA, ω̃
B) and (νA, ν̃

B) bases of the ∆p(E∗) in terms of Λp(E∗).

In the case of the elements of Λ2n(E∗) only those with indices on n and only n

sub-tori will survive.

1 , η12 , η34 , η56 , η3456 , η5612 , η1234 , η123456 (6.1.5)

In order to associated these with the (αI , β
J) and (ωA, ω̃

B) bases we need to

consider the holomorphic forms and their moduli but before that we define the

various orientifold projections for the space.

6.1.2 Type II Kähler Structure

For the Kähler moduli the definition is J = J (1) = Taωa and due to its linear

properties in the moduli this is simply the sum of the three Kähler forms of each

sub-torus.

J = T1ω1 + T2ω2 + T3ω3 = T1η
12 + T2η

34 + T3η
56

This provides us with the definitions of the ωa and the remaining ∆+(E∗) basis

elements follow from expanding out the definition f = eJ .

f =
1

0!
1 +

1

1!
Taωa +

1

2!
TaTb ωa ∧ ωb +

1

3!
TaTbTc ωa ∧ ωb ∧ ωc

≡ ω0 + Taωa +
T1T2T3

Tb
ω̃b + T1T2T3ω̃

0
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6.1.3 Type II Complex Structures and the Orientifold Group

The moduli associated to a two dimensional torus are well known; each torus

has a Kähler modulus and a complex structure modulus. The definition of the

complex structure modulus for such a torus can be defined easily in terms of the η

by defining complexified tangent forms and the contribution to the period matrix

τ .

T2 = 〈η1, η2〉 ⇒ ηC = η1 + iτ η2

This triplet factorisation of the six dimensional torus induces a particularly simple

expression for Ω as each dz refers to a different sub-torus. Given the fact we will be

considering frame bundles, rather than tangent bundles, we make the replacement

of dzi → ηiC in Ω such that Ω = η1
C ∧ η2

C ∧ η3
C.

Ω = (η1 + iτ1η
2) ∧ (η3 + iτ2η

4) ∧ (η5 + iτ3η
6)

≡
η135 + iτ1η

235 + iτ2η
145 + iτ3η

136

−iτ1τ2τ3η
246 − τ2τ3η

146 − τ1τ3η
236 − τ1τ2η

245
(6.1.6)

The complex structure definitions in terms these τi is different in each Type

II construction and we follow the definitions of Ref. [60]. In order to define

the complex structure moduli we need to consider the effects of the orientifold

projections in each Type II theory. In Type IIB we have two choices and we shall

only explicitly consider the projection which results in O3-planes, σB(Ω) = −Ω.

Such a projection is expressible in the same manner as the orbifold group’s actions,

in terms of the η.

σB : ( η1 , η2 , η3 , η4 , η5 , η6 )→ ( −η1 , −η2 , −η3 , −η4 , −η5 , −η6 )

In Type IIA the O6-planes follow from the requirement that σA(Ω) = Ω. Given

the definition of Ω in terms of the τi it follows that such a requirement determines

σA entirely by requiring a sign change on the η2n.

σA : ( η1 , η2 , η3 , η4 , η5 , η6 )→ ( +η1 , −η2 , +η3 , −η4 , +η5 , −η6 )
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All terms in the Ω of Type IIB survive the projection, instead it is the terms

coupling to J (1) and J (3) which are projected out, and thus the complex structure

moduli are obtained simply by τj = iUj and we obtain the ∆3(E∗) basis given

in Table 6.2. The Type IIA case is less straight forward and we make use of the

orientifold projection which removes those 3-forms in (6.1.6) which have an odd

number of η2m in them. The complex structure moduli are then defined such that

the remaining terms in Ω take the canonical form linear in the moduli. Since η135

is independent of τi it remains independent of the complex structure moduli and

the τiτjη
pqr ∝ U1U2U3

UiUj
αk where i, j, k = 1, 2, 3 but are not equal to one another.

Ω → η135 − τ2τ3η
146 − τ1τ3η

236 − τ1τ2η
245

= α0 + U1α1 + U2α2 + U3α3

This expansion motivated the definition of the ∆3(E∗) basis given in Table 6.3.

Comparing such a basis with that given in Table 6.2 it is clear that they are

not the same, there is a sympletic transformation relating h2,1 of the h2,1 + 1

symplectic pairs.

IIB 3 (αi, β
j) → (−βi, αj) ∈ IIA

This is the source of the f→ f̌ redefinition of the Type IIB Kähler moduli cou-

pling, via mirror symmetry. The Type II theories define their complex structure

moduli in different manners but in Type IIA it can be absorbed into a symplet-

ric transformation Ω → Ω̌. The mirror of this in Type IIB cannot be so easily

absorbed as the inherently different structure of the ωi and ω̃j is manifest. The

Kähler moduli are defined in the same manner in each theory, in contrast to the

complex structure moduli. Rather than work with two different symplectic bases

we can use a single one and define the Ω of each theory differently. Given its

simple definition in terms of the ηiC we choose to use the Type IIB basis of Table
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∆3(E∗) α0 α1 α2 α3 β0 β1 β2 β3

Λ3(E∗) η135 η235 η145 η136 −η246 η146 η236 η245

∆3(E∗) a0 a1 a2 a3 b0 b1 b2 b3

Λ3(E∗) −η246 η235 η145 η136 −η135 η146 η236 η245

Table 6.2: Type IIB (αA, β
B) and (aA, b

B) bases of the ∆p(E∗) in terms of Λp(E∗).

∆3(E∗) α0 α1 α2 α3 β0 β1 β2 β3

Λ3(E∗) η135 η146 η236 η245 −η246 −η235 −η145 −η136

∆3(E∗) a0 a1 a2 a3 b0 b1 b2 b3

Λ3(E∗) η246 η146 η236 η245 −η135 −η235 −η145 −η136

Table 6.3: Type IIA (αI , β
J) and (aI , b

J) bases of the ∆p(E∗) in terms of Λp(E∗).

6.2 and define the two holomorphic forms appropriately.

IIB : U0α0 + Uaαa − Ubβb − U0β0 = U0a0 + Uaaa − Ubbb − U0b0

IIA : U0α0 − Uaβa − U bαb − U0β0 = U0α0 + Uaαa − Ubβb − U0β0

With this construction we make explicit the mirror symmetry between the Type

IIB f̌ and the Type IIA Ω̌, both involving a symplectic transformation and a

change of basis. Due to the fact the orientifold is self mirror dual h1,1 = h2,1 and

the symplectic transformations are one and the same.

IIB 3 f = T> · hν · f(ν) → T> · L> · hν · e(ν) = f̌

IIA 3 Ω = U> · ha · e(a) → U> · L> · ha · f(a) = Ω̌

6.1.4 Basis Identities

With the natural bases of the ∆p(E∗) defined we can construct the alternative

bases (aI , b
J) and (νA, ν̃

B) easily. The new moduli follow the relationships stated
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in (4.1.18) and (4.1.18). This section is done in the Type IIB bases, the Type IIA

follow the same results and will not be stated explicitly.

Since we have an Λp(E∗) expression for each element of ∆p(E∗) we can explicitly

demonstrate the relationships between ∆∗(E) operators in (4.1.23). There are four

different cases relating to those expressions which act as Λp(E∗) → Λp+n(E∗) for

n = ±3,±1. The n = ±3 cases were derived without having to consider integrals,

due to the fact the volume form splits into a pair of 3-forms. The n = ±1 cases

were less trivial and so we consider a representative example from each case in

terms of the basis elements of Table 6.2. In the case of the terms responsible for

the sequence ∆1,1(E∗)→ ∆3(E∗)→ ∆2,2(E∗) we consider the operators which act

as ω1 → α1 and ω1 → β1.

η35ι1 : ω1 = η12 → η235 = α1

−η46ι2 : ω1 = η12 → η146 = β1

In general for terms whose action on ∆+(E∗) is1 ωi → αA the corresponding action

on ∆3(E∗) will be to map βI to some element in ∆2,2(E∗), as stated in (4.1.24).

Hence we apply −η46ι1 to α1 and −η35ι2 to β1.

η35ι1 : β1 = η146 → −η3456 = −ω̃1

−η46ι2 : α1 = η235 → η3456 = ω̃1

We therefore have two ways of expressing these ηabιc operators in terms of the

∆∗(E∗) bases and Tables 6.1 and 6.2 allow for conversion into the alternative basis.

η35ι1 = α1ιω1 = −ω̃1ιβ1 = a1ιν1 = −ν̃1ιb1

−η46ι2 = β1ιω1 = ω̃1ια1 = b1ιν1 = ν̃1ιa1

The other cases for aA and bB follow the same pattern, it is straightforward to

see that acting the operators onto other elements of ∆1,1(E∗) and ∆3(E∗) are zero

1Since we are considering the Type IIB construction the ∆∗(E∗) indices are labelled in the

same way as done previously for general W.
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and so we obtain half of the results given in (4.1.23). The second half we obtain

by considering those terms responsible for ∆2,2(E∗) → ∆3(E∗) → ∆1,1(E∗) and

apply a pair of them to ω̃1.

−η1ι5ι3 : ω̃1 = η3456 → η146 = β1

η2ι6ι4 : ω̃1 = η3456 → η235 = α1

As in the previous case if an operator maps ω̃1 to ξ then we consider its action

on ∗ξ also.

−η1ι5ι3 : α1 = η235 → −η12 = −ω1

η2ι6ι4 : β1 = η146 → η12 = ω1

We therefore have two ways of expressing these ηaιcb operators in terms of the

∆∗(E∗) bases and Table 6.1 allows for conversion into the alternative basis.

−η1ι5ι3 = β1ιω̃1 = −ω1ια1 = a1ιν1 = ν̃1ιb1

η2ι6ι4 = α1ιω̃1 = ω1ιβ1 = −b1ιν1 = ν̃1ιa1

The other cases for ai and bj follow the same pattern and give the second half of

the results in (4.1.23).

6.2 Fluxes

We constructed the fluxes of Type IIB on W by viewing W as the mirror dual

of M. In this section we shall define the Type IIA fluxes on M =MZ2
2

and the

Type IIB fluxes on W = MZ2
2

but we have to take into account the difference

in the definition of the complex structure moduli and thus different symplectic

bases.

6.2.1 Type IIA NS-NS Fluxes

The Type IIA NS-NS fluxes are the simplest to structure due to their index

structure and the way they couple naturally to the Kähler moduli, unlike the
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Type IIB case. We will not use them in our analysis of flux vacua as the methods

to be discussed apply to Type IIB but we state the fluxes for completeness. The

four fluxes have different index structures and so we consider them in turn. In

the cases of F1 and F2 we shall explicitly give the derivation of some of the fluxes

as the remainder will follow the same pattern. Since the components F0 follow

by a standard expansion in the ∆3(E∗) basis we turn to F1 and consider which

components couple to T1. Such dependency only arises from the T1ω1 term in

J = Taωa and using Table 6.1 we expand out F1(η12). Unless otherwise stated

all indices are space-time indices, not moduli space indices though there is no

ambiguity as the index structure context is straightforward.

1

2!
Fcabηabιc(η12) =

1

2!
Fcab
(
δ1
cη

2ab − δ2
cη

1ab
)

=
1

2!
F1
abη

2ab − 1

2!
F2
abη

1ab

Each contraction in the final expression is expanded to four terms and due to the

fact ωa has two indices on the same torus while any ηijk ∈ ∆3(E∗) has an index

on each torus the components of F1 are only non-zero if the indices are on three

different tori too.

1
2!F

c
abη

abιc(η
12) = F1

35η
235 + F1

36η
236 + F1

45η
245 + F1

46η
246

− F2
35η

135 − F2
36η

136 − F2
45η

145 − F2
46η

146

F(1)IaI −F
J

(1) bJ = − F1
35b

1 + F1
36a2 + F1

45a3 + F1
46a0

− F2
35b

0 + F2
36b

3 + F2
45b

2 − F2
46a1

(6.2.1)

Comparing coefficients we obtain the ∆∗(E∗) flux components in terms of the

parallelised Λp(E∗) components. The cases for T2 and T3 follow in the same

manner and we obtain the second section of Table 6.4. Repeating this method for

the F2 case we consider the coefficients of T 1 and so act F2 on ω̃1 = η3456.

1

2!
Fbca ηaιcb(η3456) =

1

2!
Fbca ηaιc(δ3

bη
456 − δ4

bη
356 + δ5

bη
346 − δ6

bη
345)

Applying ιc to each of these four terms yields three terms each but if the remaining

ηab ∈ ∆2(E∗) have a and b indices on the same sub-torus then they are projected
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out by the orbifold group. Of the three terms only two of them survive orbifolding

and F2(ω̃1) is expanded into eight terms which pair up due to the antisymmetric

properties of Fabc .

1
2!F

bc
a η

aιcb(η
3456) = −F35

a η
a46 + F36

a η
a45 + F45

a η
a36 − F46

a η
a35

= −F35
1 η146 + F36

2 η245 + F45
2 η236 − F46

1 η135

−F35
2 η246 + F36

1 η145 + F45
1 η136 − F46

2 η235

F (1)
IaI −F

(1)JbJ = −F35
1 a1 + F36

2 a3 + F45
2 a2 − F46

1 b0

−F35
2 a0 − F36

1 b2 − F45
1 b3 + F46

2 b1

(6.2.2)

The final case, F3(ν̃0), is similar to the F0 case due to the factorisation of the

volume form into a pair of symplectic 3-forms. Combined the results from all of

these expansions of ∆p(E∗) in terms of Λp(E∗) we obtain Table 6.4.

6.2.2 Type IIB Fluxes

The Type IIB NS-NS sector is similar in structure to the Type IIA case but, due

to the manner in which the fluxes couple to the Kähler moduli in a different way,

we cannot use precisely the same method as the Type IIA case. In order to relate

the ∆∗(E∗) defined components and the Λ∗(E∗) components we need to make an

explicit choice of the matrices K and L. In Type IIB/O3 the non-geometric flux F2

couples to the Kähler moduli linearly by contracting with Jc = −Tiω̃i = −Tiν̃i.

We use this to motivate our reformulation of the Kähler holomorphic form and

we set Ω̌ = Ω since the Type IIB superpotential is defined naturally in terms

of Ω. Since G(f̌c) and D(fc) couple to the same complex moduli dependent

holomorphic form we can neglect Ω in our analysis. As a result we can make use

of projection operators which project out coefficients of aA and the coefficients of

bB.

ιbBG(f̌c) = ιbBD(fc) , ιaAG(f̌c) = ιaAD(fc)
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F(0)0 F(0)1 F(0)2 F(0)3 F 0
(0) F 1

(0) F 2
(0) F 3

(0)

F(0)I −F135 +F235 +F145 +F136 −F246 −F146 −F236 −F245 F J
(0)

F(a)0 F(a)1 F(a)2 F(a)3 F 0
(a) F 1

(a) F 2
(a) F 3

(a)

F(1)I +F1
46 −F2

46 +F1
36 +F1

45 −F2
35 +F1

35 −F2
45 −F2

36 F J
(1)

F(2)I +F3
62 +F3

61 −F4
62 +F3

52 −F4
51 −F4

52 +F3
51 −F4

61 F J
(2)

F(3)I +F5
24 +F5

14 +F5
23 −F6

24 −F6
13 −F6

23 −F6
14 +F5

13 F J
(3)

F (0)
0 F (0)

1 F (0)
2 F (0)

3 F (0)0 F (0)1 F (0)2 F (0)3

F (0)
I +F246 +F146 +F236 +F245 −F135 +F235 +F145 +F136 F (0)J

F (a)
0 F (a)

1 F (a)
2 F (a)

3 F (a)0 F (a)1 F (a)2 F (a)3

F (1)
I −F35

2 −F35
1 +F45

2 +F36
2 +F46

1 −F46
2 +F36

1 +F45
1 F (1)J

F (2)
I −F51

4 +F52
4 −F51

3 +F61
4 +F62

3 +F61
3 −F62

4 +F52
3 F (2)J

F (3)
I −F13

6 +F23
6 +F14

6 −F13
5 +F24

5 +F14
5 +F23

5 −F24
6 F (3)J

Table 6.4: Component labels for Type IIA NS-NS fluxes.
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The Kähler decomposition is achieved by considering only one J (n) ∈ fc and the

simplest case is the 3-form flux and so we turn to that first, reducing the above

expression to the terms involving J (0) only.

ιbBG(ω0) = ιbBD(ν̃0) , ιaAG(ω0) = ιaAD(ν̃0)

To obtain the explicit expressions for each side of these expressions we expand

out F̂0 in terms of elements in ∆3(E∗) but written as elements of Λ3(E∗).

1
3! F̂pqrη

pqr = F̂135η
135 + F̂235η

235 + F̂145η
145 + F̂136η

136

F̂246η
246 + F̂146η

146 + F̂236η
236 + F̂245η

245
(6.2.3)

Relabelling the ηpqr into the (aA, b
B) basis we can use the operators aAιaA and

bBιbB to project out half of the terms in the expansion.

aAιaA F̂0(ω0) = +F̂246a0 + F̂235a1 + F̂145a2 + F̂136a3

bBιbB F̂0(ω0) = +F̂135b
0 + F̂146b

1 + F̂236b
2 + F̂245b

3

Doing likewise for the expansion of D(ν̃0) in the (aA, b
B) basis we can then com-

pare coefficients.

aAιaAD(ν̃0) = +F
(0)

0a0 + F
(0)

1a1 + F
(0)

2a2 + F
(0)

3a3

bBιbBD(ν̃0) = −F(0)0b0 − F(0)1b1 − F(0)2b2 − F(0)3b3

We repeat this method for the Ti for the case of i = 1 but due to the fact

Jc = −Tiω̃i we have a slightly different set of equations for comparing coefficients

since −Tiω̃i ∈ f̌ and Tiωi = Tiνi ∈ f, which contributes an overall factor of −1.

ιbBG(ω̃i) = −ιbBD(νi) , ιaAG(ω̃i) = −ιaAD(νi)

To obtain the Λp(E∗) components of F2 we can use the expansion of F2(ω̃1) in

(6.2.2) once we make the appropriate relabellings.

1
2!F

bc
a η

aιcb(η
3456) = −F35

a η
a46 + F36

a η
a45 + F45

a η
a36 − F46

a η
a35

= −F35
1 η

146 + F36
2 η

245 + F45
2 η

236 − F46
1 η

135

−F35
2 η

246 + F36
1 η

145 + F45
1 η

136 − F46
2 η

235

(6.2.4)
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Relabelling the ηpqr into the (aA, b
B) basis we can use the operators aAιaA and

bBιbB to project out half of the terms in the expansion.

aAιaAF2(ω̃1) = −F35
2 a0 − F46

2 a1 + F36
1 a2 + F45

1 a3

bBιbBF2(ω̃1) = −F46
1 b0 − F35

1 b1 + F45
2 b2 + F36

2 b3

Doing likewise for the expansion of D(ν̃1) in the (aA, b
B) basis and including the

factor of −1 we can then compare coefficients.

−aAιaAD(ν̃1) = −F(1)
0a0 − F

(1)
2a2 − F

(1)
3a3 − F

(1)
1a1

−bBιbBD(ν̃1) = +F(1)1b1 + F(1)3b3 + F(1)2b2 + F(1)0b0

All of these flux components are given in Table 6.5, along with the corresponding

F1 and F̂3 components. The R-R sector of the Type IIB theory takes precisely

the same form and are obtained by exchanging F↔ F̂ in all expressions.

6.2.3 Type IIA R-R Fluxes

The Type IIA R-R sector is constructable as the mirror dual of the Type IIB R-R

sector and the transformation properties of FRR ↔ F3 are known in terms of their

Λp(E∗) components.

FRR = F0η
0 + F12η

12 + F34η
34 + F56η

56

+ F3456η
3456 + F5612η

5612 + F1234η
1234 + F123456η

123456

F3 = F135η
135 + F235η

235 + F145η
145 + F136η

136

+ F146η
146 + F236η

236 + F245η
245 + F246η

246

The T dualities, and the equivalent mirror symmetry, which relate these two

expressions are obtained by comparing the two expansions of the holomorphic

forms, the Ω of Type IIB and the f of Type IIA, specifically focusing on the

U0 term of Ω which is mapped to the T̃0 term of f. Since we have selected

the same bases for ∆3(E∗) in Type IIA as in Type IIB and likewise for ∆+(E∗)

we have implicitly determined the T duality transformations to take F0 to F135,
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F(0)0 F(0)1 F(0)2 F(0)3 F
0

(0) F
1

(0) F
2

(0) F
3

(0)

F(0)A −F̂135 −F̂146 −F̂236 −F̂245 −F̂246 −F̂235 −F̂145 −F̂136 F
B

(0)

F(i)0 F(i)1 F(i)2 F(i)3 F
0

(i) F
1

(i) F
2

(i) F
3

(i)

F(1)A +F35
2 +F46

2 −F36
1 −F45

1 −F46
1 −F35

1 +F45
2 +F36

2 F
B

(1)

F(2)A +F51
4 −F61

3 +F62
4 −F52

3 −F62
3 +F52

4 −F51
3 +F61

4 F(2)B

F(3)A +F13
6 −F14

5 −F23
5 +F24

6 −F24
5 +F23

6 +F14
6 −F13

5 F
B

(3)

F
(0)

0 F
(0)

1 F
(0)

2 F
(0)

3 F(0)0 F(0)1 F(0)2 F(0)3

F
(0)
A +F̂246 +F̂235 +F̂145 +F̂136 −F̂135 −F̂146 −F̂236 −F̂245 F(0)B

F
(i)

0 F
(i)

1 F
(i)

2 F
(i)

3 F(i)0 F(i)1 F(i)2 F(i)3

F
(1)
A +F1

46 +F1
35 −F2

45 −F2
36 +F2

35 +F2
46 −F1

36 −F1
45 F(1)B

F
(2)
A +F3

62 −F4
52 +F3

51 −F4
61 +F4

51 −F3
61 +F4

62 −F3
52 F

B
(2)

F
(3)
A +F5

24 −F6
23 −F6

14 +F5
13 +F6

13 −F5
14 −F5

23 +F6
24 F(3)B

Table 6.5: Component labels for Type IIB NS-NS fluxes.
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which is achieved by T dualising in the η5, η3 and η1 directions, in that order,

T1 ◦T3 ◦T5◦ ≡ T135◦. We consider this explicitly on the Type IIA FRR.

T5 ◦ FRR = F5η
5 + F125η

125 + F345η
345 + F6η

6

+ F346η
346 + F612η

612 + F12345η
12345 + F12346η

12346

T35 ◦ FRR = F35η
35 + F1235η

1235 + F45η
45 + F36η

36

+ F46η
46 + F3612η

3612 + F1245η
1245 + F1246η

1246

T135 ◦ FRR = F135η
135 + F235η

235 + F145η
145 + F136η

136

+ F146η
146 + F236η

236 + F245η
245 + F246η

246

Thus we obtain the result that T135 : FRR → F3, as we implicitly assumed in our

choice of bases. Recalling that FRR ≡ F0(α0) = F0(b0), with b0 defined in Table

6.3, we can construct the ∆∗(E∗) defined components, though we have the sign

ambiguity due to a choice in
〈 〉
±.

FRR = + F0η
0 + F12η

12 + F34η
34 + F56η

56

+ F3456η
3456 + F5612η

5612 + F1234η
1234 + F123456η

123456

F0 = ± F(0)0ν̃0ιb0 + F
(0)

1ν1ιb0 + F
(0)

2ν2ιb0 + F
(0)

3ν3ιb0

± F(0)1ν̃1ιb0 ± F(0)2ν̃2ιb0 ± F(0)3ν̃3ιb0 + F
(0)

0ν0ιb0

The F are defined by the action of D′ on the ∆3(E∗) which prevents the Fn defining

the same Lie algebra structure constants as the fluxes of the other derivatives.

Since the action of a derivative on ∆+(E∗) defines its action on ∆3(E∗), and vice

versa, we can convert the components of FRR into the F̂ fluxes of (4.3.10).

F0 = F0ι531 − F12η
2ι53 − F34η

4ι15 − F56η
6ι31

−F3456η
46ι1 − F5612η

62ι3 − F1234η
24ι5 + F123456η

246

≡ F̂135ι531 + F̂35
2 η2ι53 + F̂51

4 η4ι15 + F̂13
6 η6ι31

+F̂1
46η

46ι1 + F̂3
62η

62ι3 + F̂5
24η

24ι5 + F̂246η
246

≡ ∓F̂(0)0a0ιν0 + F̂ (1)
0a0ιν̃1 + F̂ (2)

0a0ιν̃2 + F̂ (3)
0a0ιν̃3

∓F̂(1)0a0ιν1 ∓ F̂(2)0a0ιν2 ∓ F̂(3)0a0ιν3 + F̂ (0)
0a0ιν̃0
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Comparing coefficients in these different expansions we obtain the relationships

stated in Table 6.6. The remaining Type IIA R-R fluxes induced by U duality we

shall not explciitly construct as we shall restrict our attention to the Type IIB

formulation of the MZ2
2

superpotential.

F
(0)

0 F
(0)

1 F
(0)

2 F
(0)

3 F(0)0 F(0)1 F(0)2 F(0)3

F
(0)
A +F̂246 +F̂35

2 +F̂51
4 +F̂13

6 ±F̂135 ±F̂1
46 ±F̂3

62 ±F̂5
24 F(0)B

+F̂ (0)
0 +F̂ (1)

0 +F̂ (2)
0 +F̂ (3)

0 −F̂(0)0 −F̂(1)0 −F̂(2)0 −F̂(3)0

Table 6.6: Component labels for the fluxes of FRR

6.3 Type IIB/O3 Construction

6.3.1 Fluxes

We restrict our considerations to the IIB orientifold with O3/O7-planes, reducing

the algebra to one involving only half the fluxes. However, in order to satisfy S

duality invariance we also require the R-R partner to this algebra obtained by the

modular inversion S → − 1
S .

[
Zm , Zn

]
= Hmnp Xp[

Zm , Xn
]

= Qnpm Zp[
Xm , Xn

]
= Qmnp Xp

,

[
Zm , Zn

]
= Fmnp Xp[

Zm , Xn
]

= Pnpm Zp[
Xm , Xn

]
= Pmnp Xp

(6.3.1)

The non-geometric fluxes contribute to the superpotential by coupling to the

Kähler 4-form Jc = −T̃iω̃i = −Tiν̃i and thus the fluxes define a superpotential

linear in the dilaton and Kähler moduli but cubic in the complex structure moduli.

W =

∫
MZ2

2

〈
Ω, F3 − S H3 + (Q− S P ) · Jc

〉
±

The generic contributions to the superpotential of a 3-form flux or a non-geometric

flux can be written in terms of the Λp(E∗) components, which in the case of the
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H3 F
(0)

0 F
(0)

1 F
(0)

2 F
(0)

3 F(0)0 F(0)1 F(0)2 F(0)3

F
(0)
A b0 b

(1)
2 b

(2)
2 b

(3)
2 −b3 −b(1)

1 −b(2)
1 −b(3)

1 F(0)B

F3 F̂
(0)

0 F̂
(0)

1 F̂
(0)

2 F̂
(0)

3 F̂(0)0 F̂(0)1 F̂(0)2 F̂(0)3

F̂
(0)
A a0 a

(1)
2 a

(2)
2 a

(3)
2 −a3 −a(1)

1 −a(2)
1 −a(3)

1 F̂(0)B

Table 6.7: Λp(E∗) components of F3 and H3 in Type IIB

non-geometric fluxes is non-trivial. Following the contraction definitions given in

(4.1.8) we can expand Q · Jc.

Q · Jc =
1

3!
(Q · Jc)abcηabc (Q · Jc)abc =

1

2!
Qde[a (Jc)bc]de

Both the non-geometric fluxes and the 3-form fluxes can be expanded in terms

of the symplectic basis but rather than use the ∆p(E∗) defined components it is

more convenient to define a new notation for the fluxes, those given in Tables 6.7

and 6.8.

H3 = F(0)0 a0 + F(0)a aa − F
b

(0) bb − F
0

(0) b0

= b0 a0 + b
(a)
2 aa + b

(b)
1 bb + b3 b

0
(6.3.2)

We defined the components of D such that the component expansion of D(J (2))

takes a standard form and we can use Tables 6.5 and 6.8, which combine to give

Table 6.9, to expand it in terms of the c
(j)
i .

Q · Jc = D(J (2)) = Ti

(
F

(i)
0 a0 + F

(i)
a aa − F(i)b bb − F(i)0 b0

)
= Ti

(
c

(i)
0 a0 + c

(ia)
2 aa + c

(ib)
1 bb + c

(i)
3 b0

) (6.3.3)

The c
1

and c
2

are non-geometric flux matrices which make up part of the Q section

of Table 6.9. In line with [92] we will use Greek indices α, β, γ for horizontal “−”

x-like directions (η1, η3, η5) and Latin indices i, j, k for vertical “|” y-like directions
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(η2, η4, η6) in the 2-tori.

c
1

=


c̃

(1)
1 −ĉ (3)

1 −č (2)
1

−č (3)
1 c̃

(2)
1 −ĉ (1)

1

−ĉ (2)
1 −č (1)

1 c̃
(3)
1

 , c
2

=


c̃

(1)
2 −ĉ (3)

2 −č (2)
2

−č (3)
2 c̃

(2)
2 −ĉ (1)

2

−ĉ (2)
2 −č (1)

2 c̃
(3)
2

 (6.3.4)

The R-R partner of Q, P , is expanded in the same manner.

P · Jc = D′(J (2)) = Ti

(
F̂

(i)
0 a0 + F̂

(i)
a aa − F̂(i)b bb − F̂(i)0 b0

)
= Ti

(
d

(i)
0 a0 + d(ia)

2
aa + d(ib)

1
bb + d

(i)
3 b0

)(6.3.5)

As with Q the d
i

are defined in terms of the fluxes of D′.

d
1

=


d̃

(1)
1 −d̂ (3)

1 −ď (2)
1

−ď (3)
1 d̃

(2)
1 −d̂ (1)

1

−d̂ (2)
1 −ď (1)

1 d̃
(3)
1

 , d
2

=


d̃

(1)
2 −d̂ (3)

2 −ď (2)
2

−ď (3)
2 d̃

(2)
2 −d̂ (1)

2

−d̂ (2)
2 −ď (1)

2 d̃
(3)
2

 (6.3.6)

Type Components Fluxes

Q−−− ≡ Qβγα Q35
1 , Q51

3 , Q13
5 c̃

(1)
1 , c̃

(2)
1 , c̃

(3)
1

Q
|−
| ≡ Q

iβ
k Q61

4 , Q23
6 , Q45

2 ĉ
(1)
1 , ĉ

(2)
1 , ĉ

(3)
1

Q
−|
| ≡ Q

αj
k Q14

6 , Q36
2 , Q52

4 č
(1)
1 , č

(2)
1 , č

(3)
1

Q−−| ≡ Qαβk Q35
2 , Q51

4 , Q13
6 c

(1)
0 , c

(2)
0 , c

(3)
0

Q
||
− ≡ Q

ij
γ Q46

1 , Q62
3 , Q24

5 c
(1)
3 , c

(2)
3 , c

(3)
3

Q
|−
− ≡ Q

iβ
γ Q23

5 , Q45
1 , Q61

3 č
(1)
2 , č

(2)
2 , č

(3)
2

Q
−|
− ≡ Q

γi
β Q52

3 , Q14
5 , Q36

1 ĉ
(1)
2 , ĉ

(2)
2 , ĉ

(3)
2

Q
||
| ≡ Q

ij
k Q46

2 , Q62
4 , Q24

6 c̃
(1)
2 , c̃

(2)
2 , c̃

(3)
2

Table 6.8: Λp(E∗) components of Q. Components of P obtained by c→ d.
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F(i)0 F(i)1 F(i)2 F(i)3 F
0

(i) F
1

(i) F
2

(i) F
3

(i)

F(1)A +c
(1)
0 +c̃

(1)
2 −ĉ(3)

2 −č(2)
2 −c(1)

3 −c̃(1)
1 +ĉ

(3)
1 +č

(2)
1 F

B
(1)

F(2)A +c
(2)
0 −č(3)

2 +c̃
(2)
2 −ĉ(1)

2 −c(2)
3 +č

(3)
1 −c̃(2)

1 +ĉ
(1)
1 F

B
(2)

F(3)A +c
(3)
0 −ĉ(2)

2 −č(1)
2 +c̃

(3)
2 −c(3)

3 +ĉ
(2)
1 +č

(1)
1 −c̃(3)

1 F
B

(3)

Table 6.9: Component labels for Type IIB Q.

(αA, β
B) U0 Ua Ub U0

1 Ua −U1U2U3
Ub

U1U2U3

(aA, b
B) −U0 Ua Ub U0

Table 6.10: Different Type IIB ∆3(E∗) complex structure moduli representations

6.3.2 Superpotential

The complex structure holomorphic form can be written in terms of the Ua ex-

plicitly and thus we have the U in terms of the U .

Ω = α0 + Uaαa −
(
−U1U2U3

Ub

)
βb − U1U2U3β

0

= b0 + Uaaa −
(
−U1U2U3

Ub

)
bb + U1U2U3a0

= U0a0 + Uaaa − Ubbb − U0b0

(6.3.7)

Integrating the superpotential integrand overMZ2
2

we obtain the polynomial form,

dependent on the Ua, Ti and S.

W = P1(Ua)− S P2(Ua) + TiP
(i)
3 (Ua)− S TjP (j)

4 (Ua) (6.3.8)

We recall our generic component expansion of a 3-form flux and a non-geometric

flux contribution to the superpotential.

P0 = T0

(
U0F̂

(0)
0 + UbF̂

(0)
b − U0F̂

(0)0 − UaF̂
(0)a

)
P3 = Ti

(
U0F̂(i)0 + UbF̂(i)b − U0F̂

0
(i) − UaF̂

a
(i)

)
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Using the expansions of (6.3.2), (6.3.3), (6.3.5) and (6.3.7) we can give an explicit

expansion for each of the flux induced polynomials.

P1(Ua) = − a0 + a
(a)
1 Ua − a

(b)
2

U1U2U3
Ub

+ a3U1U2U3

P2(Ua) = − b0 + b
(a)
1 Ua − b

(b)
2

U1U2U3
Ub

+ b3U1U2U3

The non-geometric cases follow the same schematic format but with the additional

Kähler moduli index.

P
(i)
3 (Ua) = − c

(i)
0 + c

(ia)
1 Ua − c

(ib)
2

U1U2U3
Ub

+ c
(i)
3 U1U2U3

P
(i)
4 (Ua) = − d

(i)
0 + d(ia)

1
Ua − d(ib)

2
U1U2U3
Ub

+ d
(i)
3 U1U2U3

6.3.3 The Isotropic Ansatz

The number of independent moduli and fluxes is expressible in terms of the

Hodge numbers; there are h1,1 + h2,1 + 1 closed string complex moduli and

8(h1,1 +1)(h2,1 +1) independent fluxes. The orientifold projection reduces this by

projecting out half the fluxes and having h1,1 → h1,1
+ , which in the case ofMZ2

2
is

h1,1
+ = h1,1 so this does not reduce the fluxes further. In total the Type IIB/O3

orientifold has 7 complex moduli and 64 independent fluxes. The orientifold can

be simplified because of its factorisation into a triplet of two dimensional sub-tori.

Each possesses a Kähler moduli and a complex structure moduli, independently,

but by setting them all to be equal the orientifold reduces in complexity. This is

equivalent to requiring a permutation symmetry in the sub-tori, as noted in the

action of the orbifold group generators in (6.1.3). The resultant isotropic orien-

tifold possesses a moduli of each type, thus three complex moduli obtained from

the anisotropic case by the simplification Ti → T , Ua → U . However, the number

of independent fluxes is not obtained from the formula 8(h1,1 + 1)(h2,1 + 1) by

setting h1,1 → 1 and h2,1 → 1. Despite it being a triplet copy of a two dimensional

torus it is possible for the isotropic orientifold to have more structure than can

be found in a two dimensional torus. The 3-form fluxes have eight independent

components in the anisotropic case and setting Ua → U reduces this to four. This
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H3 F
(0)

0 F
(0)
a F(0)0 F(0)b F̂

(0)
0 F̂

(0)
a F̂(0)0 F̂(0)b F3

b0 b2 −b3 −b1 a0 a2 −a3 −a1

Table 6.11: ∆p(E∗) components of isotropic F3 and H3 in Type IIB

is given explicitly in Table 6.11. For the non-geometric fluxes we might naively

expect Ua → U and Ti → T to set the components F (i)a to be equal to one

another but this is not the case. The restricted non-geometric components are

given in Table 6.12. A further reduction in flux entries is discussed in [53, 92].

We are considering real integer flux entries and in order to have c̃i, d̃i ∈ R for

i ∈ {1, 2}, we have to equate ĉi = či ≡ ci and d̂i = ďi ≡ di. This reduces the

number of independent fluxes in Q to only six and are given in Table 6.12. The

superpotential’s polynomial form reduces in the non-geometric sector to a triplet

copy of a single expression and the Ua and Ti indices are dropped.

W = P1(U) + S P2(U) + 3T P3(U) + 3S T P4(U) (6.3.9)

The explicit expansion for the individual polynomials are obtained by applying

the aforementioned simplification of the fluxes.

P1(U) = − a0 + 3a1U − 3a2U
2 + a3U

3

P2(U) = − b0 + 3b1U − 3b2U
2 + b3U

3

The non-geometric cases follow the same schematic format but the matrix sum-

mation reduces to a single coefficent.

P3(U) = − c0 + (c̃1 − 2c1)U − (c̃2 − 2c2)U2 + c3U
3

P4(U) = − d0 + (d̃1 − 2d1)U − (d̃2 − 2d2)U2 + d3U
3

6.3.4 Kähler Potential

The Kähler potential in the anisotropic case illustrates the cyclic permutation

symmetry in the Ti and Ua moduli and on restriction to the isotropic case the
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F(i)0 F(i)1 F(i)2 F(i)3 F
0

(i) F
1

(i) F
2

(i) F
3

(i)

F(1)A +c0 +c̃2 −c2 −c2 −c3 −c̃1 +c1 +c1 F
B

(1)

F(2)A +c0 −c2 +c̃2 −c2 −c3 +c1 −c̃1 +c1 F
B

(2)

F(3)A +c0 −c2 −c2 +c̃2 −c3 +c1 +c1 −c̃1 F
B

(3)

Table 6.12: Component labels for isotropic Type IIB Q.

summations reduce to overall factors.

K = −
3∑
i=1

ln
(
− i(Ti − T̄i)

)
− ln

(
− i(S − S̄)

)
−

3∑
a=1

ln
(
− i(Ua − Ūa)

)
→ −3 ln

(
− i(T − T̄ )

)
− ln

(
− i(S − S̄)

)
− 3 ln

(
− i(U − Ū)

)

6.4 Flux Constraints and Solutions

The constraints on fluxes fall into two categories; the Bianchi constraints and the

tadpoles. In each case we have seen how they form S duality multiplets in Type

IIB but initially we shall restrict ourselves to the T duality only case, which is

obtained from the full U duality case by setting P = 0. The methods developed

in the T duality only case will become crucial to exploring the algebraic structure

once S-dual P flux has been included.

6.4.1 T Duality Non-Geometric Fluxes

In the T duality only Type IIB/O3 case the Bianchi constraints come in two

expressions, one of which represents the constraints of the six dimensional subal-

gebra.

Q[ab
e Q

c]e
d = 0 , Qed[aHbc]d = 0 (6.4.1)

We will refer to these as QQ = 0 and QH = 0 from this point onwards. More

generally the A · B contraction will be used to refer to ∆p(E∗) component con-
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tractions and AB to be Λp(E∗) contractions. First we focus on Qabc , which has

the additional properties Qabb = 0 and Qabc = −Qbac and is playing the role of a

structure constant in a 6 dimensional Xa gauge subalgebra of (6.3.1).

c0 (c2 − c̃2) + c1 (c1 − c̃1) = 0

QQ = 0 ⇔ c2 (c2 − c̃2) + c3 (c1 − c̃1) = 0

c0c3 − c1c2 = 0

(6.4.2)

The three polynomials are the generating functions of the ideal 〈QQ〉. Due to

the way in which covariant and contravariant Λp(E∗) indices contract in QQ the

ideal 〈QQ〉 is invariant under a coordinate transformation, a point we noted in

Section 5.1.3. Since Q satisfies all the conditions required to be a Lie algebra

structure constant it must be isomorphic to a known2 Lie algebra, where the

isomorphism is a valid change of basis on the Xa generators. The independent

components of Q are determined by the symmetries of the compact space upon

which they are defined, a result which is particularly simple for this orientifold

once we make the restriction to isotropy. Due to isotropic orbifold symmetries

the 6 dimensional tangent forms basis ηa must be split into two three dimensional

systems, ηa → (ξI , ξ̃I), which are invariant under the isotropic constraint ξ1 →

ξ2 → ξ3 → ξ1 and similarly for ξ̃I . This can be rephrased in terms of generator

structure constants by use of the fact εijk is the only isotropic rank 3 tensor, up

to proportionality factors. There are only 5 isotropic non-trivial Lie algebras with

such generators, so(4) ∼ su(2)2, so(3, 1), su(2) +u(1)3, iso(3) and nil3. We do not

consider the abelian u(1)6 since it is equivalent to a trivial Q = 0 background. All

these algebras are quasi-classical Lie algebras, ie. they have a bi-invariant non-

degenerate metric built from their quadratic Casimir operator. In the redefined

1-forms (ξI , ξ̃J) basis these algebras have the canonical forms shown in Table

6.13. The isotropic nature of the structure constants is particularly clear for the

2all non-semi-simple 6 dimensional Lie algebras are known [96].
3where nil ≡ L6,26 in [96].
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so(4) ∼ su(2)2 case as su(2) is the algebra with structure constant ε.

[
σi , σj

]
= λσεijkσk , su(2) = L(σ)[

τi , τj
]

= λτ εijkτk , su(2) = L(τ)

, so(4) = L(σ)⊕ L(τ)

The method of finding a parametrised solution consists, first of all, of selecting

Algebra dξI dξ̃I

so(4) ∼ su(2)2 ξJ ∧ ξK ξ̃J ∧ ξ̃K

so(3, 1) ξJ ∧ ξK − ξ̃J ∧ ξ̃K ξJ ∧ ξ̃K

su(2) + u(1)3 ξI ∧ ξK 0

iso(3) ξJ ∧ ξK ξJ ∧ ξK + ξJ ∧ ξ̃K

nil 0 ξJ ∧ ξK

Table 6.13: Canonic non-geometric Q algebras.

one of Lie algebras in Table 6.13, gQ, and constructing its canonical structure

constant gKIJ . This can be directly read from the table. Since Q is defined in the

non-manifestly canonical 1-form basis of ηa, there is a coordinate transformation

relating both bases, M−1 : (ηa)→ (ξI , ξ̃I). Instead of working in the 1-form basis,

we will move to its dual generators basis with the transformation M : (Xa) →

(EI , ẼI) and so the structure constants transform into the canonical form.

M I
a M

J
b Q

ab
c (M−1)cK = gIJK (6.4.3)

The transformation matrix M must satisfy the isotropy symmetry and so we have

M = I3 ⊗M2 , where the four parameter matrix M2 ∈ SL(2,R) acts equally in

each two dimensional sub-torus. EI

ẼI

 =
1

|ΓM |2

 −α β

−γ δ


 X2I−1

X2I

 (6.4.4)

Here |ΓM | = αδ−βγ, and it must be that |ΓM | 6= 0. In the following we will refer to

the (α, β, γ, δ) parameters as the modular parameters, following the terminology
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of [92]. Transformation (6.4.3) is rearranged to M I
a M

J
b Q

ab
c (M−1)cK − gIJK =

0 , so that we have an array of expressions, all of which are equated to zero.

These equations can be solved uniquely for the fluxes c in terms of the modular

parameters for each of the Lie algebras via algebraic geometry methods.

• Semisimple so(4)

c0 = β δ (β + δ) ; c3 = −αγ (α+ γ) ,

c1 = β δ (α+ γ) ; c2 = −αγ (β + δ) ,

c̃2 = γ2 β + α2 δ ; c̃1 = − (γ β2 + α δ2) .

(6.4.5)

• Semisimple so(3, 1)

c0 = −β
(
β2 + δ2

)
; c3 = α

(
α2 + γ2

)
,

c1 = −α
(
β2 + δ2

)
; c2 = β

(
α2 + γ2

)
,

c̃2 = −β (α2 − γ2)− 2 γ δ α ; c̃1 = α
(
β2 − δ2

)
+ 2β γ δ .

(6.4.6)

• Non semisimple (ie. direct sum) su(2) + u(1)3

c0 = β δ2 ; c3 = −αγ2 ,

c1 = β δ γ ; c2 = −αγ δ ,

c̃2 = γ2 β ; c̃1 = −α δ2 .

(6.4.7)

• Non solvable (ie. semidirect sum) iso(3)

c0 = −δ2 (β − δ) ; c3 = γ2 (α− γ) ,

c1 = −δ2 (α− γ) ; c2 = γ2 (β − δ) ,

c̃2 = γ2 (β + δ)− 2 γ δ α ; c̃1 = −δ2 (α+ γ) + 2 γ δ β .

(6.4.8)

• Solvable (ie. nilpotent) nil

c0 = δ3 ; c3 = −γ3 ,

c1 = δ2 γ ; c2 = −δ γ2 ,

c̃2 = δ γ2 ; c̃1 = −δ2 γ .

(6.4.9)
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It is straightforward to check that these flux configurations satisfy (6.4.2). The

entries inM are not restricted to being integers. Starting with a configuration such

that ci ∈ Z, since the ci are cubic in modular parameters, we see that M ′ = 3
√
nM

with n ∈ Z still gives us c′i = n ci ∈ Z. It is also useful to note that the flux induced

cubic polynomials P3(U), as well as their roots structure in terms of the redefined

complex structure Z = αU+β
γ U+δ , depend crucially on the Q subalgebra behind the

fluxes (see Table 6.14). We define the following 2-dimensional vectors in such a

Q-subalgebra P3(Z) ≡ P3(U)
3 (γ U+δ)3 Modular roots

so(4) Z(Z + 1) Z = 0 , ∞ , −1

so(3, 1) −Z(Z2 + 1) Z = 0 , +i , −i

su(2) + u(1)3 Z Z = 0 , ∞ (double)

iso(3) 1−Z Z =∞ (double) , +1

nil 1 Z∞ =∞ (triple)

Table 6.14: Q-subalgebras and their flux induced polynomials.

way that they carry the information about the value of the roots once they are

contracted with

U
1

.

Z0 = (α, β) , Z∞ = (γ, δ)

Z−1 = (α+ γ, β + δ) , Z+1 = (α− γ, β − δ)

Z+i = i

(√
α2 + γ2, (αβ+γδ)+i|ΓM |√

α2+γ2

)
, Z−i = i

(√
α2 + γ2, (αβ+γδ)−i|ΓM |√

α2+γ2

)(6.4.10)

Then the flux induced polynomial P3(U) for each gauge subalgebra can be easily

reconstructed from its root structure as

P3(U) = 3
∏

r=roots

Zr

U
1

 , (6.4.11)

with r ≡ 0,∞,−1,+1,+i,−i according with the modular roots, as it is shown in

Table 6.14. As an example, we reconstruct the cubic P3(U) for the subalgebra
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so(4). In this case, (6.4.11) reads

P3(U) = 3Z0

U
1

 · Z∞
U

1

 · Z−1

U
1

 =

= 3 (αU + β) (γ U + δ) [(α+ γ)U + (β + δ)] =

= 3 (γ U + δ)3Z (Z + 1) .

We note that so(3, 1) is unique in the above results, in that it generates a poly-

nomial whose roots are certain to be complex, given the real and non-zero nature

of ΓM .

6.4.2 U Duality Non-Geometric Fluxes

We have seen how S duality transformations deform both the Bianchi and tadpole

constraints and we shall first focus on the S-dualization of T-dual Bianchi identi-

ties (6.4.1) and then consider the new constraints coming from the S-dualization

of tadpoles. Applying the S-duality transformation to the non-geometric Q flux

of the form given in (5.3.2) the QQ = 0 Bianchi identity in (6.4.1) gives rise to

an SL(2,Z)S triplet of constraints on Q and P we stated in terms of F2 and F̂2 in

(5.3.4).

Q
[ab
d Qc]de = 0 , P

[ab
d P c]de = 0 , Q

[ab
d P c]de + P

[ab
d Qc]de = 0 (6.4.12)

As before, we denote these schematically as QQ = 0, PP = 0 and QP +PQ = 0.

The first expression in terms of fluxes is (6.4.2) and the second expression is

obtained from (6.4.2) by Q → P , c → d. The third element of the triplet gives

the mixing between Q and P fluxes.

c3d0 − c2d1 − c1d2 + c0d3 = 0 ,

c1(d1 − d̃1) + c0(d2 − d̃2) + d0(c2 − c̃2) + d1(c1 − c̃1) = 0 , (6.4.13)

c3(d1 − d̃1) + c2(d2 − d̃2) + d2(c2 − c̃2) + d3(c1 − c̃1) = 0 .

208



Using coordinate transformations, it is possible to solve the first two constraints

in (6.4.12). This is achieved in the same manner as the previous section except

we now pick two algebras, gQ and gP , and equating their canonical structure con-

stants, g and h respectively, to the transformed Q and P . Due to the piecewise

structure of the transformations, we can apply independent coordinate transfor-

mations on the Q and P fluxes, MQ and MP , and each flux gives an equation of

the form (6.4.3).

MQMQQM
−1
Q = gQ , MP MP P M

−1
P = gP

As with the transformation on Q it is convenient to give specific modular param-

eters to MQ and MP .

ΓQ =

αq βq

γq δq

 , ΓP =

αp βp

γp δp

 (6.4.14)

We solve these expressions in the same manner as in the previous section and get

parametrizations Q = Q(αq, . . . , δq) and P = P (αp, . . . , δp). Recalling (6.4.14),

we can now define the two modular variables ZQ and ZP which are the S duality

extension of the Z previously defined.

ZQ =
αq U + βq
γq U + δq

, ZP =
αp U + βp
γp U + δp

(6.4.15)

Expressing the superpotential polynomials due to Q and P in terms of these, we

have P3(ZQ) ≡ P3(U)/3(γq U + δq)
3 and P4(ZP ) ≡ −P4(U)/3(γp U + δp)

3, where

the polynomials relating to gQ and gP can be simply read off from Table 6.14,

upon replacing Z by ZQ and ZP respectively. Making the restriction MQ = MP

would be sufficient to solve the first two of the three constraints, those viewable as

integrability conditions, of (6.4.12) simultaneously. However, the third element of

the triplet, the cohomology condition between LQ and LP , requires two different

sets of modular parameters. If LQ = LP then the cohomology conditions reduce

to the integrability conditons, the third set of constraints are satisfied if and only
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if the other two sets are. For cases where LQ 6= LP it is not automatic that

QP +PQ = 0. Transforming Q and P in different ways reduces the constraints of

QP + PQ = 0 to being constraints on the modular parameters of (6.4.14). Fur-

thermore, since different algebras lead to different parametrizations, each unique

pairing of algebras (gQ, gP ) leads to a different set of constraints. The integrabil-

ity conditions of Q and P are both solved through the use of prime decomposition

and the same is true for the cohomology conditions and so we split 〈QP + PQ〉

into its prime ideals, Ji.

〈 QP + PQ 〉 = J1 ∩ . . . ∩ Jn

An ideal automatically has at least one prime ideal but in the case of some of the

(gQ, gP ) pairings, we find as many as three prime ideals of varying complexity.

These relate the ΓQ and ΓP modular matrices and so restrict the tranformations

which are needed to bring the Q and P fluxes (understood as structure constants)

to their canonical form. For the purpose of illustration we consider the example

gQ = su(2) + u(1)3 and gP = so(4) and read off the modular parameterisations

from (6.4.7) and (6.4.5)

• Q flux fixing the T-dual gauge subalgebra to be gQ = su(2) + u(1)3.

c0 = βq δ
2
q ; c3 = −αq γ2

q ,

c1 = βq δq γq ; c2 = −αq γq δq ,

c̃2 = γ2
q βq ; c̃1 = −αq δ2

q .

(6.4.16)

• P flux fixing the original T-dual gauge subalgebra to be deformed by gP =

so(4),

d0 = βp δp (βp + δp) ; d3 = −αp γp (αp + γp) ,

d1 = βp δp (αp + γp) ; d2 = −αp γp (βp + δp) ,

d̃2 = γ2
p βp + α2

p δp ; d̃1 = − (γp β
2
p + αp δ

2
p) .

(6.4.17)
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This leads to a 〈QP + PQ〉 cohomology condition ideal which has three prime

ideals in its decomposition,

J1 = 〈 αqβp − βqαp , γqδp − δqγp 〉 ,

J2 = 〈 αqδp − βqγp , γqβp − δqαp 〉 , (6.4.18)

J3 = 〈 γq(βp + δp)− δq(αp + γp) 〉 .

These constraints can be rewritten in terms of entries in 2 dimensional vectors.

a =

a1

a2

 , b =

b1

b2

 ⇒ a1b2 − a2b1 = 0 ⇔ a× b = 0

If two vectors satisfy a × b = 0 then they are parallel, which we denote by

a ‖ b. With this notation and using the vectors given in (6.4.10), the cohomology

conditions can be reexpressed.

J1 = 〈 ZQ0 ×ZP0 , ZQ∞ ×ZP∞ 〉 ←→ ZQ0 ‖ ZP0 , ZQ∞ ‖ ZP∞ ,

J2 = 〈 ZQ0 ×ZP∞ , ZQ∞ ×ZP0 〉 ←→ ZQ0 ‖ ZP∞ , ZQ∞ ‖ ZP0 ,

J3 = 〈 ZQ∞ ×ZP−1 〉 ←→ ZQ∞ ‖ ZP−1 ,

In each case the prime ideal’s generating functions can be rewritten as a vanishing

cross product. Infact, this happens for all prime ideals of all possible pairings

(gQ, gP ). Therefore, the prime ideals of 〈QP + PQ〉 can be viewed as geometric

constraints on the position of the vectors representing the roots of the cubic

polynomials P3(U) and P4(U). Specifically, when the polynomials themselves

are computed, this is equivalent to P3(U) and P4(U) sharing some roots. It

is worth note that the J1 = 0 and J2 = 0 solutions also imply the piecewise

vanishing QP = PQ = 0, unlike J3 = 0. Moreover, J1 = 0 can be translated into

ZP ∝ ZQ while J2 = 0 implies ZP ∝ ΓSZQ, where ΓS is the inversion generator

of SL(2,Z)S . The full list of the vector alignments arising from the different

prime ideals of the cohomology condition are given in Table 6.15 for each algebra

pairing (gQ, gP ). Most of these solutions (those labelled by (∗)) disappear under
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the more restrictive condition QP = PQ = 0, or equivalently, not all the pairings

are allowed in a system where the full set of SL(2,Z)7 dualities is used. Apart

from each algebra being deformed by itself, there are the following possibilities in

an SL(2,Z)7-dual setup: so(4) can be deformed by su(2) + u(1)3 ; su(2) + u(1)3

can be deformed by so(4) and by nil ; iso(3) can be deformed by nil and nil can

be deformed by su(2) + u(1)3 and by iso(3).

gP

gQ so(4) so(3, 1) su(2) + u(1)3 iso(3) nil

[
0|0
]
,
[
∞|∞

] [
0|0
]
,
[
∞|∞

]
so(4)

[
0|∞

]
,
[
∞|0

] [
− 1|0

]∗ [
0|∞

]
,
[
∞|0

] [
− 1|+ 1

]∗ [
− 1|∞

]∗[
− 1| − 1

]∗ [
− 1|∞

]∗
[

+ i|+ i
]
,
[
− i| − i

]
so(3, 1)

[
0|1
]∗ [

+ i| − i
]
,
[
− i|+ i

] [
0|∞

]∗ [
0|+ 1

]∗ [
0|∞

]∗[
0|0
]∗

[
0|0
]
,
[
∞|∞

] [
0|∞

]
,
[
∞|0

]
su(2) + u(1)3

[
0|∞

]
,
[
∞|0

] [
∞|0

]∗ [
∞|+ 1

]∗ [
∞|∞

]
[
∞| − 1

]∗ [
∞|∞

]
[
∞|∞

] [
∞|∞

]
iso(3)

[
+ 1| − 1

]∗ [
+ 1|0

]∗ [
+ 1|∞

]∗ [
+ 1|+ 1

]∗ [
+ 1|∞

]∗
[
∞|∞

]
nil

[
∞| − 1

]∗ [
∞|0

]∗ [
∞|∞

] [
∞|∞

]
[
∞|+ 1

]∗

Table 6.15: Cohomology condition in terms of the root alignments where
[
x|y
]
≡

ZQx ‖ ZPy . The branches labelled by ∗ disappear under the more restrictive

condition QP = PQ = 0. Under the inversion S → −1/S transformation,

the algebras gQ and gP are exchanged resulting in the symmetry of this table.
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6.4.3 Tadpoles Cancellation Conditions

In this IIB orientifold Bianchi identities for R-R fluxes can be rephrased as tadpole

cancellation conditions for the R-R 4-form C4 and 8-form C8 which couple to the

O3/O7-planes sources allowed by the symmetry θIσB. The C4 tadpole follows

from H∧F = F̂0∧F0, which can be expanded in terms of the Λp(E∗) components,

F̂0 ∧ F0 ∝ FabcF̂defε
abcdefvol6. We can also express the tadpole in terms of the

∆∗(E∗) defined components, it is the ν0 coefficient in (5.2.4).

0 = N3 + ιν0DD
′(ν̃0) = N3 + F̂

(0)
AF

(0)A − F̂(0)BF
(0)
B

Using Tables 6.5 and 6.7 we can express these in terms of the ai and bj and by

noting that the total orientifold charge is -32, due to 64 O3-planes located at the

fixed points of the Z3
2 orientifold involution, and D3-branes having charge +1 can

be added then N3 = 32−ND3.

ND3 − 32 = F̂
(0)

0F
(0)0 + F̂

(0)
aF

(0)a − F̂(0)0F
(0)

0 − F̂(0)bF
(0)
b

= − a0b3 − a
(a)
2 b

(a)
1 + a3b0 + a

(b)
1 b

(b)
2

Upon the restriction to isotropy the summations over the h1,1 = 3 Kähler indices

reduce to h1,1 equal expressions.

ND3 − 32 = F̂
(0)

0F
(0)0 + F̂

(0)
aF

(0)a − F̂(0)0F
(0)

0 − F̂(0)bF
(0)
b

− a0b3 − 3a2b1 + a3b0 + 3a1b2

In the T duality only case the C8 tadpole coupling to the D7-branes and O7-planes

is defined by Q · F .

−
∫
M4×MZ2

2

C8 ∧ (Q · F ) (6.4.19)

Q ·F is expanded in terms of the ∆2(E∗) basis but due to the manner we defined

the components of D and D′ and the way in which the fluxes couple to the Kähler

moduli in Type IIB the relevant polynomials in (5.2.4) are the coefficients of ν̃i.
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Given we have an explicit Λp(E∗) basis for the ∆p(E∗) elements we can demon-

strate their equivalence, taking the example of the coefficient of η12 = ω1 = ν1 in

Q · F .

(Q · F )12 = 1
2Q

ij
[1F2]ij = Q35

1 F235 + Q36
1 F236 + Q45

1 F245 + Q46
1 F246

− Q35
2 F135 − Q36

2 F136 − Q45
2 F145 − Q46

2 F146

= − F
1

(1) F̂
(0)

1 + F(1)2F̂
(0)2 + F(1)3F̂

(0)3 − F
0

(1) F̂
(0)

0

+ F(1)0F̂
(0)0 − F

3
(1) F̂

(0)
3 − F

2
(1) F̂

(0)
2 + F(1)1F̂

(0)1

Collecting these into summations over Kähler indices we recover the coefficient of

ν̃1 given in (5.2.4) and Table 5.1.

(Q · F )12 = F̂(0)AF(1)A − F̂
(0)
BF

B
(1)

Denoting the tadpole contribution due to the D7/O7s wrapping the cycle dual to

ω̃i as (Q · F )i and defined N7I = −32 +ND7I , where ND7i is the total number of

D7-branes wrapping the ith 4-cycle dual to the two-torus T2
i , we can express their

components in a number of ways.

(Q · F )i = F̂(0)0F(i)0 + F̂(0)AF(i)A − F̂
(0)

0F
0

(i) − F̂
(0)
bF

b
(i)

N7i ≡ − c
(i)
0 a3 − c

(ib)
2 a

(b)
1 + c

(ia)
1 a

(a)
2 + c

(i)
3 a0

(6.4.20)

Going to the isotropic case, this set of conditions reduces to a single expression.

N7i = N7 ≡ a0c3 + a1(2c2 − c̃2) − a2(2c1 − c̃1) − a3c0 (6.4.21)

Under S duality these constraints form one part of the SL(2,Z)S triplet 3AB.∫
C8 ∧ (Q · F3) ,

∫
C̃8 ∧ (P ·H3) ,

∫
C ′8 ∧ (Q ·H3 + P · F3)

Their component expansions take the same schematic form as the T duality only

case and so can be obtained from (6.4.20) by the appropriate relabelling of the
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fluxes.

(P ·H)i = F(0)0F̂(i)0 + F(0)AF̂(i)A − F
(0)

0F̂
0

(i) − F
(0)
bF̂

b
(i)

= − d
(i)
0 b3 − d(ib)

2
b

(b)
1 + d(ia)

1
b

(a)
2 + d

(i)
3 b0

(Q ·H)i = F(0)0F(i)0 + F(0)AF(i)A − F
(0)

0F
0

(i) − F
(0)
bF

b
(i)

= − c
(i)
0 b3 − c

(ib)
2 b

(b)
1 + c

(ia)
1 b

(a)
2 + c

(i)
3 b0

(P · F3)i = F̂(0)0F̂(i)0 + F̂(0)AF̂(i)A − F̂
(0)

0F̂
0

(i) − F̂
(0)
bF̂

b
(i)

= − d
(i)
0 a3 − d(ib)

2
a

(b)
1 + d(ia)

1
a

(a)
2 + d

(i)
3 a0

The new 2-form tadpole cancellation conditions for C̃8 and C ′8 follow from these

expansions.

Ñ7i = (P ·H)i , N ′7i = (Q ·H + P · F )i (6.4.22)

As in the T duality case we have defined Ñ7i = 32−NNS7i and N ′7i = 32−NI7i ,

where NNS7i and NI7i are the number of NS7-branes and I7-branes which can

also be added to the system, wrapping the ith 4-cycle dual to the two-torus T2
i .

Restricting ourselves to the isotropic fluxes the three expressions for each tadpole

become equal and we have only one polynomial per member of the SL(2,Z)S

tadpole triplet.

Ñ7 = b0 d3 + b1 (2 d2 − d̃2) − b2 (2 d1 − d̃1) − b3 d0

N ′7 = b0 c3 + b1 (2 c2 − c̃2) − b2 (2 c1 − c̃1) − b3 c0

+ a0 d3 + a1 (2 d2 − d̃2) − a2 (2 d1 − d̃1) − a3 d0

(6.4.23)

A further simplification can be made, as noted in [60], which is an important

result when considering some of the Bianchi constraints.

QH3 = 0⇒ Q ·H = 0 PF3 = 0⇒ P · F3 = 0 (6.4.24)

6.4.4 3-Form Backgrounds

In the T duality only case the remaining Bianchi constraints, once QQ = 0 is

solved, are QH = 0. When written in terms of the fluxes of Tables 6.7 and 6.8 it
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is seen that the constraints can be viewed as a non-geometric flux defined linear

transformation on the NS-NS flux vector space (b0, b1, b2, b3) ≡ b.

−c2 b0 + (c1 − c̃1) b1 + c0 b2 = 0

−c2 b1 + (c1 − c̃1) b2 + c0 b3 = 0

−c3 b0 − (c2 − c̃2) b1 + c1 b2 = 0

−c3 b1 − (c2 − c̃2) b2 + c1 b3 = 0

(6.4.25)

The problem is then reduced to computing the 2 dimensional nullspace of this

linear system ΦQ.

−c2 +c1 − c̃1 +c0 0

0 −c2 +c1 − c̃1 +c0

−c3 −c2 + c̃2 +c1 0

0 −c3 −c2 + c̃2 +c1





b0

b1

b2

b3


≡ ΦQ · b = 0 (6.4.26)

S duality extends QH to the SL(2,Z)S singlet QH −PF , where each pairing has

the same index structure.

Qab[cHde]b = 0 → Qab[cHde]b − P ab[c Fde]b = 0 (6.4.27)

In terms of individual fluxes PF is obtained by relabelling (6.4.26) by c→ d and

b→ a and QH − PF is the difference of these expressions.

−c2 b0 + (c1 − c̃1) b1 + c0 b2 + d2 a0 − (d1 − d̃1) a1 − d0 a2 = 0

−c2 b1 + (c1 − c̃1) b2 + c0 b3 + d2 a1 − (d1 − d̃1) a2 − d0 a3 = 0

−c3 b0 − (c2 − c̃2) b1 + c1 b2 + d3 a0 + (d2 − d̃2) a1 − d1 a2 = 0

−c3 b1 − (c2 − c̃2) b2 + c1 b3 + d3 a1 + (d2 − d̃2) a2 − d1 a3 = 0

(6.4.28)

These constraints can be rewritten in terms of matrices and flux vectors in the

same way as the T duality only case.

ΦQ · b− ΦP · a = 0 ⇒ (ΦQ) ji bj = (ΦP ) ji aj (6.4.29)

In the case of the T duality only non-geometric fluxes we noted in Table 6.14 that

the polynomial contribution to the superpotental takes a particularly simple form
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if we redefine our complex structure moduli U → Z and factorise out (γU+δ)3. S

duality results in two different modular parameter dependent complex structure

moduli, which define P3 and P4, and the same is true for the H and F induced

polynomials P1 and P2.

P2(U) = biU
i = (γq U + δq)

3 P2(ZQ) = εiZ iQ

P1(U) = aiU
i = (γp U + δp)

3 P1(ZP ) = ρj ZjP
(6.4.30)

The flux vectors a and b are related to ε and ρ by these reformulations, which can

be represented as linear transformations.

b0

b1

b2

b3


=



−β3
q −βqδ2

q −β2
q δq −δ3

q

αqβ
2
q

1
3δq (2βqγq + αqδq)

1
3βq (βqγq + 2αqδq) γqδ

2
q

−α2
qβq −1

3γq (βqγq + 2αqδq) −1
3αq (2βqγq + αqδq) −γ2

q δq

α3
q αqγ

2
q α2

qγq γ3
q





ε0

ε1

ε2

ε3


We shall schematically denote this as b = Pb · ε. The equivalent transformation

for the R-R flux F a = Pa · ρ is obtained by replacing the subscript q → p

and εi → ρi. These parameterisations are well defined because their Jacobians

have determinants −|ΓQ|6/9 and −|ΓP |6/9 so they never vanish, provided the

isomorphisms used for bringing non-geometric fluxes to their canonical form are

not singular. These transformations alter (6.4.29) from depending on ai and bj .

(ΦQ) ji bj − (ΦP ) ji aj = (ΦQ) ji (Pb) k
j εk − (ΦP ) ji (Pa)

k
j ρk

= (Φ̃Q) ki εk − (Φ̃P ) ki ρk

(6.4.31)

Both Φ̃Q and Φ̃P are linear transformations and therefore the solutions space of

(6.4.31) can be obtained from the intersection of their images.

IQP ≡ Im(Φ̃Q) ∩ Im(Φ̃P ) (6.4.32)

The parameters εi and ρj belong to the Φ̃Q and Φ̃P antimages of IQP respectively.

ε ∈ Φ̃−1
Q (IQP ) , ρ ∈ Φ̃−1

P (IQP ) (6.4.33)

217



Therefore we denote a geometric background for the H and F fluxes solving

(6.4.31), by a pair of vectors ( ε, ρ ) satisfying (6.4.33). The main features of this

background, such as its dimension or its flux-induced C ′8 tadpole, are severely

restricted by the non-geometric background we have previously imposed. Fur-

thermore, we are able to distinguish between two non-geometric flux setups by

seeing whether or not IQP becomes trivial.

• Non-geometric type A setup:

IQP = {0} , (6.4.34)

A non-geometric background satisfying this fixes the geometric background

to be ε ∈ ker(Φ̃Q) (QH = 0) and ρ ∈ ker(Φ̃P ) (PF3 = 0). These constraints

can be viewed as the pure T duality constraint and its the modular inversion

S → − 1
S image. It has dimension 4 and does not generate a flux-induced

C ′8 tadpole due to (6.4.24).

N ′7 = 0 (type A). (6.4.35)

• Non-geometric type B setup:

IQP 6= {0} , (6.4.36)

A non-geometric background satisfying results in a less restricted geometric

one, of dimension 6, that can generate a flux-induced C ′8 tadpole. This can

always be written as

N ′7 = ∆Q |ΓQ|3 + ∆P |ΓP |3 (type B) (6.4.37)

with ∆Q and ∆P depending on εi and ρi respectively4 and vanishing in the

special case of ε ∈ ker(Φ̃Q) and ρ ∈ ker(Φ̃P ).

4ker(Φ̃Q), ker(Φ̃P ), ∆Q and ∆P differ for each pairing (gQ, gP ), being easily computed in

each case.
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gP deformation

gQ original so(4) so(3, 1) su(2) + u(1)3 iso(3) nil

so(4) ZQ−1 ‖ ZP−1 ZQ−1 ‖ ZP0 ZQ−1 ‖ ZP∞ ZQ−1 ‖ ZP+1 ZQ−1 ‖ ZP∞

so(3, 1) ZQ0 ‖ ZP−1 ZQ0 ‖ ZP0 ZQ0 ‖ ZP∞ ZQ0 ‖ ZP+1 ZQ0 ‖ ZP∞

su(2) + u(1)3 ZQ∞ ‖ ZP−1 ZQ∞ ‖ ZP0 ZQ∞ ‖ ZP∞ ZQ∞ ‖ ZP+1 ZQ∞ ‖ ZP∞

iso(3) ZQ+1 ‖ ZP−1 ZQ+1 ‖ ZP0 ZQ+1 ‖ ZP∞ ZQ+1 ‖ ZP+1 ZQ+1 ‖ ZP∞

nil ZQ∞ ‖ ZP−1 ZQ∞ ‖ ZP0 ZQ∞ ‖ ZP∞ ZQ∞ ‖ ZP+1 ZQ∞ ‖ ZP∞

Table 6.16: Roots alignment in non-geometric type B setups.

Whether a background is Type A or Type B is determined entirely by the choice

of root alignment for the solution to the cohomology deformation conditions of

the non-geometric fluxes stated in Table 6.15. Those root alignments shown in

Table 6.16 are those which lead to Type B backgrounds, otherwise it is type A. To

illustrate this we consider an example where gQ = su(2) + u(1)3 and gP = so(4).

Solving the cohomology condition through the ZQ∞||ZP−1 branch of Table 6.15

leaves us with a non-geometric type B setup. The ker(Φ̃Q) is expanded by (ε0, ε3)

while that of Φ̃(gP ) is expanded by (ρ0, ρ3) for this pairing. In this case, the NS-

NS and R-R fluxes account for six degrees of freedom and generate a flux-induced

C ′8 tadpole given by (6.4.37) with ∆Q = ε2/3 and ∆P = (ρ2 − ρ1)/3.
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The geometric H3 and F3 backgrounds determine the flux-induced P2(ZQ) and

P1(ZP ) polynomials in the superpotential. Fixing a non-geometric type A setup,

P2(ZQ) is shown in Table 6.17 for each gQ algebra. The equivalent expression for

the polynomial P1(ZP ), resulting from the gP algebra, is obtained upon replacing

εi ↔ ρi and ZQ ↔ ZP . This is also a solution (the simplest one) in a non-

geometric type B setup for which there is no flux-induced C ′8 tadpole. However, a

more complicated geometric background can be switched on, in which a tadpole

is generated.

gQ P2(ZQ) ≡ P2(U)
(γq U+δq)3

so(4) ε3Z3
Q + ε0

so(3, 1) ε3Z3
Q − 3 ε0Z2

Q − 3 ε3ZQ + ε0

su(2) + u(1)3 ε3Z3
Q + ε0

iso(3) ε1ZQ + ε0

nil ε1ZQ + ε0

Table 6.17: NS-NS flux-induced polynomials in the non-geometric type A setup.

6.5 Supersymmetric Solutions

Having constructed parameterisations for the Type IIB/O3 superpotential’s in-

dividual polynomials we now consider the construction of specific vacua for the

isotropic Z2 × Z2 orientifold where all three moduli types are stablised.
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6.5.1 Analytic Methods

Using the results of the previous section we can write down the most general

superpotential for MZ2
2
.

W = −(γp U + δp)
3

[( 3∑
i=0

ρiZ iP
)

+ 3T S P4(ZP )

]
+

+ (γq U + δq)
3

[
S
( 3∑
i=0

εiZ iQ
)

+ 3T P3(ZQ)

]
(6.5.1)

The specific forms P3(ZQ), P4(ZP ) are taken from Table 6.14 according with a

fixed pairing (gQ, gP ) and ZQ and ZP are the modular variables from (6.4.15). In

general, ZQ 6= ZP , and we will have to deal with two modular variables instead of

just one, Z. Each pairing (gQ, gP ) gives rise to a specific superpotential due to the

relationship between the root structure of a polynomial and its associated algebra.

For simplicity we shall consider supersymmetric vacua. A supersymmetric vacuum

implies the vanishing of the F-terms, which are the Kähler derivatives of the

superpotential for each moduli.

FT = ∂TW +
3iW

2 Im(T )
= 0

FS = ∂SW +
iW

2 Im(S)
= 0 (6.5.2)

FU = ∂UW +
3iW

2 Im(U)
= 0

The vanishing of the Kähler derivatives results in either Minkowski or AdS4 solu-

tions because the potential (2.4.1) at the minimum is given by V0 = −3eK0 |W0|2 ≤

0. Restricting our search to Minkowski solutions, i.e. V0 = 0, simplifies the F Flat

conditions further.

∂SW = ∂TW = ∂UW = W = 0 (6.5.3)
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The fact that the general expression for the superpotential is linear in S and T

allows us to fix their values generically.

S0 = −P3(U0)

P4(U0)
=

(
γq U + δq
γp U + δp

)3 P3(ZQ)

P4(ZP )

∣∣∣∣
U0

,

(6.5.4)

T0 = −P2(U0)

P4(U0)
=

(
γq U + δq
γp U + δp

)3
∑3

i=0 εiZ iQ
P4(ZP )

∣∣∣∣∣
U0

,

We have denoted the VEVs of the moduli with a subscript 0, 〈S〉 = S0, etc. These

values are subject to physical considerations;

• Im(S0) must be positive because it is the inverse of the string coupling

constant gs.

• Im(T0) = e−φA where A is the area of a 2-dimensional subtorus, so it also

has to be positive.

• For the modular variables ZQ and ZP at the minimum, it happens that

Im(ZQ) = Im(U0)
|ΓQ|

|γqU0+δq |2 and Im(ZP ) = Im(U0) |ΓP |
|γpU0+δp|2 . Therefore,

necessarily Im(ZQ) 6= 0 and Im(ZP ) 6= 0 because for Im(U0) = 0 the internal

space is degenerate. Without loss of generality, we choose Im(U0) > 0.

• For the effective supergravity to be a reliable approximation to string the-

ory, gs = 1
Im(S0) has to be small to exclude non-perturbative string effects

and large internal volume Vint =
(

Im(T0)
Im(S0)

)3/2
is also required to neglect

corrections in α′.
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The remaining W = 0 and ∂UW = 0 conditions can be rewritten, using (6.5.4),

as a pair of equations, provided5 P4(U0) 6= 0.

E(U0) = P1(U0)P4(U0)− P2(U0)P3(U0) = 0

E′(U0) = 0

The prime denotes differentiation with respect to U and, therefore, E(U) has a

double root. The root must, given our definition for the Kähler potential, be

complex and therefore E(U) contains a double copy of complex conjugate pairs,

accounting for 4 of its 6 roots. Therefore, we have the following factorisation

property of E(U), with Ẽ(U) ≡ (g2 U
2 + g1 U + g0)2 accounting for the double

root that becomes complex iff g2
1 − 4 g2 g0 < 0.

E(U) = (f2 U
2 + f1 U + f0) Ẽ(U) (6.5.5)

Information about the nature of the six roots of E(U) can be immediately obtained

from the generic superpotential polynomials once a (gQ, gP ) pairing is chosen and

the full set of Bianchi identities, ie. integrability, cohomology and singlet Bianchi

constraints, are applied. Four cases are automatically discarded because their

E(U) possesses at least four real roots, so they can never have a double complex

root for the Minkowski vacua to be physically viable, i.e. Im(U0) 6= 0. The

number of real roots for each (gQ, gP ) pairing is summarized6 in Table 6.18. A

priori, all branches with E(U) having a number of real roots less than three could

accommodate supersymmetric Minkowski solutions. This is a necessary but not

sufficient condition for the existence of Minkowski vacua because for E(U) to

split into the form (6.5.5), additional constraints on H and F3 fluxes are needed.

Therefore, several branches in Table 6.18 will exclude Minkowski vacua, even

5This has to be the case for Im(U0) 6= 0 in all gP but gP = so(3, 1) that has complex roots

ZP = ±i. For this singular case, P4(U0) = 0 implies Pi(U0) = 0 for i = 1, 2, 3, 4 as can be seen

from (6.5.3). Then S and T can not be simultaneously stabilized in a supersymmetric Minkowski

vacuum.
6Entries in Table 6.18 are in one to one correspondence with entries in Table 6.15.
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though they have a sufficient number of complex roots and we will provide an

example of this. Despite this, several results can be read from Table 6.18 :

• There are no supersymmetric Minkowski solutions in the (nil, nil) case be-

cause all E(U) roots become real for this pairing.

• For supersymmetric Minkowski solutions to exist in the pairings of non-

geometric algebras (iso(3), iso(3)), (iso(3), nil) and (nil, iso(3)), it is neces-

sary to have non-geometric type B setups (see Table 6.16), generating an

eventually non vanishing flux-induced C ′8 tadpole.

• The rest of the pairings are richer and supersymmetric Minkowski solutions

could, in principle, exist in all branches that solve the cohomology condition

(see Table 6.15).

6.5.2 Example su(2) + u(1)3 and so(4) Vacua

For our first example, we shall continue to investigate the case gQ = su(2) + u(1)3

deformed by gP = so(4), in order to show how simple supersymmetric solutions

can be easily obtained using these methods. For the sake of simplicity, we will

look for H and F3 fluxes backgrounds with ~ε ∈ ker(Φ̃Q) and ~ρ ∈ ker(Φ̃P ), so

N ′7 = 0 but the net charges N7 and Ñ7 are considered as free variables. In these

solutions, P2(ZQ) and P1(ZP ) can be obtained from Table 6.17 leaving us with a

set (ε0, ε3 ; ρ0, ρ3) of free parameters in the superpotential defining the geometric

H and F3 background fluxes. Taking the relevant polynomials from Tables 6.14

and 6.17 we can construct the generic superpotential.

W = −(γp U + δp)
3
[
(ρ3Z3

P + ρ0) + 3T S ZP (ZP + 1)
]

+

+ (γq U + δq)
3
[
S (ε3Z3

Q + ε0) + 3T ZQ
]

(6.5.6)
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gP deformation

gQ original so(4) so(3, 1) su(2) + u(1)3 iso(3) nil

2 2

so(4) 2 1 2 1 1

1 1

2

so(3, 1) 1 2 1 1 1

1

2 2

su(2) + u(1)3 2 1 1 2

1 2

4 4

iso(3) 1 1 1

1 1

4

nil 1 1 2 6

1

Table 6.18: Number of real roots of E(U) defined in Table 6.15 after imposing

the full set of Bianchi constraints.
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The tadpole cancellation conditions can be expressed in terms of the roots and

Aij = −ρi εj .

N3 = +A33 (ZQ0 ×Z
P
0 )3 +A30 (ZQ∞ ×ZP0 )3

+A03 (ZQ0 ×Z
P
∞)3 +A00 (ZQ∞ ×ZP∞)3

N7 = ρ3 (ZQ0 ×Z
P
0 ) (ZQ0 ×Z

P
∞)2 + ρ0 (ZQ0 ×Z

P
∞) (ZQ∞ ×ZP∞)2 (6.5.7)

Ñ7 = −ε3 (ZQ0 ×Z
P
0 ) (ZQ0 ×Z

P
∞) (ZQ0 ×Z

P
−1)

−ε0 (ZQ∞ ×ZP0 ) (ZQ∞ ×ZP∞) (ZQ∞ ×ZP−1)

We now impose the constraints from one of the prime ideals of the cohomology

condition, of which there are three to choose for this pairing, as shown in Table

6.15 and explicitly stated in (6.4.19). The case J1 = 0 is automatically fulfilled

with an embedding ΓP = ΓQ ≡ Γ, or equivalently ZP = ZQ ≡ Z, while the

J2 = 0 results are equivalent to this after applying a T-duality induced modular

transformation Z → −1/Z. The case J3 = 0 is a little bit different from the

previous ones, it cannot be transformed into J1,2 = 0 and so the resultant solutions

are distinct from those of the first two branches. We will solve for each of the three

branches and clarify their relation to the existence of both AdS4 and Minkowski

vacua.

Simple type A AdS4 solutions

Imposing J1 = 0, we fix the modular embeddings to be equal to one another.

ΓP = ΓQ ≡ Γ =

 α β

γ δ

 , (6.5.8)

The fact the modular parameters of each non-geometric flux are the same allows

for the superpotential to be written entirely in terms of the modular complex

structure parameter Z.

W

(γ U + δ)3
= −(ρ3Z3 + ρ0) + S (ε3Z3 + ε0) + 3T Z − 3T S Z (Z + 1)
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This overall factor can be removed by a corresponding transformation in the

Kähler potential. The superpotential is now a function of Z and by replacing

U → Z in the Kähler potential we obtain the same Kähler functional G = K +

ln |W |2 = K + ln |W|2.

K = −3 ln
(
− i(T − T̄ )

)
− ln

(
− i(S − S̄)

)
− 3 ln

(
− i(Z − Z̄)

)
W = |Γ|3/2

[
−(ρ3Z3 + ρ0) + S (ε3Z3 + ε0) + 3TZ − 3TSZ (Z + 1)

]
The tadpole cancellation conditions (6.5.7) simplify when written in terms of the

εi and ρj .

N3 = |Γ|3(A03 −A30) = |Γ|3(ε0 ρ3 − ε3 ρ0)

N7 = Ñ7 = 0

(6.5.9)

It is worth noting that, by simply imposing the embedding (6.5.8), it becomes

impossible to have non-geometric type B solutions, as we can see from Table 6.16.

The alignment Z∞||Z−1 results in |Γ| = 0 and the isomorphism is no longer valid.

As a result, whenever we impose (6.5.8), automatically ε1 = ε2 = ρ1 = ρ2 = 0 and

then N ′7 = N7 = Ñ7 = 0. It can also be proven that this system does not possess

Minkowski vacua. To do this, we compute restrictions on H and F3 fluxes needed

for the polynomial E(U) to be factorized as (6.5.5). From Table 6.18 we know

that E(U) has at least two real roots. Factorising out and dropping these real

roots, E(U)→ Ẽ(U), it can be shown that for Ẽ(U) to possess a double complex

root, the H and F3 background fluxes must satisfy a pair of equations.

8 ε0 ρ3 + (ε3 − 9 ρ3) ρ0 = 0

(ε3 − ρ3)3 − 8 ρ2
3 ρ0 = 0

For complex roots we require g2
1−4 g2 g0 = 12

(
ρ

1/3
3 ρ

1/3
0

)2
≥ 0, fixing all six roots

of E(U) to be real and producing non physical vacua, i.e. Im(U0) = 0. However,

we find that supersymmetric AdS4 vacua can exist without introducing localized

sources. This result is only possible by the inclusion of S duality. To illustrate
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this we fix ε3 = ρ3 = 0 so as to have N3 = 0 and set ρ0 = 2 ε0. Solving the F-flat

conditions (6.5.2) we obtain stablised moduli for each moduli type.

Z0 = −1.0434 + 0.4758 i

S0 = −2.3802 + 4.1685 i

ε−1
0 T0 = −0.4022 + 1.1483 i

The moduli values and our choices of the fluxes determine the vacuum energy

V0 ε0/|Γ|3 = −2.3958 and without local sources, N3 = N7 = Ñ7 = N ′7 = 0. These

are not the physical moduli, we must convert Z into the original complex structure

U by U0 = Γ−1Z0 with Γ the modular matrix given in (6.5.8). Restricting

ourselves to the particular case of β = γ = 0, this solution corresponds to a0 =

−2 ε0 δ
3, b0 = −ε0 δ3, c̃1 = d̃1 = −α δ2 and d̃2 = α2 δ. Large positive values of

the ε0 parameter translate into large geometric fluxes and reduce the effects of

corrections in α′.

Simple type B Minkowski solutions

Now we explore the case J3 = 0, or equivalently ZQ∞||ZP−1. We cannot make the

same choice of modular parameters but we can choose a particular case where the

Γ matrices are different but dependent on the same parameters.

ΓQ =

 α −δ

α δ

 , ΓP =

 α 0

0 δ


This results in a two dimensional family of non-geometric type B fluxes and sub-

stituting directly in (6.5.4) we obtain algebraic expressions for two of the moduli.

T0 =
1

3α δ

ε3 (αU0 − δ)3 + ε0 (δ + αU0)3

U0 (δ + αU0)
, S0 =

αU0

δ
− δ

αU0
(6.5.10)

These parameters are further restricted by the requirement that the NS-NS H and

R-R F3 backgrounds lead to polynomial E(U) being factorizable as (6.5.5). From

Table 6.18, this E(U) has at least one real root. Factorising out this real root,

228



E(U) → (f1 U + f0) Ẽ(U), this imposes a series of restrictions on the modular

fluxes.

ρ0 = 0 , ε0 = −ε3 =
ρ3

8
, f1 = g1 = 0 ,

g0

g2
=

(
δ

α

)2

These automatically satisfy g2
1−4 g2 g0 < 0, producing physical vacua U0 = i

(
δ
α

)
.

Substituting directly in (6.5.10), the moduli get stabilized.

U0 =

(
δ

α

)
i , S0 = 2 i , T0 =

ρ3

12
(1 + i)

This family is physical for ρ3 > 0 and |ΓP | > 0. These, together with Minkowski

conditions such that |ΓP | = α δ, determine the contributions from local sources

to be positive, N3 > 0, N7 > 0 and Ñ7 > 0.

N3 =
ρ3

4
, N7 = ρ3 , Ñ7 = |ΓP |3

ρ2
3

4

In terms of the original fluxes, this solution corresponds to c3 = −α3, c2 = c̃2 =

−d̃2 = −α2 δ, c1 = c̃1 = d̃1 = −α δ2 and c0 = −δ3 for non-geometric fluxes;

b0 = −δ3 ρ3

4 and b2 = −α2 δ ρ3

4 for the NS-NS flux; and a3 = α3 ρ3 for the R-R

flux. Again, large values of the ρ3 parameter translate into large geometric fluxes

and reduce the effects of corrections in α′. However, this also increases the number

of localized sources and therefore their backreaction, which we are not taking into

account.

6.5.3 General Type B Minkowski Vacua

In our previous example, we gave simple Minkowski solutions with all moduli

stabilized in a physical vacuum with a vanishing flux-induced C ′8 tadpole, ie.

N ′7 = 0. Now, we provide Minkowski solutions with N ′7 6= 0. Our main goal in

this work has been to develop a systematic method to compute supersymmetric

Minkowski vacua based on different (gQ, gP ) pairings which fulfil all algebraic

constraints. To show how these methods work, we conclude by presenting several
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simple non-geometric type B examples involving all the six dimensional Lie alge-

bras compatible with the orbifold symmetries. Besides finding analytic VEVs for

the moduli, we also relate them to the net charge of localized sources which can

exist, as well as some features of such vacua.

1: Vacua with unstabilized complex structure modulus

We wish to construct a simple family of Minkowski solutions with a vanishing flux-

induced C ′8 tadpole for which all the moduli but the complex structure modulus

are fixed by the fluxes. These solutions were previously found in [91] and we now

clarify their flux structure. We choose to fix the non-geometric Q and P fluxes

to be isomorphic to gQ = so(4) and gP = iso(3) respectively7 under modular

embeddings of a particular kind.

ΓQ =

 αq 0

0 δq

 , ΓP =

 αp βp

0 δp

 . (6.5.11)

Our choices of (gQ, gP ) have a unique cohomology condition branch ZQ−1 ‖ ZP+1

in Table 6.15, making it a type B setup, and which is satisfied if the modular

matrices (6.5.11) are such that αq = λαp and δq = λ (βp − δp) . Taking for

simplicity ~ε ∈ ker(Φ̃Q) and ~ρ ∈ ker(Φ̃P ) results in ε1 = ε2 = ρ2 = ρ3 = 0.

Moreover, we will also fix ε3 = 0 and therefore, substituting into (6.5.4), we

obtain analytic expressions for S and T .

S0 = −λ3

(
αp
δ2
p

)
(βp − δp)U0 , T0 = − λ3 ε0 (βp − δp)3

3 δ2
p (αp U0 + (βp − δp))

(6.5.12)

Upon substituting these moduli VEVs into the superpotential we have a super-

potential with linear complex structure dependence.

W (U0) = −
(
αp
δ2
p

) (
λ6 (βp − δp)4 ε0 + δ4

p ρ1

)
U0 − δ2

p

(
δp ρ0 + βp ρ1

)
(6.5.13)

7In this case, ∆Q = (ε2 − ε1)/3 and ∆P = −ρ3 − ρ2/3.
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For Minkowski solutions to exist ∂UW = W = 0 . Moreover, because of αp δp 6= 0,

else |ΓP | = 0, Minkowski vacua with complex structure modulus unstabilized do

exist provided we satisfy a pair of equations.

λ6 (βp − δp)4 ε0 + δ4
p ρ1 = 0

δp ρ0 + βp ρ1 = 0

Under these restrictions for ρ0 and ρ1, the tadpole cancellation conditions simplify

to having only one non-zero set of local sources.

N3 = Ñ7 = N ′7 = 0

N7 =
λ9 ε0

3

(
α3
p

δ2
p

)
(βp − δp)5

From the S and T stabilization (6.5.12), taking a physical vacuum with Im(U0) > 0

implies a pair of inequality on the fluxes for Im(S0) > 0 and Im(T0) > 0.

λαp (βp − δp) < 0

λαp (βp − δp) ε0 > 0

It therefore follows that ε0 < 0 else the vacuum is not physical. The sign de-

terminations require N7 > 0 and so D7-branes are needed, several of which were

presented in [91]. Large values of |λ| and |ε0| favour the SUGRA approximation,

ie. gs ∝ 1/|λ|3 and Vint ∝ |ε0|3/2, for a fixed ΓP modular matrix and a given VEV

for the complex structure modulus, U0.

2: Vacua with a geometric/non-geometric flux hierarchy

In this example we wish to constuct a family of solutions with additional structure

due to localized sources, analogous to [95]. This time we fix the non-geometric

Q and P fluxes to be isomorphic to gQ = so(4) and gP = so(4) respectively8.

Just to illustrate some vacua with this algebraic structure, we set the modular

embeddings to be less trivial than previous cases, with α δ 6= 0 and λ (1−λ2) 6= 0

8In this case ∆Q = (ε2 − ε1)/3 and ∆P = (ρ2 − ρ1)/3.
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for the isomorphism to be well defined.

ΓQ =

 α δ

−λα λ δ

 , ΓP =

 (1− λ)α 0

0 (1 + λ) δ

 , (6.5.14)

The cohomology condition has three branches and the embeddings (6.5.14) satisfy

ZQ−1 ‖ ZP−1 , giving a type B setup. For simplicity we will fix again ~ε ∈ ker(Φ̃Q)

and ~ρ ∈ ker(Φ̃P ) and so ε1 = ε2 = ρ1 = ρ2 = 0, resulting in N ′7 = 0. Under

this flux setup, E(U) has 1 real root and we find that E(U) can be factorized as

(6.5.5) given the fluxes satisfy a number of relations.

ε3 = 1−λ2

8λ

(
(λ− 1)3ρ3 + (λ+ 1)3ρ0

)
ε0 = 1−λ2

8λ4

(
(λ− 1)3ρ3 − (λ+ 1)3ρ0

)
These flux choices determine the factorisation of the E(U) polynomial.

g1 = 0 ,
g0

g2
=

(
δ

α

)2

,
f0

f1
= −

(
δ

α

)
(λ− 1)3ρ3

(λ+ 1)3ρ0

Since g2
1 − 4 g2 g0 < 0, these are physical vacua with U0 = i

(
δ
α

)
. From (6.5.4), S

and T get stabilized.

S0 =
(

2λ
λ2−1

)
i

T0 = λ2−1
12λ(λ2+1)

(
(λ+1)4

λ2−1
ρ0 − (λ−1)4

λ2−1
ρ3 + i

(
(λ− 1)2 ρ3 + (λ+ 1)2ρ0

) )
The resultant tadpole conditions for these vacua are all determined analytically.

N3 =
|ΓQ|3
2λ2 (λ2 − 1)

(
(λ− 1)6 ρ̃2

3 + (λ+ 1)6 ρ̃2
0

)
N7 =

|ΓQ|3
2λ (λ2 − 1)

(
(λ− 1)2 ρ̃3 + (λ+ 1)2 ρ̃0

)
Ñ7 =

|ΓQ|3
8λ3

(
λ2 − 1

)3 (
(λ− 1)2 ρ̃3 + (λ+ 1)2 ρ̃0

)
We have redefined the modular fluxes as ρ3 = 4λρ̃3 and ρ0 = 4λρ̃0. Then N3 > 0,

N7 > 0 and Ñ7 > 0 is necessary for vacua to be physical9. In terms of the original

fluxes, this solution corresponds to c3 = −α3 λ (λ − 1), c2 = c̃2 = α2 δ λ (λ + 1),

c1 = c̃1 = −α δ2 λ (λ − 1), c0 = δ3 λ (λ + 1) and d̃1 = α δ2 (λ2 − 1) (λ + 1),

9Fixing |ΓQ| > 0 implies λ > 0 for Im(U0) > 0, (λ2 − 1) > 0 for Im(S0) > 0 and (λ− 1)2 ρ̃3 +

(λ+ 1)2 ρ̃0 > 0 for Im(T0 > 0. This fixes the net charge of the tadpoles.
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d̃2 = α2 δ (λ2−1) (λ−1) for non-geometric fluxes; b0 = δ3 (λ2−1) (λ−1)3 ρ̃3, b1 =

−α δ2 (λ2−1) (λ+ 1)3 ρ̃0, b2 = α2 δ (λ2−1) (λ−1)3 ρ̃3 and b3 = −α3 (λ2−1) (λ+

1)3 ρ̃0 for NS-NS flux and a0 = −4 δ3 λ (λ+ 1)3 ρ̃0 and a3 = −4α3 λ (λ− 1)3 ρ̃3 for

R-R flux.

By considering the fluxes’ dependency on the parameter λ, we note that gener-

ically a hierarchy between geometric F3, H and non-geometric Q, P fluxes occurs,

in which the geometric fluxes, i.e. ai ∝ λ4, bj ∝ λ5 are large compared to the

non-geometric fluxes, i.e. ci ∝ λ2, dj ∝ λ3, given λ > 1 for Im(S0) > 0. However,

there is a critical value λ0 = 1 +
√

2 for which gs ≥ 1 if λ ≥ λ0. Hence, there

is a narrow range, 1 < λ < λ0, for which non perturbative string effects can be

neglected, ie. λ = 2 implies gs = 3/4. Finally, large values of the ρ̃0 and ρ̃3

parameters favour a large internal volume needed to disregard corrections in α′.

3: Vacua with a non-vanishing flux-induced C ′8 tadpole

We now consider a simple family of solutions with a non vanishing flux-induced

C ′8 tadpole for which all moduli get stabilized. Let us fix the non-geometric Q

and P fluxes to be isomorphic to gQ = so(3, 1) and gP = so(4) respectively10.

Examples belonging to this pairing were also found in [60]. For simplicity, we fix

the modular embeddings to be of a restricted type.

ΓQ =

 α δ

α −δ

 , ΓP =

 α 0

0 δ

 . (6.5.15)

The cohomology condition for this pairing has an unique branch ZQ0 ‖ ZP−1 . It

is a non-geometric type B setups and therefore has a potentially non vanishing

flux-induced C ′8 tadpole. The modular embeddings (6.5.15) belong to this branch.

10In this case ∆Q = −ε2/3− ε0 = −ε′0/24 and ∆P = (ρ2 − ρ1)/3.
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For convenience we also redefine our H flux parameters.

ε′3

ε′1

ε′2

ε′0


= 8



3 1 0 0

3 −1 0 0

0 0 −1 3

0 0 1 3





ε3

ε1

ε2

ε0


. (6.5.16)

Solutions with NS-NS and R-R fluxes for which ~ε /∈ ker(Φ̃Q) and ~ρ /∈ ker(Φ̃P ) can

be given parametrically in terms of (κ1, κ2) parameters.

ε′3 = κ1 + κ2 , ε′0 = κ1 − κ2 , ρ1 = κ2 , ρ2 = κ1

The remaining parameters (ε′1, ε
′
2), expanding the ker(Φ̃Q), and (ρ0, ρ3), expanding

the ker(Φ̃P ), are completely free. For simplicity, we will deal just with a non

vanishing κ2 parameter plus the fluxes ρ0 and ρ3. All the Bianchi identities are,

by construction, satisfied. In general, E(U) has 1 real root for this algebra pairing,

but under this specific flux configuration it has two real roots. Factorising out

these real roots, E(U) → Ẽ(U), and requiring it to factorise as (6.5.5) we find

analytic expressions for the coefficients.

f1 = g1 = ρ0 = 0 , ρ3 =
4

3
κ2 ,

g0

g2
=

(
δ√
2α

)2

, f0 g
2
2 = −16α4 δ κ2

These values give g2
1 − 4 g2 g0 < 0, producing physical vacua with U0 = i

(
δ√
2α

)
.

Using (6.5.4), the remaining moduli are stablised to analytic values.

U0 = (
δ√
2α

) i , S0 =
√

2 i , T0 = −κ2

27
(1 +

√
2 i)

These are physical for κ2 < 0 and |ΓP | > 0. The tadpole conditions for these

vacua are determined such that N3 > 0, N7 < 0 and N ′7 > 0 and |ΓP | = α δ.

Ñ7 = 0 , N3 =
κ2

15
N7 = −κ2

3
N ′7 =

2

9
|ΓP |3 κ2

2

In terms of the original fluxes, this solution corresponds to c3 = 2α3, c2 = c̃2 =

2 d̃2 = 2α2 δ, c1 = c̃1 = 2 d̃1 = −2α δ2 and c0 = −2 δ3 for non-geometric fluxes;
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b0 = −κ2
6 δ3 for NS-NS flux and a3 = 4

3 κ2 α
3, a1 = 1

3 κ2 α δ
2 for R-R flux. The

string coupling constant turns out to be gs = 1/
√

2 and corrections in α′ can be

neglected taking large values for |κ2|. This also increases the number of localized

sources cancelling the flux-induced tadpoles.

4: Vacua with a non defined flux-induced C8 tadpole sign

Finally, and for the sake of completeness, we fix the non-geometric Q and P fluxes

to be isomorphic to gQ = so(4) and gP = nil respectively11 and fix the modular

embeddings to be dependent on only two parameters.

ΓQ =

 α 0

0 δ

 , ΓP =

 α −δ

α δ

 (6.5.17)

For the isomorphism to be well defined we require α δ 6= 0. In this case, we

obtained a single cohomology condition, ZQ−1 ‖ ZP∞ which is satisfied by (6.5.17)

and is again a type B setup. Once more, solutions with NS-NS and R-R fluxes

for which ~ε /∈ ker(Φ̃Q) and ~ρ /∈ ker(Φ̃P ) can be given parametrically.

ε1 = −4 (κ1 − 3κ2) , ε2 = −4 (κ1 + 3κ2) , ρ3 = κ2 , ρ2 = κ1

The parameters (ε0, ε3) expanding the ker(Φ̃Q) and (ρ0, ρ1) expanding the ker(Φ̃P ),

are completely free. For this pairing, E(U) has 1 real root and we find that E(U)

can be factorized as (6.5.5).

g1 = 0 , f1 = 0

ε3 = 2B2

A − 2B + 4A , ε0 = −4A

g0

g2
=

(
δ
α

)2 A
B , f0g

2
0 = −2Aδ5

κ1 = 1
4(B − 5A) , κ2 = B−A

4

We have used A = ρ1 − ρ0 and B = ρ1 − 5ρ0. Then g2
1 − 4 g2 g0 < 0 provided

AB > 0 and there are physical vacua with U0 = i
(
δ
α

) (√
A√
B

)
. From (6.5.4), S and

11In this case ∆Q = (ε2 − ε1)/3 and ∆P = −ρ3.
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T get analytically stablised.

S0 =

√
A
√
B

(A+B)2

(
2
√
A
√
B + i (B −A)

)
, T0 =

4A

3(A+B)

(
A+ i

√
A
√
B
)

The resultant tadpole conditions for these vacua are such that N3 > 0, N7 has no

defined sign, Ñ7 < 0 and N ′7 < 0 is required for physical vacua12.

N3 = 16
3 |ΓQ|

3
(

(B −A)2 +AB
)

N7 = −2
3 |ΓQ|

3(B − 2A)

Ñ7 = −|ΓQ|3 2(A+B)2

A

N ′7 = −4|ΓQ|3(B −A)

In terms of the original fluxes, this solution corresponds to d3 = −α3, −d2 = d̃2 =

c̃2 = α2 δ, d1 = −d̃1 = −c̃1 = α δ2 and d0 = δ3 for non-geometric fluxes; b0 =

4 δ3A, b1 = 2
3 α δ

2 (A+B), b2 = 4
3 α

2 δ (B−2A) and b3 = 2α3
(

(B−A)2

A +(A+B)
)

for NS-NS flux and a0 = 2 δ3A, a2 = 2
3 α

2 δ (B − 2A) for R-R flux. This family

of solutions gives rise to gs > 1 for A,B > 0 and then non perturbative string

effects can not be neglected.

Summary

In this chapter we have considered the explicit case of the Z2 × Z2 orientifold,

which possesses the properties of the spaces we have been considering more gen-

erally in previous chapters. The duality induced fluxes of both flux sectors in Type

IIB and the NS-NS sector of Type IIA were constructed in terms of their Λp(E∗)

defined components and also the SU(3) structure ∆p(E∗) defined components and

seen to match the structures derived in general previously. We focused on the

Type IIB N = 1 theory constructed by using the orientifold projection which

12Fixing |ΓQ| > 0, then A,B > 0 for Im(T0 > 0 and (B−A) > 0 for Im(S0 > 0. This fixes the

net charge of tadpoles but N7 depends on the sign of (B − 2A), with N7 > 0 for (B − 2A) < 0

and N7 < 0 for (B − 2A) > 0.
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constructs O3- and O7-planes and allows D3- and D7-branes and simplified by

isotropy. The twelve dimensional Lie algebra interpretation of the fluxes reduces

to having a six dimensional subalgebra dependent entirely on a single kind of flux,

the non-geometric Q. As a result of this, its GL(6,Z) invariance in its Λp(E∗) de-

fined components and the full classification of six dimensional Lie algebra we were

able to solve the Bianchi constraints in full generality. The S duality extension of

this was treated in the same way, with Q and P having their Bianchi constraints

solved by different isomorphisms and their mnixed integrability conditions reduced

to constraints on the isomorphisms. All of the non-geometric constraints; Jacobi,

algebra deformations and integrability conditions, were solved through algebraic

geometry methods which gave proof of a full classification of all possible solutions.

The remaining Bianchi constraints were examined by the use of linear transfor-

mations dependent on fluxes and their relationship with the tadpoles explicitly

observed. Finally we used these solutions to construct examples of vacua with

interesting phenomenology; Minkowski vacua, vacua with broken supersymmetry,

vacua with heirachy and vacua with vanishing tadpoles.

We have observed a number of interesting properties for this internal space.

Its orbifold symmetries make it a triplet of two dimensional tori and it is known

that the two dimensional torus is self mirror dual, under mirror symmetry its

moduli exchange but it remains a two dimensional torus. The T duality con-

straints defined in Λp(E∗) components have GL(6,Z) invariance which, due to

orbifold symmetry, leads to a modular symmetry in the complex structure mod-

uli and the inclusion of S duality gives modular symmetry in the dilaton. The

inherent symmetry between the complex structure and Kähler moduli of the two

dimensional sub-torus has not appeared but would be expected and it is to this

which we now turn.
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Chapter 7

Symmetries in Moduli Space

Thus far we have observed a great deal of symmetry in how the different moduli

spaces of W (and M) can be described, though distinct differences exist. The

largest one is the Kähler structure of the moduli spaces, the moduli dependence

of MK and MQ is dependent upon which Type II theory we are considering, as

given in Table 7.1. In this chapter we will consider the implications of making

our descriptions of the moduli spaces as symmetric as possible in a given Type II

construction, which we will take to be Type IIB for reasons which we will discuss

shortly. More specifically, we reformulate the superpotentials and fluxes such that

the roles of the moduli spaces are exchanged without having to apply a mirror

transformation. Since this implies the two moduli spaces of the Type IIB theory

on W are equivalent we would not expect it to be possible for all W, only a

particular set of spaces. The work in this chapter is found in [9].

7.1 The Motivation

To provide a motivation for this hypothesis we consider the results just obtained

for the Z2 × Z2 orientifold. The invariance of the non-geometric flux constraints

under coordinate transformations leads to a particular reparameterisation invari-
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IIA ∈M IIB ∈ W

f ∈MK(T) Ω ∈MK(U)

Ω
(′)
c ∈MQ(U, S) f(′)

c MQ(T, S)

Table 7.1: Holomorphic forms of Type II moduli spaces.

ance in the complex structure moduli and due to the specific structure of MZ2
2

the invariance is precisely an SL(2,Z) invariance in the Ua moduli. This was seen

to be the restriction of the GL(6,Z) invariance of Section 5.1.3 by the orbifold

symmetries. Equivalently this can be seen to follow from the factorisation ofMZ2
2

in terms of three two dimensional sub-tori. As a result of this the moduli ofMZ2
2

pair off, with (Ta, Ua) being those moduli which describe the a’th sub-torus. It

is noted in [54] that upon the dimensional reduction of [49] the kinetic terms of

the Kähler and complex structure moduli of a two dimensional torus take on the

same form, which is also equal to the form of the dilaton kinetic term of Type IIB

as given in (3.3.1).

∂µS∂µS

2(Im(S))2
,

∂µT∂µT

2(Im(T ))2
,

∂µU∂µU

2(Im(U))2
(7.1.1)

These kinetic terms have Kähler potentials defined by Hitchin functions [73, 74,

75], one for each holomorphic form in Table 7.1. However it is not clear in (7.1.1)

which moduli type the dilaton couples to, both Type IIA and Type IIB lead to

the same kinetic terms. This is to be expected given the structure ofMZ2
2
; being

the combination of three two dimensional tori. Two dimensional tori have a pair

of moduli, one complex structure and one Kähler, and these are exchanged under

mirror transformations yet the underlying space is still a two dimensional torus.

The fact that the Z2 × Z2 orientifold can be written in terms of two dimensional

tori means it inherits some of the properties of such tori and one such symme-

try is the modular symmetry of the Kähler moduli. Presupposing such modular
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SL(2,Z) invariance in each of the seven moduli of the anisotropic orientifold has

been investigated in [61] and while it does not result in the same constraints as T

duality the methodology of their analysis is qualitatively the same. Such SL(2,Z)7

invariance is a top down approach and in the previous chapter we obtained a bot-

tom up derivation of complex structure modular invariance and by the inclusion

of S duality we also obtained dilaton modular invariance. We have not yet seen

a bottom up construction of the SL(2,Z)T symmetries for MZ2
2
. To illustrate

this for theMZ2
2

more explicitly we recall its general polynomial form, where the

moduli are grouped in terms of their Kähler moduli dependence.

W =

∫
W

〈
Ω,
(
D(fc) + D′(f′c)

) 〉
±

=

 T0

(
P0(U)− S P̂0(U)

)
+ Ta

(
P(a)

1 (U)− S P̂(a)
1 (U)

)
+

± T 0
(
P3(U)− S P̂3(U)

)
± T b

(
P(b)

2 (U)− S P̂(b)
2 (U)

)
 (7.1.2)

To obtain the results for the Kähler moduli we have already seen for the complex

structure moduli we are motivated to exchange the roles of the two type of mod-

uli. To illustrate this on the MZ2
2

we construct a superpotential whose complex

structure and Kähler moduli play the opposing roles to the superpotential (7.1.2).

This is done by simply rearranging (7.1.2), rather than use T duality or mirror

symmetry to alter the superpotential.

W →

 U0

(
P0(T )− S P̂0(T )

)
+ Ua

(
P

(a)
1 (T )− S P̂

(a)
1 (T )

)
+

+ U0
(
P3(T )− S P̂3(T )

)
+ Ub

(
P

(b)
2 (T )− S P̂

(b)
2 (T )

)
 (7.1.3)

The sequence of fluxes induced by T duality each define a cubic polynomial in the

complex structure moduli, coupling differently to the Kähler moduli. We now have

polynomials which are cubic in the Kähler moduli and which couple differently

to the complex structure moduli. This reformulation of the superpotential in

(7.1.3), due to the symmetry in the moduli of the two dimensional sub-tori, and

the symmetry in their kinetic terms of (7.1.1) suggests that onMZ2
2

it is possible

to write a IIB construction in the form of a Type IIA construction and vice versa.
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This reformulation would be guided by the nature of the holomorphic forms given

in Table 7.2.

MQ(T, S)⊗MK(U)→MT ⊗MS ⊗MU →MQ̃(U, S)⊗MK̃(T)

The factorisation of the superpotential into expressions dependent on those new

holomorphic forms is non-trivial due to the dilaton couplings, a point we shall

see in the next section. Given a factorisation of the superpotential such that it

is dependent on these modified holomorphic forms we would expect the resultant

constraints to be inequivalent to the original ones, given a comparision between

(7.1.2) and (7.1.3). If T duality invariance on (7.1.2) induces SL(2,Z) modular

invariance on the complex structure moduli then we would argue there is a duality

related to (7.1.3) which induces SL(2,Z) invariance on the Kähler moduli. We

will refer to as T′ duality and whose precise nature we will construct shortly.

This reformulation is motivated by the symmetry between the moduli types

in theMZ2
2

superpotential, which is a manifestation of the fact a two dimensional

torus is self mirror dual and thus we might associate the additional constraints

due to T′ invariance to this enhanced symmetry. As such, in our more general

discussion we shall eventually restrict our considerations to those spaces which

satisfy M =W, even though some of the methodology does not require this. To

examine this more quantitatively, give some justification for our speculation and

for spaces other than MZ2
2

we shall consider the many different ways we have of

constructing superpotential-like expressions from objects thus far examined.

7.2 Alternate Superpotentials

Since we will be discussing how various derivatives and their matrix representa-

tions relate to one another we will dispense with the different D’s used for different

derivatives in previous sections. Instead we will simply label them with an index,
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IIA

f ∈MK(T) → Ω ∈MK̃(U)

Ω
(′)
c ∈MQ(U, S) → f(′)

c ∈MQ̃(T, S)

IIB

Ω ∈MK(U) → f ∈MK̃(T)

f(′)
c ∈MQ(T, S) → Ω

(′)
c ∈MQ̃(U, S)

Table 7.2: Holomorphic forms of reformulated Type II moduli spaces.

Di, and likewise with their associated matrix representations. In the case of Type

IIB we have Mi representing the action on the ∆+(E∗) basis and Nj on the ∆3(E∗)

basis. In Type IIB we can construct objects which have a superpotential-like form

in two different ways; one of which is the Type IIB superpotential and the second

is obtained from the first by exchanging the roles of the holomorphic forms in line

with Table 7.2.

W1 =

∫
W

〈
Ω,
(
D1(fc) + D′1(f′c)

) 〉
±

= T> · hν ·
(
C ·M1 + C′ ·M′1

)
· ga · U (7.2.1)

W2 =

∫
W

〈
f,
(
D2(Ωc) + D′2(Ω′c)

) 〉
±

= U> · ha ·
(
C̃ · N2 + C̃′ · N′2

)
· gν · T (7.2.2)

In general, namely M 6= W, these are the only1 two expressions which can be

formed of integrals and from pairs of elements of either ∆3(E∗) or ∆+(E∗). It is

still possible to construct Type IIB scalar products which are of the same general

1We do not consider Ω ∧D(fc) and D(Ω) ∧ fc as different due to the same manner in which

the dilaton couples to the moduli.
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factorisation, but from the bilinear forms g and h defined in Type IIA.

W3 = T> · ha ·
(
C ·M3 + C′ ·M ′3

)
· gν · U (7.2.3)

W4 = U> · hν ·
(
C̃ ·N4 + C̃′ ·N ′4

)
· ga · T (7.2.4)

These two expressions are constructable using matrices because the dimensions of

such pairs as hν and ha are equal by h1,1(W) = h2,1(M). This allows us to build

forms such as T> · ha · e(ν), hybrids of terms defined in different spaces and in

different Type II theories. However, this fact means that generally such constructs

are ill defined. The expression T> · ha · e(ν) can be built in W if h1,1 = h2,1 and

provided2 it is also possible to choose ∆3(E∗) bases inW andM such that ha = ha.

This is a reflection of the link between the Kähler moduli space of W and the

complex structure moduli space of M, TI ↔ UI . If the link is to be between the

two moduli spaces of W itself then we instead wish to consider the equivalence

TA ↔ UI . Such an equivalence is only possible if h1,1 = h2,1 and also UA ↔ UI .

As such we have the motivation fo the narrowing of our considerations to those

spaces which satisfy W = M, the self mirror dual spaces. Such a restriction

automatically allows us to make the equivalence ga = ga and likewise with the

other bilinear forms because of the equality of the Hodge numbers3. As a result

it is possible to construct the Type IIB form Ω̃ ≡ Ω
∣∣∣
U→T

= T> · ha · f(a) on W.

With this equality between the tilded and untilded bilinear forms on W = M

both (7.2.3) and (7.2.4) therefore obtain an integral representation, in terms of Ω̃

and f̃ ≡ f
∣∣∣
T→U

.

W3 =

∫
W

〈
f̃,
(
D3(Ω̃c) + D′3(Ω̃′c)

) 〉
± (7.2.5)

W4 =

∫
W

〈
Ω̃,
(
D4(f̃c) + D′4(f̃′c)

) 〉
± (7.2.6)

2Without this particular requirement there is no reason to expect a bijective equivalence

between the two constructions.
3It should be noted that although the complex structure indices I, J, . . . and the Kähler indices

A,B, . . . range over the same values we retain their distinction for the purposes of clarity.
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To illustrate this more explicitly we consider an integral similar to that of (7.2.1),

namely using non-complexified holomorphic forms and use the properties of the

symplectic basis and the equality of the Hodge number to convert it into something

similar to (7.2.5). Thus illustrating a rearrangement of the superpotential akin to

that between (7.1.2) and (7.1.3).

∫
W

〈
Ω,D1(f)

〉
± =

∫
W

(
UAaA − UBbB

)
∧

 TI

(
F(I)AaA − F

B
(I) bB

)
±TJ

(
F

(I)
AaA − F(J)BbB

)


=

∫
W

(
TIaI − TJbJ

)
∧

 UA

(
(∓F(I)A)aI − F

B
(J) bJ

)
−UB

(
(∓F(I)

A)aI − F(J)Bb
J
)


=

∫
W

〈
Ω̃,D4(f̃)

〉
± (7.2.7)

We have had to make the assumption that I, J and A,B range over the same

indices and that the sympletic structure of W is equivalent to that of M, as

such expressions as TAaA − TBbB are the Type IIA holomorphic 3-form Ω but

with the moduli labelled in the Type IIB manner. The general fact that these

expressions bear a striking resemblence to the Type IIA superpotential integrals

prompts us to now turn our attention to those superpotential-like integrals defined

in Type IIA on a generic M. As with Type IIB, there are two expressions which

can be written as integrals and two which, in general, cannot. We label the

Type IIA derivatives with an index, Di, and likewise with their associated matrix

representations, which in the case of Type IIA has Mi representing the action on

the ∆3(E∗) basis and Nj on the ∆+(E∗) basis.

W1 =

∫
M

〈
f,
(
D1(Ωc) +D′1(Ω′c)

) 〉
±

= U> · ha ·
(
C ·M1 + C′ ·M ′1

)
· gν · T (7.2.8)

W2 =

∫
M

〈
Ω,
(
D2(fc) +D′2(f′c)

) 〉
±

= T> · hν ·
(
C̃ ·N2 + C̃′ ·N ′2

)
· ga · U (7.2.9)
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W1 is the Type IIA superpotential onM as obtained by taking the moduli dual of

the Type IIB superpotential defined onW, the exchange of the holomorphic forms

and the alteration D→ D. Comparing (7.2.3) with (7.2.8) we have M1 = M3 and

M ′1 = M ′3, once we account for the different ways of labelling the moduli degrees

of freedom and similarly for the pair (7.2.4) and (7.2.9). Given this relationship

between non-integral expression of Type IIB with integral expressions of Type IIA

we would expect the reverse to also be true, the integrals of Type IIB are equal

to expression in Type IIA which do not in general have an integral expression.

W3 = U> · hν ·
(
C ·M3 + C′ ·M′3

)
· ga · T (7.2.10)

W4 = T> · ha ·
(
C̃ · N4 + C̃′ · N′4

)
· gν · U (7.2.11)

As expected, the Type IIB expressions each have a Type IIA partner which is not

always expressible as an integral over M, (7.2.1) with (7.2.10) and (7.2.2) with

(7.2.11). For the case ofW =M it is possible to construct integral representations

in the same manner as the Type IIB case and we again take f̃ and Ω̃ to represent

the holomorphic forms which have had their moduli dependencies exchanged.

W3 =

∫
M

Ω̃ ∧
(
D3(f̃c) + D̃′3(f̃′c)

)
, W4 =

∫
M

f̃ ∧
(
D4(Ω̃c) + D̃′4(Ω̃′c)

)
(7.2.12)

The set of expressions W− = {W1,W3,W1,W3} are linked by moduli relabelling

and mirror symmetry and as such the constraints arising from the nilpotency of the

related derivatives should all be equivalent. This is clearly seen when considering

the pairing of W1 with W3 and W3 with W1, related by relabellings of moduli,

and we have previously seen it for the mirror map related pairing of W1 and W1

but repeat here.

T> · hν ·
(
C ·M1 + C′ ·M′1

)
· ga · U = U> · ha ·

(
C ·M1 + C′ ·M ′1

)
· gν · T

Upon accounting for the moduli relabelling we can equate the matrices defining

the expressions without having to transpose one of them and because of C = C
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the complexification matrices can be factorised out and thus neglected.

hν ·M1 · ga = ha ·M1 · gν

The interdependence of the flux matrices is determined by the choice of
〈 〉
±.

〈 〉
± →

〈 〉
+

⇒ M1 = ha ·M1 · ha , N1 = −hν · N1 · hν〈 〉
± →

〈 〉
− ⇒ M1 = M1 , N1 = N1

The primed cases are exactly the same because both flux sectors have their as-

sociated derivatives acting on the complexified holomorphic forms and from this

it is straightforward to see that D2
1 = 0 is equivalent to D2

1 = 0. The algebra

required to show this is considerably simplified by the fact the complexification

matrices do not play a part in how the IIA and IIB fluxes relate to one another.

This is a result of the fact that each element of W− has the dilaton coupling the

same degrees of freedom4.

Type IIA : Ωc = − S U0a0 + Uiai − Ujbj + S U0b0 ∈ MQ(U, S)

Type IIB : fc = − S T0ν0 + Tiνi + Tj ν̃j − S T0ν̃0 ∈ MQ(T, S)

As seen in our consideration of the Type IIA R-R sector it is immaterial which

holomorphic form the derivatives act on, the important point is which moduli

combine with the dilaton to makeMQ. Ultimately we aim to construct a Type II

theory with equivalent moduli spaces and this is most easily done by considering

the SL(2,Z)S symmetric Type IIB superpotentials, where each derivative acts on

a holomorphic form of the same moduli space. As a result of this and for the sake

of following on from previous results we will consider only superpotential-like ex-

pressions which have the derivatives acting on the MQ holomorphic forms.

By the same reasoning the set of expressions W+ = {W2,W4,W2,W4} are

linked by moduli relabelling and mirror symmetry. Each one has the dilaton

4We temporarily drop the distinction between the Kähler and complex structure index ranges

since W =M to illustrate equivalent degrees of freedom.
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coupling to the same degrees of freedom and so the complexification matrices

can again be factorised out when comparing the expressions. From this it is

straightforward to obtain the relationship between the different flux matrices and

to show the nilpotency conditions to be equal. As an example we consider W2

and W2 where the complexification matrices combine with either T or U, as is the

case for any other pairwise comparision of W+ elements.

U> · ha ·
(
C̃ · N2 + C̃′ · N′2

)
· gν · T = T> · hν ·

(
C̃ ·N2 + C̃′ ·N ′2

)
· ga · U

Accounting for the different moduli labelling and removing the complexification

matrices we have the relationship between the N
(′)
2 and N

(′)
2 .

ha · N2 · gν = hν ·N2 · ga

As in the previous case the specific relationship between the flux matrices depends

on
〈 〉
± and in each case it follows quickly that their nilpotency conditions are

equivalent.

〈 〉
± →

〈 〉
+

⇒ N2 = ha · N2 · ha , M2 = hν ·M2 · hν〈 〉
± →

〈 〉
− ⇒ N2 = N2 , M2 = M2

In both W− and W+ this same factorisation has occured and led to very similar

results. However, if we are to compare an element of W− with an element of W+

this simplification is no longer applicable. Rather than linking two superpotential-

like expressions which have the sameMK×MQ moduli space construction we are

now comparing different moduli space constructions. This alteration of dilaton

coupling presents the further complication that the two flux sectors mix. Though

we have constructed the expressions in W± such that their polynomial forms are

equal the fluxes, their related covariant derivatives, components and flux matrices

are not and contributions from both flux sectors, as defined in W−, will appear

in each derivative for a superpotential in W+. We shall denote the map which

converts the standard Type IIB fluxes and derivatives of W1 into those of W2 by

247



π, whose general behaviour is to map (7.1.2) to (7.1.3), which we wish to express

in terms of derivatives and holomorphic forms.

7.3 Alternate Fluxes

The Kähler moduli in (7.2.1) arise due to the Kähler forms J (n) with f =
∑
J (n)

and we defined the complex structure equivalent of them J(n) in (4.3.3). Using the

expressions in (4.1.42) as a guide we shall choose the non-standard way of writing

the superpotential in (7.2.2) to be the form of the superpotential we examine.

This expression can be broken down into simpler expressions by expressing Ωc

using the decomposition of (4.3.3).∫
W

〈
f,D2(Ωc)

〉
± =

∫
W

〈
f,D2

(
−S J(0) + J(1) + J(2) − S J(3)

) 〉
±

The fluxes which couple to the J(n) define a set of flux multiplets, Fn and F̂m.

In the Type IIB superpotential the non-standard coupling of the Kähler moduli

required us to define the flux multiplets of D in the form ?Fn, given in (4.2.13). We

also saw in the tadpole expressions of Table 5.3 that this induced in the Type IIA

mirror an altering of the way in which the fluxes couple to the complex structure

moduli. We also demonstrated that for both holomorphic forms in both Type II

constructions if the matrice associated to this alteration, such as L and K in Type

IIB , were symplectic then we could work on the level of the derivatives, such as

D in Type IIB, rather than the fluxes, G in Type IIB. As a result precisely how

we denote the flux multiplets is reduced to a matter of convention, we are not

attempting to derive their string theoretic or compactification origins. We choose

to use the same notation as (4.2.13).

D2(Ωc) = − S (?F̂0) · J(0) + (?F1) · J(1) + (?F2) · J(2) − S (?F̂3) · J(3)

D′2(Ω′c) = (?F0) · J(0) − S (?F̂1) · J(1) − S (?F̂2) · J(2) + (?F3) · J(3)
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Given these definitions for the flux multiplets of D
(′)
2 and the expansion of the J(n)

in terms of the ∆3(E∗) basis we can define the components of the fluxes in ∆∗(E)

in the same way as (4.2.14) and we relate them to the actual flux multiplets which

define the D2 version of G.

?F̂0 ∼ F̂0 :
(

F
(0)
IνI ± F(0)J ν̃J

)
ιb0

?F2 ∼ F̂1 :
(

F
(b)
IνI ± F(b)J ν̃J

)
ιbb

?F̂3 ∼ F̂3 :
(

F(0)IνI ± F
J

(0) ν̃
J
)
ιb0

?F1 ∼ F̂2 :
(

F(a)IνI ± F
J

(a) ν̃
J
)
ιaa

(7.3.1)

The superpotential is then straightforward to express in terms of these fluxes, in

the same manner as the standard Type IIB case and we including the sign choice

due to
〈 〉
±.

∫
W

〈
f,D2(Ωc)

〉
±=

−S U0

(
F(0)IT

I ±F
J

(0) TJ

)
+Ua

(
F(a)IT

I ±F
J

(a) TJ

)
+S U0

(
F

(0)
IT

I ±F(0)JTJ

)
− Ub

(
F

(b)
IT

I ± F(b)JTJ

)


(7.3.2)∫
W

〈
f,D′2(Ω′c)

〉
±=

 U0

(
F̂(0)IT

I ± F̂
J

(0) TJ

)
−S Ua

(
F̂(a)IT

I ± F̂
J

(a) TJ

)
−U0

(
F̂

(0)
IT

I ± F̂(0)JTJ

)
+ S Ub

(
F̂

(b)
IT

I ± F̂(b)JTJ

)


By comparing these two ways of writing the superpotential we can obtain the

components of the F in terms of the usual fluxes F and F̂, which are given in

Table 7.3. The F̂ cases follow in the same manner. The global factor of ∓1

follows from the choice of
〈 〉
±, with the

〈 〉
+

case allowing an overall factor of

−1 to arise since it is symmetric on ∆+(E∗) and antisymmetric on ∆−(E∗). In

terms of the F components we can express the action of the derivative on ∆∗(E∗)

in the same way as was done for the F.

D2(aA) = F(A)IνI ± F
J

(A) ν̃
J

D2(bB) = F
(B)

IνI ± F(B)J ν̃J
⇔

D2(νI) = ∓F(A)IaA ± F
I

(B) bB

D2(ν̃J) = F
(A)

JaA − F(B)Jb
B
(7.3.3)

The action of π on the various objects of Type IIB theory can now be written in

a more explicit manner, one which bears close resemblence to the action of mirror
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F : F(0)0 F(0)i F
0

(0) F
j

(0)

∈W : −S U0T
0 −S U0T

i −S U0T0 −S U0Tj

F : ∓F(0)0 ∓F̂(i)0 ∓F 0
(0) ∓F̂ 0

(j)

F : F(a)0 F(a)i F
0

(a) F
j

(a)

∈W : UaT
0 UaT

i UaT0 UaTj

F : ∓F̂(0)a ∓F(i)a ∓F̂ a
(0) ∓F a

(j)

F : F
(0)

0 F
(0)
i F(0)0 F(0)j

∈W : S U0T0 S U0Ti S U0T0 S U0Tj

F : ∓F(0)
0 ∓F̂(i)

0 ∓F(0)0 ∓F̂(j)0

F : F
(b)

0 F
(b)
i F(b)0 F(b)j

∈W : −UbT0 −UbTi −UbT0 −UbTj

F : ∓F̂(0)
b ∓F(i)

b ∓F̂(0)b ∓F(j)b

Table 7.3: π defined components of F in terms of the components of F and F̂ and

associated superpotential coefficients.

symmetry on the R-R sector but without M↔W or Type IIA ↔ Type IIB.

π :

D
(′)
1 ↔ D

(′)
2 , (F, F̂) ↔ (F, F̂)

M
(′)
1 ↔ M

(′)
2 , Ω ↔ f

N
(′)
1 ↔ N

(′)
2

(7.3.4)

These actions are such that the superpotential is left invariant by π but the fluxes

and derivatives are redefined. It is noteworthy also that π satisfies π2 = Id, where

Id is the identity map which leaves all objects in (7.3.4) unchanged.

7.4 Alternate Flux Matrices

Before considering the constraints induced on the fluxes of D
(′)
2 we shall derive the

dependence of those fluxes on the usual D
(′)
1 fluxes by equating the two ways of
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writing the superpotential in terms of flux matrices in (7.2.1) and (7.2.2).

T> · hν ·
(
C ·M1 + C′ ·M′1

)
· ga · U = U> · ha ·

(
C̃ · N2 + C̃′ · N′2

)
· gν · T(7.4.1)

The right hand expression is akin to the Type IIA superpotential but since it is

defined within Type IIB the moduli are the same as the left hand expression. This

is in contrast to comparing the mirror dual superpotentials, as done in Section

4.4, where the inclusion of quantum corrections alters how we related the moduli

on each side of the mirror transformation. Since the Type IIB superpotential is

naturally written in terms of M1 and M′1 we wish to express N2 and N′2 in terms of

them. Hence, because of the non-trivial dilaton coupling caused by the inability

to neglect the complexification matrices we must consider the NS-NS and R-R

sector simultaneously.

C ·M1 + C′ ·M′1 = hν · g>ν ·
(
N>2 · C̃ + (N′2)> · C̃′

)
· ha · g>a

The complexification matrices, tilded and not, are all diagonal and commute with

the bilinear forms in both Type IIA and Type IIB and though we are assuming

h1,1 = h2,1 we retain the distinction between C(′) and C̃(′) and their definition in

terms of other matrices.

C = A− S B = Ah1,1 − S Bh1,1 C′ = B− S A = Bh1,1 − SAh1,1

C̃ = A− S B = Ah2,1 − S Bh2,1 C̃′ = B − SA = Bh2,1 − SAh2,1

Commuting the C(′) through the bilinear forms we can reexpress the N
(′)
2 in terms

of M
(′)
2 through the use of (4.1.35) so that all the transposed matrices are removed.

The result is
〈 〉
± dependent as it involves bilinear forms.

C ·M1 + C′ ·M′1 = gν · g>a ·
(
M2 · C̃ + M′2 · C̃′

)
Inserting the specific definitions of the bilinear forms for each

〈 〉
± we again see

that the choice
〈 〉
− leads to an expression which is particularly simple.

C ·M1 + C′ ·M′1 =
{ (

M2 · C̃ + M′2 · C̃′
)

:
〈 〉
± →

〈 〉
−

−ha ·
(
M2 · C̃ + M′2 · C̃′

)
:
〈 〉
± →

〈 〉
+

(7.4.2)
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This reformulation is that obtained by altering which holomorphic form the deriva-

tive acts upon, as previously constructed for
〈 〉
±.∫

W

〈
Ωc,D2(f)

〉
− =

∫
W

〈
f,D2(Ωc)

〉
−

T> · hν ·M2 · ga · C̃ · U = U> · ha · C̃ · N2 · gν · T

By considering dilaton couplings this decomposes into a pair of equations, each

involving all of the flux matrices, which can be written in terms of the Fn
::

and

F̂m
:::

matrices defined in (5.3.14). To formalise this we restrict our attention to the〈 〉
− case as the

〈 〉
+

case is different only by an overall factor of −ha as given in

(7.4.2) and elaborate on the expressions of (5.3.14).

〈
Ω,D1(fc) + D′1(f′c)

〉
− ≡

〈
Ω,F1(f)− S F̂1(f)

〉
−

≡ T> · hν ·
(
F1
::
− S F̂1

::

)
· ga · U

Repeating this for D2 and D′2 we make use of the anti-self adjoint properties of

the derivatives on
〈 〉
− to change the argument of the derivatives and as a result

the definition of F2
::

and F̂2
::

differ from the F1
::

and F̂1
::

cases in line with (7.4.2).

〈
f,D2(Ωc) + D′2(Ω′c)

〉
− ≡

〈
f,F2(Ω)− S F̂2(Ω)

〉
−

≡
〈
f,F2(Ω)

〉
− − S

〈
f, F̂2(Ω)

〉
−

≡
〈

Ω,F2(f)
〉
− − S

〈
Ω, F̂2(f)

〉
−

≡ T> · hν ·
(
F2
::
− S F̂2

::

)
· ga · U

≡ T> · hν ·
(
M2 · C̃ + M′2 · C̃′

)
· ga · U

(7.4.3)

Comparing the definitions of F1
::

and F̂1
::

with those of F2
::

and F̂2
::

it follows that for〈 〉
− they are equal, while for

〈 〉
+

there is an overall factor, on the left, of ha.

F2
::

= M2 · A + M′2 · B = A ·M1 + B ·M′1 = F1
::

F̂2
::

= M2 · B + M′2 · A = B ·M1 + A ·M′1 = F̂1
::
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Using the properties of A and B these simultaneous equations allow us to express

M
(′)
2 entirely in terms of M

(′)
1 .

M2 =
(
A ·M1 + B ·M′1

)
·A +

(
B ·M1 + A ·M′1

)
·B

= F1
::

·A + F̂1
::

·B

M′2 =
(
A ·M1 + B ·M′1

)
·B +

(
B ·M1 + A ·M′1

)
·A

= F1
::

·B + F̂1
::

·A

Previously, when discussing S duality transformations in Type IIB, it was conve-

nient to view the two flux matrices as doublet partners due to their relationship

with the SL(2,Z)S doublets and the same is true here; we can express the re-

lationship between the M
(′)
2 and the M

(′)
1 in terms of transformations on a two

component vector using the same transformation matrices that relate the S dual-

ity flux doublet with the flux matrix doublet, as in (5.3.15).M2

M′2

 =

A B

B A


L

M1

M′1


A B
B A


R

=

F1
::

F̂1
::


A B
B A


R

(7.4.4)

The L and R subscripts define the direction of multiplication.A B

B A


L

X
Y

 ≡
A ·X + B · Y

A ·X + B · Y

 ,

X
Y


A B
B A


R

≡

X · A+ Y · B

X · A+ Y · B


The N

(′)
i forms of these expressions are straightforward to construct from (7.4.4).

N2 = A ·
(
N1 · A + N′1 · B

)
+ B ·

(
N1 · B + N′1 · A

)
=
(
A · N1 + B · N′1

)
· A +

(
A · N′1 + B · N1

)
· B

N′2 = B ·
(
N1 · A + N′1 · B

)
+ A ·

(
N1 · B + N′1 · A

)
=
(
B · N1 +A · N′1

)
· A +

(
B · N′1 +A · N1

)
· B

(7.4.5)

These form the same kind of tranformed doublet structure as in (7.4.4)N2

N′2

 =

A B
B A


L

N1

N′1


A B

B A


R

(7.4.6)
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7.5 Alternate Bianchi Constraints

7.5.1 T′ duality constraints

Given the two actions of D2 on the ∆3(E∗) and ∆+(E∗) light forms of (7.3.3) we

can construct the D2
2 expressions.

D2
2(aA) =±

(
F

J
(A) F

(B)
J − F(A)IF

(B)I
)
aB ±

(
F(A)IF

I
(B) − F

J
(A) F(B)J

)
bB

D2
2(bB) =±

(
F(B)JF

(A)
J − F

(B)
IF

(A)I
)
aA ±

(
F

(B)
IF

I
(A) − F(B)JF(A)J

)
bA

D2
2(νI) =±

(
F

I
(B) F

(B)
J − F(A)IF(A)J

)
νJ +

(
F

I
(B) F(B)J − F(B)IF

J
(B)

)
ν̃J

D2
2(ν̃J) = +

(
F

(A)
JF(A)I − F(B)JF

(B)
I

)
νI ±

(
F

(A)
JF

I
(A) − F(B)JF

(B)I
)
ν̃I

(7.5.1)

Although we can use Table 7.3 to convert these expressions into the F and F̂

components, it is more convenient to work with flux matrices, as the generalisation

to the S duality case is more forthcoming in that formulation. In terms of flux

matrices the constraints on the fluxes as a result of the nilpotency of D2 are not

equivalent to the D1 nilpotency constraints, due to the existence and placement

of the projection-like matrices A and B. To examine this we redefine our notation

for each of the flux matrices such that the expressions relating to Mi · ha · Ni = 0

simplify and we again use ·ha· = �.5m2

m′2

 =

M2

M′2


A B
B A


R

,

n2

n′2

 =

A B
B A


L

N2

N′2


Due to the orthogonality of A and B half of the terms in the expansion of M

(′)
2 �

N
(′)
2 as linear combinations of M

(′)
1 � N

(′)
1 are identically zero, as was seen when

considering S duality constraints. With each of the four cases being of the same

format, only differing by location and number of primed flux matrices, without

5The case of Ni · hν ·Mi = 0 follows in the same manner if we did a different redefinition in

which we factorised out the matrices

A B

B A

.
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much loss of generality we explicitly consider the first case.

M2 � N2 = m2 · A � A · n2 + m′2 · B � B · n′2

=



A ·
(
M1 · A � N1 + M′1 · B � N′1

)
· A

+ B ·
(
M′1 · A � N1 + M1 · B � N′1

)
· A

+ A ·
(
M1 · A � N′1 + M′1 · B � N1

)
· B

+ B ·
(
M′1 · A � N′1 + M1 · B � N1

)
· B


(7.5.2)

This bears a strong resemblence to (5.3.20), except that there are A and B factors

between the two flux matrices as well as being external to each term. By using

the projection properties of the external A and B we can compare the components

of M2 � N2 with those of M1 � N1 and M′1 � N′1, as well as M′2 � N′2. In order to

drop the non-degenerate external factors dependent upon any bilinear forms we

consider the ideals generated by the components of the flux matrices.〈
A ·M2 � N2 · A

〉
=
〈
A ·
(

M1 · A � N1 + M′1 · B � N′1
)
· A
〉

〈
A ·M′2 � N′2 · A

〉
=
〈
A ·
(

M1 · B � N1 + M′1 · A � N′1
)
· A
〉

〈
A ·M1 � N1 · A

〉
=
〈
A ·
(

M1 · I � N1 + M′1 · 0 � N′1
)
· A
〉

〈
A ·M′1 � N′1 · A

〉
=
〈
A ·
(

M1 · 0 � N1 + M′1 · I � N′1
)
· A
〉

(7.5.3)

It is clear from the factA and B are internal to the flux matrix pairings of M
(′)
2 �N

(′)
2

that they cannot be written as some linear combination of the M
(′)
1 � N

(′)
1 and so

the T′ constraints associated with the derivatives defining W2 in (7.2.2) provide

different constraints to those of W1 in (7.2.1). However, it is clear from (7.5.3)

that the constraints are equivalent on a slightly weaker level, in that the sum of

the two terms associated with W1 is equal to the sum of the terms associated with

W2.〈
A ·
(

M2 � N2 + M′2 � N′2
)
· A
〉

=
〈
A ·
(

M1 � N1 + M′1 � N′1
)
· A
〉

〈
A ·
(

M′2 � N2 + M′2 � N2

)
· A
〉

=
〈
A ·
(

M1 � N′1 + M′1 � N1

)
· A
〉

These kinds of flux combinations have been previously seen in our analysis of S

duality, forming terms in SL(2,Z)S multiplets. Since we have explicitly assumed
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both NS-NS and R-R fluxes are all potentially non-zero we have to consider what

kind of flux structures are induced by S duality.

7.5.2 S duality constraints

In order to examine this further we repeat the method used to examine the S

duality of the Type IIB W1 superpotential but now we look at W2, by expressing

M2 · C̃ + M′2 · C̃′ as an inner product.

M2 · C̃ + M′2 · C̃′ =
(
M2 M′2

)
·

 C̃

C̃′


Using previous results for how the complexification matrices transform under

SL(2,Z)S we have the transformation properties of the doublet formed of the two

flux matrices and the transformation on the N
(′)
2 follow or can be obtained directly

from the definition of W2. C̃

C̃′

 →
((

Γ>S
)−1 ⊗A+

(
σ · Γ>S · σ

)−1 ⊗ B
) C̃

C̃′


(
M2 M′2

)
→
(
M2 M′2

) (
Γ>S ⊗A+

(
σ · Γ>S · σ

)
⊗ B

)
N2

N′2

 →
(
ΓS ⊗A+

(
σ · ΓS · σ

)
⊗ B

)N2

N′2


(7.5.4)

These are precisely those transformations seen in our previous analysis S duality

in (5.3.16) and (5.3.18) but with certain relabellings.

M1,2 ↔ N2,1 , M
′
1,2 ↔ N′2,1 , A ↔ A , B ↔ B

The immediate implication of this fact is that we can deduce all the SL(2,Z)S

multiplets associated to W2 from the known SL(2,Z)S multiplets associated to

W1. Applying these relabellings to 3A/B of (5.3.22) we obtain 3A/B and the pair
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of singlets 1A/B follow in the same manner from 1A/B in (5.3.24).

3A ≡ 〈 M2 · A � N2 , M′2 · A � N′2 , M′2 · A � N2 + M2 · A � N′2 〉

3B ≡ 〈 M2 · B � N2 , M′2 · B � N′2 , M′2 · B � N2 + M2 · B � N′2 〉

1A ≡ 〈 M′2 · A � N2 − M2 · A � N′2 〉

1B ≡ 〈 M′2 · B � N2 − M2 · B � N′2 〉

(7.5.5)

The introduction of these A and B terms inside the flux matrix pairings allows

us to make use of (7.4.4) and (7.4.6) to compare these W2 multiplets with the

W1 multiplets. Due to the linearly independent decomposition (5.3.19) 3A can be

written as a union of ideals defined by this decomposition.

3A = 〈A ·M1 · A � N1 · A , A ·M′
1 · A � N′

1 · A , A · (M′
1 · A � N1 + M1 · A � N′

1) · A 〉

∪ 〈B ·M′
1 · A � N1 · A , B ·M1 · A � N′

1 · A , B · (M1 · A � N1 + M′
1 · A � N′

1) · A 〉

∪ 〈A ·M1 · A � N′
1 · B , A ·M′

1 · A � N1 · B , A · (M′
1 · A � N′

1 + M1 · A � N1) · B 〉

∪ 〈B ·M′
1 · A � N′

1 · B , B ·M1 · A � N1 · B , B · (M1 · A � N′
1 + M′

1 · A � N1) · B 〉

By considering the splittings and decompositions due to A, B, A and B it can be

seen that the union of all the SL(2,Z)S ideals of W1 is equal to the union of all the

SL(2,Z)S ideals of W2 but individually the ideals are not equal to one another.

3A ∪ 3B ∪ 1A ∪ 1B = 3A ∪ 3B ∪ 1A ∪ 1B

The second set of SL(2,Z)S triplets on W2 follow (5.3.22) and (5.3.23) by the

same relabelling, including the bilinear forms.

3AA ≡ 〈 A · N2 /M2 · A , A · N′2 /M′2 · A , A · ( N′2 /M2 + N2 /M
′
2 ) · A 〉

3AB ≡ 〈 A · N′2 /M2 · B , A · N2 /M
′
2 · B , A · ( N2 /M2 + N′2 /M

′
2 ) · B 〉

3BA ≡ 〈 B · N2 /M
′
2 · A , B · N′2 /M2 · A , B · ( N′2 /M

′
2 + N2 /M2 ) · A 〉

3BB ≡ 〈 B · N′2 /M′2 · B , B · N2 /M2 · B , B · ( N2 /M
′
2 + N′2 /M2 ) · B 〉

These can then be written in terms of the W1 flux matrices using (7.4.4) and

(7.4.5), though we only do so explicitly for 3AA due to the length of the ex-

pressions. The remaining multiplets follow the same general structure but with
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appropriate (un)priming of the flux matrices and bilinear forms.

3AA = 〈A · ( N1 · A /M1 + N′1 · A /M′1 ) · A〉 ∪

∪ 〈A · ( N1 · B /M1 + N′1 · A /M′1 ) · A〉 ∪

∪ 〈A · ( N1 /M
′
1 + N′1 /M1 ) · A〉

As before the singlets are the third term of each triplet with a sign change.

1AA ≡ 〈 A · ( N′2 /M2 − N2 /M
′
2 ) · A 〉

1AB ≡ 〈 A · ( N2 /M2 − N′2 /M
′
2 ) · B 〉

1BA ≡ 〈 B · ( N′2 /M
′
2 − N2 /M2 ) · A 〉

1BB ≡ 〈 B · ( N2 /M
′
2 − N′2 /M2 ) · B 〉

However, when expressed in terms of the W1 flux matrices this simple relation

between the triplet and singlet generator functions is lost.

1AA = 〈A · ( N′1 · (A− B) /M1 − N1 · (A− B) /M′1 ) · A〉

In our examination of the usual formulation of the fluxes and superpotential we

noted that not all of these SL(2,Z)S multiplets are Bianchi constraints, some of

them are non-zero and measure tadpole contributions due to branes and their S

duality images. Which type of constraint a particular multiplet fell into was given

in Table 5.4 and we would expect a similar behaviour in these multiplets. The

simplest tadpole considered was the C4 potential which coupled to the external

space filling D3 branes whose flux contribution H3∧F3 ∼ F̂0∧F0 could be written

in terms of derivatives as being proportional to ιν0(D1D
′
1 − D′1D1)(ν̃0) ∈ 1BB.

The π image of this is obtained by replacing the W1 derivatives with those of

W2 and the flux polynomials associated to that appear in the 1BB singlet and

can be written in terms of derivatives as ιν0(D2D
′
2 −D′2D2)(ν̃0). How the tadpole

contributions are to be viewed in terms of the action of π on the branes of the

Type IIB theory is a question we shall not address other than to comment that

ιν0(D2D
′
2 − D′2D2)(ν̃0) contains the fluxes found on branes other than the D3
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branes in the formulation of the W1 superpotential, including extended objects

which are the NS-NS counterparts of the D branes.

7.5.3 Reduced superpotential expression

If we assume that the formulation of W2 is as valid as that of W1 then we can

express the superpotential in a way which is symmetric in its treatment of the

moduli spaces. By using (4.1.42) as a guide we have obtained the relationship

between the flux matrices of W1 in (7.2.1) and those of W2 in (7.2.2). To motivate

this further we consider a superpotential-like expression WD which is defined as a

scalar product involving the moduli vector Φ and a matrix D. We do not treat D

as the matrix associated to a derivative, only a linear operator on the cohomology

bases so that the associated flux matrices MD and ND are independent. However,

we use notation which follows previous superpotential-like scalar products.

WD ≡ Φ> · h · C ·D · g · Φ D =

 0 MD

ND 0

 C =

C 0

0 C̃


With h1,1 = h2,1 the complexification matrices are equal, C = C̃, and so for

convenience we use C = I2 ⊗ C. Expanding WD out in terms of the individual

moduli sectors results in a pair of terms, one of the form seen in W1 and the other

of the form seen in W2.

WD = T> · hν · C ·MD · ga · U + U> · ha · C · ND · gν · T (7.5.6)

This is in contrast to previous superpotential expressions considered, where the

matrices Ω and f are defined with a projection matrix P± so that one of the two

terms is projected out. In general there are two contributions to the superpotential

due to the different flux sectors so if the two moduli spaces are equivalent we would

expect it to be possible to express the full superpotential in the same manner as

(7.5.6). On the assumption that W2 ≡ π(W1) = W1 the superpotential W , which
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is normally written as having the form of W1, is proportional to W1 +W2 and the

proportionality constant can be gauged to 1.

W = W1 + W2 =

 T> · hν · C ·M1 · ga · U + U> · ha · C · N2 · gν · T

+ T> · hν · C′ ·M′1 · ga · U + U> · ha · C′ · N′2 · gν · T


Given the fact π2 = Id by construction we have that W = W1 + π(W1) is π

invariant and therefore the two moduli spaces are treated in the same manner.

Comparing the scalar product expression for W with (7.5.6) we can see that the

two pairs of terms, relating to primed and non-primed flux matrices, suggest we

consider a pair of matrices where there is no mixing between the primed and

non-primed flux matrices.

D =

 0 M1

N2 0

 =

I 0

0 0


 0 M1

N1 0

 +

0 0

0 I


 0 M2

N2 0


≡ P+ · D1 + P− · D2

D′ =

 0 M′1

N′2 0

 =

I 0

0 0


 0 M′1

N′1 0

 +

0 0

0 I


 0 M′2

N′2 0


≡ P+ · D′1 + P− · D′2

Due to the non-trivial mixing between the NS-NS and R-R sectors in (7.4.4) and

(7.4.5) the distinction between the two flux sectors is no longer a simple one but

with Φ = Φ> ·h·e = f+Ω we are able to express the superpotential in a way which

treats the two moduli spaces in the same manner, using D◦C(Φ) ≡ D
(
C(Φ)

)
=

Φ> · C · D · e. This is not equivalent to D(C(Φ)) as the actions of D on ∆3(E∗)

and ∆+(E∗) are not equivalent and thus D as a derivative is ill defined.

W = Φ> · h ·
(
C ·D + C′ ·D′

)
· g · Φ

= g
(

Φ , (D◦C + D′◦C
′)(Φ)

)
=

∫
W

(
f + Ω

)
∧
(
D◦C + D′◦C

′
)(

f + Ω
)

In our examination of S duality we found it convenient to consider the invariance

of C·M+C′ ·M′ = F
:
−S F̂

:
, from which we could deduce the S duality transformation
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properties of the fluxes. Now that we have combined the two moduli spaces we

can extend this further.

C ·D + C′ ·D′ ≡ F− S F̂ ⇒

C

C′

 · (D D′
)

=

 1

−S

 · (F F̂

)

Given the same schematic structure the flux dependent matrices can be related

to one another in the same manner as (5.3.15), except that the dimensions of the

matrices have increased so we denote I2 ⊗A by A and likewise for B.F

F̂

 =

A B

B A


D

D′

 ⇒

D

D′

 =

A B

B A


F

F̂


This allows us to much more succinctly state the S duality transformation prop-

erties of the fluxes in this moduli symmetric formulation under S → aS+b
cS+d .D

D′

 →
A B

B A


a b

c d


A B

B A


D

D′


This result combined with the flux matrix definitions of D and D′ and the I2

term in A and B again illustrates that the M
(′)
1 and N

(′)
2 have equivalent SL(2,Z)S

transformations, as noted in (7.5.4) and required by definition (7.4.1). With this

definition of F and F̂ we can reduce the superpotential down to a simple form.

W = Φ> · h ·
(
C ·D + C′ ·D′

)
· g · Φ = Φ> · h ·

(
F− S F̂

)
· g · Φ

This formulation makes S duality transformation properties and the symmetry in

moduli treatment manifest. Previously we had seen that the complex structure

moduli sector possesses Sp(h1,1 + 1) invariance due to its f(a) definition and the

Kähler moduli sector’s f(ν) has a symmetry group isomorphic to O(h2,1+1, h2,1+1)

if
〈 〉
± →

〈 〉
+

and Sp(h2,1 + 1) if
〈 〉
± →

〈 〉
−. In this combined moduli space

formulation it is possible an enhancement to these symmetries occurs, namely

those transformations which leave g = ga ⊕ gν invariant, of which these Sp(n) or

O(m,m) groups are obvious subgroups.
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7.6 The Z2 × Z2 Orientifold

We have already discussed some of the Z2 × Z2 orientifold’s symmetries between

its Type IIA and Type IIB formulations and we again use it as an explicit example

for the results just derived.

7.6.1 Alternative Fluxes

We can combine the Type IIB F fluxes given in Table 6.5 with the relationship

between the F ∈W1 and F ∈W2 fluxes given in Table 7.3 to obtain the Type IIB

F cohomology components in the Type IIB Λp(E∗) components. These are stated

in Table 7.4.

7.6.2 Alternative Bianchi Constraints

We shall restrict ourselves to a particular case, rather than consider the full set

of constraints, and to fall inline with our previous work on the Z2×Z2 orientifold

we consider the fluxes which survive the orientifold projection in Type IIB/O3.

We shall also not consider S duality induced constraints but rather compare T

duality constraints to those of T′ duality, though for simplicity we consider all

fluxes induced by S duality in Type IIB/O3. To begin with we must determine

which F components survive the orientifold projection.

F̂(i)A , F̂
B

(i) , F
(0)
A , F(0)B

F(i)A , F
B

(i) , F̂
(0)
A , F̂(0)B

}
⇔

{
F(A)i , F

i
(B) , F

(A)
0 , F(B)0

F̂(A)i , F̂
i

(B) , F̂
(A)

0 , F̂(B)0

Recalling the T duality Bianchi constraints of D in (5.1.12) we can apply the

orientifold projection to obtain the T duality constraints for D1 in Type IIB/O3.

The cases of D2
1(aA) and D2

1(bB) are trivial and we can restrict the summed indices

in the cases of D1 on the ∆+(E∗) basis.

D2
1(νi) =

(
F

B
(i) F

(0)
B − F(i)AF

(0)A
)
ν0 +

(
F(i)AF

A
(j) − F

B
(i) F(j)B

)
ν̃j

D2
1(ν̃0) =

(
F(0)BF

(0)
B − F

(0)
AF

(0)A
)
ν0 +

(
F

(0)
AF

A
(i) − F(0)BF(i)B

)
ν̃i
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F(0)0 F(0)1 F(0)2 F(0)3 F
0

(0) F
1

(0) F
2

(0) F
3

(0)

F(0)I −F̂135 +F̂2
35 +F̂4

51 +F̂6
13 −F̂246 −F̂46

1 −F̂62
3 −F̂24

5 F
J

(0)

F(a)0 F(a)1 F(a)2 F(a)3 F
0

(a) F
1

(a) F
2

(a) F
3

(a)

F(1)I −F146 +F2
46 −F3

61 −F5
14 −F235 −F35

1 +F52
4 +F23

6 F
J

(1)

F(2)I −F236 −F1
36 +F4

62 −F5
23 −F145 +F45

2 −F51
3 +F14

6 F
J

(2)

F(3)I −F245 −F1
45 −F3

52 +F6
24 −F136 +F36

2 +F61
4 −F13

5 F
J

(3)

F
(0)

0 F
(0)

1 F
(0)

2 F
(0)

3 F(0)0 F(0)1 F(0)2 F(0)3

F
(0)
I +F̂246 +F̂1

46 +F̂3
62 +F̂5

24 −F̂135 +F̂35
2 +F̂51

4 +F̂13
6 F(0)J

F
(b)

0 F
(b)

1 F
(b)

2 F
(b)

3 F(b)0 F(b)1 F(b)2 F(b)3

F
(1)
I +F235 +F1

35 −F4
52 −F6

23 −F146 +F46
2 −F61

3 −F14
5 F(1)J

F
(2)
I +F145 −F2

45 +F3
51 −F6

14 −F236 −F36
1 +F62

4 −F23
5 F(2)J

F
(3)
I +F136 −F2

36 −F4
61 +F5

13 −F245 −F45
1 −F52

3 +F24
6 F(3)J

Table 7.4: Explicit π defined components for fluxes Fn for
〈 〉
−. For

〈 〉
+

there

is a global factor of −1. The F̂m follow by the (un)hatting of all components.

263



The flux polynomial ιν0D
2
1(ν̃0) is non-trivial but due to the antisymmetric nature

in I and J of F(I)BF
(J)

B − F
(I)
AF

(J)A it vanishes under the orientifold projection.

The previously noted symmetry of ιν̃jD
2
1(ν̃0) = ιν0D

2
1(νj) reduces the number

of independent flux polynomials which define the nilpotency conditions and we

define a vector and a matrix from them.

ιν̃jD
2
1(ν̃0) = χj ⇒ χj = F

(0)
AF

A
(j) − F(0)BF(j)B

ιν̃jD
2
1(νi) = χij ⇒ χij = F(i)AF

A
(j) − F

B
(i) F(j)B

We now repeat this for the D2 derivative by applying the orientifold projection

to the Bianchi constraints of (7.5.1). The cases of D2
2(aA) and D2

2(bB) are once

again trivial due to the projection and we can restrict the summation range of

the indices for the ∆+(E∗) nilpotency expressions.

D2
2(νi) =±

(
F

i
(B) F

(B)
0 − F(A)iF(A)0

)
ν0 +

(
F

i
(B) F

(B)j − F(B)iF
j

(B)

)
ν̃j

D2
2(ν̃0) = +

(
F

(A)
0F(A)0 − F(B)0F

(B)
0

)
ν0±

(
F

(A)
0F

i
(A) − F(B)0F

(B)i
)
ν̃i

(7.6.1)

The flux polynomial ιν0D
2
2(ν̃0) is non-trivial but it too vanishes under the orien-

tifold projection. The symmetry of ιν̃jD
2
2(ν̃0) = ιν0D

2
2(νj) reduces the number

of independent flux polynomials which define the nilpotency conditions and we

define a second pair of a vector and a matrix from them.

ιν̃jD
2
2(ν̃0) = ξj ⇒ ξj = ±F(A)

0F
i

(A) ∓ F(B)0F
(B)i

ιν̃jD
2
2(νi) = ξij ⇒ ξij = F

i
(B) F

(B)j − F(B)iF
j

(B)

Since we have included the S duality induced fluxes of Type IIB/O3 the form of

D2’s nilpotency constraints are of the same schematic form as those of D1. To

examine this further we use Table 7.3 to convert the fluxes of D1 into those of D2,

and vice versa, for the χ and ξ terms.

χj = F
(0)

0F
0

(j) + F
(0)
aF

a
(j) − F(0)0F(j)0 − F(0)bF(j)b

= F
(0)

0F̂
j

(0) + F̂
(a)

0F
j

(a) − F(0)0F̂
(0)j − F̂(b)0F

(b)j

ξj = ±F(0)
0F

i
(0) ± F

(a)
0F

i
(a) ∓ F(0)0F

(0)i ∓ F(b)0F
(b)i

= ±F(0)
0F̂

0
(i) ± F̂

(0)
aF

a
(i) ∓ F(0)0F̂(i)0 ∓ F̂(0)bF(i)b
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With these expansions we can see the mixing of the NS-NS and R-R fluxes in the

constraints of D2, despite us not considering SL(2,Z)S transformations. To see

this further we make use of Table 7.4 and consider χ1 and ξ1.

χ1 = −F̂246F
46
1 − F̂235F

35
1 + F̂145F

45
2 + F̂136F

36
2

+F̂135F
35
2 + F̂146F

46
2 − F̂236F

36
2 − F̂245F

45
2 ∝ F̂pq[1F

pq
2]

ξ1 = −F̂246F̂
46
1 − F̂235F̂

35
1 + F̂145F̂

45
2 + F̂136F̂

36
2

+F̂135F̂
35
2 + F̂146F̂

46
2 − F̂236F̂

36
2 − F̂245F̂

45
2 ∝ F̂pq[1F̂

pq
2]

Repeating this with χij and ξij we use Table 7.3 to convert the fluxes of D1 into

those of D2, and vice versa.

χij = F(i)0F
0

(j) + F(i)aF
a

(j) − F
0

(i) F(j)0 − F
b

(i) F(j)b

= F̂(0)iF̂
j

(0) + F(a)iF
j

(a) − F̂
i

(0) F̂
(0)j − F

b
(i) F(j)b

ξij = F
i

(0) F
(0)j + F

i
(b) F

(b)j − F(0)iF
j

(0) − F(b)iF
j

(b)

= F̂
0

(i) F(j)0 + F
b

(i) F(j)b − F(i)0F
0

(j) − F(i)bF
b

(j)

To examine this further we make use of Table 7.4 and consider χ12 and ξ12.

χ12 = −F35
2 F62

3 + F46
2 F52

4 + F36
1 F51

3 − F45
1 F61

4

+F46
1 F51

4 − F35
1 F61

3 − F45
2 F62

4 + F36
2 F52

3 ∝ F
p[5
q F

6]q
p

ξ12 = −F̂46
1 F̂51

4 + F35
1 F61

3 + F45
2 F62

4 − F36
2 F52

3

+F̂35
2 F̂62

3 − F46
2 F52

4 − F36
1 F51

3 + F45
1 F61

4 6∝ F̂
p[5
q F̂

6]q
p

Unlike ξj it is not possible to express ξji in terms of the D1 fluxes in a straight

forward manner. The orientifold projection’s effect on the fluxes of D1 is to remove

two of the four fluxes induced by T duality but in terms of the fluxes of D2 half of

the components of each of the four fluxes are projected out. This is analogous to

the way in which the orientifold projection affects the fluxes of Type IIA compared

to those of Type IIB. In this case the complication is not due to the NS-NS fluxes

mixing in a non-trivial manner but the two flux sectors being mixed by the action

of π.

265



Summary

In this chapter we have considered the way in which the polynomial form of

a general U duality invariant superpotential has a symmetry in the two moduli

types, particularly on those spaces which are their own mirror duals. Naturally the

moduli of the compact space and the stringy dilaton modulus arrange themselves

into Kähler manifolds in a way which depends on which Type II construction is

used for the effective theory and in previous chapters we constructed the relevant

U duality invariant superpotentials in terms of the holomorphic sections of these

Kähler manifolds. Under T dualities or mirror transformations Type II theories

are exchanged and the type of moduli the dilaton combines into the MQ Kähler

manifold changes. We have argued that for self-mirror spaces this implies that

a polynomial form of the superpotential can be reformulated into being in terms

of either the holomorphic forms associated to a Type IIB construction or the

holomorphic forms of a Type IIA construction.∫
M

〈
Ω,D1(fc) + D′1(f′c)

〉
± =

∫
M

〈
f,D2(Ωc) + D′2(Ω′c)

〉
±

In each case the fluxes are associated to a set of derivatives and due to the non-

trivial way in which the dilaton coupling enters into the definition of the fluxes we

found that these derivatives have Bianchi constraints which are inequivalent to

those of the standard formulation. Despite this inequivalence of the constraints

the two alternative formulations share many of the same structures under such

symmetries as SL(2,Z)S modular invariance. The Z2 × Z2 orientifold has again

provided us with a convenient explicit example to illustrate the results and due

to its parallelisability it also demonstrates how the formulation can be written

in terms of the Λp(E∗) defined fluxes. In such cases we obtained expressions

which were independent of our choice of
〈 〉
±, as would be expected in such a

construction.
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Chapter 8

Summary and Conclusions

This thesis has considered string dualities in the effective theories of both Type

IIA and Type IIB string theories and illustrated the construction of maximally

invariant N = 2 Type II flux configurations. We have seen how fluxes obtained

by compactification determine the structure of the full duality extended superpo-

tential, which possesses a natural construction in terms of generalised geometry

and SU(3) structure defined cohomologies. Constructing the superpotentials in

terms of holomorphic forms and their flux dependent derivatives suggests the

existence of additional fluxes in the same manner as the Lie algebra structure

constant formulation does. These two approaches have different advantages and

disadvantages. The derivative representation allows the use of powerful gener-

alise geometry methods and provides a natural basis for the moduli definitions,

in terms of ∆p(E∗). However, with moduli obtaining flux induced masses the dis-

tinction between heavy and light fields for the effective theory can be lost. The

Lie algebra formulation does not neglect any modes but moduli dependence and

algebraic methods are less forthcoming when working with Λp(E∗) defined compo-

nents and requires that the compact space be parallelisable. Different symmetries

are manifest in the different formulations; the truncated basis of ∆∗(E∗) allows

the Kähler structure of the moduli spaces to be clearly seen, the complex or sym-

267



plectic, depending on the inner product used, nature of the Kähler moduli and the

symplectic nature of the complex structure moduli, while for parallelisable spaces

the flux components defined in the Λp(E∗) construction have GL(6,Z) invariance.

The vast majority of our analysis centred on the generalised geometry con-

struction, within which we could demonstrate the equivalence of T or mirror dual

Type II constraints, N = 1 field content via the orientifold projection and entirely

classify SL(2,Z)S multiplets for both Bianchi and tadpole constraints. In terms

of generalised geometry the structure and construction of the Bianchi and tadpole

constraints can be unified into a single description. However, we observed that

unlike the T duality or S duality only cases the physical construction of U duality

induced tadpoles is not clear in terms of charged extended objects coupling to

fields. For the T and S invariant Type IIB/O3 construction of the Z2 × Z2 ori-

entifold such expressions were seen in terms of D3, D7 branes and their S duality

images but this was not the case for the more general N = 2 U duality construc-

tions on other compact spaces. For parallelisable cases the N = 2 constraints in

the Λp(E∗) construction follow from non-trivial twelve dimensional Lie algebras

but upon the application of a particular orientifold projection in Type IIB sets

of six dimensional subalgebras arise. The immediate implication of this and the

GL(6,Z) invariance was that we could make use of the full classification of six

dimensional Lie algebras to construct GL(6,Z) isomorphisms between the non-

geometric fluxes and Lie algebra canonical structure constants.

The Z2 × Z2 orientifold has served as a simple example of the methods and

results, in both the construction of N = 2 U duality invariant superpotentials and

the methods of solving N = 1 U duality invariant Bianchi constraints. Due to the

actions of our choosen orbifold group the generalised geometry ∆p(E∗) fluxes of
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the derivatives are expressible in terms of a single Λp(E∗) component and allows for

the isotropy restriction. The orbifold group also reduces the GL(6,Z) invariance

of the orientifolded Lie algebra to the subgroup G ⊂ GL(6,Z) invariant under the

group generators. This reduction, as well as in the number of independent fluxes,

allowed us to explicitly construct the G isomorphisms between the non-geometric

fluxes and five non-trivial isotropic Lie algebras. Unlike a generic compact space

the generating functions of the ideal defined by the Bianchi constraints on the

isotropic orientifold are sufficiently simple to be prime decomposed on a com-

puter. The structure of elements of G resulted in a modular invariance of the

complex structure moduli, viewed as being induced by T duality and in line with

the known properties of moduli for a two dimensional torus. This combined with

the modular invariance of the dilaton induced by S duality such that the resultant

non-geometric contributions to the superpotential depends purely on the choice of

Lie algebra the non-geometric fluxes are isomorphic to. This modular invariance

considerably reduced the complexities in constructing example vacua with Λ ≤ 0

cosmological constant and partly broken supersymmetry.

Finally, the constructed T duality induced modular symmetry in the Z2 × Z2

orientifold, the known SL(2,Z)7 symmetry of the space and the symmetries in

the N = 2 Type IIB superpotential motivated us to reexamine the full U duality

invariant N = 2 superpotential. We had already constructed, through the use

of T and S dualities, the origin of the SL(2,Z)4 ⊂ SL(2,Z)7 and by noting how

symmetric the orientifold is in its treatment of the moduli spaces we hypothesised

the origin of the remaining SL(2,Z)3 symmetries associated to the Kähler moduli.

This was done by noting that the role of the holomorphic forms in the superpoten-

tial is not naturally symmetric due to the dilaton and yet the moduli space MM

is locally a product of the two geometric moduli spaces and the dilaton’s moduli
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space, MM = MT ×MU ×MS . The manner in which these recombine into

Kähler manifoldsMK andMQ is theory dependent but for self mirror spaces we

argued either formulation should be applicable. As a result of this we constructed

a superpotential in Type IIB where the roles of the complex structure and Kähler

moduli were exchanged; in a Type IIB construction the complex structure moduli

and dilaton were combined into a quaternionic manifold, rather than the Kähler

moduli and dilaton.

Due to the manner in which the fluxes were defined in terms of the image

of the MQ holomorphic form under a generalised derivative this reformulation

MQ(T, S) → MQ′(U, S) resulted in entirely different flux structures with in-

equivalent constraints. The new fluxes retained the same kind of Bianchi and

tadpole-like structures, with analogous transformation properties, and allowed

for the superpotential to be written in an extremely symmetric way which treated

both moduli spaces of the internal space in the same manner. Since a space which

is self mirror dual has an enhanced symmetry over a generic compact space it is

tempting to associate the inequivalent Bianchi and tadpole constraints with the

extra constraints such a symmetry would impose. Such a reformulation and the

construction of new flux constraints was motivated entirely on the grounds of

symmetry in the effective theory but the fact SL(2,Z)S Bianchi and tadpole mul-

tiplets arise with the same schematic structure in each formalism lends further

weight to this notion. However, without a more direct string based construction

it is unclear if such reformulations and their structures are coincidences or a sign

of something deeper.

Aside from further investigation into such reformulations there are a number of

other possible continuations of this thesis. In our general geometry we neglected
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∆1(E∗) and ∆5(E∗) contributions. Through the use of Hitchin functionals this

simplification is not required but the initial examination of Calabi-Yau manifolds

is not possible as by definition their ∆1(E∗) and ∆5(E∗) are empty. The phys-

ical nature of certain U duality induced structures is unclear, a problem which

is worsened by the issue of even some T duality structures having little or no

interpretation in terms of objects which appear in the non-compactified theory.

We have concentrated on Type II constructions but due to our use of dualities we

could extend this analysis to heterotic or M theory models too. Type I is related

to Type IIB via the use of O9-plane defining orientifolding and while Type IIB is

self S dual the S dual of Type I is the SO(32) heterotic string theory which is itself

T dual to E8×E8 heterotic string theory. Both E8×E8 and Type IIA are related

to compactified M theory by dilaton transformations. Using this web of dualities

we could construct superpotentials for any of these theories given the Type II

results we have seen. However, the symmetries of the Type II superpotentials

are particularly manifest in the N = 2 case but Type I and its dual heterotic

constructions are N = 1. As a result it would not be possible to map N = 2 re-

sults we have seen to the heterotic constructions, we have to apply the orientifold

projection first, but analogous constructions may none-the-less be possible in the

heterotic effective theories.

The use of non-geometric fluxes has required us to leave behind the familiar

notions of metrics and geometric interpretations of the space within which we

construct our physical models. However, they are essential and unavoidable in

any full model which possesses the symmetries inherent to string theory. As a

result we have gone beyond the statement made by Poincaré.

“Geometry is not true, it is advantagous.”

We have seen that in string theory geometry can be neither true nor advantagous.
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Appendix A

N = 2 Geometry

In order to motivate the structures of the superpotential and fluxes used in this

thesis we shall briefly review the basics of Kähler geometry and its application

to the moduli spaces found in the literature. These results are discussed in much

deeper detail in Refs. [74, 75, 18, 64, 69, 78, 80] but our discussion differs from

them all in the case of Kähler moduli since our notation is such that the symplectic

Kähler structure of the moduli space is not manifest.

A.1 Spinors and Differential Forms

A.1.1 SU(3)× SU(3) Structures and Generalised Geometry

The ten dimensional gravitini of the Type II string theory descend to the effective

theory by the same splitting as seen in metric. The two Type IIA gravitini descend

to two spinors whose six dimensional parts differ in six dimensional chirality while

the Type IIB six dimensional are equal.

η1
IIA → χ1

+ ⊗ ξ1
+ + χ1

− ⊗ ξ1
− , η1

IIB → χ1
+ ⊗ ξ1

− + χ1
− ⊗ ξ1

+

η2
IIA → χ2

+ ⊗ ξ2
− + χ2

− ⊗ ξ2
+ , η2

IIB → χ2
+ ⊗ ξ2

− + χ2
− ⊗ ξ2

+

(A.1.1)

Using two of these six dimensional spinors we can define a matrix whose decompo-

sition in terms of the basis Clifford algebra ofM defines a set of rank p coefficients,
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where 0 ≤ p ≤ 6, for a spin bundle element.

ξ+ ⊗ ξ
′
± =

1

4

6∑
p=0

1

p!

(
ξ
′
±γm1...mpξ+

)
γm1...mp ∈ S± (A.1.2)

Since the two spinors ξ 6= ξ′ transform seperately under Spin(6) we obtain an

SU(3)×SU(3) structure. The set of coefficients suggest that there is an equivalent

formulation in terms of p-forms. In order to obtain a manifestly SU(3) × SU(3)

structured geometry it is convenient to define the generalised frame bundle E =

E⊕E∗ [66, 73, 76], where E is the frame bundle ofM and E∗ its dual. This space

carries with it a natural O(6, 6) metric which is independent of the space-time

metric.

X ∈ E , ξ ∈ E∗ ⇒ (X + ξ,X + ξ) = ξ(X) ≡ ξmXm

A generic element of E acts on an element of Ω∗(E∗) by the natural action of

the subspaces and thus provides a representation of a Clifford algebra CL(E, δnm)

whose generators are γm and γn.

(X + ξ) · χ = ιXχ+ ξ ∧ χ = Xmγm · χ+ ξnγ
n · χ ≡ XMΓM · χ

The spinorial construction of (A.1.2) can be related to a set of forms and the

bundle splitting of such generic Spin(6, 6) spin bundles S → S± corresponds to

the splitting of the forms Ω∗(E∗)→ Ω±(E∗). The precise isomorphism is obtained

by using
√
ε, where ε is the volume form on Ω6(E∗), to give the required spinor

transformations.

ξ+ ⊗ ξ
′
±
√
ε =

1

4

6⊕
p=0

1

p!

(
ξ
′
±γm1...mpξ+

)
ηmk ∧ . . . ∧ ηm1 ∈ Ω±(E∗)

This morphism allows the description of the SU(3) structures ofM to be worded

either in terms of spinors or differential forms. In each Type II theory we have

four six dimensional spinors with which to construct p-forms but it is convenient

to make the simplification ξ1
+ = ξ2

+ = ξ and use ξ− = ξc+. As a result the
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SU(3) × SU(3) structure is reduced to a single SU(3). Two spinors can then be

constructed such that they are in different Ω±(E∗) subspaces of Ω∗(E∗).

Φ+ = ξ+ ⊗ ξ+

√
ε ∼ 1

8e
J ∈ Ω+(E∗)

Φ− = ξ+ ⊗ ξ−
√
ε ∼ − i

8Ω ∈ Ω−(E∗)

(A.1.3)

A.1.2 Non-Degenerate Inner Products

The superpotential is defined by an integral overM and thus only integrand terms

in Ω6(E∗) may contribute and the integrand factorises into either a pair of Ω+(E∗)

elements or a pair of Ω−(E∗) elements. This can be modified by considering the

integrand as formed by a non-degenerate inner product
〈
,
〉

between pairs of

elements in Ω±(E∗).

〈
φ, ψ

〉
s
≡
{ sφ0 ∧ ψ6 + φ2 ∧ ψ4 + sφ4 ∧ ψ2 + φ6 ∧ ψ0 : Ω+(E∗)

sφ1 ∧ ψ5 + φ3 ∧ ψ3 + sφ5 ∧ ψ1 : Ω−(E∗)

(A.1.4)

The parameter s defines the parity structure of the inner product. For s = 1 the

inner product is symmetric on Ω+(E∗) and antisymmetric on Ω−(E∗) while s = −1

makes the inner product antisymmetry on both Ω±(E∗).
〈 〉

+
is equivalent to the

standard wedge product as those elements φ ∧ ψ 6∈ Ω6(E∗) do not contribute to

the superpotential. The
〈 〉
− is the Mukai inner product1 and is regularly used

in the literature as it makes the Kähler structure of the moduli spaces manifest.

In each case we are motivated to choose explicit bases for the Ω±(E∗) so as to

simplify these expressions. We reduce our considerations to the SU(3) case so

Ω1(E∗) and Ω5(E∗) are neglected and therefore Ω−(E∗) = Ω3(E∗). Though these

general structures can be discussed in the infinite dimensional Ω∗(E∗) space we

select a finite dimensional subspace ∆∗ ⊂ Ω∗(E∗) which decomposes into the even

and odd form subspaces ∆±. The physical motation for this is given in Appendix

1In order to provide the simplest sign structure to our analysis we have actually defined the

negative of the Mukai inner product. Never the less, the schematic structures are unchanged

compared to the literature.
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B.1.1. Until then it is sufficient to consider the generic basis ($M , $̃
N ). If this is

the basis of ∆− then it is defined to be symplectic and if it is the basis of ∆+ we

set $M ∈ Ω2(E∗)⊕Ω6(E∗) while $̃M ∈ Ω0(E∗)⊕Ω4(E∗) so that the s dependence

on the components is simplified.

s = +1 : Φ± = ΦM$M ± ΦN$̃N

s = −1 : Φ± = ΦM$M − ΦN$̃N
(A.1.5)

The inner product intersection numbers are such that this kind of sign structure

is preserved in any superpotential integrand. To illustrate this we consider Φ and

Ψ with components defined in the same manner as (A.1.5).

〈
Φ,Ψ

〉
=
〈

ΦM$M ± ΦN$̃N ,ΨM$M ±ΨN$̃N
〉

= ±ΦMΨN
〈
$M , $̃

N
〉
± ΦNΨM

〈
$̃N , $M

〉
(A.1.6)

We have made use of the fact all forms are self-orthogonal in terms of this in-

ner product, thus dropping two terms from the expansion. For ($M , $̃
N ) be-

ing the basis of ∆3(E∗) for
〈 〉
± or the ∆+(E∗) for

〈 〉
− we have

〈
$̃N , $M

〉
=

−
〈
$M , $̃

N
〉

and in the above expression we set ± → −.∫ 〈
Φ,Ψ

〉
= ΦNΨN − ΦMΨM

For ($M , $̃
N ) being the basis of ∆+(E∗) for

〈 〉
+

we have
〈
$̃N , $M

〉
=
〈
$M , $̃

N
〉

and in the above expression we set ± → +.∫ 〈
Φ,Ψ

〉
= ΦNΨN + ΦMΨM

A.1.3 Hitchin Functions

Hitchin functions [73, 75, 77] provide a natural way to write the Kähler potential

of the special Kähler moduli spaces such that the full SU(3) × SU(3) structures

are obtained [76]. Not all Spin(6, 6) spinors construct viable SU(3) structures,

only those which are ‘stable’ [74] can be used and they form an open set in the
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space of Spin(6, 6) spinors. When the morphism from spinors to forms is used

we can construct a generic Hitchin function for both of the two spinors of (A.1.3)

using the inner product
〈 〉
±.

H(Φ±)s ≡ iρ
∫
M

〈
Φ±,Φ±

〉
s

(A.1.7)

Since we are taking Φ± to be a pure form the inner product is of definite sign and

thus
〈

Φ±,Φ±
〉

is either purely real or purely imaginary. The exponent ρ is such

that H(Φ±) is real.

s = +1 : H(Φ±)+ = i(1±1)/2 (ΦNΦN ± ΦMΦ
M

)

s = −1 : H(Φ±)− = i (ΦNΦN − ΦMΦ
M

)

(A.1.8)

Furthermore, the factors of i and the sign choice in Φ expansions are such that

the Hitchin function is either the real or imaginary part of ΦMΦ
M

, depending

on whether the inner product is symmetric or antisymmetric on the appropriate

Ω±(E∗).

Symmetric : H(Φ) = 2Re(ΦMΦ
M

)

Antisymmetric : H(Φ) = 2Im(ΦMΦ
M

)

(A.1.9)

Since the choice of inner product only arises in Ω+(E∗) we consider the generic

form of the associated holomorphic form, eψ, with the exponent splitting into real

and imaginary parts ψ = φ+ iχ. We surpress the ∧ for convenience.

H(eψ)+ =
1

3!

(
ψ

3
+ 3ψψ

2
+ 3ψ2ψ + ψ3

)
=

23

3!
φ3

H(eψ)− =
1

3!

(
ψ

3 − 3ψψ
2

+ 3ψ2ψ − ψ3
)

= i
23

3!
χ3

Since
〈 〉
± is dependent on only one of the real or imaginary parts of ψ we can

use either inner product to construct the same function. Of special note is the

case ψ = J = J + iB.

H(eJ )+ = −iH(eiJ )− (A.1.10)
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A.2 Moduli Spaces

The moduli spaces associated to the Kähler and complex structure deformations in

(M, G, J) are special Kähler manifolds [74]. More specifically one moduli space is

special Kähler naturally while the second is embedded in a quaternionic manifold

of twice the dimension but which is which depends on the Type II construction

being considered. In Type IIA the moduli space embedded in a quaternionic

manifold is associated to the complex structure while in Type IIB it is the moduli

space associated to the Kähler moduli.

A.2.1 Special Kähler MK

We follow the definitions from Ref. [74]. Given a set of q complex scalar fields ϕm,

belonging to N = 2 supermultiplets, they form a local special Kähler manifold of

dimension 2q holomorphically embedded into a holomorphic vector bundle V with

Sp(2q + 2) structure ω( , ) provided the Kähler potential is written in particular

manner.

K = − ln i ω(Φ,Φ) , ω(Φ, ∂Φ) = 0

The coordinates ΦM of V can be choosen such that the Kähler potential is written

in a straightforward manner in terms of holomorphic functions ΨM .

ω(Φ,Φ) = ΦMΦM − ΦNΦ
N

The 2q dimensional manifold is then embedded by defining ϕm = Φm/Φ0. The

condition ω(Φ, ∂Φ) = 0 implies that the holomorphic functions are derivatives

of a single holomorphic function PΦ, the prepotential. The symplectic structure

ω( , ) can be written on a basis ($M , $̃
N ) which is symplectic under

〈 〉
−.

Φ = ϕM$M −
∂PΦ

∂ϕN
$̃N , K = − lnH(Φ)−
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This prepotential PΦ(ΦM ) is homogeneous of degree two in the ΦM and given the

relationship between the ϕm and Φm it takes a specific form.

PΦ(ΦM ) = − 1

3!Φ0
(PΦ)mnpΦmΦnΦp = −Φ2

0

1

3!
(PΦ)mnpϕmϕnϕp

This construction makes explicit use of a symplectic inner product. As such if we

tried to repeat this with
〈 〉

+
it would fail due to a discrepency in signs between Φ0

and Φm terms and so using the
〈 〉

+
inner product does not allow us to construct

a manifestly local special Kähler manifold. However the inner products can define

the same Hitchin functions due to (A.1.10) and therefore the same superpotentials

can be built so our choice of inner product does not affect the effective theory.

K = − lnH(Φ)± , Φ = ΦM$M ± ΦN$̃N (A.2.1)

A.2.2 Special Kähler in Quaternionic MQ

We follow the definitions from Ref. [75]. A quaternionic manifold is not auto-

matically Kähler, special or otherwise, but it is possible to embedd a manifold of

lower dimension into it such that the submanifold is special Kähler and after the

application of the orientifold projection the resultant N = 1 multiplets are chi-

ral. In Type IIA and Type IIB the multiplets are such that they possess dilaton

dependence. We shall not reproduce the entire argument given in Ref. [75] and

instead simply quote results and discuss their relevance. Though not generally

being equal in dimension to MK we again take M ,N to vary over the 2h+ 2 un-

orientifolded complex coordinates (ΦM ,Φ
N ) of MQ. Furthermore in either Type

II theory the holomorphic section includes a dilaton S dependence.

Φc = −S Φ0$0 + Φm$m ± Φm$̃m ∓ S Φ0$̃0 (A.2.2)

How this dilaton relates to the N = 2 fields is dependent upon how the N = 2

is projected down to N = 1 [74] and is not something we will consider in depth.

None the less, the Kähler potential of the chiral multiplets contributes both the
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geometric moduli and the dilaton modulus terms, though the full expression is

quite complex [75]. Instead we shall construct a function analogous to the Hitchin

function such that the chiral multiplets with constant dilaton result in the known

dilaton and vector multiplet Kähler potentials of toroidal orientifolds. With this

in mind we must consider the dilatonic complement of Φc, Φ′c.

Φ′c = Φ0$0 − S Φm$m ∓ S Φm$̃m ± Φ0$̃0 (A.2.3)

In Type IIB this holomorphic form, Φ′c = f′c, couples to the R-R flux sector and

so its origin can be taken as being the S dual of Φc = fc. In Type IIA the lack of

a simple way to examine modular transformations on the dilaton makes the origin

of Φ′c = Ω′c less obvious but we can motivate its existence via a mirror duality

on the Type IIB sector dependent upon f′c. As such we have made the choice

in signs so as to fall inline with the known Type IIB S duality transformations

of the fluxes. As a result these two expressions are not SL(2,Z)S inversions of

one another but once they are coupled to fluxes within the superpotential the two

sectors are S dual with the fluxes transforming in the appropriate manner. Hence

we define ΓSϕ(S) = Sϕ(−1/S) and apply this operator to Φ
(′)
c .

ΓS(Φc) = Φ0$0 + S Φm$m ± S Φm$̃m ± Φ0$̃0

ΓS(Φ′c) = S Φ0$0 + Φm$m ± Φm$̃m ± S Φ0$̃0
(A.2.4)

We choose particular combinations of these four objects.〈
Φc,ΓS(Φc)

〉
± =

(
S
(

ΦnΦn ± ΦmΦ
m
)
− S

(
Φ0Φ0 ± Φ0Φ

0
) )

vol6〈
Φ′c,ΓS(Φ′c)

〉
± =

(
S
(

Φ0Φ0 ± Φ0Φ
0
)
− S

(
ΦnΦn ± ΦmΦ

m
) )

vol6

These combinations are such that their sum factorises into terms seperately de-

pendent on Im(S) and the ΦM coordinates.

〈
Φc,ΓS(Φc)

〉
± +

〈
Φ′c,ΓS(Φ′c)

〉
± = (S − S)(ΦNΦN ± ΦMΦ

M
) (A.2.5)

The inner product expressions take the same general form as the Hitchin function

of (A.1.7) but the second argument has had one of its moduli transformed. To

279



that end we define a new function is a modified form of (A.1.7).

H(Φ, φ)s ≡ iρ
∫
M

〈
Φ,Γφ(Φ)

〉
s

(A.2.6)

The logarithm of (A.2.5) is close to the expected Kähler potential of a moduli

space which is locally the product of local special Kähler manifold with coordinates

(ΦN ,Φ
M ) and the dilaton moduli space.

KS +KΦ ∼ − ln
(
S − S

)
− ln

(
ΦNΦN ± ΦMΦ

M
)

∼ − ln
(
S − S

)
− lnH(Φ)±

∼ − ln
(
H(Φc, S)± +H(Φ′c, S)±

)
This form of the Kähler potential for the dilaton dependent moduli space is seen

explicitly in the Z2 × Z2 orientifold [53, 60, 61, 92, 93] and other toroidal com-

pactifications [56] as they have kinetic terms of the form given in (7.1.1).

A.2.3 Reduction to N = 1

The effect on the moduli associated toMQ of the orientifold projection is to split

it into two disjoint parts, as defined by its ±1 eigenvalues and given in Table 2.1.

Since the ∆±(E∗) are affected in the same general manner we denote the generic

space spanned by the ($M , $̃
N ) basis as ∆ and the action of the projection as

∆→ O+(∆)⊕O−(∆). The structure of the projection is made more explicit by

defining the orientifold action on the basis; The orientifold projection removes h−

of the ΦM and we take λ, κ to vary from 1 to h+ and Σ,Ξ to vary from 1 + h+ to

h.

Φc = −S Φ0$0 + Φm$m ± Φm$̃m ∓ S Φ0$̃0 ∈ ∆

σ+(Φc) = −S Φ0$0 + ΦΣ$Σ ± Φλ$̃λ ∈ O+(∆)

σ−(Φc) = Φλ$λ ± ΦΣ$̃Σ ∓ S Φ0$̃0 ∈ O−(∆)

(A.2.7)

The O±(∆) are such that the projection removes one of the two p-forms which

combine pairwise to construct each of the terms in (A.1.4) and therefore it follows
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[75] that O±(∆) are Lagrangian manifolds [13] of ∆ in terms of the inner products〈 〉
s
.

〈
O±(∆),O±(∆)

〉
s

= 0
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Appendix B

Bases and Fluxes

A number of different notations are used throughout this thesis, relating to the

Ω∗(E∗) p-form basis, the ∆∗(E∗) light mode basis and the scalar product defined

superpotentials. In this Appendix we define the scalar product notation and

demonstrate several identities on the Ωp(E∗) bases as well as motivate our use of

the light mode basis.

B.1 The Effective Theory Degrees of Freedom

B.1.1 The Truncation

We review the discussion of truncating to a finite dimensional space the basis over

which the fluxes and pure forms have support given in Ref. [74]. In the previous

Appendix section we assumed that the different forms Ω and f associated to the

pure spinors Φ± have support in a finite dimensional space ∆∗(E∗) ⊂ Ω∗(E∗).

φ ∈ ∆0(E∗) J , B ∈ ∆2(E∗) Ω ∈ ∆3(E∗) Cp ∈ ∆p(E∗)

We have taken Ω as a form of pure degree such that the SU(3)× SU(3) structure

reduces to SU(3). The finite dimensional requirement follows from the physical

interpretation of the modes, only the lightest modes descend into the four dimen-

sional effective theory and each mode is associated to the supermultiplet. If the
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moduli associated to these light modes are to form the special Kähler manifolds

required for supersymmetry then the inner product
〈 〉
± must not be degenerate

on ∆∗(E∗) and it therefore follows that ∆n(E∗) and ∆6−n(E∗) are of equal dimen-

sion. Since the fluxes can be viewed as terms in a derivative the light modes must

also be closed under exterior differentiation.

d : ∆p(E∗)→ ∆p+1(E∗) (B.1.1)

The requirement that the spinors defining the pure Φ± are singlets in SU(3) is

equivalent to projecting out any SU(3) triplets and therefore the light modes in

∆2(E∗) and ∆3(E∗) are orthogonal.

χ2 ∈ ∆2(E∗)

ϕ3 ∈ ∆3(E∗)

⇒ χ2 ∧ ϕ3 = 0 ∈ ∆5(E∗) (B.1.2)

This is related to the reduction of SU(3) × SU(3) structure to just SU(3) since

this restricts Φ− to having no support in ∆1(E∗) or ∆5(E∗). In the case of ∆1(E∗)

this condition restricts ∆0(E∗) to containing only constant functions and so is one

dimensional. Finally the identity ?Ω = −iΩ requires ∆−(E∗) to be closed under

the Hodge star and this is taken to extend to ∆+(E∗). As a result ∆p(E∗) and

∆6−p(E∗) have the same number of dimensions, as found by the non-degeneracy

of the inner product
〈 〉
±.

χ ∈ ∆p(E∗) ⇒ ?χ ∈ ∆6−p(E∗) (B.1.3)

Since the fields on M are written in terms of this basis it must be able to allow

fields which satisfy their equations of motion and Bianchi constraints. This is

done in the simplest way on Calabi-Yaus as the moduli are defined by expanding

the pure spinors in the harmonic p-forms. Since harmonic forms are both closed

and co-closed the Calabi-Yau provides a background which automatically satisfies

the equations of motion for the fields.

χ ∈ Hp(E∗) → ∆χ = 0 → dχ = d ? χ = 0
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With the inclusion of non-zero fluxes the ∆∗(E∗) are no longer harmonic. As a

result the Kaluza-Klein tower of masses is no longer a set of clearly seperated

levels, with the moduli possibly gaining masses of order the first excited states

or the modes in the first excited state reducing in mass. However, the use of the

harmonic forms as a basis is a sufficiently good approximation in cases where the

fluxes are small or the volume of M is large. As such we use the Calabi-Yau

harmonic forms as an initial basis for ∆∗(E∗) when the switching on of the fluxes

deforms the space and induces masses in some or all of the holomorphic forms.

B.1.2 Fluxes in Parallelisable Generalised Frame Bundles

The constuction of the truncated basis above considers the light ∆p(E∗) as a

subspace of Ωp(E∗) and thus the fluxes1 can have their action written in a simple

schematic manner.

Fn : Ω2n(E∗)→ Ω3(E∗) (B.1.4)

The Type IIA NS-NS fluxes of (4.1.10) induced by sequences of T duality transfor-

mations on toroidal orientifolds have Λ3(E) defined components with the decom-

position into the spaces Fn have support on given in (4.1.4). This E component

definition is essential if the flux components are to be put into a Lie algebra con-

text and the GL(6,Z) invariance used to find flux parameterisations. Furthermore

it allows us to define the components of the fluxes without acting them on p-forms

elements and thus the action of Fn on Ω2n(E∗) in (B.1.4) uniquely determines the

action of Fn on Ω3(E∗). However the resultant requirement that the components

are constant puts a limit on the number of independent components each flux can

have. Denoting the number of independent components of Fn as |Fn| the index

symmetries give an upper bound on these for dim(M) = 6, independent of any

1Since the methodology is much the same in each case we consider the Type IIA NS-NS fluxes

as our explicit example.
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underlying symmetries in M.

Fn ∈ Λn(E) ∧ Λ3−n(E∗) ⇒ |Fn| ≤ C6
n · C6

3−n ⇒
|F0| ≤ 20 , |F1| ≤ 90

|F2| ≤ 90 , |F3| ≤ 20

These upper bounds can be seen to violated by giving the basis elements of ∆∗(E∗)

their Ω∗(E∗) representations. We consider the explicit case of the ωa ∈ ∆2(E∗)

and suppose that F1(ωa) ∈ ∆3(E∗).

F1 · ωa =
1

2!
Frpqηpqιr

(
1

2!
(ωa)mnη

mn

)
=

1

2!
Frpq(ωa)rnηpqn

=
1

3!

(
f(a)I(αI)pqn − f

J
(a) (βJ)pqn

)
ηpqn

Comparing the degrees of freedom we have that F1 must map h1,1 basis elements

of ∆2(E∗) to the 2(h2,1 + 1) basis elements of ∆3(E∗) and thus in general has

2h1,1(h2,1 + 1) independent components in its ∆∗(E∗) definition. Since the bound

2h1,1(h2,1 + 1) ≤ 90 is violated in specific2 Calabi-Yaus the representation of Fn

in terms of Λ3(E) components is not applicable to all spaces. However, for paral-

lelisable spaces it is applicable and this representation has a number of important

or useful properties. Contributions which do not otherwise appear in the effective

theory light ∆∗(E∗) space are included. These additional non-light terms are such

that the Lie algebra interpretation of the fluxes is possible and so the GL(6,Z)

invariance can be used to construct parameterisations of the non-geometric fluxes.

The explicit construction of the ∆p(E∗) ⊂ Ωp(E∗) for the Z2 × Z2 orientifold also

allows a consistency check on results constructed in terms of the finite truncated

basis of ∆p(E∗) as either representation should be valid on the orientifold.

2The example given in the discussion of Calabi-Yaus in Ref. [8] is a Calabi-Yau defined by a

homogeneous degree 5 polynomials in CP4 with Hodge numbers (h1,1, h2,1) = (1, 101).
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B.1.3 Fluxes in Generalised Light Bundles

Our guiding principle in this section is that we wish construct a formalism which

extends the results for parallelisableM, where the fluxes can act on either Ω±(E∗),

in such a way as to reduce to the parallelisable result on such spaces. In paral-

lelisable M the flux components can be obtained via the factorisation of D(f) ∈

∆−(E∗) into the holomorphic form f ∈ ∆+(E∗) and the derivative D ∈ ∆∗(E)

and then the splitting D into its individual fluxes. The fluxes in parallelisable

M can be regarded as elements of Λ3(E), as given in (4.1.3) and (4.1.4). For

those non-parallelisable M the degrees of freedom within the fluxes are defined

by the expansion of the flux image of elements of ∆+(E∗) in the ∆−(E∗) basis,

Fn(∆+(E∗)) ∈ ∆−(E∗) and we view the fluxes purely as a linear map belonging

to End(∆∗(E∗)). To that end we denote the operator which maps the coefficient

of ξ ∈ ∆∗(E∗) to becoming the coefficient of ζ by f(ζ, ξ). We consider F1 as an

explicit example.

F1 = F(a)I f(aI , ν̃
a)−F J

(a) f(bJ , ν̃a)

If we assume the same factorisation D(f) to D and f for non-parallelisable M

we generalise (4.1.4) to the light forms and find Fn belong to specific subspaces

of End(∆∗(E∗)).

Fn : ∆n,n(E∗)→ ∆3(E∗) ⇒ Fn ∈ ∆3(E∗) ∧∆n,n(E) ∈ End(∆∗(E∗)) (B.1.5)

As in the Λp(E) case, despite the more general action Fn : Ωp(E∗)→ Ωp+3−2n(E∗)

the fact Fn(J (n)) couples to Ω ∈ ∆3(E∗) causes only the p = 2n case to be

relevant. The basis of ∆p,q(E) we shall define to be dual in some sense to the

basis of ∆p,q(E∗). This is motivated by the wish to have an operator which has

the factorisation of End(∆∗(E∗)) of (B.1.5) manifest and we define the operator

ιξ by this factorisation.

f(ζ, ξ) ≡ ζ ∧ ιξ = ζ ιξ (B.1.6)
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For the components of Fn the f(ζ, ξ) are such that ξ ∈ ∆±(E∗) and ζ ∈ ∆∓(E∗).

The group structure of the f follow in a straightforward manner. With this fac-

torisation we can consider the ιξ individually. We initially examine the (ωA, ω̃
B)

and (αI , β
J) basis so that motivation for the change of basis can be demostrated

more clearly.

ιωA(ωB) = δAB = ιω̃B (ω̃A) , ιαI (αJ) = δIJ = ιβJ (βI)

Not all possible combinations have been explicitly stated. In the cases of ιωA(ω̃B)

and ιω̃B (ωA) the ξ in (B.1.6) is such that the expression evaluates to zero ideniti-

cally or provide no contribution to the superpotential. For the ιαI (β
J) and ιβI (αJ)

cases it is not immediate that they vanish but this is proven in the next section

for parallelisable spaces and we assume the extension to non-parallelisable ones.

These identities are also demonstrated for the explicit basis of ∆∗(E∗) for the

Z2 × Z2 orientifold.

B.1.4 ∆∗(E) Basis Identities

To examine the action of the interior forms in ∆−(E) on elements of ∆−(E∗) we

restrict ourselves to parallelisable M such that we have the embedding ∆−(E) ⊂

Λ−(E) and ∆−(E∗) ⊂ Λ−(E∗).

αI = 1
3!(αI)abcη

abc , βJ = 1
3!(β

J)ijkη
ijk

ιαI = 1
3!(A

I)abcιcba , ιβJ = 1
3!(BJ)ijkιkji

The symplectic definition of the ∆−(E∗) basis puts constraints on their Λ3(E∗)

components.

δJI =

∫
M
αI ∧ βJ =

1

3!

1

3!
(αI)abcε

abcijk(βJ)ijk (B.1.7)

By the same methodology the dual conditions between the elements of Λ3(E) and

Λ3(E∗) constraint the components of both sets of basis elements.

δJI = ιαJ (αI) = 1
3!

1
3!(A

J)abc(αI)ijkιcba(η
ijk) = 1

3!(A
J)abc(αI)abc

δJI = ιβI (β
J) = 1

3!
1
3!(BI)

abc(βJ)ijkιcba(η
ijk) = 1

3!(BI)
abc(βJ)abc

(B.1.8)
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Comparing the three coefficient expansions for δJI we obtain the (AJ)abc and

(BI)
abc in terms of the (αI)abc, (βJ)abc and the antisymmetric ε.

(AJ)abc =
1

3!
εabcijk(βJ)ijk , (BI)

abc =
1

3!
εabcijk(αI)ijk (B.1.9)

With these explicit expressions for the coefficients we can construct ιαJ (βI) and

ιβI (αJ) in terms of the αI and βJ components.

ιαI (β
J) = 1

3!ε
abcijk(βI)ijkιcba(β

J)pqrη
pqr = (βI)ijkε

abcijk(βJ)abc

ιβJ (αI) = 1
3!ε

abcijk(αJ)ijkιcba(αI)pqrη
pqr = (αJ)ijkε

abcijk(αI)abc

(B.1.10)

Making note of the identity εabcdefvol6 = ηabcdef these expressions can be written

entirely in terms of an integral defined on the symplectic basis.

ιαI (β
J) =

∫
M

(βJ)abcη
abc(βI)ijkη

ijk =

∫
M
βJ ∧ βI = 0 (B.1.11)

By the same method we obtain the second expression.

ιβJ (αI) =

∫
M

(αI)abcη
abc(αJ)ijkη

ijk =

∫
M
αI ∧ αJ = 0 (B.1.12)

B.1.5 Non-Geometric Flux Operator Action

The schematic action of an adjoint derivative d† : Ωp(E∗)→ Ωp−1(E∗) is the same

schematic action as F2 and so we can rephrase F2 in terms of the adjoint action

of an exterior derivative. To that end we define d and its
〈〈
,
〉〉

adjoint d† by the

action of F2 on ∆2,2(E∗).

d†(ω̃b) ≡ F2(ω̃b) ≡ (F2)
(a)

IαI − (F2)(a)JβJ

As in the F1 case we can project out particular coefficients of F2(ω̃b) by taking

its inner product with particular ∆3(E∗) basis elements, allowing us to then make

use of the adjoint properties of the inner product.

(F2)
(a)

I =
〈〈
F2(ω̃a), αI

〉〉
=
〈〈
d†ω̃a, αI

〉〉
≡
〈〈
ω̃a, dαI

〉〉
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Making use of Stokes theorem again we can change which form the derivative d

acts upon, which is not possible to do when working with d†.

0 =

∫
M

d(αI ∧ ωa) =

∫
M

dαI ∧ ωa −
∫
M
αI ∧ dωa

=
〈〈
dαI , ω̃

a
〉〉
−
∫
M
αI ∧ ?(?−1d?)ω̃b

Having obtained an expression for d acting on an element of ∆3(E∗) we need to

revert back to expressing derivatives as d†. This is done by using the definition of

adjoint derivatives in terms of Hodge stars and derivatives, taking note that the

action of the derivatives on the symplectic basis elements acquires an additional

factor of −1.

d† =
{ ?−1d? d : ∆+(E∗)→ ∆3(E∗)

− ?−1 d? d : ∆3(E∗)→ ∆+(E∗)

Inverting this relationship, to express d in terms of d†, we obtain the alternative

action of d† on ∆3(E∗) by noting that ? = ?−1 on ∆+(E∗) due to the intersection

numbers of the basis elements being the Kronecker delta.

(F2)
(a)

I =
〈〈
ω̃a, dαI

〉〉
=
〈〈
ω̃a,− ? d† ?−1 αI

〉〉
=
〈〈
ωa, d

†βI
〉〉

Repeating this method but projecting out the remaining fluxes in F2 gives terms

related to the F2 image of the αI .

(F2)(a)J =
〈〈
ω̃a, dβJ

〉〉
=
〈〈
ω̃a,− ? d† ?−1 βJ

〉〉
=
〈〈
ωa, d

†(−αJ)
〉〉

B.1.6 Alternate Hodge Star

Since much of our analysis is done in terms of the inner product
〈 〉
± rather than

the usual
〈〈 〉〉

inner product, which is associated to the Hodge star ?, we define

the
〈 〉
± equivalent ∗ in terms of the ∆∗(E∗) basis elements. As in the previous

Appendix we use the representative basis ($M , $̃
N ) and state the non-trivial

defining expressions.∫ 〈
$M , ∗$N

〉
= δMN ,

∫ 〈
$̃M , ∗$̃N

〉
= δMN
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The explict forms of ∗$M and ∗$̃N are easily deduced and we convert back to

the ∆∗(E∗) bases.

∗aI = bI , ∗bJ = −aJ , ∗νA = ν̃A , ∗ν̃B = ±νA

Unless otherwise stated we use the ∗ associated to
〈 〉
−, giving both ∆±(E∗)

bases a symplectic structure. From this it follows that (4.1.24) can be rewritten

as (4.1.25) and the f of (B.1.6) obeys those identities.

f(ζ, ξ) = ζ ιξ = − ∗ ξ ι∗ζ = −f(∗ξ, ∗ζ)

The overall factor of −1 follows from definition of the (νA, ν̃
B) basis in terms of

the (ωA, ω̃
B) basis and the definition of

〈 〉
− in (A.1.4).

B.2 Scalar Product Representations

Having defined a finite basis for the ∆∗(E∗) we can define the associated structures

to this space of forms, such as the non-degenerate bilinear form or forms associated

to inner products. As elsewhere, we take all Hodge number dependent statements

to be defined in terms of the topology of M, rather than its mirror dual W, so

I, J range over {0, . . . , h2,1} and A,B over {0, . . . , h1,1}.

B.2.1 Inner Product
〈 〉

+

We begin with the inner product
〈 〉

+
which is equivalent to simple exterior

multiplication and so is symmetric on ∆+(E∗) and antisymmetric on ∆−(E∗).∫
M

〈
φ, ϕ

〉
+

=

∫
M
φ ∧ ϕ ≡ g(φ, ϕ) φ, ϕ ∈ ∆±(E∗)

The bilinear form associated to the inner product is g. If e and e′ are vectors

of forms then the entries of g are defined by g(em, e
′
n). The basis vector for the

complex structure moduli space we take to be e(a) and for the Kähler moduli

290



space e(ν).

ga ≡ g(e(a), e(a)) =

g(aI , aJ) g(aI , b
J)

g(bI , aJ) g(bI , bJ)

 =

 0 δJI

−δIJ 0


gν ≡ g(e(ν), e(ν)) =

g(νA, νB) g(νA, ν̃
B)

g(ν̃A, νB) g(ν̃A, ν̃B)

 =

 0 δBA

δAB 0


By construction ga has Sp(n) symmetry for n = h2,1 + 1 and gν has O(m,m)

symmetry for m = h1,1 + 1. In each case g> = g−1. The second bilinear form is

h(e, e′) ≡ g(e,Σ · e′) where Σ is the canonical O(n, n) inner product bilinear form

and 2n is the dimension of the e.

ha ≡ g(e(a),Σa · e(a)) =

δJI 0

0 −δJI

 , hν ≡ h(e(ν),Σν · e(ν)) =

δBA 0

0 δBA


In cases where the dimensionality of the canonical O(n, n) bilinear form is unam-

bigious we shall drop the subscript and simply use Σ. In terms of the matrices

of the bilinear forms we have the general relationship h = g ·Σ. This, along with

h = h> and Σ = Σ>, can be used to construct a number of identities relating to

how any two of these three matrices will combine, which we will make considerable

use of.

h · g = Σ , h · Σ = g , g · Σ = h

g> · h = Σ , Σ · h = g> , Σ · g> = h

(B.2.1)

Depending on the basis, e(a) or e(ν), being considered we have that g> = ±g

and so to have expressions true in either basis we must retain the transposi-

tions. However, if we put this identity into the above expressions we obtain

(anti)commutation relations.

g> = +g ⇒
[
h, g

]
= 0 ,

[
h,Σ

]
= 0 ,

[
g,Σ

]
= 0

g> = −g ⇒
{
h, g

}
= 0 ,

{
h,Σ

}
= 0 ,

{
g,Σ

}
= 0

(B.2.2)

Given these bilinear forms on ∆±(E∗) we can express elements of ∆∗(E∗) as scalar

products which in term provide a scalar product representation of superpotential
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like expressions. To that end we associated elements of ∆±(E∗) with sets of

vectors.

ξ = ξIaI − ξJbJ =

(
ξI ξJ

)δJI 0

0 −δJI


aI

bJ

 ≡ ξ> · ha · e(a)

Π = ΠAνA −ΠB ν̃B =

(
ΠA ΠB

)δBA 0

0 δBA


νA
ν̃B

 ≡ Π> · hν · e(ν)

The vector associated to the holomorphic forms are the moduli vector, Ω = U> ·

ha · e(a) and f = T> · hν · e(ν). Using these vector expressions we can represent

the inner product between two 3-forms ξ and ζ or two even forms Π and Θ in a

particularly straight forward manner.

g(ξ, ζ) =

∫
M
ξ ∧ ζ = ζIξ

I − ζJξJ = ξ> · ha · ga · h>a · ζ = ζ> · ga · ξ

g(Π,Θ) =

∫
M

Π ∧Θ = ΘAΠA + ΘBΠB = Π> · hν · gν · h>ν ·Θ = Θ> · gν ·Π

With these definitions we can obtain an expression for a generic Type II super-

potential contribution due to some ϕ ∈ ∆−(E∗) coupling to Ω or Π ∈ ∆+(E∗)

coupling to f.∫
M

〈
Ω, ξ

〉
+

= g
(

Ω, ξ
)

= ga

(
Ω, ξ

)
= ξ> · ga · U∫

M

〈
f,Π

〉
+

= g
(
f,Π

)
= gν

(
f,Π

)
= Π> · gν · T

These two constructions in ∆±(E∗) combine to define vectors for all elements of

∆∗(E∗), χ = χ · h · e.

g = ga ⊕ gν ⇒ g(ξ + Π, ζ + Θ) = ga(ξ, ζ) + gν(Π,Θ)

These intersection numbers obey the identities (B.2.1) except that now Σ is as-

sociated to O(h2,1 + h1,1 + 2, h2,1 + h1,1 + 2). The Hodge star can be defined

by the construction of an inner product which combines two elements of ∆p(E∗),

rather than elements of ∆p(E∗) and ∆6−p(E∗). In terms of vectors the natural

inner product on the ∆p(E∗) takes the form
〈〈
φ, χ

〉〉
= χ> · φ and we define the
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Hodge star’s matrix representation ? by reexpressing this in terms of
〈 〉

+
via

?(χ) = χ> · h · ? · e.

〈〈
φ, χ

〉〉
≡ g
(
φ, ?(χ)

)
=

∫
M

〈
φ> · h · e , χ> · h · ? · e

〉
+

=

∫
M

〈 (
φ> · h · e

)
,
(
χ> ·Ad(?) · h · e

) 〉
+

= χ> ·Adh(?) · g · φ

We have used the GL(n,Z), for the appropriate n, group adjoint operator Adx(y)

to move h to the right of ?.

Adx(y) ≡ x · y · x−1 x, y ∈ GL(n,Z) (B.2.3)

If the inner product is to evaluate to χ> ·φ we require Adh(?) = g−1 and it follows

that ? = g.

B.2.2 Inner Product
〈 〉
−

The
〈 〉
− of (A.1.4) is antisymmetric on both ∆±(E∗). In Chapter 4 the change

of basis (ωA, ω̃
B) → (νA, ν̃

B) is motivated by algebraic simplification when con-

sidering flux operators. This is precisely that used in (A.1.5) to simplify the sign

structure of the holomorphic section of a special Kähler manifold. We again use

g and h to represent the associated bilinear forms.

g(φ, ϕ) ≡
∫
M

〈
φ, ϕ

〉
− , h(φ, ϕ) ≡ g(φ,Σ · ϕ)

With both ∆±(E∗) possessing manifest special Kähler structure the bilinear form

g is symplectic in each case and applying Σ to one of the arguments of the g gives

the associated h.

ga =

 0 δJI

−δIJ 0

 gν =

 0 δBA

−δAB 0

 ha =

δJI 0

0 −δJI

 hν =

δBA 0

0 −δBA


With both ∆±(E∗) having symplectic structure we have g> = g−1 = −g and the

identities of (B.2.1) can be simplified and we obtain the anticommutation relations
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of (B.2.2). The vectors associated to the elements of ∆∗(E∗) are defined in the

same manner and the moduli can be defined by this.

ξ = ξ> · ha · e(a) , Π = Π> · hν · e(ν)

Ω ≡ U> · ha · e(a) , f ≡ T> · hν · e(ν)

(B.2.4)

Since hν is different from the
〈 〉

+
case the Kähler moduli will be different, as

required to make the special Kähler structure manifest, but the scalar product

expressions are of the same schematic form. With these expansion of the holo-

morphic forms we can construct superpotential-like expressions.∫
M

〈
Ω, ϕ

〉
− = g

(
Ω, ϕ

)
= ga

(
Ω, ϕ

)
= ϕ> · ga · U∫

M

〈
f, χ

〉
− = g

(
f, χ

)
= gν

(
f, χ

)
= χ> · gν · T

The Hodge star on
〈 〉
− takes the same form as the

〈 〉
+

case but the ∗ = g is

altered to being symplectic on both ∆±(E∗).

B.2.3 Mirror Bilinear Forms

In the previous sections we defined the bilinear forms onM. The construction of

these bilinear forms on the mirror of M, W, follows the same method but with

the Hodge number exchange hp,q(M) = hq,p(W). We denote those bilinear forms

defined in Type IIB on W as g and h. In each Type II theory the bilinear forms

are inner product dependent and we have different algebraic relations for each

inner product
〈 〉
±. For

〈 〉
+

the Kähler moduli bilinear form is equivalent to Σ.

〈 〉
± →

〈 〉
+
⇒ gν = Σ , gν = Σ

We have not explicitly distinguished between the Σ in M and the Σ in W as

their dimensionality is clear from the context. For
〈 〉
− there are several useful

relationships.

〈 〉
± →

〈 〉
− ⇒ ga = gν , ha = hν , ha = hν , ha = hν
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Appendix C

Algebraic Geometry

C.1 Mathematical Background

We review basic algebraic geometry definitions and results relevant to the main

text, following the notation of [97].

C.1.1 Ideals and Varieties

Given a set of functions f = (f1, . . . , fn) where fi ∈ k[x1, . . . , xm], polynomials in

m variables over field k, the set of points which are roots of all polynomials define

a variety V (f1, . . . , fn).

V (f1, . . . , fn) =
{

(a1, . . . , am) ∈ km : fi(a1, . . . , am) = 0 ∀fi
}

Varieties can be combined via normal set operators, intersection and union.

V = V (f1, . . . , fs)

W = W (g1, . . . , gt)

⇒
V ∩W = V (f1, . . . , fs, g1, . . . , gt)

V ∪W = V
(
figj : i ∈ {1, . . . , s} , j ∈ {1, . . . , t}

)
A set I ⊂ k[x1, . . . , xn] is an ideal if it satisfies a number of conditions.

• 0 ∈ I

• If f, g ∈ I then f + g ∈ I
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• If f ∈ I and h ∈ k[x1, . . . , xn] then fh ∈ I

From this we can define an ideal I generated by a set of polynomials {fi}.

〈I〉 = 〈f1, . . . , fn〉 =

{
n∑
i=1

hifi : hj ∈ k[x1, . . . , xm]

}
(C.1.1)

This ideal can be linked to a variety V(I) by identifying the ideal 〈f1, . . . , fn〉

with the affine variety defined by fi = 0 ∀i. The choice of generating polyno-

mials for a finitely generated ideal does not alter the variety the ideal defines,

in the same way the choice of basis does not alter the vector space it spans. If

〈I〉 = 〈f1, . . . , fn〉 = 〈g1, . . . , gm〉, then V(f1, . . . , fn) = V(g1, . . . , gm). For a given

ideal I there is a particularly convenient choice of generating basis, known as the

Groebner basis, whose definition is given in [97]. This basis plays an important role

in the question of whether or not a given polynomial f is in I or not. If I is gener-

ated by 〈f1, . . . , fn〉, then f ∈ I iff 1 ∈ Ĩ ≡ 〈f1, . . . , fn, 1− yf〉 ⊂ k[x1, . . . , xm, y].

That is, if the Groebner basis of Ĩ is {1}, then f ∈ I.

Just as ideals define varieties, varieties can define ideal. An ideal can be

defined from V by considering the points in the variety as zeros of the generating

functions of the ideal.

I(V ) =
{
f ∈ k[x1, . . . , xn] : f(a1, . . . , an) = 0 ∀(a1, . . . , an) ∈ V

}
(C.1.2)

V and I can be thought of as maps between the geometric and algebraic for-

malisms. I take varieties to ideals and V does vice versa, though they are not

inverses of one another. These maps are inclusion reversing, in that if I1 ⊂ I2,

V(I1) ⊃ V(I2) and if V1 ⊂ V2 then I(V1) ⊃ I(V2). The ideals and varieties can

be combined a number of straight forward ways.

• Summation : I = 〈f1, . . . , fn〉 and J = 〈g1, . . . , gm〉.

I + J = 〈f1, . . . , fn, g1, . . . , gm〉 , V(I + J) = V(I) ∩V(J)
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• Product : I = 〈f1, . . . , fn〉 and J = 〈g1, . . . , gm〉.

I.J = 〈figj : i ∈ [1, n] j ∈ [1,m]〉 , V(I.J) = V(I) ∪V(J)

• Intersection : I, J ⊂ k[x1, . . . , xr] .

I ∩ J =
(
tI + (1− t)J

)
∩ k[x1, . . . , xr] , V(I ∩ J) = V(I) ∪V(J)

These basis operators on ideals and varieties follow from the standard properties

of either the ring of polynomials defining the ideal or the set construction defining

the variety. From these a number of less trivial operations can be defined.

C.1.2 Quotient and Prime Ideals

A quotient ideal can be constructed from I ⊂ k[x1, . . . , xr] for J = 〈g〉.

I : J =
{
f ∈ k[x1, . . . , xr] s.t. fg ∈ I ∀g ∈ J

}
(C.1.3)

More generally, for J = 〈f1, . . . , fn〉, this extends to the intersection of individual

quotient ideals.

I : J =
r⋂
i=1

(I : fi) (C.1.4)

The saturation of I by f is the quotienting by all powers of f .

(I : f∞) ≡
{
g ∈ k[x1, . . . , xn] s.t. fmg ∈ I for some m > 0

}
A variety V is irreducible if whenever V = V1 ∪ V2, where Vi are affine varieties,

then either V1 = V or V2 = V . The equivalent description of ideals is that

I ⊂ k[x1, . . . , xn] is prime if whenever f, g ∈ k[x1, . . . , xn] and fg ∈ I then either

f ∈ I or g ∈ I. V is irreducible iff I(V ) is prime. An irreducible variety cannot be

split into simpler varieties, so a line through Cn is irreducible, but a plane unioned

with a line is not. A maximal ideal is one in which the only ideal which strictly

contains it is k[x1, . . . , xn] and for any field k a maximal ideal in k[x1, . . . , xn] is
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prime. If k is algebraicly closed, then every maximal ideal in k[x1, . . . , xn] has the

generating set of the form 〈x1 − a1, . . . , xn − an〉 for some ai ∈ k. Any variety

V can be decomposed into finitely many irreducible varieties, V = V1 ∪ . . . ∪ Vn,

where Vi is irreducible. There is a unique decomposition of this form if Vi 6⊂ Vj

for i 6= j. If a variety can be expressed as a unique union of irreducible varieties,

then the ideal I ≡ I(V ) can be expressed as the unique interaction of prime ideals

(since ∩ ↔ ∪ for I ↔ V ), I = P1∩. . . Pm, where Pi 6⊂ Pj , provided k is algebraicly

closed.

I =
n⋂
i=1

Pi (C.1.5)

This is I’s minimal representation as an intersection of prime ideals.

C.1.3 Groeber Basis

Though we shall not give its formal definition there is a particularly convenient

basis to use for a given ideal, that of the Groebner basis. Its utility comes in de-

termining if an ideal already contains a particular function, because of the duality

between ideals and varieties. Given an ideal I = 〈f1, . . . , fn〉 in C[x1, . . . , xN ]

it has variety V(I), whose points are the zeros of the generating functions of

I, fi. A function g has associated variety V(〈g〉), which are the zeros of g. If

V(I)∩V(〈g〉) = ∅ then by the inclusion-exclusion reversal of map between ideals

and varieties I ∪ 〈g〉 = 〈f1, . . . , fn, g〉 = 〈1〉 = C[x1, . . . , xN ]. The polynomial 1

has no zeros, so its associated variety is empty and generates all of C[x1, . . . , xN ].

It is not always clear whether a given ideal I = 〈f1, . . . , fn〉 is trivial but if its

Groebner generating basis if 1 then it is and it follows that there are no values of

xn which satisfy fm = 0 simultaneously for all m.
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C.1.4 Variables and Coefficients

Thus far we have discussed only elements of K[x1, . . . , xm], those polynomials

formed from the variables xi and with coefficients in the field K, typically taken to

be C. However, we may wish to define polynomials with unknown coefficients that

are not variables. If a is a coefficient and x a variable then 〈a〉 = 〈1〉 6= 〈x〉, it is

possible to divide through by a but not x. To distinguish between unknowns which

are variables to be solved and unknowns which are parameters to be specified we

define a new type of ring K[x1, . . . , xm ; a1, . . . , an].

C.2 Computational Methods

While the methods and algorithms for algebraic geometry can be explained and

proved through short amounts of algebra and logic, practical applications of such

methods require large quantities of repetitive processes, ideally suited for comput-

ers. Mathematica has several functions built into it which impliment algorithms

to do such things are prime decompositions, saturations, taking the radical of an

ideal and computing dimensions. For small ideals this would normally be sufficent

but the complexity and size of the ideals produced in practical systems of SUGRA

are sufficently big to require a more specialised program.

One such program is Singular [98]. While not the most flexible, it has all the

required routines programmed into it and is considerably faster (between 10 and

1000 times) than Mathematica in the application of such algorithms. However,

it is devoid of much of the functionality of Mathematica. For instance, it cannot

do the algebraic manipulation to go from K and W to V and ∂V , plot graphs

or do numerical solutions once the systems are broken down to sufficently simple

components. Fortunately, there are ‘bridging’ routines such as [99] which convert

Mathematica outputs into Singular inputs and vice versa, allowing the seemless
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use of functionality both programs provide. Alternatively there is StringVACUA

[100], which is a Mathematica front end for Singular specifically written for the

purposes of constructing supergravity vacua in terms of moduli and fluxes and

does not require more than a minimal amount of algebraic geometry knowledge.

C.2.1 Singular Algorithms

The Singular algorithms relevant to the construction of vacua or flux compactifi-

cations implement the algebraic geometry methods previously outlined.

simplify : {g1, . . . , gm} → {g′1, . . . , g′n} : LC(g′i) = 1 , g′i 6= kg′j , g
′
k 6= 0

intersect : {I1, I2} → J : J = I1 ∩ I2

radical : I → J : J =
√
I

facstd : I → {I1, . , In} :
√
I =
√
I1 ∩ . . . ∩

√
In

MinAssGTZ : I → {P1, . , Pn} : I = P1 ∩ . . . ∩ Pn

In all cases the ring of polynomials over which Singular applies the algebraic

geometry algorithms must be stipulated.

C.3 Supergravity Applications

Having provided a short dictionary for algebraic geometry methods and results

we now consider how these can be applied to the construction of string vacua.

There are two general ways in which algebraic geometry can be used, solving

the equations defined in terms of the scalar potential V to obtain local minima

for the moduli and solving the integrability and cohomology condictions on non-

geometric fluxes which arise in the context of Type IIB Bianchi constraints. The

former methods are not used explicitly in this thesis, vacua are found analytically

for restricted cases, but we cover them for the purposes of completeness. The

application of algebraic geometry to string vacua is suggested and discussed in

[26, 27], including non-perturbative contributions such as gaugino condensates,
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and are then implimented in StringVACUA [100]. However, StringVACUA does

not include native algorithms for the parameterisations of the non-geometric fluxes

to be explained shortly.

C.3.1 Vacua Construction

Given the scalar potential V of (2.4.1) the vacua are the local minima of the

potential and thus are the solutions to ∂MV = 0 such that the Hessian of V is

positive definite. With the Kähler potential being a logarithm of polynomials

and the superpotential being a polynomial the scalar potential is itself a poly-

nomial and thus so are all its n’th derivatives. Translating this into algebraic

geometry we have an ideal I generated by the numerator polynomials of ∂MV

and the associated variety V(I) are all moduli values which are solutions to said

polynomials.

∂MV =
V nM
V dM

⇒ I ≡ 〈V nM 〉 (C.3.1)

Not all solutions to ∂MV = 0 are minima, all turning points satisfy such an ex-

pression, including local maxima. It is also possible that V has regions which are

flat in particular directions, resulting in regions which satisfy ∂MV = 0, not just

isolated points. However, this faciliates a decomposition of V(I). Each turning

point, point of inflextion or partially flat region in V defines an irreducible sub-

variety within V(I). Furthermore, any stable local minimum will have no flat

directions and thus it defines a zero dimensional variety in moduli space. A prime

decomposition of I splits the ∂MV = 0 solution space into its component varieties

whose dimensions can be computed and only those which are of zero dimension

can be possible stable vacuum states. Only a finite amount of such varieties can

exist, a large reduction on the possibly infinite amount of solutions to ∂MV = 0

induced by flat directions. The Hessian of V at each of the finitely many points

can be computed, a reduction in computing the Hessian everywhere in moduli
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space.

A further restriction arises from supersymmetry, where the vacuum expec-

tation value of the F-term FM defines the supersymmetry breaking scale of the

M ’th modulus. Enforcing complete supersymmetry preservation on the vacuum

reduces the scalar potential to V = −3eK |W |2 ≤ 0, which does not allow for de

Sitter solutions without the inclusion of non-perturbative effects, but makes an-

alytic analysis easier. It is possible to check for the possible existence of entirely

supersymmetry vacua by noting such vacua would be in the intersection of the

varieties associated to 〈∂MV 〉 and 〈FN 〉.

〈∂MV , FN 〉 = 〈1〉 ⇒ No completely supersymmetic vacua (C.3.2)

This can be further refined by selecting a subset of the FM , Fm, to be definitely

supersymmetric and the supersymmetric status of the remaining moduli undeter-

mined by computing the Groebner basis of 〈∂MV , Fm〉. Although a trivial Groeb-

ner basis immediately excludes the possibility of such a vacuum a non-trivial basis

is not automatically a set of polynomials which are any easier to solve than ∂MV

and Fm. V(〈∂MV 〉) is the space of all extrema while V(〈∂MV, F1〉) is the space

of all extrema which preserve supersymmetry in the first modulus and is a subset

of the first. This can be stated more generally for sets A and B.

A = A ∩ (B ∪ ¬B) = (A ∩B) ∪ (A ∩ ¬B) (C.3.3)

Either a modulus is supersymmetry or not and so we can split V(〈∂MV 〉) into

two parts, supersymmetric or not, for each modulus and this is done algebraicly

by saturation.

V(〈∂MV 〉) = V(〈∂MV, F1〉) + V(〈∂MV : F∞1 〉) (C.3.4)

The variety V(〈∂MV : F∞1 〉) represents the space of moduli values which are

extrema of the potential but for which the first modulus is not supersymmetric.
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This ability to pick and choose which moduli are and are not supersymmetric

provides a way to split 〈∂MV 〉 into 2h
1,1+h2,1+1 seperate ideals, within which only

those with zero dimensional varieties would be possible candidates for stable vac-

uum states. It is noteworthy that it is computationally preferable to stipulate

supersymmetry breakings, or any other dichotomy inducing condition, before at-

tempting a prime decomposition.

In all of these cases it is the moduli which are the variables to be solved for

and if there are still fluxes which are not stipulated then they are parameters, not

variables. Denoting the set of moduli as ΦM and the fluxes as fn the ring over

which Singular, or any other algebraic geometry program, applies its algorithms

is C[ΦM ; fn].

C.3.2 Non-Geometric Flux Parameterisations

Two algebraic geometry methods are used in constructing the solutions to the

Type IIB/O3 Bianchi constraints on the non-geometric flux F2 = Q and its S

duality partner, F̂2 = P . For clarity we recall the constraint equations on Q in

(6.4.1) and its S duality partners.

Q[ab
e Q

c]e
d = 0 , P [ab

e P
c]e
d = 0 , Q[ab

e P
c]e
d + P [ab

e Q
c]e
d = 0

We consider the first of these three expressions, where Q is playing the role of a

structure constant for a six dimensional Lie algebra. Such Lie algebras have been

completely classified [101]. However, Q is further restrained by the properties of

the orbifold, any Lie algebra must be invariant under the orbifold group and this

is particularly constrained by isotropy. Under the cyclic permutation of the three

subtori the only Lie algebras which can possibly match such a symmetry are those

whose structure constants are isotropic. The six dimensional Lie algebra obtains

two generators from each torus and these form two triplets, Xa → (Tρ, T̃σ) and
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we can write down the most general isotropic commutation relations for these two

triplets, though it is most conveniently done in the dual (ξρ, ξ̃σ) basis.

dξρ = λ1 ξ
σ ∧ ξτ + λ2 ξ̃

σ ∧ ξτ + λ3 ξ̃
σ ∧ ξ̃τ

dξ̃ρ = λ4 ξ
σ ∧ ξτ + λ5 ξ̃

σ ∧ ξτ + λ6 ξ̃
σ ∧ ξ̃τ

(C.3.5)

Not all values of λi satisfy the Bianchi/Jacobi constraints of the algebra. Only

those values which give the derivatives of Table 6.13 automatically satisfy the

Jacobi identity. Since this is a complete classification of all six dimensional Lie

algebras and the constraints on Q are GL(6,Z) invariant then the only consis-

tent flux configurations for Q are those obtained by a GL(6,Z) transformation on

one of the five Lie algebras of Table 6.13. Since, by construction, the canonical

structure constants of the five Lie algebras match the orbifold symmetries, as do

the flux components of Q, only those elements of GL(6,Z) satisfying the orbifold

symmetries can be used. We denote such a generic member as M which is re-

sponsible for transforming Qpqr to the canonical form gxyz and is, due to orbifold

symmetries, dependent on the four modular parameters of (6.4.4).

Mx
p M

y
q Q

pq
r (M−1)rz = gxyz (C.3.6)

This expression represents an array of equations and by rearranging them we can

define an ideal whose generating functions are said equations.

I(Q) ≡ 〈Mx
p M

y
q Q

pq
r (M−1)rz − gxyz 〉 (C.3.7)

It is at this point important to note the difference between the entries of Q, the

ci, and the modular parameters in M , mj . The ring over which Singular, or any

other algebraic geometry program, applies its algorithms is C[ci ; mj ]. The mod-

uli do not factor into the parameterisations of the non-geometric fluxes as the

Bianchi constraints are moduli independent. Due to the symmetry properties of

the structure constants and the orbifold, the number of unique generating func-

tions is very small. This is because expressions which differ by an overall factor
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only contribute one generating function to the ideal and trivial cases of generating

functions being identically zero are ignored. In order to be sure that (6.4.3) is a

well defined equation we saturate the initial ideal with respect to the condition

|ΓM | 6= 0 so as to remove possible solutions for which the transformation matrix is

degenerate. Under degenerate transformations it is possible to transform different

Lie algebras into one another, which is inconsistent with the notion of Q being

isomorphic to a specific algebra.

The third member of the S duality triplet is not of the same format, mixing

the two non-geometric fluxes. As outlined in the Z2 × Z2 orientifold chapter the

two non-geometric fluxes are transformed by different sets of modular parameters,

M = M(mi) and M ′ = M ′(m′j), solving QQ = 0 = PP seperately. The mixing

then reduces to constraints on mi and m′j , as 〈QP + PQ〉 belongs to the ring

C[mi,m
′
j ] and it is over this ring that Singular applies its prime decomposition

algorithm.

〈QP + PQ〉 = P1(mi,m
′
j) ∩ . . . ∩ Pn(mi,m

′
j) (C.3.8)

Given a solution to the constraints QP + PQ = 0 it must belong to one of

the varieties V(Pi). Splitting the ideal down into its prime components generally

simplifies the generating functions, which are the constraints on the fluxes. Solving

the constraints of Pi individually provides inequivalent solutions to the constraints

of QP + PQ = 0 but considering all Pi covers all possible solutions.
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Algebra Geometry

radical ideals varieties

I → V(I)

I(V ) ← V

addition of ideals intersection of varieties

I + J → V(I) ∩V(J)√
I(V ) + I(W ) ← V ∩W

product of ideals union of varieties

IJ ← V(I) ∪V(J)√
I(V )I(W ) → V ∪W

intersection of ideals union of varieties

I ∩ J ← V(I) ∪V(J)

I(V ) ∩ I(W ) → V ∪W

quotients of ideals difference of varieties

I : J → V(I)−V(J)

I(V ) : I(W ) ← V −W

prime ideal ← irreducible variety

maximal ideal ← point of affine space

Table C.1: Equivalent algebraic and geometric structures.
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