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1University of SouthamptonAbstra
tFACULTY OF ENGINEERING, SCIENCE ANDMATHEMATICSS
hool of Physi
s & AstronomyDo
tor of PhilosophyMa
hine Learning from Hard X-ray Surveys: Appli
ations toMagneti
 Cata
lysmi
 Variable Studiesby Simone S
aringiWithin this thesis are dis
ussed two main topi
s of 
ontemporary astrophysi
s. The�rst is that of ma
hine learning algorithms for astronomy whilst the se
ond is thatof magneti
 
ata
lysmi
 variables (mCVs). To begin, an overview is given of ISINA:INTEGRAL Sour
e Identi�
ation Network Algorithm. This ma
hine learningalgorithm, using random forests, is applied to the IBIS/ISGRI data set in order toease the produ
tion of unbiased future soft gamma-ray sour
e 
atalogues. Thefeature extra
tion pro
ess on an initial 
andidate list is des
ribed together withfeature merging. Three training and testing sets are 
reated in order to deal withthe diverse time-s
ales en
ountered when dealing with the gamma-ray sky: onedealing with faint persistent sour
e re
ognition, one dealing with strong persistentsour
es and a �nal one dealing with transients. For the latter, a new transientdete
tion te
hnique is introdu
ed and des
ribed: the transient matrix . Finally theperforman
e of the network is assessed and dis
ussed using the testing set and someillustrative sour
e examples. ISINA is also 
ompared to the more 
onventionalapproa
h of visual inspe
tion. Next mCVs are dis
ussed, and in parti
ular theproperties arising from a hard X-ray sele
ted sample whi
h has proven remarkablye�
ient in dete
ting intermediate polars and asyn
hronous polars, two of the raresttype of 
ata
lysmi
 variables (CVs). This thesis fo
uses parti
ularly on the linkbetween hard X-ray properties and spin/orbital periods. To this end, a new sampleof these obje
ts is 
onstru
ted by 
ross-
orrelating 
andidate sour
es dete
ted inINTEGRAL/IBIS observations against 
atalogues of known CVs. Also in
luded inthe analysis are hard X-ray observations from Swift/BAT and SUZAKU /HXD inorder to make the study more 
omplete. It is found that most hard X-ray dete
tedmCVs have Pspin/Porb < 0.1 above the period gap. In this respe
t, attention isgiven to the very low number of dete
ted systems in any band between
Pspin/Porb = 0.3 and Pspin/Porb = 1 and the apparent peak of the Pspin/Porbdistribution at about 0.1. The observational features of the Pspin - Porb plane aredis
ussed in the 
ontext of mCV evolution s
enarios. Also presented is eviden
e for
orrelations between hard X-ray spe
tral hardness and Pspin , Porb and Pspin/Porb.An attempt to explain the observed 
orrelations is made in the 
ontext of mCVevolution and a

retion footprint geometries on the white dwarf surfa
e.
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Prologue
�Astronomy has been among the �rst s
ienti�
 dis
iplines to experien
ethis �ood of data. The emergen
e of data mining within this and othersubje
ts has been des
ribed as the fourth paradigm. The �rst two arethe well-known pair of theory and observation, while the third is an-other relatively re
ent addition, 
omputer simulation. The sheer volumeof data not only ne
essitates this new paradigmati
 approa
h, but theapproa
h must be, to a large extent, automated. In more formal terms,we wish to leverage a 
omputational ma
hine to �nd patterns in digitaldata, and translate these patterns to useful information, hen
e ma
hinelearning. This learning must be returned in a useful manner to a humaninvestigator, whi
h hopefully results in human learning.�� Ni
holas M. Ball 2009.
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Chapter 1
Introdu
tion

�A mathemati
ian is a devi
e for turning 
o�ee into theorems.�� Paul Erods.One of the main issues fa
ing astronomy in the 
oming 
entury will be theexploration and exploitation of extremely large amounts of data gatheredby various observatories. This s
enario will essentially be inevitable given theever in
reasing 
apabilities of astronomi
al observing fa
ilities. The amount ofinformation gathered in astronomy in the 
oming years will help ta
kle manyof the 
urrent problems in 
ontemporary astrophysi
s, however novel methodsare required to deal with su
h huge and diverse amounts of data. Exploratorydata mining of large astronomi
al datasets is thus the main 
on
ern of thisthesis. In parti
ular the appli
ation of ma
hine learning algorithms for theintrodu
tion of new s
ien
e in 
ontemporary astronomy by exploiting largearea surveys su
h as the IBIS/ISGRI gamma-ray survey performed as part ofthe European Spa
e Agen
y's INTEGRAL spa
e observatory mission. To thisend the thesis introdu
es ISINA (INTEGRAL Sour
e Identi�
ation NetworkAlgorithm), a ma
hine learning algorithm 
onstru
ted in order to identify theIBIS real sour
e population against the fake one 
aused by both the large15



CHAPTER 1. INTRODUCTION 16statisti
al dataset and the highly systemati
 noise [S
aringi et al., 2008℄. Thealgorithm will be des
ribed in detail, tested and applied to the new IBIS datasetin preparation for the future releases of gamma-ray sour
e 
atalogues.Analysing the IBIS/ISGRI dataset for the produ
tion of future 
atalogueshas also reintrodu
ed a somewhat overlooked population, that of magneti
 
at-a
lysmi
 variables. Be
ause of the ex
ellent survey 
apabilities of INTEGRAL,the number of dete
tions of this sour
e population has grown in the hard X-ray/soft gamma-ray regime. This has allowed us for the �rst time to study theglobal properties of these systems, and in parti
ular has allowed us to 
omparethe hard X-ray sele
ted sample of mCVs against the global one. This kind ofanalysis was not possible before given the very low number statisti
s of theseobje
ts and as one would expe
t, new analysis will bring forward new resultsas we will see in the last 
hapters of this thesis.Chapter 2 introdu
es ISINA, a semi-automated algorithm for the iden-ti�
ation of sour
es found within the IBIS/ISGRI images 
reated in order toease the produ
tion of future gamma-ray sour
e 
atalogues. ISINA has beenbuilt keeping in mind the main issues en
ountered when 
reating 
ataloguesthrough visual inspe
tion, and tries to over
ome these issues by 
reating unbi-ased 
andidate lists based on more homogeneous 
riteria. In order to 
onstru
ta reliable algorithm for this task we will also have to take into a

ount the ori-gin of the systemati
 noise found within the IBIS/ISGRI images 
aused bythe 
oded mask imaging te
hnique. This systemati
 noise, 
orrelated with thereal sour
e population, is parti
ularly hard to 
hara
terise and will result inan ex
ess of 
andidates sele
ted by ISINA.Given the dynami
al times
ale en
ountered when observing the gamma-raysky ISINA will have to be trained on di�erent sour
e populations, de�ned bytheir times
ale of a
tivity. More spe
i�
ally ISINA will be trained to re
ognise



CHAPTER 1. INTRODUCTION 17faint persistent sour
es, strong persistent sour
es and transients independentlyof ea
h other. The a

ura
y of the algorithm is then analysed using the testingset whi
h uses as a referen
e the published IBIS/ISGRI 
atalogue 3 [Bird et al.,2007℄. This will help us understand the possible pitfalls of ISINA in preparationfor the next 
hapter whi
h will see ISINA being applied for the 
onstru
tionof the 
atalogue 4 release.Chapter 3 takes the ISINA algorithm and applies it to the 
onstru
tionof the IBIS/ISGRI 
atalogue 4. Contrary to Chapter 2, we will not have areliable testing set to 
ompare our results against. Moreover, 
atalogue 4 hasalso been 
onstru
ted in parallel using the more 
onventional approa
h of visualinspe
tion. This method is also des
ribed, and will allow us to 
ompare theISINA result to the more �human� approa
h. This 
omparison will shed lighton some additional pitfalls introdu
ed by ISINA, and also some introdu
ed bythe visual inspe
tion method implying that at the moment the best result willbe obtained using a 
ombination of both methods.Chapter 4 diverges slightly from the appli
ation of ma
hine learning algo-rithms to astronomi
al 
lassi�
ation and fo
uses more on the analysis of one ofthe IBIS/ISGRI sour
e populations: magneti
 
ata
lysmi
 variables (mCVs).This faint persistent population has yielded some very interesting results whenanalysing the global properties of the hard X-ray sele
ted sample. Moreoverthe more general properties of the whole mCV population is reviewed in the
ontext of some 
ontemporary a

retion models for mCVs. Parti
ular empha-sis is given to the Porb - Pspin plane of the global mCV population. We will �ndthat all but a few of the hard X-ray sele
ted mCVs o

upy the low syn
hroni
-ity (Pspin/Porb < 0.1) region of this parameter plane, in agreement with modelpredi
tions. Finally the spe
tral properties of the hard X-ray sele
ted sampleare analysed in the 
ontext of the systems orbital and spin parameters. We



CHAPTER 1. INTRODUCTION 18�nd that Pspin, Porb and Pspin/Porb all show evident 
orrelations with hardnessratios de�ned to be Flux30−60keV /F lux17−30keV . The faster the white dwarfs(WDs) in mCVs spin the harder their spe
tra. This new result is dis
ussed andspe
ulations are brought forward in order to try and explain this phenomenon.Chapter 5 ends this thesis with some 
on
lusions and thoughts aboutfuture developments in both the �elds of ma
hine learning applied to astronomyand future mCV studies.



Chapter 2
Learning IBIS data with ISINA

�My CPU is a neural net pro
essor; a learning 
omputer.�� TERMINATORThis 
hapter will present the 
reation of a semi-automated algorithm forsour
e identi�
ation within IBIS images, ISINA: INTEGRAL Sour
eIdenti�
ation Network Algorithm. ISINA has been 
reated using as a refer-en
e IBIS 
atalogue 3 data [Bird et al., 2007℄, in preparation for the up
oming
atalogue 4 release. This will hopefully enable future 
atalogue releases to befar more obje
tive and 
onsistent in the future.Within this 
hapter we will have to review the problems en
ountered whendealing with IBIS data, and the nature of the 
lassi�
ation task we have topursue. As we will see, the 
reation of an e�e
tive 
lassi�er will highly dependon the parameters used, and these have to be 
hosen in the 
ontext of the
lassi�
ation task we have to pursue.We will begin by introdu
ing in more depth the INTEGRAL satellite, theIBIS dete
tor and asso
iated 
oded mask te
hniques for imaging. This will alsolead us to des
ribe the imaging problems related with su
h systems. Moreoverwe will also des
ribe the intrinsi
 behaviour of high energy sour
es as observed19



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 20by IBIS, as this will also play a 
ru
ial role in understanding how to builda reliable 
lassi�er. The dataset is then introdu
ed, together with a briefdes
ription of mosai
 
reation. Having understood the dataset and relatedproblems, together with the kinds of obje
ts observed with IBIS, we will thenintrodu
e the ISINA algorithm.IBIS maps will be sear
hed for ex
ess above ba
kground and �agged aspossible 
andidates. Features des
ribing temporal behaviour, shape and sig-ni�
an
e will be de�ned and extra
ted for ea
h ex
ess 
andidate. Next we will
reate training and testing sets for ISINA to learn on, 
omposed of both realand fake sour
es. In parti
ular we will also des
ribe our 
hoi
e to 
onstru
tthree independent 
lassi�ers within ISINA in order to deal with the dynami
temporal nature of the gamma-ray sky. One 
lassi�er will be trained on faintpersistent sour
es, su
h as AGNs, and is built to re
ognise su
h obje
ts. Ase
ond 
lassi�er will deal with strong persistent obje
ts and the �nal 
lassi�erwill deal with transients. Using three 
lassi�ers in this way will allow us to re-
over the majority of real sour
es in the testing set, keeping the number of falsepositives relatively low. This is dis
ussed in the �nal se
tions of this 
hapter,whi
h prepares the reader for the next 
hapter des
ribing the appli
ation toISINA for the re
overy of obje
ts within IBIS 
atalogue 4 data. We note thatall of the algorithm has been developed from independently, without the useof external software, ex
ept where stated.2.1 The INTEGRAL satelliteThe INTEGRAL satellite (Figure 2.1) is an ESA mission laun
hed on O
tober17, 2002, on board a Russian proton ro
ket from Baikinour and pla
ed in a 66hour high ellipti
al orbit with an apogee of 153,000 km, a perigee of 690 km,
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lination of 51.6o. It has sin
e been fully operational and with itsextended lifetime is expe
ted to remain operational until 2012. The mission isparti
ularly dedi
ated to �ne imaging and spe
tros
opy of gamma-ray sour
esin the energy range from 17 keV to 10 MeV. The mission is also 
omplementedwith imaging in the X-ray and opti
al bands with additional instruments onboard. In total, INTEGRAL 
onsists of 4 instruments:
• IBIS is the gamma-ray imager operating between 17 kev to 10 MeV,and has been spe
i�
ally designed for Gala
ti
 surveys. It possesses alarge �eld of view of 30o with an angular resolution of 12′ FWHM. It is
omposed of two dete
tor layers. The �rst 
alled ISGRI dete
ts photonsranging from 17 keV up to about 300 keV and is 
omposed by an arrayof 128 × 128 CdTe dete
tor elements. The bottom layer, 
alled PICsITis instead responsible for the dete
tion of photons in the range 175 keV- 10 MeV and is 
omposed of 4096 CsI(Tl) elements.
• SPI is the gamma-ray spe
trometer and has been optimised for highspe
tral resolution (3 keV � 1.7 MeV) and high sensitivity, at the 
ost ofhaving a poor angular resolution (2.5o). It is 
omposed of 19 high puritygermanium 
rystal dete
tors with a total area of ∼ 508cm2. The greatspe
tros
opi
 
apabilities of SPI allows for the dete
tion and study ofnu
leosynthesis, spe
i�
ally 
lose to supernovae remnants. Key gamma-ray lines whi
h SPI is able to observe are 22Na, 26Al, 60Fe and the 511keV annihilation line.
• JEM-X is the onboard X-ray monitor observing in the range 3-35 keVband. It is designed to give 
ontemporaneous measurements in the X-rayband, and helps re�ne the positional a

ura
y of IBIS dete
ted sour
es.
• OMC is the onboard opti
al 
amera whi
h takes images in the V band.



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 22Figure 2.1: The INTEGRAL satellite showing the di�erent instuments andsatellite 
omponents.

Similarly to JEM-X, the OMC aids during the lo
alisation of IBIS andSPI dete
ted sour
es.All of the instruments on board of INTEGRAL, ex
ept the OMC, use the
oded mask te
hnique for imaging. This is be
ause fo
using photons at su
hhigh energies is not an easy task, and thus indire
t imaging te
hniques haveto be employed. Coded masks however inherently 
reate artefa
ts in the pro-
essed images, whi
h will make the task of identi�
ation and/or 
lassi�
ationof sour
es with an automated algorithm parti
ularly non-trivial. This is ex-plained in more detail in the next se
tion, with parti
ular emphasis on theIBIS/ISGRI dete
tor, the instrument on whi
h data ISINA is based on.
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ing IBIS/ISGRIBefore we begin des
ribing the identi�
ation algorithm, some 
onsiderationon the kind of data to be used needs to be addressed. In parti
ular the IN-TEGRAL/IBIS imaging system uses the 
oded mask te
hnique in order toprodu
e images of the gamma-ray sky. To do this, a shadowgram of the maskpattern is re
orded in the IBIS/ISGRI dete
tor plane. This shadowgram isthen de
onvolved with the mask pattern (Fig. 2.2) in order to produ
e animage of the sky. This method inherently produ
es mirror images (or ghosts)of real gamma-ray sour
es together with stru
tures related to the mask pat-tern, whi
h are then removed by the data redu
tion software. However a goodmodel of the teles
ope is required, whi
h takes into a

ount ba
kground ra-diation, and a sour
e list of where the gamma-ray obje
ts are. Be
ause noperfe
t model of INTEGRAL exists, and be
ause we do not ne
essarily knowin advan
e where all the gamma-ray sour
es are, image artefa
ts are 
reated.These are the result of bad ghost and mask pattern subtra
tion, where thesour
e PSF has not been modelled and subtra
ted 
orre
tly from the imageartefa
ts. In order to best interpret the IBIS/ISGRI images, four di�erentdata produ
ts are produ
ed by the de
onvolution software. These are an �uximage, a dete
tion signi�
an
e image, a varian
e image displaying the errorsper pixel and lastly a residual image displaying the errors asso
iated with thede
onvolution per pixel.Most of these artefa
ts, or noise, are highly systemati
 in that they are
orrelated with the real sour
e population and have the same 
hara
teristi
s(spe
tral and temporal) as real sour
es. This will introdu
e a problem whentrying to dis
riminate the real sour
e population against the fake one as, insome 
ases, the 
hara
teristi
s for both will be exa
tly the same. This problem
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will be examined later in this 
hapter in more detail, whilst here we onlydes
ribe the origin of the systemati
 noise.In Figure 2.3, we show the �nal mosai
 image in the 17-30 keV band 
en-tred on a bright extragala
ti
 AGN. This sour
e is one of many to 
reate thesystemati
 stru
ture artefa
ts being des
ribed. These are essentially mirrorimages of the real sour
e, but with apparent redu
ed �ux, situated at about
10.54◦ from the real sour
e (minor ghosts are also found at other distan
es).This parti
ular obje
t has been observed with INTEGRAL always having thesame orientation. This is parti
ularly bad sin
e the ghosts will always ap-pear in the same pla
e and will be enhan
ed further by mosai
king the data.Contrary to this observing strategy INTEGRAL is sometimes rotated beforeobserving the same obje
t, smearing out the ghost stru
tures, at the 
ost how-ever of produ
ing ring-like stru
tures at the same distan
e as where the ghostswould have been. This is illustrated in Figure 2.4 for a bright gala
ti
 sour
e.In both 
ases the artefa
ts produ
ed are of high signi�
an
e (i.e. 
ompa-
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ts 
aused by the 
oded mask imaging system.These artefa
ts are always lo
ated at the same distan
e from the sour
e theyhave been 
reated and are quite easy to re
ognise visually. The green ringis there for referen
e and is 
entered on the sour
e 
reating the ghosts with aradius of 10.54◦. The problem resides in 
onstru
ting a good 
lassi�er for thesestru
tures sin
e, by de�nition, these artefa
ts have the same 
hara
teristi
s asthat of the real sour
e population.

Figure 2.4: IBIS ring artefa
ts 
aused by the 
oded mask imaging system.These artefa
ts are of the same kind to that of ghosts (see Figure 2.3). Thereason for the apperan
e of ring like stru
tures resides in the INTEGRALobserving mode. In the �gure displayed below the 
entral obje
t has beenobserved with di�erent orientatations by INTEGRAL. After mosai
king theimages the ghosts appear to be smeared in a ring-like stru
ture 
entered aroundthe real sour
e that 
reated the ghosts in the �rst pla
e.
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es within the �eld) and highly 
orrelated with the realsour
e population. This will make sour
e dis
rimination a parti
ularly hardtask for both a ma
hine learning algorithm and a person. Keeping this in mind,we will attempt in this 
hapter to produ
e a reliable identi�
ation algorithm inorder to aid the 
orre
t identi�
ation of obje
ts found within the IBIS imagesand 
oded masks in general.2.3 Ma
hine learning algorithms for IBISOne of the main 
hallenges when 
hoosing a ma
hine learning algorithm forthe purpose of identi�
ation and/or 
lassi�
ation is to �rst understand as bestas possible the dataset. This, together with the kind of 
lassi�
ation to bepursued, is 
ru
ial in building a reliable algorithm. For example, in a verysimplisti
 s
enario, we would never hope to 
orre
tly identify and 
lassify astar given only its luminosity. In order to a
hieve a respe
table 
lassi�
ationrate we would at least need two parameters namely, the luminosity and tem-perature (
olour di�eren
e). Moreover, imagine a s
enario where the measure-ments have been taken with di�erent CCDs, and that ea
h one has a systemati
un
ertainty whi
h is di�erent from all the others. Then the problem for the
lassi�er won't only be to use the 
orre
t parameters for this parti
ular 
las-si�
ation task, but also to �learn� how to take di�erent errors into a

ount.This is 
learly not an easy task, and we also point out that, even if luminosityand temperature would be enough to 
orre
tly 
lassify all stars, we, as the
reators of the algorithm, would have to train our 
lassi�er based on these twoparameters, whi
h until now we have assumed we just knew in advan
e. Butone of the main problems in 
onstru
ting reliable 
lassi�ers is just that: whatparameters are needed to 
orre
tly 
lassify a parti
ular set? In some 
ases this
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lass ofa parti
ular 
andidate, however the task might be mu
h more 
hallenging ifwe are not sure what parameters are best for a parti
ular set, as is the 
ase inmost realisti
 
ir
umstan
es.Identifying real 
andidates from IBIS data is essentially a�e
ted by all theproblems des
ribed above. There has been extensive mass modelling for thespa
e
raft and the dete
tor in the past years [Dean et al., 2008, Ferguson et al.,2003℄, unfortunately however the data produ
ts are still su�ering a lot fromsystemati
 noise. In parti
ular, be
ause of the imperfe
t implementation ofa 
orre
t model for the INTEGRAL spa
e
raft, the noise is highly 
orrelatedwith the real sour
e population and highly resembles real obje
ts. This is anissue whi
h will highly a�e
t any 
lassi�er (and indeed humans too!), and wehave to be very 
autious and aware of the problem. Clearly 
hoosing reliableparameters will be a hard task. By not being aware of this one 
an easilymislead the algorithm into thinking a parti
ular 
andidate is real when inreality it is not. An analogy with our previous simplisti
 example would beto try and 
lassify star types using luminosity and distan
e. Obviously nosensible 
lassi�
ation relevant to star types 
ould be obtained with these twoparameters, but it does illustrate the importan
e of parameter sele
tion for thegiven 
lassi�
ation task.IBIS 
atalogues in the past have been 
onstru
ted through visual inspe
-tion. During this pro
ess, a set of 
andidates, mainly sele
ted on signi�
an
es,(see Figure 2.5) are inspe
ted by eye by a team of experien
ed astronomersto try and re
ognise if a parti
ular 
andidate is real or fake. This pro
essobviously also relies on the astronomer to understand the data thoroughly, sothat his/her 
orre
t identi�
ation rate is high. In essen
e, ea
h astronomerhas 
reated in his/her mind a set of rules whi
h have to be satis�ed in order
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Figure 2.5: In order to identify an ex
ess as a sour
e it is ne
essary �rst toidentify the signi�
an
e level at whi
h the sour
e population dominates overthe noise distribution. To this end 
atalogue 3 has been produ
ed using log-logplots of the number of ex
esses dete
ted by SExtra
tor above a spe
i�
 signi�-
an
e as a fun
tion of that signi�
an
e. This is shown below for the 30-60 keVall-sky mosai
. Two distributions are �tted to the plots, a gaussian represent-ing the noise population and a power law for the real sour
e population. A 1%false positive a

ura
y is adopted in order to determine a reliable threshold forsour
e identi�
ation.
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laim with high 
on�den
e that a 
andidate is real. These rules might berelated to the shape of the FWHM of the 
andidate in question, or even thelo
al signal-to-noise. There are many problems however using this method.The obvious one is that as the data volume for IBIS (or any other instru-ment) in
reases, this method requires more time and more �inspe
tors� to dothe job. As an example 
atalogue 1 was based on solely 5 maps, whilst thelatest 
atalogue 4 uses ∼ 11, 500 maps. There is no alternative to this issue,and only a larger workfor
e 
an over
ome this. The se
ond more subtle butmore relevant problem is that ea
h astronomer has in mind his/her own idea ofwhat a real sour
e should be or look like. This is be
ause, similarly to ma
hinelearning algorithms, the astronomer 
an only rely on past examples in orderto make a de
ision on a new 
andidate. This essentially means that the sameastronomer might 
hoose to 
lassify a parti
ular obje
t as real today and fakelater on in the future, after having inspe
ted more 
ases and having 
hangedhis/her mind. The problem gets worst when we introdu
e many di�erent as-tronomers, sin
e ea
h one would have inspe
ted a slightly di�erent set, andwill have 
reated in his/her own mind a slightly di�erent set of rules for whathe/she 
onsiders to be real. In some 
ir
umstan
es having many �opinions� ona parti
ular 
andidate might be useful, however we 
an think of 
ases wherethis is de�nitely not optimal when most of the astronomers make the wrongde
isions. In fa
t we would expe
t a group of astronomers to usually sele
tmore sour
es than are real, mainly be
ause our brain is prone to �nd patterns,making the astronomer �see� a real sour
e when in e�e
t it is not. This hasthe 
onsequen
e of 
ausing high rates of false positives. Making our sele
tionbias even worse is the fa
t that most astronomers do not only visually inspe
t
andidates (lu
kily!) but also have their favourite obje
ts in the sky they enjoystudying. Even if very subtly, this 
an bias the sele
tion of real obje
ts further
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ts. This bias would be 
aused by someone who, for example, studiesAGNs and is, even if un
ons
iously, trying to raise the number of 
ataloguedAGNs for further studies. Obviously the problem is not restri
ted to AGNsonly, and 
an be turned the other way round by someone very 
onservativeabout any obje
t, biasing the sele
tion the other way.In order to address most of the issues dis
ussed above on the IBIS datasetwe have 
hosen what we think is a �exible algorithm whi
h 
an undertake mostproblems intrinsi
 to the 
lassi�
ation task. In the following se
tions we willdes
ribe the 
reation of an algorithm similar to Random Forest (Brieman et al.1984) whi
h we 
all ISINA. This is an algorithm that has the potential to dealwith redundant parameters (i.e. parameters whi
h do not help or 
onfuse thealgorithm in making a de
ision) so that we are allowed to 
hoose many moreparameters than needed without a�e
ting the �nal result. This is parti
ularlyuseful as we do not know in advan
e what features to use for our 
lassi�er,so we will de
ide to in
lude many more than we a
tually think we need. Theother promising feature of ISINA, and Random Forests in general, is that it isstru
tured in a similar way to the visual inspe
tion pro
ess. Essentially we willbuild many 
lassi�ers using di�erent features and let ea
h 
lassi�er de
ide onea
h 
andidate independently. We will then merge the results at the end, sim-ilarly to what happens during visual inspe
tion. The great advantage howeveris that ea
h of our individual 
lassi�ers will not be biased, and will ex
lusivelybe built using the training set. This leaves very little spa
e for �opinion�, asshould be the 
ase for s
ienti�
 
lassi�
ation. However before we introdu
e thealgorithm in full we �rst have to understand the data and 
lassi�
ation s
opebetter in order to sele
t appropriate features for our 
lassi�er to work on.
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olle
ted with the low-energy array ISGRI (INTEGRAL softgamma-ray imager, Lebrun et al. [2003℄), 
onsisting of a pixelated 128 × 128CdTe solid-state dete
tor that views the sky through a 
oded mask. Theinstrumental details and sensitivity 
an be found in Lebrun et al. [2003℄ andUbertini et al. [2003℄. IBIS/ISGRI generates images of the sky with 12' [fullwidth at half-maximum (FWHM)℄ resolution and ≈3 ar
min sour
e lo
ationa

ura
y over a 19◦ fully 
oded �eld of view in the energy range 15-1000 keV.The data set used for the 
reation of ISINA is the same as the one usedin the produ
tion of the third IBIS/ISGRI soft gamma-ray survey 
atalogue[Bird et al., 2007℄, whi
h uses image data for the �rst 3.5 yr of IBIS/ISGRI
ore programme and publi
 observations. The data set used here ensures that
> 70% of the sky is observed with at least 10ks exposure. This yields a datavolume of ≈5 Tb of raw data and ≈10 Tb of pro
essed data.Ea
h INTEGRAL pointing is referred to as a S
ien
e Window (S
W). Inparti
ular ea
h IBIS/ISGRI S
W image will have an exposure of about 2000 sand 
an produ
e di�erent images for di�erent energy ranges. This will have tobe taken into a

ount in our 
lassi�er as di�erent types of obje
ts have di�erentspe
tral shapes and might only appear in some band images and not others.The IBIS dataset is not only 
omposed of S
W images, but also of mosai
sspe
i�
ally 
reated for survey studies. These mosai
s are 
reated in 5 di�erentenergy bands using as mu
h of the S
W data as possible. It is important,however, to remove a small fra
tion of images for whi
h the image de
onvolu-tion pro
ess has not been su

essful. These mainly in
lude data taken duringor following severe solar a
tivity or near spa
e
raft perigee passage when theba
kground modeling is di�
ult due to the spa
e
raft passing 
lose or within
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 Anomaly or the Van Allen radiation belts.The image rms1 was determined for ea
h signi�
an
e map (at S
W level),and the distribution of the image rms statisti
s for all s
ien
e windows wasdetermined. The mean and varian
e of this distribution was then found inorder to de�ne what 
an be 
onsidered a �good� image rms. An a

eptan
ethreshold was then set at 2σ above the mean image rms, and any individualimages with higher rms than this were dis
arded. Typi
ally, this resulted in anyimage with an rms greater than 1.08 (after removal of sour
es) being reje
ted(depending on energy range). Of the ≈24,000 S
W pro
essed, ≈20,000 S
Wwere retained in the �nal S
W list. In addition, s
ien
e windows a
quired in�staring� mode, and data taken during the instrument performan
e veri�
ation(PV) phase (for simpli
ity, this was taken as up to and in
luding the 
alibrationa
tivities in revolution 45) were removed from the main S
W lists due to theirpotential adverse e�e
t on the �nal mosai
 quality.The S
Ws were mosai
ked using a tool developed in Southampton, opti-mized to 
reate all-sky gala
ti
 maps based on several thousand input S
Ws.However given the long timebase spanned by this dataset, we additionally re-quire mosai
s 
omposed of only a subset of S
Ws in order to lo
ate transients.These will be obje
ts that have an in
rease in �ux above the noise level onlyin spe
i�
 S
Ws, and require mosai
king only a subset of S
Ws to be signi�-
ant enough and be 
onsidered for identi�
ation. In order to 
ompensate forthis problem, we 
onstru
ted mosai
s over three times
ales. Maps were 
re-ated for ea
h revolution that 
ontained valid data. This is optimized to dete
tsour
es a
tive on times
ales of the order of a day2. We identi�ed 26 sequen
esof 
onse
utive revolutions that had similar pointings. Thus, these revolutionsequen
es 
ould best be analyzed as a single observation, and sensitivity for1Root Mean Squared in units of Signi�
an
e21 revolution = 3 days
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es on longer times
ales than revolutions (i.e., order of weeks) 
ould be op-timized. Ultimately, persistent sour
es 
an best be dete
ted in an all-ar
hivea

umulation of all available high-quality data.Maps were 
reated for ea
h of these times
ales, in �ve energy bands (20-40 keV, 30-60 keV, 20-100 keV, 17-30 keV and 18-60 keV), these being 
hosento provide both 
overage of the most sensitive energy range for ISGRI andsensitivity to various typi
al sour
e emission pro�les. For ea
h energy bandand time period all-sky mosai
s were made in four proje
tions: 
entered onGala
ti
 
enter, 
entered on Gala
ti
 anti
entre, north Gala
ti
 polar, andsouth Gala
ti
 polar. The purpose of these multiple proje
tions is to presentthe automati
 sour
e dete
tion algorithms with sour
e PSFs with the minimumpossible distortions.2.5 The AlgorithmIn this se
tion we des
ribe how ISINA is built, trained and tested. The pro
essis relatively long to des
ribe and, in order to make it 
learer to the reader wegive here a brief des
ription of the pro
ess. The steps involved after having
reated the mosai
s are as follows:1. Lo
ating 
andidates: Here we des
ribe the steps involved in 
reatingan initial 
andidate list for ISINA to work on. We will sear
h all themosai
 maps for possible 
andidates in a very un-
onservative way so asto make sure no real 
andidates are missing. ISINA will then learn todis
riminate the majority of fake sour
es.2. Filtering 
andidates: Given the previous step we are fa
ed with anin
redibly large 
andidate list, where many 
andidates are in a
tual fa
t



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 34the same but dete
ted in multiple mosai
 maps. Here we des
ribe thepro
edure employed in order to merge the initial ex
ess list.3. Feature extra
tion: Having produ
ed an ex
ess list we will de�ne somefeatures that will represent what a human astronomer inspe
ts beforede
iding whether a 
andidate sour
e is real or fake. These features willthen be extra
ted for all 
andidates in all the S
Ws and mosai
 mapsavailable. These are the features, or parameters, ISINA will work on inorder to de
ide whether 
andidate sour
es are real or fake.4. Feature merging: Having extra
ted features for all 
andidates in allpossible images we are fa
ed with a data redundan
y problem. In par-ti
ular, the features extra
ted for transients or variable sour
es will notall be useful, and in fa
t will 
onfuse ISINA in de
iding whether the
andidate is real or fake. In other words, if a transient is on for a verysmall portion of the observed time, we run the risk of not identifying itproperly if we do not use only the observations where it is a
tive. Thequies
ent phase of the sour
e will 
onfuse the algorithm. This subse
tionwill des
ribe the method we employ to over
ome this problem by 
reatingthree independent 
lassi�
ation networks: one based on faint persistentsour
es, one based on strong persistent sour
es and one on transients.This will hopefully allow the 
orre
t re
overy of the majority of IBISdete
ted sour
es.5. Training and testing sets: Having extra
ted and merged the featuresfor all our 
andidates we need to produ
e a reliable training set for ISINAto learn on. Moreover a reliable testing set needs to be produ
ed so thatwe 
an later assess the performan
e of ISINA. Again this is done by
reating three independent training and testing sets as des
ribed in the
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tion.6. Random forest algorithm: The main engine of the identi�
ation al-gorithm is des
ribed here. This is where the training takes pla
e for thethree independent networks.7. Results: Finally, after training, the testing set is passed to ISINA andidenti�
ation tags are given to the testing 
andidates. Here we assessthe performan
e on this testing set and dis
uss possible improvementsfor the algorithm.2.5.1 Lo
ating 
andidatesThe �rst stage in ISINA is to look in all images (mosai
s, revolution mo-sai
s and revolution sequen
e mosai
s) in order to lo
ate potential 
andidatesfor further analysis. We do this by simply running the sour
e sear
hing al-gorithm SExtra
tor [Bertin and Arnouts, 1996℄ and re
ording all ex
essesabove 4.5σ. This threshold might be too optimisti
 given the level of system-ati
 noise in the maps; however, we will show how this is not a problem as thenetwork will be able to learn and dis
riminate the fake 
andidates from thereal ones. On the 
ontrary, the threshold is too 
onservative for some mapswhere systemati
 ba
kground noise is very low; however, at this stage it is bestto have more fake 
andidates at the 
ost of re
overing most of the real ones.We note that this was the global threshold employed in 
reation of 
atalogue3 [Bird et al., 2007℄. The sour
e position measured by SExtra
tor relies on
al
ulating �rst order moments of the sour
e pro�le (referred to by SExtra
-tor as the bary
entre method). At the faintest levels sour
e dete
tability willbe limited to ba
kground noise; however, this 
an be improved by applying alinear �lter to the data. Moreover, in 
rowded regions of the sky, 
onfusion
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an be avoided by applying the SExtra
tor mexhat. This �lter 
onvolutionalters the signi�
an
e of sour
es in the original mosai
s by in
reasing it, de-blending two (or more) 
lose 
andidates. The drawba
k of this �lter is that itsometimes 
reates extra ring-like 
andidates around apparent or real ex
esses,whi
h will be extra
ted as possible 
andidates by SExtra
tor, and later fedto ISINA. Doing this yields an ex
ess list of 58,603 
andidates, where most arein 
ommon between S
Ws however. The next se
tion will des
ribe the adoptedmethod for sour
e �ltering and merging.2.5.2 Filtering 
andidatesAn initial list of 58,603 ex
esses was extra
ted as des
ribed above. We needto employ some sort of �lter in order to dis
riminate against dupli
ates andto remove the most obvious fake ex
esses in 
ommon between S
Ws. We dothis by merging ex
esses from multiple maps by assuming sour
es within 0.2◦(the IBIS/ISGRI angular resolution) from ea
h other are a
tually the same,beginning from the highest signi�
ant ex
ess. The 0.2◦ merge radius mightseem too large; however, this has been 
hosen as a trade-o� between keepingthe number of false positives 
aused by instrumental artefa
ts low, while stillretaining the majority of obje
ts in 
atalogue 3. By de
reasing the merge radiuswe allow for more fake ex
esses 
aused by the imaging system. For examplebright sour
es in the IBIS maps tend to have propeller- like and/or ring-likestru
tures (see Figure 3.9) around them sometimes extending 0.5◦ from thesour
e 
entre, and these are extra
ted with SExtra
tor. By de
reasingthe merge radius we allow for these to be treated as independent 
andidates;however, by in
reasing the radius we allow for the 
andidates to be mergedwith the bright sour
e from whi
h they were 
reated in the �rst pla
e. Wenote that the merging pro
ess must start from the brightest ex
ess �rst and
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andidates in brightness order. This has to be donein order to avoid mismat
hes between real sour
es and fake 
andidates. If, forexample, we had to merge the 
andidates starting randomly from our ex
esslist, we run the risk of merging a fake 
andidate 
reated from a real sour
e withother fakes. This would not be the 
ase if we start with the real 
andidate �rst(brighter than the 
orresponding fakes asso
iated with it), the fakes 
reatedfrom it would be merged into the real one.We also eliminated all ex
esses that appeared only in one mosai
. Thisadditional 
riterion was introdu
ed in order to minimize the number of falsepositives in the �nal 
andidate list and was also the basis of the 
reationof 
atalogue 3, thus no real sour
es are missed by employing this 
ut buta high number of fakes are dis
arded. This is best illustrated in Figure 2.6displaying the number of re
overed obje
ts as a fun
tion of mat
h radius fortwo di�erent methods. On the right an ex
ess was 
onsidered as a 
andidateif it appeared in any map, whilst on the left an ex
ess was 
onsidered as a
andidate if it appears in at least 2 maps. The di�eren
e in re
overed obje
tsis very signi�
ant. We note that the graph on the left keeps in
reasing until
≈0.4◦. This is be
ause, even though there are fewer �propeller� 
andidatesas the sear
h radius in
reases, many more extra-gala
ti
 fake 
andidates areintrodu
ed.The �nal 
oordinates of the 
andidates are then taken from the highestsigni�
an
e ex
ess. Thus, the initial ex
ess list redu
es to 7221 
andidates,whi
h are shown in Figure 2.7. Out of the 421 sour
es identi�ed by Bird et al.[2007℄ only 13 were not re
overed with these �lters. Of these, �ve were observedbefore revolution 46, and therefore are not present in our initial ex
ess list. Theremaining eight were ex
luded due to the 0.2′ merge radius and reside very 
loseto a real sour
e. It is possible that human intervention 
ould re
over them in



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 38Figure 2.6: Graphs displaying the total number of re
overed obje
ts as a fun
-tion of mat
h radius. On the left an ex
ess was 
onsidered as a 
andidate if itappeared in at least two maps, whilst on the right if it appeared in any map.
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the �nal inspe
tion phase given they are so 
lose to real sour
es, however newmethods are being investigated in order to lo
alise them for the produ
tion offuture 
atalogues. We point out that other 
andidate merging methods 
ouldbe developed in the future without a�e
ting ISINA.2.5.3 Feature sele
tion and feature extra
tionWhen the input data set to a 
lassi�
ation algorithm is too large and/or sus-pe
ted to be signi�
antly redundant, as is the 
ase for the IBIS/ISGRI images,then the input data will be transformed into a redu
ed representation set offeatures (also referred to as a feature ve
tor). As a trivial example one fea-ture 
ould be the signi�
an
e value for a parti
ular 
andidate on a parti
ulartimes
ale. This pro
ess is 
alled feature extra
tion, or more generally dimen-sionality redu
tion.



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 39Figure 2.7: Gala
ti
 
entre in the 18-60 keV band as seen by IBIS/ISGRI withthe redu
ed subset of 7221 
andidates overlayed. Candidates tend to follow theartefa
ts 
aused by the dete
tor system. Moreover most 
andidates have beendete
ted using SExtra
tor deliberately to a very low dete
tion threshold, andmost will turn out to be fake. The network will try to learn how to dis
riminatethe false ex
esses from the real ones.
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tion and parameter sele
tion are the most important stepsin building a reliable 
lassi�
ation algorithm. By feature extra
tion we meanprodu
ing a set of variables, extra
ted from the IBIS/ISGRI sky images, whilstby parameter sele
tion we mean 
ombining these variables in order to best rep-resent the obje
ts we are trying to 
lassify. Even the most perfe
t 
lassi�
ationnetwork will not perform well if the wrong parameters are passed to it. This iswhy in a general s
enario one has to answer the question �what are we tryingto 
lassify?� in order to de
ide what features best des
ribe the given 
lasses. Inour 
ase we are trying to dis
riminate between real sour
es and fake 
andidateswithin the IBIS/ISGRI images. Our features need to provide the maximumpossible dis
rimination between real and fake sour
es. A feature that des
ribesa real sour
e is of no use if it des
ribes a fake one in the same way. In fa
tfeatures that only apply to fake sour
es are equally useful. Moreover they alsohave to take into a

ount the nature of the artifa
ts 
aused by the imagingsystem, in our 
ase the ISGRI layer on IBIS and 
oded masks together withthe temporal nature of the gamma-ray sky. Here we explore the methods em-ployed in order to extra
t reliable features to be passed to the network(s) for
lassi�
ation.In the 
ontext of IBIS/ISGRI sour
e identi�
ation we have de
ided to usethe following features from past experien
e in manually 
reating survey 
at-alogues. First, a 2D Gaussian is �tted to all S
Ws where 
andidates mightbe present. We allow the Gaussian to be �tted in a 9 × 9 pixel (40 × 40ar
minutes ) window 
entred at the 
andidate's 
oordinate. The following fea-tures are then extra
ted from the intensity, signi�
an
e, varian
e and residualimages des
ribed in Se
tion 2.2:1. Distan
e between Gaussian 
entre and original 
andidate 
oordinate:Too large deviations in this parameter might suggest we are a
tually
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ture as real sour
es should not move around more thantheir point sour
e lo
ation a

ura
y.2. Fitted Gaussian peak (amplitude): This parameter will help us dis
rim-inate between high and low signi�
an
e dete
tions.3. Lo
al standard deviation: Will help the algorithm to determine the var-ious levels of lo
al signal-to-noise.4. FWHM di�eren
e in two perpendi
ular dire
tions: We would expe
t thisparameter to be very 
lose to 0 for real sour
es as their PSF is meant tobe 
ir
ular.5. FWHM ratio: Similarly to feature 4, we expe
t this feature to be 
loseto 1 for real sour
es6. Signi�
an
e value at 
andidate position: This again is similar to feature2, however this value is read at the 
andidate's position rather than wherethe �tted Gaussian peak value is.7. Intensity value at 
andidate position: Same as feature 6, but for intensity.8. Varian
e at 
andidate position: Noise level indi
ator.9. Residual at 
andidate position: Again a noise level indi
ator mainly re-lated to how the de
onvolution pro
ess performed for the parti
ular S
Win question.Features 1-5 are extra
ted from both intensity and signi�
an
e images in fourenergy ranges. A 
onservative 
ut is employed by ignoring all extra
ted fea-tures where the 
entre of the �tted Gaussian is o�set by more than 2.5 pixel(30 ar
min) from the original 
andidate 
oordinate. In these 
ases the 
andi-date is likely to be not observable in the S
W and the Gaussians were �tted
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kground stru
ture within the 
andidate region. Similarly astronomerswould tend to emply a similar 
ut where any arti
ular 
andidate would beex
luded if the resulting Gaussian �t was substantially o�set from the nominalposition. In addition to the above we also extra
t all nine features from the�nal signi�
an
e mosai
 maps as these will prove useful in identifying the faintpersistent population. Obviously parameters su
h as the FWHM will dependon the kind of proje
tion (gala
ti
 
entre, gala
ti
 anti
entre, north and southpolar) from whi
h the feature is extra
ted. This is not appropriate as thenetwork will then be dis
riminating proje
tions rather than real FWHM. Inorder to deal with the problem we extra
t the features from the proje
tionwhi
h has its 
entre 
losest to the 
andidate position, optimally minimizingthe distortions 
aused by the proje
tions.On average, with large s
atter, ea
h 
andidate has a total of ≈600 S
Wpointings used in the extra
tion pro
ess, yielding more than 10,000 features.The feature extra
tion pro
ess takes just about more than 7 days on 5 1.8GHzCPUs. It is 
lear that for many obje
ts, in parti
ular transients, most of the
≈10,000 features will be redundant and not useful, suggesting that a furtherstep has to be employed in order to further redu
e the dimensionality of ourdata set. The next subse
tion will deal with this pro
ess 
alled feature merging.On
e a set of relevant and reliable parameters have been 
hosen the problembe
omes one of pattern re
ognition. Essentially one has 
reated a multidimen-sional parameter spa
e, where some variables will have a greater dis
riminatorypower than others, whilst on the other hand some 
ombinations of two or morewould be more e�
ient. The problem is that we are not sure whi
h (if any)of the features are best for 
lass dis
rimination and this is why one employs
lassi�
ation networks for pattern re
ognition. We therefore need to redu
eour dataset in a sensible manner and merge our features.
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lassi�
ation network, the nature and behaviour ofthe obje
ts one is trying to 
lassify needs also to be taken into a

ount. In the
ase of the gamma-ray sky this behaviour is very diverse, and one has to de�ne
oherent sub
lasses that any 
lassi�
ation network 
an deal with separately.After all a network whi
h is very well trained at re
ognizing the Crab, a bright,
onstant �ux sour
e, would not ne
essarily perform well at re
ognizing a fainta
tive gala
ti
 nu
leus (AGN). The most obvious separation is that of faintpersistent versus strong persistent. By strong persistent we mean any obje
tswhi
h would be observable in one S
W pointing. On the other hand a faintpersistent sour
e might not be observable in one S
W pointing; however, it'ssignal will still be present, and will show up in the �nal mosai
, for example,after having in
reased the exposure time on that part of the sky. To be morepre
ise for the IBIS/ISGRI dete
tor, a sour
e will be observable in one S
Wpointing if its �ux is greater than ≈10 milliCrab with a ≈2000s exposure.Everything with a lower �ux will need longer exposures to be observable, eventhough its signal will still be present in any one pointing. This is the 
ase formost AGN and 
ata
lysmi
 variables (CVs).Another sour
e behaviour that must be taken into a

ount when dealingwith the gamma ray sky is that of transients. These obje
ts are usually X-ray binaries (XBs) but in
lude a diverse set of obje
ts as well (gamma-rayburst, supernovae). These will vary on a huge range of time-s
ales, from beingobservable in only one S
W to being observable only by mosai
king severalorbits of data. As one might expe
t these are tri
ky to dete
t as it is notknown in advan
e what sort of time-s
ale to expe
t from these obje
ts and inparti
ular when, in a series of pointings, to extra
t features from them. Thisis also a big problem for �human� sear
hes too. If we do not make a mosai




CHAPTER 2. LEARNING IBIS DATA WITH ISINA 44map on the right times
ale, we 
an never hope to �nd the sour
e, unless webias the sear
h and look for known sour
es.From here on we will refer to the de�nitions just des
ribed when referringto our three di�erent sour
e behaviour types: faint persistent, strong persistentand transients. Ea
h one of these sub
lasses needs to be treated independentlywhen training as the time-s
ales and features of ea
h sub
lass vary enormously.We therefore have to tell the network what features are relevant for 
lassi�-
ation of a given sub
lass of sour
es. The danger of this approa
h is that wetrain for spe
i�
 
hara
teristi
s, and the dete
tion of new sour
e types maybe inhibited. Balan
ing this, our sub
lasses are as generi
 as possible, whi
hredu
es the risk with spe
i�
 sub
lasses. In the next three subse
tions we willexplain how the extra
ted features are merged in order to produ
e a set ofmerged features per network together with their respe
tive training sets.Faint persistent setsIn order to deal with the faint persistent population we de
ide to merge the
andidate features (Se
tion 2.5.3) by simply taking the average of, or 
ombina-tions of features (see Table 2.1). After all from our de�nition of faint persistent,all S
W pointings will have a signal, even if a small one. It might o

ur thatthe level of noise in any parti
ular S
W will be mu
h higher than the signal.As des
ribed in Se
tion 2.5.3, features get dis
arded if the Gaussian �t is o�setby more than 2.5 pixels, suggesting we are looking at a �bright� noise stru
ture.In our approa
h 12 features are used whi
h were extra
ted from an S
W leveland averaged as des
ribed above. We also in
luded six features extra
ted fromthe �nal mosai
 level. For a list of used features refer to Table 2.1. It should benoted that these features have been 
hosen to try and mimi
 what an expertastronomer would 
onsider when assessing sour
e 
redibility. For example, in



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 45Table 2.1: Summary of the features used within the three networks as de-s
ribed in Se
tion 2.5.4. Ea
h 
olumn has a Yes for used features and a Nofor dropped features for the parti
ular network in question. TM stands forTransient Matrix.Des
ription Faint Persistent TransientS
W signi�
an
e featuresFitted Gaussian amplitude Yes Yes YesFWHM di�eren
e Yes Yes YesFWHM ratio Yes Yes YesSigni�
an
e / Lo
al ba
kground Yes Yes YesFitted Gaussian peak / Signi�
an
e Yes Yes YesS
W intensity featuresFitted Gaussian peak Yes Yes YesFWHM di�eren
e Yes Yes YesFWHM ratio Yes Yes YesIntensity / Lo
al ba
kground Yes Yes YesFitted Gaussian peak / Intensity Yes Yes YesS
W general featuresVarian
e Yes Yes YesResidual Yes Yes YesMaximum signi�
an
e from TM No No YesSigni�
an
e mosai
 featuresFitted Gaussian peak Yes Yes NoFWHM di�eren
e Yes Yes NoFWHM ratio Yes Yes NoSigni�
an
e Yes Yes NoSigni�
an
e / Lo
al ba
kground Yes Yes NoFitted Gaussian peak / Signi�
an
e Yes Yes Noassessing the Gaussian �t we would look at the di�eren
e between the �ttedGaussian peak and the respe
tive pixel value for a 
andidate sour
e. For good�ts we would expe
t the value to be very 
lose to zero, whilst the value willbe high for bad �ts. Also note the energy bands used. For the faint persistent
lass we de
ided to use three energy ranges: 20-40 keV, 20-100 keV and 18-60keV. This is be
ause most faint persistent obje
ts are AGN and appear in thesebands from experien
e in 
ompiling previous 
atalogues. This might inhibit the
orre
t identi�
ation of CVs, another sub
lass 
onsidered to be faint persistent
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trally di�erent. However, INTEGRAL has not yet dete
ted enoughof these systems for them to be treated independently within the 
ontext of asour
e identi�
ation network. So in summary for ea
h 
andidate in the faintpersistent network we will have 12 + 6 features merged from ea
h used energyband, giving a total of 54 features.Strong persistent setsThe se
ond sub
lass is that of strong persistent obje
ts. This sub
lass has to betreated separately from the previous, as training a network on strong persistentobje
ts will not ne
essarily re
over faint obje
ts (and vi
e versa). The featuresused for this sub
lass are the same as for the faint persistent sub
lass withthe only addition of features from the 17-30 keV band. This is be
ause wethink that strong persistent sour
es, mainly populated by XBs, are dete
tablethrough a wider spe
tral range. Moreover XBs are mu
h brighter and will bedete
ted in more energy bands. However, we realize that both are persistentand that is why we essentially use the same feature time-s
ales for both, but aswe will des
ribe later, the training sets for these will be substantially di�erent.Transient sets and the Transient MatrixThe �nal sub
lass, transients, is the least trivial to train for, as the features areharder to de�ne and show most variations from sour
e to sour
e. For this taskwe introdu
e what we 
all a �transient matrix� (TM) for the sele
tion of S
Wpointings to use. Essentially the aim of this te
hnique is to lo
ate a times
alewhi
h maximizes the signi�
an
e dete
tion for transient 
andidates. This isimportant for feature merging as it will give us the features we need to average(rather than averaging all features as in the previous networks). Suppose theintensity light 
urve I of a parti
ular 
andidate 
ontains N points. Moreover
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h point I(i) in our light 
urve has a varian
e V(i) asso
iated withit. We 
an de�ne weights for ea
h point in the light 
urve w(i) = 1/V(i). Wewill then 
reate an upper diagonal N × N matrix T. For ea
h row i in T we
ompute
T (i, j) =

∑j
k=i I(k)w(k)

√

∑j
k=iw(k)

,∀j ≥ i (2.1)where j denotes the 
olumn value. The best signi�
an
e times
ale is thenidenti�ed by lo
ating the row r and 
olumn 
 with the maximum value inmatrix T. This translates to a subset of the light 
urve I beginning at I(r)and ending at I(
). Having lo
ated the beginning and end of the brightestburst/ex
ess, we 
an take the mean of the features in a similar way as forthe other sub
lasses; however, this time only average those in the intervalbetween pointings r and 
. In addition to the already de�ned 12 features wede
ide to add, for this parti
ular network, the value T(r, 
). This will be anindi
ator of the maximum signi�
an
e a
hievable from the light 
urve. Byde�nition the TM method will always lo
ate a �burst� even if one is not there,even for faint persistent sour
es with no outburst. The method is meant tomaximize signi�
an
e, and as a result it will sele
t all of the light 
urves forfaint persistent sour
es and usually only sele
t a small fra
tion of the light
urve for fake ex
esses. For this reason one might think the method is biased;however, we note that this method is only employed to 
reate an additionaltime-s
ale on whi
h to merge the features; the 
lassi�
ation of the ex
ess willhappen later in the network, whi
h will dis
riminate between the real andfake ex
esses. The length of the outburst is not used as a feature and the
oordinates i and j are not linear in time.In Figures 2.8, 2.9 and 2.10 we show some examples of the transient matrix
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Figure 2.8: TM applied to two transients.4U1901+03
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hnique applied to various di�erent obje
ts. Figure 2.8 presents the te
hniqueapplied to two transients 4U1901+03 and XTE J1550-564, a high mass X-raybinary and a low mass X-ray binary respe
tively. For ea
h obje
t we showin the top left panel the light
urve of the obje
t and on the top right the
orresponding transient matrix. The indi
es of the maximum value in thetransient matrix are re
orded in order to lo
ate the beginning and end of theoutburst. The sele
ted datapoints are shown in red in the light
urve. Inthe bottom left we show the sele
ted outburst only, and for referen
e in thebottom right we again show the whole light
urve, however without any timeinformation (i.e. all data points are equally spa
ed in terms of there indi
es).In both 
ases the transient matrix performs extremely well at sele
ting alldatapoints from the outbursts. The next examples shown in Figure 2.9 displayagain two transients, however this time re
urrent ones. The �rst example,IGR J17464-3213, seems from looking at the light
urve, as if there have beenthree main outbursts with smaller ones in between. This is also evident in thetransient matrix, however we note that only the �rst one was sele
ted by themethod. This is be
ause by de�nition, the te
hnique lo
ates the sequen
e of
onse
utive points that maximises signi�
an
e, whi
h in this 
ase 
omprisesonly the �rst outburst. Also in Figure 2.9 we show the te
hnique appliedto yet another LMXB, Aql X-1. This sour
e also has multiple outbursts asseen in both the light
urve and the transient matrix, however, 
ontrary to theprevious example, the best signi�
an
e here is obtained by using data fromtwo outbursts with a quies
ent stage in the middle. Both examples in Figure2.9 have been 
hosen parti
ularly be
ause of their multiple outburst behaviour.It shows the potential of the transient matrix te
hnique in lo
ating multiplere
urring outbursts, and not just single ones. One 
an then imagine how thismethod might also lead to the dis
overy of �xed times
ales for outbursts in
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ts, and maybe more 
hallenging period determination.Finally in Figure 2.10 we show the method applied to a faint persistentAGN sour
e, IGR J21247+508, and a fake 
andidate. In the 
ase of IGRJ21247+508, the method has sele
ted all of the light 
urve sin
e ea
h data-point 
ontributes to in
rease signi�
an
e. On the other hand the te
hniqueapplied to the fake sour
e only sele
ts a subset of the light
urve. Both of theseare typi
al examples of how the method performs on faint persistent sour
esand fake ones respe
tively. We note that for the AGN, the transient matrixsmoothly in
reases to its maximum at about 37σ, whilst for the fake sour
ethe in
rease to the maximum value is very errati
, and the signi�
an
e rangefor this 
andidate is only up to 6σ.Having understood how our features will be merged we will now des
ribethe 
reation of the testing and training sets before des
ribing the 
lassi�er.2.5.5 Training and Testing setsAnother important issue in building a reliable 
lassi�
ation network is the
hoi
e of reliable training and testing sets. One has to make sure that neitherof these are biased towards a parti
ular type of sub
lass, for example, lots offaint AGN or lots of bright XBs or even worse not having any transients. Thisis one of the main reasons why we produ
e a training set and a 
orresponding
lassi�
ation network for ea
h sub
lass. In this se
tion we des
ribe the methodsemployed to a
hieve this. Re
all that after 
andidate �ltering we end up with7221 
andidates of whi
h 408 are present in 
atalogue 3. We now have tosplit our 
andidate list into training and testing sets. We have two reasonableoptions for produ
ing unbiased sets.1. Use the published se
ond IBIS/ISGRI survey 
atalogue obje
ts [Bird et al.,2007℄, with 209 sour
es for our training together with an extra ≈200 fake
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Figure 2.9: TM applied to two re
urring transients.IGR J17464-3213
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Figure 2.10: TM applied to a faint sour
e and a fake 
andidate.IGR J21247+508
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andidates and then evaluate how the network performs in re
overing thepublished 
atalogue 3 obje
ts.2. Split the sky into two halves in gala
ti
 
oordinates and use one half fortraining and the other for testing. In this 
ase we would use 
atalogue 3as a referen
e for what is a real sour
e.We de
ided to use option (2) as this will in
lude some faint persistent obje
tsonly dete
ted for 
atalogue 3 due to the longer exposure times and greatersky 
overage 
ompared with 
atalogue 2. Moreover, the sour
e types betweenthe two 
atalogues are not all the same (see Figure 2.11). Option (1) will beheavily biased towards dete
ting more luminous sour
es and this will bias thenetwork too. Moreover, by employing option (2) we 
an train the networkfor the future 
reation of 
atalogue 4. More expli
itly we would expe
t infuture to use catn−1 in the training for catn; however, we require a testing setto assess the network performan
e and only option (2) allowed for this in anunbiased fashion. From our initial 7221 
andidate list we now have 220 realsour
es and 3114 fake 
andidates for our training from the western half of thegala
ti
 sky (0◦ < l < 180◦ ) together with 188 real sour
es and 3699 fake
andidates for testing the other half of the sky. We have 
hosen to split thegala
ti
 sky into west/east rather than north/south halves due to a greatersimilarity in the exposure times in the former 
ase. One note of 
aution stillneeds to be addressed: some unknown fra
tion of what a human astronomerwould 
onsider real might a
tually turn out to be fake with future 
ataloguereleases (and vi
e versa). This mis
lassi�
ation will a�e
t the training set andtherefore a�e
t the �nal 
lassi�
ation on the testing set too. Unfortunately one
annot know in advan
e what is real and what is not, therefore the only way todeal with this problem is having multiple iterations of the network to try and
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es in the �rst, se
ond, and third IBIS/ISGRI
atalogues, 
lassi�ed by type

redu
e the number of these false positives and true negatives. We note thatin
luding sour
es that we are 
ertain are real would bias against the faintersour
es. The extra iteration step is not performed at this stage, but will be
onsidered for future 
atalogue releases.2.5.6 The Random Forest AlgorithmAs mentioned before, when building a 
lassi�
ation network one has to takeinto a

ount the nature of sub
lasses present in our general sets. For exampleone would have very limited su

ess in 
orre
tly identifying transients if thetraining set only 
onsists of faint AGN and vi
e versa. We have therefore de-
ided to build three independent random forests with the three sets of featuresdes
ribed in Se
tion 2.5.4. One will be trained only on AGN using the faintpersistent set of features in order to re
over faint persistent obje
ts. A se
ondset of forests will be trained only on XBs using the strong persistent set offeatures to re
over bright obje
ts, and a third set of forests, only trained on



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 55transients, using features sele
ted by the transient matrix method. This shouldthen allow us to re
over in one or more forests all other types of sour
es thatdo not ne
essarily fall into the AGN/XB/transient sub
lasses. We reiteratethat the algorithm is meant for sour
e identi�
ation only, but as shown later,will turn out useful in sour
e 
lassi�
ation as well.2.5.7 How to build a Random ForestClassi�
ation tree methods are a good 
hoi
e when the data mining task is
lassi�
ation or predi
tion. The goal of any single tree is to generate dis
rim-inatory rules that 
an be easily understood. Trees are 
onstru
ted through apro
ess known as binary re
ursive partitioning, an iterative pro
ess of splittingthe data into partitions, and then splitting it up further on ea
h of the bran
hes[Brieman et al., 1984℄. We employ various 
lassi�
ation trees in what are 
alledrandom forests, devised by Brieman et al. [1984℄. Essentially we build many
lassi�
ation trees, ea
h tree 
asting a �vote� on a parti
ular obje
t. We willbuild three sets of random forests using the features and training sets des
ribedpreviously. The �nal judgment as to what parti
ular 
lass the obje
t is in willthen be de
ided by the number of votes it re
eived in ea
h of the three forests.We reiterate that our goal is not a
tually to 
lassify sour
e types, but to max-imize the e�
ien
y for real/fake de
ision making.If our training set 
onsists of M input variables (features), we will ran-domly 
hoose for ea
h tree a value m ≪ M of variables su
h that ea
h treewill be grown using only those m variables. The value of m is held 
onstantfor all trees grown for ea
h sub
lass and is one of only two variable parametersin the network. It is responsible for two things. In
reasing m in
reases the
orrelations between any two trees in the sub
lass forest, thus de
reasing itsre
ognition strength. On the other hand in
reasing m in
reases the strength of



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 56any one individual tree. A tree with a low error rate is a strong 
lassi�er; how-ever, in
reasing the strength of the individual trees in
reases the forest errorrate. Redu
ing m redu
es both the 
orrelation and the strength. Somewherein between is an �optimal� range of m whi
h is usually quite wide. The othervariable parameter with random forests is the number of trees to be grown.This has to be quite large in order to be able to use all M variables throughbootstrapping. There is no limit on how many trees we build in the forest asthe algorithm does not over�t [Brieman et al., 1984℄.There are several reasons why random forests were used for our 
lassi�
a-tion purpose. When building the network one of the main 
on
erns was withdealing with very large data sets. Even though he IBIS/ISGRI data set isnot so large (yet!), the method presented here 
an deal with mu
h larger sets.Further reasons are listed below.
• It 
an handle thousands of input variables.
• Generated forests 
an be saved for future use on other data.
• These 
apabilities 
an be extended to unlabeled data, leading to unsu-pervised 
lustering, data views and outlier dete
tion.
• It has the potential to give estimates of what variables are important inthe 
lassi�
ation.On
e a random forest has been built for a parti
ular sub
lass of obje
ts we
an 
lassify the testing set by asking how many trees in the forest will �vote�for that parti
ular ex
ess. Using this voting s
heme allows us to have a feel forhow 
on�dent the random forest is at assessing a parti
ular 
andidate (as willbe shown in the results se
tion). If any parti
ular ex
ess gets enough votes
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onsidered as a good 
andidate worthinspe
ting.TrainingAs mentioned before, our aim is to build three independent random forests inorder to identify ea
h sub
lass of obje
ts separately. Re
all that we have 220real sour
es and 3114 ex
esses available for training (one half of the gala
ti
sky). To build ea
h one of the three training sets we use the 
lassi�
ationtypes of the real obje
ts published in the IBIS/ISGRI third 
atalogue. In thefaint persistent 
ase we use the 73 AGN in the western gala
ti
 hemispheretogether with 3114 fake ex
esses for our training. We 
annot use all the fake
andidates for a single tree or else it would bias our 
lassi�
ation. Instead, forea
h tree grown in the forest, we keep the same training set of 73 AGN for ourreal sour
es and randomly pi
k 73 fake ex
esses from our pool of 3114. Thisensures that no individual tree is biased towards re
ognising too many fakeex
esses, while still in
orporating a wide range of them. By having this �pool�of fake ex
esses to 
hoose from, we essentially ensure no two grown trees are thesame, avoiding over�tting. As mentioned in Se
tion 2.5.7, the only variablesin our random forests are the values m and the number of trees. Thus for ea
havailable set of features for a parti
ular energy band we will 
hoose a value mtogether with the number of trees to grow. For example in the faint persistentnetwork we mentioned already the use of three energy bands and two sets offeatures per energy band (S
W average merging and �nal mosai
 features).We have 
hosen the number of trees per set to be 200 in this 
ase, yielding arandom forest with 3 × 2 × 200 = 1200 trees. The value of m (the randomsubset of features used per tree) was set to 8 for the average features and set to3 for the mosai
 features. These values were a
hieved through trial and error



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 58Table 2.2: Summary of the number of trees used within ISINA.Faint Strong TransientNumber of trees 200 200 500Number of energy ranges 3 4 4Number of sets of features 2 2 1Total number of trees 1200 1600 2000by maximizing the a

ura
y of the �nal output given by the testing set.In the XB 
ase we use 46 XBs, again from the western gala
ti
 hemisphereand use the same te
hnique as for AGN in dealing with the fake ex
ess trainingset. In this 
ase we 
hose the same value for m and number of trees; however,for this network we de
ided to in
lude one extra energy band, yielding 4 × 2
× 200 = 1600 trees. Similarly for transients we use 32 transients for training.This network however was 
hosen to have a value m = 7 and the number oftrees grown per set was set to 500. This might seem very large but was usedin order to have more bootstrapping from the fake 
andidates given the lownumber of transients in the training set. This yields 4 × 1 × 500 = 2000 trees.We point the reader to Table 2.2 for a table showing the parameters used.TestingRe
all that in our testing set we have 3887 
andidates, of whi
h 3699 arefake ex
esses and 188 real sour
es. In this se
tion we will inspe
t how these
andidates perform within the three independent networks. Note that all threenetworks had exa
tly the same testing set. In order to assess the re
overyperforman
e of ea
h of the networks we will look at how many trees voted fora parti
ular sour
e within the forest. If a 
andidate a
hieves 50 per 
ent ormore of the votes then it will be 
onsidered as �re
overed�. For 
larity, theanalysis des
ribed here is illustrated in the �ow diagram in Figure 2.12, whi
hin
ludes the number of 
andidates in both training and testing sets for the



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 59three networks.The testing set for the faint persistent network 
ontained 56 AGN of whi
h52 were re
overed with the 50 per
ent 
ut. The missing four AGN weremarginally below the re
overy threshold in the faint persistent network. More-over, by de�nition this is the network that re
overs most obje
ts. In fa
t a50 per 
ent threshold yields 368 
andidates out of the initial 3887. A lot ofthese will be strong persistent sour
es; however, most will be unidenti�ed faintpersistent obje
ts.The strong persistent network on the other hand performed slightly betterin that it a
hived a lower ratio of false positives. This however is not surprisingas bright sour
es are more easily dis
riminated against faint ones. Out of 64XBs in the testing set, only three were not re
overed within this network;however, as we will dis
uss later, these get re
overed in the faint persistentnetwork. The number of 
andidates to inspe
t with the 50 per 
ent thresholdis 140, approximately half of that produ
ed by the faint persistent network.Finally, the network produ
ing the lowest 
andidate list to inspe
t is thetransient network. This yields 78 
andidates to inspe
t with the usual thresh-old. Out of 35 transients in our testing set, six were not re
overed in thisnetwork. Of these, two were re
overed in the faint persistent network.The �nal box in Figure 2.12 shows the break down of missed obje
ts.Clearly most are unidenti�ed; however, CVs are also poorly re
overed. Aswill be dis
ussed later, this 
an easily be 
aused by not training a network forthese spe
i�
 sour
e types, or they are some of the faintest and/or narrowestspe
tral range.
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Figure 2.12: Graphi
al �ow diagram of the steps involved in the 
lassi�
ationnetwork from the extra
tion of the initial sour
e 
andidate list to the �nal re-sult. SExtra
tor is run on all revolutions, revolution sequen
es and �nal mosai
images. A 0.2◦ merge radius is applied redu
ing the list to 7221 
andidates.Features are extra
ted for these on an S
W level and on the �nal mosai
. Thefeatures are then merged in three di�erent ways and passed to three di�erentnetworks a

ordingly for faint and strong persistent and transients sour
es. Inea
h of the network boxes we display the number of obje
ts in the trainingand testing sets. In bra
kets we have the number of obje
ts from the testingset in the respe
tive sub
lass. Below ea
h network box we show the result onthe testing set using a 50% 
ut on the tree votes. The �nal result box alsoapplies on the testing set with a 50% global 
ut. There we also show the missedobje
ts and their break down.
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tion will explore the results from ISINA when applied to the testingset. We �rst des
ribe a few individual examples whi
h will also show how someof the metadata produ
ed by ISINA 
an be a useful aid in the �nal inspe
tionphase and then move on to des
ribe the global properties of the whole sampleand its e�
ien
y.2.6.1 Individual examplesWhile Se
tion 2.5.7 des
ribed the performan
e of the network in terms of re-trieval of 
atalogue 3 sour
es, here we try to quantify the network performan
ein more detail. First we show in Figure 2.13 some examples taken from di�er-ent sour
e 
lass 
ategories to illustrate some of the outputs from ISINA. Forea
h 
andidate we show the vote per
entage obtained in the three networks.Note that a 
andidate is 
onsidered re
overed by ISINA if it obtains more than50% votes in any network.The �rst example is the faint persistent AGN IGR J18259-0706. This isa new sour
e dete
ted in the third IBIS/ISGRI 
atalogue with a maximumdete
tion signi�
an
e of ≈5.1σ in the 18-60 keV band and a relatively high1570 ks exposure time. This puts it �rmly in the faint persistent 
ategory.The blue 
urve in Figure 2.13 shows the per
entage of votes as re
orded by thethree networks. It 
an 
learly be seen that this parti
ular example re
eives agreater �
on�den
e� from the faint persistent network, where the 
urve peaksat 90 per 
ent. This will be the sour
e's �global� vote as explained later on inthis se
tion. We note that at this point the network 
an also be interpreted asgiving information about 
lass 
hara
teristi
s and not just identi�
ation. Inthis parti
ular example it is 
lear that IGR J18259-0706 is 
lassi�ed as a faint
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entage obtained by four real sour
es within the threedi�erent networks. Bla
k dot-dashed line: LMXB GX 1+4, blue dotted line:AGN IGR J18259-0706, red dashed line: LMXB 4U 1745-203, green solid line:CV FO Aqr.
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persistent sour
e, as the network whi
h uses all the information available hasa
hieved the largest number of votes: the faint persistent network.The next example 
hosen is the strong persistent low-mass X-ray binary(LMXB) GX 1+4 shown in bla
k in Figure 2.13. The system was dete
tedin the third 
atalogue with a maximum signi�
an
e of 544σ in the 18-60 keV�nal mosai
. Note the voting per
entage di�eren
e between strong and faintpersistent and transient network is very small. This is the 
ase for most strongsour
es but, as observed in the previous example, not for the faint ones. In fa
treally strong sour
es tend to have high vote per
entages in all three networksessentially be
ause they are dete
table on any time-s
ale and in all energybands. Realisti
ally, we only need to identify persistent versus transient. In-formation on how bright they are is best obtained with other methods.Another example 
hosen is the LMXB 4U 1745-203. The sour
e was de-te
ted in the third 
atalogue at a signi�
an
e of 20.7σ in the 20-40 keV band



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 63Figure 2.14: Graphi
al view of the TM method applied for 4U 1745-203.
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mosai
 for revolution 120. Again, just by inspe
ting its 
orresponding red
urve in Figure 2.13, we 
an get an idea of what type of obje
t we are dealingwith had we not known in advan
e. The system obtains the highest s
ore inthe transient network with >80 per 
ent. For this parti
ular example we alsoshow its transient matrix in Figure 2.14. It 
an be seen that the outburst has arelatively low dete
tion signi�
an
e in any individual pointing; however, fromthe result of the transient matrix, the maximum signi�
an
e obtained in thesele
ted times
ale is 22.4σ. The sour
e was in outburst for ≈3 days, rea
hing a�ux of ≈115 mCrab. The di�eren
e between the two dete
tion signi�
an
es isdue to the fa
t that the transient matrix has lo
alized as an outburst a subsetof the pointings of revolution 120 instead of using them all.The �nal example 
hosen is the CV F0 Aqr, another weak new dete
tion in
atalogue 3. The sour
e obtained a signi�
an
e of 4.8σ in the 20-40 keV bandfor a 85-ks exposure. This parti
ular 
andidate did not a
hieve enough votes
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luded in our �re
overed� list; however, it appears from the per
entagesobtained in the three networks that this is a faint persistent sour
e. This kindof analysis 
an help identifying new sour
es even if the vote 
ount has notpassed the identi�
ation threshold.2.6.2 Global resultsWe will now take a look at the global results from ISINA on the testing set.Figure 2.15 shows the 
umulative distribution fun
tions obtained from thethree networks on the testing set. On the x-axis we have the number of votesfor the network in 
onsideration. A high vote 
ount implies 
andidates are�real� a

ording to the network, a low vote 
ount rate implies the opposite.As 
an be seen all three networks perform relatively well in re
overing theirrespe
tive �real� obje
ts; however, 
ontamination from the fake 
andidates isstill present. This 
an be noted in the worst 
ase s
enario for the faint persistentnetwork. This is somewhat expe
ted as the training set for this network is byde�nition highly populated by low signi�
an
e sour
es. However, the transientnetwork has performed quite well in re
overing the majority of real sour
eswhilst ex
luding fake ones mu
h more easily.In order to assess the overall network performan
e and 
ompile a 
andidate
atalogue produ
ed produ
ed by ISINA we have to merge the results from thethree networks. This is simply done by transforming the vote number for ea
hnetwork into per
entages. On
e this is done we 
an merge the results as afun
tion of vote per
entage as shown in Figure 2.16. This time the blue linerepresents any of the initial 188 obje
ts found in 
atalogue 3 (testing set). Forany 
andidate, the highest per
entage in any of the three networks is used asa �global� per
entage.From visual inspe
tion of Figure 2.16 one 
an see that any obje
t with 90%
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Figure 2.15: Cumulative distribution fun
tions for 
andidates within the threenetworks as a fun
tion of number of votes obtained. Blue solid line show-ing 
orresponding sub
lass obje
ts present in the third IBIS/ISGRI 
atalogue.Green dashed lines show fake 
andidates. In order to estimate performan
ewe 
an draw a line through the graphs at half the total number of votes andinfer the number of re
overed obje
ts. For example in the faint persistent 
ase,drawing a line at 600 votes would re
over over 90% of the real AGNs ant the
ost of in
luding 10% of the fake 
andidate population.
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ertainly be real. This in
ludes ≈ 50% ofthe 188 real sour
es in the testing set. We 
an now query the network for thesake of redu
ing the amount of visual inspe
tion for the 
ompilation of a new
atalogue. For example, if we only visually inspe
t and assess all 
andidatesbetween 50% and 90% in Figure 2.16, this yields 284 obje
ts (in addition tothe 92 already a

epted with > 90% votes). From these we have 73 belongingto the published 
atalogue 3. The remaining 23 obje
ts that have less than
50% of the votes will be tri
ky to lo
ate with this method, as below 50% ofthe votes the number of fake 
andidates grows very rapidly. We note howeverthat most of these 23 obje
ts are very low signi�
an
e, unidenti�ed, sour
es,whi
h might even turn out to be fake ex
esses in future 
atalogue releases. Onthe other hand we also note that some of the fake ex
esses with high vote ratesmight turn out to be real upon further investigation.2.7 Dis
ussionsWe have developed a reliable algorithm to aid the produ
tion of future IBIS/ISGRIgamma-ray survey 
atalogues. The algorithm will help produ
e less subje
tive
atalogues, unbiased by human intervention. Meant for sour
e identi�
ation,ISINA has also turned out to be useful in dis
riminating sour
e types. We haveshown how to automate the task of sele
ting and redu
ing a set of 
andidatesfrom IBIS/ISGRI images. The distribution of re
overed obje
ts, sorted bytype, together with the obje
ts published in the third 
atalogue present in thetesting set are shown in Figure 2.17. It is 
lear that the majority of obje
ts arere
overed 
orre
tly with a 50% global vote threshold. It is interesting to notethat the only populations to su�er from a substantial de
rease in re
overedobje
ts are the CVs and the unknown sour
e types. The drop in the number of



CHAPTER 2. LEARNING IBIS DATA WITH ISINA 67Figure 2.16: Distribution of re
overed obje
ts present in the third IBIS/ISGRI
atalogue (blue solid line) and re
overed obje
ts not present in the latest 
at-alogue (green dashed line) as a fun
tion of global vote per
entage.
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an easily be explained by the fa
t that most of the non-re
overed ones liein 
rowded regions, where the systemati
 noise is greatest. Moreover we pointout that, as later mentioned in Chapter 4, these obje
ts have great spe
traldi�eren
es between them, in
luding some very soft sour
es. However, missingobje
ts in these regions does not 
ause a big problem for the 
reation of future
atalogues. This is be
ause 
rowded regions will be the most inspe
ted ones,so that if the network does not re
over 
ertain obje
ts, human interventionwill. The other population to have a signi�
ant drop in the number of re-
overed obje
ts is the unknown 
ategory whi
h is a bit less trivial to assess.This is be
ause, by de�nition, the only real way to determine their nature isto have longer exposure times for the regions where these are present. Wealso point out that both the CV population and the unknown one was notpart of our training set, whi
h might also explain the relatively low re
overedrate for these. This may also have an impa
t in our �nal result as the threenetworks have now spe
ialized in re
overing their sub
lass of obje
ts. One lastobservation of the general behaviour of the network on the testing set is thatdespite the fa
t that the remaining 
lasses perform well within the network,it has to be pointed out that our training and testing sets might have mis-
lassi�ed obje
ts within them (false positives and true negatives). Given thenature of the 
lassi�
ation task, the training set will always be biased towardsthis. However, given the extremely fast data growth the problem 
an only getbetter, and these small dis
repan
ies will systemati
ally redu
e.It has to be pointed out the potential of su
h a network for exploratorydata analysis in other wavelengths. The networks des
ribed here 
an be easilytuned to deal with di�erent images, taken from di�erent observatories. Thefeatures de�ned are quite generi
, and anyway may be adjusted a

ording tothe new data set, probably su�ering from di�erent systemati
 e�e
ts than the
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es in the testing set 
lassi�ed by type (red) andre
overed obje
ts using a 50% global vote 
ut (blue). Note that obje
ts in thetransient 
ategory are also present in their respe
tive 
lass types.
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Chapter 3
Building Catalogue 4
�The real danger is not that 
omputers will begin to think like men, but thatmen will begin to think like 
omputers.�� Sydney J. HarrisIn this 
hapter we will des
ribe the 
reation of the latest IBIS/ISGRI 
ata-logue release, 
atalogue 4. The steps involved are similar to the produ
tionof the previous 
atalogue 3, however with some di�eren
es. In parti
ular tran-sient dete
tion is addressed in a more 
omplete way sin
e the larger time-spanof the dataset has grown dramati
ally. Firstly we des
ribe the mosai
 
reationstage whi
h, similarly to 
atalogue 3, in
ludes three times
ales: revolution,revolution sequen
e and all-ar
hive. Additionally a new times
ale to identifytransient sour
es has been introdu
ed.This 
hapter is layed out into two main se
tions. One des
ribing the �hu-man� way of 
onstru
ting 
atalogue 4 and one des
ribing the �ma
hine� wayusing ISINA. In the last se
tions will be some 
omparisons between the result-ing 
atalogues after using both methods. We point out however, that 
ontraryto 
hapter 2, where a testing set was available for us to assess the ISINA per-forman
e, here we do not have su
h a set. As a result a 
lear examination of70
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e is not possible. Nonetheless we examine the pitfalls ofboth methods and try and suggest future improvements for ISINA.3.1 Mosai
 Constru
tionThis se
tion will des
ribe how mosai
s for the IBIS images have been 
on-stru
ted during the produ
tion of 
atalogue 4. These mosai
s will also be usedby ISINA as we will see later on and are therefore 
ommon to both methods,the �human� method and the �ma
hine� method.First of all we need to dis
ard a subset of S
W with poor image quality. This
an be 
aused, for example, by a solar �are event during the observations. Thisis done by using the image rms as an indi
ator of image quality. Filtering istherefore applied based on the image rms, su
h that the rms should not ex
eed
2σ above the mean image rms for the whole dataset. Moreover data taken in�staring mode�, even if pro
essed, are not used in the 
onstru
tion of the �nalsky mosai
 image. After removal of high-rms and staring data, approximately36,000 S
Ws remain in the dataset, totaling ∼ 70Ms of exposure time.The sele
ted S
Ws are then mosai
ked using a proprietary tool developedin Southampton, optimised to 
reate all-sky gala
ti
 maps based on a largenumber of input S
Ws. Mosai
s were 
onstru
ted in �ve energy bands sim-ilarly to the 
atalogue 3 mosai
s and four proje
tions. Four times
ales wereemployed for the mosai
 
onstru
tion. Firstly maps were 
reated for ea
hsatellite revolution (approximately 3 days). This times
ale is optimised todete
t sour
es a
tive on a times
ale of one day. Se
ondly, we identi�ed 32sequen
es of 
onse
utive revolutions whi
h had similar pointings. These revo-lution sequen
es 
ould therefore be best analysed as a single observation, andprovide sensitivity for sour
es on longer times
ales than revolutions (∼weeks).
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es will be best dete
ted in an all-ar
hive a

umu-lation of available high-quality data. However the problem of high exposuretime and long timebase spanned by this latest dataset has worsened the dete
-tion of transient sour
es. This last sear
h method has been optimised for thedete
tion of persistent �ux sour
es, therefore a highly variable sour
e whi
hwould be 
learly dete
ted during outburst will have an undete
tably low �uxwhen analysing the full dataset. For this reason we sear
hed for the optimumdete
tion times
ale for known sour
es or 
andidate sour
es. This is a newlyintrodu
ed times
ale for whi
h maps have only been 
reated with this latest
atalogue 4 data. This new times
ale sear
h is based on a new metri
 de�nedin Southampton, namely the bursti
ity index. This is de�ned by 
reating alight 
urve for ea
h 
andidate sour
e in the 18-60 keV band, and then s
an-ning a variable-sized time window along ea
h light 
urve. The window lengthis varied from 0.5 days to the length of the whole light 
urve, and all thepoints within the time window are in
luded in the analysis. The duration andrange of times over whi
h the sour
e signi�
an
e is maximised is re
orded.The bursti
ity index is then de�ned to be the ratio of the maximum re
ordedsigni�
an
e over the signi�
an
e of the whole light
urve. Thus a bursti
ity of1 de�nes a persistent sour
e, whilst a bursti
ity greater than 1 implies thatthe signi�
an
e of a sour
e 
an be in
reased by omitting some observationsfrom the analysis, presumably when the sour
e is in quies
en
e. Sour
es witha high bursti
ity are then sele
ted and mosai
s are spe
i�
ally 
reated usingthe subset of pointings sele
ted using the bursti
ity method. This will allowfaster transient sour
es to be identi�ed.



CHAPTER 3. BUILDING CATALOGUE 4 733.2 The Human wayWe now move on in des
ribing the pro
ess by whi
h the latest 
atalogue 4 hasbeen 
onstru
ted. This has been a long job for the whole IBIS survey team,and here we only try and give a brief overview. Firstly we will see how a listof potential 
andidates is extra
ted from all the mosai
 maps des
ribed in theprevious se
tion. Then the problem of de
iding whi
h 
andidates are real andwhi
h ones are fakes is addressed. Similarly to ISINA, where many trees voteon a parti
ular 
andidate to de
ide its 
lassi�
ation, many astronomers vote onea
h 
andidate to assess its reliability. The only main di�eren
e in the votings
heme is that all astronomers have to agree on a 
andidate sour
e before it is
onsidered as real (although all sour
es with a mixed vote are reviewed a se
ondtime), whilst in the 
ase of ISINA we only require more than 50% of the treesto have the same vote. Having des
ribed the 
atalogue produ
tion pro
edurewe will review the main results from the 
atalogue, and brie�y 
ompare thisto the previous 
atalogue releases.3.2.1 Sele
ting 
andidatesSour
e sear
hing has been performed initially on the mosai
s des
ribed in Se
-tion 3.1. In total 11,500 maps were 
reated at this stage. All mosai
s weresear
hed for sour
es using two methods:
• the SExtra
tor 2.5 software [Bertin and Arnouts, 1996℄. The sour
epositions measured by SExtra
tor represent the 
entroid of the sour
e
al
ulated by taking the �rst order moments of the sour
e pro�le (referredto by SExtra
tor as the bary
entre method) Sour
e dete
tability islimited at the faintest levels by ba
kground noise and 
an be improvedby the appli
ation of a linear �ltering of the data. In addition sour
e
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onfusion in 
rowded regions 
an be minimised by the appli
ation of abandpass �lter. To this end, the mexhat bandpass �lter is used in theSExtra
tor software.
• a proprietary �peak�nd� tool developed in Southampton whi
h employs abasi
 iterative removal of sour
es te
hnique, 
ombined with an assessmentof the lo
al ba
kground rms to redu
e the false dete
tion of sour
es inareas of the map with high systemati
 noise stru
tures (see Se
tion 2.2),mainly in 
rowded regions and around the brightest sour
es.A list of 
andidate sour
es was 
onstru
ted by merging the > 4σ ex
ess listfrom ea
h mosai
, using a merge radius of 0.1◦1. A sour
e had to be dete
tedby both methods in order to be in
luded in the 
andidate list. Moreover man-ual inspe
tion has been performed on the rare o

asions where SExtra
torfails due to the 
lose proximity of two or more sour
es, and any additional 
an-didates found were in
luded. Also all previously identi�ed INTEGRAL sour
eswere added to the list of 
andidates. This resulted in 1266 ex
essesw whi
hwere passed on to the next stage of the analysis.3.2.2 De
iding on 
andidatesAt this stage a list of ex
esses has been 
reated and we need to dis
riminatebetween the real and the fake ex
ess and a number of steps are performed inorder to minimise the possibility of false 
atalogue entries. These methods aredesigned to take into a

ount both the statisti
al �u
tuations (whi
h we 
anto some extent assess) in the maps and systemati
 e�e
ts present in the maps,whi
h are mu
h harder to quantify.Firstly, ea
h sour
e is manually inspe
ted by a number of people (in
luding1Dis
ussed in more depth in the next se
tion.
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ed with working on IBIS/ISGRI images. These inspe
tions
over aspe
ts su
h as PSF shape, 
onsisten
y a
ross multiple energy bandsand the signi�
an
e of the sour
e relative to the lo
al noise levels in the maps,similarly to the features de�ned for ISINA. We require an unanimous agree-ment among many viewers that the 
andidate ex
ess is a true sour
e, a very
onservative approa
h, but one designed to minimise as mu
h as possible thefalse dete
tion rate. For referen
e with ISINA, this stage takes approximately8 months to 
omplete.Moreover, a �ux-exposure analysis has been 
arried out in whi
h ea
h de-te
ted �ux has been 
ompared to the predi
ted minimum dete
table �ux forthe exposure of the 
andidate in question. Sour
es for whi
h the mean �uxis mu
h lower than that whi
h 
ould reasonably be dete
ted in a 
orrespond-ing times
ale may have been boosted by systemati
 e�e
ts, or may just be anoutlier in the statisti
al �u
tuations of the maps. In either 
ase the ex
ess
andidate is reje
ted.The last step in 
reating 
atalogue 4 is based on the dete
tion signi�
an
e,similarly to the produ
tion of 
atalogue 3. To this end, a histogram of theindividual pixel signi�
an
es produ
ed for ea
h of the mosai
s. One of thesehistograms is displayed in Figure 3.1. A Gaussian �t with mean 0 and standarddeviation of 1 is found to be a good representation of the noise distribution.Looking at the pixel signi�
an
e distribution a
ross all mosai
s we 
an 
on�-dently 
on
lude that << 1% of the pixels found at signi�
an
es above 4.8σ areprodu
ed by the statisti
al noise distribution. Furthermore, in the 18-60 keVall-sky mosai
, of the pixels found between 4.5σ-4.8σ, < 6% originate from thestatisti
al noise distribution. However we point out that these limits are basedon the global properties of the mosai
s and maps 
ontaining systemati
 noise,lo
alised to spe
i�
 regions, and owning the same 
hara
teristi
s as the real
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an
es found in the 18-60keV 
atalogue 4 all-sky mosai
. The solid line represents the data; the dashedline represents a a Gaussian �t to the noise distribution. Image taken fromBird et al. [2009℄.

sour
e population.3.2.3 The Final Human CatalogueThe �nal IBIS/ISGRI 
atalogue 
ontains in total 723 sour
es. Figures 3.2 and3.3 show the evolution of the numbers of sour
es through the 4 IBIS/ISGRI
atalogs. A 
ontinuous in
rease from the �rst IBIS survey release 
an be noted,with parti
ular emphasis on extragala
ti
 sour
es, rising from only 4% of thedete
ted sour
es in 2005 to 35% in the latest sour
e list (see Figure 3.3). Webelieve this number will 
ontinue to rise on
e follow up of the 
urrently uniden-ti�ed sour
es 
an be initiated. Clearly the sour
es dominating the 
ataloguesare strongly linked to the sky 
overage. INTEGRAL has spent the �rst 4 yearsmore on the plane and in parti
ular in the region of the Gala
ti
 Bulge whilemore re
ently the high latitude sky has been exposed more thoroughly.
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Figure 3.2: Evolution of sour
e type and number through the 4 IBIS/ISGRI
atalogues produ
ed to date. Image taken from Bird et al. [2009℄.

Figure 3.3: Classi�
ations of sour
es in the 4 IBIS/ISGRI 
atalogues produ
edto date. Image taken from Bird et al. [2009℄.
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tion as fun
tion of minimum dete
table �ux.
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The minimum dete
table �ux of the survey 
an be estimated as a fun
tionof the sky position (Figure 3.4) based on the a

umulated exposures. Dueto the non-uniform exposures 
overed by the mission, the sensitivity of thesurvey is still strongly biased. In parti
ular the region of the Gala
ti
 Plane(≈ 70% of the sky) is 
overed to better than 1mCrab sensitivity, while 90% ofthe extragala
ti
 sky is now 
overed at the 5mCrab level.There are now 331 new sour
es when 
ompared to the third 
atalog. Ofthese, ≈ 120 are asso
iated with extragala
ti
 sour
es, while only≈ 25 are asso-
iated with known Gala
ti
 sour
es, and the remainder are so far unidenti�ed.This 
ould mean that INTEGRAL has rea
hed its sensitivity limits, and is nowprimarily dete
ting extragala
ti
 obje
ts. However, the sky distribution of newsour
es (Figure 3.5) shows a rather di�erent pi
ture. Superimposing the newsour
es onto the delta exposure (i.e. the in
rease in exposure sin
e the third
atalog) shows how the new dete
tions follow the new exposures, still 
ompris-ing a very signi�
ant Gala
ti
 
omponent. We are therefore for
ed to 
on
lude,that while the extragala
ti
 observations are at a sensitivity limit where IBIS
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ting known obje
ts, the observations near the Gala
ti
 Planehave rea
hed a level of depth where previous X-ray observations are no longeralways able to provide asso
iations for the new sour
es. Combined with thevariability of the Gala
ti
 sour
es, this is a 
lear indi
ation that further obser-vations of the Galaxy will 
ontinue to un
over new sour
es, and follow-up ofthese new sour
es is of 
riti
al importan
e. However, many of the new sour
esfound in the Gala
ti
 Plane by INTEGRAL have been identi�ed as AGN, sothis separation of Gala
ti
 and extra-gala
ti
 sour
es is not a straightforwardone.From this 
atalog, we 
an state that the dete
tions above 4.8σ are drawnfrom an ensemble of maps, all of whi
h show statisti
al quality that indi
atesmu
h less than 1% of the ex
esses above that level will be false dete
tions. Ofthe 40 sour
es below 4.8σ, half are asso
iated with known X-ray emitters, andthe estimated ≈ 6% false dete
tion rate should result in a total number of falsedete
tions in this 
atalog of no more 10, with the vast majority drawn fromthe sour
es dete
ted below 4.8σ.3.3 The Ma
hine wayHere we explore how ISINA, presented in Chapter 2, 
an be used for the pro-du
tion of future 
atalogue releases. We will give an overview of the requiredinputs for the algorithm, train it based on 
atalogue 3 (whole sky), and pro-du
e a list of 
andidates. Throughout this se
tion we will not use any of theinformation a

umulated during the visual 
onstru
tion of 
atalogue 4, as thismay bias our training. The 
omparison between the 
andidate list 
reatedvisually and that produ
ed by ISINA will then be explored in the next se
tion.
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Figure 3.5: Map of in
remental exposure sin
e the third 
atalog, showing thelo
ations of the new sour
es found. Key: Green 
ir
les = AGN; Cyan squares= HMXB; Magenta diamonds = LMXB; Yellow boxes = CVs; Red 
rosses =Unknown.
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at4The �rst task in running ISINA is that of lo
ating 
andidates from the IBISmaps. Re
all from the introdu
tion to this Chapter that for 
atalogue 4, simi-larly to 
atalogue 3, mosai
s were 
reated for revolutions, revolution sequen
es,and all data. Additionally burstmaps have been 
reated in order to best max-imise the 
han
es of lo
ating transients.We begin our 
andidate sear
hing pro
edure by running SExtra
tor onall 
reated mosai
s. This yielded an initial list of 141,956 ex
esses. Similarly toChapter 2, this list will 
ontain many dupli
ates, and far more fake 
andidates.We redu
e this list in the same way as previously mentioned (see se
tion 2.5.2),by ex
luding all ex
esses only present in one map. However now, given theexperien
e on applying ISINA to 
atalogue 3, we have de
ided to 
hange our
hoi
e on the merge radius, from 0.2◦ to 0.1◦. This will allow us to begin withfewer 
andidates (see Figure 2.6), however mildly in
reasing the number of fakesour
es asso
iated with �propeller�-like stru
tures. The advantage of redu
ingthe merge radius will be explored in more detail later. From the �nal stage ofISINA, where some visual inspe
tion is required anyway, these fake stru
tures
an easily be lo
alised and removed, sin
e they are so 
lose to real sour
es.The initial ex
ess list thus redu
es to 9931 
andidates, whi
h in
ludes all of
atalogue 3 obje
ts, separated more than 0.1◦ apart, and is shown in Figure3.6.The next stage is that of extra
ting the features and merging them appro-priately for all 
andidates. All that is required for this stage is the positions of
andidates taken from above. From those positions all parameters from Table2.1 are 
reated in about 7 days on 5 CPUs (1.8GHz). Now some user inputis required in order to 
reate 3 reliable training sets: faint persistent, strongpersistent and transient. For the running of this parti
ular instan
e of ISINA



CHAPTER 3. BUILDING CATALOGUE 4 82we have de
ided to 
reate our training sets based on the 
lass tags produ
edduring the produ
tion of 
atalogue 3. So, for training the faint persistent net-work we will use 129 AGNs, for the strong persistent, 110 XBs, and for thetransient, 67 transients. At the same time we lo
ated, from a pool of fake9931 
andidates, 1338 whi
h were 
onsidered as fakes during the 
atalogue 3ISINA run (again using a 0.1◦ merge radius). These fake 
andidates were alltagged by ISINA as fakes during the 
atalogue 3 run, and purposely do not
ontain any 
atalogue 3 real obje
ts. Figure 3.6 displays the 18-16 keV band�nal mosai
 with our training set. In green we have our real 
andidates, whilstin red the sele
ted fakes.Having 
reated our training sets we are ready to run the 
lassi�er, againin a similar fashion to Chapter 2. This takes about an hour per forest, 
re-ating ≈2000 trees ea
h. The next se
tion will explore the results from ISINA
ompared to the results obtained through visual inspe
tion.3.4 Comparing resultsIn Chapter 2, Se
tion 2.6, after having trained ISINA on half of the Gala
ti
sky, we were able to easily evaluate our results against the testing set 
omprisedof obje
ts on the other half of the Gala
ti
 sky. This was only possible be
ausewe were able to obtain a homogeneous testing set, with similar 
hara
teristi
sto the training set. In this Chapter however, we only have a reliable trainingset 
omprised of obje
ts identi�ed during the produ
tion of 
atalogue 3. Thisleaves us with no reliable testing set, sin
e no 
atalogue for 
atalogue 4 hasbeen 
reated yet. However, we 
an still 
ompare the ISINA results with thoseobtained through visual inspe
tion. We point out that none of the two meth-ods 
an, at this point, give the perfe
t answer, espe
ially for low signi�
an
e
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Figure 3.6: 18-60 keV band �nal mosai
 
entered on the Gala
ti
 
entre. TheISINA training set is 
ir
led in green for real 
andidates and in red for fakes.
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es.We believe the best way to 
ompare the results, given the fa
t that no�
orre
t� answer exists, is that of produ
ing logN - logS distributions for thedi�erent methods, and see where they do not agree. This will give us insightinto the kind of problems en
ountered using ISINA or visual inspe
tion. Fig-ure 3.7 displays su
h a plot for signi�
an
es obtained in the 18-60 keV map,displaying the number of ex
esses dete
ted above a spe
i�
 signi�
an
e as afun
tion of signi�
an
e. We will use this energy map through this analysis as itis the most sensitive band for the majority of obje
ts observed with IBIS. Thesame analysis 
an however be done in any of the 5 bands available. The bluesolid line shows our initial ex
ess list, whilst the dotted blue line the obje
tsre
overed by ISINA. To 
ompare our results we show with the bla
k solid linethe obje
ts re
overed using visual inspe
tion. Before we begin 
omparing theresults, we point out how su
h logN - logS plots need to be interpreted. Takingthe solid blue line as a referen
e, we 
an see that it is 
omposed of two super-imposed distributions, a powerlaw extending to high signi�
an
es representingthe real sour
e population, and a Gaussian at low signi�
an
es representingthe noise 
omponent distribution.The most obvious dis
repan
y between ISINA and visually re
overed ex-
esses (dashed blue line and solid bla
k line respe
tively) is a systemati
 o�setin the number of re
overed obje
ts. This is also the 
ase when 
omparing thevisually 
reated list with our initial ex
ess list, suggesting we might have anadditional noise population whi
h highly resembles that of a real population.In fa
t, re
all that for this ISINA instan
e we have de
ided to redu
e our initialex
ess list with a 0.1◦ merge radius rather than 0.2◦. This has been done soas to redu
e our initial ex
ess list (see Fig. 2.6), at the expense however ofretaining more �propeller�-like stru
ture surrounding real sour
es. It is indeed



CHAPTER 3. BUILDING CATALOGUE 4 85

Figure 3.7: Cumulative distribution for 
andidate dete
tions above a spe
i�
signi�
an
e as a fun
tion of that signi�
an
e. The blue solid line represents allof the ISINA 
andidates whilst the dotted blue line the re
overd 
andidates.In solid bla
k we display the 
andidates re
overed through visual inspe
tiononly.
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CHAPTER 3. BUILDING CATALOGUE 4 86this that is the main reason for the systemati
 o�set between the ISINA initialex
ess list and the visually re
overed obje
ts: the initial ex
ess list, merged at
0.1◦ , in
ludes many �propeller�-like stru
tures related to real sour
es, givingrise to a logN - logS distribution resembling the real population. This 
an bedemonstrated by further redu
ing our ex
ess list. We do this by sorting all ourex
ess separated more than 0.1◦ apart by signi�
an
e (again in the 18-60 keVband for 
onsisten
y), and removing any ex
ess within 0.2◦ from the brightest
andidate. Moreover we have performed the same exer
ise for a 0.3◦ mergeradius. The point of extending the mat
hing to su
h large radii is to ensurethe problem is really that of �propellers�-like stru
ture. We would expe
t the
0.2◦ and 0.3◦ merged lists to produ
e very similar logN - logS distributions,as we know from previous experien
e that a 0.2◦ merge radius is su�
ient toeliminate the majority of �propeller�-like stru
ture. This is shown in Figure3.8. Similarly to Figure 3.7, the solid lines represent the ex
ess lists, and thedashed lines represent the re
overed ISINA obje
ts. For referen
e we also dis-play again the visually re
overed obje
ts with the bla
k solid line. It is 
learthat both the 0.2◦ and 0.3◦ merged lists produ
e very similar results, suggest-ing that we have removed the additional �propeller� noise ex
esses asso
iatedwith the real sour
e population. To demonstrate this e�e
t even further weshow in Figures 3.9 and 3.10 two images of the same sour
e with 
andidatesoverlayed employing a 0.1◦ and 0.2◦ merge radius respe
tively. The smallernumber of fake 
andidates within the PSF of the real sour
e in the 
entre is
lear when 
omparing the two images.We point out that, even though we employ a further redu
tion based onradius, after features have been extra
ted, 
oordinates remain un
hanged, andinformation for the ex
luded sour
es based on this last 
riteria is still retainedfor further analysis (in order to lo
ate real sour
es within 0.2◦ of a brighter



CHAPTER 3. BUILDING CATALOGUE 4 87Figure 3.8: Cumulative distribution for 
andidate dete
tions above a spe
i�
signi�
an
e as a fun
tion of that signi�
an
e. The blue solid line and dottedline and the bla
k solid line are the same as in Figure 3.7. The green and redlines display the same CDFs as for the blue line, but with 
andidates mergedusing 0.2◦ and 0.3◦ merge radii repe
tivley.
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visual

one).Having established that we require a further redu
tion of our ex
ess listusing a 0.2◦ merge radius we will now 
ompare the visually 
reated 
andidatelist with that sele
ted by ISINA. For this we show yet another logN - logSdistribution in Figure 3.11. The solid and dashed blue lines display the ex
esslist and ISINA re
overed obje
ts respe
tively employing a 0.2◦ merge radius,and in bla
k the visually re
overed obje
ts. Additionally we show with thegreen line the distribution of obje
ts sele
ted by ISINA but not sele
ted usingvisual inspe
tion, the red line on the other hand shows the opposite. It is 
learat �rst that ISINA sele
ts far more obje
ts than visual inspe
tion. This isalso noti
eable by looking at the in
rease in the number of re
overed obje
tsbelow ≈ 4σ for the ISINA sele
ted sample. In fa
t the green line does indeed



CHAPTER 3. BUILDING CATALOGUE 4 88Figure 3.9: 18-60 keV all-sky mosai
 image for a bright persistent sour
e.The 
rossses represent the 
andidate positions fed to ISINA for identi�
ation.The bla
k 
ross is the 
orre
t position for this obje
t. The remaining greenpositions have been introdu
ed due to the artefa
ts produ
ed by the bright
entral sour
e.

Figure 3.10: Same image as in Figure 3.9 but with 
andidates merged usinga 0.2o radius. The number of false 
andidates produ
ed by the bright sour
eartefa
ts have substantially de
reased.
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ontain a noise distribution below 4 σ, however we also point out that,even though to a lesser extent, the red 
urve also displays su
h distributionshape. We note that in both 
ases the noise distribution 
ould be 
ausedby the presen
e of transients, not a
hieving a high enough signi�
an
e in the�nal mosai
 map. The only way to dis
riminate su
h sour
es is to use theISINA meta-data in order to aid the the sele
tion of transients. For example,if a 
andidate is sele
ted by ISINA within the noise distribution (say 3σ),then the parti
ular 
andidate has the potential to be a transient. This 
an be
he
ked by querying the meta-data to understand whi
h forest (faint persistent,strong persistent or transient) had the highest number of votes. Moreoverwe 
an additionally inspe
t the transient matrix for transient behaviour, andobviously inspe
t the sour
e visually if required. The di�eren
e 
ompared tothe �standard� visual inspe
tion pro
ess is that the additional ISINA meta-data 
an aid the re
overy of real sour
es in a mu
h more obje
tive way, sin
ewe know in advan
e that the algorithm has been 
reated to re
ognise similarobje
ts to the training set.Figure 3.12 shows on
e again the 18-60 keV mosai
 map, but now withdis
repant 
andidates between the two methods. With green 
ir
les we showthe positions of 
andidates sele
ted by ISINA but not visually, and in red theopposite. From this image we 
an see where the fake 
andidates produ
ingthe noise distribution in Figure 3.11 are 
oming from. These are areas of themosai
 where lo
al noise is relatively high, whi
h 
an be seen by the 
lusteringof ISINA-only sele
ted 
andidates in some regions of the map. Disregardingthe 
lustered regions we noti
e, from the mosai
, that the ISINA-only 
andi-dates are distributed mainly out of the Gala
ti
 plane, whilst the visual-only
andidates seem to follow it. The next se
tions will explore some parti
ular
andidates in more detail, and shed light into this pe
uliar sky distribution,
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Figure 3.11: Cumulative distribution for 
andidate dete
tions above a spe
i�
signi�
an
e as a fun
tion of that signi�
an
e. The blue solid line and dottedline are the same as the red lines in Figure 3.8 and the bla
k solid line is thesame as in Figure 3.7. The green and red lines display the CDFs of 
andidatesidenti�ed by ISINA and not visually and vi
eversa, respe
tivley.
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CHAPTER 3. BUILDING CATALOGUE 4 91with emphasis on the kind of problems fa
ed by the visual inspe
tion methodand ISINA.3.4.1 Human problemsIn this se
tion we will explore some sour
e 
andidate examples and 
ompare theISINA sele
tion method with visual inspe
tion. In parti
ular we will fo
us onsome faint persistent sour
e 
andidates from the extra-Gala
ti
 sky (l > 30◦),and hopefully demonstrate some of the pitfalls of using solely visual inspe
tionfor the sele
tion of sour
es.For this purpose we have sele
ted from Figure 3.12, 6 
andidate ex
esses,all of whi
h obtained their highest s
ore within the faint persistent networkof ISINA. We spe
i�
ally 
hoose 3 of these 
andidates to have obtained atleast 1 �No� vote from visual inspe
tion, however a
hieving high enough s
oresby ISINA to be 
onsidered real. Conversely, we also sele
ted 3 
andidatesa
hieving 3 �Yes� votes through visual inspe
tion but not high enough s
oreby ISINA to be 
onsidered real. These are shown in Figure 3.13 with greenand red 
ir
les respe
tively in ea
h 
olumn. All 
hosen examples are relativelyfaint for all sky mosai
s, and some are below the 
atalogue 4 threshold of4.5σ. Moreover we highlight that the images have been taken from the bestsigni�
an
e mosai
 for the parti
ular 
andidates in question.At �rst, all 6 examples look 
omparable, and indeed they do share verysimilar 
hara
teristi
s. Beginning from the ISINA sele
ted obje
ts on the left
olumn of Figure 3.13, we will brie�y des
ribe ea
h 
andidate. The �rst exam-ple on the top obtained a signi�
an
e of 5.2σ in the 18-60 keV mosai
 image,but has not been identi�ed through the visual inspe
tion pro
ess. The reasonfor it not being in
luded in the visually sele
ted obje
ts is be
ause this par-ti
ular ex
ess was never in
luded in the inspe
tion list. This implies that the
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Figure 3.12: 18-60 keV band �nal mosai
 
entered on the Gala
ti
 
entre. Theonly-ISINA re
overd obje
ts are shown in green 
ir
les whilst the visual-onlyre
overed obje
ts in red 
ir
les.



CHAPTER 3. BUILDING CATALOGUE 4 93Figure 3.13: Best signi�
an
e mosai
 maps for 6 
andidate persistent sour
es.On the left 
olumn, 
ir
led in green, are 
andidates whi
h ISINA believes arereal but have obtained at least one No vote visually. On the right 
olumn,
ir
led in red, are 
andidates with three Yes visual votes but ISINA does notidentify as real.
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atalogue 
reation te
hnique des
ribed in Se
tion 3.2 has failed tolo
ate this ex
ess. The reason for this is be
ause the peak�nd tool has failed tolo
ate this 
andidate due to the high systemati
 ba
kground within the regionConversely ISINA begins with many more ex
esses to 
lassify, whi
h in
ludedthis parti
ular 
andidate as well. In parti
ular this example demonstrates theadvantage of having ma
hine learning algorithms for identi�
ation, sin
e we
an begin with a very high number of 
andidates to 
lassify than just visualinspe
tion, without a�e
ting the �nal times
ale of the results.The next examples in the middle-left and bottom-left panels have been
hosen to demonstrate the 
apability of ISINA to sele
t 
andidates with �
lean�PSFs, even if their signi�
an
es are relatively low. It is hard to de
ide if these
andidates are real, however we believe that they are 
onsistent with ea
h othermeaning they possess very similar 
hara
teristi
s. We therefore expe
t ISINAto have similar opinions on these two 
andidates. We note that the bottom-left
andidate was not in
luded in the inspe
tion list, similarly to the 
andidate inthe top-left panel.We now examine the visually sele
ted 
andidates on the right panels ofFigure 3.13. On the top-right and middle-right panels we show two ex
esseswhi
h display very distorted PSFs and owning again relatively low signi�
an
es.Conversely the bottom-right displays an ex
ess with a reasonable PSF, thougha bit less signi�
ant. These are all borderline 
ases, similarly to the ex
ess onthe left panels, for whi
h we believe no de�nite answer exists 
on
erning theiridenti�
ation, yet all have a
hieved �Yes� votes. The degree of 
on�den
e aboutthese 
andidates raises some 
on
erns, and opens the possibility of systemati
false identi�
ations for other 
andidates too. The ex
ess in the middle-rightlooks as if it is a possible �propeller-like� stru
ture asso
iated with the brightsour
e 
lose by. It is essentially impossible to dis
riminate for or against this
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laim, and extreme 
aution has to be taken when 
lassifying su
h obje
ts.Having said this we believe that in
luding fewer false positives at the 
ost ofre
overing fewer real obje
ts is better than the 
ontrary. Moreover we note thehigh degree of similarity between the quality of the PSFs of the two obje
ts inthe bottom panels.It is hard to imagine how all these 
andidates have obtained su
h di�erentvisual judgments, suggesting the need for introdu
ing a 
ontinuous identi�
a-tion s
heme. By this we mean a s
heme whi
h would not just in
lude binaryresults (�Yes� and �No� votes), but also has the 
apability of produ
ing 
on-tinuous results. This would not only enable 
andidates to be 
lassi�ed as realor fakes, but also obtain a level of �realness� and �fakeness� respe
tively. Theimprovement using su
h a s
heme would be enormous, and would also give athird party user the 
apability of making up his/her own mind for a parti
ular
andidate.3.4.2 Ma
hine problemsWe will now turn our attention to some of the main issues fa
ing ISINA, andin parti
ular look at some examples from Figure 3.12 taken from the Gala
ti
plane. Most of this se
tion will fo
us on transients, and des
ribe how andwhy ISINA fails to 
orre
tly identify these obje
ts in some 
ases. For analysispurposes, ea
h dis
ussed example will in
lude its transient matrix panel and, ifappropriate, an image from the highest signi�
an
e map. Firstly, we sele
t fourexamples whi
h we believe are real transients but ISINA has failed to identify.Analysing these examples will give insight into the reason for ISINA failing tore
ognise these obje
ts. Se
ondly, we present four examples whi
h have beensele
ted by ISINA as transients, but turn out to be fakes, shedding light ontosome of the problems asso
iated with the transient matrix te
hnique.



CHAPTER 3. BUILDING CATALOGUE 4 96Figures 3.14 and 3.15 show the �rst four real transients not identi�ed byISINA dis
ussed in this se
tion. For these obje
ts we also show the best sig-ni�
an
e mosai
 map in Figure 3.16, where it is visually 
lear these 
andidatesare real sour
es. We believe the main reason for the dis
repan
y on the re-
overed obje
ts lies in the new, updated, method for lo
ating su
h obje
ts in
atalogue 4 data. Re
all from se
tion 3.1, that a new variable times
ale for theidenti�
ation of transients is introdu
ed for 
atalogue 4 analysis: the bursti
ityanalysis. These were not produ
ed for the 
ompilation of 
atalogue 3, mainlybe
ause their usefulness is enhan
ed by large data streams, whi
h 
atalogue4 has obtained. This has major 
onsequen
es for interpreting 
atalogue 3 re-sults and the results from the ISINA testing set (see se
tion 2.5.7). The �rstis that 
atalogue 3 transients requiring a burstmap image for identi�
ationmight have been missed during 
atalogue produ
tion. More importantly, thetransients requiring burstmaps have not been trained for in ISINA. Moreoverburstmap, revolution map or revolution sequen
e map information is not in-
luded in the ISINA metadata, sin
e the testing set results on transients inse
tion 2.5.7 were su�
iently reliable, making us believe the available meta-data was enough for the parti
ular identi�
ation task. Obviously this has now
hanged, and the burstmap transients have revealed that additional informa-tion regarding shape and signi�
an
e taken from su
h maps is essential forISINA if we wish to identify su
h obje
ts 
orre
tly.In all 
ases in Figures 3.14 and 3.15, the transient matrix has lo
ated anoutburst times
ale being longer, however a superset, than the sele
ted point-ings using the bursti
ity te
hnique. This is a problem whi
h did not o

urduring the testing of ISINA in Chapter 2. Nonetheless, the main reason whyISINA has failed to re
ognise these 
andidates is due to when/where the pa-rameters are extra
ted. In the 
ase of transients, these are extra
ted at the
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Figure 3.14: TM panels for two transient sour
es.IGR J18014+0202

Transient matrix

End index

S
ta

rt
 in

de
x

 

 

100 200 300 400 500 600

100

200

300

400

500

600

1200 1400 1600 1800 2000 2200 2400 2600 2800

−2

−1

0

1

2

3

IJD time

In
te

ns
ity

Intensity lightcurve

100 200 300 400 500 600

−2

−1

0

1

2

3

Significance lightcurve (no time)

Index

S
ig

ni
fic

an
ce

1800 1900 2000 2100 2200 2300 2400

−2

−1

0

1

2

3

IJD time

S
ig

ni
fic

an
ce

Outburst

−2

−1

0

1

2

3

4

5

6

IGR J15107-5414
Transient matrix

End index

S
ta

rt
 in

de
x

 

 

200 400 600 800 1000 1200

200

400

600

800

1000

1200
1200 1400 1600 1800 2000 2200 2400 2600 2800

−3

−2

−1

0

1

2

3

IJD time

In
te

ns
ity

Intensity lightcurve

200 400 600 800 1000 1200

−3

−2

−1

0

1

2

3

Significance lightcurve (no time)

Index

S
ig

ni
fic

an
ce

2765 2766 2767 2768 2769 2770 2771

0

0.5

1

1.5

2

IJD time

S
ig

ni
fic

an
ce

Outburst

−3

−2

−1

0

1

2

3

4



CHAPTER 3. BUILDING CATALOGUE 4 98
Figure 3.15: Transient matrix panels for two transient sour
es.IGR J16291-2937
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Figure 3.16: Best signi�
an
e image mosai
s for transient obje
ts. From leftto right: IGR J18014+0202, IGR J15107-5414, IGR J16291-2937 and IGRJ21319+3619. The 
orresponding transient matrix panel for these sour
es aredisplayed in Figures 3.14 and 3.15
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W level (the S
Ws are sele
ted using the transient matrix te
hnique) andthen averaged before being passed to the identi�
ation algorithm. On theother hand the visual inspe
tion method uses di�erent times
ale mosai
s toinspe
t the transient 
andidates, i.e. burstmaps, revolution maps and revolu-tion sequen
e maps. In these mosai
s the transients will be more evident asthe signal from the 
andidate sour
e is in
reased. On the other hand we �ndthat averaging the parameters extra
ted from the S
W level is not enough.In the same way as we extra
t parameters for persistent sour
es from boththe S
W level and the all-ar
hive mosai
, we should in a future run of ISINAextra
t parameters for transients from both the S
W level and the respe
tiveburstmap mosai
. The problem with this, and also with the �human way� oflo
ating 
andidates, is that one would �rst need to 
reate these mosai
s forall 
andidates using the sele
ted S
Ws from the transient matrix. This wouldtake a long time for ≈ 9000 
andidates. This problem is being investigated inmore depth, and ways to sele
t transient 
andidates are being sought in orderto redu
e the amount of transient mosai
s to be 
reated for a future ISINArun.We now turn our attention to four fake 
andidates sele
ted by ISINA astransients, however asso
iated with noise stru
tures within the IBIS images.The transient matrix panels for these fake 
andidates are shown in Figures 3.17and 3.18. In all, the maximum signi�
an
e obtained by the transient matrixis about 5σ, similar to the real obje
ts shown in Figure 3.16. However afterinspe
ting these 
andidates visually (from the S
W images), it was 
lear thatthese 
andidates were introdu
ed due to the de
onvolution software failing toremove artifa
ts in some S
Ws. This implies that within the light
urve of su
h
andidates a spike will be present where the de
onvolution software failed,giving rise to a sour
e-like artifa
t, resembling very mu
h transients. There
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ases, however from the transient matrix panels they dolook real, and only visual inspe
tion of a few sele
ted S
Ws 
an dis
riminateagainst these fake 
andidates.One last note of 
aution regarding ISINA 
omes from the inspe
tion of theLMC region in Figure 3.12 ( 20◦ × 20◦, bottom left). This region is overpop-ulated by ISINA 
andidates whi
h have been sele
ted due to their sour
e-like
hara
teristi
s, however being produ
ed by the systemati
 noise originatingfrom bright LMC sour
es. Visual inspe
tion 
an 
onsider a mu
h larger �lo
al�area than ISINA when de
iding on su
h 
andidates, making their reje
tionmu
h more trivial. Future improvements to ISINA would in
lude various rmsvalues obtained from di�erent size regions 
entred on 
andidates to try andover
ome this problem.It should be 
lear after this se
tion that if we wish to use ISINA for the
orre
t re
overy of transients, then more work needs to be undertaken. Inparti
ular it is 
lear that information regarding burstmaps, revolution mapsand revolution sequen
e maps has to be in
luded in the ISINA metadata dur-ing training. Moreover it is also 
lear that if we wish to use the transientmatrix appropriately for low signi�
an
e transients like the ones presented inFigure 3.16, then additional 
riteria (maybe similar to the bursti
ity index),will have to be introdu
ed. This will be dis
ussed in the next and last se
tionof this 
hapter, together with additional improvements relevant to ISINA, anda possible future appli
ation of the algorithm.3.5 ISINA's future?We now dis
uss the future improvements to be made to the ISINA algorithmand a possible future meta-
atalogue release. First however the dis
repan
ies
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Figure 3.17: TM panels for two fake 
andidates 
onsidered to be real by ISINA.Fake 
andidate
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Figure 3.18: TM panels for two fake 
andidates 
onsidered to be real by ISINA.Fake 
andidate
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atalogue 4 and the ISINA 
atalogue needs to be addressed in moredetail. In total, out of 723 obje
ts identi�ed through the visual inspe
tionpro
ess, 188 were missed by ISINA (red 
ir
les in Figure 3.12). Of these, 33have de�nite identi�
ations however most lie in 
rowded regions of the sky(mainly gala
ti
 
entre) and it is of no real surprise that ISINA has missedthese. 40 have unknown identi�
ations and were only dete
ted in the all-ar
hivemosai
, owning relatively low �ux, so 
ould be 
lassed as border line 
ases. Theremaining 115 obje
ts have been dete
ted in burstmaps, revolution maps orrevolution sequen
e maps, making them transient obje
ts. We have alreadydis
ussed why ISINA fails to re
over these 
orre
tly and future improvementssu
h as the ones mentioned in the previous se
tion will be implemented inISINA in the future. This will allow the 
orre
t re
overy of these obje
ts. Wetherefore believe that, apart from transient dete
tion, ISINA does relativelywell in identifying gamma-ray sour
es given the run-time of the algorithm ofabout two weeks (from initial 
andidate sele
tion to produ
ing a �rst look
atalogue). In parti
ular, of the 723 sour
es present in 
atalogue 4, 306 werepresent in training, leaving 417 for 
lassi�
ation, of whi
h 55% (229 sour
es)have been identi�ed using the ISINA algorithm, where the missing sour
es aremainly (37%) transients or unidenti�ed sour
es.On
e we in
orporate the transient maps in the algorithm we think ISINAmeta-
atalogues 
ould be usefully released to the s
ienti�
 
ommunity. Thesewould 
ontain all the initial 
andidate sour
es together with the ISINA meta-data asso
iated with ea
h. In parti
ular, ea
h 
andidate sour
e will have theusual astronomi
al data asso
iated with it su
h as, for example, RA and DEC,
ount rates in the di�erent IBIS energy ranges, exposure times and �uxes inea
h energy range. Moreover the results from the ISINA algorithm will alsobe asso
iated with ea
h 
andidate. This would in
lude:
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• the total per
entage of votes from the Random Forest whi
h would givean idea of how 
on�dent the algorithm is in general
• the per
entage of votes obtained from ea
h of the individual RandomForests (see Figure 2.13)
• the transient matrix sele
ted times
ale and maximum signi�
an
e givingthe user an idea of any transient behaviour of the 
andidates
• the per
entage of votes obtained within ea
h network in ea
h energyrange. This would allow the user to lo
ate obje
ts observable only in oneenergy range as these obje
ts will have low total per
entages.
• some of the parameters used for the identi�
ation 
ould also be in
ludedsu
h as the average lo
al noise around 
andidates to give users more ofan idea on the dete
tion 
on�den
eWith su
h a meta-
atalogue available to the s
ienti�
 
ommunity, ea
h user
ould then 
reate his/her own 
atalogue, depending on how 
on�dent he/sheis about a parti
ular set of 
andidates. Moreover this meta-
atalogue 
ould beuseful for 
ross-
orrelation studies with obje
ts at other wavelengths. For ex-ample, we know already that the visual 
atalogue might have missed some realsour
es whi
h 
ould be re
overed if some extra information, su
h as dete
tionsin other wavelengths was available.Ideally, if ISINA had to be used for the produ
tion of a future 
atalogue, itis expe
ted that the produ
tion speed improvement for the 
atalogue releasewould be enormous. For example, after all the dataset has been redu
ed andmosai
 maps 
reated, the visual inspe
tion method requires an additional 6-7months for a workfor
e of about 10 astronomers to visually identify ea
h ofthe 
andidate ex
esses. Given a reliable training set, ISINA 
an a

omplish



CHAPTER 3. BUILDING CATALOGUE 4 106a similar task in about 2 weeks, where most of the time is spent extra
tingthe 
lassi�
ation parameters. It has been already explained that an additionalvisual inspe
tion stage is required after ISINA has produ
ed a 
atalogue, how-ever this stage will be performed on a mu
h smaller 
andidate list and thus isexpe
ted to last about a month for the same workfor
e. Moreover, as des
ribedin 
hapter 2, 
andidates with more than 90% of the votes from ISINA 
an be
onsidered real without any further inspe
tion, again redu
ing the amount ofhuman load on the task. Also to be pointed out is the fa
t that ISINA 
re-ated 
atalogues will be less biased in that they should 
ontain homogeneouslysele
ted 
andidates, purely on the basis of their parameters and not sele
tedthrough human intervention whi
h 
an sometimes be very biased and opinion-ated.We 
on
lude this 
hapter by mentioning the potential usefulness of meta-
atalogues, not only from ISINA, but any other 
atalogue produ
tion te
h-nique. Given the ever in
reasing amounts of data and dis
overed obje
ts, it isinevitable that future 
atalogue releases will have more spurious false dete
-tions and more failed real dete
tions. Meta-
atalogues have the potential toover
ome this, and more spe
i�
ally will 
ontain the ne
essary information tore
over the missed obje
ts later in the future, sin
e every possible 
andidateis re
orded. They will also 
ontain the information required to best under-stand why obje
ts are being missed or false 
andidates in
luded. It also makes
atalogue produ
tion more transparent to the s
ienti�
 
ommunity, as all theresults from the produ
tion stage will be published and readily available.



Chapter 4
mCVs: Ba
k in Business

�Somewhere, something in
redible is waiting to be known.�� Carl SaganIn this 
hapter we will investigate the properties of magneti
 
ata
lysmi
variables dete
ted in the hard X-ray domain. This exoti
 population, some-what overlooked in the past, will bring forward some new and exiting results,possibly asso
iated with their a

retion me
hanisms. Firstly we will introdu
emCVs, and brie�y des
ribe the types of mCVs found and their 
orresponding
lasses. We then will look at the 
ontemporary models for mCV evolution aspredi
ted by numeri
al simulations so as to prepare the reader for the newup
oming results. Next we present the most up to date hard X-ray observa-tions of mCVs and produ
e a 
atalogue of hard X-ray sele
ted mCVs. Theseare then studied in the 
ontext of their orbital and spin periods whi
h willshow us how these hard X-ray sele
ted samples only o

upy a spe
i�
 pla
ewithin the Porb-Pspin plane. Finally the 
hapter will analyse the spe
tral hard-ness properties arising from the sample and show how these are well 
orrelatedwith the orbital, spin and syn
hroni
ity parameters of the mCV systems. The
hapter will 
on
lude with some dis
ussions and spe
ulations on the origin of107
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overed 
orrelations.4.1 Cata
lysmi
 variables: a brief overviewCata
lysmi
 variable stars are 
ompa
t, intera
ting, binary systems in whi
ha white dwarf (WD) primary a

retes from a low-mass, roughly main se-quen
e donor star. The mass transfer and se
ular evolution of these systemsis driven by angular momentum losses. Systems with long orbital periods(Porb > 3hr) are thought to lose angular momentum mainly via magneti
breaking 
aused by the stellar wind of the se
ondary star [Verbunt and Zwaan,1981, Rappaport et al., 1983℄. In the 
anoni
al s
enario, magneti
 breakingstops when the se
ondary be
omes fully 
onve
tive, at about Porb = 3hr,at whi
h point the donor star shrinks and deta
hes from the Ro
he Lobe, andgravitational radiation (GR) be
omes then the only remaining angular momen-tum loss me
hanism [Faulkner, 1971, Pa
zynski and Sienkiewi
z, 1981℄. Theorbital period will thus 
ontinue to shrink, ultimately bringing the se
ondaryba
k into 
onta
t with the Ro
he Lobe at about Porb = 2hr, allowing for masstransfer to resume. The main motivation for this s
enario is the presen
e ofthe so-
alled period gap between 2 and 3 hours within CV systems as shownin Figure 4.1. The se
ondary will keep losing mass to the primary until themass of the donor be
omes su�
iently low to be unable to sustain hydrogenburning, at whi
h point the se
ondary starts be
oming degenerate. The orbitalperiod evolution reverses sign at this stage, implying a minimum observableorbital period within CV systems. This is supported by the a

umulation ofsystems at very low orbital periods, dubbed the �period minimum spike� by[Gänsi
ke et al., 2009℄, where the faintest CV populations have been un
overedand found to have orbital periods below 86 minutes.



CHAPTER 4. MCVS: BACK IN BUSINESS 109Figure 4.1: Orbital period distribution for non-magneti
 
ata
lysmi
 vari-ables. The verti
al dotted lines mark the period gap. Data taken fromRitter and Kolb [2003℄.
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4.2 Introdu
ing magneti
 
ata
lysmi
 variablesMagneti
 CVs (mCVs) are a small subset of the 
atalogued CVs (≈ 10% - 20%,Downes et al. 2005, Ritter and Kolb 2003), and fall into two (or possibly three)
ategories: polars (or AM Her types after the prototype system), intermediatepolars (IPs or DQ Her types) and asyn
hronous polars (APs). The WDsin polars possess su
h strong magneti
 �elds that they 
an syn
hronise (seeKing et al. [1990℄ for the Polar syn
hronisation 
ondition) the whole system,yielding Porb = Pspin (see Figure 4.3). The strong magneti
 �eld in thesesystems is 
on�rmed by strong opti
al polarisation. A

retion in polars isthought to follow the magneti
 �eld lines of the WD straight from the L1point onto the WD magneti
 poles, and no a

retion disk is expe
ted (fora review of polars, see Cropper 1990). APs on the other hand are out ofsyn
hronisation by only a few per
ent, and it is not known exa
tly why thisis. One suggestion is that these systems are polars whi
h have had a re
ent
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hemati
 diagram of an intermediate polar. (Image taken fromMark A. Garli
k)

nova event, ki
king them slightly out of syn
hronisation [Warner, 2003℄. ForIPs, the la
k of strong opti
al polarisation implies a mu
h weaker magneti
�eld, not powerful enough to syn
hronise the se
ondary (for a review of IPs,see Patterson 1993). In these systems, material leaving the L1 point usuallyforms an a

retion dis
 up to the point where the magneti
 pressure ex
eedsthe ram pressure of the a

reting gas (see Figure 4.2). From this point onwardsthe a

retion dynami
s are governed by the magneti
 �eld lines, whi
h 
hannelthe material onto the WD magneti
 poles. The nature of these systems is
on�rmed by the dete
tion of 
oherent X- ray modulations asso
iated with thespin period of the WD.In the simplest s
enario for X-ray produ
tion in mCVs, the magneti
ally
hanneled a

retion 
olumn impa
ts the WD poles produ
ing hard X-rays (seeFigure 4.4) from thermal bremsstrahlung 
ooling by free ele
trons with kT ofthe order of 10s of keV [Cropper, 1990, Warner, 2003℄. The hard X-ray emissionis thought to originate in the post-sho
k region, a region below the sho
k front
reated from the impa
ting a

retion 
olumn. This is also supported by theexpe
ted amounts of X-rays produ
ed by unfalling matter onto a WD, wherethe kineti
 energy of the infalling matter is 
onverted into thermal energy
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hemati
 diagram of a Polar. (Image taken from Mark A. Garli
k)

(3

2
kT = 1

2
mv2). Softer X-rays are also produ
ed from the absorption andrepro
essing of these higher energy photons in the WD photosphere. As aresult, both polars and IPs are expe
ted to emit high energy photons, but,dis
repan
ies exist between the observed ratio of soft-to-hard X-rays betweenpolars and IPs, with polars showing an ex
ess of observed soft X-rays. Lamb[1985℄ and others have reported that the total X-ray luminosities of IPs aregreater than those of polars by a fa
tor of ≈ 10, attributed mainly to thehigher a

retion rates. Moreover it has been proposed that strong magneti
�elds in polars produ
e a more �blobby� �ow than in IPs [Warner, 2003℄. Thesehigh density �blobs� are then able to penetrate within the post-sho
k region,emitting fewer bremsstrahlung photons and 
ontributing more to the observedX-ray bla
kbody spe
tral 
omponent, thought to be produ
ed at the base ofthe post-sho
k region.
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hemati
 diagram displaying the regions of X-ray emission

4.2.1 The A

retion �ows and evolution of mCVsIn a series of papers [Norton et al., 2008b, 2004℄, Norton and 
ollaboratorshave demonstrated, using numeri
al simulations, that four types of �ows arepossible for a

reting binary mCVs. They have shown that the fundamentalobservable determining the a

retion �ow type is the spin-to-orbital period ofthe system. This se
tion will review their results whi
h later in the 
hapterwill help explain some of the observations presented whilst analysing the globalproperties of hard X-ray emitting mCVs.As shown in Norton et al. [2008b, 2004℄, the mCV orbital and spin param-eters evolve towards a spin-to-orbital equilibrium. Essentially, for any givenorbital period, mass ratio and magneti
 �eld strength, there exists a spin periodthat will balan
e the gain and loss of angular momentum within the system.For example, if an mCV is spinning too fast a lot of the material lat
hing onto
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arrying angularmomentum and slowing the WD spin. Conversely if the WD is spinning tooslowly most of the material will make it to the WD poles, thus giving extraangular momentum to the WD and spinning it up. Somewhere in between isan equilibrium where the WD is in a state of a

retion and eje
tion, there-fore in general, mCVs are expe
ted to remain 
lose to this equilibrium when
onsidering long times
ales. At any parti
ular instant however the WD maybe spinning up or down as shown by Patterson [1993℄. The observed spin-upor spin-down rates observed within IPs however 
orrespond to mu
h longertimes
ales than those expe
ted to rea
h equilibrium, suggesting the systemsare only exhibiting random ex
ursions from their equilibrium, driven by massloss �u
tuations. In fa
t this phenomenon is also predi
ted by the numeri
alsimulations 
arried out by Norton and 
ollaborators. Broadly speaking, theyhave shown that four types of �ows are possible within IP systems, 
hara
-terised as one of:propellers in whi
h most of the transferred material from the se
ondary ismagneti
ally propelled away from the system by the rapidly spinningmagnetosphere of the WD.dis
s in whi
h most of the material forms a 
ir
ulating �attened stru
turearound the WD, trun
ated at its inner edge by the WD magnetospherewhere the material lat
hes to the magneti
 �eld lines before a

retingonto the WD surfa
e.streams in whi
h most of the material lat
hes onto �eld lines immediatelyand follows these on a dire
t path down the WD poles.rings in whi
h most of the material forms a narrow annulus 
ir
ling the WDat the outer edge of its Ro
he lobe, with material being stripped from its
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retion �ow types as a fun
tion of orbitalperiod, in the spin period vs. magneti
 moment plane, at a mass ratio of q= 0.5 taken from Norton et al. [2008b℄. The right hand axes show the spin toorbital period ratio in ea
h 
ase. Approximate regions within whi
h ea
h typeof �ow is seen are delineated as shown, where D stands for dis
 a

retion, S forstream a

retion, R for ring a

retion and P for propeller �ow. The thi
k lineshows the approximate lo
us of the equilibrium spin period in ea
h 
ase andmarks the boundary between a

retion �ows that spin-up the WD and thosewhi
h 
ause it to spin-down.

inner edge by the magneti
 �eld lines before being 
hanneled down theWD surfa
e.As mentioned before, the main observable in determining the kind of �ow asystem exhibits is the spin-to-orbital period, however mass ratio and magneti
�eld strength of the WD also play a role. Figure 4.5, taken from Norton et al.[2008b℄, shows some of the results from their simulations for systems withmass ratio of q = 0.5. Ea
h panel is for a parti
ular orbital period. Thedrawn boundaries are there for referen
e and it should be noted that in realitythese are quite blurred. Nonetheless the planes all divide into four regions.
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retion �ow types that will gener-ally spin-up (streams) and a

retion �ow types that will generally spin-down(propellers). Broadly speaking, if an IP system is found in a region of the pa-rameter spa
e where it is fed by stream a

retion it will spin-up the WD andmove it downwards in the plane in Figure 4.5 towards the equilibrium line. Onthe other hand if an IP system �nds itself in a region of parameter spa
e wherethe �ow takes the form of a propeller it will spin-down the WD and so move itupwards towards the equilibrium line. We note that both the ring and streama

retion will keep the WD 
lose to spin equilibrium through a 
ombinationof a

retion and eje
tion of material. Moreover from Figure 4.5 we also pointout the two triple points of equilibrium whi
h all systems are trying to rea
ha

ording to simulations. If an IP rea
hes one of these then it is prone to staythere forever and not be
ome a totally syn
hronised polar.To have a better idea of what these a

retion �ow types might look like weshow Figure 4.6 again taken from Norton et al. [2008b℄. From this, one 
an seethat 
lose to the stream-disk-propeller triple point (at about Pspin/Porb = 0.1)and the stream-ring-propeller triple point (at about Pspin/Porb = 0.6), theequilibrium �ows are a 
ombination of the various �ow types. In ea
h 
ase theangular momentum a

reted by the WD is balan
ed by an equal amount lostfrom the system via material magneti
ally propelled away: the de�nition of anequilibrium spin period.Having reviewed some of the relevant results from theoreti
al simulationswe will move on to introdu
e the 
ontemporary observations of mCVs, withparti
ular emphasis on the INTEGRAL/IBIS observations.
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Figure 4.6: The variation of the a

retion �ow in the vi
inity of the boundariesbetween the di�erent �ow types. The panels on the left show �ows in thevi
inity of the stream-dis
-propeller triple point, whilst the panels on the rightshow �ows in the vi
inity of the stream-ring-propeller triple point. The panelat the bottom, 
entre is the a

retion �ow at the stream-dis
-propeller triplepoint and shows 
hara
teristi
s of all three �ows at an equilibrium spin period.This is where the majority of the IPs seen in the hard X-ray domain are found.
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ent hard X-ray observations of mCVsIn re
ent years, an in
reasing number of mCVs have been dete
ted and dis
ov-ered by hard X-ray teles
opes su
h as INTEGRAL/IBIS [Barlow et al., 2006,Landi et al., 2009℄, Swift/BAT [Bruns
hweiger et al., 2009℄ and SUZAKU /HXD[Terada et al., 2008℄. This in
rease has been mainly 
aused by the observingstrategy of hard X-ray observatories fo
using on large �eld of view surveystudies.The INTEGRAL satellite, laun
hed in O
tober 2002, has now 
arried outmore than 6 years of observations in the energy range 5 keV to 10 MeV. Inparti
ular, the INTEGRAL/IBIS survey is one of the main mission obje
tives.The IBIS (Imager onboard INTEGRAL spa
e
raft) dete
tor [Ubertini et al.,2003, Lebrun et al., 2003℄ has been optimised for survey work, with a large�eld of view (30◦) and with unpre
edented sensitivity in the soft-gamma rayregime, yielding ex
ellent imaging 
apabilities. It is worth emphasising thatthe IBIS survey has been optimised to dete
t faint persistent sour
es, whi
hmCVs are. The aim of the survey is to expand the 
urrent knowledge ofthe 20-100 keV sky by 
ataloguing high-energy sour
es and examining theirproperties, both individually and globally. The IBIS survey dataset 
onsistsof dedi
ated observations along the Gala
ti
 plane and around the Gala
ti

entre. Additionally, a 
ombination of pointed and deep exposure observationsare added to the dataset on
e they be
ome publi
. As a result, the latest releaseof the INTEGRAL/IBIS survey provides all-sky 
overage, albeit with spatiallyvariable sensitivity. The depth of the IBIS survey has in
reased signi�
antlywith ea
h release [Bird et al., 2004, 2006, 2007℄ and has now rea
hed a peaksensitivity 
orresponding to a �ux limit below 1 mCrab in the 20-100 keVrange. The latest 
atalogue 3 release [Bird et al., 2007℄ 
ontained a total of
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ts, of whi
h 20 were 
atalogued as CVs or were identi�ed as CVs lateron. This work uses a more re
ent IBIS dataset 
onsisting of over 36,000 in-dividual S
ien
e Window (S
W) pointings, 
overing 6 years of observations(revolutions ≈ 46-660). These have been pro
essed with the latest pipeline(OSA 7.0, Goldwurm et al. 2003), and mosai
s were 
reated from the de
on-volved images in 5 energy ranges. Staring and performan
e veri�
ation (PV)observations have not been used for the mosai
 
reation, and noisy S
Ws havebeen ex
luded based on the rms of the individual images. These new surveymaps are a 
onsiderable improvement on any previous ones, due to the newpipeline software, together with the signi�
antly in
reased exposure times. Itis worth pointing out that this dataset is exa
tly the same as the one used inthe previous 
hapter, where we have applied ISINA to 
atalogue 4 data.Swift has been optimised to lo
ate gamma-ray bursts, and as a 
onse-quen
e the main hard X-ray instrument, the Burst Alert Monitor (BAT), hassimilar 
apabilities to IBIS, possessing a large �eld of view and operating inessentially the same energy range. BAT has also been used for survey work[Tueller et al., 2009℄, and in parti
ular has also dete
ted a high number of IPs[Bruns
hweiger et al., 2009℄. In order to make our study as 
omplete as pos-sible, we have de
ided to in
lude the IPs from Bruns
hweiger et al. [2009℄ ob-served with the Swift/BAT dete
tor. Moreover, one extra IP has been added,AE Aqr, as observed by SUZAKU /HXD [Terada et al., 2008℄, sampling againa very similar energy range to IBIS. The similarity of energy range allows usto 
onstru
t a hard X-ray sele
ted sample with minimal biases.In total, the three teles
opes mentioned above have observed ≈ 30 mCVsabove 17 keV. More than 90% of these are IPs, and there are also two rareasyn
hronous polars. When 
ompared to the older soft X-ray sele
ted samples



CHAPTER 4. MCVS: BACK IN BUSINESS 119of mCVs the pi
ture is slightly di�erent. First of all, as one would expe
t, softX-ray dete
tors are more sensitive to mCVs and as a 
onsequen
e will produ
elarger samples, in
luding equal amounts of polars and IPs. However, hard X-ray observations are 
onsistently revealing a parti
ular subset of fast spinningIPs above the period gap.4.4 The hard X-ray CV population4.4.1 INTEGRAL/IBIS CVsHere we des
ribe the 
atalogue mat
hing pro
edure adopted in order to identifyknown CVs in our IBIS dataset. To do this we require the most 
omplete andup-to-date 
atalogue of su
h obje
ts, thus we merge the two most 
omplete CV
atalogues in the literature: The Catalogue and Atlas of Cata
lysmi
 Variables(Downes et al. 2005, hereafter DWS
at) and the Catalogue of Cata
lysmi
Binaries (Ritter and Kolb 2003, hereafter RK
at). DWS
at 
ontains 1830 CVswhilst RK
at 
ontains 731, and we note that 656 CVs are 
ommon to both
atalogues. The main reason for RK
at having fewer obje
ts is that only CVswith known orbital periods are in
luded in the sample; however, RK
at alsoin
ludes a few CVs that DWS
at does not report. Our �nal known CV settherefore 
ontains 1905 CVs. Fewer than 10% of the total number of CVswithin RK
at are known to be magneti
 in nature (in
luded in the 
atalogueas either DQ Her, AM Her or IP), and only approximately 3% (56 sour
es) areIPs.Catalogue mat
hing has been performed between the total CV set pro-du
ed, whi
h 
ontains 1905 CVs (hereafter DRK
at) and a preliminary IBIS
andidate ex
ess list 
ontaining real sour
es 
onstru
ted in the same way as forthe ISINA algorithm (Chapter 3), 
ontaining over 9000 ex
esses 
onstru
ted
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 data available for revolutions 46-660. This in
ludes ex
essesdete
ted in the �nal mosai
s, revolution mosai
s and revolution sequen
e mo-sai
s in any of the 5 main energy bands in order to lo
ate variable 
andidatestoo. We de�ne a variable sear
h radius around the IBIS 
oordinates with amaximum value of 15' (this value is extremely large but will allow us to observethe general trend of the mat
hing pro
edure). If an obje
t in the DRK
at wasfound within the sear
h radius, it is �agged as a possible mat
h. Four addi-tional �fake� IBIS 
atalogues have been 
reated in the following way, followinga similar method to Stephen et al. [2006℄:
• transposing the IBIS 
oordinates by one degree in Gala
ti
 longitude(fake 1)
• mirroring the IBIS 
oordinates in Gala
ti
 longitude (fake 2),
• mirroring the IBIS 
oordinates in Gala
ti
 latitude (fake 3)
• mirroring the IBIS 
oordinates in both Gala
ti
 latitude and longitude(fake 4).The results are shown in Figure 4.7. Ideally using this method, one wouldexpe
t the bla
k solid line in Figure 4.7 to �atten out at the optimal mat
h-ing radius. This is be
ause, ideally, we expe
t that after a 
ertain radius theDRK
at-IBIS mat
hes would grow at the same rate as the fake samples (blue-dashed line in Figure 4.7). Clearly however this is not the 
ase, the bla
k-solidline is still in
reasing at 10′, an exaggeratedly large radius for 
ross-mat
hingobje
ts. We asso
iate this e�e
t to the fa
t that our initial ≈9000 
andidateswhi
h 
ross-mat
hing is performed against DRK
at is over populated by noise.In parti
ular noise 
orrelated to real obje
ts as dis
ussed in Chapters 2 and 3 ,and the gala
ti
 plane. This will 
ause a lot of sporadi
 mat
hes, in parti
ular
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hes as a fun
tion of sear
h radius between theDRK
at and the IBIS ex
ess list (
rosses). Also plotted are the results from
orrelating the DRK
at with the 4 fake ex
ess lists and the mean number ofmat
hes from the fake 
orrelations (dotted line). The solid line is the numberof DRK
at/IBIS mat
hes minus the mean of the fake mat
hes.
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with very large mat
hing radii. We therefore suggest that one has to be 
arefulin using this method when the initial 
andidate list is overpopulated by noise
orrelated with real Gala
ti
 sour
es. Having established the poor reliabilityof the method in this 
ir
umstan
e we adopted a similar radius to that 
hosenby Barlow et al. [2006℄ of 4′, whi
h also 
orresponds well with the expe
tederror on faint IBIS dete
tions [Gros et al., 2003℄. For a sear
h radius of 4′ weobtain 56 sour
es as 
on�rmed or 
andidate CVs, of whi
h 23 are expe
ted tobe false 
oin
iden
es. We have visually inspe
ted all of the 
orrelated sour
esand found 33 mat
hes 
oin
ide with mainly non-CV globular 
luster sour
esand previously identi�ed X-ray obje
ts, however some are image artefa
ts re-lated to the Gala
ti
 
entre region. It is important to note that with a ≈ 2′sour
e lo
ation a

ura
y it is very hard to asso
iate a dete
tion with an opti-
al 
ounterpart alone. We have performed the same exer
ise by in
reasing thesear
h radius to 5′ whi
h in
reases the sample to inspe
t to 76 
andidates. We
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hes obtained with in
reasing the radius arefalse, with the possible ex
eption of the Dwarf Nova DN V1830 Sgr lo
ated
4.8′ away from the IBIS dete
tion in revolution 106 (MJD 53128.8 - 53131.7).This is slightly out of the 90% error radius for a ≈ 6σ dete
tion and we 
annotde�nitely asso
iate the two at the moment.Table 4.1 shows the main 
hara
teristi
s of the 23 obje
ts identi�ed fromour 
orrelation analysis. We have estimated distan
es for this sample usingthe method des
ribed by Knigge [2006℄ based on the evolution of the donorstar where 2MASS K-band magnitudes were available [Cutri et al., 2003℄ and
Porb < 6.2 hours1. In addition we show in Table 4.2 the 9 other IBIS-dete
tedmCVs used in this work. These were not part of the 
orrelation analysis,be
ause they were not present in DRK
at, but have been identi�ed throughopti
al spe
tros
opy following the IBIS dis
overy. Of the 23 obje
ts 
onsideredto be real mat
hes from our analysis, 17 are previously known INTEGRALdete
ted CVs, whilst 6 sour
es are new dete
tions. Most of the new obje
tsare of the intermediate polar sub
lass with the possible ex
eption of TW Pi
whi
h is 
onsidered by some as a VY S
l star (Norton et al. 2000) and AXJ1832.3-0840 whi
h is not identi�ed in full at the moment.4.4.2 Swift/BAT and SUZAKU/HXD CVsSwift/BAT has also observed a large number of mCVs, and it is worth in
ludingthese in our study for 
ompleteness. We de
ided to in
lude all the 22 BATdete
ted IPs [Bruns
hweiger et al., 2009℄, where 14 have been observed by IBISas well. Similarly to the IBIS-only IPs, the BAT-only IPs are all pla
ed abovethe period gap with the ex
eption of EX Hya.SUZAKU /HXD on the other hand has a di�erent observing strategy 
om-1The range within the method is appli
able
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Table 4.1: Results of the IBIS-DRK 
atalogue mat
hing with 4′ sear
h.Namea α, δb type
 o�setd Map 
odee Count ratef Exposure Fluxg Porb Pspin Distan
eh Refs(IBIS position) (′) (ct s−1) (ks) 20-100 keV (min) (s) (p
)1RXS J002258.3+614111 5.739,61.714 IP 1.7 B4(8.7) 0.15 ± 0.01 3767 0.81 241.98 563.53 510 [1,2,3,4℄V709 Cas 7.207,59.303 IP 0.8 B5(54.3) 1.03 ± 0.01 3562 5.53 320.4 312.77 300 [1,2,5℄XY Ari⋆ 44.047,19.457 IP 1.1 B5(5.5) 0.53 ± 0.12 119 2.85 363.884 206.298 610 [1,2,6℄GK Per 52.777,43.928 IP/DN 1.7 B5(4.7) 0.26 ± 0.07 277 1.4 2875.4 351.34 - [1,2℄TV Col⋆ 82.357,-32.819 IP 0.1 B4(11.6) 0.68 ± 0.08 248 0.37 329.181 1911 330 [1,2,7,8℄TW Pi
⋆ 83.766,-57.998 IP?/VY S
l?•• 2.5 B1(5.8) 0.3 ± 0.07 363 1.61 - - - [1,2,9,10,11℄BY Cam 85.728,60.842 AP 1.2 B5(5.1) 0.69 ± 0.11 162 3.7 201.298 11846.4 140 [1,2℄MU Cam 96.316,73.567 IP 0.6 B4(5.4) 0.24 ± 0.06 548 1.29 283.104 1187.24 440 [1,2,12℄SWIFT J0732.5−1331⋆ 113.13,-13.513 IP 1.6 B3(6.1) 0.39 ± 0.06 409 2.09 336.24 512.42 - [1,2,13℄V834 Cen 212.260,-45.290 P 0.9 B1(5.4) 0.16 ± 0.03 1675 0.86 101.51712 6091.0272 70 [1,2℄IGR J14536−5522 223.421,-55.394 P 2.0 B4 (11.9) 0.27 ± 0.03 2658 1.45 189.36 11361.6 140 [1,2,14℄NY Lup 237.052,-45.481 IP 0.5 B5(49.1) 1.17 ± 0.03 3141 6.28 591.84 693.01 - [1,2,15℄V2400 Oph 258.173,-24.279 IP 2.2 B1(33.4) 0.68 ± 0.02 4453 3.65 204.48 927.6 180 [1,2,16℄1H 1726−058 262.606,-5.984 IP 0.7 B5(22.8) 0.85 ± 0.04 1449 4.56 925.27 128 - [1,2,17℄V2487 Oph 262.960,-19.244 IP/N•• 2.3 B3(9.1) 0.18 ± 0.02 4562 0.97 - - - [1,2,18℄AX J1832.3−0840⋆ 278.083,-8.721 ? 3.1 B4(5.5) 0.07 ± 0.03 3090 0.38 - - - [1,2,19,20℄V1223 Sgr 283.753,-31.153 IP 0.8 B5(52.2) 1.45 ± 0.03 2358 7.79 201.951 746 150 [1,2℄V1432 Aql 295.052,-10.421 AP 0.2 B5(10.8) 0.69 ± 0.07 429 3.7 201.938 12150.4 240 [1,2,21,22℄V2069 Cyg 320.906,42.279 IP• 1.8 B5(6.2) 0.21 ± 0.03 1648 1.13 448.824 743.2 - [1,2,23,24℄1RXS J213344.1+510725 323.446,51.122 IP 0.3 B5(25.8) 0.65 ± 0.03 2207 3.49 431.568 570.82 - [1,2,25℄SS Cyg 325.698,43.582 DN 0.6 B5(23.0) 0.7 ± 0.03 1674 3.76 396.1872 - - [1,2,26℄FO Aqr 334.514,-8.354 IP 1.7 B4(6.1) 0.65 ± 0.2 54 3.49 290.966 1254.45 250 [1,2,27℄AO Ps
⋆ 343.815,-3.194 IP 1.3 B4(4.8) 0.43 ± 0.11 108 2.31 215.461 805.2 200 [1,2,28,29℄Referen
es: [1℄Ritter and Kolb [2003℄; [2℄Downes et al. [2005℄; [3℄Bonnet-Bidaud et al. [2007℄; [4℄Masetti et al. [2006a℄;[5℄Bonnet-Bidaud et al. [2001℄; [6℄Norton and Mukai [2007℄; [7℄Hellier [1993℄; [8℄Augusteijn et al. [1994℄; [9℄Bu
kley and Tuohy [1990℄;[10℄Chen et al. [2001℄; [11℄Norton et al. [2000℄; [12℄Araujo-Betan
or et al. [2003℄; [13℄Butters et al. [2007℄; [14℄Masetti et al. [2006b℄;[15℄de Martino et al. [2006℄; [16℄Hellier and Beardmore [2002℄; [17℄Gänsi
ke et al. [2005℄; [18℄Hernanz and Sala [2002℄; [19℄Muno et al.[2004℄; [20℄Sugizaki et al. [2000℄; [21℄Watson et al. [1995℄; [22℄Ge
keler and Staubert [1997℄; [23℄Thorstensen and Taylor [2001℄;[24℄de Martino et al. [2009℄; [25℄Bonnet-Bidaud et al. [2006℄; [26℄Friend et al. [1990℄; [27℄Marsh and Du
k [1996℄;[28℄Kaluzny and Semeniuk [1988℄; [29℄van Amerongen et al. [1985℄;a⋆ indi
ates new hard X-ray dete
tionsbRight as
ension and de
lination in degrees, J2000
IP=intermediate polar, P=polar, AP=asyn
hronous polar, N=nova, DN=dwarf nova. All are 
on�rmed ex
ept for •:probable, ••: possibledAngular distan
e between the DRK
at 
atalogue positions and the IBIS 
oordinateeIBIS dete
tion only. Map with maximum signi�
an
e: (B1) 20-40 keV; (B2) 30-60 keV; (B3) 20-100 keV; (B4) 17-30 keV; (B5) 18-60 keV; inbra
kets appears the signi�
an
e value.fDetermined between 20-100 keVgThe �ux is 
al
ulated assuming a power law spe
tra with index of -2.9, the average index for IPs (Barlow et al. 2006) in unitis of

10
−11erg cm−2 s−1hThe distan
es have been 
omputed with 2MASS K band magnitudes (Cutri et al. 2003) using the method presented by Knigge [2006℄ basedon the evolution of the se
ondary.
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Table 4.2: Additional mCVs dete
ted by IBIS not in
luded in DRK
at.Name α, δ type Map 
ode Count ratea Exposure Flux Porb Pspin Distan
e Refs(ct s−1) (ks) 20-100 keV (min) (k) (p
)IGR J08390−4833 129.705,-48.524 IP•• B5(6.3) 0.08 ± 0.02 3072 0.43 � � � [1℄XSS J12270−4859 187.004,-48.906 IP•• B5(9.9) 0.42 ± 0.04 955 2.26 � � � [2,3,4℄IGR J15094−6649 227.406,-66.823 IP B5(11.0) 0.18 ± 0.03 3265 0.97 353.40 809.42 600 [3,5℄IGR J16167−4957 244.140,-49.974 IP•• B4(20.7) 0.4 ± 0.02 3466 2.15 � � � [3℄IGR J16500−3307 252.491,-33.114 IP/DN B1(13.3) 0.33 ± 0.03 3353 1.77 217.02 597.92 270 [5,6℄IGR J17195−4100 259.906,-40.997 IP B5(23.3) 0.54 ± 0.02 4279 2.9 240.30 1139.55 120 [2,3,5℄IGR J18173−2509 274.353,-25.158 IP•• B1(14.9) 0.27 ± 0.01 5744 1.45 � � � [7℄IGR J18308−1232 277.696,-12.532 IP•• B5(7.1) 0.18 ± 0.03 3265 0.97 � � � [8℄IGR J19267+1325 291.670,13.425 IP• B5(7.5) 0.15 ± 0.03 2963 0.81 � � � [9,10℄All 
lassi�
ations are 
orre
t ex
ept for, •: probable 
lassi�
ation ••: possible 
lassi�
ation. Referen
es:[1℄Kniazev et al. [2008℄;[2℄Butters et al. [2008℄; [3℄Masetti et al. [2006b℄; [4℄Saitou et al. [2009℄; [5℄Pretorius [2009℄; [6℄Masetti et al. [2008a℄; [7℄Masetti et al.[2008b℄; [8℄Parisi et al. [2008℄; [9℄Steeghs et al. [2008℄; [10℄Evans et al. [2008℄.aDetermined between 20-100 keV



CHAPTER 4. MCVS: BACK IN BUSINESS 125Table 4.3: Additional IPs used in this work dete
ted with Swift/BAT andSUZAKU /HXD with known spin and orbital periods.Name α, δ type Dete
tion Porb Pspin Refs(min) (s)V1062 Tau 75.615,24.756 IP BAT 597.60 3726 [1℄TX Col 85.834,-41.032 IP BAT 343.15 1909.7 [1℄V405 Aur 89.897,53.896 IP BAT 249.12 545.455 [1℄BG CMi 112.871,9.940 IP BAT 194.04 847.03 [1℄PQ Gem 117.822,14.740 IP BAT 310.80 833.4 [1℄DO Dra 175.910,71.689 IP BAT 238.139 529.31 [1℄EX Hya 193.102,-29.249 IP BAT 98.257 4021.62 [1℄AE Aqr 310.038,-0.871 IP HXD 592.785 33.0767 [2℄Referen
es:[1℄Bruns
hweiger et al. [2009℄; [2℄Terada et al. [2008℄.posed of small �eld of view pointings. This does not allow the teles
ope toprodu
e survey data like IBIS or BAT, however mCVs have been dete
tedand observed with HXD. In parti
ular HXD had observed the IP AE Aqr[Terada et al., 2008℄, whi
h has not been observed with either IBIS or BAT,and therefore is in
luded in our study as well. We 
aution however that the pos-sible origin of the hard X-rays in AE Aqr 
ould be non-thermal [Terada et al.,2008℄. This however has not been shown in full, and given the power-law model�t to the 3-25 keV spe
tra of AE Aqr yielding an index of 2.10 [Terada et al.,2008℄ not far from the indi
es found in fast spinning mCVs [Landi et al., 2009℄.Moreover, Mau
he [2009℄ has very re
ently brought forward additional evi-den
e, using Chandra/HETG, that the high energy X-ray ex
ess in AE Aqris of thermal nature, so we believe this obje
t should still be in
luded in ouranalysis.All the IPs observed with BAT and HXD used in this study are presented inTable 4.3, together with their orbital and spin periods. It is worth pointing out,that as CVs are a very lo
al population, we expe
t to see them as an isotropi
distribution, whi
h favours IBIS and BAT, but parti
ularly BAT whi
h has a
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overage.4.5 The Porb - Pspin planeTheoreti
al simulations on the evolution of mCVs have been performed byNorton et al. [2008b, 2004℄. One interesting predi
tion of these models is thatof di�erent a

retion �ows for IPs depending on where they are in their evo-lutionary stage. In parti
ular these models also predi
t the existen
e of spinequilibria among IPs, one at about Pspin/Porb ∼ 0.1 and a se
ond one at
Pspin/Porb ∼ 0.6 (depending on mass ratio).Figure 4.8 shows the Porb - Pspin plane for mCVs together with their orbital,spin and syn
hroni
ity (Pspin/Porb) distributions. The hard X-ray dete
tedsystems used in this work are shown with stars. Also plotted for referen
e isthe period gap and three �syn
hroni
ity� lines showing Pspin = Porb (polars),
Pspin = 0.1Porb and Pspin = 0.3Porb. It is 
lear that most of the hard X-raydete
ted systems are above the period gap and have Pspin ≤ 0.1Porb. Theonly IP system outside this range is EX Hya whi
h is 
loser than 100 parse
[Bruns
hweiger et al., 2009℄. Similarly to the two dete
ted polars, it is of noreal surprise that hard X-ray dete
tors 
an see this 
lose obje
t.The fa
t that no IP has yet been observed with hard X-ray teles
opes abovethe period gap with Pspin/Porb >> 0.1 suggests that these IPs may have dif-ferent a

retion �ows, yielding di�erent emission me
hanisms 
ompared to IPswith Pspin/Porb < 0.1. This idea is supported by the fa
t that the distributionof all known mCVs does indeed seem to peak at about Pspin/Porb ∼ 0.1 inthe bottom left panel in Figure 4.8, where a spin equilibrium has been pre-di
ted. As IPs evolve from low syn
hroni
ity (Pspin/Porb << 0.1) towards their
Pspin/Porb ∼ 0.1 equilibrium, their a

retion �ows resemble those of propeller



CHAPTER 4. MCVS: BACK IN BUSINESS 127systems, where a lot of the material in
oming from the se
ondary is a
tuallypropelled away and does not rea
h the pole of the WD. So in essen
e most IPswith Pspin/Porb << 0.1 have yet to rea
h their equilibrium (regardless of �eldstrength), and their a

retion �ows are di�erent from any other IP elsewherein the Pspin - Porb plane [Norton et al., 2008b, 2004℄. As a 
onsequen
e onewould not ne
essarily expe
t the hard X-ray emission me
hanisms to be thesame for all IPs.Another interesting observational feature of this plane is that only one un-
on�rmed IP system, V697 S
o, lies within what we 
all the syn
hroni
ity gap:a region in the Porb - Pspin plane within Pspin > 0.3Porb and total syn
hroni
ityabove the period gap. The low number of IP systems with high syn
hroni
-ity above the period gap is also predi
ted by the models. As explained byNorton et al. [2008b, 2004℄, as mCVs evolve, both their mass ratios and orbitalperiod de
rease. These trends individually 
ause opposite shifts in the spin-to-orbital ratio at whi
h the spin-equilibrium o

urs for a given magneti
 �eld. Asa result, typi
al IPs with magneti
 �eld strength of a few MG will evolve frombeing dis
-like a

retors at long orbital period (where Pspin/Porb ∼ 0.1), toring-like a

retors at short orbital period (where Pspin/Porb ∼ 0.6), providingthat they do not syn
hronise along the way and be
ome polars. The two spin-to-orbital equilibria are determined approximately by two 
onditions. The �rst
Pspin/Porb ∼ 0.1, is given by the 
ondition that Rco ∼ Rcirc [King and Wynn,1999℄, where Rco is the 
orotation radius, at whi
h matter within the a

retiondisk 
orotates with the magneti
 �eld lines, and Rcirc the 
ir
ularisation radiusat whi
h point the Kepler spe
i�
 angular momentum equals that of the matterbeing a

reted through the L1 point. The se
ond equilibria at Pspin/Porb ∼ 0.6is given by the 
ondition Rcirc ∼ b, where b is the distan
e of the L1 pointto the WD. Both these 
onditions 
ome from the intera
tion of the magneto-
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 radius with the formed a

retion disk, and more information 
an befound in King and Wynn [1999℄. If the magneti
 �eld of the systems is of theorder of a few hundred MG, on the other hand, then they will be prone tosyn
hronise and be
ome polars, 
rossing the syn
hroni
ity gap fairly qui
kly,helping explain the low number of systems in this region. This is the likelyhistory of EX Hya and systems neighboring it in the Porb - Pspin plane.We therefore predi
t that, given the already long exposure times a

umu-lated with IBIS and BAT, the IPs within Pspin = 0.1Porb and Pspin = 0.3Porbregion (syn
hroni
ity gap) will not be dete
ted in signi�
ant numbers. Con-versely we expe
t most of the IPs with Pspin < 0.1Porb to be observable withlonger exposure times and better sensitivity.4.5.1 Are hard X-ray mCVs di�erent?It should be 
lear by now that hard X-ray teles
opes are more sensitive at de-te
ting the IP population rather than the polar one. However it is not yet 
learwhether hard X-ray teles
opes are produ
ing populations whi
h are 
onsistentwith being drawn from the general mCV population (mostly identi�ed throughsoft X-rays). In order to assess this we have performed a Kolmogorov-Smirnovtest (KS test) on all the Pspin, Porb and Pspin/Porb distributions of hard X-raysele
ted samples versus the known mCV population taken from RK
at. In all
ases the test reje
ts the null hypothesis that the distributions are drawn fromthe same parent with 99.99% 
on�den
e.As mentioned before, the di�eren
e in distributions within Porb (bottompanel in Figure 4.8) between these sets 
ould be 
aused by the fa
t that allmCVs below the period gap are intrinsi
ally less luminous given their lowera

retion rates. However it does not ex
lude the possibility that the X-rayemission me
hanism for mCVs below the period gap is substantially di�erent



CHAPTER 4. MCVS: BACK IN BUSINESS 129Figure 4.8: Porb vs. Pspin for mCVs taken from RK
at. Stars indi
ate mCVsdete
ted at hard X-ray energies. Also plotted is the period gap and �syn
hroni
-ity� lines. For referen
e we also display the orbital, spin and syn
hroni
itydistributions. The shaded green areas represent hard X-ray sele
ted mCVs.
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CHAPTER 4. MCVS: BACK IN BUSINESS 130than the mCVs above the gap. Both of these e�e
ts 
an be regarded as sys-temati
, however the possibility of hard X-ray missions dete
ting homogeneousIP samples has already been suggested by Gänsi
ke et al. [2005℄, and here webring forward more observational eviden
e for this. It is 
lear however that ifmCVs below the period gap emit hard X-rays, then 
urrent teles
opes are notsensitive enough to dete
t them without deeper exposures.Moreover, from the Pspin/Porb KS test (bottom left panel in Figure 4.8)result we 
an also 
omment on the fa
t that hard X-ray teles
opes are notsensitive to high syn
hroni
ity systems. These do not ne
essarily have to livebelow the period gap, and in fa
t about half of the polar population lives abovethe gap. This suggests that hard X-ray surveys are very insensitive to the polarpopulation as well as mCVs below the period gap. We 
an also look at thisresult and suggest that, on the other hand, hard X-ray surveys are extremelysensitive to IPs with long Porb and to systems with low Pspin/Porb.4.6 Hard X-ray properties of mCVsAs revealed in Barlow et al. [2006℄ and Landi et al. [2009℄, the vast majorityof IBIS dete
ted CVs are magneti
 (the only ex
eption being SS Cyg). Thetotal number of obje
ts with known spin and orbital periods in our sampleis 30 systems, of whi
h 22 are IBIS dete
tions (18 IPs). It is interesting tonote the relative in
iden
e of polar systems and intermediate polars. Opti
allysele
ted samples favour the former, with the number of known polars beingtwi
e that of IPs. However, in our hard X-ray sele
ted sample, the pi
ture isvery di�erent, with only 4 polars being in
luded in the sample (2 of whi
h areAPs). This result is expe
ted, as IPs are known to produ
e ≈ 10 times morehard X-rays than polars due to their higher mass transfer and intrinsi
ally



CHAPTER 4. MCVS: BACK IN BUSINESS 131harder spe
trum [Warner, 2003℄.Only two syn
hronous polars have been dete
ted in our sample, both atrelatively 
lose distan
e and in regions of the sky with high exposure times.This leads us to 
on
lude that the �ux in the hard X-ray range for these systemsis mu
h lower when 
ompared to IPs or APs. We note from Table 4.1 that thetwo dete
ted polars are among the 
losest obje
ts in our sample, and hen
eit is probably for this reason that IBIS (and BAT, [Tueller et al., 2009℄) 
ansee them. We have also 
he
ked this by inspe
ting where other polars sit inthe INTEGRAL exposure map and 
on
lude that more deep observations arerequired before more of these systems are dete
ted in the hard X-ray range.Two of the four 
on�rmed asyn
hronous polars (APs) are also in
luded inour sample. At �rst one might think that these systems should have propertiesresembling the polar 
lass. However, as shown by S
hwarz et al. [2005℄, theira

retion rates are ≈ 10 − 20 times greater than that of polars. Moreoverboth INTEGRAL dete
ted APs are 2-3 magnitudes brighter than the twonon-dete
ted APs in the K-band. This, together with our distan
e estimatessuggests that our e�
ien
y at dete
ting APs in the hard X-ray range is ≈

50%, similar to the IPs. We note that the two APs not dete
ted are CD Ind[S
hwope et al., 1997℄ and V1500 Cyg [Lan
e et al., 1988℄ and have exposuresof 3ks and 1987ks respe
tively. We further note for the re
ord that neither theROSAT all-sky bright or faint sour
e 
atalogues do not 
ontain V1500 Cyg,whilst they do 
ontain the other 3 APs, whi
h might suggest a low �ux in theX-ray range for this sour
e and thus explain the non dete
tion by INTEGRALat the moment, despite the 2Ms exposure..



CHAPTER 4. MCVS: BACK IN BUSINESS 132Figure 4.9: 30-60/17-30 keV hardness versus spin period for the hard X-raysele
ted mCVs used in this work. Polars and APs are shown in empty squares.
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4.7 Hardness plane 
orrelationsThe produ
tion of hard X-ray photons from mCVs is thought to originate inthe post-sho
k region of the WD by bremsstrahlung 
ooling of free ele
trons.This is somewhat di�erent to softer X-rays (< 2 keV) seen from mCVs, whi
h
an originate from a bla
kbody 
omponent 
lose to the WD surfa
e. In fa
t inre
ent years many medium resolution X-ray spe
tra have been obtained for dif-ferent kinds of mCVs [Masetti et al., 2008a, S
hwarz et al., 2005, Butters et al.,2008, Evans et al., 2008, Done and Magdziarz, 1998, Landi et al., 2009℄ andhave been �tted with a soft bla
kbody 
omponent (kT ≈ 80eV) plus a hard
omponent 
hara
terised by the strati�ed a

retion 
olumn of Cropper et al.[1999℄. For those mCVs that are dete
ted in the hard X-ray range the de-te
tion only samples the bremsstrahlung 
omponent. In parti
ular the hardX-ray energy range (> 17 keV) is telling us about the temperature distributionof 
omponents within the multi-temperature bremsstrahlung emission, not theratio of hard-to-soft X-ray 
omponents.



CHAPTER 4. MCVS: BACK IN BUSINESS 133
Figure 4.10: 30-60/17-30 keV hardness versus orbital period for the hard X-raysele
ted mCVs used in this work. Polars and APs are shown in empty squares.
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Figure 4.11: 30-60/17-30 keV hardness versus Pspin/Porb for the hard X-raysele
ted mCVs used in this work. Polars and APs are shown in empty squares.We note the evident 
orrelation for IPs with Pspin/Porb < 0.1.
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CHAPTER 4. MCVS: BACK IN BUSINESS 134Keeping this in mind, Figures 4.9, 4.10 and 4.11 shows the s
atter plots forhardness, de�ned as the 
ount ratio in the 30-60 keV and 17-30 keV bands, ver-sus Pspin, Porb and Pspin/Porb respe
tively for all hard X-ray dete
ted mCVsused in this work. In red, we show all mCVs seen by IBIS, in blue, BAT-dete
ted mCVs and in bla
k, we show the only IP used in this work observedby HXD, AE Aqr. In order to obtain hardness ratios for BAT and HXD mCVs,we have reprodu
ed their bremsstrahlung spe
tra (power law for AE Aqr) us-ing the temperatures (or photon index) provided by Bruns
hweiger et al. [2009℄and Terada et al. [2008℄, respe
tively. We then extra
ted the hardness ratiofrom the spe
tra taking into a

ount errors2 (symmetri
 for all) by also re-produ
ing the hottest and 
oldest spe
tra using the published errors for ea
hsour
e and 
omputing the hardness. Before being able to add the BAT points toFigures 4.9, 4.10 and 4.11 it is ne
essary to remove systemati
 
ross-
alibrationdi�eren
es between the IBIS hardness and the BAT ones. Figure 4.12 showsthe BAT hardness vs. the IBIS hardness for a sample of 13 IPs in 
ommonto both. In red we display the one-to-one line where most of the data shouldsit in the absen
e of systemati
 di�eren
es between the IBIS and BAT 
alibra-tions. However, it is easily noti
eable that the BAT extrapolated hardness'sare systemati
ally harder than the IBIS ones. This 
ould be 
aused by thedi�erent response matri
es of the dete
tors. We 
ompensate approximatelyfor this by �tting a straight line through the datapoints and the origin (bla
kline in Figure 4.12). We then apply a 
orre
tion to all the BAT points beforeplotting them in Figures 4.9, 4.10 and 4.11.All three plots show evident signs of 
orrelations with hardness ratio when
onsidering IPs alone. In parti
ular, when 
onsidering IPs with Pspin/Porb <

0.1 (systems whi
h are on their way to equilibrium at Pspin/Porb = 0.1 and2We note that normalisation 
onstants are not required when inferring hardness ratiosfrom single model spe
tra



CHAPTER 4. MCVS: BACK IN BUSINESS 135Figure 4.12: BAT extrapolated hardness vs. IBIS measured hardness. In blueis the data. In red we show a one to one line for referen
e. The 
ross-
alibration�t is displayed in bla
k. We note that both BAT and IBIS errors were takeninto a

ount when �tting.
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are therefore ex
lusively in the propeller stage), then the 
orrelations be
omeeven more evident. In order to obtain a signi�
an
e for these 
orrelationsobserved for the IPs thought to be in the propeller stage, we performed aSpearman rank test using a Monte-Carlo s
heme. At �rst we de
ided to test theIBIS observations only, as we believe these are the measurements with lowestsystemati
 errors. For example, in order to test if the 
orrelation betweenhardness and Pspin is signi�
ant, we 
reated 100,000 mo
k data sets 
ontainingthe same number of points but shu�ing the Pspin values randomly ea
h time.Moreover, in order to take the hardness un
ertainties into a

ount, we repla
edea
h hardness value with a random variable drawn from a normal distributionwhose mean is equal to the observed hardness and whose standard deviationis equal to the error on the observation. We then 
al
ulated the Spearmanrank 
oe�
ients, ρ. The distributions of the 
oe�
ients for all Pspin, Porband Pspin/Porb are shown in Figure 4.13. Also displayed in ea
h panel is the



CHAPTER 4. MCVS: BACK IN BUSINESS 136Figure 4.13: Results from the Monte-Carlo simulation for estimating the 
or-relation signi�
an
es of the IBIS IPs only. The distributions display the 
al-
ulated ρ 
oe�
ients for our mo
k datasets. We display with an arrow the
al
ulated 
oe�
ient for the real set.
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signi�
an
e for the 
al
ulated Spearman rank value of the real data. These are
3.48σ, 2.74σ and 3.47σ for Pspin, Porb and Pspin/Porb respe
tively.The fa
t that the 
orrelation is apparent in all three plots is somewhatexpe
ted, sin
e Pspin and Porb are not independent, but expe
ted to evolve to-gether (Norton et al. 2008b, 2004). At this stage we perform the same exer
iseas for Figure 4.13, but this time in
luding the additional IPs above the periodgap observed by BAT only, and AE Aqr as observed by HXD. The results forthis simulation are presented in Figure 4.14.As a �nal step we de
ided to extend our analysis further for the observed
orrelation in Pspin/Porb vs. hardness, given that, from an evolutionary per-spe
tive, it is expe
ted to be the most relevant parameter [Norton et al., 2008b,2004℄. We produ
e a linear �t in log-log spa
e to the Pspin/Porb vs. hard-
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Figure 4.14: Results from the Monte-Carlo simulation for estimating the 
orre-lation signi�
an
es of the IBIS, BAT and HXD IPs. The distributions displaythe 
al
ulated ρ 
oe�
ients for our mo
k datasets. We display with an arrowthe 
al
ulated 
oe�
ient for the real set.
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CHAPTER 4. MCVS: BACK IN BUSINESS 138ness plot in Figure 4.15 for the hard X-ray sele
ted mCVs used in this work3.Again we 
hose to perform the analysis on the IBIS-only IPs for 
onsisten
y.When this is done, a non a

eptable value of 4.5 is obtained for a redu
ed
χ2. However, following a similar pro
edure to Tremaine et al. [2002℄ andM
Hardy et al. [2006℄, we introdu
e a small intrinsi
 dispersion of 0.0046 toall our datapoints in linear spa
e. This 
orresponds to ≈ 1% for the soft IPs inFigure 4.15 and ≈ 0.5% to the hardest IPs. There may be many reasons whysu
h a small error might be introdu
ed, ranging from a ≈ 1% error in the IBISresponse, to any small spe
tral variability intrinsi
 to the observed systems.The addition of this intrinsi
 dispersion lowers the redu
ed 
hi-squared to unityand results in more 
onservative errors on the �t parameters. In Figure 4.15 wedisplay the 
ontour plots for our linear �t in the top panel, and the �t itself onthe bottom. Note that the 
ontours represent lines of σ =1, 2, 3, 4, 5. Againone 
an see that a simple 
onstant value straight line �t is not 
onsistent withthe data. The resulting equation to the �t 
an be expressed as 30-60/17-30keV = ((Pspin/Porb)− 0.0259)−0.21±0.05 − 100.09±0.03, and may prove useful formodeling these systems and observations in the future. However at this stage,this is a purely empiri
al model.4.8 Dis
ussionIBIS has so far dete
ted 32 CVs (23 spatially 
orrelated with known CVs + 9new, opti
ally 
on�rmed dis
overies). The majority are intermediate polars,but IBIS has also dete
ted the bright dwarf nova SS Cyg and a few polars.This sample is an extension of the previously presented sample of IBIS CVsby Barlow et al. [2006℄, whi
h also showed that the spe
tral 
hara
teristi
s of3We have tried various polynomials but these all worsened the �t
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Figure 4.15: Top panel: Contours for a linear �t to the datapoints in thebottom panel. Lines display 
ontours for σ = 1, 2, 3, 4, 5. Bottom panel: IBISIP hardness as a fun
tion of syn
hroni
ity. The equation resulting from the �tis 30-60/17-30 keV = ((Pspin/Porb) − 0.0259)−0.21±0.05 − 100.09±0.03
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CHAPTER 4. MCVS: BACK IN BUSINESS 140these obje
ts in the 20-100 keV range are a
tually quite similar and 
omparewell with previous high-energy spe
tral �ts. Moreover BAT has observed asimilar number of obje
ts (with many in 
ommon), whi
h shows that modernhard X-ray surveys are able to 
onsistently observe mCVs at higher energiesthan before.The high in
iden
e of IPs in our sample is not unexpe
ted. Many authors[Kuijpers and Pringle, 1982, Warner, 2003℄ have suggested that the lower levelsof hard X-rays/soft gamma-rays emission from polars may well be related tothe low a

retion rate and stronger magneti
 �elds 
ompared to IPs. It has alsobeen suggested that the strong magneti
 �elds in polars are able to produ
ea more �blobby� �ow. These high density �blobs� are then able to penetratedeeper within the post-sho
k region and 
ontribute more to the bla
kbody
omponent of the broadband X-ray spe
trum, and less to the bremsstrahlung
omponent, making the broadband X-ray spe
trum of IPs harder, and hen
emore luminous in the hard X-rays.Two out of four known APs are observed in our sample. The remainingtwo happen to be in a region of low IBIS exposure and are likely more distant.S
hwarz et al. [2005℄ have already shown that BY Cam, one of the observedAPs, has di�erent properties from those of normal polars, in parti
ular havinga mu
h higher a

retion rate. We therefore tentatively 
on
lude that IBIS hasnot yet seen the two missing APs due to their distan
e/exposure. Our sampleonly in
ludes 2 de�nite syn
hronous polars, and we do not expe
t many ofthese systems to be observed in the future with higher sensitivities above 17keV.Of the many observational 
hara
teristi
s presented here, one feature in the
Pspin − Porb plane has stood out sin
e the �rst study by Barlow et al. [2006℄:a very low number of IPs below the period gap are dete
ted with hard X-ray



CHAPTER 4. MCVS: BACK IN BUSINESS 141teles
opes. The only ex
eption in our study is the very nearby IP EX Hya.We 
an 
ompare this result to the theoreti
al models of Norton et al. [2008b,2004℄. It is believed that the IPs below the period gap have a

retion �owswhi
h are very di�erent to the IPs above the period gap. We would thereforenot ne
essarily expe
t these systems to behave in the same way as the systemsabove the period gap, and, in parti
ular, we would not ne
essarily expe
tthem to emit su
h high energy photons. This is still an open question, and,as mentioned by Norton et al. [2008a℄, only deeper hard X-ray exposures willreveal if this sub
lass of IPs displaying ring-like a

retion is able to produ
esimilar amounts of hard X-rays as those observed in disk-fed systems at longerorbital periods. It has already been mentioned [Norton et al., 2008b℄ that asmCVs evolve through the period gap the magneti
 �eld of the WD may be ableto resurfa
e when a

retion stops. This 
an allow the system to syn
hronise,and we would then expe
t a system jumping from Pspin ≈ 0.1Porb above theperiod gap to Pspin ≈ Porb below the period gap. Moreover we add to this thatany system with Pspin/Porb ≥ 0.6 will never rea
h equilibrium until it rea
hestotal syn
hronisation [Norton et al., 2008b, 2004℄.All of the hard X-ray dete
ted IP systems display Pspin < 0.1Porb, whilstnone have been observed with Pspin > 0.1Porb. This may be more observationaleviden
e for di�erent kinds of a

retion �ows within the IP 
lass, supportingthe models of Norton et al. [2008b, 2004℄. More eviden
e for these models
omes from the non-dete
tion of obje
ts in any wavelength range within thesyn
hroni
ity gap (a region above the period gap within Pspin/Porb > 0.3 and
Pspin/Porb < 1). Su
h systems are predi
ted not to be very rare sin
e IPstend to evolve within the Pspin − Porb plane towards their equilibrium spinrate at Pspin ≈ 0.1Porb above the period gap or at Pspin ≈ 0.6Porb below thegap. Norton et al. 2008b, 2004 have predi
ted that low syn
hronisation mCVs
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retion �ows and are all trying to rea
h equilibrium movingtowards Pspin ≈ 0.1Porb. This equilibrium arises due to the WD trying tobalan
e angular momentum with the surrounding blobs. We believe this is the
ase for most hard X-ray sele
ted IPs, as relatively few have yet been foundabove Pspin = 0.1Porb where the a

retion �ow is thought to take the form ofa stream.Perhaps the most interesting result of this study is the dis
overy of a 
orre-lation between 30-60/17-30 keV hardness and spin/orbital parameters for IPs.No similar 
orrelation has been reported before, probably be
ause previouslymeasured X-ray hardness ratios of IPs were generally restri
ted to the rangeof approximately ∼ 0.5 − 10 keV. Su
h ratios sample the lower end of thebremsstrahlung spe
trum and the upper end of the bla
kbody spe
trum, with-out fully measuring either 
omponent. In 
ontrast, we note that the spe
tralhardness variations we have measured in our hard X-ray dete
ted IPs span theenergy range∼ 17 − 60keV and are only sampling the bremsstrahlung 
ompo-nent of the spe
trum. Therefore these observations tell us nothing about therelative 
ontributions of the bremsstrahlung 
omponent emitted by the 
ool-ing plasma below the a

retion sho
k and the bla
kbody 
omponent arisingfrom the heated WD surfa
e. Instead, they are dire
tly sampling the relative
ontributions of the multi-temperature bremsstrahlung 
omponents that arisein the plasma below the sho
k front (the plasma 
ools as it settles towards theWD surfa
e).In order to explain the 
orrelation between X-ray spe
tral hardness andspin-to-orbital period ratio in the hard X-ray dete
ted IPs, we propose thatthe WDs in IPs are mostly a

reting 
lose to their equilibrium spin rates[Norton et al., 2004℄. Hen
e, their spin-to-orbital period ratios are an indi-
ation of their magneti
 �eld strength (see Figure 6 in Norton et al. 2008b).



CHAPTER 4. MCVS: BACK IN BUSINESS 143Broadly speaking, for smaller Pspin/Porb, the surfa
e magneti
 �eld strengthis smaller. So these systems will have smaller magnetospheri
 radii, and thematerial will atta
h onto �eld lines 
loser to the WD. This will give rise to alarger footprint area in those systems with smaller values of Pspin/Porb. Thatis to say, faster spinning WDs will have larger a

retion footprints beneath awide but low a

retion 
urtain, as suggested in Norton et al. [1999℄. Eviden
efor this also 
omes from the observed double-peaked pulse pro�les observedin fast spinning WD (hen
e owning a small magneti
 �eld) as des
ribed inNorton et al. [1999℄, resulting from the opti
al depths a
ross and along thea

retion 
urtains as the WD rotates.By spreading the material over a larger area, we suggest that the resultingbremsstrahlung X-ray emission may have a harder spe
trum, possibly be
ausethe a

retion sho
k is 
loser to the WD surfa
e and there is less distan
e forthe plasma to travel as it 
ools within the post-sho
k region towards the WDsurfa
e and so there is less 
ontribution from 
ooler bremsstrahlung 
ompo-nents. In 
ontrast, the systems with a relatively slowly spinning WD have alarger Pspin/Porb value, so their magneti
 �eld strength is larger, their mag-netospheri
 radius is larger, and their a

retion footprint is smaller and sitsbeneath a tall but narrow a

retion 
urtain. We suggest that this geometrygives rise to a softer bremsstrahlung spe
trum, possibly be
ause the a

retionsho
k is further from the WD surfa
e and so there is a greater distan
e for theplasma to travel within the post-sho
k region and 
ool as it falls towards theWD surfa
e. This interpretation also helps explain the low dete
tion numberin the hard X-ray domain of EX Hya-like systems below the period gap withhigh Pspin/Porb whi
h are thought to display ring-like a

retion. In these 
asesthe magnetospheri
 radius extends to a very large distan
e from the WD im-plying a very small footprint area. If this then means a very tall sho
k height



CHAPTER 4. MCVS: BACK IN BUSINESS 144Figure 4.16: Figure illustrating the footprint geometry on the WD surfa
e.The image on the left displays the out
ome of a high Pspin/Porb system wherea

reted material is lat
hed onto the �eld lines far from the WD. This willyioeld a tall but narrow a

retion 
olumn on the WD poles. The �gure on theright displays the footprint geometry for a low Pspin/Porb system (and therforefast Pspin). A

reted material is lat
hed 
lose to trhe WD 
reating a short butwide a

retion footprint on the WD. Figures taken from Norton et al. [1999℄.

(in line with the interpretation above), then the plasma will have a long dis-tan
e over whi
h to 
ool as it travels towards the surfa
e, and the spe
trumwill be dominated by softer photons. As far as we are aware, no-one has mod-elled whether the multi-temperature bremsstrahlung spe
trum is di�erent fora wide, low a

retion 
urtain 
ompared with a tall, narrow a

retion 
urtain,but we suggest this would be a worthwhile test to 
arry out.4.9 Con
lusionsThis 
hapter has presented a 
atalogue and analysis of a sample of CVs de-te
ted in the hard X-ray range (> 17keV) with IBIS, BAT and HXD. As withpreviously 
ompiled high-energy samples of CVs, it is shown that most systemsare magneti
. Moreover, some of the dete
ted systems are very rare types ofobje
ts (2 APs). The sample is dominated by intermediate polars, with only2 syn
hronous polars. This suggests the broadband X-ray/gamma-ray spe
-trum of IPs is harder and more luminous than that of polars. This 
ould be
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t of a

retion rate and magneti
 �eld strength, where IPs have highera

retion and weaker magneti
 �elds relative to polars, depositing a somewhatsmoother a

retion stream onto the poles. By 
ontrast to the polars, the a
-
retion �ow in IPs may therefore not bury itself deep within the post-sho
kregion, produ
ing a harder broadband X-ray/gamma-ray spe
trum.We have shown that only IPs with Pspin/Porb < 0.1 are 
onsistently foundby hard X-ray surveys. Moreover, we have examined the observational prop-erties of mCVs in the Porb- Pspin plane. We �nd that the observations are
onsistent with the theoreti
al models of Norton et al. [2008b, 2004℄ for mCVevolution, where IPs tend to 
luster at about Pspin/Porb ≈ 0.1, and none haveyet been observed in the hard X-ray regime above Pspin/Porb ≈ 0.1. Alsoobserved and predi
ted is the observation that a very low number of IPs arefound in any wavelength range within the syn
hroni
ity gap: a region between
Pspin/Porb ≈ 0.3 and Pspin/Porb = 1.The 
hapter has also presented the �rst observed 
orrelations between the
Flux30−60/F lux17−30 keV hardness and Pspin, Porb and Pspin/Porb. The 
or-relations have been statisti
ally tested using Monte Carlo simulations.In an attempt to explain our result we have suggested that hard X-raysele
ted IPs are spinning towards their equilibrium, so that their spin periodis an indi
ator of magneti
 �eld strength. This in turn will give rise to a short,but wide, post-sho
k region for fast spinning WDs (and therefore possessinga relatively weak magneti
 �eld) making their hard X-ray spe
tra harder. In
ontrast slowly spinning WDs will have a tall but narrow post-sho
k region(possessing a relatively high magneti
 �eld), yielding a 
ooler bremsstrahlung
omponent in the hard X-rays.All of the observations presented in this 
hapter are 
onsistent with mCVevolution models. It is very likely that hard X-ray missions will 
ontinue to
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rease this sample of mCVs, and it is also expe
ted that more unidenti�edhard X-ray sour
es will be identi�ed as IPs with more opti
al follow-ups. Inparti
ular, more observations will allow us to establish if any IPs are dete
tedbelow the period gap and if any IPs will ever get dete
ted in the IBIS energyrange above Pspin/Porb ≈ 0.1 in order to establish if the Norton a

retionmodels are a plausible explanation to the observed systems. This also impliesthat hard X-ray sele
ted samples 
ould have their own biases, however moreanalysis will have 
onsequen
es on evolution studies of these exoti
 magneti
systems. Figure 4.17 shows the orbital distribution of various CV sub
lassesand gives a taste of what 
an be learned from mCVs now that the numberof systems has grown to a statisti
ally useful number. All distributions inFigure 4.17 have been tested with a KS-test and none of them appear to be
onsistent with ea
h other. This is already strong eviden
e that the magneti
�eld strength of the WD has a great impa
t on the whole evolution of thebinary systems. More work and analysis will have to be undertaken in orderto best understand the properties from the various orbital distributions, andhow these relate to the evolution of the systems.
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Figure 4.17: Orbital period distributions for CV sub
lasses. The dotted linesmarks the period gap seen in non-magneti
 CVs.
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Chapter 5
Con
lusions

�As order exponentially in
reases, time exponentially speeds up.�� Ray Kurzweil.Within this �nal 
hapter we will 
omment on the results obtained fromthis study and mention possible future developments and studies bothin the �elds of ma
hine learning astronomy and magneti
 
ata
lysmi
 variables.The �rst se
tion will dis
uss ma
hine learning algorithms, whilst magneti

ata
lysmi
 variables will be dis
ussed in the �nal se
tion.5.1 Ma
hine Learning in AstronomyThis thesis has shown, using ISINA as an example, how ma
hine learningalgorithms 
an help and aid s
ienti�
 dis
overies in astronomy. Emphasishas been given mainly to ISINA however many identi�
ation/
lassi�
ationalgorithms exist, all trying to �nd re
urrent patterns within large datasets.Parti
ularly identi�
ation algorithms have been brought forward in order to tryand identify XMM sour
es [Pineau et al., 2008℄ using probabilisti
 frameworks.Ri
hards et al. [2009℄ has used similar te
hniques on mu
h larger datasets in148



CHAPTER 5. CONCLUSIONS 149order to identify quasars within the SDSS dataset, whilst S
aringi et al. [2009℄have used neural networks in order to identify broad absorption line quasarsusing SDSS spe
tra. Identi�
ation is not only restri
ted to individual sour
esbut also relates to identifying stru
tures with the sky. Gezari [2008℄ has shownhow tidal disruption of stars by a supermassive bla
k hole 
an be identi�ed bymonitoring light-
urve shapes in a semi-automated fashion. Moreover gala
ti
streams within our Galaxy 
an also be identi�ed [Grillmair, 2008℄, howeverfor now mainly relying on visual inspe
tion, but algorithms are also beingdeveloped for this task in order to automate the pro
ess for large datasets[Cole et al., 2008℄.Not only do ma
hine learning algorithms help identify astronomi
al sour
esbut also help to 
lassify the obje
ts in question. Brett et al. [2004℄ haveshown, using an unsupervised neural network (no training) how various bi-nary light 
urves (RR Lyrae, δ S
uti, 
epheid variables, e
lipsing 
lose bina-ries) 
an be automati
ally 
lustered based solely on folded light 
urve shape.On the other hand Elting et al. [2008℄ have demonstrated the feasibility ofphotometri
-based 
lassi�
ation of stars using multi-dimensional 
lustering,whilst Andrae and Mel
hior [2008℄ have shown, using shapelets, how morpho-logi
al galaxy 
lassi�
ation is possible using automated algorithms.All of the above are examples taken from the ever growing resour
e ofalgorithms being 
reated in order to ta
kle some of the tasks fa
ing astronomyin the 
oming 
entury. With the advent of better observational resour
es, theneed for autonomous algorithms will be
ome inevitable and will 
omplementthe available data more and more as the data growth will keep in
reasing.Currently all-sky automated sky surveys su
h as the WASP proje
t, usinga dedi
ated teles
ope, is produ
ing >30Tb of data per year, monitoring 100million obje
ts, all of whi
h needs to be sear
hed for transients and exo-planets.



CHAPTER 5. CONCLUSIONS 150The next generation of radio teles
opes su
h as the SKA and LOFAR will beable to produ
e all-sky images of the radio sky with unpre
edented timing andangular resolutions, yielding in
redibly large data�ows of the order of a fewhundred Pb per year, surveying over 100 billion obje
ts. Similarly the GAIAmission will obtain photometry for over 1 billion obje
ts, whi
h will all needto be identi�ed and 
lassi�ed a

ordingly.The produ
tion of automated algorithms is thus a ne
essity in order tota
kle astronomy in the 
oming 
entury, a ne
essity whi
h might one day
hange the way we analyse and interpret data and thus is named the fourthparadigm [Ball and Brunner, 2009℄.5.2 Magneti
 Cata
lysmi
 VariablesThis thesis has also examined the properties of the magneti
 
ata
lysmi
 vari-able population, with parti
ular emphasis on hard X-ray sele
ted systems. Wehave shown how 
ontemporary hard X-ray observatories, su
h as INTEGRAL,are able to dete
t more of these systems, and shown how future observatorieswill have the potential to in
rease the observed numbers even further.In the pro
ess of studying the hard X-ray sele
ted systems we have also ex-amined the properties arising from the Porb-Pspin plane for the whole mCV pop-ulation. The analysis has shown how some of the observations are 
onsistentwith the theory arising from magneti
 a

retion, however some questions havestill been left open. For example, it is not 
ertain yet why very few systems,dete
ted in any band, are found with Pspin/Porb > 0.3 and Pspin/Porb = 1,named as the syn
hroni
ity gap. One possible explanation however lies withinthe fa
t that IPs are driven towards their equilibrium at Pspin/Porb ≈ 0.1by spinning up if they spin too slow by stream a

retion and spinning down



CHAPTER 5. CONCLUSIONS 151if they spin too fast by propelling material away. Further eviden
e for this
ould also possibly 
ome from the fa
t that no hard X-ray sele
ted IP has beenfound above Pspin/Porb = 0.1. This seems to be the dividing line (even thoughblurred) between two di�erent kinds of IPs a

reting through di�erent me
h-anisms (stream and propeller), whi
h would also point to di�erent emissionme
hanisms for hard X-ray photons seen from these systems. All of the abovealso helps to explain the nature of the observed hardness 
orrelations presentedin the previous 
hapter in Figures 4.9, 4.10 and 4.11 where syn
hroni
ity (andthus spin period) 
orrelates with the hardness ratio de�ned as 30-60keV/17-30keV 
ount rate. Fast spinning systems display hard spe
tra whilst slowlyspinning systems display softer spe
tra. This seems to be best explained bythe footprint geometry on the WD poles, where a tall sho
k produ
ed by theslowly spinning systems yields a softer spe
trum, whilst fast spinning systemsprodu
e a short and wide sho
k yielding a hard spe
trum. We believe thereason for the apparent hardness 
orrelations results from how fast the sho
k
an 
ool. In tall sho
ks (slowly spinning systems) the plasma has a greaterdistan
e too 
ool before it rea
hes the WD surfa
e and hen
e will display abroad range of bremsstrahlung temperatures. Conversely short sho
ks do nothave mu
h to travel before they 
ool on the WD surfa
e, making the result-ing bremsstrahlung temperature gradient steeper (and thus harder spe
tra).This would also help explain why not many systems have been observed above
Pspin/Porb = 0.1, sin
e their sho
ks would be even higher, and thus softer inthe hard X-ray range, making these systems di�
ult to dete
t. Moreover itwould help explain the low dete
tion numbers of polars, sin
e these systemsare also believed to possess very high sho
ks.Asyn
hronous polars however still pose a potential problem to the explana-tions above, sin
e we would not ne
essarily expe
t to see these systems in the



CHAPTER 5. CONCLUSIONS 152hard X-ray domain given their 
lose proximity to the polars in the Porb-Pspinplane. However these systems are very mysterious with only four dete
tions inany band, making them hard to 
ompare against other known mCVs.We 
on
lude by mentioning the further need to study mCVs in the hard X-ray domain to better understand the origin of the hardness 
orrelation and tobetter understand the properties arising from the Porb-Pspin plane. Moreoverwe point out that if the sho
k height interpretation is 
orre
t, we would expe
tto use hardness as an indi
ator of both sho
k height, and as a 
onsequen
e inferat what stage of it's evolution a parti
ular mCV lies, hen
e inferring their spinand orbital period. This would help better understand the evolutionary pro
essof these exoti
 magneti
 systems.
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