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ABSTRACT
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Doctor of Philosophy

MULTIPHYSICS SIMULATIONS OF MAGNETIC NANOSTRUCTURES

by Matteo Franchin

In recent years the research on magnetism has seen a new trend emerging, characterised
by considerable effort in developing new nanostructures and finding new ways to control
and manipulate their magnetisation, such as using spin polarised currents or light
pulses. The field of magnetism is thus moving towards the multiphysics direction, since
it is increasingly studied in conjunction with other types of physics, such as electric and
spin transport, electromagnetic waves generation and absorption, heat generation and
diffusion. Understanding these new phenomena is intriguing and may lead to major
technological advances. Computer simulations are often invaluable to such research,
since they offer a way to predict and understand the physics of magnetic nanostructures
and help in the design and optimisation of new devices.

For the preparation of this thesis the Nmag multiphysics micromagnetic simulation
package has been further developed and improved by the author. The software has also
been extended in order to model exchange spring systems. Using Nmag, we carried
out micromagnetic simulations in order to characterise the magnetisation dynamics in
exchange spring systems and derived analytical models to validate and gain further
insight into the numerical results. We found that the average magnetisation moves
in spiral trajectories near equilibrium and becomes particularly soft (low oscillation
frequency and damping, high amplitude) when the applied field is close to a particular
value, called the bending field.

We studied spin transport in exchange spring systems and investigated new geome-
tries and setups in order to maximise the interaction between spin polarised current
and magnetisation. We found that by engineering a trilayer exchange spring system in
the form of a cylindrical nanopillar, it is possible to obtain microwave emission with
frequencies of 5-35 GHz for applied current densities between 0.5-2.0 x 10 A /m? and
without the need for an externally applied magnetic field. We proposed a one dimen-
sional analytical model and found a formula which relates the emission frequency to

the geometrical parameters and the current density.
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Chapter 1

Introduction

The properties of magnetic materials had an important role in past centuries, allowing
the development of the magnetic compass, which led to safe navigation far from land
and thus had a tremendous impact on the sea trade as well as on the discoveries of
new lands. The role of magnetic materials is probably even more important today, as
we are storing most of our knowledge inside magnetic media such as hard disks and
magnetic tapes. An hypothetical “magnetic blackout”, consisting of all materials losing
their magnetic status, would lead to devastating consequences in our modern society,
putting the internet and most of the information systems out of order.

Information in hard disk drives is stored by magnetising the grains which cover the
surface of the inner disks (see Fig. 1.1) and behave like small magnets, having north
and south magnetic poles. The magnetic orientation (south-north pole direction) of
these grains is used to encode the information and is preserved when the device is
turned off. Since the grains have random positions on the surface of the disks, many
grains, arranged in what is called a “bit cell”, are required in order to store one single
bit of information. Data is written by applying an external magnetic field to change
the magnetisation of the grains and is read by probing the field they produce. Both
operations are performed by a read-write head which moves very close to the disk
surface. As the density of information is the critical parameter for a data storage
medium, a staggering technological effort has been made in the last fifty years to
reduce the size of the bit cell. The areal density of information (bits per square inch)
has indeed increased from 2 kbit/in? in 1956 to 3 x 10% kbit/in? in 2008 [1, 2].

The size and number of grains used to store one bit has decreased considerably and is
now hitting fundamental limits. One of the main problems is data stability. A smaller

magnetic grain has less magnetic energy. If the grain is small enough, such energy



b)

a)  read-write head
platter

bit cells magnetic grains

Figure 1.1: a) Sketch of the mechanical structure of an hard disk drive. The platter rapidly rotates
around its axis, while the arm moves the read-write head to the position where the data needs to be
written or read. b) The composition of the thin polycrystalline magnetic film which covers the platter.
The arrow in each grain represent the magnetisation (which is orthogonal to the film plane). Different

colors are used to better identify grains with opposite magnetisation.

can be comparable with the thermal energy, meaning that “thermal agitation” can
lead to random fluctuations of the magnetisation and thus to random data loss. This
problem, often referred as the superparamagnetic limit, poses new challenges for future
developments of hard disk technology. Further increases of areal density will be possible
only through innovations of a more conceptual nature, such as perpendicular recording
(magnetisation perpendicular to the disk surface), patterned media, thermally-assisted
recording.

Research is also focusing on radically new applications of magnetism. Spin transfer
torque (STT) effects [3], for example, may open the door to the fabrication of nano-sized
microwave generators to be used for chip-to-chip or intra-chip wireless communication
[4]. These effects may also be exploited in the next generation of MRAM memory
chips to obtain a STT driven MRAM, which is believed to be the memory of the
future, combining most of the advantages of other types of memory, such as ultra-fast
write/read access, low power consumption, non-volatility, high density and potentially
low cost of production.

All these exciting new technological advances, including further improvements in
hard disks performance, require a clearer understanding of magnetism and how it cou-
ples with other phenomena. In a research environment where thermal assisted record-
ing, spin transfer torque switching and microwave emission and absorption are the main
concerns, it is extremely important to have flexible and powerful multiphysics simula-
tion tools which can simulate the magnetic dynamics, but can also take into account

the other relevant aspects of the physics of the system. The ability to simulate all



these effects in nanomagnetic systems is indeed fundamental both to understand the
behaviour of the existing nanostructures and to assist in the design of new devices.
With this thesis we contributed to the development of Nmag, a new micromagnetic
simulation software which offers multiphysics capabilities. We extended and used the
software to simulate a class of systems which is of particular relevance to our exper-
imental group in Southampton: exchange spring systems. Exchange spring systems
have been studied experimentally in Southampton in recent years and this thesis aims
to improve the understanding of their static magnetic properties as well as their char-
acteristic magnetisation dynamics. Motivated by our belief that spin transfer torque
effects may be relevant in these systems, we initiated investigations in this field. The
objective was to precede the experimental work in Southampton: we needed to un-
derstand if and how spin transfer torque effects may be relevant in such systems and
to possibly find new technological applications. In order to achieve this objective, we
extended our software package Nmag, by including spin transfer torque effects. We
carried out micromagnetic simulations and analysed the results, getting to analytical
models which were useful to both confirm the correctness of the simulations and clarify
the physics. The cross-check with analytical calculations is particularly important, con-
sidering that, due to the exploratory nature of the thesis, we didn’t have experimental
data to compare against. The studies we carried out suggest important technological
applications of exchange spring systems. We indeed conclude in Ch. 7 and Ch. 8
that, by engineering an exchange spring system in the form of a cylindrical nanopillar,
it is theoretically possible to geometrically constrain a domain wall and induce it to
stationary precession by the application of a constant direct current (DC). This system
may then be used as a nano-sized microwave generator, whose emission frequency can

be controlled by tuning the current density flowing through the nanopillar.

Outline of the thesis

Here is a brief outline of this thesis. In chapter 2 we give an introduction to micro-
magnetics. We write down the equation of motion for the magnetisation dynamics and
briefly explain the mathematical terms which are involved. In chapter 3 we discuss
spin transport in ferromagnetic conductors. We introduce the giant-magnetoresistance
(GMR) effect and then focus on the effects of spin polarised currents on the magneti-
sation dynamics. We present a detailed derivation of the model which is later used in

the thesis to study spin transfer torque effects. In chapter 4 we give an overview of



some of the computational methods which we employ in our simulations. The chapter
presents the key concepts at the base of the finite element method (FEM), the scheme
we use for space discretisation. It also discusses some time-integration algorithms for
micromagnetics. In chapter 5 we present Nmag, the micromagnetic package developed
at the University of Southampton to which we contributed while working on this thesis.
We explain the motivations for the creation of the software and show its key features
in two example simulations. In chapter 6 we study exchange spring systems. We first
analyse the static properties of these systems and then focus on dynamic properties,
using both analytical models and computer simulations. We also study the effects on
the magnetisation dynamics of an electric current flowing orthogonal to the layers of an
exchange spring system. In chapter 7 we continue the study of exchange spring systems
with a different geometry and magnetisation setup, showing how this choice enhances
the spin transfer torque effects. In chapter 8 we carry out a systematic study of the
system introduced in the previous chapter and understand the role of the geometry and
of the magnitude of the current density. We also present an analytical model which
clarifies the mechanism at the base of the observed effects. In chapter 9 we try to briefly
summarise what we have done, stressing the elements of novelty. We try to review this

work as a part of a wider research plan and discuss future developments.



Chapter 2
Background

In this chapter we give a quick introduction to micromagnetics, the theory which stands
at the base of the computations and results presented in this thesis. The aim of this
chapter is to fix the terminology and nomenclature and to list most of the fundamental

equations which are used in the next chapters.

2.1 Magnetism in matter

What happens when an external magnetic field H is applied to a body? From the
classical theory of magnetism we know that a magnetic dipole moment is induced
inside the body. This is what happens in the case of diamagnetic or paramagnetic
materials and can be described roughly by the formula M = Xﬁ . x is the magnetic
susceptibility of the considered material and M is the “magnetisation” of the body,
which is defined as the magnetic dipole moment per unit of volume and is hence zero
in the empty space. We will return to its definition in the next section. Here, we are
interested in the relationship between the magnetising field H and the magnetic field
B inside the material: B = ,uo(ﬁ + M ) = uﬁ , where pg is the permeability of free
space and p = po(l + x). There are materials, however, that do not exhibit such a
simple linear dependence between the total field B inside the body and the applied
field H. Ferromagnetic materials, for example, show to have a memory of the applied
field. Their magnetic status M depends not only on the current value of H , but also on
the way this field was applied in the past. In this section we briefly outline the physics
which is the source of such a rich phenomenology. We do not enter into the details
of the physical theory, but rather try to give an intuitive and quick picture of what is

happening at the microscopic level.



The most important question to start with is the following: why does a body react
to an applied magnetic field? First of all we need to say that electrons are the main
source of magnetism inside the body. They give two kinds of contribution. The first one
can be understood approximatively with intuitive classical reasonings. The electrons
bounded to the atomic nuclei react to an applied magnetic field following the Lenz’s
Law: the orbitals deform and create a magnetic dipole moment with direction opposite
to the applied field (x < 0), thus reducing B inside the body. We stress that this is not
an accurate description of the phenomena, which would need to be addressed with a
quantum mechanical formulation [5, 6], but it gives nevertheless a rough idea of what is
going on. This behaviour is referred to as diamagnetism, a small effect which is always
present in matter.

The second kind of contribution is connected with a fundamental property of the
electron as an elementary particle: the electron behaves like a point-like magnetic
dipole with a well defined intrinsic angular momentum (spin) and intrinsic magnetic
moment. The total magnetic moment of the electrons, which receives contribution from
the intrinsic and the orbital magnetic moments, tends to align to the applied magnetic
field,! thus increasing the field B inside the body (x > 0). This effect, however,
depends crucially on the way the electrons fill the atomic orbitals. Indeed, the atoms
of a non-magnetic material have zero net magnetic moment. This is not the case with
paramagnetic and ferromagnetic materials, whose net magnetisation is locally non-zero.
Consequently, the atoms inside a given small volume d®r of these materials behave like
magnetic dipoles, Md3r being the net magnetic dipole moment inside the small volume
d3r.

For paramagnets, M is linearly proportional to H. This means that the alignment
of the magnetic dipoles inside d3r increases linearly with the applied field. This means
also that when the applied field is removed, the alignment is lost and M becomes
zero everywhere. This effect is connected with thermal agitation. In ferromagnets the
situation is slightly more complicated, as we will see better in the next sections. Here we
say only that in ferromagnets the thermal agitation competes with another effect: the
moments of neighbouring atoms interact in such a way that they tend to stay aligned
with each other. This interaction is called “exchange coupling” and is a purely quantum
mechanical effect, which is the main cause of the “memory” of ferromagnetic materials.

At this point it should be easy to understand why the ferromagnetic properties of

!This is the typical behaviour of a dipole immersed in an external field: the dipole moment aligns
with the applied field.



materials depend strongly on the temperature. When a ferromagnet is heated above a
particular temperature T¢, the Curie temperature, the thermal energy is sufficient to
change the alignments of neighbouring magnetic moments and the material starts to

exhibit paramagnetic behaviour.

2.2 Introduction to micromagnetics

In the previous section we explained that the magnetism of a ferromagnetic material
comes mainly from the magnetic moment of the electrons of its constituent atoms. From
the point of view of magnetic properties such a material could be modelled as a huge
collection of magnetic dipoles with positions fixed in space. This is actually the starting
point of the theory of micromagnetics. To go further one needs to understand how these
dipoles interact and what kind of dynamics is connected with such interactions. These
two key points in the theory are faced by the Brown’s equations and the Landau-
Lifshitz-Gilbert equation, respectively. These formulas rely on a common formalism: a
continuous vector field M (7, t) — the magnetisation — is used to represent the magnetic
status of the system and is defined requiring M (7, t)dr to be the net magnetic dipole
moment inside the small volume d3r. This is an approximation which neglects the
discrete nature of the system and is based on an important assumption: the direction of
the magnetic moments in the ferromagnet should change smoothly with position. This
is true only when the temperature of the body is lower than the Curie temperature,
as explained in the previous section. We note that, since the material is supposed
to be homogeneous, the norm of the magnetisation is constant in space and time:
|M(7,t)|| = Mgat, Maat is the magnetic dipole moment per crystallographic unit cell
and is called saturation magnetisation.

Before introducing the Brown’s and Landau-Lifshitz-Gilbert equations we first pre-
pare the ground by making some observations. Let’s consider a bunch of atoms inside
the volume d3r of the ferromagnet. The magnetic dipole i = M d3r of the bunch of
atoms experiences an effective field H which is given by the superposition of the applied
field and the field created by all the other atoms in the body.? Its energy is calculated
easily in the classical theory of magnetism as Ugip(fi) = —po fi - H and is minimised
when i is parallel to H. Since the total energy of the system is the sum of the energy
of each of its constituent dipoles, we expect that at equilibrium all the atoms have

magnetic moment parallel to the experienced effective field. This means that M (7,t) is

2Here we assume that the net moment /7 of the bunch of atoms can be treated as a classical magnetic

dipole. The moments inside d®r are almost parallel and hence can be described as a single moment.
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parallel everywhere to H (7, t) at equilibrium. The equilibrium configuration, however,
is reached in a non-straightforward way: the effective field changes when the magneti-
sation moves towards it! To understand how the moment f dynamically depends on
the effective field, we can use classical mechanics: the angular momentum L=7x /7]
of the bunch of atoms is related to the torque 7 = 7 x F by the relation 7 = di/dt
(7, p and F are the position, the linear momentum and the force respectively). The
torque can be calculated easily for a magnetic dipole [5] as T = pg I X H. The angular
momentum L is related to the magnetic dipole moment [ by the relation L= —[i/%0,
where 7 is a constant called gyromagnetic ratio. This relation follows by the antipar-
allelism of the spin and the magnetic moment of electrons [5] (which can be derived as
a consequence of the Dirac equation or more accurately by quantum electrodynamics).
Putting together these formulas one obtains:
dgi

—_— = ix H.
Qi Yoto K

We define v = ygpp and express the same equation referred to the magnetisation:

— —

M7, t) = —y M(F, t) x H(F, t). (2.1)

This equation describes a very simple dynamics: the magnetisation M in 7 tries to

precess around the effective field evaluated at the same position.

(a) A A (b)

-Mx (M x H) [

-MxH -MxH

Figure 2.1: (a) The dynamics described by Eq. (2.1) when the effective field H is constant in time.
The magnetisation M precesses around H without damping. (b) The dynamics with the inclusion of

the damping term, Eq. (2.2).

Obviously H depends on M and the general dynamics is more complicated than the

one shown in figure 2.1.



2.2.1 The Landau-Lifshitz-Gilbert equation

Eq. (2.1) does not take into account any kind of dissipation and predicts a periodic
rotational motion for the magnetisation in a uniform constant effective field. The
Landau-Lifshitz-Gilbert equation is a variant of such an equation with an additional

term to take into account the damping effects,

«

875]\2 = —’}/M X ﬁ—i— M X atM (22)

sat

We omitted here the time and spatial dependencies of the vectors: M = M (7, t) and
H=H (,t). a is a dimensionless damping coefficient and causes the magnetisation to
get near and nearer to the effective applied field. An equivalent form of this formula is

the Landau-Lifshitz equation:

a

T = —' | 0T x fi + Mx(ﬂxﬁ)}, (2.3)
sat

where 7/ = /(1 + a?). The equivalence can be demonstrated easily by substituting

Eq. (2.2) into itself and proceding with a few elementary vector manipulations. Even if

the Gilbert form (2.2) is often found in the literature, in this thesis we consider mostly

the Landau-Lifshitz form (referred in what follows as LL equation), because it is more

suitable to be treated computationally, as the right hand side does not contain M.

We note that these equations lead to a preservation law for the norm of M:
d,M? = 2M - 9,M =0, (2.4)

since we know from the right hand side of (2.2, 2.3) that 9,M is orthogonal to M. We
also note that when oo = 0 we obtain the undamped Eq. (2.1).

We conclude this section with other two observations. Firstly, we should say that
these equations are somewhat phenomenological. The damping factor v summarises
the not better specified damping effects and is usually obtained from experimental
results. Typical values used for the parameters v and a are v = 2.211 x 10° m/(As)
and a = 0.01-0.02 (permalloy). Secondly, these equations are not sufficient to fully
describe the time-evolution of the magnetisation for any interesting physical system.
We still need to specify how the moments interacts and the effective field they produce.
This is not a minor detail. Indeed, the effective field depends on the magnetisation in
such a complex way that it is usually not possible to find an analytical solution of the

Landau-Lifshitz equation.



2.2.2 The energy contributions

As remarked at the end of the previous section, the Landau-Lifshitz equation alone is
not sufficient to calculate the time evolution of the magnetisation. What is missing
is a characterisation of how the magnetic moments interact with each other and with
the applied magnetic field. In this section we introduce the energy terms which are
commonly used in micromagnetics. In the next section, we will write down the Brown’s
equations and give an explicit expression for the effective field as a function of the
magnetisation. This is the missing piece required in order to compute the time evolution
of the magnetisation.

We write the energy of the system as a sum of several terms:

U= Uexch + UZeeman + Udemag + UaniS7 (25)
where:
® Uzeeman = —Ho | M - ﬁapp d3r is the energy due to the interaction with the

external applied field ﬁapp, which “tries” to align M with it;

e Uyen=A f (Vm)2d3r is the exchange energy, the interaction between the wave-
functions of the electrons of neighbouring atoms, which tries to align their mag-
netic moments. m = M /Mgy is the unit vector associated with M and (V)2 =
(Vmg)? 4 (Vmy)? +(Vm,)?. A is the exchange coupling constant. This is a gen-
uine quantum mechanical effect which comes from a term in the Hamiltonian with
the Heisenberg form H = —I 51 '52, where §172 are the spin of two neighbouring

atoms and 2 is the exchange integral [6];

® Udemag = —% f M - I:_id d3r is the demagnetising energy, which comes from the
long range magnetostatic interaction between the moments of the entire ferro-
magnetic body. ﬁd is the magnetic field created by all the moments in the body

and is obtained solving a Laplace equation, as we will see in a moment;

o Uy,nis is the anisotropy energy, which models the preference for the magnetisation
to align along certain well defined directions with respect to the crystal lattice
of the material. This term is usually a suitable truncated expansion in powers
of the direction cosines of M = Mgy relative to the crystallographic axes a;
(the direction cosines of M are defined as m; = i - @;). The coefficients of the

expansion can be fitted against the experimental data;
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These are the most common contributions to the energy. In some particular situations
one may consider adding other more specific terms, as we will see in Ch. 6 for the case of
exchange spring systems. Note that micromagnetics is a zero-temperature theory, in the
sense that effects such as thermal fluctuations are not taken into account. Temperatures
greater than zero should be simulated by selecting values for the parameters in Eq. (2.5)
which are appropriate (as much as possible) for the considered temperature.

The last two terms in Eq. (2.5) require some more explanation. The demagnetising
energy corresponds to the dipole-dipole interaction in the discrete system. Here, how-
ever, we are dealing with a continuous system, so we need to calculate this contribution

to the energy in another way. This can be done considering the following two Maxwell’s

equations:
V-B=0, (2.6)
V x Hy = 0. (2.7)

To obtain Eq. (2.7) we assume that there are no free currents travelling in the body
and that the electric displacement field D does not change in time. Eq. (2.7) tells us
that Hy can be written as Hy = —V ¢ for some scalar field ¢. Since B= ,uo(ﬁd + M)
(where M should be considered to be zero outside the ferromagnet), the other equation

can be rewritten first as V - ﬁd = —V - M and then in terms of the potential ¢ as:
V2 = —pm, (2.8)

where pp = -V - M inside the ferromagnet and py,, = 0 outside it. The demagnetising
field can be obtained solving this Poisson equation. The formal parallelism with elec-
trostatics is perfect: Eq. (2.8) can be obtained from the electrostatic Poisson equation
making the substitutions py, — pe (pe is the electric charge) and 1/€g — 1. py, could be
formally referred as a “magnetic charge”. We stress, however, that this nomenclature
comes only from this formal analogy with electrostatics. To find a solution to (2.8),
particular care is needed to treat correctly the surfaces of the ferromagnet, where the
norm of the magnetisation jumps suddenly from Mg, to zero. This jump gives rise to a
well defined surface magnetic charge o, = M- 77, where 7 is the normal to the surface
and points outward. This result can be easily deduced using the divergence theorem

on a small thin volume crossing the surface (see Fig. 2.2). At this point the solution
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Figure 2.2: The flux of M through the surface of the small thin volume d*r = dz dydz gets a first
order contribution (M - (—7) dzdy) only from the inner surface, since outside the ferromagnet M is
zero. We assume dz < dz, dy, so that the lateral surfaces give a negligible contribution to the flux.
We know, however, that the flux can be expressed also as V - Md3r = —pm &1 = —dQm, where dQum
is the “magnetic charge” contained in the small volume. Therefore dQm = M- ndxdy = om dS, where

dS = dzdy and om = M - is the “surface magnetic charge” density.

should not be particularly surprising:?

- ([R5

17—

where the first integral extends over the volume of the ferromagnet, while the second
one extends over its surface.

We finally need to provide an expression for the anisotropy energy, the last term
in Eq. (2.5). This contribution is quite simple, since it can be taken into account by
adding, for every magnetic dipole in the system, an additional energy which depends

exclusively on its direction. Consequently the general form of the anisotropy energy is:

Uanis = /Sanis(m(m)d3T7

where e,1is has not a functional dependence on 173, but is simply a function which maps
a vector to a scalar. Therefore it can be easily approximated with a suitable expansion.
As we said at the beginning of the section, this is done using the direction cosines of
M with respect to the axes of the crystal lattice dj 23, which are three scalars defined
as m; = m - d;. In many crystals, however, the anisotropy is uniaxial, meaning that
the anisotropy energy depends only on the angle 0, between the magnetisation and a

given fixed axis 4 (therefore it is invariant for rotations of M around that axis). Taking

3Here we use dV = d3’, which breaks the coherence of our notations, but makes the formula look

better.
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the Fourier expansion of e,pis(6y) and considering that €anis(6y) = €anis(—6u) only the

cosine powers remain:
Eanis(n) = —K1 cos? 0, — Ky cos 6,,. (2.9)

The Fourier series is kept up to the fifth power. This is usually enough to model the
uniaxial anisotropy in a proper way. The minus signs are conventional and affect only
the definition of K7 and K.

The uniaxial anisotropy is typical of crystals with HCP (hexagonal close-packed)
lattices (cobalt for example). Other materials (iron for example) show a different

dependence on the direction of the magnetisation:

Eanis(m1, M2, m3) & Ki(mim3 +mim3 + mimi) + Kz(mim3m3)
+K3(mimj + mama +mimi). (2.10)
This is the — so called — cubic anisotropy and depends on all the three direction

cosines mq, my and mg.

2.2.3 The effective field

We have seen that the damping term in the Landau-Lifshitz equation reduces the
angle between the magnetisation and the effective field. This dynamics ends when the
alignment is reached, namely when the torque My x H vanishes. The same process can
be seen from another point of view: the system “potential” energy, given by Eq. (2.5),
is “eaten” by the damping processes, until the magnetisation is parallel to the effective
field and equilibrium is reached. This configuration of M minimises hence the energy
U[M]. This means that we have two ways to express the equilibrium condition: the
vanishing of the torque and the minimisation of the energy. Since an expression for the
energy was given in Eq. (2.5) we can now use variational approaches to minimise U.
However, the minimisation must be carried out respecting the constraint of constant
norm for the magnetisation, m? = 1. Such a procedure leads to the — so called —
Brown’s equations [6]:

M()X < V2m+ﬁapp+ﬁd—

1o Mot o Mat

vﬁi Eanis) =0.

This condition is equivalent to the one of vanishing torque when:

214 — —
V27 + Happ + Hy —

H=
,UOMsat Ko Mgt

V.5 Eanis- (2.11)
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This expression for the effective field, together with the Landau-Lifshitz equation (2.2)
is enough to calculate the time evolution of the magnetisation. Each term in Eq.
(2.11) corresponds to one term in Eq. 2.5. The first one (called the exchange field,
ﬁexeh) comes from the exchange energy Uqyen and tries to align neighbouring magnetic
moments. The second term (the applied field) comes from the Zeeman energy Uzeeman,
the interaction energy with the external applied field. The third one (the demagnetising
field) comes from the magnetostatic energy Ugemag 0f the ferromagnetic body. The
fourth one comes from the anisotropy energy Uupnis. This last term — which we call
Hnis — depends on the kind of anisotropy. For uniaxial anisotropy, eanis(m) = f(m-),
where f(x) = —Kj2%— Kox?, therefore: V3 canis(m) = Vi f(m-@0) = f' (i) @, where
the derivative of f is f'(z) = —2Kjx — 4K323. We conclude that, for the uniaxial case:

_ 1
Ho Msat

Honis (2K m - @ + 4K, (m - @)°) 4.

A very similar procedure can be used to calculate the field corresponding to the
cubic anisotropy. Indeed, for the cubic anisotropy we have V. anis(mi, ma, ms) =

Zle((%ams /Om;) Vzm;, where m; = m - d;. Consequently, V,zm; = d@; and:

1 3. Ocani
ﬁ o = anis
anis qusat ; a’L amz 9
and,
O ani
a::ls = 2K 1my(m3 + m3) + 2Komymam3 + 4K3m$(m3 + m3).
1

O€anis/Oma and Oe,pis/dms can be obtained from the same equation by cyclic permu-

tation of the indices.
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Chapter 3

Spin-transport in ferromagnetic

conductors

Beside being an electric charge carrier, the electron is also a spin carrier. Consequently
electric currents can also be — quite in general — spin currents. Then, a question
that naturally arises is: does the spin of the conduction electrons interact with the
magnetisation in a ferromagnetic conductor? And, can this interaction be exploited for
technological applications? These are the central questions in spintronics, a research
field which has become increasingly active in the last two decades, first with the dis-
covery of the giant magnetoresistance (GMR) in 1988 [7, 8], later with the prediction
of spin-transfer torque effects in 1995 [3, 9], which were confirmed experimentally two
years later [10].

In the following chapters of this thesis we present computational studies of the spin
transfer effects which occur in exchange spring systems and in nanopillars. The purpose
of this chapter is to introduce the reader quickly to the fundamental concepts behind
the physics of spin transport and present the model which we employ in our numerical

studies.

3.1 The giant magnetoresistance

The GMR was discovered independently in 1988 by the group of Albert Fert [7] and
the group of Peter Griinberg [8] and led, in the following years, to major advances in
the technology of magnetic sensors and data storage. The impact of such a discovery
was recently recognised with the Nobel Prize in Physics 2007 jointly awarded to Albert
Fert and Peter Griinberg.
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While other types of magnetoresistance (MR) were known before the discovery of
Fert and Griinberg (such as the anisotropic magnetoresistance, AMR), the GMR was
immediately recognised as a significantly greater effect in terms of resistance variations.
In the original paper the group led by Fert [7] reported resistance variations around
50 %, while studying (Fe/Cr),, multilayers at low temperature (4.2 K), while Griinberg
[8] group reported variations around 10 % in a trilayer Fe/Cr/Fe at room temperature.
Fert already referred to the effect as giant magnetoresistance: indeed, AMR effects are
typically much smaller, of the order of few percent [11].

We now explain briefly what GMR is and give a quick intuitive picture of the
underlying physics. We first discuss briefly the resistance properties of a ferromagnetic

conductor.

3.1.1 Resistance in a ferromagnetic conductor

In a small volume V of a ferromagnetic conductor the total amount of magnetic mo-
ment is Mgat V, meaning that the intrinsic magnetic moment of the electrons inside V
is oriented preferably along the magnetisation direction, rather that in the opposite
one. In other words we have a moment/spin imbalance inside V, which is intimately
related to the non vanishing saturation magnetisation Mg, and is reflected to the char-

acteristic band structure of the material (see Fig. 3.1). This spin imbalance is likely

E

E-

Ndown(E) > NUD(E)

Figure 3.1: A schematic simplified representation of the band structure of a ferromagnetic conductor.
The “spin up” band is completely below the Fermi energy Er, so that only the “spin down” carriers
are available for conduction. Such a material is often called “half metal”, being a conductor only with
respect to one of the two spin orientations (100 % polarisation). Materials such as Fe or Ni have both
the bands half filled and have therefore a partial spin polarisation (around 40 — 50 % [12]).

to affect also the itinerant electrons, which we ideally split into two components, one
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having moment oriented along the magnetisation direction, the other having moment
oriented along the opposite direction. We may now expect different conductivities for
the two electron populations, since they are constituted by a different number of car-
riers (the conductivity is always proportional to the number of carriers: no carriers,
no conduction!). We conclude that in a ferromagnetic conductor there are two current

components which experience quite a different resistance.

3.1.2 A GMR device

Consider an electric current flowing through a trilayer nanopillar system like the one

shown in Fig. 3.2, made by one thin non-magnetic metallic layer sandwitched between

a) electron rowI b) electron flowI
R Riow R R
! — ! —
| |
Riow Ru Riow Riow

Figure 3.2: Ferromagnet/metal/ferromagnet trilayer system. The system has two possible configu-
rations: a) no applied field. The magnetisations of the two ferromagnetic layers are antiparallel; b) an
external magnetic field is applied. The two magnetisations are parallel (along the field). The resistance

in the two cases is different.

two thicker ferromagnetic conductive layers. The role of the metallic layer is to separate
the two ferromagnetic regions, so that they are not exchange coupled. We assume the
system to be small enough that the magnetisation is homogeneous in each of the two
external layers. When there is no applied magnetic field, the system relaxes to the state
shown in Fig. 3.2a, with opposite orientation of the magnetisation in the two layers.
This configuration is energetically favoured, because it reduces the demagnetising field
in the whole sample. When a magnetic field is applied, however, the system switches
to the configuration of Fig. 3.2b, where the magnetisations of the two layers are both
aligned with the applied field. The two situations are shown in Fig. 3.2. We now
consider a current flowing orthogonal to the layer interfaces and discuss the resistance

of the sample in the two configurations. In the antiparallel case of Fig. 3.2a, each
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of the electron populations passes through a region with parallel spin (low resistance,
Riow) and through a region with antiparallel spin (high resistance, Ryr). The total
resistance of the sample is then, Ranti = (Rrow + Rur)/2, as calculated from the
equivalent electric circuit in Fig. 3.2a. In the parallel case of Fig. 3.2b, one of the
two populations passes only through regions with parallel spin, while the other passes
only through regions with antiparallel spin. The resistance in this case is then Rpar =

2RyowRur/(Rrow + Rur). The difference in resistance for the two configurations is:

Rur — Rrow
(Rur + Rrow)?’

We notice that such a system can be used as a magnetic sensor: if the magnetisation

AR = Rantr — Rpar = 5

of one of the two layers is fixed along a know direction (due to a magnetic anisotropy, for
example), a resistance measurement is enough to determine the magnetisation direction
of the other layer, which is — as explained before — influenced by the external field.
We conclude with a final remark concerning the direction of the current with respect
to the trilayer system. In this section we have assumed the current flows in the out
of plane direction. This is the so-called Current Perpendicular to the Plane (CPP)
geometry. The GMR effect, however, is present also in the Current In Plane (CIP)
geometry, where the current flows parallel to the plane of the layers. In fact, this is the
choice which is often made in actual GMR devices [12], such as the read heads in hard
disks. Indeed, while the CPP geometry usually gives rise to a high GMR effect (high
relative variations of resistance), the actual resistances are rather small and difficult to

measure [12, 13].

3.2 The spin transfer torque

The discovery of GMR proved that the resistance of a ferromagnetic conductor can
depend considerably on its magnetisation configuration. This means that there is an
interaction between the conduction electrons and the magnetisation, which can lead
to changes in the electric conductivity. We may argue that — following the third
Newton’s law — if the magnetisation can affect the flow of an electric current, there
should be also an effect in the opposite direction: the flow of an electric current may
affect the magnetisation dynamics. Studies of the interaction between a spin polarised
current and the magnetisation of a ferromagnetic conductor were carried out in the
seventies by the pioneering works of Berger [14], who already predicted the possibility
for a current to move a domain wall. Only in 1996, however, the spin transfer torque

between the itinerant electrons and the magnetisation was quantitatively taken into
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account in two independent works by Slonczewski [3] and Berger [9], and the Landau-
Lifshitz-Gilbert equation was extended by adding the so-called spin transfer torque,
the torque exerted by the electric spin polarised current on the magnetisation. These
works predicted, on the one hand, the possibility for steady magnetisation precession
driven by a constant electric current and, on the other, the possibility for current driven
switching of the magnetisation. Both phenomena are relevant for applications such as
microwave generation and magnetic random access memories (MRAM) and greatly
stimulated the research on spintronics in the last decade. The research field is today
very active. Here we mention two research areas which are particularly relevant for the

studies presented in this thesis:

e The research area focusing on multilayered films and nanopillars similar to the one
of Fig. 3.2, often called spin-valves. This is the system considered by Slonczewski
in the aforementioned paper [3]. The difference with respect to the GMR setup
lies in the higher current density regime: if in the GMR effect the applied electric
current is weak and is used just to probe the magnetisation of the free ferromag-
netic layer, in the case considered by Slonczewski, the current is stronger and is
used to actively control the dynamics of the magnetisation in the free layer. The
theoretical description of Slonczewski has been experimentally verified, showing
that the spin transfer can indeed induce switching [15, 16] and magnetisation

precession [10, 17].

e The research area studying systems made by a single homogeneous ferromagnetic
material, such as ferromagnetic nanowires or films, where a spin polarised electric
current interacts with the magnetisation patterns developed inside the sample,
such as domain walls or vortices. This is a quite recent area of research and has
received considerable attention both from theoretical and experimental studies.
It has been experimentally shown that a current flowing through a ferromagnetic
nanowire can induce the movement of the domain walls which are developed in-
side it (see Fig. 3.3). Such studies [18, 19, 20] have also been explained with
theoretical models [21]. These models are often’ based on the theory by Zhang
and Li [23], where the Landau-Lifshitz equation is extended by including addi-
tional torques, which capture the interaction between an electric current and a

locally inhomogeneous magnetisation.

! Actually, several models have been proposed. Initially it was assumed that the magnetic moment
of the conduction electron adiabatically follows the local magnetic moment [22]. Later a non-adiabatic

correction was added [23, 24].
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Before After

Figure 3.3: Magnetic transmission X-ray microscopy (MTXM) showing a domain wall inside a
nanowire. A current pulse (j ~ 102 A/m?) can be used to move it. Repetitive measurements reveal

the stochastic nature of the current induced domain wall motion (reproduction from [20]).

The main problem in both the two research areas is that the current density required
in order to obtain significant effects is often too high (between 10'° and 10'2 A/m?),
causing excessive Joule heating and thus the meltdown or deterioration of the sample.
There is then a high interest in finding systems where the spin transfer torque effects
are maximised and require lower current density. In this thesis we investigate exchange
spring systems in the form of multilayer films, a case which lies between the case of
spin-valve and the case of homogeneous ferromagnetic nanowire. Indeed, exchange
spring systems are multilayer systems which still can develop artificial domain walls
with shape and size which can be controlled, first, during manufacturing (by selecting
a suitable geometry) and, later, by applying an appropriate magnetic field. This is an
extremely important feature, since the size and shape of a domain wall have a critical
role in determining its interaction with the applied electric current [18]. Moreover the
recent experimental discovery of significant GMR in exchange spring multilayers [25],
suggests that spin-transfer-torque may play a role in these systems.

The numerical spin-transfer studies that we present in this thesis are all based on
the Zhang-Li model, the same model [23] which has been successfully employed in
the theoretical understanding of current-driven domain wall motion in ferromagnetic
nanowires. The applicability of this model to systems made by different materials,
such as exchange spring systems, needs to be discussed carefully, since the different
spin transport properties of the layers may lead to effects which are not taken into
account by the model. We will return on this point later in the thesis. In the next

section we enter into the details of the derivation of the Zhang-Li model, exploring
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closely the physics of spin transport in ferromagnets with inhomogeneous magnetisation

configuration.

3.3 The Zhang-Li model

The theories which extend the Landau-Lifshitz equation (2.3) by taking into account
the effect of the spin transfer from the current to the magnetisation usually start from
a common distinction between conduction electrons and localised electrons. Their
main objective is to take into account the dynamics and the interaction between the
magnetic moments of the two “kinds” of electrons. We may classify these theories into

three groups:

e adiabatic theories, which consider the limit of smoothly varying magnetisation,
where the magnetic moment of the itinerant electrons follows closely the direction
of the local magnetisation. This is the case considered — for example — by the

Zhang-Li model;

e the strongly non adiabatic theories (the opposite limit), where a spin polarised
current is injected into a region where the magnetisation is oriented differently.

This is the case considered — for example — by the Slonczewski model;

e non adiabatic theories (between the two limits). These theories usually are forced
to take into account the magnetic moment of the conduction electrons in an
explicit manner. As a result, the usual micromagnetic description based on the
Landau-Lifshitz equation, has to be extended quite radically by adding a new
equation of motion for the magnetisation of the conduction electrons and its

coupling with the ordinary, localised magnetisation [26].

The Zhang-Li theory belongs to the first group; it gets to a correction of the Landau-
Lifshitz equation where the effect of the spin polarised current is described by a small

number of parameters.

3.3.1 Introduction

The magnetisation M in a ferromagnet is defined such that M (7, t) d3r is the magnetic
moment contained in the volume d3r centered in 7. In a ferromagnetic conductor,
however, beside the magnetic moment coming from the localised electrons, we should

also consider the magnetic moment coming from the conduction electrons. We then can
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conduction electron

PP N _‘eé localised electron

Figure 3.4:  Visualisation of the spin transfer process between a conduction electron (yellow) and
a localised electron (red). The region where the magnetisation changes in space is coloured with blue.

The yellow shadow represents the interaction between the spins.

define two vector fields. The first one, M (7, t), is the magnetisation and is originated
by the localised electrons. The second one, m(7, t), is the conduction electron spin
density and is defined in a similar way?: m(7, t) d®r is the amount of magnetic moment
due to the conduction electrons in the volume d>r.

If the effects of i are neglected, the dynamics of the magnetisation M can be
described by the LLG (Landau-Lifshitz-Gilbert) equation. However, when an electric
current flows throughout a non homogeneous magnetisation, we may expect a consider-
able misalignment between m and M. In other words, a conduction electron travelling
in a non homogeneous magnetisation can “get close” to a localised electron which has
different spin orientation. There may then be a spin transfer between the two electrons,
due to the exchange coupling, which acts to align the two spins. A rough visualisation
of the process is shown in Fig. 3.4. The interaction between the itinerant electrons
and the localised electrons is usually described by an “s-d” Heisenberg Hamiltonian
Hyy = —JoxS - s, where Jex is the exchange coupling constant and S, s are the opera-
tors corresponding to the spin of localised and conduction electrons, respectively.

The Zhang-Li model aims to find how this physics affects the magnetisation dy-

namics and how it can be included in the LLG equation for M.

3.3.2 The dynamics of the itinerant spins

There are two dynamics which the model identifies: the dynamics of the magnetisation
M and the dynamics of the itinerant spin density m. The model assumes that the
dynamics of m is much faster than that of M and can be treated as if it was decoupled

from it. This approximation allows one to write down a dynamic equation for 1 where

2We notice that M and m have the same units: they both are densities of magnetic moment. The
nomenclature “conduction electron spin density”, which is used in the original paper, seems to suggest

that m is actually a spin density, but it isn’t!
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M is treated as a background still vector field:
= - 1, - om
atm+v-y5:—mme—TTf, (3.1)
where 7.y is the exchange relaxation time and gives the typical time scale for the
exchange interaction between M and 17 (Tex is greater for a weaker coupling). Similarly,
7o 1S the spin-flip relaxation time and refers to the spin-flip process, which we discuss
later in this section.

In the original paper this equation is derived from a quantum mechanical formu-
lation. Here we omit the derivation and focus more on the meaning of the equation.
We show that this equation is a natural adaptation of the LLG equation (2.2) to the
dynamics of the itinerant spins.

In Sec. 2.2 we presented a simple classical justification of the LLG equation. We
considered the total magnetic moment /i contained inside a small volume dr? and
related its time derivative to the torque acting on it. We finally concluded that [ can
change for two reasons: because of the torque exerted by the effective field (which gives
rise to the precession term in the LLG equation) and because of the damping processes
(which give rise to the damping term). When considering the dynamics of the itinerant
electrons, this derivation must be revised. In particular, there is a third reason why
i may change in time: the conduction electrons are moving and hence there is a flux
of magnetic moment through the surface of the volume dr®. It is then natural to
substitute the left hand side of the LLG equation (which is just 9;m) with 9;m + v -fs,
which is the variation of 1, without the contribution given by the flux of . Jjs is the
current associated with m and is a tensor field, since m is a vector field. We return
to its definition later. We notice that, if we ignore all the interactions involving m in
(3.1), we get the continuity equation for m: dym + V- js=0.

The right hand side of equation (3.1) can be similarly related to the right hand
side of the LLG equation. The first term is indeed the torque exerted by the effective
field, where the only interaction taken into account is the coupling with the magneti-
sation M. Here we should point out that indeed this is the only interaction which is
considered for the itinerant electrons: direct contributions from the external field and

om

from the demagnetising field are neglected. Finally, the last term in (3.1), — T isa

phenomenological damping term. 1 is the spin accumulation and is defined as
om = m — my, (3.2)

where mio(7, t) is the equilibrium spin density in 7. This term models the scattering of

the conduction electrons with impurities in the crystal lattice, with other electrons and
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— in general — it models all the phenomena which induce 7 to relax to an equilibrium
value my. It is analogous to the familiar damping term —ﬁ]\;j x OM of the LLG
equation, with a difference: the norm of 1 is not necessarily preserved in time.

The exchange interaction between M and 17 wants to align the two vector fields.

Then, it is reasonable to take 7y = ng M/Msat in (3.2), so that:
(7, t) = o (7, t) 4 0m(F, t) = ng M (7, t)/Mgay + 6m(7, t). (3.3)

Here ng is the equilibrium density of the itinerant spin, oriented along the direction of
M. This assumption, together with equation (3.1), implies that, when js=0,6m=0
is the equilibrium state towards which the system relaxes. In other words, when the
spin current is zero, the spin of the conduction electrons m relaxes to follow everywhere

the direction of the magnetisation M.

3.3.3 The spin current density

Equation (3.1) alone is not enough to study the dynamics of 7i. In particular, we miss
a characterisation of the spin current fs and its relationship with m and M. It may be
useful — at this point — to recall how the electric charge density p. and the electric

current density j_; are defined. Using u as a component index,

Pe = —€P,

o= peh = —epuh,

where p is the number density, v is the drift velocity and —e is the electric charge of

the electrons. Similarly, we define:
m” = Pugpu”,

Pup
v 124 . 124
J& = mVot = — . Jhu,

where pp is the Bohr magneton (the magnetic moment of each electron), P is the spin
polarisation and # = mi/m is the direction of 7. In the previous section we saw that @
gets parallel to M , when the spin current fs is zero. When an electric current is applied

this is not exactly true. We can then define:

‘ Pus ., MY(7, t)
B () = — Iz
JE (T, 1) e e Ta

+ 9587 (7, ). (3.4)

We note that the divergence V - js in (3.1) is done using the index p as the running
index: (V- js) = >0 j&. To complete the picture and get to a closed form for the
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nonequilibrium spin density dm, we take:
8js = —DoVom, (3.5)

where Dy is a diffusion constant. We then see that our definition of spin current density
(3.4) includes two contributions. On the one hand, we have a contribution from the
current of electrons induced by the electric field: a current of charge is also a current
of spin. On the other hand, we have a spontaneous diffusion of spins from regions with

higher spin density to regions with lower density.

3.3.4 The nonequilibrium spin density

We can now substitute Egs. (3.5), (3.4) and (3.3) into (3.1) and get:

— P — — — — n
B0 9,M + dyorm — —LE (ji V)M — Do V261 = — o x i — 2

Mt € Mgat Tex{Vlsat Tsf

Y

We now neglect 0;dm, which corresponds to assume linear response of §1 to the electric
current j, and to the time derivative of the magnetisation M. We return to this

assumption in Sec. 3.3.6. We get:

L& I & 0 e
o x M — 28 = 0 gar — ZEB (5 ) (3.6)

Tex M sat Tsf sat € Mgat

Do V26 —

This is a closed form equation for the nonequilibrium spin density di.
We now make an important approximation to simplify Eq. (3.6): we assume that
the magnetisation changes slowly in space and that the first term on the left hand side

of Eq. (3.6) can be neglected. Then the equation becomes:

noTsf Tsf

S = —

. P oL L
QN + —EBTSE (5 )T —

Mt e Mgat Tex Miat

M x 1. (3.7)
Substituting this equation into itself (into its last member on the right hand side) we
get:

exP T SO\ 7
M(]e-V)M

S (1+ €2) — _Texk0 5 4
m( +£) Mot ! - eMiat

-

ex v v exP v n =\ 2 ¥
% nOch‘)tM—i—TM'uBMx(je.V)M,

2 2
sat € sat

(3.8)

where we have introduced the quantity £ = 7ex /75t and we have decomposed the triple
vector product M x (M x &) as M x (M x 6m) = M (M - ) — M2, §m. The second

sat

term on the left hand side of Eq. (3.8) vanishes, since M - 6 = 0. Indeed, by looking
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at (3.7), we see that 0n is the sum of three vectors which are all orthogonal to M
(remember that any partial derivative of M is orthogonal to M , since M has constant
norm: M - OM = M2, /2 = 0). We then have:

&u
Msat

u

2
sat

O M —

o7 = e - A x 9T + €0 G- T + 03T x G DT ), (39

where jo = jo /je is the direction of the electric current and

_ ™ v Pup i
1+f2’ eMsat(1+§2) <

u

We can now calculate the torque on M, due to 6. Indeed, if we take a look at Eq.

(3.1), we see that the transfer torque acting on m, due to the interaction with M,

1
Tex Msat

is — m x M. Consequently, following the third Newton’s law, there will be an

opposite torque acting on M:

. 1 . .
T = mx M= — M x ém, 3.10

Tex Msat Tex Msat ( )
where we have substituted m = 7y + dm. We can now substitute (3.9) into (3.10) and

obtain

. 1 - . . . o Y Ao
T= Mx(gu QM + —= Mx&tM—gv(je~V)M—vM><(je-V)M>
Mat Msat

- u

X VT — U QT — SV NT x (G - )M —

M, sat M, sat M, sat

I

sat

These four extra terms should be added to the right hand side of the LLG equation to
take into account the spin transfer torque between the magnetisation and the itinerant
electrons. The first two terms do not depend on the electric current and are therefore
present even when j, = 0. These terms are due to the spin accumulation which is
caused by the time variations of the magnetisation. The last two terms include a
direct contribution from the electric current. The associated spin transfer torques
arise whenever the conduction electrons flow through a region where the magnetisation
is not homogeneous in space. The first two terms lead to a renormalisation of the
gyromagnetic ratio and the damping parameter. In other words their effect is just to
slightly change the two parameters v and a which characterise the dynamics in the
LLG equation (2.2). They typically lead to 1% adjustments of the two parameters [23]
and can be safely neglected, since the uncertainty on the value for such parameters is
often higher than that. The last two terms, on the other hand, contain new physics

and should be taken into account.
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3.3.5 The corrected Landau-Lifshitz-Gilbert equation

In summary, the LLG equation with the inclusion of the torques induced by the spin

transfer between the itinerant electrons and the localised magnetisation is:

oM = —7Mxﬁ+iﬂx8tﬂ
Msat
- - P v - ~ > o
——5 M x (M x (je-V)M) — §tM><(je-V)M. (3.11)
sat sa

We give here a summary of the quantities appearing in the equation: M is the magneti-
sation, Mgy = ||M|| is the saturation magnetisation, H is the effective magnetic field, ~
is the gyromagnetic ratio, « is the damping parameter. The current density is applied
along the unit vector j, and enters the model through the parameter v = m Jes
where P is the degree of polarisation of the spin current, pup is the Bohr magneton, e
the absolute value of the electron charge, £ = 7ex /7t is the ratio between the exchange
relaxation time and the spin-flip relaxation time. In this thesis we will consider the

case where the electric current flows in the positive z direction. Then, the equation

becomes:
BtM = —’yMXﬁ—i— a antM
sat
v o - - v - -
——5 M x (M x 0 M) — M x 0, M. (3.12)
Msat sat

In our model Mg, is uniform in space and constant in time. We can then obtain an

explicit form for equation (3.12):
OM = —~'MxH—~abl x (Mx ﬁ)
—av' M x (M x 8, M) —av' M x 9, M, (3.13)

where M = M /My is a unit vector and v/ = v/(1 4 o?), v = v/(1 + a?). We use

the notation 0; = % and 9, = 8% The two dimensionless coefficients a and @ are

a=14+af anda=¢—a.

3.3.6 Discussion

We conclude by making two observations about the assumptions underlying the model.
Firstly, the laplacian in (3.6) can be omitted only when dmi varies slowly in space. The
order of magnitude of the length scale where dmi is supposed to change linearly (so that

V26m = 0) can be calculated [23] as A = v/DoTex (here we assume ¢ ~ 0.01 < 1). For

Permalloy, Dy = 2nm. We must then be sure that the magnetisation of the system
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does change smoothly in this length scale. In particular, the Zhang-I.i model is not
suitable to characterise multilayer systems, where the magnetisation changes abruptly
at the interfaces between the layers.

A second approximation we want to discuss is the one which was made in Eq. (3.7),
where the time derivative of 9,0m was neglected. Without this approximation we would

have obtained:

51t . I .
2 Oy N+ (efe - VN — 0T x 22—, 2

3.14
" , (3.14)

where M = M /Mgy, ¢ = P’;%OT“ and 740; = 9y/r,. Notice that M, 61 /no, Ot/r,, and
cj_é -V are all dimensionless vectors /operators. Substituting recursively this equation
into itself leads to a series of terms containing Z‘/TSfM and cje 8{’;TsfM . We can expect
both the two contributions to decay rapidly as n and m increase. Indeed, 0;/, M
is small when the variation in time of M happens in timescales much greater than
Tst ~ 1ps (from [23]). We can then keep only the terms in (3.14) which are linear in

Oy /TSfM and je. This corresponds to neglect 0;dmi.
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Chapter 4

Method

In this chapter we briefly present the main ideas beyond our computational approach
starting with the finite element method (FEM) and then focusing on the integration

algorithms we used to solve the dynamical equations of micromagnetics.

4.1 Finite difference and finite element methods

We have seen that in micromagnetics the configuration of the system is represented by
the magnetisation, a vector field defined over all the ferromagnetic body. Obviously
computers are discrete machines and cannot handle such a continuous representation
of vector fields. Consequently a discretisation of the system is required and is usually
obtained using two different techniques: finite difference and finite element methods.
In finite difference methods the space is discretised by a decomposition in rectangles
or cuboids. The fields are piecewise constant functions which change abruptly only at
the interfaces between adjacent cuboids. This is the approach used by OOMMF [27],
one widely used simulation package developed at NIST. Finite difference (FD) methods
are relatively easy to implement, but, unfortunately, they suffer a number of problems.
First of all, bodies with smooth curved surfaces are badly approximated by aggregates
of cuboids. For example, the FD discretisation of a sphere has inevitably a “staircase”
boundary, which is a particular annoying and unwanted artifact, considering that the
demagnetising field tends to align the magnetisation with the surface of the magnetic
body. To avoid a poor representation of the boundaries it would then be desirable to
increase the mesh resolution only near the surfaces, while keeping it lower at the centers
of the bodies. This is not allowed by the finite difference approach. As a results many

kinds of nanogeometries are not well modelled and usually require too many cuboids
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to be simulated in reasonable times. Another problem of the finite difference approach
comes from the requirement to fit the magnetic structure inside a cubic grid: if the
body is not a cuboid (a sphere for example), then it cannot fill the whole grid, meaning
that a considerable part of the mesh corresponds to the empty space. This leads to a
considerable waste of memory, which becomes critical if the structure to be simulated
is a magnetic shell (imagine a thin spherical magnetic layer covering a non-metallic

sphere such as the one shown in Fig. 4.1, for example).

Figure 4.1: Example of two dimensional (right) and three dimensional (left) unstructured mesh.

The finite element method (FEM) offers a solution to this kind of problems: the
bodies are decomposed into tessellations of simplices (a simplex is the n-dimensional
analogue of a triangle). These aggregates are called unstructured meshes and must sat-
isfy a number of well defined geometrical properties (examples of unstructured meshes
are given in Fig. 4.1). In this thesis, we do not enter much into the details of the
mathematical theory. We only say that good meshes have simplices with shape as reg-
ular as possible: even a few flat simplices are enough to significantly deteriorate the
performance of a FEM based simulation [28].

Once the mesh is given, a discretisation scheme to represent the fields can be con-
structed. This is done by associating to the mesh a set of basis functions. The scalar
or vector fields are then expressed as linear combinations of these basis functions. We
will briefly explain the underlying idea with an example. Consider a triangle 7 with
vertices at positions ]31, ]32 and ]33 in a two dimensional mesh. Suppose a( € 7) € R
is a scalar field defined over the triangle. Let’s call Ly (7) a linear scalar function which
is defined to be equal to one at the k-th vertex and zero at the other vertices (see Fig.
4.2). The function a could be approximated by a(7) = a1 L1 (F) + a2 La(7) + agLs(7),
where a; = a(p;g). It is easy to realise that @ is the linear scalar function which is equal

to a at the vertices of the triangle. It is clear how one could extend these reasonings to

30



Figure 4.2: A plot of the functions L1, Ly and L3 associated with a simplex (a triangle) of a two-
dimensional mesh. It is shown that Lj is linear inside the triangle and takes the value one at the k-th

vertex and the value zero at the other two vertices of the triangle.

obtain a piecewise linear function which approximates the the scalar field a over all the
two dimensional mesh: it is enough to apply the previous procedure to every triangle
of the mesh, extending the L functions to be zero outside the simplex they belong to.
Grouping together all the contributions associated with each node! of the mesh one

obtains:
N
a(f) =y aiei(),
i=1

where ¢ runs from 1 to the total number of nodes, IV, and e; is the sum of all the
L-functions of the neighbouring simplices which have r; as a vertex and is often called
“tent basis function” (see Fig. 4.3). Taking a; = a(7;) one obtains the piecewise linear

function which is equal to a at every site of the mesh. This may not be the best

e(P)=1

Figure 4.3: A plot of one basis function used to represent a scalar field over a two dimensional mesh
with first order FEM . This basis function is given by the superposition of six L functions. One for

each triangle around the site 7.

!The nodes or sites of the mesh are the vertices of its simplices.
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approximation for a and one could choose other ways to project? a given function a(7)
onto the N-dimensional linear space spanned by the N functions e;. The presentation
given here is far from a rigorous formulation of the FEM theory. We gave just an
example of first order representation of a scalar field on a two dimensional mesh. Higher
order representations exist where the basis functions are quadratic, cubic, n-th order
polynomials. There are important steps of the micromagnetic calculations, such as the
calculation of the exchange field and the demagnetising field, which need to be adapted
expressly to this formulation. In this thesis we do not enter into the details of such
calculations, which can be found elsewhere [29, 30, 31, 32, 33].

The flexibility of FEM is evident if compared to finite difference methods. Un-
fortunately it has other kinds of problems. First of all the implementation is not
straightforward and it requires to use additional memory in order to store the mesh
and the associated geometrical information. Secondly, obtaining a good mesh is not
really a trivial task, unless an external meshing software is used, such as Netgen, Gmsh
or Gambit [34, 35, 36]. Requiring to use an external meshing program is certainly a dis-
advantage if the sample one needs to study has a simple geometry (such as a square film
or a cube); it can be an advantage, however, when studying magnetic nanostructures

with complex three dimensional shape.

4.2 Algorithms for time integration

In this section we present some algorithms for the integration of the LL equation (2.3).
As done previously, we assume the saturation magnetisation, Ms,t, is constant in time.
For simplicity, we also assume that Mg,y is uniform in space. We define the unit vectors
h = H/H and 7 = M /Mgy with H = |H|, Mgy = ||M|| and write the LL equation
as:

—

i = —' | x H~+am x (mx H)| = f(m, Hm)). (4.1)
m’ is a shorthand for 9y, the time partial derivative of m, and v = 1437 This
is the equation we have in mind when describing the numerical methods in the next
few sections. We begin by explaining in detail the Euler method, which is the first
integration algorithm which we implemented in our micromagnetic simulation package,
Nmayg. It is also the default integration scheme in the micromagnetic simulation package
OOMMF [37].

2This could be done defining a scalar product over the mesh Q (for example (f, g) = fQ F(@)g(7)d?r)

and projecting a into the basis function e; to obtain the coefficient a;. Note that a matrix inversion

would then be necessary, since the basis {e;}; is not orthogonal.
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4.2.1 Euler method and step-length adjustment

In what follows we discuss the Euler method to integrate the LLG equation as it is
implemented in the micromagnetic simulation package OOMMF [27]. Many of the
ideas presented here have, however, a more general validity and can be found in the
books on numerical methods [38].

The Euler method is probably the simplest method to numerically integrate the LL
equation. Given the initial configuration for the normalised magnetisation mg ;, we use

the following recursive relation:

mn—f—l,i = T?Ln’i + (tn—I—l — tn) T?L;L i (4.2)

)

My, is the approximation of the magnetisation computed at time ¢,, and m;“ is its
derivative with respect to time. The index 7 refers to the position in space 7;, which
needs to be discretised in some way.® Eq. (4.2) is used to obtain the magnetisation
Mp41 at time t,41 = t, + At, from the magnetisation i, at time ¢,,. The procedure

is as follows:

e from m, calculate the effective field H (this step is time consuming, since it

requires the calculation of the demagnetising field, the exchange field, etc.);
e use the LL equation to calculate ], from m,, and ﬁn;
e use the Eq. (4.2) to compute the time evolution and obtain 77i,1;
e iterate until convergence is reached.

The method can be derived easily. We denote with (7, ¢) the exact solution of
the LL equation with (7, t0) = mig,; taken as initial condition. We write its Taylor

expansion with respect to time in ¢ = ¢,:
1
m(7, t, + At) = 77, t,) + At/ (7 t,) + 5(At)2 m (7 tn) + ..

If At is small enough, we can get an approximation of the magnetisation at time
tne1 = t, + At, by truncating the expansion at the first order in At. We start with
t = tp and obtain 14 ;, then we iterate this procedure over and over again to calculate
the magnetisation at the following times, thus obtaining the Euler method.

We could take a constant At, = t,11 —t, = At and use t, = n At. But what is

a good choice for At? How can we choose a At which is small enough to achieve the

3For the finite element method, M, ; is the coefficient relative to the i-th tent function of the chosen

basis.
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required accuracy, without wasting time due to a too small At? And moreover, is it a
good idea to use a At which is constant throughout all the simulation? We can answer
all these questions if we find a way to calculate the error related with a particular
“move” of our Euler integrator.

To do this, we consider again the Taylor expansion of the exact magnetisation. If

At is very small, then we can write:

(7t + At) = m(F, t,) + At/ (7 t,) + AmS™,

n

where:

> err 1 S 1 >/ = >/ =
Ampt §(At)2 m (7 ty) =~ 5At () (P tns1) — (7, t0)) -

Since At is small, the terms of higher orders are negligible compared to the one of
second order. This gives us a method to check the result of our Euler-based integrator.

We define the error for the step n as:
1 o o
eni = 5 A [0 = |- (4.3)

Since 7 has unit norm, its movement Amy, ; = ||Mip41,i — My || during the n-th time
step is expressed in radians. €,; is the error related to such a movement and shares
therefore the same unit of measurement.

There are two requirements we can make over the error e. We introduce an “absolute

error” €4 and require that for all the steps and all the positions,
€ni < €A- (4.4)

This will set the resolution in the calculated trajectory of the magnetisation.

We introduce another check: the error in the movement should be lower than the
movement itself. This is really important: it does not make much sense to move
by 0.1 radians, when the associated error is 0.09 radians! We need to be sure that
€n,i < |[[Amiy ||, so we introduce another parameter, the “relative error” eg, and we
require that €,; < €g|[|Amy ||. Ani,; is the change in m relative to the n-th step,

which in the Euler case is simply mi], Aty,:
€ni < €R Hﬁi;mH Aty,. (4.5)

Imposing this relation on all the positions may be too restrictive. Imagine we have
a point ig where Eq. (4.5) does not hold, but m does not change significantly. We

At, < 1079 radians for example. Even if the error for this position

may have Hﬁi;”o

is high, the move does not produce a relevant modification of the configuration here.
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Rejecting the move, however, would be a waste of time, if somewhere else things were

/
n,max

going better. For this reason we define Hrﬁ H to be the maximum value of Hm;”

)

for the running index 4, and we make the following requirement:

€ni < €ER Hm/ H Atn,

T, max

for all positions ¢ and times n. We can collect these two requirements into the following
expression:

€ni < €nmin = min {4, €g |17, oy || Atn} - (4.6)

This provides a method that allows us to check whether a particular time integration
step was well done or not. Actually we can exploit these relations even better.
Suppose we just did the n-th time step. We used relation (4.6) and unfortunately
we discovered that our At, was too large. Now we reject the step and we want to
guess a new step size At such that the error €, ; is reduced and is lower than €, min
everywhere. We need to find how the error depends on the step length At. Its Taylor
expansion up to the first order in At gives: €, ;(At) =~ e,,;At, where €, ; is the error

rate (see also Eq. (4.3)). We can calculate the maximum error rate as:

En,max = Max {e,;}, = max {e,;}, /Aty

In this way we know that €, max At would be the maximum error across all positions 1,
if the step size was At. The solution now is evidently quite simple: we want &, maxAt <

€n,min, therefore we redo step n using:

€n,min

Atn,new =

€n,max
This formula can be used not only when a step is rejected, but more widely to obtain
a guess for the next step size. A good idea would be to take:

Atpiq = R (4.7)

En,max

R is a “safety factor” between 0 and 1 and controls the probability that the next time
step will be accepted for the guessed step size: if R < 1, then this probability will be
high, if R ~ 1, the probability will be low.

A final observation should be made. The Euler method does not preserve the
magnitude of m. Therefore we should take care of normalising it manually before

proceding to the next step.
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4.2.2 The Runge-Kutta methods

The Euler algorithm is referred to as a first order method, because it is accurate up
to the first order in At¢: with this we mean that the local error associated with each
time-step is O((At)?). The method was derived in the previous section starting from
a Taylor expansion of the unknown exact solution m(t). A second order method can
be derived in a similar fashion. This time we keep also the second order term in the
expansion:
T, 1) 2 (T, ) A (7, 1) 3 (A0 77 ).

m’ can be calculated using the LL equation, but how are we going to calculate the
second derivative m” (7, t,)? We could take, for example, m/” (7, t,) = 2(m/(7,t, +

At/2) —m/(7,t,))/At. Substituting this into the former equation:
M7, taa1) = M7 t) + At (7 t, + At/2).
This formula suggests the following approach:

e from m,, we calculate the effective field f[n and we substitute it in the LL equation

to obtain M/ ;

e we perform an Euler step to the middle of the time interval: nii, = m, +
2?
my, At/2;

I
)

e from m1 , we calculate the effective field and use the LL equation to obtain 17/, .
27 29

e we perform an Euler step starting again from t,, but using — this time — the

derivative calculated in the middle of the time interval: 7,11 = M, + M) . At;
2 b
e iterate until convergence is reached.

This is the so called midpoint method. Note that the value of the magnetisation in the
middle of the time interval is used only to calculate the derivative ni/, and then it is
simply discarded. The truncation error associated with each time-step N O((At)3), but
we have to pay a price for this greater accuracy: for each step the number of evaluations
of m/ is doubled.

Other algorithms with even higher order exist and can be derived systematically
using a well defined procedure. These algorithms are referred as Runge-Kutta (RK)
methods and are widely used for time integration. The algebraic calculations involved
in the derivation of Runge-Kutta methods become rapidly lengthy and tedious as the

required order of the method increases. The derivation of the second order Runge-Kutta
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methods could be instructive, because it shows the main ideas behind the procedure,
still being quite easy. We will not face such a calculation, which can be found elsewhere
[39]. We only mention that the Euler method turns out to be the unique first order
Runge-Kutta method and that many different n-th order methods exist for n > 1. The
midpoint method actually belongs to the class of second order Runge-Kutta methods.

It is important to note that to a higher order corresponds a higher number of
evaluations of f (the RHS of the LL equation) and hence of the effective field, which
is the most expensive computation in micromagnetic simulations in terms of time.
However, higher order methods usually allow to choose bigger step lengths to obtain
the same required accuracy. These two effects balance in a non trivial way, so that it
depends on the particular considered problem if a higher order method will perform
better or not. It is commonly well accepted that a fourth order Runge-Kutta method
gives a good compromise between number of RHS evaluations (just 4) and obtained
accuracy. We emphasise, however, that these are only provisional thoughts. We did
not implement any Runge-Kutta time integrator in our own micromagnetic simulation
package Nmag, and consequently we cannot formulate any precise statement about
the relation between the number of RHS evaluations and the accuracy of the time
integration. Runge-Kutta time integrators, however, have been implemented in other
micromagnetic simulation packages such as OOMMF [37] and M?3S [40], leading to
significant performance improvements with respect to the Euler time integrator [41]
(it is worth to notice, however, that such improvements depend much on the required
accuracy [42]).

The step-length adjustment for Runge-Kutta algorithms can be implemented with
the so called step doubling: time is advanced from ¢ to ¢ + At in two different ways:
firstly, the two-step evolution mi(t) — m(t + At/2) — m(t + At) is performed; then the
same evolution is performed using one single step ni(t) — m(t + At). The difference
between values obtained in these two different ways gives an estimate of the local
truncation error and can be used to accept/reject the move and to adjust the time-step
length. This technique requires an additional computational cost: every two Runge-
Kutta steps (8 function evaluations, for a fourth order RK) we need to do an extra
step, which requires 3 more function evaluations (since it shares the starting point).
The overhead is thus a factor 11/8 = 1.375.

A Dbetter technique for step length adjustment is provided by the so called “embed-
ded Runge-Kutta formulas” [38]. These algorithms are based on the fact that the same

set of function evaluations can be used to obtain two Runge-Kutta methods of different
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order. The difference between the results given by these two algorithms can then be
used to calculate an estimate of the truncation error. The most popular of these meth-
ods was invented by Fehlberg and combines six function evaluations to obtain both a

fifth order and a fourth order Runge-Kutta method.

4.2.3 Other methods

We gave a very small view on the wide world of numerical integration methods. We
have to mention that other very interesting approaches exist. Indeed, in the previous
sections we considered only single-step algorithms, so called because, even if they may
calculate and store the time derivative of m several times per step, they completely
get rid of such information when passing to the next steps. The time-stepping of these
algorithms could be represented by a simple function mapping m,, onto Mm,+1. Multi-

3

step methods, on the other hand, use the “recent history” of the system to compute
the new configuration. This means that, in order to compute the next step, part of
the information which was used in the previous steps is reused. The popular Adams-
Bashforth-Moulton algorithms belong to the category of predictor-corrector algorithms,
which is an important class of multi-step methods. These methods are rather complex

to implement and require a considerable bookeeping.

4.2.4 Semi-analytical methods

When the effective field is constant in time, the LLG equation (2.3) is known to admit a
simple analytical solution, which can be found by expressing it in spherical coordinates
or by projecting it along the direction of the applied field and on the plane orthogonal
to it, as shown in Appx B. One is then tempted to exploit such an analytical equation
and use it to improve an already existing numerical integration scheme, such as the
FEuler method of Sec. 4.2.1. The resulting semi-analytical integration scheme may help
— for example — to overcome the problem of respecting the constraint of constant
norm for the magnetisation, Eq. (2.4). Indeed, since the analytical solution does fulfil
exactly such constraint, it may be used to replace the Euler step, Eq. (4.2). This
idea has attracted quite some researchers in the field of computational micromagnetics
[43, 44, 45], including us. After implementing the Euler method in Nmag, we worked
on a semi-analytical method very similar to the one presented in Ref. [45], which
we derived independently. We found, however, that in most practical cases, such an
algorithm does not lead to significant performance improvements with respect to the

simple Fuler algorithm of Sec. 4.2.1 and results in analogous time step sizes.
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We understood the result in the following way. Whether the semi-analytical ap-
proach will work well or not, depends quite crucially on how the effective field changes
with the magnetisation: if the effective field is constant in time, then it is reasonable
to expect the semi-analytical algorithm to outperform any other algorithms since —
in principle — it would need just one step to reach convergence. In general, we ex-
pect the semi-analytical approach to work well when the effective field changes slowly
with the magnetisation. Unfortunately, the contribution that the exchange field gives
to the effective field has the form V27 (see Eq. (2.11)) and thus typically varies as
quickly as the magnetisation itself. As a consequence, the corresponding dynamics is
often rather different with respect to the one described by the analytical solution, Eq.
(B.11). Discouraged by such findings, we did not invest more time to look into semi-
analytical approaches to integrate the LL.G equation. It is worth to mention, however,
that there are researchers who have been working more extensively on the method and

on improving it [46].

4.2.5 The backward Euler and the Sundials package

So far we only considered explicit methods while also implicit methods exist. We explain
briefly the difference between explicit and implicit methods starting from the formula:
Mp41,i = Mini + 'ﬁi’n,iAtn. This is the Euler algorithm and was explained extensively
in Sec. 4.2.1. Actually this should be called explicit (or forward) Euler method, since
also an implicit version of the same formula exists: M, 41, = My + M1, +1,1Atn- With

the forward Euler method we can calculate immediately the next configuration 1,41

!
n,%)

using the time derivative m; ;, which can be obtained directly putting m,; inside
the LL equation. With the implicit (or backward) Euler method one needs to use
more complex techniques, since the derivative i, +1,; cannot be computed directly:
functional iteration or the Newton’s method need to be used. This means that a step
in the implicit scheme will generally take much more time than a step in the explicit
scheme. On the other hand, it is known that stiff problems can be hard to solve with
explicit methods, due to their prohibitively small time step requirements. Implicit
methods, such as the backward Euler, can provide much better performance in such
cases (larger time steps).

This is the reason why for the time integration in Nmag we have chosen to use
an external code, the CVODE library provided by the Sundials package [47]. The
CVODE library provides the user with two families of algorithms for time integration:

the Adams-Moulton formulas and — for stiff problems — the Backward Differentiation
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Formulas (BDF's) [48]. Suess et al. [49] presented a detailed study of the performances
of the Adams and the BDF methods as implemented in the CVODE library, when
applied to two different micromagnetic problems within the scope of the finite element
method. They studied a single-material magnetic thin film, following the specification of
the fourth uMAG standard problem [50] and they also investigated a granular structure
with irregular boundary surface. Their findings suggest that, while different algorithms
perform differently depending on the setup of the problem, on the particular mesh and
on the required accuracy, a BDF algorithm with maximum integration order set to 2
(K1 = 2, see “mathematical considerations” in Ref. [48]) and with preconditioning (in
order to solve the implicit BDF formula) leads to optimal performance, when compared
against the Adams method and against BDF method without preconditioning or with

integration order greater than 2.

4.2.6 Summary

In this section we gave a quick review of some of the numerical methods which were
used in the computational studies presented in this thesis. We briefly introduced some
of the ideas at the base of the finite element method and gave a quick overview on
some time-integration techniques which are often used for micromagnetics. We focused
mainly on the Euler method, which was implemented initially while working on the
project for this thesis. At present, however, our simulation software, Nmag, uses the

CVODE package for carrying out the time integration of the LLG equation [47].
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Chapter 5

Nmag, a flexible micromagnetic

simulation software

All the numerical results presented in this thesis have been obtained using Nmag, the
FEM-based micromagnetic simulation package which has been developed by our group
in Southampton and has been released as open source [51]. At present, Nmag has been
used in our own works to study effects such as the anisotropic magnetoresistance in
nano-rings [52], the demagnetising field of quasi-periodic nanostructures [53], exchange
springs systems [54] spin transfer torque effects [55, 56] and has been recently employed
by other independent groups for their own studies [57, 58].

For the preparation of this thesis we have not just used Nmag, but we have also
devoted considerable time in developing and improving it. In this chapter we explain
the reason why we embarked on the development of a new software for micromagnetic
simulations, rather than using an already existing system such as OOMMF [37] or
Magpar [59]. We discuss the main goals and characteristics of Nmag and explain how

we contributed to it.

5.1 Introduction

In recent times researchers are showing an increasing interest in the coupling between
magnetism and other phenomena, such as spin transport, heat generation and conduc-
tion, electromagnetic wave generation and absorption, etc. This trend is generating
a considerable demand for flexible simulation tools, which have multiphysics capabili-
ties, meaning that they can take into account different types of physics. While there

are a number of commercial and free software packages for micromagnetic modelling
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[37, 59, 60], practically all of them are frameworks highly specialised in micromagnetics,
which need ad-hoc extensions in order to introduce new fields or modify the equation
of motion. These tools typically rely on a rigid scheme for performing micromagnetic

simulations, which is depicted in Fig. 5.1-a. When using such tools, the user has to

Python
input script
parameters

A

A4

A 4

micromagnetic ‘ 0N LIBRES ’

simulation +
engine T l
7y ‘ input ’ ‘output’
A4 v
i t 4 .
MJ [ou—puq micromagnetic
simulation
(a) ordinary architecture (b) Nmag architecture

Figure 5.1: Different approaches to micromagnetic simulations. (a) traditional approach, where
input parameters (a set of numbers) are provided in one or more files. (b) alternative approach, where
the simulation capabilities are collected in a library for a modern and powerful scripting language and

the simulation is carried out just by using the library.

provide one or more files, containing a set of input parameters. These input parameters
are essentially a bunch of numbers describing the material (saturation magnetisation
Msat, exchange coupling constant A, etc.), the initial magnetisation configuration, the
range for the applied magnetic field (in the case of hysteresis loop). When launched,
the simulation tool reads the parameters and runs the simulation, writing the results in
a set of output files. It does all this following a rigid predetermined order of execution
and may thus remind how a vending machine works: select the drink, the amount of
sugar, press the button, get the coffee. This approach is simple and often effective
enough. In many other situations, however, it is desirable to have more flexibility, in
particular when studying new magnetic nanostructures and multiphysics scenarios.
With Nmag we propose an alternative approach (see Fig. 5.1-b), where micro-
magnetism is just one applications of a generalised framework and extensions to the
software (such as adding a new field or modifying the equation of motion) can be made

without recompiling it. The central idea is to embed the simulation capabilities inside
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a library for a scripting language. To run a simulation, then, the user has to write a
small script!, rather than providing a list of input parameters. This approach has a

number of advantages in terms of flexibility:

e it is the user who decides what to do and when: the order of execution is de-
termined by how the user writes the script. He can do a time integration with
the method advance_time, perform an hysteresis loop with hysteresis, save the
data with save_data. The user decides what to do by calling the appropriate

function in the desired order;

e the micromagnetic simulation library can be used together with other libraries.
For example, if a micromagnetic simulation is carried out in order to determine
the amplitude A of the magnetisation response to a given stimulus s, then an
optimisation library may be used in order to find which stimulus sy.x maximises

the amplitude A.
e new capabilities can be added easily from within the scripting language;

e there is also an advantage in terms of clarity. A small script is generally clearer

that a file containing just a list of input parameters.

The popular software OOMMEF uses an approach which may appear to be very
similar to the one we have just described: it requires the user to provide a Tecl script
[61] in order to carry out a micromagnetic simulation. At present, however, OOMMF
uses Tcl just to collect the input parameters and does not give to the user control over
the order of execution. It thus sticks to the traditional approach of Fig. 5.1-a, with
some additional advantages, such as offering the possibility of setting an arbitrary initial
magnetisation. OOMMEF does not allow the user to run more than one simulation per

script [62].

5.2 Implementation details

Nmag consists of two parts: a FEM classical field framework, which provides basic
functionality to define scalar, vector and tensor fields and to operate on them, and a
top layer which uses this framework in order to provide an environment for running

micromagnetic simulations.

LA script is just a program which can be read and executed on the fly, without requiring an inter-

mediate translation into machine code, in contrast to what happens for C or Fortran.
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The bottom layer implements finite element method (FEM) discretisation to arbi-
trary order of the shape functions and is the part of the software which actually does
the computationally intensive work. It is written in OCaml [63], a fast functional pro-
gramming language, and uses a number of well known optimised external libraries to
carry out vector manipulation at the lowest level. In particular, MPICH2 [64] is used
in order to distribute data and computation over multiple machines, Petsc [65] is used
for vector and matrix manipulation, Sundials [47] is used for the time integration of
the Landau-Lifshitz equation.

Such capabilities are exploited by the top layer, which implements the micromag-
netic simulation environment and is written in Python [66], a modern scripting language
which is powerful and still easy to learn and use. It is worth to stress once more that
the full micromagnetic calculation is just an extension to the underlying general pur-
pose FEM library, which we call Nsim. This means, in particular, that the Landau
Lifshitz equation, the computations of the exchange and the demagnetising field are all
specified in the top Python layer. This feature is particularly desirable in multiphysics
scenarios, since extensions to the micromagnetic model can be made by writing Python
code.

Being based on finite element, Nmag requires an unstructured mesh of the ferro-
magnetic sample which is to be simulated, such as the one shown in Fig. 5.3. The
mesh specifies how the volume of the body is subdivided into elements of tetrahedral
shape. To obtain such a decomposition, external meshing programs can be used?: in
this thesis we used Netgen [34]. In summary, to run a simulation the user has to provide
a mesh and a Python script, such as the one shown in Fig. 5.4. The simulation can
be run by putting the script and the mesh file in the same directory and executing
nsim script.py from the command prompt.

It has been said before that Nmag uses MPICH2 to distribute data and computation
over multiple machines. Considering the architecture of the program, where the user
can influence the order of execution of the simulations, this is not a trivial task. The
model we adopted in order to deal with such a task is depicted in Fig. 5.2. We call
it the master-slave approach. The nodes involved in the computation are indeed split
into two groups: the master node, which does actually execute the Python script,
and the slave nodes, which wait for the master node to send instructions and give an

on-demand help with the computation. Running the script only on a single machine

2Actually Nmag provides its own mesher, Nmesh. For large three dimensional meshes, however,

there are free (and commercial) alternative packages which offer considerably better performance.
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Figure 5.2: The approach to parallelisation employed by Nmag: One of the nodes acts as “master”,
the others act as “slaves”. The master node executes the Python script, asking for the help of the slave
nodes only when dealing with computationally intensive tasks. This approach guarantees that a script
written for running on one machine, can run also on multiple machines without requiring any special

modifications.

and using the others as computing nodes has two important advantages with respect
to a more traditional approach where all the nodes are running simultaneously the
same program and are thus treated at the same level. First, this approach removes
conflicts in input/output operations. Such a conflict may arise, for example, when
the user creates a file. Indeed, if the script is running on multiple machines, each of
those will try to concurrently create the same file. Special precautions would then
be needed to avoid the problem and this is something we cannot really expect from
the average user. A more technical reason for using the master-slave approach, is
connected with the memory management of OCaml. OCaml uses garbage collection
to manage memory allocation and, consequently, we may expect some randomness
in the way memory is requested and handed back to the system. This becomes a
major problem when destroying parallel vectors and resources: destructions of parallel
resources need perfect synchronisation between the nodes involved in the computation,

while the garbage collectors of different nodes may lead to asynchronous destruction of
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the distributed parts of vectors and matrices.

An accurate and complete description of Nmag goes beyond the scope of this chap-

ter. A paper going more into the technical details of the package is in preparation. A

short summary of the main features of Nmag and the algorithms used for the different

parts of the micromagnetic calculations is provided below:

5.3

Finite Element Method discretisation;
vector and matrix management through Petsc [65] and MPI [64];
demagnetising field calculated using the hybrid FEM/BEM approach [30, 29];

time integration through a backward preconditioned time integrator using Sun-
dials [47].

Example 1: hysteresis loop with Nmag

In this and the next section we provide two example scripts in order to show how

Nmayg is used in practice. We first give an example of hysteresis loop computation. We

consider a bar made of Permalloy with size 30 x 30 x 100 nm and apply the field in

the (1, 1, 1) direction. The mesh (Fig. 5.3) is obtained using Netgen and is contained

inside a file with name bar.nmesh.h5, which must be placed in the same directory

containing the script. The script is shown in Fig. 5.4. Here we comment it briefly line

by line.

Lines 2-3: we specify that we want to use Nmag, the library to run micromag-
netic simulations. All the functionality provided by this library will be accessi-
ble in the following lines of the script by using the prefix “nmag.”, such as in
nmag.MagMaterial or nmag.Simulation. In line 3 we indicate that we want to
access the objects SI and at directly, without any prefix. Indeed, the object SI
will be used frequently in the script to associate physical dimensions to numbers.
For example, to provide a length we could write SI(5, "m") (for 5 meters), to

provide a velocity SI(7, "m/s") (7 meters per second).

Lines 7-8: we define a new material corresponding to Permalloy. We give it the
name “Py” and associate saturation magnetisation Mgy = 0.86 % 108 A/m and

exchange coupling constant A = 13 x 10712 J/m.

Line 10: we define a new simulation object s. Its role will become clearer in the

following lines.
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Figure 5.3:  On the left: Mesh of a bar with size 30 x 30 x 100 nm. On the right: hysteresis loop
obtained by applying a field in the # = (1,1,1) direction with intensity going from 10° A/m to —10°
A/m. Note that M, = M -7 and (M) is the spatial average of M,.

# Import the Python library for doing micromagnetic simulations
import nmag

from nmag import SI, at

# Create a new material with appropriate name, saturation magnetisation

# and exzchange coupling constant

mat_Py = nmag.MagMaterial (name=’Py’, Ms=SI(0.86e6, ’A/m’),
exchange_coupling=SI(13e-12, ’J/m’))

s = nmag.Simulation() # Create a new simulation object

# Load the mesh and associate materials to its regions

s.load_mesh(’bar.nmesh.h5’, [(’regionl’, mat_Py)], unit_length=SI(le-9, ’m’))

12}

.set_m([1, 1, 1]) # Set the <initial magnetisation

# Define a list of applied fields for which we want to run the hysteresis loop
Hs = nmag.vector_set(direction=[1, 1, 1],
norm_list=[1.0, 0.95, [], -1.0, -0.95, [], 1.0],
units=1e6*xSI(’A/m’))

# Run the hysteresis loop. Save averages of fields at convergence of each stage

s.hysteresis (Hs, save=[(’averages’, at(’convergence’))])

Figure 5.4: Example showing how to setup an hysteresis loop with Nmag. The simulation setup

requires just 23 lines of Python code, of which 12 lines are blank or used for comments.
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e Line 13: the mesh is loaded from the file “bar.nmesh.h5” and is associated
to the simulation object s. A mesh can, in general, have many regions: this
depends on the way it was created. One may, for example, split the bar of
Fig. 5.3 into two or more regions and associate to each region a different mate-
rial. In the current example we have just one region and one material. We use
[(Pregionl’, mat_Py)] to specify that we call the first and unique region with
the name “regionl” and that this region is filled with Permalloy. Finally, with
unit_length=SI(le-9, ’m’) we indicate that the mesh is expressed in units of

nanometers, i.e. one in the coordinate system of the mesh means one nanometer.

e Line 15: we set the magnetisation along the direction [1, 1, 1]. Note that we could

use the same method set_m to set the magnetisation from a Python function.

e Lines 18-20: we create, in Hs, a list of values for the applied field. The hysteresis
loop will be carried out by setting the applied field and running a simulation for
each of these values (this simulation is also called “stage” of the hysteresis loop).
These values are all pointing in the direction [1, 1, 1] and have norms going

from 1.0u to —1.0u in steps of 0.05u, where u is the unit, 106 A /m.

e Line 23: we run the hysteresis loop and save the averages of all the fields at
convergence of each stage. Here we finally see what the at symbol, which was

imported in line 3, is used for.

The simulation can be run by entering nsim script.py at the command prompt.
The data can be extracted then with a dedicated tool, ncol. The final hysteresis loop
is shown in Fig. 5.3 (right).

5.4 Example 2: proposal for a new standard problem

Introduction

After developing a software package to perform simulations, it is important to assess
its reliability by running a number of tests and by executing comparisons against well
known solutions. This is the reason why researchers in computational micromagnetism
agreed on the formulation of a set of standard problems, whose specifics are now pub-
lished online [50], together with the solutions submitted by several research groups all
over the world. Such an approach helps mutual progress and gives also an opportunity

to compare accuracy and performance of different simulations packages and different
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numerical methods. Unfortunately, the set of standard problems is currently consti-
tuted only by four problems and all of them are single-physics problems, meaning that
they take into account only standard micromagnetic effects. Considering the recent
research trends in micromagnetics, we think it is important to introduce new standard
problems, where multiphysics scenarios are studied. For this reason we collaborated
with researchers from the University of Hamburg (Germany) and from the IBM Ziirich
Research Laboratory (Switzerland) to formulate a standard problem including spin
transfer torque effects through the Zhang-Li extension to the Landau-Lifshitz-Gilbert
equation. The collaboration resulted in a paper [67], which collects numerical result
from four different software packages and compares them with the approximated an-
alytical solution. We contributed to this work by helping in the formulation of the
standard problem and by running it with Nmayg.

Problem definition

We consider a thin film with cuboid geometry and size 100 x 100 x 10 nm. We use
material parameters similar to Permalloy, with the exception of the damping parameter
a: the saturation magnetisation is Mgy = 8 X 10° A /m, the exchange coupling constant
is A =13 x 1072 J/m and the gyromagnetic ratio is v = 2.211 x 10° m/(As).

The simulation consists of two sub-simulations. In the first part we are not inter-
ested in the dynamics of the system: we just relax the system, such that a precise initial
magnetisation is obtained. Indeed, we want to get to the equilibrium state where the
magnetisation develops a vortex in the center of the film. In the second part, we apply
a current density and study how the vortex dynamically reacts to it.

The first sub-simulation uses the following expression to set up the initial magneti-
sation:

V() = Mag 5 () = (~(y — ). 7 — 70, R).
la()|

where 7 = (z, y, z) is the position in space and 7y = (xg, Yo, 20) = (50 nm, 50 nm, 5nm)
is the center of the film. R = 40nm is a constant used to make sure that the norm of
i is always positive. Its sign determines the final chirality of the vortex. This initial
magnetisation is relaxed using a damping constant a = 1 to reach convergence quickly.
The relaxation proceeds until the following convergence criterion is satisfied:

1 dM(7)
Mgy dt

max

< 0.01rad/ns, (5.1)
ey

where V is the region of space occupied by the cuboid. The magnetisation is then saved
to file.

49



In the second sub-simulation, the equilibrium magnetisation obtained in the first
sub-simulation is loaded from file and is used as the initial configuration. A fully
polarised (P = 1) current with density j = 102 A/m? is instantaneously applied in
the positive x direction. The current density is homogeneous in space and constant in
time. The damping constant is set to a = 0.1 and the degree of non adiabadicity is set
to & = 0.05. These parameters are not realistic for Permalloy, but produce enhanced
non-adiabatic effects, helping to identify possible errors in the implementation of the
fourth term in the right hand side of Eq. (3.13). Indeed, using the realistic values
a = 0.01 and £ = 0.01 would lead to negligible non adiabatic effects, thus weakening
the falsification properties of the standard problem [67]. The behaviour of the spatially
averaged magnetisation reflects the dynamics of the vortex and is hence studied as a

function of time.

The script

The code is discussed below, line by line.

e Lines 2-4: we import the micromagnetic library Nmag, together with other
Python libraries. We import explicitly SI, at, every and degrees_per_ns. We

will see later how these symbols are used in the script.

o Lines 7-18: we create the material and the simulation object, we load the mesh,
associate the material with it and return the simulation object. This is very simi-
lar to what discussed in Sec. 5.3 with two differences. First, we are doing all these
operations inside a function. Indeed, the standard problem requires us to run two
simulations of the same system. We then put the material definition and the sim-
ulation setup inside a function so that we can re-use this code twice. Second, we
are providing four more parameters to MagMaterial: the gyromagnetic ratio v
and the damping parameter « for the Landau-Lifshitz equation (when they are
not provided, the values a = 0.5 and v = 0.2211 x 10°m/As are used instead),
the spin polarisation P and the parameter £ for Permalloy (see Eq. (3.12)).

o Lines 22-33: we run the preliminary sub-problem to find the initial magnetisation
for the second sub-problem. We create the simulation object and load the mesh
by calling the function my_simulation that we defined previously in the script.
We set the magnetisation (line 29) using the function initial_m defined in lines
24-26. We then run a simulation and relax the system to find the equilibrium

magnetisation. The simulation stops when the convergence criterion in Eq. (5.1)
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# We model a bar 100 mm z 100 mm = 10 nm where a vortex sits in the center.
import os, nmag
from nmag import SI, every, at

from nsim.si_units.si import degrees_per_ns

# This %1s an helper function to create the simulation object and load the mesh
def my_simulation(name, damping, P=0.0, xi=0.0):
mat_Py = nmag.MagMaterial (name="Py",

Ms=SI(0.86e6,"A/m"),
exchange_coupling=SI(13.0e-12, "J/m"),
llg_gamma_G=SI(0.2211e6, "m/A s"),
llg_polarisation=P,
llg_xi=xi,

llg_damping=damping)

sim = nmag.Simulation (name)
sim.load_mesh("pyfilm.nmesh.h5", [("Py", mat_Py)], unit_length=SI(1e-9,"m"))

return sim

# If the initial magnetisation has not been calculated and saved into
# the file "wortex_m.h5", then do it now, by running a preliminary simulation!
relaxed_m_file = "vortex_m.hb5"
if not os.path.exists(relaxed_m_file):
def initial_m(p): # define an initial magnetisation which s likely to relazx
X, ¥y, 2 =P # into the wortexz state

return [-(y-50.0e-9), (x-50.0e-9), 40.0e-9]

prelim = my_simulation(name="preliminary", damping=1.0)
prelim.set_m(initial_m)

prelim.set_params (stopping_dm_dt=1.8*degrees_per_ns)
prelim.relax(save=[(’fields’, at(’step’, 0) | at(’stage_end’))])
prelim.save_restart_file(relaxed_m_file)

del prelim # delete the preliminary simulation

# Now we deal with the second simulation: the one with the current!

sim = my_simulation(name="simulation", damping=0.1, P=1.0, xi=0.05)
sim.load_m_from_h5file(relaxed_m_file)

sim.set_current_density([1el12, 0, 0], unit=SI("A/m~2"))

sim.set_params (stopping_dm_dt=0.0) # WE decide when the simulation should stop!

sim.relax(save=[(’fields’, at(’stage_end’) | every(’time’, SI(1.0e-9, "s"))),

(’averages’, every(’time’, SI(0.05e-9, "s")) | at(’stage_end’))],

do =[(’exit’, at("time", SI(10e-9, "s")))1)

Figure 5.5: The script used to run the spin transfer torque standard problem with nmag. The script

is discussed line by line in the text.
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is met (0.01 radians per nanosecond = 1.8 degrees per nanosecond). We save all
the fields before and after the relaxation, so that we can obtain the pictures in Fig.
5.6 and in Fig. 5.7. After the relaxation we save the magnetisation configuration
to file, so that it can be re-loaded and used in the second part of the script. Notice
that all these commands are executed only if the file vortex_m.h5 does not exist
(see line 22-23). If such a file exists, then we assume that the first sub-problem

has already been executed and proceed straight to the second sub-problem.

Lines 35-42: We use again the function my_simulation to setup a second sim-
ulation. We then load the magnetisation from the file vortex_m.h5, set a cur-
rent density with intensity 102 A/m along the x axis and set the parameter
stopping_dm_dt to 0 degrees per nanosecond. With this choice the convergence
criterion will never be met. We finally run the simulation, saving all the fields
every 1 nanosecond and at the end of the simulation. The field averages are saved
every 50 picoseconds and at the end of the simulation. The simulation is forced
to last for a total of 10 nanoseconds. Note how the time constructs (at(...),
every(...)) can be combined together: the operator | (or) is used to specify that
“something” should be saved/done when at least one of the two given conditions
is met. The operator & (and) specifies that “something” should be saved/done
when both the two conditions are met (it is not used in this example). The thing
to save/do is specified via a string, such as fields, averages, exit. However,
the user can also provide an arbitrary function to be executed when the time

specification is matched, resulting in a considerable flexibility.

The components of the average magnetisation are plotted as functions of time for

the second sub-problem. The decaying sinusoidal behaviour of the three curves reflects

the spiralling motion of the vortex [67], which is induced by the sudden application of

the current.

5.5 Contributed extensions

Nmag has been designed and implemented by a team of people, including Hans Fangohr,

Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, Andreas Knittel, Jaceck

Generowicz, Michael Walter and James Kenny. Here we briefly list the work which was

done on Nmag while working on the project for this thesis.

e we implemented the local exchange coupling to model ferrimagnetic materials
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z-component of the magnetisation
0.00 0.143 0.286 0.429 0.571 0.714 0.857 1.00

Figure 5.6: The magnetisation used as initial configuration for the first sub-simulation in the spin

torque standard problem.

: z-component of the magnetisation
0.00 0.143 0.286 0.429 0.571 0.714 0.857 1.00

Figure 5.7: The magnetisation at the end of the preliminary sub-problem. This is the initial
magnetisation used by the second sub-simulation. Notice that the magnetisation is everywhere in

plane, except near the center of the film, where the vortex sits.
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Figure 5.8: The plot shows the dynamic response of the average magnetisation to the applied current
density for the second sub-part of the standard problem. The solid lines show the results obtained with
the script discussed line-by-line in the text (Nmag). The unstructured mesh which was used consists
of 4536 points, 19215 simplices and has edge lengths between 1.66 and 4.71 nm. The circles show the
results obtained with M*S (a FD package [67]) and cell size 2 x 2 x 2 nm.

and DyFe,-YFey multilayers. This work was necessary for studying the exchange

spring systems of Ch. 6;

e we implemented the Zhang-Li extension to the Landau-Lifshitz-Gilbert equation
in order to model spin transfer torque effects in the systems. This feature was

necessary for the studies conducted in Ch. 6, 7 and 8;

e we contributed to the development of the Python interface of Nmag, focusing in
particular on the hysteresis and relax commands and the logic behind the at

and every constructs.

e we contributed to Nmag, by performing tests, fixing bugs and improving the

performance of the package;

e we improved the build system so that researchers in other groups can quickly

install Nmag on their computers. We also provided support to them.
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e we wrote the documentation for Nmag, contributing to the manual which can be

found online [68].

5.6 Summary

We have introduced the Nmag micromagnetic simulation package, explaining the moti-
vations behind the creation of this new software and describing briefly its main features.
We gave two examples of usage, including the corresponding source scripts and explain-
ing them line-by-line. The first example shows how to set up an hysteresis loop, while
the second shows how to produce the result for the recently published micromagnetic

standard problem including the spin transfer torque.
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Chapter 6

Exchange springs in multilayer

systems

6.1 Magnetic exchange spring systems

Exchange spring systems are nanocomposites of ferromagnetic materials with high
magnetic anisotropy (hard materials) and low magnetic anisotropy (soft materials),
exchange coupled across the interfaces between the two phases. Realisations of such
systems include the clustered structure (Fig. 6.1-a), where soft inclusions are randomly
dispersed inside the hard phase, and the multilayer structure (Fig. 6.1-b), made of
alternating hard and soft layers. In this thesis we discuss only multilayer structures
(thin films or nanopillars), which have simpler geometry and are easier to study. In
all their forms, exchange spring systems are characterised by the interplay between the
magnetic properties of the hard and the soft phases. Quite in general, hard materials
are characterised by a strong preference for the magnetisation to align along some pre-
ferred directions relative to the crystal lattice. On the other hand, in soft materials
the magnetisation easily aligns with the external applied field. When hard and soft
materials are put together in an exchange spring system, a peculiar physics emerges:
the magnetisation of the soft material tries to follow the applied field, except near the
hard-soft interfaces, where the hard-soft exchange coupling bounds its direction to the
direction of the hard magnetisation. As a consequence, the magnetisation of the soft
material responds to the applied field in a position-dependent way: it keeps a fixed
direction at the interfaces, and twists towards the applied field in the bulk. The soft
magnetisation here bends in a way which is proportional to the applied field. This

resembles a mechanical torsion spring, thus comes the name “exchange spring”. Many
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Figure 6.1: Exchange spring system in the form of a nanocomposite (a), where soft clusters are
embedded into the hard phase, and in the form of a multilayer film (b), made of alternating soft and
hard layers.

of the properties of such systems can be tuned by selecting suitable geometries and
compositions. For example, the size of the soft regions is usually quite important,
since a larger soft region usually corresponds to enhanced torsion of the soft magneti-
sation, as most of the soft material is far from the interfaces. On the other hand, if
the soft material has a high exchange coupling constant, then it is harder to twist its
magnetisation. The properties we have briefly presented so far make exchange spring
systems promising candidates for many technological applications. Studies in the liter-
ature have suggested that they could be used to obtain high densities in storage media,
while keeping acceptable writability and thermal stability [69]. They could also be
used as high-performance permanent magnets [70] or to develop GMR (Giant Magneto
Resistance) sensors [71].

We now discuss in more details how an exchange spring system reacts to an external
applied field, giving a visualisation of the process in a simple case. We consider the
system depicted in Fig. 6.2-a: a trilayer thin film made of one soft layer sandwiched
between two hard layers. Suppose the initial configuration is the one shown in the part
(a) of the figure: both the hard and soft magnetisations are pointing to the right. We
apply an external field ﬁapp which is initially zero and then increases pointing to the
left. The system initially does not change its configuration and continues to stick to
the state shown in Fig. 6.2-a, even for non-zero values of the applied field, H app- Lhis
behaviour can be explained in the following way: the magnetisation of the soft layer
would like to align with the applied field, because a non-alignment has a cost in terms
of energy. At the same time, however, the alignment breaking is contrasted by the soft-
soft and the soft-hard exchange couplings, which prefer to keep the magnetisation of

the soft layer parallel to the fixed magnetisation of the hard layer.! It turns out that the

'Remember that the strong anisotropy constrains the magnetisation to be fixed in the hard layers,
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Figure 6.2:

A simple example of exchange spring system: one layer of soft magnetic material
sandwiched between two layers of hard material. The figure shows how the magnetisation reacts to

different intensities of the applied field Happ.

balance of these effects favours the completely aligned state (a), unless the applied field
exceeds a well determined threshold field Hy, the bending field. When this happens,
the situation changes as shown in Fig. 6.2-b. The magnetisation of the soft material
starts to bend near the center of the layer in a way which is somewhat proportional to
the applied field, while at the boundaries it stays aligned with the magnetisation of the
hard material, due to the strong exchange coupling. Finally, for fields large enough,
also the magnetisation of the hard layers switches to follow H, app and the resulting state
of the system is the one shown in Fig. 6.2-c, a mirrored image of Fig. 6.2-a, with the
magnetisations of all the layers pointing to the left. This intuitive description of the
behaviour of a typical exchange spring system has been better justified with simple

theoretical models [72]. We present an analytical study in the next section.

6.2 Analytical study of the static equilibrium configura-

tions

In this section we present an analytical investigation which validates the rough intu-
itive picture given in the previous section. We study the trilayer thin film with a one
dimensional model, thus neglecting the inhomogeneities of the magnetisation in the
plane of the film. We assume that the magnetic anisotropy of the hard material is

so strong, that the hard moments are — to a good approximation — rigidly pinned

at least for sufficiently small fields.
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along an easy axis direction. We also assume that the exchange coupling between hard
and soft moments is infinitely strong. These assumptions reduce the complexity of the
system, since the hard layers can be taken into account just by imposing a constraint
on the direction of the soft magnetisation at the soft layer boundaries. On the other
hand, they make the model unsuitable to describe the switching of the hard layers (the
transition from Fig. 6.2-b to Fig. 6.2-c).

We choose the reference frame as shown in Fig. 6.3, with the x axis along the out

of plane direction. The soft layer occupies the region 0 < x < L. Its magnetisation

Figure 6.3: Simple one dimensional model of an exchange spring system. The red arrows represent
the soft magnetisation and the two planes represent the hard-soft interfaces. The moments which lie in
there are rigidly pinned along the positive z direction, while the external field is applied in the opposite

direction.

M = My 171 is defined only in this region and must satisfy the rigid pinning constraints:
m(x =0, L) =1,

where u is the direction of the hard moments in both the two external hard layers.

The applied magnetic field is assumed to be antiparallel to 4. For simplicity, we chose

@ = % (see Fig. 6.3), but we stress that this choice is not determinant for the derivation

presented in this section.

We now write the energy, taking into account only the exchange coupling and the

interaction with the applied field and neglecting the demagnetising field,
L
U[T?_:L] = / da {A (aﬂCm)Q + :U’OMSatHapp m - 2} .
0

The same energy can be expressed in spherical coordinates, with @ chosen as the polar

axis. Spherical coordinates have an important advantage with respect to cartesian
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coordinates: they allow to easily take the constraint 772 = 1 into account. The energy

of the system is then,
L
U[97 ¢] = / dx {A (aacg)z + A sin® 6 (ax¢)2 + ,U«OMsatHapp COs 9} ) (6-1)
0

and depends only on two variables: the azimuthal angle ¢(z) and the polar angle 6(z).
The first two terms under the integral are the representation of (9,7)? in spherical
coordinates. The second term is the only one where ¢ appears, it is non negative
and becomes zero (and hence mimimum) when 9,¢(x) = 0. We then can assume
0, ¢(z) = 0, when searching for energy minima, since there is no other choice of 9,¢(z)

which can lower the energy,
L
U[Q, ¢] = / dx {A (819)2 + NOMsatHapp cos 0} : (6'2)
0

6.2.1 Calculation of the bending field

We now prove that the state where the magnetisation is uniformly anti-parallel to the
applied field Hypp, minimises the energy when H,p,, is lower than a critical value, the
bending field Hy. In order to do that, we show that the difference of energy between
a given state Af(z) # 0 and the uniformly aligned state 6(z) = 0 is always positive,

when H,p,, < Hy,. Such an energy difference can be written as:
L
AU = U[A)] - U[0] = / dz { A (9, 20)? + 1o Mgay Happ (cos A — 1)},
0

where Af(x) is chosen arbitrarily, but satisfies the rigid pinning requirement at the soft
layer borders: A#(0) = AG(L) = 0. We now notice that (cos Af — 1) = —2sin® £,

Moreover the inequality sinz < z, which is valid for > 0, implies that sin?z < 2,

for every real number z # 0. Consequently (cos Af — 1) > —%:
Moy [*
AU > % / dz {C (0:20)? — Hopp(26)?} . (6.3)
0

Here we have introduced the quantity C' = 24/ oM. We notice that, when A6 — 0,
the right hand side becomes a good approximation for the left hand side, since sin Af —

Af. We now use the Fourier representation of A6,

Af = i ¢y, sin (% :n) . (6.4)
n=1

The cosine components are omitted, because they are not compatible with the require-
ment A#(0) = AO(L) = 0. Substituting (6.4) in (6.3) and using the orthogonality
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property:

xrSsm({n-—x mi\m —x
0 [ [ 2 n,m»

AU becomes:
Mo L =
AU > B ;2 (n® Hyy = Happ) » (6.5)
where, y
T\ 2 2 T 2
m=C(7) == (1) (6.6)

When H,, < Hjy, the quantity (n? Hy,— H, app) 18 non negative for n = 1 and positive for
n > 2. Consequently AU = U[A#] — U|0] is positive. We conclude that U[Af] > U[0]
for every Af # 0. In other words, the configuration f(x) = 0 is a global energy
minimum, when H,,, < Hy,. On the other hand, for H,,, > Hj, and ¢; = cd; the
right hand side of Eq. (6.5) is negative, for every choice of the real constant ¢ # 0. We
conclude that, above the bending field, the uniformly aligned configuration 6(z) = 0 is

not a local (nor global) energy minimum.

6.2.2 Equilibrium magnetisation above the bending field

In the previous section we proved that the configuration #(x) = 0, which minimises
the energy when H,,, < Hjy, is not a stable equilibrium configuration for Hyapp > H,.
We now show that, in such a regime, the equilibrium magnetisation twists towards the
applied field. The derivation we present is similar to the one proposed by Goto et al. [73]
for a bilayer exchange spring system. The equilibrium magnetisation is calculated by
minimising the energy functional U[f]. Such a minimisation is done using a conventional
variational approach: for a given #(x), the variation 60U = U[0#+ 6] —U|f], is calculated
with 00(0) = d6(L) = 0. If the configuration minimises the energy, then 06U = 0, for

every variation 00:
0=0U = /OL da {24 0,0 0,60 — poHapp Msar sin 6 66} .
Integration by parts on the first integrand leads to
0=6U = /OL da {—2A4 020 — p1oHappMsar sin 0} 6.
Which should hold for any variation 6 and therefore:
020 = —% sin 6. (6.7)

This is the pendulum equation. It has one trivial solution, #(x) = 0, which is — as

previously remarked — an unstable equilibrium configuration, in the regime Hp, > Hy,.
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We then have to search for other non trivial solutions to this equation. Fortunately, the
pendulum equation is well known and its solution is derived and discussed in published

works [74]. In the case we are considering, it can be written as:

0(x) = 2 arcsin[k sn(Az, k)], (6.8)

N = /Happzﬁ Happ
C L\ H,’

and sn denotes the elliptic sine function. k can be obtained from the following relation:

T | Happ /”/2 dé
Z = K(k) = —_— 6.9
2\/ Hy, *) 0 1 — k2sin? ¢ (6.9)

where K (k) is called the complete elliptic integral of the first kind. We also have

where,

k = sin 9“1%, where 0,.x is the maximum bending angle, which is reached at the center
of the soft layer Oyax = 0(L/2).

The analytical derivation presented in this section is checked against the results
of micromagnetic simulations carried out using Nmag. We study a system with soft
layer made of permalloy (Mg, = 0.86 x 105A/m, A = 13 x 10712J/m) and width
L = 20nm. For such a system the bending field is calculated from Eq. (6.6) as
Hy, = 0.594 x 10 A/m. We run a one-dimensional micromagnetic simulation increasing

the applied field from 0 to 4 x 10°A/m. The increment AH is chosen to be smaller

1.2

T T
Simulation ——

0.8 1

<M >Mgq

04 -

0.2 1 1 1 1 1 1
-7 -6 -5 -4 -3 -2 -1 0

Happ,2/Hb

Figure 6.4: The 2 component of the magnetisation, averaged over the soft layer, as a function of
the applied field, which is expressed in units of Hy, = 0.594 x 10° A/m (as calculated from Eq. (6.6)).

The circle shows the configuration chosen for Fig. 6.5.

62



near the bending field, in order to resolve better the high slope which is characteristic
of that region (see Fig. 6.4). The configuration obtained for Happ, = 106A/m = 1.68 H,,

is shown in Fig. 6.5, together with the analytical solution. To calculate the analytical

120 T T T T

T T T
Analytic formula
Simulation  +

100

80

60

0 (deg)

40

20

0

20 I I I I I I I
-10 -5 0 5 10 15 20 25 30

x (nm)

Figure 6.5: The configuration of the magnetisation (polar angle 6 as a function of the position z)
for a trilayer exchange spring system as obtained analytically from equations (6.8, 6.9) (solid line) and

from a one-dimensional micromagnetic simulation performed using Nmag(crosses).

solution we first find k by solving Eq. (6.9). We then calculate 6(x), following Eq. 6.8.
This is done by a small C program which uses the open source GSL library [75] for
the calculation of K (k), sn(Az, k) and for the implementation of the bisection method.
The agreement between the numerical result and the analytical solution is excellent.
As a final remark, we notice that ¢ appears in the energy (6.1) only through 0,¢.
As a consequence, the energy is invariant for transformations ¢ — ¢+ A¢. This means
that, if we rotate each magnetic moment around the pinning direction @ (Z in the case
considered here) by the same angle A¢, the energy of the system does not change. We
then conclude that, when H,,, > Hy, there are infinite states which equally minimise
the energy. In multilayer films, this symmetry is broken by the demagnetising field,

which favours in-plane directions for the magnetisation.

6.3 Computational study of the dynamics near the bend-
ing field

In the first part of the chapter we focused on the equilibrium configurations and on the

static properties of multilayer exchange spring systems. Now we move our attention to
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the dynamic properties. In particular, we study the magnetisation dynamics for values
of the applied field close to the bending field. One reason why we are so interested in
this regime for the applied field can be understood by looking at Fig. 6.4. Here we see
that the slope of the magnetisation is particularly high near the bending field, meaning
that a small increase in the applied field can cause a great reaction of the magnetisation.
In other words, near the bending field the system exhibits an amplified sensitivity to
external perturbations. This feature is desirable when studying spin transfer torque
phenomena, since it may help to reduce the current density required in order to obtain
significant effects. Studying the dynamics of exchange spring systems near the bending
field may then be relevant for technological applications. Moreover Brillouin light
scattering experiments have shown interesting properties near the bending field, where
the measured magnon frequency reaches a minimum value [76].

In this section we present computer investigations of a thin film made of one cen-
tral magnetically soft YFey layer sandwiched between two thinner magnetically hard
DyFe, layers. We make such a peculiar material choice, because DyFe,-YFes multilayer
samples have been the subject of experimental investigation in our group. We study
the dynamical reaction of the system to small variations of the applied field and anal-
yse numerically its oscillatory nature. Part of the results we present in the following

sections have been published in the journal “IEEE Transactions on Magnetics” [54].

6.3.1 DyFe;-YFe;, multilayers

Three different kinds of atoms are present in DyFes-YFes multilayers: one rare earth
metal, Dy, and two transition metals, Fe and Y. The yttrium has negligible magnetic
moment: only the iron moments contribute to the magnetisation of the soft YFes layers.
Conversely, in the hard layers, both the atomic species of the DyFe, compound give
a relevant contribution to the magnetisation. At the temperature we consider here,
T =100 K, DyFe, is a ferrimagnet, because the magnetic moment of iron is lower and
antiparallel to the moment of dysprosium. The magnetisation dynamics in the trilayer

system is determined mainly by the following interactions:

e in the DyFe, layers, a strong magnetocrystalline cubic anisotropy tries to keep

the Dy moments along one easy axis direction;

e in the DyFe, layers, a strong antiferromagnetic Fe-Dy exchange coupling tries to

keep the iron moments antiparallel to the Dy moments;
e in all the three layers, an even stronger [77] Fe-Fe exchange coupling opposes to
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any spatial variation of the Fe magnetisation;
e the magnetostatic field tries to keep the magnetisation in the plane of the film.

The Dy-Dy exchange coupling is rather weak, due to the localisation of the magnetic
orbitals (4f) of Dysprosium, and we ignore it. The typical configuration of the mag-

netisations of Fe and Dy, when there is no applied field, is shown in Fig. 6.6.

DyFe, Snm
X YFe, 10 nm
y 2 DyFe, 5nm

Figure 6.6: The Dy and Fe components of the magnetisation in a DyFe,-YFes multilayer exchange
spring system. Dy moments (black arrows) are pinned along an easy axis direction, while Fe moments
(red arrows) are forced to align along the opposite direction, due to the strong Dy-Fe antiferromagnetic

exchange coupling.

We emphasise that the Fe-Fe exchange coupling occurs also across the boundary
surfaces between the layers and thus affects the iron moments throughout all the sample.
Indeed, the iron moments may be thought as belonging to a unique homogeneous crystal
lattice which extends over all the three layers. Such a picture is justified by the similarity
between the crystal lattices of DyFe, and YFey. In particular the two materials have
the same lattice structure and almost the same size of primary cell (at temperature
T = 4.2K, the lattice constant is 0.7363 nm for YFes and 0.7325 nm for DyFe, [78]).
The main difference between the two materials is that Dy atoms in DyFe,, are replaced
with Y atoms in YFey. The computational model which we present in the next section
exploits this peculiar characteristic of DyFe,-YFey multilayer systems.

Finally, it should be noted that DyFe,-YFe, multilayers are usually grown by molec-
ular beam epitaxy over a substrate. In such samples the different thermal dilatation of
the layers with respect to the substrate is the source of a strain in the layers. The strain
produces a magnetic anisotropy whose strength increases with temperature. However,
for temperatures around and below ~ 100 K, this effect is weak [79] and we neglect it.
More details about the chemistry, the lattice structure and the magnetic properties of

these systems can be found in the provided references [72, 80, 77, 81].
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6.3.2 Computational model

We represent the configuration of the magnetic moments in the system with two contin-
uous magnetisation fields MDy(x) and MFe(a:), defined over the one-dimensional space:
MDy is the moment density of Dy atoms in DyFe, and M. is the moment density of Fe
atoms in DyFe, and YFey. Their norms are Mp, = HMDyH and Mg, = || Mg/, which at
the temperature of 100 K are Mp, = 1.73x10% A/m and — for both DyFe, and YFey—
Mg = 0.55x 105 A/m. As remarked in the previous section, the assumption of continu-
ity of Mre is supported by the fact that the iron sublattices in DyFe, and in YFey have
the same structure and similar lattice constants, making the density of iron moments
almost identical in the two materials. This feature allows to use the same equation of
motion for Mp. in all the three layers. The Brown’s theory of micromagnetics is used
to derive the effective fields acting on Mpy and Mpe:

—

ﬁDy = Happ + ﬁd + ﬁanis + (J/NO)MFea
ﬁFe = ﬁapp + ﬁd + ﬁexch + (J/MO)MDY'

The applied field acts on both dysprosium and iron. ﬁDy also receives a cubic anisotropy

contribution, whose three axes are shown in Fig. 6.7. The three coefficients used in the

DyFe,
YFe 2

Figure 6.7: Orientation of the anisotropy axes of the DyFe, layers with respect to the plane of
the film. In the chosen reference frame the axis are @ = (1, —1,0)/v/2, @ = (1, 1, 0)/+v/2 and

53 :51 X 62 = (0, O, 1).

anisotropy expansion [82] are K; = 33.9 x 10°J/m3, Ky = —16.2 x 105J/m? and
K3 =16.4 x 10%J /m3. The iron experiences an exchange field ﬁexch = M02]SF V2 e,

where A = 1.46 x 10711 J/m is the exchange coupling constant, pg is the free space
permeability and 7ig, = MFe/ Mrye. The dipolar field is taken into account in the limits
of the one dimensional model and is calculated as ﬁd = —M,z, where M, is the out-
of-plane component of the total magnetisation field and Z is the unit vector which
points towards the positive x direction. This contribution evidently tries to reduce the

surface magnetic charges, pulling the magnetisation into the plane of the film. The
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Dy-Fe coupling is modeled by an extra energy term U = J [ MDY - Mpe dz, where
J =2 x 1074 N/A? is the coupling constant [77] and the integral is done over the hard
layers, where both magnetisations are defined. The Landau-Lifshitz-Gilbert equation
is then used to calculate the dynamics of the two magnetisations.

The unidimensional model is a severe approximation for a description of the switch-
ing processes, where domain walls can form and play an important role, but for our

investigation near the bending field the model should be quite accurate.

6.3.3 Results

For the simulations we use Nmag, the micromagnetic simulation package developed
by our group [68], choosing the first order FEM to discretise the space. The mesh is
a unidimensional lattice with constant spacing Az: the whole meshed region (which
is 20 nm wide) is subdivided into 162 cells of identical size, corresponding to 163
nodes with spacing Az = 20/162 ~ 0.123nm. This peculiar discretisation choice
guarantees that each hard-soft boundary lies exactly at the middle of a discretisation
cell (and thus “belongs” equally to both the soft and the hard layers), giving a more
accurate representation of the geometry of the system and of the soft layer width,
which is important in determining the bending field (see Eq. 6.6). We first calculate
the hysteresis loop of the sample covering a wide range for the applied field H app: from
—60T to 60T (see Fig. 6.8). ﬁapp is directed along the z axis. To avoid the system to

be trapped in an unstable equilibrium configuration, we follow the standard practice

of adding a small constant deviation to the applied field:
Hgey = (1, 1, 0) x 0.005T. (6.10)

The high switching field (around 55T) represents a clear manifestation of Brown’s
paradox and the inadequacy of the one dimensional model to describe the switching
of the hard layers. In this study, however, we are not concerned with this, since we
are exploring a low-field region near the bending field, where the unidimensional model
should be rather accurate. The bending field has been located around Hy, =~ 3.95T (for
details about how this value has been obtained take a look at the caption of Fig. 6.8).
A calculation from formula (6.6) yields Hy = 5.25T. We will see in the next sections,
that such a difference is due to the non-infinite strength of the pinning in the hard
layers.

After these preliminary calculations we start the main simulation. We prepare the

system in the configuration where My lies in the plane of the film and points along the
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Figure 6.8: The hysteresis loop, for the total average magnetisation (includes the contribution for
both Fe and Dy). The field is applied in the in-plane z direction. Notice the similarity between the
bottom-left part of the hysteresis loop and Fig. 6.4. The inset shows a detail of the same curve in
the vicinity of the bending field, Hy, ~ 3.95T. This value has been obtained by fitting the data in the
interval [4 T, 4.5 T] against the equation of a straight line and finding the intersection of such line with

the continuation of the flat part of the hysteresis curve.
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Figure 6.9:  Top: The trajectories of (Mpe> for H,, = 3.50, 3.80, 3.90 T. They show how equilibrium
is restored when the field is changed from Happ = Hp + AH to Happ = Hy. Only the trajectories with
a = 0.02 are shown. Notice the different scales used for the two axes. Bottom: The x component of
(Mpe> is also plotted as a function of time for ﬁapp = 3.90 T together with the fitted curve.

positive z axis, while ]\Zny points along the opposite direction (see Fig. 6.6). This is an
equilibrium configuration when the applied field H, app 1S zero, which is the situation we
choose to start with in our simulation. To study a certain applied field H, app = —Happ 2
we use a two stage method. We first set the applied field to Hypp, = H,+AH, where AH
is a small perturbation, and run a simulation with a high damping parameter, o = 0.5,
to quickly determine the equilibrium magnetisation configuration. Then, starting from
this very same configuration, we set H,,, = H,, thus removing the perturbation in
the applied field, and run the second simulation, using — this time — a realistic value
for the damping parameter, o = 0.02. The trajectory of the mean magnetisation
<M ), through which the new equilibrium is restored, is then studied carefully. This
procedure is repeated for many values of H,. In particular ﬁapp = —H,pp 2 points
along the negative z direction with intensity H,p, in the range from 0 to 12T. We
use more values of ﬁapp near the bending field, to better resolve the behaviour of the
system in that region. For all the considered applied fields we use the same value of
AH = 0.01T. It should be noted that we do not know precisely the value of the
damping constant for YFey and DyFe,. Here we use the same value, o = 0.02, for both
the compounds.

A piece of the <Mpe> trajectory, projected in the yx plane, is shown in Fig. 6.9

(top). The shape of these curves are all similar one to the other: they are spirals
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compressed along the out-of-plane z-direction. The graph shows only a few trajectories
for Hypp < Hy,. For higher fields the spirals become much wider. In Fig. 6.9 (bottom)
the x-component of the mean magnetisation is plotted as a function of time for the
case Hypp, = 3.90T, just below the bending field. We fit these results to the equations

of motion for a damped harmonic oscillator:

My(t) = My o+ AM, e~ Aot cos(wy(t — to) + @),

(6.11)
My(t) = My o+ AM, e~ v cos(wy(t — to) + @y).

We analyse the trajectories individually, to extract the frequencies, the decay times
and the amplitudes of the oscillations produced as a reaction to the small perturbation
AH. Fig. 6.10 collects the results of the fits. The corresponding curves match closely
the data. An example is shown in Fig. 6.9. The graphs in Fig. 6.10 show clearly that
near the bending field the dynamical reaction of the system is amplified: the same
perturbation AH produces wider oscillations with smaller frequency and which last
longer (higher decay time A~!). The plot of the frequencies shows a minimum near
Hy and a qualitative behaviour which is consistent with previous experimental and
theoretical results [76]. The amplitudes, whose magnitude depends on the value chosen
for AH, show an interesting feature: the shapes of the spiral trajectories (Fig. 6.9)
change with the applied field, being elongated in the in-plane y direction for Hyp,, < Hjy,
and in the out-of-plane x direction for H,,, > Hj,. We conclude? that below the
bending field the out of plane direction is “harder” than the in plane direction (meaning
that moving along that direction has a greater energy cost), while, above the bending

field, it becomes “softer”.

6.4 Analytical study of the dynamics near the bending
field

We now present analytical studies of the system which was investigated with computer
simulations in the previous section, with the aim to understand and support the ob-
tained results. We begin with introducing a first simple calculation, which is later
extended gradually by more general and complex models. Such a presentation reflects

the way the theory was actually derived.

2If o = 0, the magnetisation moves on a constant-energy trajectory (which is likely to be an ellipse,
in this case). If 0 < a < 1, this is not exactly true (the ellipse becomes a spiral), but still the

magnetisation moves preferentially towards “soft” directions.
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In particular we present a linearisation of the Landau-Lifshitz equation, which also
includes the effects of an electric current flowing in the out of plane direction. The
derivation leads to an expression for the trajectory of the magnetisation of the soft
layer, which is valid only for values of the applied field below the bending field. We
also get to a new formula for the bending field, which takes into account the penetration

of the exchange spring inside the hard layers (finite pinning in the hard layers).

6.4.1 The infinite pinning model

As a first step, we assume infinitely strong pinning of the Dy magnetisation in the hard
layers and infinitely strong antiferromagnetic coupling between Fe and Dy moments.
This means that, inside the hard layers, both the magnetisations of iron and dysprosium
do not change in time. In particular, if the Fe moments are rigidly aligned along the
positive z direction (z is an easy axis), then the Dy moments are aligned in the opposite
direction, as shown in Fig. 6.6. We can then neglect what happens inside the hard
layers and focus on the soft layer. Since only the magnetisation of iron plays a role in
the dynamics, we denote it simply by M = Mp. The configuration of the system is
then fully described by just one vector field M (z, t) defined for = € [0, L], with

M(z,t) /Mgy = 2, =0, L. (6.12)

The model is then very similar to the one which, in section 6.2, was used to study the
static equilibrium configurations of a simple trilayer exchange spring. The dynamics
of M is governed by the Landau-Lifshitz equation (2.3). If we neglect the damping

processes we can rewrite it as:
oM = —~' M x H, (6.13)

where M = M /Mgay and H=C 8%]\2[ + ﬁapp. Here we neglect the demagnetising field
and the corresponding shape anisotropy. We now show that one solution to (6.13) has

the simple form:

—

M= (ML coswt sin (w%) , M, sinwt sin (%) ,M”) . (6.14)

This can be done by replacing (6.14) into (6.13). To do this, we first calculate the
exchange field ﬁexch =C 8§M :

= C T\2 | T )
Heon Mo (Z) sin <7TZ) (M} coswt, M, sinwt,0)

— (%) <M_Afj)

72



Then we replace it into Eq. (6.13):

N N ., 2 /. M,
ot =i (5] (32520}
sat

Considering that M x M =0 and that I:_iapp = —Hgpp 2, this equation becomes:

ol = o/ 31 x 2 | M (f)z—Ha .
Msat L PP

9y M can be calculated by taking the time derivative of Eq. (6.14), which gives O M =

—w M x 2. Substituting this in the previous equation, we get to the condition:

M, T 2
=57 (7)
sa

w =7

We recognise the bending field Hy, = C (%)2 and rewrite this equation as

/ M
w=79" |Happ — ——Hy,
sat
Below or near the bending, field M, | A Msat and
w A [Happ — Hop|. (6.15)

This equation gives us the value that w should have in order for Eq. (6.14) to be
a solution of Eq. (6.13). We notice that there are other solutions to Eq. (6.13).
In particular, if we replace sin(x 7/L) with sin(znn/L) for n = 1, 2, ..., we get to
solutions corresponding to higher values of w and higher energy (since to greater values
of n corresponds a stronger spatial variation of the magnetisation and hence a higher
exchange energy). Eq. (6.15) says that the frequency should decrease linearly with
H,pp and vanish exactly for H,,, = Hy,, which is qualitatively the behaviour observed
in Fig. 6.10. From a quantitative point of view, fitting the data of this same figure
with Eq. (6.15), for Happ, < 3.9T, yields:

vlge = (2.280 £ 0.015) x 10°m/(As),  Hp|ge = (4.21240.017) T.

The result of the fit is shown in Fig. 6.11. 7/|s; agrees reasonably well with the value
used in the simulations, 4/ = 2.210 x 10 m/(As). Concerning the bending field Hy,, the
fit leads to a value, Hy|gy = 4.212'T, which is sensibly smaller than the one calculated
from formula (6.6), H, = 5.25T, suggesting that the rigid pinning assumption may
be quite a rough approximation. There are two other remarks to make. First, the

frequency w(H,pp) does not seem to vanish at the bending field, as can be deduced
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Figure 6.11: The data in the graph on the top of Fig. 6.10 is fitted against Eq. (6.15) below the
bending field. Notice that the line intersects the horizontal axis in Hp|gt, which is visibly greater than

the value for which the frequency is minimum: the fit overestimates the bending field.

by looking at where the red line from the fit intersects the horizontal axis in Fig.
6.11. Such a disagreement is likely to be due to neglecting the demagnetising effects
in the analytical model. Indeed, the reason why the frequency vanishes at the bending
field is because the applied field perfectly compensates the “alignment” action of the
exchange coupling. Such compensation allows the magnetisation to freely move out of
the alignment direction, i.e. the 2z axis. In the numerical model, however, there is an
additional binding effect which cannot be compensated just by applying a field along
the z direction: this is the demagnetising field, which acts by pulling the magnetisation
in the plane of the film. When the magnetisation tries to rotate out of the alignment
direction, it experiences such a shape anisotropy and is hence pulled back into the plane
of the film. As a consequence, the magnetisation precesses with positive frequency even
at the bending field. A second thing to notice is the disagreement between Hy|g; and
the value Hy, = 3.95T which was deduced in the caption of Fig. 6.8: apparently, the
fit of Fig. 6.11 overestimates the bending field. This deviation is likely to be another
consequence of neglecting the demagnetising effects in the analytical model. Indeed,
from Fig. 6.11, we see that the non vanishing value of w(Hap, = Hy,) causes the fitted

line to intersect the horizontal axis above the value of H,p;, for which w is minimum.

6.4.2 The pinning field model

The infinite pinning model discussed in the previous section neglects the characteristics

of the hard layers. In particular, the exchange spring is confined inside the soft layer,
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by imposing infinite pinning and hence the rigidity of the magnetisation in the hard
layers. In this section, we present a more general model, where the strength of the
pinning in the hard layers is finite. The model we employ is again a single field model:
we neglect the dysprosium magnetisation and assume that the iron magnetisation is
defined and has homogeneous properties throughout all the three layers. This means
that we treat the trilayer system as if it were a monolayer system, made only of soft
material. The only difference between the central soft layer and the two external hard
layers lies in the applied field Hypp. Indeed, we assume that Hupp(2) = —Happ(z) 2
with

H

app

|} Hop for |x| < L/2
(@) = { Hy— Hp for|x| > L/2
and the reference frame is chosen as in Fig. 6.6. Inside the soft layer the iron magneti-
sation experiences only the external field ﬁapp = —Hj z, while inside the hard layers a
fictitious pinning field Hp is introduced to keep the iron magnetisation aligned along
the positive z direction, ﬁapp = (Hp — Hy) 2 with Hp > Hp > 0. Modeling the pinning
in such a way may seem artificial, but in the next sections we show that this approach
is actually general enough to capture most of the physics of the DyFey-YFes trilayer
system for applied fields below the bending field. We can now write down the equation

of motion (2.3) for the Fe magnetisation, the Landau-Lifshitz equation:
1, - ~ - N - ~
——O0M =M x H+aM x (M x H). (6.16)
Y

We notice that there is an “ambiguity” in the choice of H[M], which stems from the
property M x M = 0. In particular, ﬁ[M] can be replaced with ﬁ[M] + XM, obtaining
an equivalent equation, for any real number A. Here we choose \ = —M - H and define
h[M] = H[M] — M (M - H[M]). This choice guarantees that & is orthogonal to M,

which lets us rewrite (6.16) as
]. ~ ~ - —
—?&M =M xh—ah, (6.17)

where we used the well known identity Ax (BxC) = B (A-C)—C (A-B). This equation
is still rather difficult to solve analytically. Fortunately, below the bending field, the
equilibrium configuration is very simple: M is just aligned uniformly along the positive
z axis. A linearisation may then be employed in order to study the magnetisation dy-
namics near equilibrium. This is a procedure which is often used in magnetic resonance
(MR) studies to find the resonance frequency for the interaction of an electromagnetic

wave with the magnetisation of a ferromagnetic material [83, 84].
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Linearising the Landau-Lifshitz equation is a rather simple task. First, we assume
that the magnetisation configuration M slightly deviates from the equilibrium config-
uration Mg:

M=DM+R, |R|<1.

This expression can then be substituted in Eq. (6.17):

1 = e Lo -
O = Mo x bt Bx - ah. (6.18)

We notice that O(||h])) = O(||R||). We can prove it easily expanding h[R] in Taylor
series and observing that 2[R = 0] = 0. This must necessarily happen, because AR = 0]
is the component of ﬁ[Mo] orthogonal to Mo, which must be zero for My to be an
equilibrium configuration (the torque My x H [Mo] is zero at equilibrium). We then
conclude that the second term in the right hand side of (6.18) has order O(R2) and

can be neglected. With this approximation one obtains
8,5]? = —"y, MO X ﬁ—i—’)//Ckﬁ. (619)
This equation can now be applied to our specific case, for which My = 2:

Ors = 7' (ahy + hy)
Ory =~ (achy — hy) (6.20)
&trz = hz =0

where R = (r, 1y, 1) and h= (hx, hy, hs). h, =0, because his orthogonal to My=3

at the first order in R. This formula can be written again in vectorial notation:
R =~'(a+ J)h, (6.21)

where the scalar a should be interpreted as oI and I is the identity matrix while J is

0 1
J= ( o 0). (6.22)

Here and in the next formulas we omit the third component of vectors and the third

the following square matrix:

row/column of matrices. Indeed, the problem we are considering is effectively a two
dimensional problem. We now consider the effective field ﬁ, which receives contributions
from the applied field and from the exchange field. We have to remember that h =
H — (H-M)M, where H = C 82M + ﬁapp = CO2R - Hgapp 2. Applying this formula
and neglecting terms of order ]-?52, we find h = C 03]%+H app ]%, which substituted inside
(6.21), gives:

R =~(a+ J)(C 0%+ Hypp)R. (6.23)
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6.4.3 The solutions

Equation (6.23) can be diagonalised, transforming E = D D, where:

11 L1 (1
D_\/§<—z‘ 1)’ b _\/§<z’ 1)’ (6.24)

Making this substitution in equation (6.23),

D =+'(a+D71ID)(C 2 4+ Happ)D,

plgp-| *°
0 i )

Then, if D = (d, d_), we have

where,

Ohds =~ (e Fi)(C O + Happ)d-s. (6.25)

For now, we again consider the case of infinite pinning in the hard layers and try to
find a solution with the same spatial dependency used in Eq. (6.14). In particular,
we take di(x,t) = T4 (t) sin(z7/L), where T4 (t) contain the time dependence of the
solution. We then get to:

Opdy = w(—a +1i)dy, (6.26)

and w = +/(C (7/L)? — Happ). The solutions of these two independent equations are:

dy(z,t) =dyg eQwttiwt (i) (% x) , d_(z,t) =id_p powt—iwt G (% x) 7

and,

. . —awt d +iwt +d_ —iwt

R=DD="¢ +,0€ ' 0¢€ " sin<ﬁx>.
\/§ —i(d+’0 etiwt _ d7’0 e—zwt) L

Requiring R to be real for all the possible values of t one obtains the condition dy o =

Roew/\/i and d_o = Roe_w/\@ for two given real constants Ry and ¢. The solution

then becomes:
R(z,t) = Ry sin (% $> e~ (cos(wt + @), sin(wt + p)), (6.27)
which can be integrated in space to obtain the time dependence of the spatially averaged

magnetisation:
(M, (t)) = Mg e 2t cos(wt + ¢),

(6.28)
(My(t)) = Mpe ! sin(wt + p).
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This result confirms that the average magnetisation approaches equilibrium by moving
in spiral trajectories, as was assumed in Egs. (6.11). In particular, comparing the two

pairs of equations we notice that:

e in Egs. (6.11) we chose to have independent amplitudes AM, and AM, for
the x and y oscillations. The fits led to quite different values for M, o and M, g,
meaning that the spirals are compressed more along one direction rather than the
other. On the other hand, the theoretical trajectories from Eqs. (6.28) do not
exhibit such a compression. This discrepancy between theory and simulations is
likely to be due to omitting the shape anisotropy (i.e. the demagnetising field) in
the theoretical description. Indeed, in the simulation the demagnetising field tries
to keep the magnetisation in the plane of the film by compressing the trajectories
in the out of plane direction. In the theoretical description, the demagnetising

field is not taken into account and hence such a compression is not observed.

e the spirals of Egs. (6.28) are centered around the point (0, 0), while for the
simulated trajectories we found nonzero values of M, o and M, . This is not
surprising, since the applied field in the simulations is not perfectly aligned along

the z direction (remember the deviation introduced with Eq. (6.10)).

Eq. (6.28) contains however other interesting results. First, it confirms that, below the
bending field, the frequency can be written as w = v'(Hy, — Happ), where Hy, = C (%)2
This is not a new result: it was already derived in the previous section using a simpler
model. There is however a new important result: we see from Eq. (6.28) that the
parameter A introduced in Egs. (6.11) (as A, and \,) is related to the frequency w by
the following formula:

A = aw. (6.29)

We check the correctness of this relation by plotting the values of A\, obtained by the
fits of Fig. 6.10 together with the values w, multiplied by a. If Eq. (6.29) is correct,
then the two curves should lie one over the other. This is what we did in Fig. 6.12.
We conclude the section pointing out that the theoretical results which we have
obtained are meaningful only when H,,, < Hj. For greater values of the applied
field, A becomes non-positive with the consequence that the magnetisation does not
approach the configuration My = % as t — +oo. In these cases we can only conclude
that the magnetisation leaves the configuration My = % to approach another different

equilibrium configuration.
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Figure 6.12: ), and aw, are plotted in the same graph in order to check the relation A = aw derived
in the text. The two curves match rather well for values of the applied field below the bending field,
as predicted by Eq. (6.29). The graph uses the same data as in Fig. 6.10.

6.4.4 Spin transfer torque contributions

In the previous sections we have studied the dynamics in a three layer exchange spring
system. We have seen that the soft magnetisation exhibits an enhanced sensitivity
near the bending field. In particular, the same small increment of applied field leads to
oscillations whose amplitude is maximum when the applied field is close to the bending
field, as shown in Fig. 6.10. We anticipated at the beginning of Sec. 6.3, that such a
behaviour may be desirable when studying spin transfer torque effects. Indeed, greater
amplitude for the same external stimulus means also weaker external stimulus to get
to the same amplitude. In other words, enhanced magnetisation reaction may allow us
to use lower current densities to obtain the same effect on the magnetisation dynamics.
Such a characteristic is particularly important, since one major difficulty in building
spin transfer torque devices lies on the excessive current density which is often required
to obtain significant effects.

In this section we include spin transfer torque effects in the linearised model that
we have presented previously in the chapter. In particular we linearise Eq. (3.13),
the Landau-Lifshitz equation with the inclusion of the Zhang-Li terms. The system
is the three layer exchange spring system which we have considered in the previous
sections, with the difference that a current is now assumed to flow in the out of plane
direction. We treat the trilayer as if it were made of just one material and assume
that the electron and spin transport properties are homogeneous throughout all the

three layers. This assumption relies on the fact that the iron sublattices of YFes and
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DyFe, have almost identical structure and lattice constant and that the yttrium and
dysprosium sublattices are not playing any role with respect to the electron transport
phenomena.

The equation we want to linearise is now Eq. (3.13), which we rewrite as:
M = —~'M x Hp —~'M x (M x Hp), (6.30)
where we have defined the two fields ﬁp and ﬁD as:
-/
Hp = H+"0,M,
Y
/
ﬁD = « ﬁ + g 896M
Y
A straightforward generalisation of equation (6.21) is then:
OR =~ (ﬁD + Jﬁp) : (6.31)
and:
2 — E’UI — —
Hp = CO;R+ 78IR+ Happ R,
- oz av | = —»
Hp = aCO;R+ 7 Oz R+ aHypp R.

The form of equation (6.31) is very similar to the form of equation (6.21) and a similar
strategy can be followed to find the solutions. The same transformation R =D D then

leads to an equation similar to (6.25):
Ode = — [YC(—a£i)02 +v'(—a£i@)0y + ' Happ(—a £ )] d. (6.32)

Defining 7/C'(—a+i) = c+, (—a£ia) = 2b+ c+ (1+a?) (consequently by = (££1i)/27C)
and U(z) = —H,pp(x)/C, this equation becomes:

Oid+ = c+ (—(9% — 2b1v 0y + U) d+.

We conclude that dy and d_ obey two equations with the same form, but different

coefficients. We therefore have only to study the following equation:
Oud(z,t) = ¢Sd(x,t), where S = =92 — 2w 9, + U(x). (6.33)

This equation if formally very similar to the Schrodinger equation. Actually, when j =
0, Eq. (6.33) becomes identical to the Schrodinger equation, with just one difference.
While in the Schrédinger equation ¢ is —i/h, a pure complex number, in Eq. (6.33)
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¢ is ¥'C(—a £ i) and has non-vanishing real and complex parts. As a consequence,
while the Schrédinger equation gives rise to a time evolution which preserves energy,
Eq. (6.33) leads to dissipation of energy, unless the real part of ¢, Re ¢ = —y'Ca and
hence the damping, «, is zero! We will return on this point in the next section.

The similarities which Eq. (6.33) has with the Schrédinger equation suggest that we
may be able to use a formalism analogous to the one of quantum mechanics in order to
deal with it: its solutions may be easily found once the eigenfunctions of the operator S
are known. Unfortunately, when j #£ 0, this operator is not Hermitian and therefore its
eigenvalues are not guaranteed to be real numbers. Moreover the term 2bv 9, is not real
and consequently the eigenfunctions of S cannot be chosen to be real functions of space.
Fortunately the problem of finding the eigenvalues/eigenfunctions of the operator S
can be trivially related to the problem of finding the eigenvalues/eigenfunctions of an
Hermitian operator Sq:

Theorem. so(x) is an eigenfunction of the operator Sy = —0% + U (x), with eigenvalue
oo, if and only if s(x) = et
o =0p+ (bv)2.

so(x) is eigenfunction of S = Sy — 2bv 9, with eigenvalue

Proof. First, we calculate d,s(z) and 02s(x) for an arbitrary (well behaved) function

so(z) and s(z) = 7% 59(x),

Ops(z) = e W% (Dyso(x) — buso(x)),
8%8(.1‘) = e bve (agso(x) — 2bv0zso(z) + (bv)Qso(x)) ,
which are used to calculate S s(z),
Ss(z) = e ¥ (=024 (bv)* + U(z)) so()
= e (S + (bw)?) so(z). (6.34)
We now deal with the forward implication and assume so(z) is an eigenfunction of Sy
with eigenvalue 0g. Eq. (6.34) then becomes:
Ss(z) = e (ap+ (bv)?) so(z)
= (o0 + (b0)?) s(x),
which proves that s(z) is eigenfunction of S with eigenvalue o = o + (bv)?. We

now deal with the backward implication and assume that s(x) is eigenfunction of S

with eigenvalue 0. We can then substitute the left hand side of Eq. (6.34) with

bue 54(x), obtaining:

os(zr)=0ce"
oce W so(z) = et (So + (bv)2) so(x).
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Simplifying the exponential and rearranging the terms, we get So so(z) = 0o so(x). O

This result simplifies considerably the problem of finding eigenvalues of S, since it
states that they are in a one-to-one correspondence with the eigenvalues of Sy, which

is an Hermitian operator.

6.4.5 The energy in the linearised model

The parallelism between the formalism of quantum mechanics and the one we are
developing here is striking. One is tempted to think to S as the reduced® Hamiltonian
of the system and to calculate the reduced energy as (D | S | D). This obviously would
not make sense, since S is not Hermitian, but what about S¢? In this section we try to
understand better the meaning of these operators and their relationship with the total
energy of the system.
The total energy of the system, when there is no current travelling through it, is:
. +o0 C . N
E[M] = poMsat /OO dz [2(3xM)2 — M- Happ] :
In our case ﬁapp = —H,pp(2) 2. Moreover M? =1 and hence 9, M? = 2M - 9, M = 0.
A further differentiation leads to: 0 = 9,(M - 9, M) = (0, M)? + M - 9>M. We then
can write:
A +oo C - A N
E[M] = pio My /_OO dz [—QM - O2M + Happ(x) (M - 2)] .

Now we remember that R was defined such that M = Mg + ﬁ, where My = % is the
equilibrium configuration for the magnetisation. In particular from 1 = M? = (2+ E)Q,
we get 2+ B = —R2/2 and we can write:

R’2

. +oo C o
E[R] = const. + poMsat / dz [—2M CO2R — Hypp() -

Since the energy is defined up to a constant, we omit the (infinite) constant in what
follows. We now replace —H,pp(z) = C U(x), coherently with the previous definition of
U. We also notice that M - 02K = (£ + R) - 02R, where 2-92R = 02(2- R) = —92R%/2,
which gives zero contribution, if we assume R? — 0 and 9,R? — 0 for z — +o00. We

then obtain:
> C [t 5 2P 52
B[R] = j10Muat da [—R PR+ U(x) R ] :

3T Hep(z) = (—%6% + V(az)) ¥ (x) = Ev(x) is the time-independent Schrédinger equation of a one
dimensional particle of mass m and A = h?/2m, we call H/A, U(z) = V(x)/A and ¢ = E/A reduced

Hamiltonian, reduced potential and reduced energy respectively.
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which can be expressed as:

. C [*® = o3 - 5
E[R] =M0M53t5 d$R~SoRE,qusat§ (R|So | R).

—0o0
The notation on the right hand side is the so-called bra-ket notation and is here used as
a short-hand for the integral appearing in the same equation. We now notice that the
operator Sg commutes with the matrix D defined in Eq. (6.24) (Sp acts in the same way
over all the components of the vector it is applied to). We then have Sg = DSoD !,
and:
, c - s c - ,
E[R] = qusatE <R | DSOD | R> = MOMsat§ <D | So | D>

From this expression it is now easy to prove that, as anticipated in the previous section,
if ¢ in Eq. (6.33) has a non-vanishing real part, then the energy is not preserved in
time but rather decreases. In our particular case, since Re ¢ = —/Ca, this means that
to a non zero damping constant « corresponds a dynamics where the energy decreases

with time. Taking the time derivative of E[R] and considering that Sy does not depend

explicitly on time, we get:

dE[R] C (o(D] - .. 0|D)
dr _,U/O]Msat2 ( ot SO‘D>+<D’SO ot .

We can now use Eq. (6.33) and obtain:

dE[R]

dt = _’VIMOMsatCaO‘ <5 | S% | 5>

The right hand side of this equation is non-positive, meaning that the energy will
decrease (or stay constant) in time. When a = 0, the energy is conserved in time. Note
that C' cannot be zero, since we have previously assumed C # 0, when defining the
potential U = —H,p,/C. We point out that this result holds only for j = 0. When
j # 0, the term 2bv 0, gives an extra contribution to the energy which can lead to an
increase or decrease of energy depending on the particular magnetisation configuration

and on the intensity of the applied current density.

6.4.6 The solutions including the spin-transfer-torque effects

We are now ready to obtain a solution of (6.31). We first have to find dy, which are

the solutions of the two equations

(9tdi = Cisi di, where Si = So - Qbiv 896 (635)
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We proceed as follows: given an eigenfunction so(z) of Sp with eigenvalue og, we define
the following two functions

) — e—bivx

sx( so(z).

Since Sy is a purely real operator, we can choose the eigenfunction sg(x) to be real
for every value z, similarly to what is usually done for one dimensional problems in
quantum mechanics. We know that S si(x) = o4 s4(x), where o1 = ag + (b+v)?.

Consequently the two functions

di(z,t) = dyoe++tsy(z) = dygef+@®Dsy(x),
d_(z,t) = id_ge~"-ts_(x) =id_gel-@Vsy(2),

are solutions of (6.35) and,

fe(z, t) = cpopt—brvr =cy [00 + (biv)2] t—byvax
N2 .
v C(—a % 1) {Uo + (7(5;;21;) ] t— 7(5;;2” z

= (=X tiw)t+ (k Ltik)x,

where,

A = ACa [004-

/N

2%)2(&2_14-%5)] =>\0~|—°j1(7“%2 (52_1—1—%),
2

v 2
w = 4C [00 + (2%0 (&-1- 20‘5)} = wo + (6 1 - 208), (6.36)
— _ &v
2vC
k = _Q'yLC’

where \g = 7'Caog and wy = 7'Coq are the zero current values for A and w and
depend on the particular shape of the applied field Happ(2), which indeed determines

the eigenvalue og. We now apply the transformation E=D ﬁ, to obtain:

R(z,t) = so()e® e [ dy et Wthe) g g eilvithe),
)= V2 i (dp g etitHRe) _ g g eilwrika)) ]

Requiring R to be real for all the possible values of ¢t one obtains the condition
dyo = Roe™/V/2 and d_ o = Roe~ ™ /y/2 for two given real constants Ry and v. The

solution then becomes:
R(z,t) = Ro so(x)e"™ e (cos (wt + kx + ) , sin (wt + kz + 1)) . (6.37)

We can now integrate this equation in space, to obtain the average magnetisation as a

function of time. In order to do that, we write down the averages (M, (t)) and (M,(t))
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as:

where: .
I(t) — RO/ So(l‘) i e—At ei(wt-l—kx—&—zb)dx = Ry e—)\t eiwt Iy,
0

where Iy = I(t = 0) is a constant which depends on the particular shape of the
eigenfunction so. We take Iy = Fe', where F and ¢ are two unknown constants. We
then get to:
I(t) = RyF e el (WiHe)

from which we deduce:

(M (t)) = Mgye  cos(wt + ), (6.38)

(My(t)) = My e M sin(wt + ).
Surprisingly, we conclude that the spin polarised current does not change the shape of
the average magnetisation trajectory, which has indeed the same spiral form which we
got in Eq. (6.28). The polarised current, however, leads to corrections to the precession
frequency w and to the damping parameter ), as shown in Eq. (6.36). In particular,
from this equation we can get to a generalisation of Eq. (6.29):
&v?
27C”

Note that this equation and Eqs. (6.38) are extremely general, since we have not

A= ow +

(6.39)

made any particular assumption on the shape of the eigenfunction sy and hence on
the particular form of the applied field Hypp(z). These results should hold for any
reasonable choice of H,pp(x), as long as the state where the magnetisation is uniformly

aligned along the Z direction is an equilibrium configuration.

6.4.7 Discussion and validation

In the previous section we found that the average soft magnetisation of an exchange
spring approaches equilibrium by moving in spiral trajectories, even when an electric
current flows orthogonal to the layers. The current, however, changes the precession
frequency w as well as the damping rate \. Interestingly, the variation of the frequency
Aw and of damping rate A\ are found not to depend on the applied field H,pp, and the
geometry of the system (thickness of the soft layer). In particular, from Eqs. (6.36),

_ _aW)? (s 26\ (v)°

AN = A_A0_47’C <£ _1+a>N4’y’C(2€_a)’ (6.40)
"2 "2

Aw = w—wy= 4(11;’)(;' (52 —1-2a¢) ~ _4(11';’)0' (6.41)
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Assuming the values a = 0.02, £ = 0.01, Mg, = 0.55 x 105 A/m, A = 1.46 x 1071 J/m
and a polarised current Pj = X x 102 A/m2, one gets v = X2 x 105.5m/s and:

AN X? x 59457
Aw = —X?x0.0473 GHz.

We see that even for the case X = 1, which corresponds to quite a high current density
(Pj = 10'2 A/m?), the spin transfer torque effects on the frequency and on the damping
rate are rather weak. In particular, for the DyFe,-YFes trilayer simulated in Sec. 6.3, it
is difficult to identify any current-induced effects on w and A. Indeed, the values we have
just calculated for Aw and A\ are respectively three and seven orders of magnitude
smaller than the typical values shown in the graphs of Fig. 6.10. We conclude that, in
this kind of exchange spring, the effects of the applied electric current are not relevant as
we expected. In particular, if, on the one hand, the magnetisation reaction to external
stimuli is amplified near the bending field, on the other, the magnetisation is there
nearly homogeneous leading to weak spin transfer torque effects.

This conclusion is still the result of a purely theoretical analysis. It is then desirable
to prove and validate it numerically. In order to do that, we repeat the simulations
of Sec. 6.3 with the inclusion of the spin transfer torque as modeled by Eq. (3.13).
The procedure employed is identical to the one used in Sec. 6.3 to obtain w and A as
functions of the applied field. The only difference is that the dynamical relaxation to
the equilibrium is done in the presence of an applied current. In this way we can obtain
graphs analogous to the ones of Fig. 6.10, but with the inclusion of spin transfer torque
effects.

By carrying out the micromagnetic simulations for a current density Pj = 102 A/ m?
we found that — as predicted by Eqs. (6.40, 6.41) — the current induced effects are
so weak that the graphs for w and A look identical to the ones of Fig. 6.10. For this
reasons we do not show them. We rather repeat the simulations for a higher current
density Pj = 10" A/m? (corresponding to X = 10), so that we get amplified current-
induced effects and we can then perform a better validation of the theory. Note that,
since our main objective here is the validation of the theory, we chose a value £ = 0.05
which is higher than the one which is typically used £ = 0.01 (notice that we do not
have any experimental estimate of £ for YFey). This choice gives higher values for A\
and thus facilitates the comparison between theory and simulations. The results of
the simulations are shown in Fig. 6.13, where w and A are plotted as functions of the

applied field. Note that also the zero-current results from Fig. 6.10 are included to
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APPLIED FIELD (T)
Figure 6.13: The frequency and damping rate which characterise the near-equilibrium dynamics
of the magnetisation in a DyFe,-YFes-DyFe, exchange spring system are plotted as functions of the
applied field. The red curves are obtained in the presence of a current flowing orthogonal to the layers.

The dashed black curves are the same as in Fig. 6.10 and are shown just to allow a better visual

assessment of the effects of the current.

allow a better evaluation of the changes induced by the application of the current. Fig.
6.13 shows that — in agreement with the theoretical prediction — the current induces
a translation of the frequencies and of the damping rates by fixed amounts Aw and
A\, respectively.

For the frequencies, we subtract the solid red curve and the dashed black curve to
obtain the separation between the two. We then fit the resulting values with a constant
function Aw(Hypp) = const, for Happ < 3.5T and get Aw|g, = (—4.83 £ 0.06) GHz.
We get good agreement with the theoretical value, Aw = —4.73 GHz, calculated from
Eq. (6.41): the difference is around 2.1 %. Similarly, for the damping rates, we get
AN|g, = (2.386 +0.019) x 109s~! while the theoretical result is A\ = 2.367 x 109571
The difference between the two is 0.8 %.

Note that, since Aw and A\ do not depend on the geometry of the system, one may
choose a system with thicker soft layer. In a system where L = 100 nm, for example, the
bending field is reduced by a factor 100, according to Eq. (6.6), and the corresponding
frequencies and damping rates are then reduced by the same factor, as deduced from
Eq. (6.15) and Eq. (6.29), but the values of Aw and AX are unchanged. In such a
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system, a current density of Pj = 1012 A/ m? should then lead to a significant relative
change of frequencies and damping rates.

We end the section by pointing out that the results we have obtained so far consider
only the case of constant applied current (DC). It may be argued that a pulsed current
(AC) is likely to lead to greater effects (maybe through the mechanism described in Ref.
[85]). In this thesis, however, we won’t study spin transfer effects for pulsed currents.
We rather focus on different exchange spring systems (see Ch. 7), which — we think

— are more promising than the DyFey-YFea-DyFe, trilayer film considered so far.

6.4.8 Infinite pinning field

In the theoretical analysis we have conducted so far, we haven’t yet made any assump-
tions on the particular shape of the applied field H,pp(2). We have been able anyway to
characterise the spin transfer torque effects, which are indeed independent of Hpp(z).
In the remaining part of the chapter we will try to determine the effects of the shape
of Happ(z). When choosing Happ(2), we also determine the potential U(x) and hence
the operator Sg. As a consequence, also the ground state so(x) and the corresponding
eigenvalue og are determined. This allows to determine the actual dynamics of the
magnetisation as well as the exact value of the bending field.

In this section we assume that:

Hy forlz| < L/2

(6.42)
—oo for|x| > L/2

Happ(7) = {
where Hj is the intensity of magnetic field, which is applied along the direction —2Z.
The function U(z) = —H,pp(x)/C has the following form:

U) = { —Hy/C for|zx| < L/2 (6.43)

+o0 for|z| > L/2

Then the operator Sy is formally identical to the reduced Hamiltonian of a one dimen-
sional quantum particle in an infinitely deep square potential well. This problem has
well known solutions. One finds [86] that the system has an entirely discrete spectrum
and the eigenvalues are,

H, 2
Un:—?o—l—(%n) , n=12,...

In particular, for the ground state,

Hy, — Hy
C b

g1 =
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where Hy, = C (%)2 is defined as before. Then we can calculate explicitly the parame-
ters (6.36):
] i
w = 7'[Hb—HO+J—§C(52—1—2ag)}. '

The solution (6.37) requires A > 0 in order to converge for ¢ — +o0o. We can find then

a requirement over the field:

v? 2 28
472(;(5 _1+a).

Hj is the bending field, when the current is applied (in contrast with Hy, which is the
zero-current bending field). When Hy = Hj,

_ & LY 2
w = 270<a—|—a> .

6.4.9 Finite pinning field

Hy < HY, = Hy, +

<

A more realistic situation with respect to the one considered in the previous section is

finite pinning in the hard layers:

Hy for|z| < L/2

(6.45)
Hy— Hp for|z| > L/2

Happ(7) = {
where Hj is the intensity of the applied magnetic field, while Hp is the “pinning” field.
We assume Hp > Hy > 0. The corresponding potential U(x) is:

U) = { —Hy/C for|z| < L/2 (6.46)

(Hp — Ho)/C for|z| > L2

The quantum mechanical analogue is now a one-dimensional particle in a finite square

well. The energy spectrum of this system is divided in different regions:

e —Hy/C < o < (Hp — Hy)/C, for which a discrete spectrum is obtained (bound

states);

e 0 > (Hp — Hy)/C, for which a continuous and degenerate spectrum is obtained

(with reflection and transmission of waves);

The ground state o7 is in the discrete spectrum, whose eigenvalues o, can be determined
graphically [86] as the intersections between the function f(¢) = 2sin~! ¢ and the linear
functions vy, (§) = mn — Lv/Hp &, where ¢ lies between 0 and 1 and is expressed in terms
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&(a)

Figure 6.14: Plot of £ and & as functions of a. £ (a) is the smallest positive zero of the function
y(&) = cos(al) — &, while & is an approximation of £ obtained using just one Newton iteration (Eq.

(6.47)). The Newton method converges very quickly: & would not be distinguishable from &, if it

were included in the plot. a = L f—g = 34 /;I{—bo’; represents the hardness of the pinning in the hard

layers. If a > 1 the field required in order to switch the hard layers (Hp) is much higher than the one

needed to develop an exchange spring (H5°).

of o as: £ = \/CUHLPHO. For the ground state (n = 1) the problem reduces to finding

the smallest positive zero of the function y(£) = cos(af) — £, where a = L f—cp. This

can be done approximatively with the Newton method:

. e y(gl) _ a&' sin agi + cos agi
S = y(&)  asina&+1 7 (6.47)

As a first point we choose §y = 5. and obtain:

. 1
C21+4a’

&1 (6.48)

For large values of a (large pinning) this is already a good approximation, as can be

seen in Fig. 6.14. The corresponding value for ¢ is then:

Hp ™ 2 Hy Hy, — Hy
g1 = — _—— = -
T o \2+2 C c
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where we have re-defined the bending field as:

9 2
T T
Hy=Hp| ——— | =C| —/—w=——| .
o <2+2a> <\/4C/HP+L>
The equations for A and w are again (6.44). Moreover one sees immediately that in the
limit of infinite pinning;:

2
Hp—>—|—OO, HbHHgo:C(%) .

The finite-pinning bending field can be expressed as:

-2
2 [C
Hy=H®[1+2,/—=—] . 6.49
b b<+L Hp> (6.49)

This equation expresses the bending field as a function of the pinning field Hp. However,
since the pinning is usually due to a magnetic anisotropy in the hard layers, it would
be more convenient to relate Hy, to the anisotropy constants K, Ko, ..., rather than
to the more abstract quantity Hp. In the next section we prove that this can be done,
since, near the bending field, an uniaxial or cubic anisotropy can be well approximated

by introducing a pinning field.

6.4.10 Bending field for DyFe,-YFe, multilayers

In the analytical characterisations of exchange spring that we have introduced in the
previous sections the pinning of the magnetisation in the hard layers has been modeled
by a pinning field Hp. Using a constant field Hp is certainly a simple way to take the
pinning effects into account, but, on the other hand, it may look somewhat artificial and
unjustified. In the computer simulations of Sec. 6.3, for example, the pinning in the
DyFe, hard layers has a more complex origin: it is the result of the combined action of
a cubic anisotropy and an antiferromagnetic exchange coupling. The cubic anisotropy
holds the Dy moments along an easy axis direction, while the antiferromagnetic cou-
pling holds the Fe moments antiparallel to the Dy moments. Even if the physics in
such a system is rather complex, it can be well approximated by the simple single field
model that we have studied in the previous sections. Indeed, we now show that, under
appropriate assumptions, the physics of the Dy magnetisation and the Fe-Dy antiferro-
magnetic coupling can be taken into account only through an effective pinning field Hp
acting on Mpe. We begin by writing down the energy density inside the DyFe, hard

layers:
u[Mge, Mpy] = —po Mpy - H +e(Mpy) +J Mye- Mpy — 1o Mpe- H + A (9p17ire)%. (6.50)

91



Here a(MDy) is the energy density for the cubic anisotropy acting on the Dy moments,
while J Mg, - MDy represents the antiferromagnetic exchange coupling. Our goal is
to show that, if one is concerned with the Fe moments only, this expression can be

reasonably approximated by the pinning field model, whose energy density is,
' [Mye] = —po Mre - (H — Hp) + A (9p17ire)?, (6.51)

where H = —2 H is the applied field and H p = Z Hp. is a constant pinning field.

Notice that while equation Eq. (6.51) contains both Mg, and MDy, Eq. (6.51)
contains only Mpe. We conclude that to reduce the former equation to the latter,
we must necessarily reduce the number of degrees of freedom of the system and, in
particular, we must remove the freedom on the choice of MDy.

The approximation we employ for such a reduction is the following. For a given Mre
we calculate the value of Mpy which minimises the energy (6.50). Such an expression
for MDy is then substituted inside (6.50) to obtain an expression which depends only on
Mpe. Such an approach will lead to an energy density accurate only near the equilibrium
or, to be more precise, near any magnetisation configuration which minimises the energy
with respect to MDy. Fortunately, this is the case we are considering in our analytical
model, which is indeed based on a linearisation of the Landau-Lifshitz equation around
a static equilibrium configuration. We then can start with the procedure we have just
sketched and find the value of MDy which makes u[MFe, MDy] minimum for a given
fixed Mpe. We choose a reference frame such that H lies along the negative z axis and

Mpe lies in the xz plane, as shown in Fig. 6.15. 6 and ¢ are spherical coordinates for

Figure 6.15: The reference frame chosen in the text to write down the energy density in the hard

layers.

MDy with respect to the polar axis —z, while « is the angle between Mye and the z

axis. In terms of these quantities, the vectors Mpe and ]\7[Dy can be expressed as:

MDy = Mpy (sin cos ¢, siné sin ¢, cosf), Mrpe = M, (sina, 0, cos ).
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By substituting these expressions into Eq. (6.50), we get to:
u = —poMpyH cos€ +¢e(8, ¢) + JMpyMrpe(sin 6 cos ¢ sin o — cos 6 cos a) + ﬁ[MFe],

where @[Mp,] contains all the terms of Eq. (6.50) which do not depend on Mpy. Tt
can be shown (see Appx C) that, when the angle § between MDY and the easy axis is
small, the cubic anisotropy energy can be approximated as €(6, ¢) ~ K7 6%, where K;
is the same coefficient which appears in (2.10). The requirement dyu = 0, then leads
to —JMpyMresinf sin ¢ sina = 0 and hence to sin¢ = 0 and cos¢ = £1. We then

can rewrite the energy as:
u = —poMpyH cos + K, 6% — JMpy Mype cos(8 £ a) + ﬁ[Mpe].
For small angles 0 and «,
u= %,LLOMDyH 0> + K16 + %JMDyMpe(H + a)? + a[Mgre), (6.52)

which is accurate up to the third order in . The condition dpu = 0 can now be written
as,
0= ,quDyHH + 2K10 + JMDyMFe(9 + CM).

from which 6 can be found as a function of a:

[} quDyH + 2K1 2K1
— where B = R ,
1+ B JMDyMFe JMDyMFe

0==F

where we have assumed 2K > poMpyH. We can now remove any dependency on ¢
in Eq. (6.52):

2

2 @ <1
u = [poMpyH + 2Ky + JMpyMp.B?] 11D + a[Mr.],
JMpyMpe 0? | -
_ M 6.53
1 +B_1 2 —|—U[ Fe]a ( )

This result can now be compared against the simple pinning field model of Eq. (6.51),
which for small angles «, becomes:
- a2 -
u'[Mye] = const. + poMpeHp - M), (6.54)

Eq. (6.53) reduces to Eq. (6.54) (except for an additive constant) when,

J Mpy, M, 1

poMp.Hp = — Hp = .
1+ B! 1 1
* poMpe <2K1 + JMFeMDy)
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This expression for Hp behaves as one would expect: when one of the two interactions
becomes infinitely strong it “disappears”, leaving only the other interaction. However,
when both interactions become infinitely strong, Hp becomes infinite, as it should! An
analogy could be made with the compressibility of two connected springs: when one of
the two springs is incompressible then the compressibility of the whole system is given
by the compressibility of the other spring, while, when both springs are incompressible,
also the whole system becomes incompressible. We can finally insert the expression of
Hp into Eq. (6.49), obtaining:

2 1 1
Hy=Hr[1+ 2, /24 . 6.55
b ( +L\/ <2K1+JMF6MDy>> (6.55)

We note that we may rewrite the bending field of a finite-pinning exchange spring

system starting from the infinite pinning formula (6.6) and replacing:

1 1
L—L+2,/24 . 6.56
T \/ <2K1 * JMFeMDy> (6.56)

The expression above may give a rough idea about the extent to which the exchange
spring penetrates inside the hard layers. An interesting feature can be noticed: the
penetration depth does not depend on L, the thickness of the soft layer.

To validate Eq. (6.55) we consider again the system presented in Sec. 6.3. From
the simulation we extrapolated a value for the bending field Hy |y, = (3.947+0.024) T
(see caption of Fig. 6.8). Eq. (6.55) gives Hplieory, = 3.9527T. The theoretical
value differs by less than 0.13 % from the value which was deduced numerically. The
agreement is really quite good, but it consists of just one single comparison between
two numbers. It may then be a mere coincidence! To make sure this is not the case,
we redo the simulations of Sec. 6.3 changing some parameters just to have a second
opportunity to validate the theory. We change the cubic anisotropy constant from
K1 = 33.9 x 105J/m? to K; = 20.0 x 105J/m3 and the antiferromagnetic exchange
coupling from J = 2 x 107*N/A2 to J = 10"*N/A2. All the others parameters are left
unchanged, while the simulations are repeated following the same procedure used in Sec.
6.3. We get Hb‘theory = (3.643 £ 0.018) T while Eq. (6.55) gives Hb’theory =3.625T.
The deviation between the two is less than 0.5 %, confirming that Eq. (6.55) provides
a quite accurate estimate of the bending field, especially if compared with the rigid

pinning formula of Eq. (6.6), which overestimates the bending field by ~ 30 %.
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6.5 Summary

In this chapter we studied both the static and the dynamic properties of trilayer ex-
change spring systems, focusing in particular on a DyFe,/YFea/DyFe, trilayer system.
We used computer simulations and introduced analytical models in order to investigate
and understand the magnetisation dynamics near the bending field and found that the
average magnetisation in the soft layer approaches equilibrium moving in spiral trajec-
tories with frequency and damping which become minima for values of the applied field
near to the bending field. We concluded that the magnetisation reacts in an enhanced
way near the bending field and discussed the importance of this characteristic for max-
imising spin transfer torque effects. The effects of spin polarised currents were then
taken into account first in an analytical model and later in computer simulations. We
found that, below the bending field, the application of a current changes the frequency
and the damping of the oscillations, but does not change the shape of the trajectories
of the average magnetisation. Unfortunately a high current is required in order to ob-
tain significant effects and this was attributed to the fact that below the bending field
the configuration of the magnetisation is almost uniform and thus gives rise to a weak
spin transfer torque. We concluded the chapter presenting an accurate calculation of
the bending field, which takes into account the strength of the cubic anisotropy, the
strength of the Fe-Dy antiferromagnetic coupling and the penetration of the exchange
spring inside the hard layers. Throughout all the chapter we found good agreement

between the results from the simulations and from the analytical models.
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Chapter 7

Spin-polarised currents in

exchange spring nanopillars

7.1 Introduction

In the previous chapter we investigated exchange spring systems and focused on the
dynamics near the bending field, in the hope of finding relevant response to an applied
electric current. We found that if, on the one hand, the magnetisation exhibits enhanced
response to external stimuli near the bending field, on the other, in such an applied
field regime the magnetisation is almost uniform, leading to minimal spin transfer
torque. We concluded that such a particular choice of exchange spring system was not
the most appropriate in order to investigate and maximise spin transfer torque effects.
Nevertheless, exchange spring systems have a remarkable feature: the interplay between
the strong anisotropy of the hard materials and the soft-hard exchange coupling, can
give rise to artificial domain walls whose shape and length can be controlled in two ways:
at the engineering phase, by selecting suitable geometry and material composition, and
later in the laboratory, with the application of an external field (a domain wall is
developed when the applied field exceeds the bending field).

In this chapter we give an example of how this feature can be exploited in order
to build a system where the spin transfer torque effects are enhanced and play an
important role. We first explain the idea which guided us to the design of the exchange
spring nanopillar which is investigated in this chapter: find a system whose ground
state is degenerate (i.e. whose energy is minimum for a whole continuous trajectory of
magnetisation configurations).

The results presented in this chapter have been published in the Journal of Applied
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Figure 7.1: A sketch of the nanopillar which is discussed in the text (not to scale). Dysprosium

moments (white arrows) pin the iron moments (black arrows) at the borders of the soft layer.

Physics [55].

7.2 The system

Consider a system whose ground state energy is degenerate: it has infinitely many
different equilibrium configurations, which all have the same minimal energy and form
a continuous curve in the phase space. This system can be “dragged” through this
curve, changing its configuration from one equilibrium state to another and this can be
achieved “easily”, because there is no energy barrier between them. In such a system,
an electric current may find a very favourable situation to fully manifest its effects.

The idea is very simple, but can serve as a guideline to develop micromagnetic
systems where spin-transfer-torque effects are maximised. In this chapter we discuss a
possible example of such a system. We study a trilayer exchange spring system in the
form of a cylindrical nanopillar, where a central magnetically soft layer is sandwiched
between two magnetically hard layers, as shown in Fig. 7.1. The system materials are
chosen in the following way: YFeq for the soft layer and DyFe, for the two hard layers.
This choice allows us to study the system with a model similar to the one used in Ch.
6. Regarding the geometry, the diameter of the cylindrical nanopillar is 10 nm, while
the thicknesses of the hard and soft layers are 5 and 40 nm, respectively.

As seen in the previous chapter, Yttrium has negligible magnetic moment and only
two species of atoms contribute to the magnetisation of the system: the first one, iron
(Fe), is present in all the three layers, the second one, dysprosium (Dy), is present only

in the two hard layers. Neighboring iron moments are exchange coupled, throughout all
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the hard and soft layers and across the hard-soft interfaces. This coupling favours the
alignment of the magnetisation of iron throughout the entire nanopillar. This alignment
is however broken, because the magnetisation of iron in the two hard layers is pinned
along opposite directions, as shown in Fig. 7.1. We remind the reader, that the pinning
of the iron moments is the result of the joint actions of two strong interactions: the
cubic anisotropy of DyFe,, which pins the dysprosium moments along an easy axis
direction, and the anti-ferromagnetic coupling between Dy and Fe, which transmits
this pinning to the iron moments of the hard layers.

Among all the interactions which we take into account, the cubic anisotropy of
DyFe, is the only one which is not symmetric under rotations around the axis of the
nanopillar. However in the case we are considering, where there is no applied field
and the soft layer is relatively thick, the dysprosium moments keep their direction well
aligned with the one they initially have and the degeneracy of the ground state is well
preserved, as we will see from the results of the computer simulations. This means
that configurations which differ by a rotation around the z axis have almost the same
energy. Then if the applied current wants to rotate the whole magnetisation around

the z axis, nothing will oppose to its action, since this is a constant-energy trajectory.

7.3 The model

Since the density of iron atoms and their position in the lattice structure is the same
for DyFe, and YFes (they both crystallise in Laves phase structures), we use a single
magnetisation vector My, to describe the magnetic configuration of iron in all the three
layers. The configuration of dysprosium is modeled by another magnetisation field MDy
which is defined over the hard layers only. The model is similar to the one-dimensional
model used in Ch. 6, extended to three dimensions (the stray field is calculated using
the hybrid FEM/BEM method [30, 29]). We also consider the same temperature (100
K) and the same material parameters: the moment densities of iron (in both DyFe,
and YFey) and dysprosium are || Mg, = 0.55 x 10° A/m and || Mpy | = 1.73 x 105 A /m,
respectively; the easy axes for the anisotropy are 41 = (0,1,1)/v/2, @a = (0,—1,1)/v/2
and @3 = (1,0, 0), and the coefficients are K1 = 33.9x10%J/m3, Ky = —16.2x10°J/m3,
K3 = 16.4x10°J/m3. The effects of the electric current are modelled using Eq. (3.13),
the Zhang-Li correction to the Landau-Lifshitz-Gilbert equation. Similarly to Ch. 6, we
assume that only the iron moments interact with the spin of the conduction electrons:

the magnetic electrons in the 4f orbitals of dysprosium are strongly localised at the
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ion core and their interaction with the conduction electrons should be negligible. In
the simulation the damping parameter is chosen to be o« = 0.02; the current density is
assumed to be fully polarised (P = 1) and &, the ratio between the exchange relaxation
time and the spin-flip relaxation time, is taken to be £ = 0.01. The Oersted field and

the effects of Joule heating are ignored.

7.4 Results

For the micromagnetic simulations we use Nmag, the software package which we have
developed in our group [68]. The cylindrical nanopillar is modelled by a three-dimensional
unstructured mesh and first order FEM is used to discretise the space. In this case
FEM is preferable with respect to finite differences, because it allows a better represen-
tation of the cylindrical geometry. Finite differences would introduce artifacts in the
discretisation of the rounded surface of the nanopillar.

The initial magnetizations My and MDy are obtained by letting the system relax
to one of its degenerate equilibrium configurations. The system then evolves from this
configuration (¢t = 0) up to ¢t = 10.5ns. The dynamics of <Mpe>, the iron magnetisation
averaged over all the nanopillar, is studied in Fig. 7.2. For simplicity we identify four
points on the time axis: A at Ons, B at 3.5ns, C at 7ns and D at 10.5ns. The time axis
is then subdivided into three regions AB, BC and CD. The applied current density j is
uniform and constant in each of these three time intervals. In particular it is directed
along the axis of the cylinder: j = j&, with j = 10"' A/m? in AB, j = 0 in BC and
j = —10" A/m? in CD. We remind the reader that the applied field is always zero,
throughout all the simulation.

The graph in Fig. 7.2 shows the behaviour of the components of (Mpe>: in region AB
the current produces a precession of the whole magnetisation of the system around the x
axis. This precession is accompanied by a movement — and consequent compression —
of the artificial domain wall in the direction of the electron flow (negative x direction),
which reflects in an increase of the x component of <Mpe> Such an effect may be
explained with a current-induced motion of the artificial domain wall. Current-induced
motion is a well known effect for domain walls in nanowires: it has been observed
experimentally and has been proved analytically [18, 20, 21].

In the time interval AB the current pumps energy into the system, which is stored
in the compression of the domain-wall. In the time interval BC the current is switched

off and this energy is gradually released: the domain-wall decompresses, restoring the
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Figure 7.2: The evolution in time of the three components of (ige) = (Mge /|| Mgel|), the normalised
magnetisation of iron averaged over all the nanopillar. The three boxes above the graph show the

configuration of MFC at t =0,t=3.5ns and ¢t = 10.5ns.

configuration it had at time ¢ = 0. Finally, during the time interval CD the system
behaves in a way which is symmetrical to the one observed in AB: (Mpe ;) rotates in
the opposite direction and the wall is compressed in the positive = direction, leading
to negative values for (Mrpe ).

Expressing <MFe> in spherical coordinates with x chosen as the polar axis, we ob-
tained the precession angle ¢(t) of (Mp,) around the z axis as a function of time t.
We computed the time derivative w(t) = ¢/(¢) to obtain the precession frequency as
a function of time. The result is shown in Fig. 7.3. The sign of w(t) depends on
the sense of rotation around the x axis. This graph shows that the applied current
j = £10* A/m?, produces a precession motion with frequency around 14 GHz, in the
microwave frequency range. The frequency seems to be related to the compression of
the domain wall: it increases rapidly when (Mye ;) increases and stabilises when also
(Mpe, z) does.

The accuracy of the discretisation of space has been verified by increasing the num-
ber of mesh elements (from 4129 to 19251), obtaining differences in the precession

frequency at 3.5ns lower than 1.2 %.
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Figure 7.3: The time dependence of the frequency w for the precession of (]\ZF6> around the z axis.

The sign of w is related to the sense of rotation.

7.5 Discussion

The physics we studied in this work has not been reported — to our best knowledge —
in previous published works. While the current-driven motion of domain wall has been
intensively studied in recent publications [18, 87, 20], the compression and concurrent
precession has not been reported nor predicted previously. The system we presented
may be interesting for applications as a nano-sized microwave generator which can
operate without external applied field and can be driven by a direct current. Deeper
investigations are, however, needed in order to better understand the physics of the
system and to assess the importance of the assumptions we made to get to these results.
In particular, the model we presented does not take into account some effects which
complicate the physics of real systems. The imperfections of the geometry and the
impurities in the materials can break the cylindrical symmetry. The effect of such
imperfections is difficult to predict.

The size of the sample was chosen to speed up the simulation. However we expect
a similar precessional dynamics in nanopillars with greater radii. Also the materials
could have been chosen differently and the DyFe, anisotropy could have been well
approximated by an infinite pinning on the iron moments, resulting in a simplification
of the model. However this approximation would have removed the only source of
symmetry breaking, besides the irregularity of the unstructured mesh. To conclude we
remark that a symmetry breaking could be introduced on purpose to obtain bistable

systems, where the current may be used to switch the magnetisation between two states.
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7.6 Summary

In this chapter we studied the current driven dynamics of the magnetisation in a cylin-
drical exchange spring nanopillar made of one soft layer sandwitched between two hard
layers. We assumed that the magnetisation in the two hard layers points along opposite
directions with the consequence that a domain wall is developed inside the soft layer.
We found that a current applied along the nanopillar axis induces the domain wall to
compress along the direction of the electron flow and — at the same time — it induces
the domain wall to precess around the axis of the nanopillar. When a direct current
(DC) is applied, the system reaches a stationary equilibrium, where the magnetisation
rotates with constant frequency and where the amount of energy pumped in by the
electric current is totally dissipated by the damping effects. The system may thus be
exploited to obtain a microwave generator capable of operating without any external

applied field and with emission frequency controlled by a DC.
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Chapter 8

Electric current flowing through

a constrained domain wall

8.1 Introduction

The interaction between electric currents and domain walls in ferromagnetic nanowires
has been the subject of intensive study in recent years. Experiments have shown that
a spin polarised current can produce a domain wall movement in the direction of the
electron flow [88, 18, 87, 20]. This effect has been investigated analytically and nu-
merically [89, 23, 90]. In the previous chapter we studied the case where a domain
wall occurs inside a ferromagnetic nanopillar as a consequence of the pinning of the
magnetisation at the nanopillar ends. The situation is similar to the one which occurs
for a domain wall in a nanowire, with an important difference: the domain wall is
pinned and cannot translate freely along the nanopillar. For such a system one may
expect a compression of the domain wall, rather than a translation. We have seen
that micromagnetic simulations confirm this expectation and show that the applied
current produces a compression of the domain wall in the direction of the electron flow.
More surprisingly the system reaches a stationary equilibrium characterised by a rota-
tion of the compressed domain wall around the nanopillar axis with frequency which
is constant in time and lies within the microwave frequency range. This behaviour is
not found for domain walls in nanowires and suggests novel technological applications:
such a system may be used to obtain microwaves emission from a DC electric current
without the need for an external magnetic field.

In this chapter, we study how the rotation frequency depends on the applied cur-

rent density and on the nanopillar length. We first present the results of three dimen-
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Figure 8.1: A sketch of the system. The arrows on the cylinder axis represent the magnetisation,

pinned in opposite directions at the nanopillar ends.

sional and one dimensional micromagnetic simulations. We then introduce an analyt-
ical model and find two current regimes: the low current regime, where the frequency
depends linearly on the current density, and the high current regime, where the de-
pendence becomes quadratic. We derive approximate formulae for the frequency in
these two regimes and find good agreement with the results from the simulations. The
analytical model supports the numerical results and gives more insight on the physics

of the system. Parts of this chapter have been published in Physical Review B [56].

8.2 The system

The system under investigation is a ferromagnetic nanopillar in the shape of a cylinder,
as shown in Fig. 8.1. The magnetic moments at the right and left faces of the cylinder
are assumed to be pinned, pointing to the right at the right face and to the left at the left
face. As a consequence, a domain wall is developed. The system may thus approximate
the situation we considered in Ch. 7, where a nanopillar made of a magnetically soft
material was sandwiched between two magnetically hard layers and the pinning was
provided by the exchange coupling at the soft-hard interfaces. In this context however
we do not make any assumptions on the origin of the pinning, which can be achieved in
other ways. One example is given in Fig. 8.2, which shows a ferromagnetic body, made
by two regions connected through a small constriction: a domain wall is developed in
the constriction, when the wider regions are magnetised in opposite directions [91, 92].

In this work we study how the constrained domain wall reacts to a uniform and
constant electric current flowing along the axis of the nanopillar. Both the simulations
and the analytical investigations we present are based on a micromagnetic model, where

the interaction between the spins of the conduction electrons and the magnetisation is
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Figure 8.2: A constrained domain wall can develop inside a ferromagnetic body as a consequence
of its geometry. Here two square films are magnetised in opposite directions. As a consequence, the
magnetisation inside the channel which connects the two bodies is forced to twist by 180 degrees, thus

developing an “artificial” domain wall [91, 92].

taken into account using the Zhang and Li correction [23] to the Landau-Lifshitz-Gilbert
equation, which we presented and discussed in Ch. 3. The dynamics of the system
then follows Eq. (3.12), where the effective field H receives two main contributions:
one from the exchange interaction, the other from the magnetostatic interaction. The
exchange interaction tries to keep neighboring moments aligned. The exchange field is
ﬁexch = C 9?m, where C = 2A_ " A is the exchange coupling constant of the material

1o Msat
and 02 = 88%. The magnetostatic interaction mainly tries to align M with the axis

of the nanopillar (when its length is much greater than its radius) thus reducing the
magnetic surface charges.
The model does neither include the effects of Joule heating nor the effects of the

Oersted field. We discuss these assumptions in Sec. 8.6.

8.3 Three dimensional micromagnetic simulations

For the micromagnetic simulations we use Nmag [68], the finite element method (FEM)
micromagnetic simulation package which we developed. The cylindrical nanopillar is
modelled by a three dimensional unstructured mesh and first order FEM is used to
discretise the space. The time evolution of the magnetisation is calculated using equa-
tion (3.13), except for the sites which lie on the left and right faces of the nanopillar.
For these sites we assume 0,m = 0, which corresponds to infinitely strong pinning on
the magnetisation. The magnetostatic field is calculated using the hybrid FEM/BEM
method [30, 29]. We use material parameters of permalloy: Mg, = 0.8 x 10% A/m,
A=13x10""A/m and ¢ = 0.01. The damping constant is chosen to be a = 0.02.
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Figure 8.3: The evolution of the components of the average normalised magnetisation (m) =

<M> /Msat as a function of time. The nanopillar length is L = 40 nm.

This value was estimated for permalloy in a previous work[93]. The applied magnetic
field is zero, for all the simulations presented in this chapter.

We first consider a nanopillar with length L. = 40nm and diameter d = 20 nm and
prepare a simulation with the aim of verifying that the system we are considering in
this study can give results similar to those obtained in Ch. 7 for the trilayer exchange
spring nanopillar. The simulation starts from an initial magnetisation configuration,
which is obtained by preliminarily relaxing the system with jp = 0 and is shown in Fig.
8.4-a. A polarised current with density jp = Pj = 10! A/m2 is then applied at time
t = 0 along the positive x direction, meaning that the conduction electrons flow in the
opposite direction. The procedure is similar to the one employed in Ch. 7.

The simulation shows that the domain wall compresses along the direction of the
electron flow. In Fig. 8.3 the components of the normalised spatially averaged mag-
netisation (m) = <M> /Msat are plotted as functions of time up to 6.6 ns. The z
component of (m) is initially zero, reflecting the symmetry of the initial configuration
(Fig. 8.4-a) for inversions © — —z. The current gradually pumps energy into the sys-
tem and compresses the domain wall against the left face of the nanopillar (Fig. 8.4-b).
In the opposite side of the nanopillar the magnetisation aligns along the positive = axis,
resulting in an increase of (my). The compression is accompanied by a rotation of the
whole domain wall around the axis of the nanopillar, as can be seen clearly by looking

at behaviour of the y and z components of () in Fig. 8.3. To obtain the rotation
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Figure 8.4: The magnetisation configuration for the simulation of Fig. 8.3 is shown at ¢ = Ons (a)
and t = 6.6ns (b).

frequency we express () in spherical coordinates where x is chosen as the polar axis.
The frequency is then calculated numerically as v = |0;¢|/2m, where ¢ is the azimuth
angle. In the case we are considering here, where the current points in the direction
of the positive = axis, the sign of 0;¢ is negative and indicates a left-handed rotation
around the same axis (or equivalently a right-handed rotation around the negative x
axis, which is actually the compression direction). The rotation frequency is initially
zero and increases monotonically towards a maximum asymptotical value v¢, as shown
in Fig. 8.5.

To determine vy we let the simulation proceed up to the point where the variation
in time of the frequency becomes lower than a given threshold. In particular we stop
the simulation when Av/At becomes lower than 0.01 GHz/ns. The variation Av/At
is calculated with At = 100 ps. The simulation then proceeds up to ¢ = 6.6 ns and the
asymptotical frequency is found to be vy ~ v(t = tr) = 11.3 GHz (at 11 ns the frequency
is only 0.004 GHz higher, which corresponds to an increase of 0.04 %).

The asymptotical dynamics is characterised by a rotation around the z axis, without
deformation of the domain wall. In such a state, the total energy of the system is
constant in time and hence the energy dissipated by the damping term must be exactly
balanced by the energy pumped in by the applied current. The results obtained so far
confirm that, even if the system we are considering in this chapter is simpler than the

exchange spring nanopillar investigated in Ch. 7, it shares most of its physics.
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Figure 8.5: The time dependence of the frequency for the rotation of the domain wall around the

x axis for a three dimensional micromagnetic simulation of a nanopillar with L = 40 nm.

Further simulations are performed to find the exact dependence of the frequency
on the polarised current density jp and on the length of the nanopillar L. A different
mesh is considered for each different value of L. All the meshes are obtained meshing
cylinders with diameter d = 20nm and are generated such that their simplices have
edge length lower than 2.6 nm (on average their edges are around 1.2 nm long).

The graph in Fig. 8.6 shows the asymptotic frequency vy obtained repeating the
simulation for jp = 1, 2, 4, ..., 18, 20 100 A /m? and for L = 20, 25, ..., 45nm. The
figure shows that while the frequency changes considerably with the current density jp,
there are small differences between the curves obtained for different nanopillar lengths
L. In particular the curves for different values of L overlap, showing that this parameter
has different effects for different current regimes: for currents around 10'° A/mz, the
highest rotation frequency is reached by the shortest nanopillar, while for currents

around 2 x 101 A/ m? the highest frequency is reached by the longest nanopillar.

8.4 One dimensional micromagnetic simulations

We repeat the simulations discussed in Sec. 8.3 for a simplified model, where the
nanopillar is represented by a one dimensional magnetic string. Such a study has a
two-fold purpose: on the one hand, it provides data for a comparison with the three-

dimensional model, which allows to better understand the effects of the nanopillar shape
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Figure 8.6: The frequency as a function of jp for different nanopillar lengths L, as obtained from

three dimensional micromagnetic simulations.

and size. On the other hand, it gives insight on the limitations of one dimensional
models, such as the one presented in Sec. 8.5.

For the one dimensional simulations we use the same material parameters and the
same procedure as in Sec. 8.3. The three dimensional meshes are, however, replaced
by one dimensional meshes with 0.5 nm spacing between neighboring nodes. This one
dimensional model neglects the inhomogeneities of the magnetisation in the plane or-
thogonal to the nanopillar axis and — more importantly — it neglects the contribution
of the magnetostatic field.

The results of the simulations are shown in Fig. 8.7. We study the system for L =
20, 25 ..., 60nm and for the same values of jp as in Sec. 8.3. The curves for different
nanopillar lengths are more clearly spaced with respect to the three dimensional case
and show that to a longer nanopillar corresponds a lower rotation frequency. This result
is reasonable for such a one dimensional system, where the width of the domain wall is
just L: to a smoother change of the magnetisation corresponds a reduced spin transfer
torque effect. In the three dimensional system, things are different. The magnetostatic
field pulls the magnetisation along the axis of the nanopillar to reduce the magnetic
charges at the surface. This is an additional pinning effect which keeps the width of
the domain wall from growing for larger values of L. In other words, in the three
dimensional system the domain wall width does not depend on L, if L is large enough.

Then the frequency does not depend on L either.
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Figure 8.7:  The frequency as a function of jp for different nanopillar lengths L, as obtained from
one dimensional micromagnetic simulations. The dotted and dashed curves show the results obtained

for the three dimensional system (Fig. 8.6) in the case L = 20 and L = 45, respectively.

In fig. 8.7 we see that the frequencies for L = 20 nm obtained in the one dimensional
model are close to the ones obtained in the full three dimensional model. This seems

to suggest that the magnetostatic effects become less important in shorter nanopillars.

8.5 The analytical model

We investigate the system with a one-dimensional analytical micromagnetic model.
The purpose of such a study is to support the micromagnetic simulations and to give
a better understanding of the physics of the system. The model does not include
the magnetostatic field and assumes it does not qualitatively affect the physics of the

system. We begin by writing equation (3.13) in spherical coordinates:

0760 = 2cos 0,0 Oy + sin 6 aiﬁb +

+a [020 — sinf cos 0 (9,0)?] + (8.1a)
+Vady,+ Vasingdy,o

Or¢ sinf = a [2cos 6 9,0 0,0 + sin 6 029
— 920 + sin 6 cos 0 (9,0)* — (8.1b)
—Vad,f + Vasind,é
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Only dimensionless quantities appear in this equations: u = ¥, 7/ = L5 ¢, V = SG V-
We want the magnetisation to point to the left at the left boundary and to the right

at the right boundary:
O(u=0)=m, O(u=1)=0, (8.2)

which are boundary conditions for our system of differential equations. When the

current is zero, V = 0, the equilibrium (such that 0 = 0.6 = 0,/¢) is obtained for:
O(u) =7(1 —u), ¢(u) = const, (8.3)

as can be seen with a substitution in (8.1). For V' > 0, computer simulations show
that the system approaches a stationary equilibrium where the whole magnetisation
rotates with constant frequency around the axis of the nanopillar. We then investigate
the case where there is no further compression of the domain wall, while it could still

rotate with constant angular velocity around the z-axis:
0.0 =0, Op1¢ = Q' = const. (8.4)

The rotation frequency can be obtained from Q' through the relation vy = QZr/fQ |].

As a first try to find such a solution we assume 0,¢ = 0 and find the corresponding

compression profile from Eq. (8.1a):
ad?0+Vad,b=0.

Solving this equation we get:

e)\(lfu) -1

Ougp =0, O(u) =m SUNEE

where A = % However this is not a solution of (8.1), as can be easily verified with a

substitution in the second equation of this system:
—0%20 —Vao,h # ' siné.

We conclude that 0,¢ cannot be neglected. It is then important to understand the role
of 9,0, the torsion of the domain wall produced as an effect of the flow of the electric
current.

We point out that the rotation is a consequence of the compression of the domain
wall and — in this sense — can be thought to be an indirect effect of the spin transfer
torque. This can be seen clearly by considering the zero-current equilibrium config-

uration (8.3) and looking at the derivatives of 6 and ¢ with respect to the reduced
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time 7/, when a current density is immediately applied (this is the situation which
occurs at ¢ = 0 in the simulations). Eq. (8.1a) becomes 0,/ = —Var, which suggests
that a compression of the domain wall is going to take place. Eq. (8.1b) becomes
sinf 0, ¢ = Var. We have found a direct contribution to the rotation of the domain
wall. This contribution however is suppressed by the factor Va ~ —5 x 1074, which is
rather small for the materials and the range of current densities we are interested in
(j=10" A/m?, V ~ 5 x1072). We conclude that the domain wall initially compresses
without significant rotation and torsion. The compression however leads to non vanish-
ing values for the term 920 and this in turn requires non vanishing values for sin 6 9,¢,
as can be seen by looking at (8.1b). In summary, the compression of the domain wall
(i.e. 920 # 0) produces a torsion and rotation of the domain wall (i.e. sinfd,/¢ # 0).
We now proceed by rearranging (8.1) and imposing (8.4):

;

—Q sinf = 920 — sin 0 cos 0 (9,h)?
(8.5a)
+VEDH — Vsinh Oy
af) sinf = 2cos 0 0,0 Dy + sinf 02 ¢
(8.5b)
£V 8,0+ VEsindduo

We have here introduced Q = €'/(1 + o?). We note that, at the boundaries of the
nanopillar (v =0, 1), Eq. (8.5b) gives:

0=m,0— 9,0 (({9“(]5:12‘2/) =0.

0,0 cannot be zero at the boundaries, at least for small currents, for which we expect

the solution to be close to the zero current solution (8.3). We then conclude:

|4 V

57 8u¢’u:1 = -5

This result suggests that d,¢ should be of the same order of V. This is an assumption
we make, which enables us to proceed with important approximations. Indeed, for
the material and the geometry we are dealing with, and a current density around
j ~ 101 A/mQ7 we have V' ~ 0.05. Therefore the assumption 0,¢ ~ V implies that
the typical torsion of the domain wall is, in general, rather small A¢ ~ V ~ 3°. It
implies also that the second and fourth terms on the right hand side of (8.5a) are of
order V2 2 2.5 x 1073, On the other hand (8.3) suggests that 9,6 ~ —7 and we expect
020 to be of the same order of magnitude, when the domain wall is compressed. We

may then neglect terms of order V2 and terms of order £V, since typically & ~ 1072
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Then the system (8.5) reduces to:

—Q sinf = 920 (8.6a)

{aQ sinf = 2cos 0 9,0 0y ¢ + sin 0 D2 + V 9,0 (8.6b)

We immediately note that all the terms containing £ have disappeared from the system:
we are neglecting the non adiabatic effects of the spin transfer torque interaction.

Eq. (8.6a) is the pendulum equation. It could be used together with the boundary

conditions (8.2) to obtain #(u), once 2 is known. However determining (2 is not easy.

We can find a constraint on  and 6 from the second equation (8.6b), by multiplying
both of its sides by sin 8,

o sin? 0 = 9,[sin 0 9, d] — V O, cos b. (8.7)

This equation can be integrated:

1
2
/0 sin? @ du = —%. (8.8)

f(u) can now be found by searching for the solutions of the pendulum equation (8.6a)

which also satisfy (8.2) and (8.8). Our main goal, however, is to find Q(V'), rather than
finding 6(u) and ¢(u). To do this, we multiply both sides of (8.6a) by 9,0:

1
Q9, cosl = iau (0u9)2 ,
which can be integrated, obtaining:
1
Qcosf+1= 3 (840)?

where [ is a positive (take § = 7/2) integration constant. This equation gives an

expression for 0,0:
O = —/2(I + Q cos¥). (8.9)

The sign in front of the square root was chosen in order to satisfy the boundary condi-

tions (8.2). We can now change variable of integration in (8.8), obtaining:

T sin*@dg 2V
0 2(I+ € cosb) aQ’

A second integral equation can be derived integrating the identity df/9,0 = du and

(8.10)

using the boundary conditions (8.2):

1. (8.11)

/” do B
0 2+ Qcosh)
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I and € can then be found by solving the following system of equations:
(8.12)

where the two functions f; and f are defined in the following way:
4 sin 6 dé

B 0 2(1+z cosf)’
faw) = [ =
2= 0 2(1+x cosf)’

and x has to be such that |z| < 1 in order for fs to exist. The system (8.12) is difficult

fi(z)

to solve in general. Here we consider two limiting cases:

e || > 0. Since f1(0) = ﬁ and f2(0) = %, we get [ = %2 and Q ~ —4.. The

condition \%\ 2 0, becomes then ]%] < %2;

o [$| < 1. Since fi(1) = 4, Q@ ~ —3L/I. Considering that |I| ~ ||, we finally
get Q ~ — (%%)2 Moreover when x — 1, fa(x) — +00. We then conclude that

[I| ~ |©2] > 1 and hence || > 1.

These results are summarised below:

4V v
N for [¥] <1 (8.13)
_(;Z)Q for ‘K‘ >1 .
2 a a
The frequency can be deduced easily from the formula vy = 21/(52 Y] = 2;22 12
B 2 for | Ll <1 -
e #(53)2 for |-L% | > 1 (8:14)
2ryC \2 ayC

Let’s now define jo such that V/a = jp/jo. Then the low current condition |%| < 1

becomes |jp| < jo and similarly the high current condition becomes |jp| > jo and,

) 2ey aA
= — 8.15
70 pops L (8.15)

Which shows, in particular, that the critical current which distinguishes between the

low current regime and the high current regime depends on the nanopillar length L.
We note that in the low current regime the frequency does not depend on the

strength of the exchange interaction C' = 2A/19Msgat. It depends on the length of the

domain wall L and on the magnitude of the applied current v. On the other hand,
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Figure 8.8: Comparison between the numerical values for [2(V')| obtained from the one dimensional
micromagnetic simulations (crosses) and the low current (dotted line) and high current (solid line)

analytical solutions.

in the high current regime, the frequency does not depend on L anymore. It depends
however on the strength of the exchange coupling C' and depends quadratically on v.

Fig. 8.8 shows the validation of the analytic expressions for Q(V') against the
results of the one dimensional micromagnetic simulations of Fig. 8.7. The graph
contains all the data shown in Fig. 8.7 plotted in terms of the reduced quantities V'
and 2. Consequently all the points obtained for different values of L and jp lie in a
single curve. The graph shows good agreement between theory and simulations, thus
supporting the approximations which were made to get to the final formulas.

We make a final remark on the different dependence of the frequency on the applied
current in the two regimes. There are two reasons why an increase of the current may
lead to an increased asymptotic frequency. Firstly, the two terms through which the
spin-transfer torque enters Eq. (3.12) share the prefactor v o< j: double the current,
double the spin-transfer torque terms and double the effect. The second way the current
may increase the frequency is by reducing the domain wall width. A reduced domain
wall width corresponds to an increased value of Oy M , which appears in both the spin-
transfer torque terms. In the linear regime, only the first effect occurs. Indeed, from
(8.9) we see that 0,0 = —v/2I /1 +% cos §, where % ~ 0and I = ’T—; We then
get, 9,0 ~ —m, which means that, in the low current regime, the domain wall shape

does not change too much with respect to the zero current configuration (8.3). On the
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3V

«

sin g. 00 depends

on j, through V. This analysis suggests that the low/high current regimes correspond

other hand, in the high current regime, % ~ —1 and 9,0 =

respectively to low/high domain wall deformation.

8.6 Discussion

We discussed the role of the nanopillar shape in Ch. 7: due to the cylindrical shape
of the nanopillar, a rotation of the whole magnetisation around the nanopillar axis
does not require to overcome any energy barriers. This feature is extremely impor-
tant for the dynamic process we have studied here, because it allows the current to
gradually transfer energy to the system and store it by compressing the domain wall.
An important question to answer is then: how much does the shape of the nanopillar
affect the dynamics of such systems? We have cross performed simulations for nanopil-
lars with a square section and found very similar results: for a nanopillar with length
L = 40nm and square section 20 x 20 nm we chose j = 1019 A /m? and found a frequency
v¢ = 0.61 GHz, while for the corresponding cylindrical nanopillar ¢ = 0.64 GHz.

Equations (8.13) and (8.14) show that the rotation frequency can be expressed as
a function of V/« and ultimately as a function of jp/c. This means that for a value
of « larger by a factor two, a current density larger by a factor two is required in
order to obtain the same frequency. This consideration indicates that low damping
constant is a desirable feature, when choosing a material for a concrete realisation
of the system proposed in this chapter. We have chosen permalloy, because, besides
being a particularly soft magnetic material, it has been intensively studied in spin
transport experiments in recent years and values between 0.01 and 0.02 have been
estimated[93, 94, 21] for its damping constant a. We point out that our choice, a =
0.02, is conservative: the value a = 0.01 would lead to considerably enhanced current
effects and — in the quadratic regime — would lead to quadrupled frequency.

The electric currents required in spin transfer torque experimental studies are often
high enough to produce considerable Joule heating and Oersted field. These effects
should however be expected to become less and less important as the system is scaled
down. Indeed, smaller systems are able to dissipate heat more efficiently than big
systems, since reduced size corresponds to increased surface/volume ratio. Similarly,
the Oersted field is reduced in smaller nanowires, being proportional to the total current
flowing throughout the sample. On the other hand, the spin transfer torque does not

depend on the system size, provided the current density remains constant. These
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considerations suggest that the nanopillar we presented in this chapter should be even
less affected than the larger nanowires studied in other works[20, 18, 21|, where Oersted
field and Joule heating were found to be negligible or unable to limit the effects of
spin transfer torque. Besides these empirical arguments, we can obtain an estimate of
the Oersted field, using a simple model, where the nanowire is approximated with an
infinitely long cylinder with radius R and is traversed by a uniform current density j.
In this simple picture, the Oersted field circulates around the nanopillar axis and has
maximum intensity Bmax = poRj/2, which is reached on the surface of the nanopillar.
Considering the extreme case jp = 2x 10t A/m? and P = 0.4, we get j = 5x 10 A /m?
and Bpax = 0.003147T. This field does not act against the rotation of the whole
magnetisation around the nanopillar axis, since it is invariant for such transformations.
Moreover its intensity is so small that we cannot really expect any relevant deformations
of the artificial domain wall created by the pinning (the demagnetising field is two
orders of magnitude bigger and still produces only moderate profile adjustments). We

conclude that neglecting the Oersted field is an appropriate approximation.

8.7 Summary

We used micromagnetic simulations to study the spin transfer torque effects that occur
in a nanopillar when the magnetisation is pinned at its ends. We showed that the
dynamics of such a system is characterised by a stationary precession of the whole
magnetisation of the system around its axis. We presented both three dimensional
and one dimensional computations, and studied the asymptotical precession frequency
vt as a function of the polarised current and of the nanopillar length. We derived an
analytical model which provides further insight into the physics of the system and shows
that there are two current regimes, where the system exhibits different dependencies on
the applied current. We found good agreement between the results of the simulations

and the theory.
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Chapter 9

Summary and outlook

9.1 Summary

The research on magnetism is facing a new era, characterised by an unprecedented
interest in the interplay between magnetism and other types of physics. Researchers
in the field are facing new challenges when studying phenomena such as the effect of a
spin polarised current or a light pulse on the magnetisation dynamics, and computer
simulations can prove invaluable to help the understanding of experimental results or
to assist in the research and optimisation of new devices. Numerical investigations of
such effects require new powerful and flexible simulation tools, which can go beyond
pure micromagnetics and can perform real multiphysics simulations.

For this thesis we devoted considerable effort in developing Nmayg, a flexible finite el-
ement method micromagnetic simulation package which was used for our own computer
simulations and has also been made available — as open source — to the magnetism
community. We used Nmag to investigate the micromagnetic systems which are of
interest to our group in Southampton, publishing our findings in specialised journals
[54, 55, 56].

In particular, in Ch. 6 we developed a new model for studying DyFe,-YFey multi-
layered exchange spring systems, which uses two distinct fields to represent the mag-
netisation of iron and dysprosium. This is certainly an improvement over previous
computational approaches [95], where the magnetisation in the DyFe, layers is mod-
eled by a single vector field, assuming rigid antiparallelism between the moments of
the two species. The two fields model was used to investigate a trilayer DyFey-YFes-
DyFe, exchange spring system, showing that the average magnetisation moves in spiral

trajectories near equilibrium. We found that, for such a precessional motion, the damp-
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ing parameter and frequency both reach their minimum values when the applied field
gets close to the bending field, while the amplitude of the spiralling orbits reaches its
maximum value. Such an observation motivated further investigations on the effects
of an electric current travelling in the out of plane direction in the very same trilayer
system. If on the one hand, we found that the magnetisation is particularly reactive
to external stimuli near the bending field, on the other, the spin transfer torque effects
are rather weak in such a situation, because the magnetisation is almost uniform. We
linearised the Landau-Lifshitz-Gilbert equation and derived analytical models for the
system which we studied numerically. This theoretical work was used to validate and
improve our understanding of the numerical results. We derived a new expression for
the bending field which takes into account the penetration of the exchange spring inside
the hard layers and gives estimates which agree nicely with the numerical values.

In Ch. 7 we showed that, despite the results obtained in the previous chapter, rele-
vant spin transfer torque effects may be observed in a trilayer exchange spring system,
when the geometry and the materials are chosen appropriately. We studied again a
trilayer exchange spring system, but with two differences with respect to the system
investigated in Ch. 6. The geometry is the first difference: we studied a cylindrical
nanopillar, rather than a thin film. The second difference lies in the configuration of
the magnetisation. We assumed the two hard layers to be magnetised in opposite di-
rections, forcing the magnetisation to rotate by 180 degrees inside the soft layer, thus
developing what we called “artificial” domain wall. We studied how an electric current
(with density around j = 101 A/ m2), flowing along the axis of the cylindrical nanopil-
lar, interacts with the magnetisation and found interesting results: the domain wall
compresses along the direction of the electron flow reaching a stationary equilibrium
where the magnetic moments rotate coherently with constant frequency around the
nanopillar axis.

In Ch. 8 we performed computer simulations in order to assess how the asymptotic
precession frequency depends on the the current density and on the nanopillar length.
We studied a system similar to the one presented in the previous chapter, with one
difference: the cylindrical nanopillar was made of just one single material and the action
of the hard layers was reproduced by assuming infinite pinning on the magnetisation
at the two opposite faces of the cylinder. Using infinite pinning (which corresponds
to keeping the magnetisation constant), we reproduced qualitatively all the results
obtained for the trilayer nanopillar, thus clarifying that the role of the hard layers is

just to pin the magnetisation along opposite directions at the soft-hard interfaces. We
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also presented a one dimensional analytical model, much simpler than the numerical
model, but still able to capture the essence of the physics of the system and able to
reproduce most of its features. The analytical model shows that the precession of
the magnetisation is an effect of the compression. It gives a mathematical formula
that, together with the numerical results, helps to understand how the parameters
for geometry and materials balance to determine the asymptotical frequency of the

magnetisation precession.

9.2 Conclusion and outlook

In conclusion, we developed Nmag, a software package which we used to produce all
the numerical results presented in our thesis. We used Nmag to carry out multiphysics
simulations. In Ch. 6 we performed simulation of DyFe,-YFey exchange spring system,
where the micromagnetic model was extended to allow a two-field representation of
the magnetisation in the hard layers. In Ch. 7 and 8 we extended the micromagnetic
model with the spin transfer torque effects to study a novel and interesting effect. While
current driven domain wall motion in nanowires has been widely reported and studied
in recent publications, the compression and rotation of a domain wall constrained in
a cylindrical nanopillar is indeed — to our best knowledge — a new effect, which was
presented and understood for the first time in this thesis and the derived publications.
We hope to be able to see soon these effects in experimental samples.

There are some open problems which may be the natural continuation of the work

presented in this thesis. We list them below:

e carry out further studies on the system presented in Ch. 7 and 8 and understand
if the same mechanism could be exploited to obtain a bistable system which can
be switched from one status to the other by the application of an electric current.

One possible idea to achieve this is shown in Fig. 9.1.

e work on other multiphysics extensions to Nmag. It would be useful — in particular
— to include Joule heat generation and diffusion, since one of the main concerns
when studying current-driven magnetisation dynamics is the magnitude of the
current density and the heating which may be connected to it. Another useful
multiphysics extension would be the calculation of the Oersted field, relevant —

in particular — when assessing the importance of spin transfer torque effects.

e in Ch. 6 we found that a continuous current has weak effects on the dynamics

120



flow of

Figure 9.1: Sketch of a hard/soft/hard/soft /hard exchange spring system. This picture shows how
the mechanism which was used in Ch. 7 and 8 to generate microwaves may be used in order to switch
a hard magnetic layer. The electric current pushes the domain wall from the soft layer on the left (a)

into the soft layer on the right (b), thus switching the central hard layer.

of the considered trilayer exchange spring system. The magnetisation dynamics
may be different for a pulsed current. We may get a noticeable amplification of
the effects near the resonance frequency, with a mechanism analogous to the one
described in Fig. 1 of Ref. [85]. Further studies may then be carried out in order

to assess the importance of such an effect.
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Appendix A

The choice of units for the LLG

equation

In this appendix we show how to choose units in such a way that all the parameters
which describe a typical micromagnetic physical system have numerical values around
one. This approach is useful during debugging, since it makes it simple to read and
understand the numerical values involved in the simulation. Most importantly, this is
the choice of units which has been made for Nmag, the software package which has
been used to produce the results in this thesis.

In the following table we present some typical numerical values' used in the LL

equation.?
free space permeability po = (47/10)-1076  N/A?2
saturation magnetisation Myw =~ 0.8-106 A/m
damping factor « ~ 0.5 or 0.02
gyromagn. ratio v = 0.2-106 m/As
exchange stiffness constant A =~ 131072 J/m

Provided that we express times in picoseconds (1 ps = 10712 s) and lengths in nanome-
ters (1 nm = 107 m), we can omit the factors 10~ and use uo = 47/10, M = 0.8, etc
inside the LL equation. We can verify it in the following way: let us use typewriter font

to denote the values used inside the program. For example: H = H-10%A /m, where H

'The values of M., and A are relative to permalloy.

2The exchange length lox is calculated as lox = ﬁ, for permalloy lex = 5.686 nm.

3 The more realistic value is 0.02, but the value 0.5 is often used to speed up the convergence of the

simulations where the dynamics of the system is not being investigated.
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could be imagined as the variable used to store the effective magnetic field. If inside the
program we write H = 0.5, we mean that the actual field will be H = 0.5 - 10°A /m =
500000 A /m. This means that inside the program we should multiply by the factor 10°
before using the value stored inside H. However our choice is such that these factors

cancel out and therefore such a multiplication is not needed. We use:

time t = t-107'2s
space T r-10m
magnetic fields H = H-10°A/m
gyromagn. ratio 4/ = gamma-10%m/As
exchange stiffness constant A = A-10712J/m

We consider the LL equation for the normalised vector m (which is consequently non-
dimensional).

By = —' [mx H+amx (ﬁix ﬁ)]
After the substitutions:

O10-12)m = —(gamma - 105m/As)[m x (H-105A/m) + ...
o+ am x (mx (H-10°A/m))]

We see easily that the factors cancel out. This means that we do not need to change
our program and adapt it to the new units. We simply should give numbers as shown
inside the above tables. A similar check can easily be done for the expression of the
effective field:

2A

H = Vi H,+ H
MOM m(f‘)—l— a+ ds

where H, is the applied field and ﬁd is the demagnetising field, which is obtained

solving the Poisson equation:
V2=V M,

where ﬁd = —-Vo.
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Appendix B

Solution of the LLG equation for
constant applied field

The LL equation can be solved analytically when the effective field is constant in time.
In this appendix we derive such an analytical solution following the paper published
by Jiang et al. [96, 43]. Assuming constant applied field is evidently a restrictive hy-
pothesis in micromagnetics, but nevertheless it is worth to consider it: firstly because
analytical solutions are always useful for testing purposes or for getting a better un-
derstanding of the underlying physics and secondly because this particular analytical

solution has been used several times in semi-analytical models, as discussed in Ch. 4.

Derivation

The idea underlying the method is to decompose the LL equation into two components:
the one parallel to the applied field, H , and the one orthogonal to it. We will see that
if H is constant in time, this separation leads to an exact analytical solution. Consider

the well known identity for triple vector products:

— —

Ax (BxC)=(A-C)B—(A-B)C, (B.1)

which holds for any triple of vectors /T, B and C. Let us choose A = i—i, B = ¥ and

C =hfora given vector 4. We obtain:

T=(F-h)h+hx (T xh).

Defining:
P7 = (7-h)h, (B.2)
Q7 = T—PT="hx(Txh), (B.3)
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we can write:

7 =P7+ Q.

P and Q are two projectors: P projects onto the space of vectors parallel to ﬁ, while
Q projects onto the space of vectors orthogonal to h. We apply the projectors P and

Q to both the sides of Eq. (4.1):
P = —yH [P(m x 1)+ aP (i x (1 x E))] : (B.4)
Qi = —/H|

Q7 x 1) + aQ(ift x (i x l’i))} . (B.5)

From Eq. (B.2) we see that P(1m x h) =

product we obtain: 7 X (m x h) = m(m -

Applying the identity (B.1) for the cross

) — h, which allows us to write:
P(it x (M x h)) = (m-h)Pm—h = (m-h)>h— h.
Since (11 - h)2 = | P, BEq. (B.4) becomes:
P’ =+ Ha (1 — P - Pi) h. (B.6)

This is the LL equation projected along the direction of h. Now let’s consider the Q-
projection of the LL equation. As before the cross product is expressed as 1 x (17 X E) =
(- k) — h. Obviously Qh gives 0, hence:

Qi x (M x h)) = (i - h) Q.

Finally we consider m x k. This vector belongs to the plane orthogonal to ﬁ, where

Q behaves like the identity operator:
Q(m x h) = 11 x h. (B.7)

However, as we will see later, we need to express this value as a function of Qm in
order to handle the projected equation. For this reason we define the following linear
operator:

JG=(h-0)h—7xh. (B.8)

If we now apply J to the vector Qm!:

J(Qm) =J(m — (h-m)h) = —m x h.

1J represents a rotation of 90 degrees around the axis parallel to k. This can be used to derive the

same result in a more intuitive fashion.
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Using this result into Eq. (B.7), we find:
Q(m x h) = —J(Qm). (B.9)
We can finally write the LL equation projected along the plane orthogonal to h:
Qi =+'H (J —a (- h) 1) Qi (B.10)

I is the identity operator.

Suppose now that H does not change in time. In this case Pm/ = <8tT7L . ﬁ) h =
9, (m-h) h = (Pm)’. In a similar way Qm’ = (Qm)’. If we define the scalar u = (P)-h
and the vector v = Qmi, the projected Egs. (B.6) and (B.10) can be rewritten in the

following way:

W = ~Ha(l —u?),
7 = V’H(J—a(m-ﬁ)gﬁ.

The first of these two equations is independent of ¥ and can be therefore integrated

immediately:
ug cosh(ay’ H t) + sinh(ay' H t)
cosh(ayH t) + ug sinh(ay Ht)’

u(t) =
up is the initial value for u: u(t = 0) = ug. This result can be used to integrate the

second equation [96, 43]:

cos(YHt)I+sin(yHt)J
0o-
cosh(ay'H t) + ug sinh(ay'H t) 0

(t) =

U is the initial value for ¢ and defines the initial condition, together with ug. Remem-
bering how u and ¥ were defined, we obtain 7 (t) = u(t) h + #(t). We can express the
initial condition using 7y = m(t = 0). This is easily done using Egs. (B.2) and (B.3).

We see that: ug = g - h and Ty = h x (g X h).

Summary

Since we consider these solutions quite interesting we write them in a different and
slightly clearer formulation. First we express the equations as they appear in the
original papers [96, 43]. If H = Hh is constant in time, then (we omit the space

dependence):
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(7o - h) cosh(y'H t) + sinh(y/oH t)
cosh(v'aH t) + (g - k) sinh(y/aH t)’
cos(YHt)I+sin(yHt)J

B t — = )
() cosh(v'aH t) + (myg - h) sinh(y'aH t)
7/ _ Y
14 a2’
and, given any vector ¥:
Iv = v,
Jo = (h-®)h—7Txh

In our particular case:
J ﬁx(moxﬁ)] = h X 1.
So we can rewrite the equations in a more convenient form (for computation):
mt) = a(t)h
+ b(t) h x 1Mo

o et) (7 x o) x ﬁ} , (B.11)

—

—

where g = m(t = 0), ¥ = v/(1 + a?) as before, and:

a(t) = |G- k) cosh(y'at) +sinh(y'aH t)] /D(t), (B.12)
b(t) = sin(y'Ht)/D(t), (B.13)
c(t) = cos(y'Ht)/D(t), (B.14)
D(t) = cosh(y'aHt)+ (i - h)sinh(y'aH t). (B.15)

To understand the dynamics better we express this result in spherical coordinates: we
take a reference frame with z axis along h and y axis along mgy x h (as a consequence
the z axis lies along the vector (ﬁ X M) X fz) In this reference frame the solution can
be expressed easily as: m(t) = (c(t) sin by, b(t) sin 6y, a(t)), where sinfy = ||k x || =
||(h x 17i0) x h||. Note that this vector has unit norm. We can write it using the spherical

coordinates 6(t) and ¢(t) with polar axis along z:
m(t) = (sin6(t) cos ¢(t), sinO(t) sin p(t), cosO(t))
Equating these two expressions of 1, we obtain:
o(t) = Y Ht, (B.16)
cosf(t) =a(t)= tanh(yaH (t—tg)), (B.17)

: 1
. _ sinfp _
S1n g(t) D(t) COSh (’}//aH (t o to)) ’

(B.18)
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to = 7,; 77 log 1??02090 is the time at which m passes through the plane zy.

Discussion

These solutions give interesting hints to understand the dynamics generated by the LL
equation. From Eq. (B.16) we see immediately that the vector m precesses around

the effective field b with constant angular velocity. The frequency of this rotation is
v H

v = 5. This means that — as expected — the dynamics is faster for higher effective
field.?

When there is no damping (o = 0) D(t) = 1 and from Eq. (B.18), sinf(t) = sin fy:
the angle 6(t) between the vectors 7 (t) and & is constant in time. This means that the
dynamics is simply a rotation with constant angular velocity around the effective field.

When the damping is nonzero, the vector m(t) still precesses around h as before,
but now it also moves towards k. This effect is shown clearly by Eq. (B.17). We
can also make an estimate of how fast this movement is by finding the time at which
the angle between 77(t) and h is equal to a very small angle Af. From Eq. (B.18)
we know that this happens when v'aH (t — ty) > 1. In this case we can use the
approximations cosh(y'aH (t — tg)) ~ €Y *H(=%) /2 and sin A ~ Af to rewrite Eq.
(B.18) as Af =~ 2exp(—~'aH (t — tg)). Solving for ¢ we obtain:

b ,1 log ( 2 sin 6 ) '
~'aH A (1 + cosby)
tswitch 1S the time needed for the magnetisation, m, to get from 6 = 6y to 6 = A6,
where 6 is the angle between m and the constant applied field of magnitude H. Such a
switching time is inversely proportional to H and «. The same formula can be inverted
to obtain A x e~ Ht which shows that the angle between the magnetisation and
the applied field decays exponentially for ¢ — +o0.

Jiang et al. propose to use the analytical formulas for the magnetisation evolution
in order to integrate the LL equation. The procedure they suggest is the following: to
go from time #( to time to+ At they assume that the change of H (t) in this time interval
is negligible and use Eqs. (B.11-B.15) with H replaced by H(to). For this procedure to
work, one must obviously choose At in a proper way: Jiang et al. suggested to use At
such that the fastest precessional motion, among all the sites of the mesh, is resolved
in a given number N of steps per period [43]. This could be done in this way: let’s use

the index 7 to label the physical entities defined at the site ¢ of the mesh. From Eq.

2This could be argued from the beginning: the substitution T =+ H t in Eq. (4.1), shows that the

solution of the LL equation must be a function of v H ¢
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(B.16) one calculates the time At; required to span an angle 27 /N: At; = 27 /v’ N H;.
At = min{At;}; is then chosen.
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Appendix C

Anisotropy near the easy axis

In this appendix we express uniaxial and cubic anisotropy in spherical coordinates,
choosing the polar axis aligned along one easy/hard direction. We then expand the
anisotropies for small values of , the angle between the magnetisation and the easy /hard
axis. We start from Eq. (2.9) and (2.10), the expressions of the uniaxial and cubic

anisotropy introduced in Ch. 2:

5ua(m1) = —Klm% — KQTR%, (Cl)
Eca(mi, mo, mg) = K (m%m% + m%m% + m%m%) + Kg(m%m%mg)
+K3(mima + mami + mamj). (C.2)

my, mg and mg are defined as m; = m - Z;, where &; are the unit vectors lying
along the three orthogonal axes shown in Fig. C.1 and Z; is chosen to be one of the

easy/hard directions. In terms of 6 and ¢, we can rewrite m; as:

X
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|
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I

I

|

I
I » X3

~ |

~ |

RS I
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Figure C.1: We express both uniaxial and cubic anisotropy in spherical coordinates, choosing an

easy axis as the polar axis, which is here denoted by 1.
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my = cos#,
mg = sinfcos ¢,

m3 = sin#sin ¢,
which can then be substituted inside (C.1) and (C.2), obtaining;:

ena(0) = —K; cos? 0 — Ky cos* 6,
ca(f, @) = Ki(sin?6 cos? @ + sin @ sin? ¢ cos? ¢)
+ Ky sin 6 cos? 0 cos? ¢ sin® ¢
+K3(sin® 0 cos? ¢ sin? ¢ + sin? 6 cos® 6 (1 — 2 cos? ¢ sin” p)).

When 6 < 1, we can approximate these expressions with:

cua(f) = const. + (Kj + 2K3)0% + O(6%),
call ¢) = K162+ 0(8").

We conclude that both uniaxial and cubic anisotropy can be approximated by A62,

when the magnetisation deviates by a small angle 6 from an easy axis direction.
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