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Within this thesis are discussed two main topics of contemporary astrophysics. The
first is that of machine learning algorithms for astronomy whilst the second is that
of magnetic cataclysmic variables (mCVs). To begin, an overview is given of ISINA:
INTEGRAL Source Identification Network Algorithm. This machine learning
algorithm, using random forests, is applied to the IBIS/ISGRI data set in order to
ease the production of unbiased future soft gamma-ray source catalogues. The
feature extraction process on an initial candidate list is described together with
feature merging. Three training and testing sets are created in order to deal with
the diverse time-scales encountered when dealing with the gamma-ray sky: one
dealing with faint persistent source recognition, one dealing with strong persistent
sources and a final one dealing with transients. For the latter, a new transient
detection technique is introduced and described: the transient matriz. Finally the
performance of the network is assessed and discussed using the testing set and some
illustrative source examples. ISINA is also compared to the more conventional
approach of visual inspection. Next mCVs are discussed, and in particular the
properties arising from a hard X-ray selected sample which has proven remarkably
efficient in detecting intermediate polars and asynchronous polars, two of the rarest
type of cataclysmic variables (CVs). This thesis focuses particularly on the link
between hard X-ray properties and spin/orbital periods. To this end, a new sample
of these objects is constructed by cross-correlating candidate sources detected in
INTEGRAL/IBIS observations against catalogues of known CVs. Also included in
the analysis are hard X-ray observations from Swift/BAT and SUZAKU /HXD in
order to make the study more complete. It is found that most hard X-ray detected
mCVs have Pspin/Pory < 0.1 above the period gap. In this respect, attention is
given to the very low number of detected systems in any band between
Pspin/Pory = 0.3 and Pspin/Pory = 1 and the apparent peak of the Pypipn/Porp
distribution at about 0.1. The observational features of the Pspin - Porp plane are
discussed in the context of mCV evolution scenarios. Also presented is evidence for
correlations between hard X-ray spectral hardness and Pypipn, , Pory, and Pepin / Pore.
An attempt to explain the observed correlations is made in the context of mCV
evolution and accretion footprint geometries on the white dwarf surface.
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Prologue

“Astronomy has been among the first scientific disciplines to experience
this flood of data. The emergence of data mining within this and other
subjects has been described as the fourth paradigm. The first two are
the well-known pair of theory and observation, while the third is an-
other relatively recent addition, computer simulation. The sheer volume
of data not only necessitates this new paradigmatic approach, but the
approach must be, to a large extent, automated. In more formal terms,
we wish to leverage a computational machine to find patterns in digital
data, and translate these patterns to useful information, hence machine
learning. This learning must be returned in a useful manner to a human

investigator, which hopefully results in human learning.”

— Nicholas M. Ball [2009.
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Chapter 1

Introduction

“A mathematician is a device for turning coffee into theorems.”

— Paul Erods.

NE of the main issues facing astronomy in the coming century will be the
O exploration and exploitation of extremely large amounts of data gathered
by various observatories. This scenario will essentially be inevitable given the
ever increasing capabilities of astronomical observing facilities. The amount of
information gathered in astronomy in the coming years will help tackle many
of the current problems in contemporary astrophysics, however novel methods
are required to deal with such huge and diverse amounts of data. Exploratory
data mining of large astronomical datasets is thus the main concern of this
thesis. In particular the application of machine learning algorithms for the
introduction of new science in contemporary astronomy by exploiting large
area surveys such as the IBIS/ISGRI gamma-ray survey performed as part of
the European Space Agency’s INTEGRAL space observatory mission. To this
end the thesis introduces ISINA (INTEGRAL Source Identification Network
Algorithm), a machine learning algorithm constructed in order to identify the

IBIS real source population against the fake one caused by both the large
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CHAPTER 1. INTRODUCTION 16

statistical dataset and the highly systematic noise |Scaringi et all, 2008]. The
algorithm will be described in detail, tested and applied to the new IBIS dataset
in preparation for the future releases of gamma-ray source catalogues.

Analysing the IBIS/ISGRI dataset for the production of future catalogues
has also reintroduced a somewhat overlooked population, that of magnetic cat-
aclysmic variables. Because of the excellent survey capabilities of INTEGRAL,
the number of detections of this source population has grown in the hard X-
ray /soft gamma-ray regime. This has allowed us for the first time to study the
global properties of these systems, and in particular has allowed us to compare
the hard X-ray selected sample of mCVs against the global one. This kind of
analysis was not possible before given the very low number statistics of these
objects and as one would expect, new analysis will bring forward new results
as we will see in the last chapters of this thesis.

Chapter 2 introduces ISINA, a semi-automated algorithm for the iden-
tification of sources found within the IBIS/ISGRI images created in order to
ease the production of future gamma-ray source catalogues. ISINA has been
built keeping in mind the main issues encountered when creating catalogues
through visual inspection, and tries to overcome these issues by creating unbi-
ased candidate lists based on more homogeneous criteria. In order to construct
a reliable algorithm for this task we will also have to take into account the ori-
gin of the systematic noise found within the IBIS/ISGRI images caused by
the coded mask imaging technique. This systematic noise, correlated with the
real source population, is particularly hard to characterise and will result in
an excess of candidates selected by ISINA.

Given the dynamical timescale encountered when observing the gamma-ray
sky ISINA will have to be trained on different source populations, defined by

their timescale of activity. More specifically ISINA will be trained to recognise
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faint persistent sources, strong persistent sources and transients independently

of each other. The accuracy of the algorithm is then analysed using the testin

gz

set which uses as a reference the published IBIS/ISGRI catalogue 3 [Bi

007]. This will help us understand the possible pitfalls of ISINA in preparation

for the next chapter which will see ISINA being applied for the construction
of the catalogue 4 release.

Chapter 3 takes the ISINA algorithm and applies it to the construction
of the IBIS/ISGRI catalogue 4. Contrary to Chapter 2, we will not have a
reliable testing set to compare our results against. Moreover, catalogue 4 has
also been constructed in parallel using the more conventional approach of visual
inspection. This method is also described, and will allow us to compare the
ISINA result to the more “human” approach. This comparison will shed light
on some additional pitfalls introduced by ISINA, and also some introduced by
the visual inspection method implying that at the moment the best result will
be obtained using a combination of both methods.

Chapter 4 diverges slightly from the application of machine learning algo-
rithms to astronomical classification and focuses more on the analysis of one of
the IBIS/ISGRI source populations: magnetic cataclysmic variables (mCVs).
This faint persistent population has yielded some very interesting results when
analysing the global properties of the hard X-ray selected sample. Moreover
the more general properties of the whole mCV population is reviewed in the
context of some contemporary accretion models for mCVs. Particular empha-
sis is given to the Py, - Py plane of the global mCV population. We will find
that all but a few of the hard X-ray selected mCVs occupy the low synchronic-
ity (Pspin/Pory < 0.1) region of this parameter plane, in agreement with model
predictions. Finally the spectral properties of the hard X-ray selected sample

are analysed in the context of the systems orbital and spin parameters. We
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find that Pspip, Porp and Pspip/ Py, all show evident correlations with hardness
ratios defined to be Fluxsg_gokey/Fluri7_s0key. The faster the white dwarfs
(WDs) in mCVs spin the harder their spectra. This new result is discussed and
speculations are brought forward in order to try and explain this phenomenon.

Chapter 5 ends this thesis with some conclusions and thoughts about
future developments in both the fields of machine learning applied to astronomy

and future mCV studies.



Chapter 2

Learning IBIS data with ISINA

“My CPU is a neural net processor; a learning computer.”

-~ TERMINATOR

HIS chapter will present the creation of a semi-automated algorithm for
T source identification within IBIS images, ISINA: INTEGRAL Source
Identification Network Algorithm. ISINA has been created using as a refer-
ence IBIS catalogue 3 data [Bird et _all, 2007], in preparation for the upcoming
catalogue 4 release. This will hopefully enable future catalogue releases to be
far more objective and consistent in the future.

Within this chapter we will have to review the problems encountered when
dealing with IBIS data, and the nature of the classification task we have to
pursue. As we will see, the creation of an effective classifier will highly depend
on the parameters used, and these have to be chosen in the context of the
classification task we have to pursue.

We will begin by introducing in more depth the INTEGRAL satellite, the
IBIS detector and associated coded mask techniques for imaging. This will also
lead us to describe the imaging problems related with such systems. Moreover

we will also describe the intrinsic behaviour of high energy sources as observed
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CHAPTER 2. LEARNING IBIS DATA WITH ISINA 20

by IBIS, as this will also play a crucial role in understanding how to build
a reliable classifier. The dataset is then introduced, together with a brief
description of mosaic creation. Having understood the dataset and related
problems, together with the kinds of objects observed with IBIS, we will then
introduce the ISINA algorithm.

IBIS maps will be searched for excess above background and flagged as
possible candidates. Features describing temporal behaviour, shape and sig-
nificance will be defined and extracted for each excess candidate. Next we will
create training and testing sets for ISINA to learn on, composed of both real
and fake sources. In particular we will also describe our choice to construct
three independent classifiers within ISINA in order to deal with the dynamic
temporal nature of the gamma-ray sky. One classifier will be trained on faint
persistent sources, such as AGNs, and is built to recognise such objects. A
second classifier will deal with strong persistent objects and the final classifier
will deal with transients. Using three classifiers in this way will allow us to re-
cover the majority of real sources in the testing set, keeping the number of false
positives relatively low. This is discussed in the final sections of this chapter,
which prepares the reader for the next chapter describing the application to
ISINA for the recovery of objects within IBIS catalogue 4 data. We note that
all of the algorithm has been developed from independently, without the use

of external software, except where stated.

2.1 The INTEGRAL satellite

The INTEGRAL satellite (Figure ) is an ESA mission launched on October
17, 2002, on board a Russian proton rocket from Baikinour and placed in a 66

hour high elliptical orbit with an apogee of 153,000 km, a perigee of 690 km,
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and an inclination of 51.6°. It has since been fully operational and with its
extended lifetime is expected to remain operational until 2012. The mission is
particularly dedicated to fine imaging and spectroscopy of gamma-ray sources
in the energy range from 17 keV to 10 MeV. The mission is also complemented
with imaging in the X-ray and optical bands with additional instruments on

board. In total, INTEGRAL consists of 4 instruments:

e IBIS is the gamma-ray imager operating between 17 kev to 10 MeV,
and has been specifically designed for Galactic surveys. It possesses a
large field of view of 30° with an angular resolution of 12" FWHM. It is
composed of two detector layers. The first called ISGRI detects photons
ranging from 17 keV up to about 300 keV and is composed by an array
of 128 x 128 CdTe detector elements. The bottom layer, called PICsIT
is instead responsible for the detection of photons in the range 175 keV
- 10 MeV and is composed of 4096 CsI(T1) elements.

e SPI is the gamma-ray spectrometer and has been optimised for high
spectral resolution (3 keV @ 1.7 MeV) and high sensitivity, at the cost of
having a poor angular resolution (2.5%). It is composed of 19 high purity
germanium crystal detectors with a total area of ~ 508cm?. The great
spectroscopic capabilities of SPI allows for the detection and study of
nucleosynthesis, specifically close to supernovae remnants. Key gamma-
ray lines which SPI is able to observe are 2?Na, 26 Al, ©©Fe and the 511

keV annihilation line.

e JEM-X is the onboard X-ray monitor observing in the range 3-35 keV
band. It is designed to give contemporaneous measurements in the X-ray

band, and helps refine the positional accuracy of IBIS detected sources.

e OMC is the onboard optical camera which takes images in the V band.
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Figure 2.1: The INTEGRAL satellite showing the different instuments and
satellite components.
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Similarly to JEM-X, the OMC aids during the localisation of IBIS and

SPI detected sources.

All of the instruments on board of INTEGRAL, except the OMC, use the
coded mask technique for imaging. This is because focusing photons at such
high energies is not an easy task, and thus indirect imaging techniques have
to be employed. Coded masks however inherently create artefacts in the pro-
cessed images, which will make the task of identification and/or classification
of sources with an automated algorithm particularly non-trivial. This is ex-
plained in more detail in the next section, with particular emphasis on the

IBIS/ISGRI detector, the instrument on which data ISINA is based on.
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2.2 Introducing IBIS/ISGRI

Before we begin describing the identification algorithm, some consideration
on the kind of data to be used needs to be addressed. In particular the IN-
TEGRAL/IBIS imaging system uses the coded mask technique in order to
produce images of the gamma-ray sky. To do this, a shadowgram of the mask
pattern is recorded in the IBIS/ISGRI detector plane. This shadowgram is
then deconvolved with the mask pattern (Fig. EZ) in order to produce an
image of the sky. This method inherently produces mirror images (or ghosts)
of real gamma-ray sources together with structures related to the mask pat-
tern, which are then removed by the data reduction software. However a good
model of the telescope is required, which takes into account background ra-
diation, and a source list of where the gamma-ray objects are. Because no
perfect model of INTEGRAL exists, and because we do not necessarily know
in advance where all the gamma-ray sources are, image artefacts are created.
These are the result of bad ghost and mask pattern subtraction, where the
source PSF has not been modelled and subtracted correctly from the image
artefacts. In order to best interpret the IBIS/ISGRI images, four different
data products are produced by the deconvolution software. These are an flux
image, a detection significance image, a variance image displaying the errors
per pixel and lastly a residual image displaying the errors associated with the
deconvolution per pixel.

Most of these artefacts, or noise, are highly systematic in that they are
correlated with the real source population and have the same characteristics
(spectral and temporal) as real sources. This will introduce a problem when
trying to discriminate the real source population against the fake one as, in

some cases, the characteristics for both will be exactly the same. This problem
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Figure 2.2: The INTEGRAL/IBIS tungsten mask

s

will be examined later in this chapter in more detail, whilst here we only
describe the origin of the systematic noise.

In Figure B3, we show the final mosaic image in the 17-30 keV band cen-
tred on a bright extragalactic AGN. This source is one of many to create the
systematic structure artefacts being described. These are essentially mirror
images of the real source, but with apparent reduced flux, situated at about
10.54° from the real source (minor ghosts are also found at other distances).
This particular object has been observed with INTEGRAL always having the
same orientation. This is particularly bad since the ghosts will always ap-
pear in the same place and will be enhanced further by mosaicking the data.
Contrary to this observing strategy INTEGRAL is sometimes rotated before
observing the same object, smearing out the ghost structures, at the cost how-
ever of producing ring-like structures at the same distance as where the ghosts
would have been. This is illustrated in Figure B4 for a bright galactic source.

In both cases the artefacts produced are of high significance (i.e. compa-
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Figure 2.3: IBIS ghost artefacts caused by the coded mask imaging system.
These artefacts are always located at the same distance from the source they
have been created and are quite easy to recognise visually. The green ring
is there for reference and is centered on the source creating the ghosts with a
radius of 10.54°. The problem resides in constructing a good classifier for these
structures since, by definition, these artefacts have the same characteristics as
that of the real source population.

Figure 2.4: IBIS ring artefacts caused by the coded mask imaging system.
These artefacts are of the same kind to that of ghosts (see Figure Z3]). The
reason for the apperance of ring like structures resides in the INTEGRAL
observing mode. In the figure displayed below the central object has been
observed with different orientatations by INTEGRAL. After mosaicking the
images the ghosts appear to be smeared in a ring-like structure centered around
the real source that created the ghosts in the first place.

2000 3000 4000 000
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rable to the faint sources within the field) and highly correlated with the real
source population. This will make source discrimination a particularly hard
task for both a machine learning algorithm and a person. Keeping this in mind,
we will attempt in this chapter to produce a reliable identification algorithm in
order to aid the correct identification of objects found within the IBIS images

and coded masks in general.

2.3 Machine learning algorithms for IBIS

One of the main challenges when choosing a machine learning algorithm for
the purpose of identification and/or classification is to first understand as best
as possible the dataset. This, together with the kind of classification to be
pursued, is crucial in building a reliable algorithm. For example, in a very
simplistic scenario, we would never hope to correctly identify and classify a
star given only its luminosity. In order to achieve a respectable classification
rate we would at least need two parameters namely, the luminosity and tem-
perature (colour difference). Moreover, imagine a scenario where the measure-
ments have been taken with different CCDs, and that each one has a systematic
uncertainty which is different from all the others. Then the problem for the
classifier won’t only be to use the correct parameters for this particular clas-
sification task, but also to “learn” how to take different errors into account.
This is clearly not an easy task, and we also point out that, even if luminosity
and temperature would be enough to correctly classify all stars, we, as the
creators of the algorithm, would have to train our classifier based on these two
parameters, which until now we have assumed we just knew in advance. But
one of the main problems in constructing reliable classifiers is just that: what

parameters are needed to correctly classify a particular set? In some cases this
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question is very easily answered, like for example determining the star class of
a particular candidate, however the task might be much more challenging if
we are not sure what parameters are best for a particular set, as is the case in
most realistic circumstances.

Identifying real candidates from IBIS data is essentially affected by all the
problems described above. There has been extensive mass modelling for the

spacecraft and the detector in the past years [l]ha.m_al, 008, [Ferguson et all,

003], unfortunately however the data products are still suffering a lot from

systematic noise. In particular, because of the imperfect implementation of
a correct model for the INTEGRAL spacecraft, the noise is highly correlated
with the real source population and highly resembles real objects. This is an
issue which will highly affect any classifier (and indeed humans too!), and we
have to be very cautious and aware of the problem. Clearly choosing reliable
parameters will be a hard task. By not being aware of this one can easily
mislead the algorithm into thinking a particular candidate is real when in
reality it is not. An analogy with our previous simplistic example would be
to try and classify star types using luminosity and distance. Obviously no
sensible classification relevant to star types could be obtained with these two
parameters, but it does illustrate the importance of parameter selection for the
given classification task.

IBIS catalogues in the past have been constructed through visual inspec-
tion. During this process, a set of candidates, mainly selected on significances,
(see Figure EZO)) are inspected by eye by a team of experienced astronomers
to try and recognise if a particular candidate is real or fake. This process
obviously also relies on the astronomer to understand the data thoroughly, so
that his/her correct identification rate is high. In essence, each astronomer

has created in his/her mind a set of rules which have to be satisfied in order
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Figure 2.5: In order to identify an excess as a source it is necessary first to
identify the significance level at which the source population dominates over
the noise distribution. To this end catalogue 3 has been produced using log-log
plots of the number of excesses detected by SExtractor above a specific signifi-
cance as a function of that significance. This is shown below for the 30-60 keV
all-sky mosaic. Two distributions are fitted to the plots, a gaussian represent-
ing the noise population and a power law for the real source population. A 1%
false positive accuracy is adopted in order to determine a reliable threshold for
source identification.
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to claim with high confidence that a candidate is real. These rules might be
related to the shape of the FWHM of the candidate in question, or even the
local signal-to-noise. There are many problems however using this method.
The obvious one is that as the data volume for IBIS (or any other instru-
ment) increases, this method requires more time and more “inspectors” to do
the job. As an example catalogue 1 was based on solely 5 maps, whilst the
latest catalogue 4 uses ~ 11,500 maps. There is no alternative to this issue,
and only a larger workforce can overcome this. The second more subtle but
more relevant problem is that each astronomer has in mind his/her own idea of
what a real source should be or look like. This is because, similarly to machine
learning algorithms, the astronomer can only rely on past examples in order
to make a decision on a new candidate. This essentially means that the same
astronomer might choose to classify a particular object as real today and fake
later on in the future, after having inspected more cases and having changed
his/her mind. The problem gets worst when we introduce many different as-
tronomers, since each one would have inspected a slightly different set, and
will have created in his/her own mind a slightly different set of rules for what
he/she considers to be real. In some circumstances having many “opinions” on
a particular candidate might be useful, however we can think of cases where
this is definitely not optimal when most of the astronomers make the wrong
decisions. In fact we would expect a group of astronomers to usually select
more sources than are real, mainly because our brain is prone to find patterns,
making the astronomer “see” a real source when in effect it is not. This has
the consequence of causing high rates of false positives. Making our selection
bias even worse is the fact that most astronomers do not only visually inspect
candidates (luckily!) but also have their favourite objects in the sky they enjoy

studying. Even if very subtly, this can bias the selection of real objects further
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when we imagine the astronomer believing too many of his/her own favourite
objects. This bias would be caused by someone who, for example, studies
AGNs and is, even if unconsciously, trying to raise the number of catalogued
AGNs for further studies. Obviously the problem is not restricted to AGNs
only, and can be turned the other way round by someone very conservative
about any object, biasing the selection the other way.

In order to address most of the issues discussed above on the IBIS dataset
we have chosen what we think is a flexible algorithm which can undertake most

problems intrinsic to the classification task. In the following sections we will

describe the creation of an algorithm similar to Random Forest (Brieman et al

1984) which we call ISINA. This is an algorithm that has the potential to deal

with redundant parameters (i.e. parameters which do not help or confuse the
algorithm in making a decision) so that we are allowed to choose many more
parameters than needed without affecting the final result. This is particularly
useful as we do not know in advance what features to use for our classifier,
so we will decide to include many more than we actually think we need. The
other promising feature of ISINA, and Random Forests in general, is that it is
structured in a similar way to the visual inspection process. Essentially we will
build many classifiers using different features and let each classifier decide on
each candidate independently. We will then merge the results at the end, sim-
ilarly to what happens during visual inspection. The great advantage however
is that each of our individual classifiers will not be biased, and will exclusively
be built using the training set. This leaves very little space for “opinion”, as
should be the case for scientific classification. However before we introduce the
algorithm in full we first have to understand the data and classification scope

better in order to select appropriate features for our classifier to work on.
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2.4 The dataset

The data are collected with the low-energy array ISGRI (INTEGRAL soft

gamma-ray imager, [Lebrun et all [2003]), consisting of a pixelated 128 x 128

CdTe solid-state detector that views the sky through a coded mask. The

instrumental details and sensitivity can be found in [Lebrun et all [2003] and

Ubertini et all [2003]. IBIS/ISGRI generates images of the sky with 12’ [full

width at half-maximum (FWHM)| resolution and ~3 arcmin source location
accuracy over a 19° fully coded field of view in the energy range 15-1000 keV.
The data set used for the creation of ISINA is the same as the one used

in the production of the third IBIS/ISGRI soft gamma-ray survey catalogue

Bird et all, 2007], which uses image data for the first 3.5 yr of IBIS/ISGRI

core programme and public observations. The data set used here ensures that
> 70% of the sky is observed with at least 10ks exposure. This yields a data
volume of ~5 Tb of raw data and ~10 Tb of processed data.

Each INTEGRAL pointing is referred to as a Science Window (ScW). In
particular each IBIS/ISGRI ScW image will have an exposure of about 2000 s
and can produce different images for different energy ranges. This will have to
be taken into account in our classifier as different types of objects have different
spectral shapes and might only appear in some band images and not others.

The IBIS dataset is not only composed of ScW images, but also of mosaics
specifically created for survey studies. These mosaics are created in 5 different
energy bands using as much of the ScW data as possible. It is important,
however, to remove a small fraction of images for which the image deconvolu-
tion process has not been successful. These mainly include data taken during
or following severe solar activity or near spacecraft perigee passage when the

background modeling is difficult due to the spacecraft passing close or within
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the South Atlantic Anomaly or the Van Allen radiation belts.

The image rmﬂ was determined for each significance map (at ScW level),
and the distribution of the image rms statistics for all science windows was
determined. The mean and variance of this distribution was then found in
order to define what can be considered a “good” image rms. An acceptance
threshold was then set at 20 above the mean image rms, and any individual
images with higher rms than this were discarded. Typically, this resulted in any
image with an rms greater than 1.08 (after removal of sources) being rejected
(depending on energy range). Of the ~24,000 ScW processed, ~20,000 ScW
were retained in the final ScW list. In addition, science windows acquired in
“staring” mode, and data taken during the instrument performance verification
(PV) phase (for simplicity, this was taken as up to and including the calibration
activities in revolution 45) were removed from the main ScW lists due to their
potential adverse effect on the final mosaic quality.

The ScWs were mosaicked using a tool developed in Southampton, opti-
mized to create all-sky galactic maps based on several thousand input ScWs.
However given the long timebase spanned by this dataset, we additionally re-
quire mosaics composed of only a subset of ScWs in order to locate transients.
These will be objects that have an increase in flux above the noise level only
in specific ScWs, and require mosaicking only a subset of ScWs to be signifi-
cant enough and be considered for identification. In order to compensate for
this problem, we constructed mosaics over three timescales. Maps were cre-
ated for each revolution that contained valid data. This is optimized to detect
sources active on timescales of the order of a dayH. We identified 26 sequences
of consecutive revolutions that had similar pointings. Thus, these revolution

sequences could best be analyzed as a single observation, and sensitivity for

'"Root Mean Squared in units of Significance
21 revolution = 3 days
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sources on longer timescales than revolutions (i.e., order of weeks) could be op-
timized. Ultimately, persistent sources can best be detected in an all-archive
accumulation of all available high-quality data.

Maps were created for each of these timescales, in five energy bands (20-
40 keV, 30-60 keV, 20-100 keV, 17-30 keV and 18-60 keV), these being chosen
to provide both coverage of the most sensitive energy range for ISGRI and
sensitivity to various typical source emission profiles. For each energy band
and time period all-sky mosaics were made in four projections: centered on
Galactic center, centered on Galactic anticentre, north Galactic polar, and
south Galactic polar. The purpose of these multiple projections is to present
the automatic source detection algorithms with source PSFs with the minimum

possible distortions.

2.5 The Algorithm

In this section we describe how ISINA is built, trained and tested. The process
is relatively long to describe and, in order to make it clearer to the reader we
give here a brief description of the process. The steps involved after having

created the mosaics are as follows:

1. Locating candidates: Here we describe the steps involved in creating
an initial candidate list for ISINA to work on. We will search all the
mosaic maps for possible candidates in a very un-conservative way so as
to make sure no real candidates are missing. ISINA will then learn to

discriminate the majority of fake sources.

2. Filtering candidates: Given the previous step we are faced with an

incredibly large candidate list, where many candidates are in actual fact
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the same but detected in multiple mosaic maps. Here we describe the

procedure employed in order to merge the initial excess list.

3. Feature extraction: Having produced an excess list we will define some
features that will represent what a human astronomer inspects before
deciding whether a candidate source is real or fake. These features will
then be extracted for all candidates in all the ScWs and mosaic maps
available. These are the features, or parameters, ISINA will work on in

order to decide whether candidate sources are real or fake.

4. Feature merging: Having extracted features for all candidates in all
possible images we are faced with a data redundancy problem. In par-
ticular, the features extracted for transients or variable sources will not
all be useful, and in fact will confuse ISINA in deciding whether the
candidate is real or fake. In other words, if a transient is on for a very
small portion of the observed time, we run the risk of not identifying it
properly if we do not use only the observations where it is active. The
quiescent phase of the source will confuse the algorithm. This subsection
will describe the method we employ to overcome this problem by creating
three independent classification networks: one based on faint persistent
sources, one based on strong persistent sources and one on transients.
This will hopefully allow the correct recovery of the majority of IBIS

detected sources.

5. Training and testing sets: Having extracted and merged the features
for all our candidates we need to produce a reliable training set for ISINA
to learn on. Moreover a reliable testing set needs to be produced so that
we can later assess the performance of ISINA. Again this is done by

creating three independent training and testing sets as described in the
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6. Random forest algorithm: The main engine of the identification al-
gorithm is described here. This is where the training takes place for the

three independent networks.

7. Results: Finally, after training, the testing set is passed to ISINA and
identification tags are given to the testing candidates. Here we assess
the performance on this testing set and discuss possible improvements

for the algorithm.

2.5.1 Locating candidates

The first stage in ISINA is to look in all images (mosaics, revolution mo-
saics and revolution sequence mosaics) in order to locate potential candidates

for further analysis. We do this by simply running the source searching al-

gorithm SEXTRACTOR [Bertin and Arnonts, 1996] and recording all excesses

above 4.50. This threshold might be too optimistic given the level of system-
atic noise in the maps; however, we will show how this is not a problem as the
network will be able to learn and discriminate the fake candidates from the
real ones. On the contrary, the threshold is too conservative for some maps
where systematic background noise is very low; however, at this stage it is best
to have more fake candidates at the cost of recovering most of the real ones.

We note that this was the global threshold employed in creation of catalogue

3 [IBj_Ld_e_t_a_L, 007]. The source position measured by SEXTRACTOR relies on
calculating first order moments of the source profile (referred to by SEXTRAC-
TOR as the barycentre method). At the faintest levels source detectability will
be limited to background noise; however, this can be improved by applying a

linear filter to the data. Moreover, in crowded regions of the sky, confusion
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can be avoided by applying the SEXTRACTOR mezhat. This filter convolution
alters the significance of sources in the original mosaics by increasing it, de-
blending two (or more) close candidates. The drawback of this filter is that it
sometimes creates extra ring-like candidates around apparent or real excesses,
which will be extracted as possible candidates by SEXTRACTOR, and later fed
to ISINA. Doing this yields an excess list of 58,603 candidates, where most are
in common between ScWs however. The next section will describe the adopted

method for source filtering and merging.

2.5.2 Filtering candidates

An initial list of 58,603 excesses was extracted as described above. We need
to employ some sort of filter in order to discriminate against duplicates and
to remove the most obvious fake excesses in common between ScWs. We do
this by merging excesses from multiple maps by assuming sources within 0.2°
(the IBIS/ISGRI angular resolution) from each other are actually the same,
beginning from the highest significant excess. The 0.2° merge radius might
seem too large; however, this has been chosen as a trade-off between keeping
the number of false positives caused by instrumental artefacts low, while still
retaining the majority of objects in catalogue 3. By decreasing the merge radius
we allow for more fake excesses caused by the imaging system. For example
bright sources in the IBIS maps tend to have propeller- like and/or ring-like
structures (see Figure B8l around them sometimes extending 0.5° from the
source centre, and these are extracted with SEXTRACTOR. By decreasing
the merge radius we allow for these to be treated as independent candidates;
however, by increasing the radius we allow for the candidates to be merged
with the bright source from which they were created in the first place. We

note that the merging process must start from the brightest excess first and
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subsequently merge the candidates in brightness order. This has to be done
in order to avoid mismatches between real sources and fake candidates. If, for
example, we had to merge the candidates starting randomly from our excess
list, we run the risk of merging a fake candidate created from a real source with
other fakes. This would not be the case if we start with the real candidate first
(brighter than the corresponding fakes associated with it), the fakes created
from it would be merged into the real one.

We also eliminated all excesses that appeared only in one mosaic. This
additional criterion was introduced in order to minimize the number of false
positives in the final candidate list and was also the basis of the creation
of catalogue 3, thus no real sources are missed by employing this cut but
a high number of fakes are discarded. This is best illustrated in Figure
displaying the number of recovered objects as a function of match radius for
two different methods. On the right an excess was considered as a candidate
if it appeared in any map, whilst on the left an excess was considered as a
candidate if it appears in at least 2 maps. The difference in recovered objects
is very significant. We note that the graph on the left keeps increasing until
~0.4°. This is because, even though there are fewer “propeller” candidates
as the search radius increases, many more extra-galactic fake candidates are
introduced.

The final coordinates of the candidates are then taken from the highest

significance excess. Thus, the initial excess list reduces to 7221 candidates

which are shown in Figure Z7. Out of the 421 sources identified by [Bird et al

007] only 13 were not recovered with these filters. Of these, five were observed

before revolution 46, and therefore are not present in our initial excess list. The
remaining eight were excluded due to the 0.2’ merge radius and reside very close

to a real source. It is possible that human intervention could recover them in
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Figure 2.6: Graphs displaying the total number of recovered objects as a func-
tion of match radius. On the left an excess was considered as a candidate if it
appeared in at least two maps, whilst on the right if it appeared in any map.
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the final inspection phase given they are so close to real sources, however new
methods are being investigated in order to localise them for the production of
future catalogues. We point out that other candidate merging methods could

be developed in the future without affecting ISINA.

2.5.3 Feature selection and feature extraction

When the input data set to a classification algorithm is too large and/or sus-
pected to be significantly redundant, as is the case for the IBIS/ISGRI images,
then the input data will be transformed into a reduced representation set of
features (also referred to as a feature vector). As a trivial example one fea-
ture could be the significance value for a particular candidate on a particular
timescale. This process is called feature extraction, or more generally dimen-

sionality reduction.
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Figure 2.7: Galactic centre in the 18-60 keV band as seen by IBIS/ISGRI with
the reduced subset of 7221 candidates overlayed. Candidates tend to follow the
artefacts caused by the detector system. Moreover most candidates have been
detected using SExtractor deliberately to a very low detection threshold, and
most will turn out to be fake. The network will try to learn how to discriminate
the false excesses from the real ones.
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Feature extraction and parameter selection are the most important steps
in building a reliable classification algorithm. By feature extraction we mean
producing a set of variables, extracted from the IBIS/ISGRI sky images, whilst
by parameter selection we mean combining these variables in order to best rep-
resent the objects we are trying to classify. Even the most perfect classification
network will not perform well if the wrong parameters are passed to it. This is
why in a general scenario one has to answer the question “what are we trying
to classify?” in order to decide what features best describe the given classes. In
our case we are trying to discriminate between real sources and fake candidates
within the IBIS/ISGRI images. Our features need to provide the maximum
possible discrimination between real and fake sources. A feature that describes
a real source is of no use if it describes a fake one in the same way. In fact
features that only apply to fake sources are equally useful. Moreover they also
have to take into account the nature of the artifacts caused by the imaging
system, in our case the ISGRI layer on IBIS and coded masks together with
the temporal nature of the gamma-ray sky. Here we explore the methods em-
ployed in order to extract reliable features to be passed to the network(s) for
classification.

In the context of IBIS/ISGRI source identification we have decided to use
the following features from past experience in manually creating survey cat-
alogues. First, a 2D Gaussian is fitted to all ScWs where candidates might
be present. We allow the Gaussian to be fitted in a 9 x 9 pixel (40 x 40
arcminutes ) window centred at the candidate’s coordinate. The following fea-
tures are then extracted from the intensity, significance, variance and residual

images described in Section 222k

1. Distance between Gaussian centre and original candidate coordinate:

Too large deviations in this parameter might suggest we are actually
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looking at structure as real sources should not move around more than

their point source location accuracy.

2. Fitted Gaussian peak (amplitude): This parameter will help us discrim-

inate between high and low significance detections.

3. Local standard deviation: Will help the algorithm to determine the var-

ious levels of local signal-to-noise.

4. FWHM difference in two perpendicular directions: We would expect this
parameter to be very close to 0 for real sources as their PSF is meant to

be circular.

5. FWHM ratio: Similarly to feature 4, we expect this feature to be close

to 1 for real sources

6. Significance value at candidate position: This again is similar to feature
2, however this value is read at the candidate’s position rather than where

the fitted Gaussian peak value is.
7. Intensity value at candidate position: Same as feature 6, but for intensity.
8. Variance at candidate position: Noise level indicator.

9. Residual at candidate position: Again a noise level indicator mainly re-
lated to how the deconvolution process performed for the particular ScW

in question.

Features 1-5 are extracted from both intensity and significance images in four
energy ranges. A conservative cut is employed by ignoring all extracted fea-
tures where the centre of the fitted Gaussian is offset by more than 2.5 pixel
(30 arcmin) from the original candidate coordinate. In these cases the candi-

date is likely to be not observable in the ScW and the Gaussians were fitted
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to background structure within the candidate region. Similarly astronomers
would tend to emply a similar cut where any articular candidate would be
excluded if the resulting Gaussian fit was substantially offset from the nominal
position. In addition to the above we also extract all nine features from the
final significance mosaic maps as these will prove useful in identifying the faint
persistent population. Obviously parameters such as the FWHM will depend
on the kind of projection (galactic centre, galactic anticentre, north and south
polar) from which the feature is extracted. This is not appropriate as the
network will then be discriminating projections rather than real FWHM. In
order to deal with the problem we extract the features from the projection
which has its centre closest to the candidate position, optimally minimizing
the distortions caused by the projections.

On average, with large scatter, each candidate has a total of ~600 ScW
pointings used in the extraction process, yielding more than 10,000 features.
The feature extraction process takes just about more than 7 days on 5 1.8GHz
CPUs. It is clear that for many objects, in particular transients, most of the
~10,000 features will be redundant and not useful, suggesting that a further
step has to be employed in order to further reduce the dimensionality of our
data set. The next subsection will deal with this process called feature merging.
Once a set of relevant and reliable parameters have been chosen the problem
becomes one of pattern recognition. Essentially one has created a multidimen-
sional parameter space, where some variables will have a greater discriminatory
power than others, whilst on the other hand some combinations of two or more
would be more efficient. The problem is that we are not sure which (if any)
of the features are best for class discrimination and this is why one employs
classification networks for pattern recognition. We therefore need to reduce

our dataset in a sensible manner and merge our features.
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2.5.4 Feature merging

In order to reliably train a classification network, the nature and behaviour of
the objects one is trying to classify needs also to be taken into account. In the
case of the gamma-ray sky this behaviour is very diverse, and one has to define
coherent subclasses that any classification network can deal with separately.
After all a network which is very well trained at recognizing the Crab, a bright,
constant flux source, would not necessarily perform well at recognizing a faint
active galactic nucleus (AGN). The most obvious separation is that of faint
persistent versus strong persistent. By strong persistent we mean any objects
which would be observable in one ScW pointing. On the other hand a faint
persistent source might not be observable in one ScW pointing; however, it’s
signal will still be present, and will show up in the final mosaic, for example,
after having increased the exposure time on that part of the sky. To be more
precise for the IBIS/ISGRI detector, a source will be observable in one ScW
pointing if its flux is greater than ~10 milliCrab with a ~2000s exposure.
Everything with a lower flux will need longer exposures to be observable, even
though its signal will still be present in any one pointing. This is the case for
most AGN and cataclysmic variables (CVs).

Another source behaviour that must be taken into account when dealing
with the gamma ray sky is that of transients. These objects are usually X-
ray binaries (XBs) but include a diverse set of objects as well (gamma-ray
burst, supernovae). These will vary on a huge range of time-scales, from being
observable in only one ScW to being observable only by mosaicking several
orbits of data. As one might expect these are tricky to detect as it is not
known in advance what sort of time-scale to expect from these objects and in
particular when, in a series of pointings, to extract features from them. This

is also a big problem for “human” searches too. If we do not make a mosaic
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map on the right timescale, we can never hope to find the source, unless we
bias the search and look for known sources.

From here on we will refer to the definitions just described when referring
to our three different source behaviour types: faint persistent, strong persistent
and transients. Each one of these subclasses needs to be treated independently
when training as the time-scales and features of each subclass vary enormously.
We therefore have to tell the network what features are relevant for classifi-
cation of a given subclass of sources. The danger of this approach is that we
train for specific characteristics, and the detection of new source types may
be inhibited. Balancing this, our subclasses are as generic as possible, which
reduces the risk with specific subclasses. In the next three subsections we will
explain how the extracted features are merged in order to produce a set of

merged features per network together with their respective training sets.

Faint persistent sets

In order to deal with the faint persistent population we decide to merge the
candidate features (Section EZ53)) by simply taking the average of, or combina-
tions of features (see Table 2ZI). After all from our definition of faint persistent,
all ScW pointings will have a signal, even if a small one. It might occur that
the level of noise in any particular ScW will be much higher than the signal.
As described in Section EER3], features get discarded if the Gaussian fit is offset
by more than 2.5 pixels, suggesting we are looking at a “bright” noise structure.
In our approach 12 features are used which were extracted from an ScW level
and averaged as described above. We also included six features extracted from
the final mosaic level. For a list of used features refer to Table 211 It should be
noted that these features have been chosen to try and mimic what an expert

astronomer would consider when assessing source credibility. For example, in
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Table 2.1: Summary of the features used within the three networks as de-
scribed in Section A4l Fach column has a Yes for used features and a No
for dropped features for the particular network in question. TM stands for
Transient Matrix.

Description | Faint | Persistent | Transient |
ScW significance features
Fitted Gaussian amplitude Yes Yes Yes
FWHM difference Yes Yes Yes
FWHM ratio Yes Yes Yes
Significance / Local background Yes Yes Yes
Fitted Gaussian peak / Significance | Yes Yes Yes
ScW intensity features
Fitted Gaussian peak Yes Yes Yes
FWHM difference Yes Yes Yes
FWHM ratio Yes Yes Yes
Intensity / Local background Yes Yes Yes
Fitted Gaussian peak / Intensity Yes Yes Yes
ScW general features
Variance Yes Yes Yes
Residual Yes Yes Yes
Maximum significance from TM No No Yes
Significance mosaic features

Fitted Gaussian peak Yes Yes No
FWHM difference Yes Yes No
FWHM ratio Yes Yes No
Significance Yes Yes No
Significance / Local background Yes Yes No
Fitted Gaussian peak / Significance | Yes Yes No

assessing the Gaussian fit we would look at the difference between the fitted
Gaussian peak and the respective pixel value for a candidate source. For good
fits we would expect the value to be very close to zero, whilst the value will
be high for bad fits. Also note the energy bands used. For the faint persistent
class we decided to use three energy ranges: 20-40 keV, 20-100 keV and 18-60
keV. This is because most faint persistent objects are AGN and appear in these
bands from experience in compiling previous catalogues. This might inhibit the

correct identification of CVs, another subclass considered to be faint persistent
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but spectrally different. However, INTEGRAL has not yet detected enough
of these systems for them to be treated independently within the context of a
source identification network. So in summary for each candidate in the faint
persistent network we will have 12 + 6 features merged from each used energy

band, giving a total of 54 features.

Strong persistent sets

The second subclass is that of strong persistent objects. This subclass has to be
treated separately from the previous, as training a network on strong persistent
objects will not necessarily recover faint objects (and vice versa). The features
used for this subclass are the same as for the faint persistent subclass with
the only addition of features from the 17-30 keV band. This is because we
think that strong persistent sources, mainly populated by XBs, are detectable
through a wider spectral range. Moreover XBs are much brighter and will be
detected in more energy bands. However, we realize that both are persistent
and that is why we essentially use the same feature time-scales for both, but as

we will describe later, the training sets for these will be substantially different.

Transient sets and the Transient Matrix

The final subclass, transients, is the least trivial to train for, as the features are
harder to define and show most variations from source to source. For this task
we introduce what we call a “transient matrix” (TM) for the selection of ScW
pointings to use. Essentially the aim of this technique is to locate a timescale
which maximizes the significance detection for transient candidates. This is
important for feature merging as it will give us the features we need to average
(rather than averaging all features as in the previous networks). Suppose the

intensity light curve I of a particular candidate contains N points. Moreover
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assume each point /(3) in our light curve has a variance V(i) associated with
it. We can define weights for each point in the light curve w(i) = 1,/V(i). We
will then create an upper diagonal N x N matrix 7. For each row ¢ in T we
compute
7, j) = Shed BB o 2.1)
i (k)
where j denotes the column value. The best significance timescale is then
identified by locating the row r and column ¢ with the maximum value in
matrix 7. This translates to a subset of the light curve I beginning at I(r)
and ending at I(c). Having located the beginning and end of the brightest
burst /excess, we can take the mean of the features in a similar way as for
the other subclasses; however, this time only average those in the interval
between pointings r and ¢. In addition to the already defined 12 features we
decide to add, for this particular network, the value T(r, ¢). This will be an
indicator of the maximum significance achievable from the light curve. By
definition the TM method will always locate a “burst” even if one is not there,
even for faint persistent sources with no outburst. The method is meant to
maximize significance, and as a result it will select all of the light curves for
faint persistent sources and usually only select a small fraction of the light
curve for fake excesses. For this reason one might think the method is biased;
however, we note that this method is only employed to create an additional
time-scale on which to merge the features; the classification of the excess will
happen later in the network, which will discriminate between the real and
fake excesses. The length of the outburst is not used as a feature and the
coordinates 7 and j are not linear in time.

In Figures Z8, P20 and B0 we show some examples of the transient matrix
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Figure 2.8: TM applied to two transients.
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technique applied to various different objects. Figure L8 presents the technique
applied to two transients 4U1901+03 and XTE J1550-564, a high mass X-ray
binary and a low mass X-ray binary respectively. For each object we show
in the top left panel the lightcurve of the object and on the top right the
corresponding transient matrix. The indices of the maximum value in the
transient matrix are recorded in order to locate the beginning and end of the
outburst. The selected datapoints are shown in red in the lightcurve. In
the bottom left we show the selected outburst only, and for reference in the
bottom right we again show the whole lightcurve, however without any time
information (i.e. all data points are equally spaced in terms of there indices).
In both cases the transient matrix performs extremely well at selecting all
datapoints from the outbursts. The next examples shown in Figure 29 display
again two transients, however this time recurrent ones. The first example,
IGR J17464-3213, seems from looking at the lightcurve, as if there have been
three main outbursts with smaller ones in between. This is also evident in the
transient matrix, however we note that only the first one was selected by the
method. This is because by definition, the technique locates the sequence of
consecutive points that maximises significance, which in this case comprises
only the first outburst. Also in Figure 20 we show the technique applied
to yet another LMXB, Aql X-1. This source also has multiple outbursts as
seen in both the lightcurve and the transient matrix, however, contrary to the
previous example, the best significance here is obtained by using data from
two outbursts with a quiescent stage in the middle. Both examples in Figure
9 have been chosen particularly because of their multiple outburst behaviour.
It shows the potential of the transient matrix technique in locating multiple
recurring outbursts, and not just single ones. One can then imagine how this

method might also lead to the discovery of fixed timescales for outbursts in
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some objects, and maybe more challenging period determination.

Finally in Figure B0 we show the method applied to a faint persistent
AGN source, IGR J21247+508, and a fake candidate. In the case of IGR
J21247+508, the method has selected all of the light curve since each data-
point contributes to increase significance. On the other hand the technique
applied to the fake source only selects a subset of the lightcurve. Both of these
are typical examples of how the method performs on faint persistent sources
and fake ones respectively. We note that for the AGN, the transient matrix
smoothly increases to its maximum at about 37, whilst for the fake source
the increase to the maximum value is very erratic, and the significance range
for this candidate is only up to 60.

Having understood how our features will be merged we will now describe

the creation of the testing and training sets before describing the classifier.

2.5.5 Training and Testing sets

Another important issue in building a reliable classification network is the
choice of reliable training and testing sets. One has to make sure that neither
of these are biased towards a particular type of subclass, for example, lots of
faint AGN or lots of bright XBs or even worse not having any transients. This
is one of the main reasons why we produce a training set and a corresponding
classification network for each subclass. In this section we describe the methods
employed to achieve this. Recall that after candidate filtering we end up with
7221 candidates of which 408 are present in catalogue 3. We now have to
split our candidate list into training and testing sets. We have two reasonable

options for producing unbiased sets.

1. Use the published second IBIS/ISGRI survey catalogue objects [Bird et al

007], with 209 sources for our training together with an extra ~200 fake
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Figure 2.9: TM applied to two recurring transients.
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Figure 2.10: TM applied to a faint source and a fake candidate.
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candidates and then evaluate how the network performs in recovering the

published catalogue 3 objects.

2. Split the sky into two halves in galactic coordinates and use one half for
training and the other for testing. In this case we would use catalogue 3

as a reference for what is a real source.

We decided to use option (2) as this will include some faint persistent objects
only detected for catalogue 3 due to the longer exposure times and greater
sky coverage compared with catalogue 2. Moreover, the source types between
the two catalogues are not all the same (see Figure ZTTl). Option (1) will be
heavily biased towards detecting more luminous sources and this will bias the
network too. Moreover, by employing option (2) we can train the network
for the future creation of catalogue 4. More explicitly we would expect in
future to use cat,_1 in the training for cat,; however, we require a testing set
to assess the network performance and only option (2) allowed for this in an
unbiased fashion. From our initial 7221 candidate list we now have 220 real
sources and 3114 fake candidates for our training from the western half of the
galactic sky (0° < [ < 180° ) together with 188 real sources and 3699 fake
candidates for testing the other half of the sky. We have chosen to split the
galactic sky into west/east rather than north/south halves due to a greater
similarity in the exposure times in the former case. One note of caution still
needs to be addressed: some unknown fraction of what a human astronomer
would consider real might actually turn out to be fake with future catalogue
releases (and vice versa). This misclassification will affect the training set and
therefore affect the final classification on the testing set too. Unfortunately one
cannot know in advance what is real and what is not, therefore the only way to

deal with this problem is having multiple iterations of the network to try and
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Figure 2.11: Numbers of sources in the first, second, and third IBIS/ISGRI
catalogues, classified by type
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reduce the number of these false positives and true negatives. We note that
including sources that we are certain are real would bias against the fainter
sources. The extra iteration step is not performed at this stage, but will be

considered for future catalogue releases.

2.5.6 The Random Forest Algorithm

As mentioned before, when building a classification network one has to take
into account the nature of subclasses present in our general sets. For example
one would have very limited success in correctly identifying transients if the
training set only consists of faint AGN and vice versa. We have therefore de-
cided to build three independent random forests with the three sets of features
described in Section 254l One will be trained only on AGN using the faint
persistent set of features in order to recover faint persistent objects. A second
set of forests will be trained only on XBs using the strong persistent set of

features to recover bright objects, and a third set of forests, only trained on
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transients, using features selected by the transient matrix method. This should
then allow us to recover in one or more forests all other types of sources that
do not necessarily fall into the AGN/XB/transient subclasses. We reiterate
that the algorithm is meant for source identification only, but as shown later,

will turn out useful in source classification as well.

2.5.7 How to build a Random Forest

Classification tree methods are a good choice when the data mining task is
classification or prediction. The goal of any single tree is to generate discrim-
inatory rules that can be easily understood. Trees are constructed through a
process known as binary recursive partitioning, an iterative process of splitting

the data into partitions, and then splitting it up further on each of the branches

Brieman et _all [1984]. We employ various classification trees in what are called

random forests, devised by Brieman et all [1984]. Essentially we build many

classification trees, each tree casting a “vote” on a particular object. We will
build three sets of random forests using the features and training sets described
previously. The final judgment as to what particular class the object is in will
then be decided by the number of votes it received in each of the three forests.
We reiterate that our goal is not actually to classify source types, but to max-
imize the efficiency for real /fake decision making.

If our training set consists of M input variables (features), we will ran-
domly choose for each tree a value m < M of variables such that each tree
will be grown using only those m variables. The value of m is held constant
for all trees grown for each subclass and is one of only two variable parameters
in the network. It is responsible for two things. Increasing m increases the
correlations between any two trees in the subclass forest, thus decreasing its

recognition strength. On the other hand increasing m increases the strength of
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any one individual tree. A tree with a low error rate is a strong classifier; how-
ever, increasing the strength of the individual trees increases the forest error
rate. Reducing m reduces both the correlation and the strength. Somewhere
in between is an “optimal” range of m which is usually quite wide. The other
variable parameter with random forests is the number of trees to be grown.
This has to be quite large in order to be able to use all M variables through
bootstrapping. There is no limit on how many trees we build in the forest as

the algorithm does not overfit [IB.Li.E.ma.u_e.Lal, 1984].

There are several reasons why random forests were used for our classifica-

tion purpose. When building the network one of the main concerns was with
dealing with very large data sets. Even though he IBIS/ISGRI data set is
not so large (yet!), the method presented here can deal with much larger sets.

Further reasons are listed below.

It can handle thousands of input variables.

Generated forests can be saved for future use on other data.

These capabilities can be extended to unlabeled data, leading to unsu-

pervised clustering, data views and outlier detection.

It has the potential to give estimates of what variables are important in

the classification.

Once a random forest has been built for a particular subclass of objects we
can classify the testing set by asking how many trees in the forest will “vote”
for that particular excess. Using this voting scheme allows us to have a feel for
how confident the random forest is at assessing a particular candidate (as will

be shown in the results section). If any particular excess gets enough votes
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in any of the networks, then it will be considered as a good candidate worth

inspecting.

Training

As mentioned before, our aim is to build three independent random forests in
order to identify each subclass of objects separately. Recall that we have 220
real sources and 3114 excesses available for training (one half of the galactic
sky). To build each one of the three training sets we use the classification
types of the real objects published in the IBIS/ISGRI third catalogue. In the
faint persistent case we use the 73 AGN in the western galactic hemisphere
together with 3114 fake excesses for our training. We cannot use all the fake
candidates for a single tree or else it would bias our classification. Instead, for
each tree grown in the forest, we keep the same training set of 73 AGN for our
real sources and randomly pick 73 fake excesses from our pool of 3114. This
ensures that no individual tree is biased towards recognising too many fake
excesses, while still incorporating a wide range of them. By having this “pool”
of fake excesses to choose from, we essentially ensure no two grown trees are the
same, avoiding overfitting. As mentioned in Section EZ57, the only variables
in our random forests are the values m and the number of trees. Thus for each
available set of features for a particular energy band we will choose a value m
together with the number of trees to grow. For example in the faint persistent
network we mentioned already the use of three energy bands and two sets of
features per energy band (ScW average merging and final mosaic features).
We have chosen the number of trees per set to be 200 in this case, yielding a
random forest with 3 x 2 x 200 = 1200 trees. The value of m (the random
subset of features used per tree) was set to 8 for the average features and set to

3 for the mosaic features. These values were achieved through trial and error
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Table 2.2: Summary of the number of trees used within ISINA.
‘ H Faint ‘ Strong ‘ Transient ‘

Number of trees 200 200 500
Number of energy ranges 3 4 4
Number of sets of features 2 2 1

Total number of trees 1200 1600 2000

by maximizing the accuracy of the final output given by the testing set.

In the XB case we use 46 XBs, again from the western galactic hemisphere
and use the same technique as for AGN in dealing with the fake excess training
set. In this case we chose the same value for m and number of trees; however,
for this network we decided to include one extra energy band, yielding 4 x 2
x 200 = 1600 trees. Similarly for transients we use 32 transients for training.
This network however was chosen to have a value m = 7 and the number of
trees grown per set was set to 500. This might seem very large but was used
in order to have more bootstrapping from the fake candidates given the low
number of transients in the training set. This yields 4 x 1 x 500 = 2000 trees.

We point the reader to Table for a table showing the parameters used.

Testing

Recall that in our testing set we have 3887 candidates, of which 3699 are
fake excesses and 188 real sources. In this section we will inspect how these
candidates perform within the three independent networks. Note that all three
networks had exactly the same testing set. In order to assess the recovery
performance of each of the networks we will look at how many trees voted for
a particular source within the forest. If a candidate achieves 50 per cent or
more of the votes then it will be considered as “recovered”. For clarity, the
analysis described here is illustrated in the flow diagram in Figure EET2] which

includes the number of candidates in both training and testing sets for the
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three networks.

The testing set for the faint persistent network contained 56 AGN of which
52 were recovered with the 50 percent cut. The missing four AGN were
marginally below the recovery threshold in the faint persistent network. More-
over, by definition this is the network that recovers most objects. In fact a
50 per cent threshold yields 368 candidates out of the initial 3887. A lot of
these will be strong persistent sources; however, most will be unidentified faint
persistent objects.

The strong persistent network on the other hand performed slightly better
in that it achived a lower ratio of false positives. This however is not surprising
as bright sources are more easily discriminated against faint ones. Out of 64
XBs in the testing set, only three were not recovered within this network;
however, as we will discuss later, these get recovered in the faint persistent
network. The number of candidates to inspect with the 50 per cent threshold
is 140, approximately half of that produced by the faint persistent network.

Finally, the network producing the lowest candidate list to inspect is the
transient network. This yields 78 candidates to inspect with the usual thresh-
old. Out of 35 transients in our testing set, six were not recovered in this
network. Of these, two were recovered in the faint persistent network.

The final box in Figure shows the break down of missed objects.
Clearly most are unidentified; however, CVs are also poorly recovered. As
will be discussed later, this can easily be caused by not training a network for
these specific source types, or they are some of the faintest and/or narrowest

spectral range.
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Figure 2.12: Graphical flow diagram of the steps involved in the classification
network from the extraction of the initial source candidate list to the final re-
sult. SExtractor is run on all revolutions, revolution sequences and final mosaic
images. A 0.2° merge radius is applied reducing the list to 7221 candidates.
Features are extracted for these on an ScW level and on the final mosaic. The
features are then merged in three different ways and passed to three different
networks accordingly for faint and strong persistent and transients sources. In
each of the network boxes we display the number of objects in the training
and testing sets. In brackets we have the number of objects from the testing
set in the respective subclass. Below each network box we show the result on
the testing set using a 50% cut on the tree votes. The final result box also
applies on the testing set with a 50% global cut. There we also show the missed
objects and their break down.
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2.6 Results

This section will explore the results from ISINA when applied to the testing
set. We first describe a few individual examples which will also show how some
of the metadata produced by ISINA can be a useful aid in the final inspection
phase and then move on to describe the global properties of the whole sample

and its efficiency.

2.6.1 Individual examples

While Section EZ5.7 described the performance of the network in terms of re-
trieval of catalogue 3 sources, here we try to quantify the network performance
in more detail. First we show in Figure some examples taken from differ-
ent source class categories to illustrate some of the outputs from ISINA. For
each candidate we show the vote percentage obtained in the three networks.
Note that a candidate is considered recovered by ISINA if it obtains more than
50% votes in any network.

The first example is the faint persistent AGN IGR J18259-0706. This is
a new source detected in the third IBIS/ISGRI catalogue with a maximum
detection significance of ~5.1¢ in the 18-60 keV band and a relatively high
1570 ks exposure time. This puts it firmly in the faint persistent category.
The blue curve in Figure shows the percentage of votes as recorded by the
three networks. It can clearly be seen that this particular example receives a
greater “confidence” from the faint persistent network, where the curve peaks
at 90 per cent. This will be the source’s “global” vote as explained later on in
this section. We note that at this point the network can also be interpreted as
giving information about class characteristics and not just identification. In

this particular example it is clear that IGR J18259-0706 is classified as a faint
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Figure 2.13: Voting percentage obtained by four real sources within the three
different networks. Black dot-dashed line: LMXB GX 1+4, blue dotted line:
AGN IGR J18259-0706, red dashed line: LMXB 4U 1745-203, green solid line:
CV FO Aqr.
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persistent source, as the network which uses all the information available has
achieved the largest number of votes: the faint persistent network.

The next example chosen is the strong persistent low-mass X-ray binary
(LMXB) GX 1+4 shown in black in Figure The system was detected
in the third catalogue with a maximum significance of 544¢ in the 18-60 keV
final mosaic. Note the voting percentage difference between strong and faint
persistent and transient network is very small. This is the case for most strong
sources but, as observed in the previous example, not for the faint ones. In fact
really strong sources tend to have high vote percentages in all three networks
essentially because they are detectable on any time-scale and in all energy
bands. Realistically, we only need to identify persistent versus transient. In-
formation on how bright they are is best obtained with other methods.

Another example chosen is the LMXB 4U 1745-203. The source was de-

tected in the third catalogue at a significance of 20.7¢ in the 20-40 keV band
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Figure 2.14: Graphical view of the TM method applied for 4U 1745-203.
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mosaic for revolution 120. Again, just by inspecting its corresponding red
curve in Figure ZT3] we can get an idea of what type of object we are dealing
with had we not known in advance. The system obtains the highest score in
the transient network with >80 per cent. For this particular example we also
show its transient matrix in Figure ZT4l It can be seen that the outburst has a
relatively low detection significance in any individual pointing; however, from
the result of the transient matrix, the maximum significance obtained in the
selected timescale is 22.40. The source was in outburst for a3 days, reaching a
flux of ~115 mCrab. The difference between the two detection significances is
due to the fact that the transient matrix has localized as an outburst a subset
of the pointings of revolution 120 instead of using them all.

The final example chosen is the CV F0O Aqr, another weak new detection in
catalogue 3. The source obtained a significance of 4.8¢ in the 20-40 keV band

for a 85-ks exposure. This particular candidate did not achieve enough votes
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to be included in our “recovered” list; however, it appears from the percentages
obtained in the three networks that this is a faint persistent source. This kind
of analysis can help identifying new sources even if the vote count has not

passed the identification threshold.

2.6.2 Global results

We will now take a look at the global results from ISINA on the testing set.
Figure shows the cumulative distribution functions obtained from the
three networks on the testing set. On the x-axis we have the number of votes
for the network in consideration. A high vote count implies candidates are
“real” according to the network, a low vote count rate implies the opposite.
As can be seen all three networks perform relatively well in recovering their
respective “real” objects; however, contamination from the fake candidates is
still present. This can be noted in the worst case scenario for the faint persistent
network. This is somewhat expected as the training set for this network is by
definition highly populated by low significance sources. However, the transient
network has performed quite well in recovering the majority of real sources
whilst excluding fake ones much more easily.

In order to assess the overall network performance and compile a candidate
catalogue produced produced by ISINA we have to merge the results from the
three networks. This is simply done by transforming the vote number for each
network into percentages. Once this is done we can merge the results as a
function of vote percentage as shown in Figure This time the blue line
represents any of the initial 188 objects found in catalogue 3 (testing set). For
any candidate, the highest percentage in any of the three networks is used as
a “global” percentage.

From visual inspection of Figure ZZT6l one can see that any object with 90%
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Figure 2.15: Cumulative distribution functions for candidates within the three
networks as a function of number of votes obtained. Blue solid line show-
ing corresponding subclass objects present in the third IBIS/ISGRI catalogue.
Green dashed lines show fake candidates. In order to estimate performance
we can draw a line through the graphs at half the total number of votes and
infer the number of recovered objects. For example in the faint persistent case,
drawing a line at 600 votes would recover over 90% of the real AGNs ant the
cost of including 10% of the fake candidate population.
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votes in any network or more will certainly be real. This includes ~ 50% of
the 188 real sources in the testing set. We can now query the network for the
sake of reducing the amount of visual inspection for the compilation of a new
catalogue. For example, if we only visually inspect and assess all candidates
between 50% and 90% in Figure EZI6] this yields 284 objects (in addition to
the 92 already accepted with > 90% votes). From these we have 73 belonging
to the published catalogue 3. The remaining 23 objects that have less than
50% of the votes will be tricky to locate with this method, as below 50% of
the votes the number of fake candidates grows very rapidly. We note however
that most of these 23 objects are very low significance, unidentified, sources,
which might even turn out to be fake excesses in future catalogue releases. On
the other hand we also note that some of the fake excesses with high vote rates

might turn out to be real upon further investigation.

2.7 Discussions

We have developed a reliable algorithm to aid the production of future IBIS/ISGRI
gamma-ray survey catalogues. The algorithm will help produce less subjective
catalogues, unbiased by human intervention. Meant for source identification,
ISINA has also turned out to be useful in discriminating source types. We have
shown how to automate the task of selecting and reducing a set of candidates
from IBIS/ISGRI images. The distribution of recovered objects, sorted by
type, together with the objects published in the third catalogue present in the
testing set are shown in Figure 2ZT7 Tt is clear that the majority of objects are
recovered correctly with a 50% global vote threshold. It is interesting to note
that the only populations to suffer from a substantial decrease in recovered

objects are the CVs and the unknown source types. The drop in the number of
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Figure 2.16: Distribution of recovered objects present in the third IBIS/ISGRI
catalogue (blue solid line) and recovered objects not present in the latest cat-
alogue (green dashed line) as a function of global vote percentage.
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CVs can easily be explained by the fact that most of the non-recovered ones lie
in crowded regions, where the systematic noise is greatest. Moreover we point
out that, as later mentioned in Chapter Hl these objects have great spectral
differences between them, including some very soft sources. However, missing
objects in these regions does not cause a big problem for the creation of future
catalogues. This is because crowded regions will be the most inspected ones,
so that if the network does not recover certain objects, human intervention
will. The other population to have a significant drop in the number of re-
covered objects is the unknown category which is a bit less trivial to assess.
This is because, by definition, the only real way to determine their nature is
to have longer exposure times for the regions where these are present. We
also point out that both the CV population and the unknown one was not
part of our training set, which might also explain the relatively low recovered
rate for these. This may also have an impact in our final result as the three
networks have now specialized in recovering their subclass of objects. One last
observation of the general behaviour of the network on the testing set is that
despite the fact that the remaining classes perform well within the network,
it has to be pointed out that our training and testing sets might have mis-
classified objects within them (false positives and true negatives). Given the
nature of the classification task, the training set will always be biased towards
this. However, given the extremely fast data growth the problem can only get
better, and these small discrepancies will systematically reduce.

It has to be pointed out the potential of such a network for exploratory
data analysis in other wavelengths. The networks described here can be easily
tuned to deal with different images, taken from different observatories. The
features defined are quite generic, and anyway may be adjusted according to

the new data set, probably suffering from different systematic effects than the
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Figure 2.17: Number of sources in the testing set classified by type (red) and
recovered objects using a 50% global vote cut (blue). Note that objects in the
transient category are also present in their respective class types.
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Chapter 3

Building Catalogue 4

“The real danger is not that computers will begin to think like men, but that
men will begin to think like computers.”

— Sydney J. Harris

N this chapter we will describe the creation of the latest IBIS/ISGRI cata-
I logue release, catalogue 4. The steps involved are similar to the production
of the previous catalogue 3, however with some differences. In particular tran-
sient detection is addressed in a more complete way since the larger time-span
of the dataset has grown dramatically. Firstly we describe the mosaic creation
stage which, similarly to catalogue 3, includes three timescales: revolution,
revolution sequence and all-archive. Additionally a new timescale to identify
transient sources has been introduced.

This chapter is layed out into two main sections. One describing the “hu-
man” way of constructing catalogue 4 and one describing the “machine” way
using ISINA. In the last sections will be some comparisons between the result-
ing catalogues after using both methods. We point out however, that contrary
to chapter Bl where a testing set was available for us to assess the ISINA per-

formance, here we do not have such a set. As a result a clear examination of

70
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the ISINA performance is not possible. Nonetheless we examine the pitfalls of

both methods and try and suggest future improvements for ISINA.

3.1 Mosaic Construction

This section will describe how mosaics for the IBIS images have been con-
structed during the production of catalogue 4. These mosaics will also be used
by ISINA as we will see later on and are therefore common to both methods,
the “human” method and the “machine” method.

First of all we need to discard a subset of ScW with poor image quality. This
can be caused, for example, by a solar flare event during the observations. This
is done by using the image rms as an indicator of image quality. Filtering is
therefore applied based on the image rms, such that the rms should not exceed
20 above the mean image rms for the whole dataset. Moreover data taken in
“staring mode”, even if processed, are not used in the construction of the final
sky mosaic image. After removal of high-rms and staring data, approximately
36,000 ScWs remain in the dataset, totaling ~ 70Ms of exposure time.

The selected ScWs are then mosaicked using a proprietary tool developed
in Southampton, optimised to create all-sky galactic maps based on a large
number of input ScWs. Mosaics were constructed in five energy bands sim-
ilarly to the catalogue 3 mosaics and four projections. Four timescales were
employed for the mosaic construction. Firstly maps were created for each
satellite revolution (approximately 3 days). This timescale is optimised to
detect sources active on a timescale of one day. Secondly, we identified 32
sequences of consecutive revolutions which had similar pointings. These revo-
lution sequences could therefore be best analysed as a single observation, and

provide sensitivity for sources on longer timescales than revolutions (~weeks).
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Ultimately, persistent sources will be best detected in an all-archive accumu-
lation of available high-quality data. However the problem of high exposure
time and long timebase spanned by this latest dataset has worsened the detec-
tion of transient sources. This last search method has been optimised for the
detection of persistent flux sources, therefore a highly variable source which
would be clearly detected during outburst will have an undetectably low flux
when analysing the full dataset. For this reason we searched for the optimum
detection timescale for known sources or candidate sources. This is a newly
introduced timescale for which maps have only been created with this latest
catalogue 4 data. This new timescale search is based on a new metric defined
in Southampton, namely the bursticity index. This is defined by creating a
light curve for each candidate source in the 18-60 keV band, and then scan-
ning a variable-sized time window along each light curve. The window length
is varied from 0.5 days to the length of the whole light curve, and all the
points within the time window are included in the analysis. The duration and
range of times over which the source significance is maximised is recorded.
The bursticity index is then defined to be the ratio of the maximum recorded
significance over the significance of the whole lightcurve. Thus a bursticity of
1 defines a persistent source, whilst a bursticity greater than 1 implies that
the significance of a source can be increased by omitting some observations
from the analysis, presumably when the source is in quiescence. Sources with
a high bursticity are then selected and mosaics are specifically created using
the subset of pointings selected using the bursticity method. This will allow

faster transient sources to be identified.
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3.2 The Human way

We now move on in describing the process by which the latest catalogue 4 has
been constructed. This has been a long job for the whole IBIS survey team,
and here we only try and give a brief overview. Firstly we will see how a list
of potential candidates is extracted from all the mosaic maps described in the
previous section. Then the problem of deciding which candidates are real and
which ones are fakes is addressed. Similarly to ISINA, where many trees vote
on a particular candidate to decide its classification, many astronomers vote on
each candidate to assess its reliability. The only main difference in the voting
scheme is that all astronomers have to agree on a candidate source before it is
considered as real (although all sources with a mixed vote are reviewed a second
time), whilst in the case of ISINA we only require more than 50% of the trees
to have the same vote. Having described the catalogue production procedure
we will review the main results from the catalogue, and briefly compare this

to the previous catalogue releases.

3.2.1 Selecting candidates

Source searching has been performed initially on the mosaics described in Sec-
tion Bl In total 11,500 maps were created at this stage. All mosaics were

searched for sources using two methods:

e the SEXTRACTOR 2.5 software [lej_n_a_nd_A_r_nmLts, 1996]. The source

positions measured by SEXTRACTOR represent the centroid of the source

calculated by taking the first order moments of the source profile (referred
to by SEXTRACTOR as the barycentre method) Source detectability is
limited at the faintest levels by background noise and can be improved

by the application of a linear filtering of the data. In addition source
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confusion in crowded regions can be minimised by the application of a
bandpass filter. To this end, the mezhat bandpass filter is used in the

SEXTRACTOR software.

e 3 proprietary “peakfind” tool developed in Southampton which employs a
basic iterative removal of sources technique, combined with an assessment
of the local background rms to reduce the false detection of sources in
areas of the map with high systematic noise structures (see Section Z2),

mainly in crowded regions and around the brightest sources.

A list of candidate sources was constructed bﬁ merging the > 40 excess list

[¢

from each mosaic, using a merge radius of 0.1°l. A source had to be detected
by both methods in order to be included in the candidate list. Moreover man-
ual inspection has been performed on the rare occasions where SEXTRACTOR
fails due to the close proximity of two or more sources, and any additional can-
didates found were included. Also all previously identified INTEGRAL sources

were added to the list of candidates. This resulted in 1266 excessesw which

were passed on to the next stage of the analysis.

3.2.2 Deciding on candidates

At this stage a list of excesses has been created and we need to discriminate
between the real and the fake excess and a number of steps are performed in
order to minimise the possibility of false catalogue entries. These methods are
designed to take into account both the statistical fluctuations (which we can
to some extent assess) in the maps and systematic effects present in the maps,
which are much harder to quantify.

Firstly, each source is manually inspected by a number of people (including

! Discussed in more depth in the next section.
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myself!) experienced with working on IBIS/ISGRI images. These inspections
cover aspects such as PSF shape, consistency across multiple energy bands
and the significance of the source relative to the local noise levels in the maps,
similarly to the features defined for ISINA. We require an unanimous agree-
ment among many viewers that the candidate excess is a true source, a very
conservative approach, but one designed to minimise as much as possible the
false detection rate. For reference with ISINA, this stage takes approximately
8 months to complete.

Moreover, a flux-exposure analysis has been carried out in which each de-
tected flux has been compared to the predicted minimum detectable flux for
the exposure of the candidate in question. Sources for which the mean flux
is much lower than that which could reasonably be detected in a correspond-
ing timescale may have been boosted by systematic effects, or may just be an
outlier in the statistical fluctuations of the maps. In either case the excess
candidate is rejected.

The last step in creating catalogue 4 is based on the detection significance,
similarly to the production of catalogue 3. To this end, a histogram of the
individual pixel significances produced for each of the mosaics. One of these
histograms is displayed in Figure Bl A Gaussian fit with mean 0 and standard
deviation of 1 is found to be a good representation of the noise distribution.
Looking at the pixel significance distribution across all mosaics we can confi-
dently conclude that << 1% of the pixels found at significances above 4.80 are
produced by the statistical noise distribution. Furthermore, in the 18-60 keV
all-sky mosaic, of the pixels found between 4.50-4.80, < 6% originate from the
statistical noise distribution. However we point out that these limits are based
on the global properties of the mosaics and maps containing systematic noise,

localised to specific regions, and owning the same characteristics as the real
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Figure 3.1: Distribution of individual pixel significances found in the 18-60
keV catalogue 4 all-sky mosaic. The solid line represents the data; the dashed
line represents a a Gaussian fit to the noise distribution. Image taken from
Bird et all [2009].
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3.2.3 The Final Human Catalogue

The final IBIS/ISGRI catalogue contains in total 723 sources. Figures and
show the evolution of the numbers of sources through the 4 IBIS/ISGRI
catalogs. A continuous increase from the first IBIS survey release can be noted,
with particular emphasis on extragalactic sources, rising from only 4% of the
detected sources in 2005 to 35% in the latest source list (see Figure B3)). We
believe this number will continue to rise once follow up of the currently uniden-
tified sources can be initiated. Clearly the sources dominating the catalogues
are strongly linked to the sky coverage. INTEGRAL has spent the first 4 years
more on the plane and in particular in the region of the Galactic Bulge while

more recently the high latitude sky has been exposed more thoroughly.
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Figure 3.2: Evolution of source type and number through the 4 IBIS/ISGRI

catalogues produced to date. Image taken from Bird et all ﬂZO_O_ﬂ]
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Figure 3.3: Classifications of sources in the 4 IBIS/ISGRI catalogues produced
to date. Tmage taken from Bird et all [2009].
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Figure 3.4: Sky fraction as function of minimum detectable flux.
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The minimum detectable flux of the survey can be estimated as a function
of the sky position (Figure B4l based on the accumulated exposures. Due
to the non-uniform exposures covered by the mission, the sensitivity of the
survey is still strongly biased. In particular the region of the Galactic Plane
(= 70% of the sky) is covered to better than 1mCrab sensitivity, while 90% of
the extragalactic sky is now covered at the bmCrab level.

There are now 331 new sources when compared to the third catalog. Of
these, ~ 120 are associated with extragalactic sources, while only & 25 are asso-
ciated with known Galactic sources, and the remainder are so far unidentified.
This could mean that INTEGRAL has reached its sensitivity limits, and is now
primarily detecting extragalactic objects. However, the sky distribution of new
sources (Figure BI)) shows a rather different picture. Superimposing the new
sources onto the delta exposure (i.e. the increase in exposure since the third
catalog) shows how the new detections follow the new exposures, still compris-
ing a very significant Galactic component. We are therefore forced to conclude,

that while the extragalactic observations are at a sensitivity limit where IBIS
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is still re-detecting known objects, the observations near the Galactic Plane
have reached a level of depth where previous X-ray observations are no longer
always able to provide associations for the new sources. Combined with the
variability of the Galactic sources, this is a clear indication that further obser-
vations of the Galaxy will continue to uncover new sources, and follow-up of
these new sources is of critical importance. However, many of the new sources
found in the Galactic Plane by INTEGRAL have been identified as AGN, so
this separation of Galactic and extra-galactic sources is not a straightforward
one.

From this catalog, we can state that the detections above 4.8¢ are drawn
from an ensemble of maps, all of which show statistical quality that indicates
much less than 1% of the excesses above that level will be false detections. Of
the 40 sources below 4.80, half are associated with known X-ray emitters, and
the estimated ~ 6% false detection rate should result in a total number of false
detections in this catalog of no more 10, with the vast majority drawn from

the sources detected below 4.8¢.

3.3 The Machine way

Here we explore how ISINA, presented in Chapter B can be used for the pro-
duction of future catalogue releases. We will give an overview of the required
inputs for the algorithm, train it based on catalogue 3 (whole sky), and pro-
duce a list of candidates. Throughout this section we will not use any of the
information accumulated during the visual construction of catalogue 4, as this
may bias our training. The comparison between the candidate list created

visually and that produced by ISINA will then be explored in the next section.
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Figure 3.5: Map of incremental exposure since the third catalog, showing the
locations of the new sources found. Key: Green circles — AGN; Cyan squares
= HMXB; Magenta diamonds = LMXB; Yellow boxes = CVs; Red crosses =
Unknown.
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3.3.1 Using ISINA for cat4

The first task in running ISINA is that of locating candidates from the IBIS
maps. Recall from the introduction to this Chapter that for catalogue 4, simi-
larly to catalogue 3, mosaics were created for revolutions, revolution sequences,
and all data. Additionally burstmaps have been created in order to best max-
imise the chances of locating transients.

We begin our candidate searching procedure by running SEXTRACTOR on
all created mosaics. This yielded an initial list of 141,956 excesses. Similarly to
Chapter Bl this list will contain many duplicates, and far more fake candidates.
We reduce this list in the same way as previously mentioned (see section ZZ0.2),
by excluding all excesses only present in one map. However now, given the
experience on applying ISINA to catalogue 3, we have decided to change our
choice on the merge radius, from 0.2° to 0.1°. This will allow us to begin with
fewer candidates (see Figure Z0)), however mildly increasing the number of fake
sources associated with “propeller’-like structures. The advantage of reducing
the merge radius will be explored in more detail later. From the final stage of
ISINA, where some visual inspection is required anyway, these fake structures
can easily be localised and removed, since they are so close to real sources.
The initial excess list thus reduces to 9931 candidates, which includes all of
catalogue 3 objects, separated more than 0.1° apart, and is shown in Figure
3. 0l

The next stage is that of extracting the features and merging them appro-
priately for all candidates. All that is required for this stage is the positions of
candidates taken from above. From those positions all parameters from Table
2T are created in about 7 days on 5 CPUs (1.8GHz). Now some user input
is required in order to create 3 reliable training sets: faint persistent, strong

persistent and transient. For the running of this particular instance of ISINA
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we have decided to create our training sets based on the class tags produced
during the production of catalogue 3. So, for training the faint persistent net-
work we will use 129 AGNs, for the strong persistent, 110 XBs, and for the
transient, 67 transients. At the same time we located, from a pool of fake
9931 candidates, 1338 which were considered as fakes during the catalogue 3
ISINA run (again using a 0.1° merge radius). These fake candidates were all
tagged by ISINA as fakes during the catalogue 3 run, and purposely do not
contain any catalogue 3 real objects. Figure displays the 18-16 keV band
final mosaic with our training set. In green we have our real candidates, whilst
in red the selected fakes.

Having created our training sets we are ready to run the classifier, again
in a similar fashion to Chapter This takes about an hour per forest, cre-
ating ~2000 trees each. The next section will explore the results from ISINA

compared to the results obtained through visual inspection.

3.4 Comparing results

In Chapter Bl Section EZ8l after having trained ISINA on half of the Galactic
sky, we were able to easily evaluate our results against the testing set comprised
of objects on the other half of the Galactic sky. This was only possible because
we were able to obtain a homogeneous testing set, with similar characteristics
to the training set. In this Chapter however, we only have a reliable training
set comprised of objects identified during the production of catalogue 3. This
leaves us with no reliable testing set, since no catalogue for catalogue 4 has
been created yet. However, we can still compare the ISINA results with those
obtained through visual inspection. We point out that none of the two meth-

ods can, at this point, give the perfect answer, especially for low significance
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Figure 3.6: 18-60 keV band final mosaic centered on the Galactic centre. The
ISINA training set is circled in green for real candidates and in red for fakes.
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sources.

We believe the best way to compare the results, given the fact that no
“correct” answer exists, is that of producing logN - logS distributions for the
different methods, and see where they do not agree. This will give us insight
into the kind of problems encountered using ISINA or visual inspection. Fig-
ure B displays such a plot for significances obtained in the 18-60 keV map,
displaying the number of excesses detected above a specific significance as a
function of significance. We will use this energy map through this analysis as it
is the most sensitive band for the majority of objects observed with IBIS. The
same analysis can however be done in any of the 5 bands available. The blue
solid line shows our initial excess list, whilst the dotted blue line the objects
recovered by ISINA. To compare our results we show with the black solid line
the objects recovered using visual inspection. Before we begin comparing the
results, we point out how such logN - logS plots need to be interpreted. Taking
the solid blue line as a reference, we can see that it is composed of two super-
imposed distributions, a powerlaw extending to high significances representing
the real source population, and a Gaussian at low significances representing
the noise component distribution.

The most obvious discrepancy between ISINA and visually recovered ex-
cesses (dashed blue line and solid black line respectively) is a systematic offset
in the number of recovered objects. This is also the case when comparing the
visually created list with our initial excess list, suggesting we might have an
additional noise population which highly resembles that of a real population.
In fact, recall that for this ISINA instance we have decided to reduce our initial
excess list with a 0.1° merge radius rather than 0.2°. This has been done so
as to reduce our initial excess list (see Fig. EZH), at the expense however of

retaining more “propeller’-like structure surrounding real sources. It is indeed
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Figure 3.7: Cumulative distribution for candidate detections above a specific
significance as a function of that significance. The blue solid line represents all
of the ISINA candidates whilst the dotted blue line the recoverd candidates.
In solid black we display the candidates recovered through visual inspection
only.
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this that is the main reason for the systematic offset between the ISINA initial
excess list and the visually recovered objects: the initial excess list, merged at
0.1° , includes many “propeller’-like structures related to real sources, giving
rise to a logN - logS distribution resembling the real population. This can be
demonstrated by further reducing our excess list. We do this by sorting all our
excess separated more than 0.1° apart by significance (again in the 18-60 keV
band for consistency), and removing any excess within 0.2° from the brightest
candidate. Moreover we have performed the same exercise for a 0.3° merge
radius. The point of extending the matching to such large radii is to ensure
the problem is really that of “propellers™like structure. We would expect the
0.2° and 0.3° merged lists to produce very similar logN - logS distributions,
as we know from previous experience that a 0.2° merge radius is sufficient to
eliminate the majority of “propeller’-like structure. This is shown in Figure
Similarly to Figure B, the solid lines represent the excess lists, and the
dashed lines represent the recovered ISINA objects. For reference we also dis-
play again the visually recovered objects with the black solid line. It is clear
that both the 0.2° and 0.3° merged lists produce very similar results, suggest-
ing that we have removed the additional “propeller” noise excesses associated
with the real source population. To demonstrate this effect even further we
show in Figures and BI0 two images of the same source with candidates
overlayed employing a 0.1° and 0.2° merge radius respectively. The smaller
number of fake candidates within the PSF of the real source in the centre is
clear when comparing the two images.

We point out that, even though we employ a further reduction based on
radius, after features have been extracted, coordinates remain unchanged, and
information for the excluded sources based on this last criteria is still retained

for further analysis (in order to locate real sources within 0.2° of a brighter
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Figure 3.8: Cumulative distribution for candidate detections above a specific
significance as a function of that significance. The blue solid line and dotted
line and the black solid line are the same as in Figure BZ7l1 The green and red
lines display the same CDFs as for the blue line, but with candidates merged
using 0.2° and 0.3° merge radii repectivley.
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Having established that we require a further reduction of our excess list
using a 0.2° merge radius we will now compare the visually created candidate
list with that selected by ISINA. For this we show yet another logN - logS
distribution in Figure BZITl The solid and dashed blue lines display the excess
list and ISINA recovered objects respectively employing a 0.2° merge radius,
and in black the visually recovered objects. Additionally we show with the
green line the distribution of objects selected by ISINA but not selected using
visual inspection, the red line on the other hand shows the opposite. It is clear
at first that ISINA selects far more objects than visual inspection. This is
also noticeable by looking at the increase in the number of recovered objects

below ~ 40 for the ISINA selected sample. In fact the green line does indeed
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Figure 3.9: 18-60 keV all-sky mosaic image for a bright persistent source.
The crossses represent the candidate positions fed to ISINA for identification.
The black cross is the correct position for this object. The remaining green
positions have been introduced due to the artefacts produced by the bright
central source.
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Figure 3.10: Same image as in Figure but with candidates merged using
a 0.2° radius. The number of false candidates produced by the bright source
artefacts have substantially decreased.
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seem to contain a noise distribution below 4 o, however we also point out that,
even though to a lesser extent, the red curve also displays such distribution
shape. We note that in both cases the noise distribution could be caused
by the presence of transients, not achieving a high enough significance in the
final mosaic map. The only way to discriminate such sources is to use the
ISINA meta-data in order to aid the the selection of transients. For example,
if a candidate is selected by ISINA within the noise distribution (say 30),
then the particular candidate has the potential to be a transient. This can be
checked by querying the meta-data to understand which forest (faint persistent,
strong persistent or transient) had the highest number of votes. Moreover
we can additionally inspect the transient matrix for transient behaviour, and
obviously inspect the source visually if required. The difference compared to
the “standard” visual inspection process is that the additional ISINA meta-
data can aid the recovery of real sources in a much more objective way, since
we know in advance that the algorithm has been created to recognise similar
objects to the training set.

Figure shows once again the 18-60 keV mosaic map, but now with
discrepant candidates between the two methods. With green circles we show
the positions of candidates selected by ISINA but not visually, and in red the
opposite. From this image we can see where the fake candidates producing
the noise distribution in Figure BT are coming from. These are areas of the
mosaic where local noise is relatively high, which can be seen by the clustering
of ISINA-only selected candidates in some regions of the map. Disregarding
the clustered regions we notice, from the mosaic, that the ISINA-only candi-
dates are distributed mainly out of the Galactic plane, whilst the visual-only
candidates seem to follow it. The next sections will explore some particular

candidates in more detail, and shed light into this peculiar sky distribution,
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Figure 3.11: Cumulative distribution for candidate detections above a specific
significance as a function of that significance. The blue solid line and dotted
line are the same as the red lines in Figure and the black solid line is the
same as in Figure B The green and red lines display the CDFs of candidates
identified by ISINA and not visually and viceversa, respectivley.
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with emphasis on the kind of problems faced by the visual inspection method

and ISINA.

3.4.1 Human problems

In this section we will explore some source candidate examples and compare the
ISINA selection method with visual inspection. In particular we will focus on
some faint persistent source candidates from the extra-Galactic sky (I > 30°),
and hopefully demonstrate some of the pitfalls of using solely visual inspection
for the selection of sources.

For this purpose we have selected from Figure BT2l 6 candidate excesses,
all of which obtained their highest score within the faint persistent network
of ISINA. We specifically choose 3 of these candidates to have obtained at
least 1 “No” vote from visual inspection, however achieving high enough scores
by ISINA to be considered real. Conversely, we also selected 3 candidates
achieving 3 “Yes” votes through visual inspection but not high enough score
by ISINA to be considered real. These are shown in Figure with green
and red circles respectively in each column. All chosen examples are relatively
faint for all sky mosaics, and some are below the catalogue 4 threshold of
4.50. Moreover we highlight that the images have been taken from the best
significance mosaic for the particular candidates in question.

At first, all 6 examples look comparable, and indeed they do share very
similar characteristics. Beginning from the ISINA selected objects on the left
column of Figure BT3 we will briefly describe each candidate. The first exam-
ple on the top obtained a significance of 5.2¢ in the 18-60 keV mosaic image,
but has not been identified through the visual inspection process. The reason
for it not being included in the visually selected objects is because this par-

ticular excess was never included in the inspection list. This implies that the
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Figure 3.12: 18-60 keV band final mosaic centered on the Galactic centre. The
only-ISINA recoverd objects are shown in green circles whilst the visual-only
recovered objects in red circles.
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Figure 3.13: Best significance mosaic maps for 6 candidate persistent sources.
On the left column, circled in green, are candidates which ISINA believes are
real but have obtained at least one No vote visually. On the right column,
circled in red, are candidates with three Yes visual votes but ISINA does not
identify as real.
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standard catalogue creation technique described in Section has failed to
locate this excess. The reason for this is because the peakfind tool has failed to
locate this candidate due to the high systematic background within the region
Conversely ISINA begins with many more excesses to classify, which included
this particular candidate as well. In particular this example demonstrates the
advantage of having machine learning algorithms for identification, since we
can begin with a very high number of candidates to classify than just visual
inspection, without affecting the final timescale of the results.

The next examples in the middle-left and bottom-left panels have been
chosen to demonstrate the capability of ISINA to select candidates with “clean”
PSFs, even if their significances are relatively low. It is hard to decide if these
candidates are real, however we believe that they are consistent with each other
meaning they possess very similar characteristics. We therefore expect ISINA
to have similar opinions on these two candidates. We note that the bottom-left
candidate was not included in the inspection list, similarly to the candidate in
the top-left panel.

We now examine the visually selected candidates on the right panels of
Figure On the top-right and middle-right panels we show two excesses
which display very distorted PSFs and owning again relatively low significances.
Conversely the bottom-right displays an excess with a reasonable PSF, though
a bit less significant. These are all borderline cases, similarly to the excess on
the left panels, for which we believe no definite answer exists concerning their
identification, yet all have achieved “Yes” votes. The degree of confidence about
these candidates raises some concerns, and opens the possibility of systematic
false identifications for other candidates too. The excess in the middle-right
looks as if it is a possible “propeller-like” structure associated with the bright

source close by. It is essentially impossible to discriminate for or against this
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claim, and extreme caution has to be taken when classifying such objects.
Having said this we believe that including fewer false positives at the cost of
recovering fewer real objects is better than the contrary. Moreover we note the
high degree of similarity between the quality of the PSFs of the two objects in
the bottom panels.

It is hard to imagine how all these candidates have obtained such different
visual judgments, suggesting the need for introducing a continuous identifica-
tion scheme. By this we mean a scheme which would not just include binary
results (“Yes” and “No” votes), but also has the capability of producing con-
tinuous results. This would not only enable candidates to be classified as real
or fakes, but also obtain a level of “realness” and “fakeness” respectively. The
improvement using such a scheme would be enormous, and would also give a
third party user the capability of making up his/her own mind for a particular

candidate.

3.4.2 Machine problems

We will now turn our attention to some of the main issues facing ISINA, and
in particular look at some examples from Figure taken from the Galactic
plane. Most of this section will focus on transients, and describe how and
why ISINA fails to correctly identify these objects in some cases. For analysis
purposes, each discussed example will include its transient matrix panel and, if
appropriate, an image from the highest significance map. Firstly, we select four
examples which we believe are real transients but ISINA has failed to identify.
Analysing these examples will give insight into the reason for ISINA failing to
recognise these objects. Secondly, we present four examples which have been
selected by ISINA as transients, but turn out to be fakes, shedding light onto

some of the problems associated with the transient matrix technique.
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Figures BT4l and show the first four real transients not identified by
ISINA discussed in this section. For these objects we also show the best sig-
nificance mosaic map in Figure B.T0l where it is visually clear these candidates
are real sources. We believe the main reason for the discrepancy on the re-
covered objects lies in the new, updated, method for locating such objects in
catalogue 4 data. Recall from section Bl that a new variable timescale for the
identification of transients is introduced for catalogue 4 analysis: the bursticity
analysis. These were not produced for the compilation of catalogue 3, mainly
because their usefulness is enhanced by large data streams, which catalogue
4 has obtained. This has major consequences for interpreting catalogue 3 re-
sults and the results from the ISINA testing set (see section EZ0T)). The first
is that catalogue 3 transients requiring a burstmap image for identification
might have been missed during catalogue production. More importantly, the
transients requiring burstmaps have not been trained for in ISINA. Moreover
burstmap, revolution map or revolution sequence map information is not in-
cluded in the ISINA metadata, since the testing set results on transients in
section A1 were sufficiently reliable, making us believe the available meta-
data was enough for the particular identification task. Obviously this has now
changed, and the burstmap transients have revealed that additional informa-
tion regarding shape and significance taken from such maps is essential for
ISINA if we wish to identify such objects correctly.

In all cases in Figures BI4 and BT, the transient matrix has located an
outburst timescale being longer, however a superset, than the selected point-
ings using the bursticity technique. This is a problem which did not occur
during the testing of ISINA in Chapter Bl Nonetheless, the main reason why
ISINA has failed to recognise these candidates is due to when/where the pa-

rameters are extracted. In the case of transients, these are extracted at the



CHAPTER 3. BUILDING CATALOGUE 4

3f* . [T SR I o
B .
b T RS I O S L]
oy 4 R R e s
g W & " [
sale & o 2lagy b ko
e ISR i Y - ¥
5 Y7 oaeit i i
Z ofg T ¥ O | BT 5
FLow % op.t oy H]
R PR B A
-1y * x . % LA T
F oY %o ,.1 ¥ F) x
e Eo o B B s
s i I ] -
1200 1400 1600 1800 2000 2200 2400 2600 2800
13D time
Outburst
al
2k H * H
5 [ ; x* '?
8 1f T -
g 1y Pz
o * % 1 oz =
£ off : PR+
% 1
A P | .
S O H
¥ * H]
ol
1800 1900 2000 2100 2200 2300 2400
13D time
Intensity lightcurve
3F STy " =
x x 3 k% x
N .&I B * L
2t*s .t T T
:; L ﬂ ¢ Lot ey
«f %, ® ¥
e wdosn RIS
R Pjek,
a2 ofx ¢ L |
sk i bEed
S b P oo s
T ot L LA P
AR - [~ ‘L 3
2w g AR Xy P
g " F ok Y o o F
3k e M . [ i TLI
LT NP L I D L PO, B
1200 1400 1600 1800 2000 2200 2400 2600 2800
13D time
Outburst
2
o150 E
g
8
I
2]
0.51
ok

Figure 3.14: TM panels for two transient sources.
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Figure 3.15: Transient matrix panels for two transient sources.
IGR J16291-2937

Intensity lightcurve Transient matrix
= + * <
8 :‘ e " ) £ N L
L = L S *
Crr o &Y oy
* - L3 . *
N OB O, OF Eow oL
1, § H.oow f R | x
é\ e 1 ¥ xy * -x; [
RN | oE Y £
2 Xy - L1 2 =
£ - 2R g g
1 iy ¥ ooy N
“Lrex 4 i ’l i * o [
d ¥ * = 5 u 3 -
IPILCO . I IR B T ..
FEC R A L
N B NS N B LT L
1200 1400 1600 1800 2000 2200 2400 2600 100 200 300 400 500 600 700 800
13D time End index
Outburst Significance lightcurve (no time)
3 B B 3 W B .
* ,’:' "y ,& M N ) . ':,,'. v g,
2 I - ® ! 2f wa™ o W FR s u. 88
* * - Bl = x
& Ay é P P T n d e b
1, Aot LN « " L e Tl B Fra N R
g, & b % g WU wana, e w ki &
% * XX, - x * * ®
‘2 0 ) H-( oy Tl § 0‘5"‘3‘5"&';#:' ='-;‘i""‘?’"‘ .’?"-; :":‘ﬂ""‘ )
S O B &, 3 R N HNAL P
S ¥ 3 iy kA =) L L AL L e e TR
] X % % * R A T [ et x Rew g
o « « L] B 2] A et a Box %R 'y
. e H F g&g - ol L IR e Hey " ¥
b« k ¥ ] ] e el e 2t B TR R,
A T ™~ ; ot * LI LRI LT x
-2 4. *x o - ¥ -2t R R IR L S St
1600 1800 2000 2200 2400 2600 100 200 300 400 500 600 700 800
13D time Index
Intensity lightcurve Transient matrix
* . L *
8 R : ‘:' 4
x .o [ u 100
ote NI P T+
[ L N )
£ S IS IS DL B « 2
5 1 134 ot g0
2| P .ok s £
® = -
e O o R & 300 0
E Oy g % . ¥ . g
L . PRI | )
T B oy 400 -
-2ty LR R S
H L% . i el bl 4 L ; 500 -
1200 1400 1600 1800 2000 2200 2400 2600 100 200 300 400 500
13D time End index
Outburst Significance lightcurve (no time)
3 :
* * =" *, - *
x w
. ¥ 2 ‘,x",*,‘; * # % xEE x %
‘,,1 - ° = n,”!x!;:;.:‘,ss
PO X PRSI et L
5 |x . £t :"‘ P A
S | S PrE S R s ]
£ O« . o gn t L E T et e Sl s
g b Nl e ML
’ O [ f e R R
1 } ‘ ‘ ] P S e A I S
o LRSI 3 P
B T
-2 . . M .
4 * *
2560 2580 2600 2620 2640 2660 2680 100 200 300 400 500

13D time Index



CHAPTER 3. BUILDING CATALOGUE 4 99

Figure 3.16: Best significance image mosaics for transient objects. From left
to right: IGR J18014+4-0202, IGR J15107-5414, IGR J16291-2937 and IGR
J21319-+3619. The corresponding transient matrix panel for these sources are
displayed in Figures B 14 and
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ScW level (the ScWs are selected using the transient matrix technique) and
then averaged before being passed to the identification algorithm. On the
other hand the visual inspection method uses different timescale mosaics to
inspect the transient candidates, i.e. burstmaps, revolution maps and revolu-
tion sequence maps. In these mosaics the transients will be more evident as
the signal from the candidate source is increased. On the other hand we find
that averaging the parameters extracted from the ScW level is not enough.
In the same way as we extract parameters for persistent sources from both
the ScW level and the all-archive mosaic, we should in a future run of ISINA
extract parameters for transients from both the ScW level and the respective
burstmap mosaic. The problem with this, and also with the “human way” of
locating candidates, is that one would first need to create these mosaics for
all candidates using the selected ScWs from the transient matrix. This would
take a long time for =~ 9000 candidates. This problem is being investigated in
more depth, and ways to select transient candidates are being sought in order
to reduce the amount of transient mosaics to be created for a future ISINA
run.

We now turn our attention to four fake candidates selected by ISINA as
transients, however associated with noise structures within the IBIS images.
The transient matrix panels for these fake candidates are shown in Figures B 11
and BT8 In all, the maximum significance obtained by the transient matrix
is about 5o, similar to the real objects shown in Figure However after
inspecting these candidates visually (from the ScW images), it was clear that
these candidates were introduced due to the deconvolution software failing to
remove artifacts in some ScWs. This implies that within the lightcurve of such
candidates a spike will be present where the deconvolution software failed,

giving rise to a source-like artifact, resembling very much transients. There
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are not many of these cases, however from the transient matrix panels they do
look real, and only visual inspection of a few selected ScWs can discriminate
against these fake candidates.

One last note of caution regarding ISINA comes from the inspection of the
LMC region in Figure ( 20° x 20°, bottom left). This region is overpop-
ulated by ISINA candidates which have been selected due to their source-like
characteristics, however being produced by the systematic noise originating
from bright LMC sources. Visual inspection can consider a much larger “local”
area than ISINA when deciding on such candidates, making their rejection
much more trivial. Future improvements to ISINA would include various rms
values obtained from different size regions centred on candidates to try and
overcome this problem.

It should be clear after this section that if we wish to use ISINA for the
correct recovery of transients, then more work needs to be undertaken. In
particular it is clear that information regarding burstmaps, revolution maps
and revolution sequence maps has to be included in the ISINA metadata dur-
ing training. Moreover it is also clear that if we wish to use the transient
matrix appropriately for low significance transients like the ones presented in
Figure B0l then additional criteria (maybe similar to the bursticity index),
will have to be introduced. This will be discussed in the next and last section
of this chapter, together with additional improvements relevant to ISINA, and

a possible future application of the algorithm.

3.5 ISINA’s future?

We now discuss the future improvements to be made to the ISINA algorithm

and a possible future meta-catalogue release. First however the discrepancies
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Figure 3.17: TM panels for two fake candidates considered to be real by ISINA.
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Figure 3.18: TM panels for two fake candidates considered to be real by ISINA.
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between catalogue 4 and the ISINA catalogue needs to be addressed in more
detail. In total, out of 723 objects identified through the visual inspection
process, 188 were missed by ISINA (red circles in Figure BI2). Of these, 33
have definite identifications however most lie in crowded regions of the sky
(mainly galactic centre) and it is of no real surprise that ISINA has missed
these. 40 have unknown identifications and were only detected in the all-archive
mosaic, owning relatively low flux, so could be classed as border line cases. The
remaining 115 objects have been detected in burstmaps, revolution maps or
revolution sequence maps, making them transient objects. We have already
discussed why ISINA fails to recover these correctly and future improvements
such as the ones mentioned in the previous section will be implemented in
ISINA in the future. This will allow the correct recovery of these objects. We
therefore believe that, apart from transient detection, ISINA does relatively
well in identifying gamma-ray sources given the run-time of the algorithm of
about two weeks (from initial candidate selection to producing a first look
catalogue). In particular, of the 723 sources present in catalogue 4, 306 were
present in training, leaving 417 for classification, of which 55% (229 sources)
have been identified using the ISINA algorithm, where the missing sources are
mainly (37%) transients or unidentified sources.

Once we incorporate the transient maps in the algorithm we think ISINA
meta-catalogues could be usefully released to the scientific community. These
would contain all the initial candidate sources together with the ISINA meta-
data associated with each. In particular, each candidate source will have the
usual astronomical data associated with it such as, for example, RA and DEC,
count rates in the different IBIS energy ranges, exposure times and fluxes in
each energy range. Moreover the results from the ISINA algorithm will also

be associated with each candidate. This would include:
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e the total percentage of votes from the Random Forest which would give

an idea of how confident the algorithm is in general

e the percentage of votes obtained from each of the individual Random

Forests (see Figure ZZT3)

e the transient matrix selected timescale and maximum significance giving

the user an idea of any transient behaviour of the candidates

e the percentage of votes obtained within each network in each energy
range. This would allow the user to locate objects observable only in one

energy range as these objects will have low total percentages.

e some of the parameters used for the identification could also be included
such as the average local noise around candidates to give users more of

an idea on the detection confidence

With such a meta-catalogue available to the scientific community, each user
could then create his/her own catalogue, depending on how confident he/she
is about a particular set of candidates. Moreover this meta-catalogue could be
useful for cross-correlation studies with objects at other wavelengths. For ex-
ample, we know already that the visual catalogue might have missed some real
sources which could be recovered if some extra information, such as detections
in other wavelengths was available.

Ideally, if ISINA had to be used for the production of a future catalogue, it
is expected that the production speed improvement for the catalogue release
would be enormous. For example, after all the dataset has been reduced and
mosaic maps created, the visual inspection method requires an additional 6-7
months for a workforce of about 10 astronomers to visually identify each of

the candidate excesses. Given a reliable training set, ISINA can accomplish
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a similar task in about 2 weeks, where most of the time is spent extracting
the classification parameters. It has been already explained that an additional
visual inspection stage is required after ISINA has produced a catalogue, how-
ever this stage will be performed on a much smaller candidate list and thus is
expected to last about a month for the same workforce. Moreover, as described
in chapter B candidates with more than 90% of the votes from ISINA can be
considered real without any further inspection, again reducing the amount of
human load on the task. Also to be pointed out is the fact that ISINA cre-
ated catalogues will be less biased in that they should contain homogeneously
selected candidates, purely on the basis of their parameters and not selected
through human intervention which can sometimes be very biased and opinion-
ated.

We conclude this chapter by mentioning the potential usefulness of meta-
catalogues, not only from ISINA, but any other catalogue production tech-
nique. Given the ever increasing amounts of data and discovered objects, it is
inevitable that future catalogue releases will have more spurious false detec-
tions and more failed real detections. Meta-catalogues have the potential to
overcome this, and more specifically will contain the necessary information to
recover the missed objects later in the future, since every possible candidate
is recorded. They will also contain the information required to best under-
stand why objects are being missed or false candidates included. It also makes
catalogue production more transparent to the scientific community, as all the

results from the production stage will be published and readily available.



Chapter 4

mCVs: Back in Business

“Somewhere, something incredible is waiting to be known.”

— Carl Sagan

N this chapter we will investigate the properties of magnetic cataclysmic
I variables detected in the hard X-ray domain. This exotic population, some-
what overlooked in the past, will bring forward some new and exiting results,
possibly associated with their accretion mechanisms. Firstly we will introduce
mCVs, and briefly describe the types of mCVs found and their corresponding
classes. We then will look at the contemporary models for mCV evolution as
predicted by numerical simulations so as to prepare the reader for the new
upcoming results. Next we present the most up to date hard X-ray observa-
tions of mCVs and produce a catalogue of hard X-ray selected mCVs. These
are then studied in the context of their orbital and spin periods which will
show us how these hard X-ray selected samples only occupy a specific place
within the P,.p-Pspin plane. Finally the chapter will analyse the spectral hard-
ness properties arising from the sample and show how these are well correlated
with the orbital, spin and synchronicity parameters of the mCV systems. The

chapter will conclude with some discussions and speculations on the origin of
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the discovered correlations.

4.1 Cataclysmic variables: a brief overview

Cataclysmic variable stars are compact, interacting, binary systems in which
a white dwarf (WD) primary accretes from a low-mass, roughly main se-
quence donor star. The mass transfer and secular evolution of these systems
is driven by angular momentum losses. Systems with long orbital periods

(Pyrp > 3hr) are thought to lose angular momentum mainly via magnetic

breaking caused by the stellar wind of the secondary star [Verbunt_and Zwaan,

198 appaport_et all, [1983]. In the canonical scenario, magnetic breaking

I

stops when the secondary becomes fully convective, at about P,., = 3hr,
at which point the donor star shrinks and detaches from the Roche Lobe, and

gravitational radiation (GR) becomes then the only remaining angular momen-

tum loss mechanism [IEaulk_u_ﬂ, 1971, [Paczynski and Sienkiewic4, [1981]. The

orbital period will thus continue to shrink, ultimately bringing the secondary
back into contact with the Roche Lobe at about P,.;, = 2hr, allowing for mass
transfer to resume. The main motivation for this scenario is the presence of
the so-called period gap between 2 and 3 hours within CV systems as shown
in Figure 1l The secondary will keep losing mass to the primary until the
mass of the donor becomes sufficiently low to be unable to sustain hydrogen
burning, at which point the secondary starts becoming degenerate. The orbital
period evolution reverses sign at this stage, implying a minimum observable
orbital period within CV systems. This is supported by the accumulation of

systems at very low orbital periods, dubbed the “period minimum spike” by

,2009], where the faintest CV populations have been uncovered

and found to have orbital periods below 86 minutes.
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Figure 4.1: Orbital period distribution for non-magnetic cataclysmic vari-
ables. The vertical dotted lines mark the period gap. Data taken from

Ritter and Kolb [2003].
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4.2 Introducing magnetic cataclysmic variables

Magnetic CVs (mCVs) are a small subset of the catalogued CVs (=~ 10% - 20%,

Downes et all2005, Ritter and Kolh2003), and fall into two (or possibly three)

7

categories: polars (or AM Her types after the prototype system), intermediate
polars (IPs or DQ Her types) and asynchronous polars (APs). The WDs

in polars possess such strong magnetic fields that they can synchronise (see

ing et all [1990] for the Polar synchronisation condition) the whole system,

yielding Poy, = Pspin (see Figure EJ)). The strong magnetic field in these
systems is confirmed by strong optical polarisation. Accretion in polars is
thought to follow the magnetic field lines of the WD straight from the L1

point onto the WD magnetic poles, and no accretion disk is expected (for

a review of polars, see [Cropper [1990). APs on the other hand are out of
synchronisation by only a few percent, and it is not known exactly why this

is. One suggestion is that these systems are polars which have had a recent
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Figure 4.2: Schematic diagram of an intermediate polar. (Image taken from
Mark A. Garlick)

Y

nova event, kicking them slightly out of synchronisation [Warner, 2003]. For
IPs, the lack of strong optical polarisation implies a much weaker magnetic

field, not powerful enough to synchronise the secondary (for a review of IPs,

see [Patterson [1993). In these systems, material leaving the L1 point usually

forms an accretion disc up to the point where the magnetic pressure exceeds
the ram pressure of the accreting gas (see Figure L2). From this point onwards
the accretion dynamics are governed by the magnetic field lines, which channel
the material onto the WD magnetic poles. The nature of these systems is
confirmed by the detection of coherent X- ray modulations associated with the
spin period of the WD.

In the simplest scenario for X-ray production in mCVs, the magnetically
channeled accretion column impacts the WD poles producing hard X-rays (see

Figure E4)) from thermal bremsstrahlung cooling by free electrons with kT of

the order of 10s of keV [IQmp_p_m, 1990, [Warner, 2003]. The hard X-ray emission
is thought to originate in the post-shock region, a region below the shock front
created from the impacting accretion column. This is also supported by the
expected amounts of X-rays produced by unfalling matter onto a WD, where

the kinetic energy of the infalling matter is converted into thermal energy



CHAPTER 4. MCVS: BACK IN BUSINESS 111

Figure 4.3: Schematic diagram of a Polar. (Image taken from Mark A. Garlick)

(%sz = %va). Softer X-rays are also produced from the absorption and
reprocessing of these higher energy photons in the WD photosphere. As a
result, both polars and IPs are expected to emit high energy photons, but,
discrepancies exist between the observed ratio of soft-to-hard X-rays between
polars and IPs, with polars showing an excess of observed soft X-rays. [Lamb
[19857] and others have reported that the total X-ray luminosities of IPs are
greater than those of polars by a factor of ~ 10, attributed mainly to the
higher accretion rates. Moreover it has been proposed that strong magnetic
fields in polars produce a more “blobby” flow than in IPs [Warnei, 2003]. These
high density “blobs” are then able to penetrate within the post-shock region,
emitting fewer bremsstrahlung photons and contributing more to the observed
X-ray blackbody spectral component, thought to be produced at the base of

the post-shock region.
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Figure 4.4: WD schematic diagram displaying the regions of X-ray emission
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4.2.1 The Accretion flows and evolution of mCVs

In a series of papers [INg_mm_ac_al, 008H, 2004], Norton and collaborators

have demonstrated, using numerical simulations, that four types of flows are

possible for accreting binary mCVs. They have shown that the fundamental
observable determining the accretion flow type is the spin-to-orbital period of
the system. This section will review their results which later in the chapter
will help explain some of the observations presented whilst analysing the global

properties of hard X-ray emitting mCVs.

As shown in Norton et all [2008H, 2004|, the mCV orbital and spin param-

eters evolve towards a spin-to-orbital equilibrium. Essentially, for any given
orbital period, mass ratio and magnetic field strength, there exists a spin period
that will balance the gain and loss of angular momentum within the system.

For example, if an mCV is spinning too fast a lot of the material latching onto
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the field lines will be expelled by the fast spinning WD, thus carrying angular
momentum and slowing the WD spin. Conversely if the WD is spinning too
slowly most of the material will make it to the WD poles, thus giving extra
angular momentum to the WD and spinning it up. Somewhere in between is
an equilibrium where the WD is in a state of accretion and ejection, there-
fore in general, mCVs are expected to remain close to this equilibrium when

considering long timescales. At any particular instant however the WD may

be spinning up or down as shown by [Patterson [1993]. The observed spin-up

or spin-down rates observed within IPs however correspond to much longer
timescales than those expected to reach equilibrium, suggesting the systems
are only exhibiting random excursions from their equilibrium, driven by mass
loss fluctuations. In fact this phenomenon is also predicted by the numerical
simulations carried out by Norton and collaborators. Broadly speaking, they
have shown that four types of flows are possible within IP systems, charac-

terised as one of:

propellers in which most of the transferred material from the secondary is
magnetically propelled away from the system by the rapidly spinning

magnetosphere of the WD.

discs in which most of the material forms a circulating flattened structure
around the WD, truncated at its inner edge by the WD magnetosphere
where the material latches to the magnetic field lines before accreting

onto the WD surface.

streams in which most of the material latches onto field lines immediately

and follows these on a direct path down the WD poles.

rings in which most of the material forms a narrow annulus circling the WD

at the outer edge of its Roche lobe, with material being stripped from its
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Figure 4.5: The distribution of accretion flow types as a function of orbital
period, in the spin period vs. magnetic moment plane, at a mass ratio of q
— 0.5 taken from Norton et all [|2_ODBH] The right hand axes show the spin to
orbital period ratio in each case. Approximate regions within which each type
of flow is seen are delineated as shown, where D stands for disc accretion, S for
stream accretion, R for ring accretion and P for propeller flow. The thick line
shows the approximate locus of the equilibrium spin period in each case and
marks the boundary between accretion flows that spin-up the WD and those
which cause it to spin-down.
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inner edge by the magnetic field lines before being channeled down the

WD surface.

As mentioned before, the main observable in determining the kind of flow a

system exhibits is the spin-to-orbital period, however mass ratio and magnetic

field strength of the WD also play a role. Figure E3 taken from Norton et al

008h], shows some of the results from their simulations for systems with

mags ratio of ¢ = 0.5. Each panel is for a particular orbital period. The
drawn boundaries are there for reference and it should be noted that in reality

these are quite blurred. Nonetheless the planes all divide into four regions.
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Clearly this marks the boundary between accretion flow types that will gener-
ally spin-up (streams) and accretion flow types that will generally spin-down
(propellers). Broadly speaking, if an IP system is found in a region of the pa-
rameter space where it is fed by stream accretion it will spin-up the WD and
move it downwards in the plane in Figure EE3 towards the equilibrium line. On
the other hand if an IP system finds itself in a region of parameter space where
the flow takes the form of a propeller it will spin-down the WD and so move it
upwards towards the equilibrium line. We note that both the ring and stream
accretion will keep the WD close to spin equilibrium through a combination
of accretion and ejection of material. Moreover from Figure we also point
out the two triple points of equilibrium which all systems are trying to reach
according to simulations. If an IP reaches one of these then it is prone to stay
there forever and not become a totally synchronised polar.

To have a better idea of what these accretion flow types might look like we

show Figure L6 again taken from [Norton et all [2008h]. From this, one can see

that close to the stream-disk-propeller triple point (at about Py /Py, = 0.1)
and the stream-ring-propeller triple point (at about Pspi,/Pors = 0.6), the
equilibrium flows are a combination of the various flow types. In each case the
angular momentum accreted by the WD is balanced by an equal amount lost
from the system via material magnetically propelled away: the definition of an
equilibrium spin period.

Having reviewed some of the relevant results from theoretical simulations
we will move on to introduce the contemporary observations of mCVs, with

particular emphasis on the INTEGRAL/IBIS observations.
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Figure 4.6: The variation of the accretion flow in the vicinity of the boundaries
between the different flow types. The panels on the left show flows in the
vicinity of the stream-disc-propeller triple point, whilst the panels on the right
show flows in the vicinity of the stream-ring-propeller triple point. The panel
at the bottom, centre is the accretion flow at the stream-disc-propeller triple
point and shows characteristics of all three flows at an equilibrium spin period.
This is where the majority of the IPs seen in the hard X-ray domain are found.
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4.3 Recent hard X-ray observations of mCVs

In recent years, an increasing number of mCVs have been detected and discov-

ered by hard X-ray telescopes such as INTEGRAL/IBIS [Barlow et all, 2006,

andi_et_all, 2009], Swift/BAT [Brunschweiger et all,2009] and SUZAKU /HXD

Terada et all, 2008]. This increase has been mainly caused by the observing
strategy of hard X-ray observatories focusing on large field of view survey
studies.

The INTEGRAL satellite, launched in October 2002, has now carried out
more than 6 years of observations in the energy range 5 keV to 10 MeV. In

particular, the INTEGRAL/IBIS survey is one of the main mission objectives.

The IBIS (Imager onboard INTEGRAL spacecraft) detector [Ubertini et al

Y

003, Lebrun et all, 2003] has been optimised for survey work, with a large

I

field of view (30°) and with unprecedented sensitivity in the soft-gamma ray
regime, yielding excellent imaging capabilities. It is worth emphasising that
the IBIS survey has been optimised to detect faint persistent sources, which
mCVs are. The aim of the survey is to expand the current knowledge of
the 20-100 keV sky by cataloguing high-energy sources and examining their
properties, both individually and globally. The IBIS survey dataset consists
of dedicated observations along the Galactic plane and around the Galactic
centre. Additionally, a combination of pointed and deep exposure observations
are added to the dataset once they become public. As a result, the latest release
of the INTEGRAL/IBIS survey provides all-sky coverage, albeit with spatially

variable sensitivity. The depth of the IBIS survey has increased significantly

with each release [Bird et all, 2004, 2006, 2007] and has now reached a peak

I )

sensitivity corresponding to a flux limit below 1 mCrab in the 20-100 keV

range. The latest catalogue 3 release [Bird et all, 2007] contained a total of
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421 objects, of which 20 were catalogued as CVs or were identified as CVs later
on.

This work uses a more recent IBIS dataset consisting of over 36,000 in-
dividual Science Window (ScW) pointings, covering 6 years of observations

(revolutions = 46-660). These have been processed with the latest pipeline

(OSA 7.0, |Goldwurm et_all 2003), and mosaics were created from the decon-

volved images in 5 energy ranges. Staring and performance verification (PV)
observations have not been used for the mosaic creation, and noisy ScWs have
been excluded based on the rms of the individual images. These new survey
maps are a considerable improvement on any previous ones, due to the new
pipeline software, together with the significantly increased exposure times. It
is worth pointing out that this dataset is exactly the same as the one used in
the previous chapter, where we have applied ISINA to catalogue 4 data.
Swift has been optimised to locate gammarray bursts, and as a conse-
quence the main hard X-ray instrument, the Burst Alert Monitor (BAT), has
similar capabilities to IBIS, possessing a large field of view and operating in

essentially the same energy range. BAT has also been used for survey work

Tueller et all, 2009], and in particular has also detected a high number of IPs

Brunschweiger_et_all, 2009]. In order to make our study as complete as pos-

sible, we have decided to include the IPs from [Brunschweiger et _all [2009] ob-

served with the Swift/BAT detector. Moreover, one extra IP has been added,

AE Aqr, as observed by SUZAKU /HXD [Terada. et all, 2008], sampling again

a very similar energy range to IBIS. The similarity of energy range allows us
to construct a hard X-ray selected sample with minimal biases.

In total, the three telescopes mentioned above have observed ~ 30 mCVs
above 17 keV. More than 90% of these are IPs, and there are also two rare

asynchronous polars. When compared to the older soft X-ray selected samples
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of mCVs the picture is slightly different. First of all, as one would expect, soft
X-ray detectors are more sensitive to mCVs and as a consequence will produce
larger samples, including equal amounts of polars and IPs. However, hard X-
ray observations are consistently revealing a particular subset of fast spinning

IPs above the period gap.

4.4 The hard X-ray CV population

4.4.1 INTEGRAL/IBIS CVs

Here we describe the catalogue matching procedure adopted in order to identify
known CVs in our IBIS dataset. To do this we require the most complete and
up-to-date catalogue of such objects, thus we merge the two most complete CV

catalogues in the literature: The Catalogue and Atlas of Cataclysmic Variables

ownes et all 2005, hereafter DWScat) and the Catalogue of Cataclysmic

Binaries (Ritter and Kolh 2003, hereafter RKcat). DWScat contains 1830 CVs

whilst RKcat contains 731, and we note that 656 CVs are common to both
catalogues. The main reason for RKcat having fewer objects is that only CVs
with known orbital periods are included in the sample; however, RKcat also
includes a few CVs that DWScat does not report. Our final known CV set
therefore contains 1905 CVs. Fewer than 10% of the total number of CVs
within RKcat are known to be magnetic in nature (included in the catalogue
as either DQ Her, AM Her or IP), and only approximately 3% (56 sources) are
IPs.

Catalogue matching has been performed between the total CV set pro-
duced, which contains 1905 CVs (hereafter DRKcat) and a preliminary IBIS
candidate excess list containing real sources constructed in the same way as for

the ISINA algorithm (Chapter B), containing over 9000 excesses constructed
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from the public data available for revolutions 46-660. This includes excesses
detected in the final mosaics, revolution mosaics and revolution sequence mo-
saics in any of the 5 main energy bands in order to locate variable candidates
too. We define a variable search radius around the IBIS coordinates with a
maximum value of 15’ (this value is extremely large but will allow us to observe
the general trend of the matching procedure). If an object in the DRKcat was
found within the search radius, it is flagged as a possible match. Four addi-

tional “fake” IBIS catalogues have been created in the following way, following

a similar method to IStephen et all [2006]:

transposing the IBIS coordinates by one degree in Galactic longitude

(fake 1)

mirroring the IBIS coordinates in Galactic longitude (fake 2),

mirroring the IBIS coordinates in Galactic latitude (fake 3)

e mirroring the IBIS coordinates in both Galactic latitude and longitude

(fake 4).

The results are shown in Figure EE7 Ideally using this method, one would
expect the black solid line in Figure 1 to flatten out at the optimal match-
ing radius. This is because, ideally, we expect that after a certain radius the
DRKcat-IBIS matches would grow at the same rate as the fake samples (blue-
dashed line in Figure EET7). Clearly however this is not the case, the black-solid
line is still increasing at 10/, an exaggeratedly large radius for cross-matching
objects. We associate this effect to the fact that our initial ~9000 candidates
which cross-matching is performed against DRKcat is over populated by noise.
In particular noise correlated to real objects as discussed in ChaptersPland B,

and the galactic plane. This will cause a lot of sporadic matches, in particular
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Figure 4.7: The number of matches as a function of search radius between the
DRKcat and the IBIS excess list (crosses). Also plotted are the results from
correlating the DRKcat with the 4 fake excess lists and the mean number of
matches from the fake correlations (dotted line). The solid line is the number
of DRKcat/IBIS matches minus the mean of the fake matches.
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with very large matching radii. We therefore suggest that one has to be careful
in using this method when the initial candidate list is overpopulated by noise
correlated with real Galactic sources. Having established the poor reliability

of the method in this circumstance we adopted a similar radius to that chosen

by Barlow et all [2006] of 4’, which also corresponds well with the expected

error on faint IBIS detections ,2003]. For a search radius of 4’ we
obtain 56 sources as confirmed or candidate CVs, of which 23 are expected to
be false coincidences. We have visually inspected all of the correlated sources
and found 33 matches coincide with mainly non-CV globular cluster sources
and previously identified X-ray objects, however some are image artefacts re-
lated to the Galactic centre region. It is important to note that with a ~ 2’
source location accuracy it is very hard to associate a detection with an opti-
cal counterpart alone. We have performed the same exercise by increasing the

search radius to 5’ which increases the sample to inspect to 76 candidates. We
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find that all the additional matches obtained with increasing the radius are
false, with the possible exception of the Dwarf Nova DN V1830 Sgr located
4.8 away from the IBIS detection in revolution 106 (MJD 53128.8 - 53131.7).
This is slightly out of the 90% error radius for a &~ 60 detection and we cannot
definitely associate the two at the moment.

Table LTl shows the main characteristics of the 23 objects identified from

our correlation analysis. We have estimated distances for this sample using

the method described by [Knigge [2006] based on the evolution of the donor

star where 2MASS K-band magnitudes were available [IQJ_m_at_al 003] and
P, < 6.2 houreH. In addition we show in Table the 9 other IBIS-detected
mCVs used in this work. These were not part of the correlation analysis,
because they were not present in DRKcat, but have been identified through
optical spectroscopy following the IBIS discovery. Of the 23 objects considered
to be real matches from our analysis, 17 are previously known INTEGRAL
detected CVs, whilst 6 sources are new detections. Most of the new objects

are of the intermediate polar subclass with the possible exception of TW Pic

which is considered by some as a VY Scl star (Norton et all 2000) and AX

J1832.3-0840 which is not identified in full at the moment.

4.4.2 Swift/BAT and SUZAKU /HXD CVs

Swift /BAT has also observed a large number of mCVs, and it is worth including

these in our study for completeness. We decided to include all the 22 BAT

detected IPs [Brunschweiger et all, 2009], where 14 have been observed by IBIS

as well. Similarly to the IBIS-only IPs, the BAT-only IPs are all placed above
the period gap with the exception of EX Hya.
SUZAKU /HXD on the other hand has a different observing strategy com-

!The range within the method is applicable



Table 4.1: Results of the IBIS-DRK catalogue matching with 4’ search.

Name?® a, ol type® offset?  Map code® Count rate/ Exposure Flux?d Porp Popin Distancel Refs
(TBIS position) ") (et s71) (ks) 20-100 keV (min) (s) (pc)
1RXS J002258.3+614111 5.739,61.714 1P 1.7 B4(8.7) 0.15£0.01 3767 0.81 241.98 563.53 510 [1,2,3.4]
V709 Cas 7.207,59.303 1P 0.8 B5(54.3) 1.03 +£0.01 3562 5.53 320.4 312.77 300 [1,2,5]
XY Arix 44.047,19.457 1P 1.1 B5(5.5) 0.53 £0.12 119 2.85 363.884 206.298 610 [1,2,6]
GK Per 52.777,43.928 IP/DN 1.7 B5(4.7) 0.26 £ 0.07 277 1.4 2875.4 351.34 - [1,2]
TV Colx 82.357,-32.819 1P 0.1 B4(11.6) 0.68 £ 0.08 248 0.37 329.181 1911 330 [1,2,7.8]
TW Picx 83.766,-57.998  TP?/VY Scl?ee 2.5 B1(5.8) 0.3 £0.07 363 1.61 - - - [1,2,9,10,11]
BY Cam 85.728,60.842 AP 1.2 B5(5.1) 0.69 £0.11 162 3.7 201.298 11846.4 140 [1,2]
MU Cam 96.316,73.567 1P 0.6 B4(5.4) 0.24 £+ 0.06 548 1.29 283.104 1187.24 440 [1,2,12]
SWIFT J0732.5—1331x 113.13,-13.513 1P 1.6 B3(6.1) 0.39 £ 0.06 409 2.09 336.24 512.42 - [1,2,13]
V834 Cen 212.260,-45.290 P 0.9 B1(5.4) 0.16 = 0.03 1675 0.86 101.51712  6091.0272 70 [1,2]
IGR J14536—5522 223.421,-55.394 P 2.0 B4 (11.9) 0.27£0.03 2658 1.45 189.36 11361.6 140 [1,2,14]
NY Lup 237.052,-45.481 1P 0.5 B5(49.1) 1.17+£0.03 3141 6.28 591.84 693.01 - [1,2,15]
V2400 Oph 258.173,-24.279 1P 2.2 B1(33.4) 0.68 £0.02 4453 3.65 204.48 927.6 180 [1,2,16]
1H 1726—058 262.606,-5.984 1P 0.7 B5(22.8) 0.85 £ 0.04 1449 4.56 925.27 128 - [1,2,17]
V2487 Oph 262.960,-19.244 IP/Nee 2.3 B3(9.1) 0.18 £0.02 4562 0.97 - - - [1,2,18]
AX J1832.3—0840% 278.083,-8.721 ? 3.1 B4(5.5) 0.07+£0.03 3090 0.38 - - - [1,2,19,20]
V1223 Sgr 283.753,-31.153 1P 0.8 B5(52.2) 1.45+0.03 2358 7.79 201.951 746 150 [1,2]
V1432 Aql 295.052,-10.421 AP 0.2 B5(10.8) 0.69 £0.07 429 3.7 201.938 12150.4 240 [1,2,21,22]
V2069 Cyg 320.906,42.279 IPe 1.8 B5(6.2) 0.21 £0.03 1648 1.13 448.824 743.2 - [1.2,23,24]
1RXS J213344.1+510725 323.446,51.122 1P 0.3 B5(25.8) 0.65 £ 0.03 2207 3.49 431.568 570.82 - [1,2,25]
SS Cyg 325.698,43.582 DN 0.6 B5(23.0) 0.7+ 0.03 1674 3.76 396.1872 - - [1,2,26]
FO Aqr 334.514,-8.354 IP 1 7 B4(6.1) 0.65 4+ 0.2 54 3.49 290.966 1254.45 250 [1,2,27]
AO Pscx 343.815,-3.194 B4(4 8)  0.43+0.11 108 2.31 215.461 805.2 200 [1,2,28,29]

W |E!m§i 2IDownes et all I3 _Bi 4]Masetti et all :
[5] -Bi m; [61 m [7] ; [8JAugusteijn et _al ; [9]Buckley_and Tuoh m

[IO]KLh_en_e];_a.]J lllN_QLtQ_u_e.t_a.]J ||2_O_O_d| [12]|Ar31110 Betancor et all ||2D_Q_ﬂ] 13|Butters et all [14]Maqe‘r‘r1 et all ||2D_0_6H]
[15]de_Marting et all [IGIHEJJJ.&La.D.d_B.eaLdm.QLd [2002]; |17]|Génsicke et al] 00 18[I:I.ema.n.z_a.n.d_Sa.ld [2002]; [19]Muno_et a]l
[2004]; [QOW&LI . [21]Watson et all [1994]; [22]Geckeler and Stauber : [23]Thorstensen and Taylor [2001];

[24] i [Izom ; [25Mmmmg&lgoﬂm [26]Eriend ef._all Ih.aad]“l&leamsh_and_]lmH [1996];

[28]Kaluzny and Semeniuk ; [29])van_Amerongen et. all ;

“x indicates new hard X-ray detections

Right ascension and declination in degrees, J2000

‘IP=intermediate polar, P=polar, AP=asynchronous polar, N=nova, DN=dwarf nova. All are confirmed except for e:probable, ee: possible

?Angular distance between the DRKcat catalogue positions and the IBIS coordinate

°IBIS detection only. Map with maximum significance: (B1) 20-40 keV; (B2) 30-60 keV; (B3) 20-100 keV; (B4) 17-30 keV; (B5) 18-60 keV; in
brackets appears the significance value.

/Determined between 20-100 keV

9The flux is calculated assuming a power law spectra with index of -2.9, the average index for IPs (IB,a.ﬂ_Qmj;_a.l] |2[]_[]_d) in unitis of
107 erg em™2 571

hThe distances have been computed with 2MASS K band magnitudes (m M) using the method presented by m m] based
on the evolution of the secondary.
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Table 4.2: Additional mCVs detected by IBIS not included in DRKcat.

Name a,d type Map code Count rate® Exposure Flux P,y Ppin Distance  Refs
(ct s71) (ks) 20-100 keV  (min) (k) (pc)

IGR J08390—4833 129.705-48.524 IPee  B5(6.3) 0.08+0.02 3072 0.43 - - - 1]
XSS J12270—-4859 187.004,-48.906  IPee B5(9.9) 0.42 +0.04 955 2.26 - - - [2,3.4]
IGR J15094—6649 227.406,-66.823 1P B5(11.0)  0.18+£0.03 3265 0.97 353.40 809.42 600 [3,5]
IGR J16167—4957 244.140,49.974 IPee  B4(20.7) 0.4+ 0.02 3466 2.15 (3]
IGR J16500—3307 252.491,-33.114 IP/DN  B1(13.3) 0.33 +0.03 3353 1.77 217.02  597.92 270 [5,6]
IGR J17195—4100 259.906,-40.997 1P B5(23.3)  0.5440.02 4279 2.9 240.30 1139.55 120 [2,3,5]
IGR J18173—2509 274.353,-25.158 IPee B1(14.9) 0.27 £ 0.01 5744 1.45 - - - [7]
IGR J18308—1232 277.696,-12.532  IPee B5(7.1) 0.18+0.03 3265 0.97 8]
IGR J19267+1325 291.670,13.425 IPe B5(7.5) 0.154+0.03 2963 0.81 - - — [9,10]

All classifications are correct except for, e: probable classification ee: possible classification. References:[1]Kni ;
[2]Butters et all [2008]; [3]Masettiet. all [2006H]; [4]Saitou et all [2009]; [5|Pretoriud [2009]; [6]Masetti et all 7
[2008H]; [8[Parisi et _all [2008]; [9]Steeghs et all [2008]; [10[Evans et all [2008].
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Table 4.3: Additional IPs used in this work detected with Swift/BAT and
SUZAKU /HXD with known spin and orbital periods.
Name a,d type Detection P,y Pypin  Refs

(min) (s)
V1062 Tau  75.615,24.756 1P BAT 597.60 3726 [1]
TX Col 85.834,-41.032 1P BAT 343.15 1909.7 [1]
V405 Aur 89.897.53.896 1P BAT 249.12  545.455 [1]
BG CMi 112.871,9.940 1P BAT 194.04 847.03 [1]
PQ Gem 117.822,14.740 1P BAT 310.80 833.4 [1]
DO Dra 175.910,71.689 1P BAT 238.139  529.31 [1]
EX Hya 193.102,-29.249 1P BAT 98.257 4021.62 [1]
AE Aqr 310.038.,-0.871 1P HXD 592.785 33.0767  [2]

References: [1][Bﬂmss;hm.gﬂr_e.t_al] [2009]; [2]Terada_et all [2008].

posed of small field of view pointings. This does not allow the telescope to
produce survey data like IBIS or BAT, however mCVs have been detected
and observed with HXD. In particular HXD had observed the IP AE Aqr

Terada et all, 2008], which has not been observed with either IBIS or BAT,

and therefore is included in our study as well. We caution however that the pos-

sible origin of the hard X-rays in AE Aqr could be non-thermal [Terada et all,

00€]. This however has not been shown in full, and given the power-law model

fit to the 3-25 keV spectra of AE Aqr yielding an index of 2.10 [Terada et al.

00€] not far from the indices found in fast spinning mCVs lJ_“a.nd_'\_at_a_l_l, M]

Moreover, Mauchd [2009] has very recently brought forward additional evi-

dence, using Chandra/HETG, that the high energy X-ray excess in AE Aqr
is of thermal nature, so we believe this object should still be included in our
analysis.

All the IPs observed with BAT and HXD used in this study are presented in
Table 3], together with their orbital and spin periods. It is worth pointing out,
that as CVs are a very local population, we expect to see them as an isotropic

distribution, which favours IBIS and BAT, but particularly BAT which has a
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more uniform sky coverage.

4.5 The P, - Py, plane

Theoretical simulations on the evolution of mCVs have been performed by

orton et all [2008H, 2004]. One interesting prediction of these models is that

of different accretion flows for IPs depending on where they are in their evo-
lutionary stage. In particular these models also predict the existence of spin
equilibria among IPs, one at about Pspin/Pors ~ 0.1 and a second one at
Ppin/Pory ~ 0.6 (depending on mass ratio).

Figure .8 shows the Py, - Pspin, plane for mCVs together with their orbital,
spin and synchronicity (Pspin/Porp) distributions. The hard X-ray detected
systems used in this work are shown with stars. Also plotted for reference is
the period gap and three “synchronicity” lines showing Pspi, = P, (polars),
Pypin = 0.1P,,, and Py, = 0.3P,,p. It is clear that most of the hard X-ray
detected systems are above the period gap and have Py, < 0.1FP,,. The

only IP system outside this range is EX Hya which is closer than 100 parsec

Brunschweiger et _all, 2009]. Similarly to the two detected polars, it is of no
real surprise that hard X-ray detectors can see this close object.

The fact that no IP has yet been observed with hard X-ray telescopes above
the period gap with Pypipn/Porp >> 0.1 suggests that these IPs may have dif-
ferent accretion flows, yielding different emission mechanisms compared to IPs
with Pspin/Pory < 0.1. This idea is supported by the fact that the distribution
of all known mCVs does indeed seem to peak at about Pipi,/Porpy ~ 0.1 in
the bottom left panel in Figure E8, where a spin equilibrium has been pre-
dicted. AsIPs evolve from low synchronicity (Pspin/Pory << 0.1) towards their

Pipin/Pory ~ 0.1 equilibrium, their accretion flows resemble those of propeller
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systems, where a lot of the material incoming from the secondary is actually
propelled away and does not reach the pole of the WD. So in essence most IPs
with Pypin/Porp << 0.1 have yet to reach their equilibrium (regardless of field

strength), and their accretion flows are different from any other IP elsewhere

008h, 2004]. As a consequence one

7

in the Pypin - Porpy plane [Norton et al
would not necessarily expect the hard X-ray emission mechanisms to be the
same for all IPs.

Another interesting observational feature of this plane is that only one un-
confirmed IP system, V697 Sco, lies within what we call the synchronicity gap:
a region in the P, - Py plane within Py, > 0.3F,,p and total synchronicity
above the period gap. The low number of IP systems with high synchronic-

ity above the period gap is also predicted by the models. As explained by

orton et all [2008h, 2004], as mCVs evolve, both their mass ratios and orbital

period decrease. These trends individually cause opposite shifts in the spin-to-
orbital ratio at which the spin-equilibrium occurs for a given magnetic field. As
a result, typical IPs with magnetic field strength of a few MG will evolve from
being disc-like accretors at long orbital period (where Pypin/Por, ~ 0.1), to
ring-like accretors at short orbital period (where Pypiy /Py, ~ 0.6), providing
that they do not synchronise along the way and become polars. The two spin-

to-orbital equilibria are determined approximately by two conditions. The first

Pspin/Porp ~ 0.1, is given by the condition that R., ~ Reire [King and Wynn,

1999], where R, is the corotation radius, at which matter within the accretion

disk corotates with the magnetic field lines, and Rg;. the circularisation radius
at which point the Kepler specific angular momentum equals that of the matter
being accreted through the L1 point. The second equilibria at Pspin /Py ~ 0.6
is given by the condition Rg;.. ~ b, where b is the distance of the L1 point

to the WD. Both these conditions come from the interaction of the magneto-
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spheric radius with the formed accretion disk, and more information can be

found in [King_and Wynn [1999]. If the magnetic field of the systems is of the

order of a few hundred MG, on the other hand, then they will be prone to
synchronise and become polars, crossing the synchronicity gap fairly quickly,
helping explain the low number of systems in this region. This is the likely
history of EX Hya and systems neighboring it in the P, - Pspipn plane.

We therefore predict that, given the already long exposure times accumu-
lated with IBIS and BAT, the IPs within Py, = 0.1FP,,4 and Py, = 0.3
region (synchronicity gap) will not be detected in significant numbers. Con-
versely we expect most of the IPs with Pyy;, < 0.1F,,;, to be observable with

longer exposure times and better sensitivity.

4.5.1 Are hard X-ray mCVs different?

It should be clear by now that hard X-ray telescopes are more sensitive at de-
tecting the IP population rather than the polar one. However it is not yet clear
whether hard X-ray telescopes are producing populations which are consistent
with being drawn from the general mCV population (mostly identified through
soft X-rays). In order to assess this we have performed a Kolmogorov-Smirnov
test (KS test) on all the Pypin, Porp and Pspipn /Py, distributions of hard X-ray
selected samples versus the known mCV population taken from RKcat. In all
cases the test rejects the null hypothesis that the distributions are drawn from
the same parent with 99.99% confidence.

As mentioned before, the difference in distributions within P, (bottom
panel in Figure EL8) between these sets could be caused by the fact that all
mCVs below the period gap are intrinsically less luminous given their lower
accretion rates. However it does not exclude the possibility that the X-ray

emission mechanism for mCVs below the period gap is substantially different
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Figure 4.8: P,y vs. Pspi, for mCVs taken from RKcat. Stars indicate mCVs
detected at hard X-ray energies. Also plotted is the period gap and “synchronic-
ity” lines. For reference we also display the orbital, spin and synchronicity
distributions. The shaded green areas represent hard X-ray selected mCVs.
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than the mCVs above the gap. Both of these effects can be regarded as sys-

tematic, however the possibility of hard X-ray missions detecting homogeneous

IP samples has already been suggested by |IGansicke et all [2005], and here we
bring forward more observational evidence for this. It is clear however that if
mCVs below the period gap emit hard X-rays, then current telescopes are not
sensitive enough to detect them without deeper exposures.

Moreover, from the Ppipn/Pory, KS test (bottom left panel in Figure EX])
result we can also comment on the fact that hard X-ray telescopes are not
sensitive to high synchronicity systems. These do not necessarily have to live
below the period gap, and in fact about half of the polar population lives above
the gap. This suggests that hard X-ray surveys are very insensitive to the polar
population as well as mCVs below the period gap. We can also look at this
result and suggest that, on the other hand, hard X-ray surveys are extremely

sensitive to IPs with long P, and to systems with low Pspin/Popp.

4.6 Hard X-ray properties of mCVs

As revealed in Barlow et all [2006] and [Landi et all [2009], the vast majority

of IBIS detected CVs are magnetic (the only exception being SS Cyg). The
total number of objects with known spin and orbital periods in our sample
is 30 systems, of which 22 are IBIS detections (18 IPs). It is interesting to
note the relative incidence of polar systems and intermediate polars. Optically
selected samples favour the former, with the number of known polars being
twice that of IPs. However, in our hard X-ray selected sample, the picture is
very different, with only 4 polars being included in the sample (2 of which are
APs). This result is expected, as IPs are known to produce &~ 10 times more

hard X-rays than polars due to their higher mass transfer and intrinsically
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harder spectrum [Warne, 2003].

Only two synchronous polars have been detected in our sample, both at
relatively close distance and in regions of the sky with high exposure times.
This leads us to conclude that the flux in the hard X-ray range for these systems
is much lower when compared to IPs or APs. We note from Table EET] that the

two detected polars are among the closest objects in our sample, and hence

it is probably for this reason that IBIS (and BAT, [Tueller et all, 2009]) can

see them. We have also checked this by inspecting where other polars sit in

the INTEGRAL exposure map and conclude that more deep observations are

required before more of these systems are detected in the hard X-ray range.
Two of the four confirmed asynchronous polars (APs) are also included in

our sample. At first one might think that these systems should have properties

resembling the polar class. However, as shown by |Schwarz et _all [2005], their
accretion rates are ~ 10 — 20 times greater than that of polars. Moreover
both INTEGRAL detected APs are 2-3 magnitudes brighter than the two
non-detected APs in the K-band. This, together with our distance estimates
suggests that our efficiency at detecting APs in the hard X-ray range is ~
50%, similar to the IPs. We note that the two APs not detected are CD Ind

,1997] and V1500 Cyg [ILa_u.c_Le_t_z_L, 1988] and have exposures

of 3ks and 1987ks respectively. We further note for the record that neither the

Schwope et _al

ROSAT all-sky bright or faint source catalogues do not contain V1500 Cyg,
whilst they do contain the other 3 APs, which might suggest a low flux in the
X-ray range for this source and thus explain the non detection by INTEGRAL

at the moment, despite the 2Ms exposure..
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Figure 4.9: 30-60/17-30 keV hardness versus spin period for the hard X-ray
selected mCVs used in this work. Polars and APs are shown in empty squares.
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4.7 Hardness plane correlations

The production of hard X-ray photons from mCVs is thought to originate in
the post-shock region of the WD by bremsstrahlung cooling of free electrons.
This is somewhat different to softer X-rays (< 2 keV) seen from mCVs, which
can originate from a blackbody component close to the WD surface. In fact in

recent years many medium resolution X-ray spectra have been obtained for dif-

ferent kinds of mCVs n_t_c_\_at_a.]_] |2_01]§_J |Sr_hma.rz et |21]_0th tters et all,
vans et all, ) m, IJ_Q_E_E, andi et all, 2009] and

have been fitted with a soft blackbody component (kKT ~ 80eV) plus a hard

008

)

component characterised by the stratified accretion column of [Cropper et al

1999]. For those mCVs that are detected in the hard X-ray range the de-

tection only samples the bremsstrahlung component. In particular the hard
X-ray energy range (> 17 keV) is telling us about the temperature distribution
of components within the multi-temperature bremsstrahlung emission, not the

ratio of hard-to-soft X-ray components.
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Figure 4.10: 30-60/17-30 keV hardness versus orbital period for the hard X-ray
selected mCVs used in this work. Polars and APs are shown in empty squares.
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Figure 4.11: 30-60/17-30 keV hardness versus Pspn/Pprp for the hard X-ray
selected mCVs used in this work. Polars and APs are shown in empty squares.
We note the evident correlation for IPs with Py, /P < 0.1.
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Keeping this in mind, Figures 29 and LTl shows the scatter plots for
hardness, defined as the count ratio in the 30-60 keV and 17-30 keV bands, ver-
sus Pspin, Porpy and Pypip /Pory respectively for all hard X-ray detected mCVs
used in this work. In red, we show all mCVs seen by IBIS, in blue, BAT-
detected mCVs and in black, we show the only IP used in this work observed
by HXD, AE Aqgr. In order to obtain hardness ratios for BAT and HXD mCVs,

we have reproduced their bremsstrahlung spectra (power law for AE Aqr) us-

ing the temperatures (or photon index) provided by Brunschweiger et all [2009]

and [Terada et all [200&], respectively. We then extracted the hardness ratio

from the spectra taking into account errorg (symmetric for all) by also re-
producing the hottest and coldest spectra using the published errors for each
source and computing the hardness. Before being able to add the BAT points to
Figures 29 LT0l and EETT1it is necessary to remove systematic cross-calibration
differences between the IBIS hardness and the BAT ones. Figure shows
the BAT hardness vs. the IBIS hardness for a sample of 13 IPs in common
to both. In red we display the one-to-one line where most of the data should
sit in the absence of systematic differences between the IBIS and BAT calibra-
tions. However, it is easily noticeable that the BAT extrapolated hardness’s
are systematically harder than the IBIS ones. This could be caused by the
different response matrices of the detectors. We compensate approximately
for this by fitting a straight line through the datapoints and the origin (black
line in Figure EET2). We then apply a correction to all the BAT points before
plotting them in Figures B9, EL.T0] and ETT1

All three plots show evident signs of correlations with hardness ratio when
considering IPs alone. In particular, when considering IPs with Py, /Porp <

0.1 (systems which are on their way to equilibrium at Psp;p/Porp = 0.1 and

2We note that normalisation constants are not required when inferring hardness ratios
from single model spectra
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Figure 4.12: BAT extrapolated hardness vs. IBIS measured hardness. In blue
is the data. In red we show a one to one line for reference. The cross-calibration
fit is displayed in black. We note that both BAT and IBIS errors were taken
into account when fitting.

151

-
T

IBIS Hardness

o
«
T

BAT Hardness

are therefore exclusively in the propeller stage), then the correlations become
even more evident. In order to obtain a significance for these correlations
observed for the IPs thought to be in the propeller stage, we performed a
Spearman rank test using a Monte-Carlo scheme. At first we decided to test the
IBIS observations only, as we believe these are the measurements with lowest
systematic errors. For example, in order to test if the correlation between
hardness and Pk, is significant, we created 100,000 mock data sets containing
the same number of points but shuffling the P, values randomly each time.
Moreover, in order to take the hardness uncertainties into account, we replaced
each hardness value with a random variable drawn from a normal distribution
whose mean is equal to the observed hardness and whose standard deviation
is equal to the error on the observation. We then calculated the Spearman
rank coefficients, p. The distributions of the coefficients for all Pspin, Porp

and Pjpin /P,y are shown in Figure Also displayed in each panel is the
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Figure 4.13: Results from the Monte-Carlo simulation for estimating the cor-
relation significances of the IBIS IPs only. The distributions display the cal-
culated p coefficients for our mock datasets. We display with an arrow the
calculated coefficient for the real set.
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significance for the calculated Spearman rank value of the real data. These are
3.480, 2.740 and 3.47c for Pypipn, Pory, and Pspp/ Porp respectively.

The fact that the correlation is apparent in all three plots is somewhat
expected, since Ps,;, and P, are not independent, but expected to evolve to-
gether (Norton et all2008h, 2004). At this stage we perform the same exercise
as for Figure ET3] but this time including the additional IPs above the period
gap observed by BAT only, and AE Aqr as observed by HXD. The results for
this simulation are presented in Figure EET4

As a final step we decided to extend our analysis further for the observed
correlation in Ppip /Py, vs. hardness, given that, from an evolutionary per-
spective, it is expected to be the most relevant parameter [Norton et all, 2008H,

2004]. We produce a linear fit in log-log space to the Pyp,/Ppy vs. hard-
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Figure 4.14: Results from the Monte-Carlo simulation for estimating the corre-
lation significances of the IBIS, BAT and HXD IPs. The distributions display
the calculated p coefficients for our mock datasets. We display with an arrow
the calculated coefficient for the real set.
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ness plot in Figure for the hard X-ray selected mCVs used in this workH.
Again we chose to perform the analysis on the IBIS-only IPs for consistency.

When this is done, a non acceptable value of 4.5 is obtained for a reduced

2. However, following a similar procedure to [Tremaine et all [2002] and

McHardy et _all [2006], we introduce a small intrinsic dispersion of 0.0046 to

all our datapoints in linear space. This corresponds to ~ 1% for the soft IPs in
Figure and = 0.5% to the hardest IPs. There may be many reasons why
such a small error might be introduced, ranging from a ~ 1% error in the IBIS
response, to any small spectral variability intrinsic to the observed systems.
The addition of this intrinsic dispersion lowers the reduced chi-squared to unity
and results in more conservative errors on the fit parameters. In Figure LT we
display the contour plots for our linear fit in the top panel, and the fit itself on
the bottom. Note that the contours represent lines of o =1, 2, 3, 4, 5. Again
one can see that a simple constant value straight line fit is not consistent with
the data. The resulting equation to the fit can be expressed as 30-60/17-30
keV = ((Pspin/Porb) — 0.0259)~0-21£0:05 _ 1()0-09+0.03 "and may prove useful for
modeling these systems and observations in the future. However at this stage,

this is a purely empirical model.

4.8 Discussion

IBIS has so far detected 32 CVs (23 spatially correlated with known CVs + 9
new, optically confirmed discoveries). The majority are intermediate polars,
but IBIS has also detected the bright dwarf nova SS Cyg and a few polars.

This sample is an extension of the previously presented sample of IBIS CVs

by Barlow et all [2006], which also showed that the spectral characteristics of

*We have tried various polynomials but these all worsened the fit
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Figure 4.15: Top panel: Contours for a linear fit to the datapoints in the
bottom panel. Lines display contours for ¢ = 1, 2, 3, 4, 5. Bottom panel: IBIS
IP hardness as a function of synchronicity. The equation resulting from the fit
is 30-60/17-30 keV = ((Pspin/Porp) — 0.0259)0:21+0.05 _ 1()0-09+0.03
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these objects in the 20-100 keV range are actually quite similar and compare
well with previous high-energy spectral fits. Moreover BAT has observed a
similar number of objects (with many in common), which shows that modern
hard X-ray surveys are able to consistently observe mCVs at higher energies
than before.

The high incidence of IPs in our sample is not unexpected. Many authors

nijpers and Pringld, 1982, Warnei, 2003] have suggested that the lower levels

of hard X-rays/soft gamma-rays emission from polars may well be related to
the low accretion rate and stronger magnetic fields compared to IPs. It has also
been suggested that the strong magnetic fields in polars are able to produce
a more “blobby” flow. These high density “blobs” are then able to penetrate
deeper within the post-shock region and contribute more to the blackbody
component of the broadband X-ray spectrum, and less to the bremsstrahlung
component, making the broadband X-ray spectrum of IPs harder, and hence
more luminous in the hard X-rays.

Two out of four known APs are observed in our sample. The remaining

two happen to be in a region of low IBIS exposure and are likely more distant.

Schwarz et _all [2005] have already shown that BY Cam, one of the observed
APs, has different properties from those of normal polars, in particular having
a much higher accretion rate. We therefore tentatively conclude that IBIS has
not yet seen the two missing APs due to their distance/exposure. Our sample
only includes 2 definite synchronous polars, and we do not expect many of
these systems to be observed in the future with higher sensitivities above 17
keV.

Of the many observational characteristics presented here, one feature in the

Ppin — Poypy plane has stood out since the first study by Barlow et all [2006]:

a very low number of IPs below the period gap are detected with hard X-ray
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telescopes. The only exception in our study is the very nearby IP EX Hya.

We can compare this result to the theoretical models of [Norton et all [2008h

Y

004]. It is believed that the IPs below the period gap have accretion flows

which are very different to the IPs above the period gap. We would therefore
not necessarily expect these systems to behave in the same way as the systems
above the period gap, and, in particular, we would not necessarily expect

them to emit such high energy photons. This is still an open question, and,

as mentioned by Norton et all [2008a], only deeper hard X-ray exposures will

reveal if this subclass of IPs displaying ring-like accretion is able to produce

similar amounts of hard X-rays as those observed in disk-fed systems at longer

orbital periods. It has already been mentioned [IN.O.LtQ.u_e.Lzl, 008h] that as

mCVs evolve through the period gap the magnetic field of the WD may be able

to resurface when accretion stops. This can allow the system to synchronise,
and we would then expect a system jumping from Py, ~ 0.1F,; above the
period gap to Pspin = Py below the period gap. Moreover we add to this that

any system with Py, /Py > 0.6 will never reach equilibrium until it reaches

total synchronisation [Norton et all, 2008H, 2004].

7 7

All of the hard X-ray detected IP systems display Pspi, < 0.1FP,4, whilst
none have been observed with P,;, > 0.1F,,;. This may be more observational

evidence for different kinds of accretion flows within the IP class, supporting

the models of Norton et all [2008b, 2004]. More evidence for these models

comes from the non-detection of objects in any wavelength range within the
synchronicity gap (a region above the period gap within Py /Py > 0.3 and
Pypin/Pory < 1). Such systems are predicted not to be very rare since IPs
tend to evolve within the P, — Py plane towards their equilibrium spin

rate at Pspin ~ 0.1F,,, above the period gap or at P, ~ 0.6F,,, below the

gap. Norton et all 20084, 2004 have predicted that low synchronisation mCVs
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have propeller accretion flows and are all trying to reach equilibrium moving
towards Pspip ~ 0.1F,. This equilibrium arises due to the WD trying to
balance angular momentum with the surrounding blobs. We believe this is the
case for most hard X-ray selected IPs, as relatively few have yet been found
above Pspi, = 0.1F,,, where the accretion flow is thought to take the form of
a stream.

Perhaps the most interesting result of this study is the discovery of a corre-
lation between 30-60/17-30 keV hardness and spin/orbital parameters for IPs.
No similar correlation has been reported before, probably because previously
measured X-ray hardness ratios of IPs were generally restricted to the range
of approximately ~ 0.5 — 10 keV. Such ratios sample the lower end of the
bremsstrahlung spectrum and the upper end of the blackbody spectrum, with-
out fully measuring either component. In contrast, we note that the spectral
hardness variations we have measured in our hard X-ray detected IPs span the
energy range~ 17 — 60keV and are only sampling the bremsstrahlung compo-
nent of the spectrum. Therefore these observations tell us nothing about the
relative contributions of the bremsstrahlung component emitted by the cool-
ing plasma below the accretion shock and the blackbody component arising
from the heated WD surface. Instead, they are directly sampling the relative
contributions of the multi-temperature bremsstrahlung components that arise
in the plasma below the shock front (the plasma cools as it settles towards the
WD surface).

In order to explain the correlation between X-ray spectral hardness and
spin-to-orbital period ratio in the hard X-ray detected IPs, we propose that

the WDs in IPs are mostly accreting close to their equilibrium spin rates

Norton ef. all, 2004]. Hence, their spin-to-orbital period ratios are an indi-

cation of their magnetic field strength (see Figure 6 in [Norton et all 2008H).
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Broadly speaking, for smaller Py, /P4, the surface magnetic field strength
is smaller. So these systems will have smaller magnetospheric radii, and the
material will attach onto field lines closer to the WD. This will give rise to a
larger footprint area in those systems with smaller values of Pspp,/Porp. That

is to say, faster spinning WDs will have larger accretion footprints beneath a

wide but low accretion curtain, as suggested in Norton et all [1999]. Evidence

for this also comes from the observed double-peaked pulse profiles observed

in fast spinning WD (hence owning a small magnetic field) as described in

orton et all [1999], resulting from the optical depths across and along the

accretion curtains as the WD rotates.

By spreading the material over a larger area, we suggest that the resulting
bremsstrahlung X-ray emission may have a harder spectrum, possibly because
the accretion shock is closer to the WD surface and there is less distance for
the plasma to travel as it cools within the post-shock region towards the WD
surface and so there is less contribution from cooler bremsstrahlung compo-
nents. In contrast, the systems with a relatively slowly spinning WD have a
larger Pspin /P, value, so their magnetic field strength is larger, their mag-
netospheric radius is larger, and their accretion footprint is smaller and sits
beneath a tall but narrow accretion curtain. We suggest that this geometry
gives rise to a softer bremsstrahlung spectrum, possibly because the accretion
shock is further from the WD surface and so there is a greater distance for the
plasma to travel within the post-shock region and cool as it falls towards the
WD surface. This interpretation also helps explain the low detection number
in the hard X-ray domain of EX Hya-like systems below the period gap with
high Pipir / Pory which are thought to display ring-like accretion. In these cases
the magnetospheric radius extends to a very large distance from the WD im-

plying a very small footprint area. If this then means a very tall shock height
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Figure 4.16: Figure illustrating the footprint geometry on the WD surface.
The image on the left displays the outcome of a high Pipi, /P,y system where
accreted material is latched onto the field lines far from the WD. This will
yioeld a tall but narrow accretion column on the WD poles. The figure on the
right displays the footprint geometry for a low Pypip/Poypp, system (and therfore
fast Pspin). Accreted material is latched close to trhe WD creating a short but
wide accretion footprint on the WD. Figures taken from Norton et. all [|]_99_d]

(in line with the interpretation above), then the plasma will have a long dis-
tance over which to cool as it travels towards the surface, and the spectrum
will be dominated by softer photons. As far as we are aware, no-one has mod-
elled whether the multi-temperature bremsstrahlung spectrum is different for
a wide, low accretion curtain compared with a tall, narrow accretion curtain,

but we suggest this would be a worthwhile test to carry out.

4.9 Conclusions

This chapter has presented a catalogue and analysis of a sample of CVs de-
tected in the hard X-ray range (> 17keV) with IBIS, BAT and HXD. As with
previously compiled high-energy samples of CVs, it is shown that most systems
are magnetic. Moreover, some of the detected systems are very rare types of
objects (2 APs). The sample is dominated by intermediate polars, with only
2 synchronous polars. This suggests the broadband X-ray/gamma-ray spec-

trum of IPs is harder and more luminous than that of polars. This could be
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the effect of accretion rate and magnetic field strength, where IPs have higher
accretion and weaker magnetic fields relative to polars, depositing a somewhat
smoother accretion stream onto the poles. By contrast to the polars, the ac-
cretion flow in IPs may therefore not bury itself deep within the post-shock
region, producing a harder broadband X-ray/gamma-ray spectrum.

We have shown that only IPs with P/ Pprp < 0.1 are consistently found
by hard X-ray surveys. Moreover, we have examined the observational prop-

erties of mCVs in the P,4- Pspi, plane. We find that the observations are

consistent with the theoretical models of [Norton et _all [2008h, 2004| for mCV

evolution, where IPs tend to cluster at about Py /Py ~ 0.1, and none have
yet been observed in the hard X-ray regime above Pipin/Ppr, =~ 0.1. Also
observed and predicted is the observation that a very low number of IPs are
found in any wavelength range within the synchronicity gap: a region between
Pipin/Pory = 0.3 and Pypin,/Porp = 1.

The chapter has also presented the first observed correlations between the
Fluxsy—e0/Fluxi7—30 keV hardness and Pypin, Pory and Pepin/Porp. The cor-
relations have been statistically tested using Monte Carlo simulations.

In an attempt to explain our result we have suggested that hard X-ray
selected IPs are spinning towards their equilibrium, so that their spin period
is an indicator of magnetic field strength. This in turn will give rise to a short,
but wide, post-shock region for fast spinning WDs (and therefore possessing
a relatively weak magnetic field) making their hard X-ray spectra harder. In
contrast slowly spinning WDs will have a tall but narrow post-shock region
(possessing a relatively high magnetic field), yielding a cooler bremsstrahlung
component in the hard X-rays.

All of the observations presented in this chapter are consistent with mCV

evolution models. It is very likely that hard X-ray missions will continue to
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increase this sample of mCVs, and it is also expected that more unidentified
hard X-ray sources will be identified as [Ps with more optical follow-ups. In
particular, more observations will allow us to establish if any IPs are detected
below the period gap and if any IPs will ever get detected in the IBIS energy
range above Pyyin/Po, =~ 0.1 in order to establish if the Norton accretion
models are a plausible explanation to the observed systems. This also implies
that hard X-ray selected samples could have their own biases, however more
analysis will have consequences on evolution studies of these exotic magnetic
systems. Figure ELT1 shows the orbital distribution of various CV subclasses
and gives a taste of what can be learned from mCVs now that the number
of systems has grown to a statistically useful number. All distributions in
Figure EET1 have been tested with a KS-test and none of them appear to be
consistent with each other. This is already strong evidence that the magnetic
field strength of the WD has a great impact on the whole evolution of the
binary systems. More work and analysis will have to be undertaken in order
to best understand the properties from the various orbital distributions, and

how these relate to the evolution of the systems.
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Figure 4.17: Orbital period distributions for CV subclasses. The dotted lines
marks the period gap seen in non-magnetic CVs.
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Chapter 5

Conclusions

“As order exponentially increases, time exponentially speeds up.”

— Ray Kurzweil.

ITHIN this final chapter we will comment on the results obtained from
W this study and mention possible future developments and studies both
in the fields of machine learning astronomy and magnetic cataclysmic variables.
The first section will discuss machine learning algorithms, whilst magnetic

cataclysmic variables will be discussed in the final section.

5.1 Machine Learning in Astronomy

This thesis has shown, using ISINA as an example, how machine learning
algorithms can help and aid scientific discoveries in astronomy. Emphasis
has been given mainly to ISINA however many identification/classification
algorithms exist, all trying to find recurrent patterns within large datasets.

Particularly identification algorithms have been brought forward in order to try

and identify XMM sources [Pinean et _all, 2008] using probabilistic frameworks.

ichards et all [2009] has used similar techniques on much larger datasets in

148
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order to identify quasars within the SDSS dataset, whilst |Scaringi et _all [2009]
have used neural networks in order to identify broad absorption line quasars

using SDSS spectra. Identification is not only restricted to individual sources

but also relates to identifying structures with the sky. |Gezari [2008] has shown

how tidal disruption of stars by a supermassive black hole can be identified by

monitoring light-curve shapes in a semi-automated fashion. Moreover galactic

streams within our Galaxy can also be identified [IG_u_LLm_au 00&], however

for now mainly relying on visual inspection, but algorithms are also being

developed for this task in order to automate the process for large datasets

008].

Not only do machine learning algorithms help identify astronomical sources

but also help to classify the objects in question. rett et all [2004] have

shown, using an unsupervised neural network (no training) how various bi-
nary light curves (RR Lyrae, § Scuti, cepheid variables, eclipsing close bina-

ries) can be automatically clustered based solely on folded light curve shape.

On the other hand [Elting et all [2008] have demonstrated the feasibility of

photometric-based classification of stars using multi-dimensional clustering,

whilst |Andrae and Melchion [2008] have shown, using shapelets, how morpho-
logical galaxy classification is possible using automated algorithms.

All of the above are examples taken from the ever growing resource of
algorithms being created in order to tackle some of the tasks facing astronomy
in the coming century. With the advent of better observational resources, the
need for autonomous algorithms will become inevitable and will complement
the available data more and more as the data growth will keep increasing.
Currently all-sky automated sky surveys such as the WASP project, using
a dedicated telescope, is producing >30Tbh of data per year, monitoring 100

million objects, all of which needs to be searched for transients and exo-planets.
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The next generation of radio telescopes such as the SKA and LOFAR will be
able to produce all-sky images of the radio sky with unprecedented timing and
angular resolutions, yielding incredibly large dataflows of the order of a few
hundred Pb per year, surveying over 100 billion objects. Similarly the GAIA
mission will obtain photometry for over 1 billion objects, which will all need
to be identified and classified accordingly.

The production of automated algorithms is thus a necessity in order to
tackle astronomy in the coming century, a necessity which might one day

change the way we analyse and interpret data and thus is named the fourth

paradigm , 2009].

5.2 Magnetic Cataclysmic Variables

This thesis has also examined the properties of the magnetic cataclysmic vari-
able population, with particular emphasis on hard X-ray selected systems. We
have shown how contemporary hard X-ray observatories, such as INTEGRAL,
are able to detect more of these systems, and shown how future observatories
will have the potential to increase the observed numbers even further.

In the process of studying the hard X-ray selected systems we have also ex-
amined the properties arising from the P,.,- Psp:p, plane for the whole mCV pop-
ulation. The analysis has shown how some of the observations are consistent
with the theory arising from magnetic accretion, however some questions have
still been left open. For example, it is not certain yet why very few systems,
detected in any band, are found with Pipi,/Pory > 0.3 and Pepin/Pory = 1,
named as the synchronicity gap. One possible explanation however lies within
the fact that IPs are driven towards their equilibrium at Pypi,/Porp =~ 0.1

by spinning up if they spin too slow by stream accretion and spinning down
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if they spin too fast by propelling material away. Further evidence for this
could also possibly come from the fact that no hard X-ray selected IP has been
found above Py /Ppry = 0.1. This seems to be the dividing line (even though
blurred) between two different kinds of IPs accreting through different mech-
anisms (stream and propeller), which would also point to different emission
mechanisms for hard X-ray photons seen from these systems. All of the above
also helps to explain the nature of the observed hardness correlations presented
in the previous chapter in Figures EL9, ELT0] and EETT] where synchronicity (and
thus spin period) correlates with the hardness ratio defined as 30-60keV /17-
30keV count rate. Fast spinning systems display hard spectra whilst slowly
spinning systems display softer spectra. This seems to be best explained by
the footprint geometry on the WD poles, where a tall shock produced by the
slowly spinning systems yields a softer spectrum, whilst fast spinning systems
produce a short and wide shock yielding a hard spectrum. We believe the
reason for the apparent hardness correlations results from how fast the shock
can cool. In tall shocks (slowly spinning systems) the plasma has a greater
distance too cool before it reaches the WD surface and hence will display a
broad range of bremsstrahlung temperatures. Conversely short shocks do not
have much to travel before they cool on the WD surface, making the result-
ing bremsstrahlung temperature gradient steeper (and thus harder spectra).
This would also help explain why not many systems have been observed above
Pypin/Pory = 0.1, since their shocks would be even higher, and thus softer in
the hard X-ray range, making these systems difficult to detect. Moreover it
would help explain the low detection numbers of polars, since these systems
are also believed to possess very high shocks.

Asynchronous polars however still pose a potential problem to the explana-

tions above, since we would not necessarily expect to see these systems in the
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hard X-ray domain given their close proximity to the polars in the FPp,.p-Pspin
plane. However these systems are very mysterious with only four detections in
any band, making them hard to compare against other known mCVs.

We conclude by mentioning the further need to study mCVs in the hard X-
ray domain to better understand the origin of the hardness correlation and to
better understand the properties arising from the Pp,4-Pspin plane. Moreover
we point out that if the shock height interpretation is correct, we would expect
to use hardness as an indicator of both shock height, and as a consequence infer
at what stage of it’s evolution a particular mCV lies, hence inferring their spin
and orbital period. This would help better understand the evolutionary process

of these exotic magnetic systems.
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