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Multiphysics simulations of magnetic nanostructures

by Matteo Franchin

In recent years the research on magnetism has seen a new trend emerging, characterised

by considerable effort in developing new nanostructures and finding new ways to control

and manipulate their magnetisation, such as using spin polarised currents or light

pulses. The field of magnetism is thus moving towards the multiphysics direction, since

it is increasingly studied in conjunction with other types of physics, such as electric and

spin transport, electromagnetic waves generation and absorption, heat generation and

diffusion. Understanding these new phenomena is intriguing and may lead to major

technological advances. Computer simulations are often invaluable to such research,

since they offer a way to predict and understand the physics of magnetic nanostructures

and help in the design and optimisation of new devices.

For the preparation of this thesis the Nmag multiphysics micromagnetic simulation

package has been further developed and improved by the author. The software has also

been extended in order to model exchange spring systems. Using Nmag, we carried

out micromagnetic simulations in order to characterise the magnetisation dynamics in

exchange spring systems and derived analytical models to validate and gain further

insight into the numerical results. We found that the average magnetisation moves

in spiral trajectories near equilibrium and becomes particularly soft (low oscillation

frequency and damping, high amplitude) when the applied field is close to a particular

value, called the bending field.

We studied spin transport in exchange spring systems and investigated new geome-

tries and setups in order to maximise the interaction between spin polarised current

and magnetisation. We found that by engineering a trilayer exchange spring system in

the form of a cylindrical nanopillar, it is possible to obtain microwave emission with

frequencies of 5-35 GHz for applied current densities between 0.5-2.0× 1011 A/m2 and

without the need for an externally applied magnetic field. We proposed a one dimen-

sional analytical model and found a formula which relates the emission frequency to

the geometrical parameters and the current density.
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Chapter 1

Introduction

The properties of magnetic materials had an important role in past centuries, allowing

the development of the magnetic compass, which led to safe navigation far from land

and thus had a tremendous impact on the sea trade as well as on the discoveries of

new lands. The role of magnetic materials is probably even more important today, as

we are storing most of our knowledge inside magnetic media such as hard disks and

magnetic tapes. An hypothetical “magnetic blackout”, consisting of all materials losing

their magnetic status, would lead to devastating consequences in our modern society,

putting the internet and most of the information systems out of order.

Information in hard disk drives is stored by magnetising the grains which cover the

surface of the inner disks (see Fig. 1.1) and behave like small magnets, having north

and south magnetic poles. The magnetic orientation (south-north pole direction) of

these grains is used to encode the information and is preserved when the device is

turned off. Since the grains have random positions on the surface of the disks, many

grains, arranged in what is called a “bit cell”, are required in order to store one single

bit of information. Data is written by applying an external magnetic field to change

the magnetisation of the grains and is read by probing the field they produce. Both

operations are performed by a read-write head which moves very close to the disk

surface. As the density of information is the critical parameter for a data storage

medium, a staggering technological effort has been made in the last fifty years to

reduce the size of the bit cell. The areal density of information (bits per square inch)

has indeed increased from 2 kbit/in2 in 1956 to 3× 108 kbit/in2 in 2008 [1, 2].

The size and number of grains used to store one bit has decreased considerably and is

now hitting fundamental limits. One of the main problems is data stability. A smaller

magnetic grain has less magnetic energy. If the grain is small enough, such energy

1



Figure 1.1: a) Sketch of the mechanical structure of an hard disk drive. The platter rapidly rotates

around its axis, while the arm moves the read-write head to the position where the data needs to be

written or read. b) The composition of the thin polycrystalline magnetic film which covers the platter.

The arrow in each grain represent the magnetisation (which is orthogonal to the film plane). Different

colors are used to better identify grains with opposite magnetisation.

can be comparable with the thermal energy, meaning that “thermal agitation” can

lead to random fluctuations of the magnetisation and thus to random data loss. This

problem, often referred as the superparamagnetic limit, poses new challenges for future

developments of hard disk technology. Further increases of areal density will be possible

only through innovations of a more conceptual nature, such as perpendicular recording

(magnetisation perpendicular to the disk surface), patterned media, thermally-assisted

recording.

Research is also focusing on radically new applications of magnetism. Spin transfer

torque (STT) effects [3], for example, may open the door to the fabrication of nano-sized

microwave generators to be used for chip-to-chip or intra-chip wireless communication

[4]. These effects may also be exploited in the next generation of MRAM memory

chips to obtain a STT driven MRAM, which is believed to be the memory of the

future, combining most of the advantages of other types of memory, such as ultra-fast

write/read access, low power consumption, non-volatility, high density and potentially

low cost of production.

All these exciting new technological advances, including further improvements in

hard disks performance, require a clearer understanding of magnetism and how it cou-

ples with other phenomena. In a research environment where thermal assisted record-

ing, spin transfer torque switching and microwave emission and absorption are the main

concerns, it is extremely important to have flexible and powerful multiphysics simula-

tion tools which can simulate the magnetic dynamics, but can also take into account

the other relevant aspects of the physics of the system. The ability to simulate all

2



these effects in nanomagnetic systems is indeed fundamental both to understand the

behaviour of the existing nanostructures and to assist in the design of new devices.

With this thesis we contributed to the development of Nmag, a new micromagnetic

simulation software which offers multiphysics capabilities. We extended and used the

software to simulate a class of systems which is of particular relevance to our exper-

imental group in Southampton: exchange spring systems. Exchange spring systems

have been studied experimentally in Southampton in recent years and this thesis aims

to improve the understanding of their static magnetic properties as well as their char-

acteristic magnetisation dynamics. Motivated by our belief that spin transfer torque

effects may be relevant in these systems, we initiated investigations in this field. The

objective was to precede the experimental work in Southampton: we needed to un-

derstand if and how spin transfer torque effects may be relevant in such systems and

to possibly find new technological applications. In order to achieve this objective, we

extended our software package Nmag, by including spin transfer torque effects. We

carried out micromagnetic simulations and analysed the results, getting to analytical

models which were useful to both confirm the correctness of the simulations and clarify

the physics. The cross-check with analytical calculations is particularly important, con-

sidering that, due to the exploratory nature of the thesis, we didn’t have experimental

data to compare against. The studies we carried out suggest important technological

applications of exchange spring systems. We indeed conclude in Ch. 7 and Ch. 8

that, by engineering an exchange spring system in the form of a cylindrical nanopillar,

it is theoretically possible to geometrically constrain a domain wall and induce it to

stationary precession by the application of a constant direct current (DC). This system

may then be used as a nano-sized microwave generator, whose emission frequency can

be controlled by tuning the current density flowing through the nanopillar.

Outline of the thesis

Here is a brief outline of this thesis. In chapter 2 we give an introduction to micro-

magnetics. We write down the equation of motion for the magnetisation dynamics and

briefly explain the mathematical terms which are involved. In chapter 3 we discuss

spin transport in ferromagnetic conductors. We introduce the giant-magnetoresistance

(GMR) effect and then focus on the effects of spin polarised currents on the magneti-

sation dynamics. We present a detailed derivation of the model which is later used in

the thesis to study spin transfer torque effects. In chapter 4 we give an overview of

3



some of the computational methods which we employ in our simulations. The chapter

presents the key concepts at the base of the finite element method (FEM), the scheme

we use for space discretisation. It also discusses some time-integration algorithms for

micromagnetics. In chapter 5 we present Nmag, the micromagnetic package developed

at the University of Southampton to which we contributed while working on this thesis.

We explain the motivations for the creation of the software and show its key features

in two example simulations. In chapter 6 we study exchange spring systems. We first

analyse the static properties of these systems and then focus on dynamic properties,

using both analytical models and computer simulations. We also study the effects on

the magnetisation dynamics of an electric current flowing orthogonal to the layers of an

exchange spring system. In chapter 7 we continue the study of exchange spring systems

with a different geometry and magnetisation setup, showing how this choice enhances

the spin transfer torque effects. In chapter 8 we carry out a systematic study of the

system introduced in the previous chapter and understand the role of the geometry and

of the magnitude of the current density. We also present an analytical model which

clarifies the mechanism at the base of the observed effects. In chapter 9 we try to briefly

summarise what we have done, stressing the elements of novelty. We try to review this

work as a part of a wider research plan and discuss future developments.
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Chapter 2

Background

In this chapter we give a quick introduction to micromagnetics, the theory which stands

at the base of the computations and results presented in this thesis. The aim of this

chapter is to fix the terminology and nomenclature and to list most of the fundamental

equations which are used in the next chapters.

2.1 Magnetism in matter

What happens when an external magnetic field ~H is applied to a body? From the

classical theory of magnetism we know that a magnetic dipole moment is induced

inside the body. This is what happens in the case of diamagnetic or paramagnetic

materials and can be described roughly by the formula ~M = χ ~H. χ is the magnetic

susceptibility of the considered material and ~M is the “magnetisation” of the body,

which is defined as the magnetic dipole moment per unit of volume and is hence zero

in the empty space. We will return to its definition in the next section. Here, we are

interested in the relationship between the magnetising field ~H and the magnetic field
~B inside the material: ~B = µ0( ~H + ~M) = µ ~H, where µ0 is the permeability of free

space and µ = µ0(1 + χ). There are materials, however, that do not exhibit such a

simple linear dependence between the total field ~B inside the body and the applied

field ~H. Ferromagnetic materials, for example, show to have a memory of the applied

field. Their magnetic status ~M depends not only on the current value of ~H, but also on

the way this field was applied in the past. In this section we briefly outline the physics

which is the source of such a rich phenomenology. We do not enter into the details

of the physical theory, but rather try to give an intuitive and quick picture of what is

happening at the microscopic level.
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The most important question to start with is the following: why does a body react

to an applied magnetic field? First of all we need to say that electrons are the main

source of magnetism inside the body. They give two kinds of contribution. The first one

can be understood approximatively with intuitive classical reasonings. The electrons

bounded to the atomic nuclei react to an applied magnetic field following the Lenz’s

Law: the orbitals deform and create a magnetic dipole moment with direction opposite

to the applied field (χ < 0), thus reducing ~B inside the body. We stress that this is not

an accurate description of the phenomena, which would need to be addressed with a

quantum mechanical formulation [5, 6], but it gives nevertheless a rough idea of what is

going on. This behaviour is referred to as diamagnetism, a small effect which is always

present in matter.

The second kind of contribution is connected with a fundamental property of the

electron as an elementary particle: the electron behaves like a point-like magnetic

dipole with a well defined intrinsic angular momentum (spin) and intrinsic magnetic

moment. The total magnetic moment of the electrons, which receives contribution from

the intrinsic and the orbital magnetic moments, tends to align to the applied magnetic

field,1 thus increasing the field ~B inside the body (χ > 0). This effect, however,

depends crucially on the way the electrons fill the atomic orbitals. Indeed, the atoms

of a non-magnetic material have zero net magnetic moment. This is not the case with

paramagnetic and ferromagnetic materials, whose net magnetisation is locally non-zero.

Consequently, the atoms inside a given small volume d3r of these materials behave like

magnetic dipoles, ~Md3r being the net magnetic dipole moment inside the small volume

d3r.

For paramagnets, ~M is linearly proportional to ~H. This means that the alignment

of the magnetic dipoles inside d3r increases linearly with the applied field. This means

also that when the applied field is removed, the alignment is lost and ~M becomes

zero everywhere. This effect is connected with thermal agitation. In ferromagnets the

situation is slightly more complicated, as we will see better in the next sections. Here we

say only that in ferromagnets the thermal agitation competes with another effect: the

moments of neighbouring atoms interact in such a way that they tend to stay aligned

with each other. This interaction is called “exchange coupling” and is a purely quantum

mechanical effect, which is the main cause of the “memory” of ferromagnetic materials.

At this point it should be easy to understand why the ferromagnetic properties of
1This is the typical behaviour of a dipole immersed in an external field: the dipole moment aligns

with the applied field.
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materials depend strongly on the temperature. When a ferromagnet is heated above a

particular temperature TC, the Curie temperature, the thermal energy is sufficient to

change the alignments of neighbouring magnetic moments and the material starts to

exhibit paramagnetic behaviour.

2.2 Introduction to micromagnetics

In the previous section we explained that the magnetism of a ferromagnetic material

comes mainly from the magnetic moment of the electrons of its constituent atoms. From

the point of view of magnetic properties such a material could be modelled as a huge

collection of magnetic dipoles with positions fixed in space. This is actually the starting

point of the theory of micromagnetics. To go further one needs to understand how these

dipoles interact and what kind of dynamics is connected with such interactions. These

two key points in the theory are faced by the Brown’s equations and the Landau-

Lifshitz-Gilbert equation, respectively. These formulas rely on a common formalism: a

continuous vector field ~M(~r, t) — the magnetisation — is used to represent the magnetic

status of the system and is defined requiring ~M(~r, t)d3r to be the net magnetic dipole

moment inside the small volume d3r. This is an approximation which neglects the

discrete nature of the system and is based on an important assumption: the direction of

the magnetic moments in the ferromagnet should change smoothly with position. This

is true only when the temperature of the body is lower than the Curie temperature,

as explained in the previous section. We note that, since the material is supposed

to be homogeneous, the norm of the magnetisation is constant in space and time:

‖ ~M(~r, t)‖ = Msat, Msat is the magnetic dipole moment per crystallographic unit cell

and is called saturation magnetisation.

Before introducing the Brown’s and Landau-Lifshitz-Gilbert equations we first pre-

pare the ground by making some observations. Let’s consider a bunch of atoms inside

the volume d3r of the ferromagnet. The magnetic dipole ~µ = ~M d3r of the bunch of

atoms experiences an effective field ~H which is given by the superposition of the applied

field and the field created by all the other atoms in the body.2 Its energy is calculated

easily in the classical theory of magnetism as Udip(~µ) = −µ0 ~µ · ~H and is minimised

when ~µ is parallel to ~H. Since the total energy of the system is the sum of the energy

of each of its constituent dipoles, we expect that at equilibrium all the atoms have

magnetic moment parallel to the experienced effective field. This means that ~M(~r, t) is
2Here we assume that the net moment ~µ of the bunch of atoms can be treated as a classical magnetic

dipole. The moments inside d3r are almost parallel and hence can be described as a single moment.
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parallel everywhere to ~H(~r, t) at equilibrium. The equilibrium configuration, however,

is reached in a non-straightforward way: the effective field changes when the magneti-

sation moves towards it! To understand how the moment ~µ dynamically depends on

the effective field, we can use classical mechanics: the angular momentum ~L = ~r × ~p
of the bunch of atoms is related to the torque ~τ = ~r × ~F by the relation ~τ = d~L/dt

(~r, ~p and ~F are the position, the linear momentum and the force respectively). The

torque can be calculated easily for a magnetic dipole [5] as ~τ = µ0 ~µ× ~H. The angular

momentum ~L is related to the magnetic dipole moment ~µ by the relation ~L = −~µ/γ0,

where γ0 is a constant called gyromagnetic ratio. This relation follows by the antipar-

allelism of the spin and the magnetic moment of electrons [5] (which can be derived as

a consequence of the Dirac equation or more accurately by quantum electrodynamics).

Putting together these formulas one obtains:

d~µ
dt

= −γ0µ0 ~µ× ~H.

We define γ = γ0µ0 and express the same equation referred to the magnetisation:

∂t ~M(~r, t) = −γ ~M(~r, t)× ~H(~r, t). (2.1)

This equation describes a very simple dynamics: the magnetisation ~M in ~r tries to

precess around the effective field evaluated at the same position.

Figure 2.1: (a) The dynamics described by Eq. (2.1) when the effective field ~H is constant in time.

The magnetisation ~M precesses around ~H without damping. (b) The dynamics with the inclusion of

the damping term, Eq. (2.2).

Obviously ~H depends on ~M and the general dynamics is more complicated than the

one shown in figure 2.1.
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2.2.1 The Landau-Lifshitz-Gilbert equation

Eq. (2.1) does not take into account any kind of dissipation and predicts a periodic

rotational motion for the magnetisation in a uniform constant effective field. The

Landau-Lifshitz-Gilbert equation is a variant of such an equation with an additional

term to take into account the damping effects,

∂t ~M = −γ ~M × ~H +
α

Msat

~M × ∂t ~M. (2.2)

We omitted here the time and spatial dependencies of the vectors: ~M = ~M(~r, t) and
~H = ~H(~r, t). α is a dimensionless damping coefficient and causes the magnetisation to

get near and nearer to the effective applied field. An equivalent form of this formula is

the Landau-Lifshitz equation:

∂t ~M = −γ′
[
~M × ~H +

α

Msat

~M ×
(
~M × ~H

)]
, (2.3)

where γ′ = γ/(1 + α2). The equivalence can be demonstrated easily by substituting

Eq. (2.2) into itself and proceding with a few elementary vector manipulations. Even if

the Gilbert form (2.2) is often found in the literature, in this thesis we consider mostly

the Landau-Lifshitz form (referred in what follows as LL equation), because it is more

suitable to be treated computationally, as the right hand side does not contain ∂t ~M .

We note that these equations lead to a preservation law for the norm of ~M :

∂tM
2 = 2 ~M · ∂t ~M = 0, (2.4)

since we know from the right hand side of (2.2, 2.3) that ∂t ~M is orthogonal to ~M . We

also note that when α = 0 we obtain the undamped Eq. (2.1).

We conclude this section with other two observations. Firstly, we should say that

these equations are somewhat phenomenological. The damping factor α summarises

the not better specified damping effects and is usually obtained from experimental

results. Typical values used for the parameters γ and α are γ = 2.211 × 105 m/(As)

and α = 0.01-0.02 (permalloy). Secondly, these equations are not sufficient to fully

describe the time-evolution of the magnetisation for any interesting physical system.

We still need to specify how the moments interacts and the effective field they produce.

This is not a minor detail. Indeed, the effective field depends on the magnetisation in

such a complex way that it is usually not possible to find an analytical solution of the

Landau-Lifshitz equation.
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2.2.2 The energy contributions

As remarked at the end of the previous section, the Landau-Lifshitz equation alone is

not sufficient to calculate the time evolution of the magnetisation. What is missing

is a characterisation of how the magnetic moments interact with each other and with

the applied magnetic field. In this section we introduce the energy terms which are

commonly used in micromagnetics. In the next section, we will write down the Brown’s

equations and give an explicit expression for the effective field as a function of the

magnetisation. This is the missing piece required in order to compute the time evolution

of the magnetisation.

We write the energy of the system as a sum of several terms:

U = Uexch + UZeeman + Udemag + Uanis, (2.5)

where:

• UZeeman = −µ0

∫
~M · ~Happ d3r is the energy due to the interaction with the

external applied field ~Happ, which “tries” to align ~M with it;

• Uexch = A
∫

(∇~m)2d3r is the exchange energy, the interaction between the wave-

functions of the electrons of neighbouring atoms, which tries to align their mag-

netic moments. ~m = ~M/Msat is the unit vector associated with ~M and (∇~m)2 =

(∇mx)2 + (∇my)2 + (∇mz)2. A is the exchange coupling constant. This is a gen-

uine quantum mechanical effect which comes from a term in the Hamiltonian with

the Heisenberg form H = −I12
~S1 · ~S2, where ~S1,2 are the spin of two neighbouring

atoms and I12 is the exchange integral [6];

• Udemag = −µ0

2

∫
~M · ~Hd d3r is the demagnetising energy, which comes from the

long range magnetostatic interaction between the moments of the entire ferro-

magnetic body. ~Hd is the magnetic field created by all the moments in the body

and is obtained solving a Laplace equation, as we will see in a moment;

• Uanis is the anisotropy energy, which models the preference for the magnetisation

to align along certain well defined directions with respect to the crystal lattice

of the material. This term is usually a suitable truncated expansion in powers

of the direction cosines of ~M = Msat ~m relative to the crystallographic axes ~ai
(the direction cosines of ~M are defined as mi = ~m · ~ai). The coefficients of the

expansion can be fitted against the experimental data;
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These are the most common contributions to the energy. In some particular situations

one may consider adding other more specific terms, as we will see in Ch. 6 for the case of

exchange spring systems. Note that micromagnetics is a zero-temperature theory, in the

sense that effects such as thermal fluctuations are not taken into account. Temperatures

greater than zero should be simulated by selecting values for the parameters in Eq. (2.5)

which are appropriate (as much as possible) for the considered temperature.

The last two terms in Eq. (2.5) require some more explanation. The demagnetising

energy corresponds to the dipole-dipole interaction in the discrete system. Here, how-

ever, we are dealing with a continuous system, so we need to calculate this contribution

to the energy in another way. This can be done considering the following two Maxwell’s

equations:

∇ · ~B = 0, (2.6)

∇× ~Hd = 0. (2.7)

To obtain Eq. (2.7) we assume that there are no free currents travelling in the body

and that the electric displacement field ~D does not change in time. Eq. (2.7) tells us

that ~Hd can be written as ~Hd = −∇φ for some scalar field φ. Since ~B = µ0( ~Hd + ~M)

(where ~M should be considered to be zero outside the ferromagnet), the other equation

can be rewritten first as ∇ · ~Hd = −∇ · ~M and then in terms of the potential φ as:

∇2φ = −ρm, (2.8)

where ρm = −∇ · ~M inside the ferromagnet and ρm = 0 outside it. The demagnetising

field can be obtained solving this Poisson equation. The formal parallelism with elec-

trostatics is perfect: Eq. (2.8) can be obtained from the electrostatic Poisson equation

making the substitutions ρm → ρe (ρe is the electric charge) and 1/ε0 → 1. ρm could be

formally referred as a “magnetic charge”. We stress, however, that this nomenclature

comes only from this formal analogy with electrostatics. To find a solution to (2.8),

particular care is needed to treat correctly the surfaces of the ferromagnet, where the

norm of the magnetisation jumps suddenly from Msat to zero. This jump gives rise to a

well defined surface magnetic charge σm = ~M · ~n, where ~n is the normal to the surface

and points outward. This result can be easily deduced using the divergence theorem

on a small thin volume crossing the surface (see Fig. 2.2). At this point the solution
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Figure 2.2: The flux of ~M through the surface of the small thin volume d3r = dxdy dz gets a first

order contribution ( ~M · (−~n) dxdy) only from the inner surface, since outside the ferromagnet ~M is

zero. We assume dz � dx, dy, so that the lateral surfaces give a negligible contribution to the flux.

We know, however, that the flux can be expressed also as ∇ · ~M d3r = −ρm d3r = −dQm, where dQm

is the “magnetic charge” contained in the small volume. Therefore dQm = ~M · ~ndxdy = σm dS, where

dS = dxdy and σm = ~M · ~n is the “surface magnetic charge” density.

should not be particularly surprising:3

φ(~r) =
1

4π

(∫
ρm(~r′) dV
‖~r − ~r′‖

+
∫
σm(~r′) dS
‖~r − ~r′‖

)
,

where the first integral extends over the volume of the ferromagnet, while the second

one extends over its surface.

We finally need to provide an expression for the anisotropy energy, the last term

in Eq. (2.5). This contribution is quite simple, since it can be taken into account by

adding, for every magnetic dipole in the system, an additional energy which depends

exclusively on its direction. Consequently the general form of the anisotropy energy is:

Uanis =
∫
εanis(~m(~r))d3r,

where εanis has not a functional dependence on ~m, but is simply a function which maps

a vector to a scalar. Therefore it can be easily approximated with a suitable expansion.

As we said at the beginning of the section, this is done using the direction cosines of
~M with respect to the axes of the crystal lattice ~a1,2,3, which are three scalars defined

as mi = ~m · ~ai. In many crystals, however, the anisotropy is uniaxial, meaning that

the anisotropy energy depends only on the angle θu between the magnetisation and a

given fixed axis ~u (therefore it is invariant for rotations of ~M around that axis). Taking
3Here we use dV = d3r′, which breaks the coherence of our notations, but makes the formula look

better.
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the Fourier expansion of εanis(θu) and considering that εanis(θu) = εanis(−θu) only the

cosine powers remain:

εanis(θu) ≈ −K1 cos2 θu −K2 cos4 θu. (2.9)

The Fourier series is kept up to the fifth power. This is usually enough to model the

uniaxial anisotropy in a proper way. The minus signs are conventional and affect only

the definition of K1 and K2.

The uniaxial anisotropy is typical of crystals with HCP (hexagonal close-packed)

lattices (cobalt for example). Other materials (iron for example) show a different

dependence on the direction of the magnetisation:

εanis(m1, m2, m3) ≈ K1(m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1) +K2(m2

1m
2
2m

2
3)

+K3(m4
1m

4
2 +m4

2m
4
3 +m4

3m
4
1). (2.10)

This is the — so called — cubic anisotropy and depends on all the three direction

cosines m1, m2 and m3.

2.2.3 The effective field

We have seen that the damping term in the Landau-Lifshitz equation reduces the

angle between the magnetisation and the effective field. This dynamics ends when the

alignment is reached, namely when the torque ~M0× ~H vanishes. The same process can

be seen from another point of view: the system “potential” energy, given by Eq. (2.5),

is “eaten” by the damping processes, until the magnetisation is parallel to the effective

field and equilibrium is reached. This configuration of ~M minimises hence the energy

U [ ~M ]. This means that we have two ways to express the equilibrium condition: the

vanishing of the torque and the minimisation of the energy. Since an expression for the

energy was given in Eq. (2.5) we can now use variational approaches to minimise U .

However, the minimisation must be carried out respecting the constraint of constant

norm for the magnetisation, ~m2 = 1. Such a procedure leads to the — so called —

Brown’s equations [6]:

~M0 ×
(

2A
µ0Msat

∇2 ~m+ ~Happ + ~Hd −
1

µ0Msat
∇~m εanis

)
= 0.

This condition is equivalent to the one of vanishing torque when:

~H =
2A

µ0Msat
∇2 ~m+ ~Happ + ~Hd −

1
µ0Msat

∇~m εanis. (2.11)
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This expression for the effective field, together with the Landau-Lifshitz equation (2.2)

is enough to calculate the time evolution of the magnetisation. Each term in Eq.

(2.11) corresponds to one term in Eq. 2.5. The first one (called the exchange field,
~Hexch) comes from the exchange energy Uexch and tries to align neighbouring magnetic

moments. The second term (the applied field) comes from the Zeeman energy UZeeman,

the interaction energy with the external applied field. The third one (the demagnetising

field) comes from the magnetostatic energy Udemag of the ferromagnetic body. The

fourth one comes from the anisotropy energy Uanis. This last term — which we call
~Hanis — depends on the kind of anisotropy. For uniaxial anisotropy, εanis(~m) = f(~m·~u),

where f(x) = −K1x
2−K2x

4, therefore: ∇~m εanis(~m) = ∇~m f(~m·~u) = f ′(~m·~u) ~u, where

the derivative of f is f ′(x) = −2K1x− 4K2x
3. We conclude that, for the uniaxial case:

~Hanis =
1

µ0Msat

(
2K1 ~m · ~u+ 4K2 (~m · ~u)3

)
~u.

A very similar procedure can be used to calculate the field corresponding to the

cubic anisotropy. Indeed, for the cubic anisotropy we have ∇~m εanis(m1, m2, m3) =∑3
i=1(∂εanis/∂mi)∇~mmi, where mi = ~m · ~ai. Consequently, ∇~mmi = ~ai and:

~Hanis = − 1
µ0Msat

3∑
i=1

~ai
∂εanis

∂mi
,

and,
∂εanis

∂m1
= 2K1m1(m2

2 +m2
3) + 2K2m1m

2
2m

2
3 + 4K3m

3
1(m4

2 +m4
3).

∂εanis/∂m2 and ∂εanis/∂m3 can be obtained from the same equation by cyclic permu-

tation of the indices.
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Chapter 3

Spin-transport in ferromagnetic

conductors

Beside being an electric charge carrier, the electron is also a spin carrier. Consequently

electric currents can also be — quite in general — spin currents. Then, a question

that naturally arises is: does the spin of the conduction electrons interact with the

magnetisation in a ferromagnetic conductor? And, can this interaction be exploited for

technological applications? These are the central questions in spintronics, a research

field which has become increasingly active in the last two decades, first with the dis-

covery of the giant magnetoresistance (GMR) in 1988 [7, 8], later with the prediction

of spin-transfer torque effects in 1995 [3, 9], which were confirmed experimentally two

years later [10].

In the following chapters of this thesis we present computational studies of the spin

transfer effects which occur in exchange spring systems and in nanopillars. The purpose

of this chapter is to introduce the reader quickly to the fundamental concepts behind

the physics of spin transport and present the model which we employ in our numerical

studies.

3.1 The giant magnetoresistance

The GMR was discovered independently in 1988 by the group of Albert Fert [7] and

the group of Peter Grünberg [8] and led, in the following years, to major advances in

the technology of magnetic sensors and data storage. The impact of such a discovery

was recently recognised with the Nobel Prize in Physics 2007 jointly awarded to Albert

Fert and Peter Grünberg.
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While other types of magnetoresistance (MR) were known before the discovery of

Fert and Grünberg (such as the anisotropic magnetoresistance, AMR), the GMR was

immediately recognised as a significantly greater effect in terms of resistance variations.

In the original paper the group led by Fert [7] reported resistance variations around

50 %, while studying (Fe/Cr)n multilayers at low temperature (4.2K), while Grünberg

[8] group reported variations around 10 % in a trilayer Fe/Cr/Fe at room temperature.

Fert already referred to the effect as giant magnetoresistance: indeed, AMR effects are

typically much smaller, of the order of few percent [11].

We now explain briefly what GMR is and give a quick intuitive picture of the

underlying physics. We first discuss briefly the resistance properties of a ferromagnetic

conductor.

3.1.1 Resistance in a ferromagnetic conductor

In a small volume V of a ferromagnetic conductor the total amount of magnetic mo-

ment is Msat V, meaning that the intrinsic magnetic moment of the electrons inside V
is oriented preferably along the magnetisation direction, rather that in the opposite

one. In other words we have a moment/spin imbalance inside V, which is intimately

related to the non vanishing saturation magnetisation Msat and is reflected to the char-

acteristic band structure of the material (see Fig. 3.1). This spin imbalance is likely

Figure 3.1: A schematic simplified representation of the band structure of a ferromagnetic conductor.

The “spin up” band is completely below the Fermi energy EF , so that only the “spin down” carriers

are available for conduction. Such a material is often called “half metal”, being a conductor only with

respect to one of the two spin orientations (100 % polarisation). Materials such as Fe or Ni have both

the bands half filled and have therefore a partial spin polarisation (around 40− 50 % [12]).

to affect also the itinerant electrons, which we ideally split into two components, one
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having moment oriented along the magnetisation direction, the other having moment

oriented along the opposite direction. We may now expect different conductivities for

the two electron populations, since they are constituted by a different number of car-

riers (the conductivity is always proportional to the number of carriers: no carriers,

no conduction!). We conclude that in a ferromagnetic conductor there are two current

components which experience quite a different resistance.

3.1.2 A GMR device

Consider an electric current flowing through a trilayer nanopillar system like the one

shown in Fig. 3.2, made by one thin non-magnetic metallic layer sandwitched between

Figure 3.2: Ferromagnet/metal/ferromagnet trilayer system. The system has two possible configu-

rations: a) no applied field. The magnetisations of the two ferromagnetic layers are antiparallel; b) an

external magnetic field is applied. The two magnetisations are parallel (along the field). The resistance

in the two cases is different.

two thicker ferromagnetic conductive layers. The role of the metallic layer is to separate

the two ferromagnetic regions, so that they are not exchange coupled. We assume the

system to be small enough that the magnetisation is homogeneous in each of the two

external layers. When there is no applied magnetic field, the system relaxes to the state

shown in Fig. 3.2a, with opposite orientation of the magnetisation in the two layers.

This configuration is energetically favoured, because it reduces the demagnetising field

in the whole sample. When a magnetic field is applied, however, the system switches

to the configuration of Fig. 3.2b, where the magnetisations of the two layers are both

aligned with the applied field. The two situations are shown in Fig. 3.2. We now

consider a current flowing orthogonal to the layer interfaces and discuss the resistance

of the sample in the two configurations. In the antiparallel case of Fig. 3.2a, each
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of the electron populations passes through a region with parallel spin (low resistance,

RLOW) and through a region with antiparallel spin (high resistance, RHI). The total

resistance of the sample is then, RANTI = (RLOW + RHI)/2, as calculated from the

equivalent electric circuit in Fig. 3.2a. In the parallel case of Fig. 3.2b, one of the

two populations passes only through regions with parallel spin, while the other passes

only through regions with antiparallel spin. The resistance in this case is then RPAR =

2RLOWRHI/(RLOW +RHI). The difference in resistance for the two configurations is:

∆R = RANTI −RPAR =
RHI −RLOW

2(RHI +RLOW)2
.

We notice that such a system can be used as a magnetic sensor: if the magnetisation

of one of the two layers is fixed along a know direction (due to a magnetic anisotropy, for

example), a resistance measurement is enough to determine the magnetisation direction

of the other layer, which is — as explained before — influenced by the external field.

We conclude with a final remark concerning the direction of the current with respect

to the trilayer system. In this section we have assumed the current flows in the out

of plane direction. This is the so-called Current Perpendicular to the Plane (CPP)

geometry. The GMR effect, however, is present also in the Current In Plane (CIP)

geometry, where the current flows parallel to the plane of the layers. In fact, this is the

choice which is often made in actual GMR devices [12], such as the read heads in hard

disks. Indeed, while the CPP geometry usually gives rise to a high GMR effect (high

relative variations of resistance), the actual resistances are rather small and difficult to

measure [12, 13].

3.2 The spin transfer torque

The discovery of GMR proved that the resistance of a ferromagnetic conductor can

depend considerably on its magnetisation configuration. This means that there is an

interaction between the conduction electrons and the magnetisation, which can lead

to changes in the electric conductivity. We may argue that — following the third

Newton’s law — if the magnetisation can affect the flow of an electric current, there

should be also an effect in the opposite direction: the flow of an electric current may

affect the magnetisation dynamics. Studies of the interaction between a spin polarised

current and the magnetisation of a ferromagnetic conductor were carried out in the

seventies by the pioneering works of Berger [14], who already predicted the possibility

for a current to move a domain wall. Only in 1996, however, the spin transfer torque

between the itinerant electrons and the magnetisation was quantitatively taken into
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account in two independent works by Slonczewski [3] and Berger [9], and the Landau-

Lifshitz-Gilbert equation was extended by adding the so-called spin transfer torque,

the torque exerted by the electric spin polarised current on the magnetisation. These

works predicted, on the one hand, the possibility for steady magnetisation precession

driven by a constant electric current and, on the other, the possibility for current driven

switching of the magnetisation. Both phenomena are relevant for applications such as

microwave generation and magnetic random access memories (MRAM) and greatly

stimulated the research on spintronics in the last decade. The research field is today

very active. Here we mention two research areas which are particularly relevant for the

studies presented in this thesis:

• The research area focusing on multilayered films and nanopillars similar to the one

of Fig. 3.2, often called spin-valves. This is the system considered by Slonczewski

in the aforementioned paper [3]. The difference with respect to the GMR setup

lies in the higher current density regime: if in the GMR effect the applied electric

current is weak and is used just to probe the magnetisation of the free ferromag-

netic layer, in the case considered by Slonczewski, the current is stronger and is

used to actively control the dynamics of the magnetisation in the free layer. The

theoretical description of Slonczewski has been experimentally verified, showing

that the spin transfer can indeed induce switching [15, 16] and magnetisation

precession [10, 17].

• The research area studying systems made by a single homogeneous ferromagnetic

material, such as ferromagnetic nanowires or films, where a spin polarised electric

current interacts with the magnetisation patterns developed inside the sample,

such as domain walls or vortices. This is a quite recent area of research and has

received considerable attention both from theoretical and experimental studies.

It has been experimentally shown that a current flowing through a ferromagnetic

nanowire can induce the movement of the domain walls which are developed in-

side it (see Fig. 3.3). Such studies [18, 19, 20] have also been explained with

theoretical models [21]. These models are often1 based on the theory by Zhang

and Li [23], where the Landau-Lifshitz equation is extended by including addi-

tional torques, which capture the interaction between an electric current and a

locally inhomogeneous magnetisation.

1Actually, several models have been proposed. Initially it was assumed that the magnetic moment

of the conduction electron adiabatically follows the local magnetic moment [22]. Later a non-adiabatic

correction was added [23, 24].
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Figure 3.3: Magnetic transmission X-ray microscopy (MTXM) showing a domain wall inside a

nanowire. A current pulse (j ∼ 1012 A/m2) can be used to move it. Repetitive measurements reveal

the stochastic nature of the current induced domain wall motion (reproduction from [20]).

The main problem in both the two research areas is that the current density required

in order to obtain significant effects is often too high (between 1010 and 1012 A/m2),

causing excessive Joule heating and thus the meltdown or deterioration of the sample.

There is then a high interest in finding systems where the spin transfer torque effects

are maximised and require lower current density. In this thesis we investigate exchange

spring systems in the form of multilayer films, a case which lies between the case of

spin-valve and the case of homogeneous ferromagnetic nanowire. Indeed, exchange

spring systems are multilayer systems which still can develop artificial domain walls

with shape and size which can be controlled, first, during manufacturing (by selecting

a suitable geometry) and, later, by applying an appropriate magnetic field. This is an

extremely important feature, since the size and shape of a domain wall have a critical

role in determining its interaction with the applied electric current [18]. Moreover the

recent experimental discovery of significant GMR in exchange spring multilayers [25],

suggests that spin-transfer-torque may play a role in these systems.

The numerical spin-transfer studies that we present in this thesis are all based on

the Zhang-Li model, the same model [23] which has been successfully employed in

the theoretical understanding of current-driven domain wall motion in ferromagnetic

nanowires. The applicability of this model to systems made by different materials,

such as exchange spring systems, needs to be discussed carefully, since the different

spin transport properties of the layers may lead to effects which are not taken into

account by the model. We will return on this point later in the thesis. In the next

section we enter into the details of the derivation of the Zhang-Li model, exploring
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closely the physics of spin transport in ferromagnets with inhomogeneous magnetisation

configuration.

3.3 The Zhang-Li model

The theories which extend the Landau-Lifshitz equation (2.3) by taking into account

the effect of the spin transfer from the current to the magnetisation usually start from

a common distinction between conduction electrons and localised electrons. Their

main objective is to take into account the dynamics and the interaction between the

magnetic moments of the two “kinds” of electrons. We may classify these theories into

three groups:

• adiabatic theories, which consider the limit of smoothly varying magnetisation,

where the magnetic moment of the itinerant electrons follows closely the direction

of the local magnetisation. This is the case considered — for example — by the

Zhang-Li model;

• the strongly non adiabatic theories (the opposite limit), where a spin polarised

current is injected into a region where the magnetisation is oriented differently.

This is the case considered — for example — by the Slonczewski model;

• non adiabatic theories (between the two limits). These theories usually are forced

to take into account the magnetic moment of the conduction electrons in an

explicit manner. As a result, the usual micromagnetic description based on the

Landau-Lifshitz equation, has to be extended quite radically by adding a new

equation of motion for the magnetisation of the conduction electrons and its

coupling with the ordinary, localised magnetisation [26].

The Zhang-Li theory belongs to the first group; it gets to a correction of the Landau-

Lifshitz equation where the effect of the spin polarised current is described by a small

number of parameters.

3.3.1 Introduction

The magnetisation ~M in a ferromagnet is defined such that ~M(~r, t) d3r is the magnetic

moment contained in the volume d3r centered in ~r. In a ferromagnetic conductor,

however, beside the magnetic moment coming from the localised electrons, we should

also consider the magnetic moment coming from the conduction electrons. We then can
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Figure 3.4: Visualisation of the spin transfer process between a conduction electron (yellow) and

a localised electron (red). The region where the magnetisation changes in space is coloured with blue.

The yellow shadow represents the interaction between the spins.

define two vector fields. The first one, ~M(~r, t), is the magnetisation and is originated

by the localised electrons. The second one, ~m(~r, t), is the conduction electron spin

density and is defined in a similar way2: ~m(~r, t) d3r is the amount of magnetic moment

due to the conduction electrons in the volume d3r.

If the effects of ~m are neglected, the dynamics of the magnetisation ~M can be

described by the LLG (Landau-Lifshitz-Gilbert) equation. However, when an electric

current flows throughout a non homogeneous magnetisation, we may expect a consider-

able misalignment between ~m and ~M . In other words, a conduction electron travelling

in a non homogeneous magnetisation can “get close” to a localised electron which has

different spin orientation. There may then be a spin transfer between the two electrons,

due to the exchange coupling, which acts to align the two spins. A rough visualisation

of the process is shown in Fig. 3.4. The interaction between the itinerant electrons

and the localised electrons is usually described by an “s-d” Heisenberg Hamiltonian

Hsd = −JexS · s, where Jex is the exchange coupling constant and S, s are the opera-

tors corresponding to the spin of localised and conduction electrons, respectively.

The Zhang-Li model aims to find how this physics affects the magnetisation dy-

namics and how it can be included in the LLG equation for ~M .

3.3.2 The dynamics of the itinerant spins

There are two dynamics which the model identifies: the dynamics of the magnetisation
~M and the dynamics of the itinerant spin density ~m. The model assumes that the

dynamics of ~m is much faster than that of ~M and can be treated as if it was decoupled

from it. This approximation allows one to write down a dynamic equation for ~m where

2We notice that ~M and ~m have the same units: they both are densities of magnetic moment. The

nomenclature “conduction electron spin density”, which is used in the original paper, seems to suggest

that ~m is actually a spin density, but it isn’t!
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~M is treated as a background still vector field:

∂t ~m+ ~∇ ·~js = − 1
τexMsat

~m× ~M − δ ~m

τsf
, (3.1)

where τex is the exchange relaxation time and gives the typical time scale for the

exchange interaction between ~M and ~m (τex is greater for a weaker coupling). Similarly,

τsf is the spin-flip relaxation time and refers to the spin-flip process, which we discuss

later in this section.

In the original paper this equation is derived from a quantum mechanical formu-

lation. Here we omit the derivation and focus more on the meaning of the equation.

We show that this equation is a natural adaptation of the LLG equation (2.2) to the

dynamics of the itinerant spins.

In Sec. 2.2 we presented a simple classical justification of the LLG equation. We

considered the total magnetic moment ~µ contained inside a small volume dr3 and

related its time derivative to the torque acting on it. We finally concluded that ~µ can

change for two reasons: because of the torque exerted by the effective field (which gives

rise to the precession term in the LLG equation) and because of the damping processes

(which give rise to the damping term). When considering the dynamics of the itinerant

electrons, this derivation must be revised. In particular, there is a third reason why

~µ may change in time: the conduction electrons are moving and hence there is a flux

of magnetic moment through the surface of the volume dr3. It is then natural to

substitute the left hand side of the LLG equation (which is just ∂t ~m) with ∂t ~m+ ~∇·~js,
which is the variation of ~m, without the contribution given by the flux of ~m. ~js is the

current associated with ~m and is a tensor field, since ~m is a vector field. We return

to its definition later. We notice that, if we ignore all the interactions involving ~m in

(3.1), we get the continuity equation for ~m: ∂t ~m+ ~∇ ·~js = 0.

The right hand side of equation (3.1) can be similarly related to the right hand

side of the LLG equation. The first term is indeed the torque exerted by the effective

field, where the only interaction taken into account is the coupling with the magneti-

sation ~M . Here we should point out that indeed this is the only interaction which is

considered for the itinerant electrons: direct contributions from the external field and

from the demagnetising field are neglected. Finally, the last term in (3.1), − δ ~m
τsf

, is a

phenomenological damping term. δ ~m is the spin accumulation and is defined as

δ ~m = ~m− ~m0, (3.2)

where ~m0(~r, t) is the equilibrium spin density in ~r. This term models the scattering of

the conduction electrons with impurities in the crystal lattice, with other electrons and
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— in general — it models all the phenomena which induce ~m to relax to an equilibrium

value ~m0. It is analogous to the familiar damping term − γ
Msat

~M × ∂t ~M of the LLG

equation, with a difference: the norm of ~m is not necessarily preserved in time.

The exchange interaction between ~M and ~m wants to align the two vector fields.

Then, it is reasonable to take ~m0 = n0
~M/Msat in (3.2), so that:

~m(~r, t) = ~m0(~r, t) + δ ~m(~r, t) = n0
~M(~r, t)/Msat + δ ~m(~r, t). (3.3)

Here n0 is the equilibrium density of the itinerant spin, oriented along the direction of
~M . This assumption, together with equation (3.1), implies that, when ~js = 0, δ ~m = 0

is the equilibrium state towards which the system relaxes. In other words, when the

spin current is zero, the spin of the conduction electrons ~m relaxes to follow everywhere

the direction of the magnetisation ~M .

3.3.3 The spin current density

Equation (3.1) alone is not enough to study the dynamics of ~m. In particular, we miss

a characterisation of the spin current ~js and its relationship with ~m and ~M . It may be

useful — at this point — to recall how the electric charge density ρe and the electric

current density ~je are defined. Using µ as a component index,

ρe = −e ρ,

jµe = ρe v
µ = −e ρ vµ,

where ρ is the number density, v is the drift velocity and −e is the electric charge of

the electrons. Similarly, we define:

mν = PµB ρ u
ν ,

jµνs = mν vµ = −PµB

e
jµe u

ν ,

where µB is the Bohr magneton (the magnetic moment of each electron), P is the spin

polarisation and ~u = ~m/m is the direction of ~m. In the previous section we saw that ~u

gets parallel to ~M , when the spin current ~js is zero. When an electric current is applied

this is not exactly true. We can then define:

jµνs (~r, t) = −PµB

e
jµe
Mν(~r, t)
Msat

+ δjµνs (~r, t). (3.4)

We note that the divergence ~∇ · ~js in (3.1) is done using the index µ as the running

index: (~∇ ·~js)ν =
∑

µ ∂µj
µν
s . To complete the picture and get to a closed form for the
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nonequilibrium spin density δ ~m, we take:

δ~js = −D0∇δ ~m, (3.5)

where D0 is a diffusion constant. We then see that our definition of spin current density

(3.4) includes two contributions. On the one hand, we have a contribution from the

current of electrons induced by the electric field: a current of charge is also a current

of spin. On the other hand, we have a spontaneous diffusion of spins from regions with

higher spin density to regions with lower density.

3.3.4 The nonequilibrium spin density

We can now substitute Eqs. (3.5), (3.4) and (3.3) into (3.1) and get:

n0

Msat
∂t ~M + ∂tδ ~m−

PµB

eMsat
(~je · ~∇) ~M −D0∇2δ ~m = − 1

τexMsat
δ ~m× ~M − δ ~m

τsf
,

We now neglect ∂tδ ~m, which corresponds to assume linear response of δ ~m to the electric

current je and to the time derivative of the magnetisation ∂t ~M . We return to this

assumption in Sec. 3.3.6. We get:

D0∇2δ ~m− 1
τexMsat

δ ~m× ~M − δ ~m

τsf
=

n0

Msat
∂t ~M −

PµB

eMsat
(~je · ~∇) ~M. (3.6)

This is a closed form equation for the nonequilibrium spin density δ ~m.

We now make an important approximation to simplify Eq. (3.6): we assume that

the magnetisation changes slowly in space and that the first term on the left hand side

of Eq. (3.6) can be neglected. Then the equation becomes:

δ ~m = −n0τsf

Msat
∂t ~M +

PµBτsf

eMsat
(~je · ~∇) ~M − τsf

τexMsat

~M × δ ~m. (3.7)

Substituting this equation into itself (into its last member on the right hand side) we

get:

δ ~m (1 + ξ2)− 1
M2

sat

~M ( ~M · δ ~m) = −τexξn0

Msat
∂t ~M +

τexξPµB

eMsat
(~je · ~∇) ~M

−τexn0

M2
sat

~M × ∂t ~M +
τexPµB

eM2
sat

~M × (~je · ~∇) ~M,

(3.8)

where we have introduced the quantity ξ = τex/τsf and we have decomposed the triple

vector product ~M × ( ~M × δ ~m) as ~M × ( ~M × δ ~m) = ~M ( ~M · δ ~m)−M2
sat δ ~m. The second

term on the left hand side of Eq. (3.8) vanishes, since ~M · δ ~m = 0. Indeed, by looking
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at (3.7), we see that δ ~m is the sum of three vectors which are all orthogonal to ~M

(remember that any partial derivative of ~M is orthogonal to ~M , since ~M has constant

norm: ~M · ∂ ~M = ∂M2
sat/2 = 0). We then have:

δ ~m = τex

(
− ξu

Msat
∂t ~M −

u

M2
sat

~M × ∂t ~M + ξv (ĵe · ~∇) ~M + v ~M × (ĵe · ~∇) ~M
)
, (3.9)

where ĵe = ~je/je is the direction of the electric current and

u =
n0

1 + ξ2
, v =

PµB
eMsat(1 + ξ2)

je.

We can now calculate the torque on ~M , due to δ ~m. Indeed, if we take a look at Eq.

(3.1), we see that the transfer torque acting on ~m, due to the interaction with ~M ,

is − 1
τexMsat

~m × ~M . Consequently, following the third Newton’s law, there will be an

opposite torque acting on ~M :

~T =
1

τexMsat
~m× ~M = − 1

τexMsat

~M × δ ~m, (3.10)

where we have substituted ~m = ~m0 + δ ~m. We can now substitute (3.9) into (3.10) and

obtain

~T =
1

Msat

~M ×
(

ξu

Msat
∂t ~M +

u

M2
sat

~M × ∂t ~M − ξv (ĵe · ~∇) ~M − v ~M × (ĵe · ~∇) ~M
)

=
ξu

M2
sat

~M × ∂t ~M −
u

Msat
∂t ~M −

ξv

Msat

~M × (ĵe · ~∇) ~M − v

Msat

~M × ( ~M × (ĵe · ~∇) ~M).

These four extra terms should be added to the right hand side of the LLG equation to

take into account the spin transfer torque between the magnetisation and the itinerant

electrons. The first two terms do not depend on the electric current and are therefore

present even when je = 0. These terms are due to the spin accumulation which is

caused by the time variations of the magnetisation. The last two terms include a

direct contribution from the electric current. The associated spin transfer torques

arise whenever the conduction electrons flow through a region where the magnetisation

is not homogeneous in space. The first two terms lead to a renormalisation of the

gyromagnetic ratio and the damping parameter. In other words their effect is just to

slightly change the two parameters γ and α which characterise the dynamics in the

LLG equation (2.2). They typically lead to 1% adjustments of the two parameters [23]

and can be safely neglected, since the uncertainty on the value for such parameters is

often higher than that. The last two terms, on the other hand, contain new physics

and should be taken into account.
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3.3.5 The corrected Landau-Lifshitz-Gilbert equation

In summary, the LLG equation with the inclusion of the torques induced by the spin

transfer between the itinerant electrons and the localised magnetisation is:

∂t ~M = −γ ~M × ~H +
α

Msat

~M × ∂t ~M

− v

M2
sat

~M × ( ~M × (ĵe · ~∇) ~M)− ξv

Msat

~M × (ĵe · ~∇) ~M. (3.11)

We give here a summary of the quantities appearing in the equation: ~M is the magneti-

sation, Msat = ‖ ~M‖ is the saturation magnetisation, ~H is the effective magnetic field, γ

is the gyromagnetic ratio, α is the damping parameter. The current density is applied

along the unit vector ĵe and enters the model through the parameter v = PµB
eMsat(1+ξ2)

je,

where P is the degree of polarisation of the spin current, µB is the Bohr magneton, e

the absolute value of the electron charge, ξ = τex/τsf is the ratio between the exchange

relaxation time and the spin-flip relaxation time. In this thesis we will consider the

case where the electric current flows in the positive x direction. Then, the equation

becomes:

∂t ~M = −γ ~M × ~H +
α

Msat

~M × ∂t ~M

− v

M2
sat

~M × ( ~M × ∂x ~M)− ξv

Msat

~M × ∂x ~M. (3.12)

In our model Msat is uniform in space and constant in time. We can then obtain an

explicit form for equation (3.12):

∂tM̂ = −γ′ M̂ × ~H − γ′α M̂ × (M̂ × ~H)

−av′ M̂ × (M̂ × ∂xM̂)− av′ M̂ × ∂xM̂, (3.13)

where M̂ = ~M/Msat is a unit vector and γ′ = γ/(1 + α2), v′ = v/(1 + α2). We use

the notation ∂t ≡ ∂
∂t and ∂x ≡ ∂

∂x . The two dimensionless coefficients a and a are

a = 1 + αξ and a = ξ − α.

3.3.6 Discussion

We conclude by making two observations about the assumptions underlying the model.

Firstly, the laplacian in (3.6) can be omitted only when δ ~m varies slowly in space. The

order of magnitude of the length scale where δ ~m is supposed to change linearly (so that

∇2δ ~m = 0) can be calculated [23] as λ =
√
D0τex (here we assume ξ ∼ 0.01� 1). For

Permalloy, D0 = 2 nm. We must then be sure that the magnetisation of the system
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does change smoothly in this length scale. In particular, the Zhang-Li model is not

suitable to characterise multilayer systems, where the magnetisation changes abruptly

at the interfaces between the layers.

A second approximation we want to discuss is the one which was made in Eq. (3.7),

where the time derivative of ∂tδ ~m was neglected. Without this approximation we would

have obtained:

δ ~m

n0
= − ∂t/τsfM̂ + (c~je · ~∇)M̂ − 1

ξ
M̂ × δ ~m

n0
− ∂t/τsf

δ ~m

n0
, (3.14)

where M̂ = ~M/Msat, c = PµBτsf
en0

and τsf∂t ≡ ∂t/τsf . Notice that M̂ , δ ~m/n0, ∂t/τsf and

c~je · ~∇ are all dimensionless vectors/operators. Substituting recursively this equation

into itself leads to a series of terms containing ∂nt/τsfM̂ and cje ∂
m
t/τsf

M̂ . We can expect

both the two contributions to decay rapidly as n and m increase. Indeed, ∂t/τsfM̂

is small when the variation in time of M̂ happens in timescales much greater than

τsf ∼ 1 ps (from [23]). We can then keep only the terms in (3.14) which are linear in

∂t/τsfM̂ and je. This corresponds to neglect ∂tδ ~m.
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Chapter 4

Method

In this chapter we briefly present the main ideas beyond our computational approach

starting with the finite element method (FEM) and then focusing on the integration

algorithms we used to solve the dynamical equations of micromagnetics.

4.1 Finite difference and finite element methods

We have seen that in micromagnetics the configuration of the system is represented by

the magnetisation, a vector field defined over all the ferromagnetic body. Obviously

computers are discrete machines and cannot handle such a continuous representation

of vector fields. Consequently a discretisation of the system is required and is usually

obtained using two different techniques: finite difference and finite element methods.

In finite difference methods the space is discretised by a decomposition in rectangles

or cuboids. The fields are piecewise constant functions which change abruptly only at

the interfaces between adjacent cuboids. This is the approach used by OOMMF [27],

one widely used simulation package developed at NIST. Finite difference (FD) methods

are relatively easy to implement, but, unfortunately, they suffer a number of problems.

First of all, bodies with smooth curved surfaces are badly approximated by aggregates

of cuboids. For example, the FD discretisation of a sphere has inevitably a “staircase”

boundary, which is a particular annoying and unwanted artifact, considering that the

demagnetising field tends to align the magnetisation with the surface of the magnetic

body. To avoid a poor representation of the boundaries it would then be desirable to

increase the mesh resolution only near the surfaces, while keeping it lower at the centers

of the bodies. This is not allowed by the finite difference approach. As a results many

kinds of nanogeometries are not well modelled and usually require too many cuboids
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to be simulated in reasonable times. Another problem of the finite difference approach

comes from the requirement to fit the magnetic structure inside a cubic grid: if the

body is not a cuboid (a sphere for example), then it cannot fill the whole grid, meaning

that a considerable part of the mesh corresponds to the empty space. This leads to a

considerable waste of memory, which becomes critical if the structure to be simulated

is a magnetic shell (imagine a thin spherical magnetic layer covering a non-metallic

sphere such as the one shown in Fig. 4.1, for example).

Figure 4.1: Example of two dimensional (right) and three dimensional (left) unstructured mesh.

The finite element method (FEM) offers a solution to this kind of problems: the

bodies are decomposed into tessellations of simplices (a simplex is the n-dimensional

analogue of a triangle). These aggregates are called unstructured meshes and must sat-

isfy a number of well defined geometrical properties (examples of unstructured meshes

are given in Fig. 4.1). In this thesis, we do not enter much into the details of the

mathematical theory. We only say that good meshes have simplices with shape as reg-

ular as possible: even a few flat simplices are enough to significantly deteriorate the

performance of a FEM based simulation [28].

Once the mesh is given, a discretisation scheme to represent the fields can be con-

structed. This is done by associating to the mesh a set of basis functions. The scalar

or vector fields are then expressed as linear combinations of these basis functions. We

will briefly explain the underlying idea with an example. Consider a triangle T with

vertices at positions ~P1, ~P2 and ~P3 in a two dimensional mesh. Suppose a(~r ∈ T ) ∈ R
is a scalar field defined over the triangle. Let’s call Lk(~r) a linear scalar function which

is defined to be equal to one at the k-th vertex and zero at the other vertices (see Fig.

4.2). The function a could be approximated by ã(~r) = a1L1(~r) + a2L2(~r) + a3L3(~r),

where ak = a( ~Pk). It is easy to realise that ã is the linear scalar function which is equal

to a at the vertices of the triangle. It is clear how one could extend these reasonings to
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Figure 4.2: A plot of the functions L1, L2 and L3 associated with a simplex (a triangle) of a two-

dimensional mesh. It is shown that Lk is linear inside the triangle and takes the value one at the k-th

vertex and the value zero at the other two vertices of the triangle.

obtain a piecewise linear function which approximates the the scalar field a over all the

two dimensional mesh: it is enough to apply the previous procedure to every triangle

of the mesh, extending the L functions to be zero outside the simplex they belong to.

Grouping together all the contributions associated with each node1 of the mesh one

obtains:

ã(~r) =
N∑
i=1

ai ei(~r),

where i runs from 1 to the total number of nodes, N , and ei is the sum of all the

L-functions of the neighbouring simplices which have ri as a vertex and is often called

“tent basis function” (see Fig. 4.3). Taking ai = a(~ri) one obtains the piecewise linear

function which is equal to a at every site of the mesh. This may not be the best

Figure 4.3: A plot of one basis function used to represent a scalar field over a two dimensional mesh

with first order FEM . This basis function is given by the superposition of six L functions. One for

each triangle around the site ~ri.

1The nodes or sites of the mesh are the vertices of its simplices.
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approximation for a and one could choose other ways to project2 a given function a(~r)

onto the N -dimensional linear space spanned by the N functions ei. The presentation

given here is far from a rigorous formulation of the FEM theory. We gave just an

example of first order representation of a scalar field on a two dimensional mesh. Higher

order representations exist where the basis functions are quadratic, cubic, n-th order

polynomials. There are important steps of the micromagnetic calculations, such as the

calculation of the exchange field and the demagnetising field, which need to be adapted

expressly to this formulation. In this thesis we do not enter into the details of such

calculations, which can be found elsewhere [29, 30, 31, 32, 33].

The flexibility of FEM is evident if compared to finite difference methods. Un-

fortunately it has other kinds of problems. First of all the implementation is not

straightforward and it requires to use additional memory in order to store the mesh

and the associated geometrical information. Secondly, obtaining a good mesh is not

really a trivial task, unless an external meshing software is used, such as Netgen, Gmsh

or Gambit [34, 35, 36]. Requiring to use an external meshing program is certainly a dis-

advantage if the sample one needs to study has a simple geometry (such as a square film

or a cube); it can be an advantage, however, when studying magnetic nanostructures

with complex three dimensional shape.

4.2 Algorithms for time integration

In this section we present some algorithms for the integration of the LL equation (2.3).

As done previously, we assume the saturation magnetisation, Msat, is constant in time.

For simplicity, we also assume that Msat is uniform in space. We define the unit vectors
~h = ~H/H and ~m = ~M/Msat with H = ‖ ~H‖, Msat = ‖ ~M‖ and write the LL equation

as:

~m′ = −γ′
[
~m× ~H + α ~m× (~m× ~H)

]
= f(~m, ~H[~m]). (4.1)

~m′ is a shorthand for ∂t ~m, the time partial derivative of ~m, and γ′ = γ
1+α2 . This

is the equation we have in mind when describing the numerical methods in the next

few sections. We begin by explaining in detail the Euler method, which is the first

integration algorithm which we implemented in our micromagnetic simulation package,

Nmag. It is also the default integration scheme in the micromagnetic simulation package

OOMMF [37].
2This could be done defining a scalar product over the mesh Ω (for example 〈f, g〉 =

R
Ω
f(~r)g(~r)d2r)

and projecting a into the basis function ei to obtain the coefficient ai. Note that a matrix inversion

would then be necessary, since the basis {ei}i is not orthogonal.
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4.2.1 Euler method and step-length adjustment

In what follows we discuss the Euler method to integrate the LLG equation as it is

implemented in the micromagnetic simulation package OOMMF [27]. Many of the

ideas presented here have, however, a more general validity and can be found in the

books on numerical methods [38].

The Euler method is probably the simplest method to numerically integrate the LL

equation. Given the initial configuration for the normalised magnetisation ~m0,i, we use

the following recursive relation:

~mn+1,i = ~mn,i + (tn+1 − tn) ~m′n,i. (4.2)

~mn,i is the approximation of the magnetisation computed at time tn, and ~m′n,i is its

derivative with respect to time. The index i refers to the position in space ~ri, which

needs to be discretised in some way.3 Eq. (4.2) is used to obtain the magnetisation

~mn+1 at time tn+1 = tn + ∆tn from the magnetisation ~mn at time tn. The procedure

is as follows:

• from ~mn calculate the effective field ~H (this step is time consuming, since it

requires the calculation of the demagnetising field, the exchange field, etc.);

• use the LL equation to calculate ~m′n from ~mn and ~Hn;

• use the Eq. (4.2) to compute the time evolution and obtain ~mn+1;

• iterate until convergence is reached.

The method can be derived easily. We denote with ~m(~r, t) the exact solution of

the LL equation with ~m(~ri, t0) = ~m0,i taken as initial condition. We write its Taylor

expansion with respect to time in t = tn:

~m(~r, tn + ∆t) = ~m(~r, tn) + ∆t ~m′(~r, tn) +
1
2

(∆t)2 ~m′′(~r, tn) + . . .

If ∆t is small enough, we can get an approximation of the magnetisation at time

tn+1 = tn + ∆t, by truncating the expansion at the first order in ∆t. We start with

t = t0 and obtain ~m1,i, then we iterate this procedure over and over again to calculate

the magnetisation at the following times, thus obtaining the Euler method.

We could take a constant ∆tn = tn+1 − tn = ∆t and use tn = n∆t. But what is

a good choice for ∆t? How can we choose a ∆t which is small enough to achieve the
3For the finite element method, ~mn,i is the coefficient relative to the i-th tent function of the chosen

basis.
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required accuracy, without wasting time due to a too small ∆t? And moreover, is it a

good idea to use a ∆t which is constant throughout all the simulation? We can answer

all these questions if we find a way to calculate the error related with a particular

“move” of our Euler integrator.

To do this, we consider again the Taylor expansion of the exact magnetisation. If

∆t is very small, then we can write:

~m(~r, tn + ∆t) = ~m(~r, tn) + ∆t ~m′(~r, tn) + ∆~merr
n ,

where:

∆~merr
n ≈

1
2

(∆t)2 ~m′′(~r, tn) ≈ 1
2

∆t
(
~m′(~r, tn+1)− ~m′(~r, tn)

)
.

Since ∆t is small, the terms of higher orders are negligible compared to the one of

second order. This gives us a method to check the result of our Euler-based integrator.

We define the error for the step n as:

εn,i =
1
2

∆tn
∥∥~m′n+1,i − ~m′n,i

∥∥ . (4.3)

Since ~m has unit norm, its movement ∆mn,i = ‖~mn+1,i − ~mn,i‖ during the n-th time

step is expressed in radians. εn,i is the error related to such a movement and shares

therefore the same unit of measurement.

There are two requirements we can make over the error ε. We introduce an “absolute

error” εA and require that for all the steps and all the positions,

εn,i < εA. (4.4)

This will set the resolution in the calculated trajectory of the magnetisation.

We introduce another check: the error in the movement should be lower than the

movement itself. This is really important: it does not make much sense to move

by 0.1 radians, when the associated error is 0.09 radians! We need to be sure that

εn,i � ‖∆~mn,i‖, so we introduce another parameter, the “relative error” εR, and we

require that εn,i < εR ‖∆~mn,i‖. ∆~mn,i is the change in ~m relative to the n-th step,

which in the Euler case is simply ~m′n∆tn:

εn,i < εR
∥∥~m′n,i∥∥∆tn. (4.5)

Imposing this relation on all the positions may be too restrictive. Imagine we have

a point i0 where Eq. (4.5) does not hold, but ~m does not change significantly. We

may have
∥∥∥~m′n,i0∥∥∥∆tn < 10−6 radians for example. Even if the error for this position

is high, the move does not produce a relevant modification of the configuration here.
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Rejecting the move, however, would be a waste of time, if somewhere else things were

going better. For this reason we define
∥∥~m′n,max

∥∥ to be the maximum value of
∥∥∥~m′n,i∥∥∥,

for the running index i, and we make the following requirement:

εn,i < εR
∥∥~m′n,max

∥∥∆tn,

for all positions i and times n. We can collect these two requirements into the following

expression:

εn,i < εn,min = min
{
εA, εR

∥∥~m′n,max

∥∥∆tn
}
. (4.6)

This provides a method that allows us to check whether a particular time integration

step was well done or not. Actually we can exploit these relations even better.

Suppose we just did the n-th time step. We used relation (4.6) and unfortunately

we discovered that our ∆tn was too large. Now we reject the step and we want to

guess a new step size ∆t such that the error εn,i is reduced and is lower than εn,min

everywhere. We need to find how the error depends on the step length ∆t. Its Taylor

expansion up to the first order in ∆t gives: εn,i(∆t) ≈ εn,i∆t, where εn,i is the error

rate (see also Eq. (4.3)). We can calculate the maximum error rate as:

εn,max = max {εn,i}i = max {εn,i}i /∆tn.

In this way we know that εn,max ∆t would be the maximum error across all positions i,

if the step size was ∆t. The solution now is evidently quite simple: we want εn,max∆t <

εn,min, therefore we redo step n using:

∆tn,new =
εn,min

εn,max
.

This formula can be used not only when a step is rejected, but more widely to obtain

a guess for the next step size. A good idea would be to take:

∆tn+1 = R
εn,min

εn,max
. (4.7)

R is a “safety factor” between 0 and 1 and controls the probability that the next time

step will be accepted for the guessed step size: if R � 1, then this probability will be

high, if R ≈ 1, the probability will be low.

A final observation should be made. The Euler method does not preserve the

magnitude of ~m. Therefore we should take care of normalising it manually before

proceding to the next step.
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4.2.2 The Runge-Kutta methods

The Euler algorithm is referred to as a first order method, because it is accurate up

to the first order in ∆t: with this we mean that the local error associated with each

time-step is O((∆t)2). The method was derived in the previous section starting from

a Taylor expansion of the unknown exact solution ~m(t). A second order method can

be derived in a similar fashion. This time we keep also the second order term in the

expansion:

~m(~r, tn+1) ≈ ~m(~r, tn) + ∆t ~m′(~r, tn) +
1
2

(∆t)2 ~m′′(~r, tn).

~m′ can be calculated using the LL equation, but how are we going to calculate the

second derivative ~m′′(~r, tn)? We could take, for example, ~m′′(~r, tn) = 2(~m′(~r, tn +

∆t/2)− ~m′(~r, tn))/∆t. Substituting this into the former equation:

~m(~r, tn+1) ≈ ~m(~r, tn) + ∆t ~m′(~r, tn + ∆t/2).

This formula suggests the following approach:

• from ~mn we calculate the effective field ~Hn and we substitute it in the LL equation

to obtain ~m′n;

• we perform an Euler step to the middle of the time interval: ~m 1
2
,n = ~mn +

~m′n ∆t/2;

• from ~m 1
2
,n we calculate the effective field and use the LL equation to obtain ~m′1

2
,n

;

• we perform an Euler step starting again from tn, but using — this time — the

derivative calculated in the middle of the time interval: ~mn+1 = ~mn + ~m′1
2
,n

∆t;

• iterate until convergence is reached.

This is the so called midpoint method. Note that the value of the magnetisation in the

middle of the time interval is used only to calculate the derivative ~m′1
2
,n

and then it is

simply discarded. The truncation error associated with each time-step is O((∆t)3), but

we have to pay a price for this greater accuracy: for each step the number of evaluations

of ~m′ is doubled.

Other algorithms with even higher order exist and can be derived systematically

using a well defined procedure. These algorithms are referred as Runge-Kutta (RK)

methods and are widely used for time integration. The algebraic calculations involved

in the derivation of Runge-Kutta methods become rapidly lengthy and tedious as the

required order of the method increases. The derivation of the second order Runge-Kutta
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methods could be instructive, because it shows the main ideas behind the procedure,

still being quite easy. We will not face such a calculation, which can be found elsewhere

[39]. We only mention that the Euler method turns out to be the unique first order

Runge-Kutta method and that many different n-th order methods exist for n > 1. The

midpoint method actually belongs to the class of second order Runge-Kutta methods.

It is important to note that to a higher order corresponds a higher number of

evaluations of f (the RHS of the LL equation) and hence of the effective field, which

is the most expensive computation in micromagnetic simulations in terms of time.

However, higher order methods usually allow to choose bigger step lengths to obtain

the same required accuracy. These two effects balance in a non trivial way, so that it

depends on the particular considered problem if a higher order method will perform

better or not. It is commonly well accepted that a fourth order Runge-Kutta method

gives a good compromise between number of RHS evaluations (just 4) and obtained

accuracy. We emphasise, however, that these are only provisional thoughts. We did

not implement any Runge-Kutta time integrator in our own micromagnetic simulation

package Nmag, and consequently we cannot formulate any precise statement about

the relation between the number of RHS evaluations and the accuracy of the time

integration. Runge-Kutta time integrators, however, have been implemented in other

micromagnetic simulation packages such as OOMMF [37] and M3S [40], leading to

significant performance improvements with respect to the Euler time integrator [41]

(it is worth to notice, however, that such improvements depend much on the required

accuracy [42]).

The step-length adjustment for Runge-Kutta algorithms can be implemented with

the so called step doubling: time is advanced from t to t + ∆t in two different ways:

firstly, the two-step evolution ~m(t)→ ~m(t+ ∆t/2)→ ~m(t+ ∆t) is performed; then the

same evolution is performed using one single step ~m(t) → ~m(t + ∆t). The difference

between values obtained in these two different ways gives an estimate of the local

truncation error and can be used to accept/reject the move and to adjust the time-step

length. This technique requires an additional computational cost: every two Runge-

Kutta steps (8 function evaluations, for a fourth order RK) we need to do an extra

step, which requires 3 more function evaluations (since it shares the starting point).

The overhead is thus a factor 11/8 = 1.375.

A better technique for step length adjustment is provided by the so called “embed-

ded Runge-Kutta formulas” [38]. These algorithms are based on the fact that the same

set of function evaluations can be used to obtain two Runge-Kutta methods of different
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order. The difference between the results given by these two algorithms can then be

used to calculate an estimate of the truncation error. The most popular of these meth-

ods was invented by Fehlberg and combines six function evaluations to obtain both a

fifth order and a fourth order Runge-Kutta method.

4.2.3 Other methods

We gave a very small view on the wide world of numerical integration methods. We

have to mention that other very interesting approaches exist. Indeed, in the previous

sections we considered only single-step algorithms, so called because, even if they may

calculate and store the time derivative of ~m several times per step, they completely

get rid of such information when passing to the next steps. The time-stepping of these

algorithms could be represented by a simple function mapping ~mn onto ~mn+1. Multi-

step methods, on the other hand, use the “recent history” of the system to compute

the new configuration. This means that, in order to compute the next step, part of

the information which was used in the previous steps is reused. The popular Adams-

Bashforth-Moulton algorithms belong to the category of predictor-corrector algorithms,

which is an important class of multi-step methods. These methods are rather complex

to implement and require a considerable bookeeping.

4.2.4 Semi-analytical methods

When the effective field is constant in time, the LLG equation (2.3) is known to admit a

simple analytical solution, which can be found by expressing it in spherical coordinates

or by projecting it along the direction of the applied field and on the plane orthogonal

to it, as shown in Appx B. One is then tempted to exploit such an analytical equation

and use it to improve an already existing numerical integration scheme, such as the

Euler method of Sec. 4.2.1. The resulting semi-analytical integration scheme may help

— for example — to overcome the problem of respecting the constraint of constant

norm for the magnetisation, Eq. (2.4). Indeed, since the analytical solution does fulfil

exactly such constraint, it may be used to replace the Euler step, Eq. (4.2). This

idea has attracted quite some researchers in the field of computational micromagnetics

[43, 44, 45], including us. After implementing the Euler method in Nmag, we worked

on a semi-analytical method very similar to the one presented in Ref. [45], which

we derived independently. We found, however, that in most practical cases, such an

algorithm does not lead to significant performance improvements with respect to the

simple Euler algorithm of Sec. 4.2.1 and results in analogous time step sizes.
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We understood the result in the following way. Whether the semi-analytical ap-

proach will work well or not, depends quite crucially on how the effective field changes

with the magnetisation: if the effective field is constant in time, then it is reasonable

to expect the semi-analytical algorithm to outperform any other algorithms since —

in principle — it would need just one step to reach convergence. In general, we ex-

pect the semi-analytical approach to work well when the effective field changes slowly

with the magnetisation. Unfortunately, the contribution that the exchange field gives

to the effective field has the form ∇2 ~m (see Eq. (2.11)) and thus typically varies as

quickly as the magnetisation itself. As a consequence, the corresponding dynamics is

often rather different with respect to the one described by the analytical solution, Eq.

(B.11). Discouraged by such findings, we did not invest more time to look into semi-

analytical approaches to integrate the LLG equation. It is worth to mention, however,

that there are researchers who have been working more extensively on the method and

on improving it [46].

4.2.5 The backward Euler and the Sundials package

So far we only considered explicit methods while also implicit methods exist. We explain

briefly the difference between explicit and implicit methods starting from the formula:

~mn+1,i = ~mn,i + ~m′n,i∆tn. This is the Euler algorithm and was explained extensively

in Sec. 4.2.1. Actually this should be called explicit (or forward) Euler method, since

also an implicit version of the same formula exists: ~mn+1,i = ~mn,i + ~m′n+1,i∆tn. With

the forward Euler method we can calculate immediately the next configuration ~mn+1,i

using the time derivative ~m′n,i, which can be obtained directly putting ~mn,i inside

the LL equation. With the implicit (or backward) Euler method one needs to use

more complex techniques, since the derivative ~m′n+1,i cannot be computed directly:

functional iteration or the Newton’s method need to be used. This means that a step

in the implicit scheme will generally take much more time than a step in the explicit

scheme. On the other hand, it is known that stiff problems can be hard to solve with

explicit methods, due to their prohibitively small time step requirements. Implicit

methods, such as the backward Euler, can provide much better performance in such

cases (larger time steps).

This is the reason why for the time integration in Nmag we have chosen to use

an external code, the CVODE library provided by the Sundials package [47]. The

CVODE library provides the user with two families of algorithms for time integration:

the Adams-Moulton formulas and — for stiff problems — the Backward Differentiation
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Formulas (BDFs) [48]. Suess et al. [49] presented a detailed study of the performances

of the Adams and the BDF methods as implemented in the CVODE library, when

applied to two different micromagnetic problems within the scope of the finite element

method. They studied a single-material magnetic thin film, following the specification of

the fourth µMAG standard problem [50] and they also investigated a granular structure

with irregular boundary surface. Their findings suggest that, while different algorithms

perform differently depending on the setup of the problem, on the particular mesh and

on the required accuracy, a BDF algorithm with maximum integration order set to 2

(K1 = 2, see “mathematical considerations” in Ref. [48]) and with preconditioning (in

order to solve the implicit BDF formula) leads to optimal performance, when compared

against the Adams method and against BDF method without preconditioning or with

integration order greater than 2.

4.2.6 Summary

In this section we gave a quick review of some of the numerical methods which were

used in the computational studies presented in this thesis. We briefly introduced some

of the ideas at the base of the finite element method and gave a quick overview on

some time-integration techniques which are often used for micromagnetics. We focused

mainly on the Euler method, which was implemented initially while working on the

project for this thesis. At present, however, our simulation software, Nmag, uses the

CVODE package for carrying out the time integration of the LLG equation [47].
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Chapter 5

Nmag, a flexible micromagnetic

simulation software

All the numerical results presented in this thesis have been obtained using Nmag, the

FEM-based micromagnetic simulation package which has been developed by our group

in Southampton and has been released as open source [51]. At present, Nmag has been

used in our own works to study effects such as the anisotropic magnetoresistance in

nano-rings [52], the demagnetising field of quasi-periodic nanostructures [53], exchange

springs systems [54] spin transfer torque effects [55, 56] and has been recently employed

by other independent groups for their own studies [57, 58].

For the preparation of this thesis we have not just used Nmag, but we have also

devoted considerable time in developing and improving it. In this chapter we explain

the reason why we embarked on the development of a new software for micromagnetic

simulations, rather than using an already existing system such as OOMMF [37] or

Magpar [59]. We discuss the main goals and characteristics of Nmag and explain how

we contributed to it.

5.1 Introduction

In recent times researchers are showing an increasing interest in the coupling between

magnetism and other phenomena, such as spin transport, heat generation and conduc-

tion, electromagnetic wave generation and absorption, etc. This trend is generating

a considerable demand for flexible simulation tools, which have multiphysics capabili-

ties, meaning that they can take into account different types of physics. While there

are a number of commercial and free software packages for micromagnetic modelling
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[37, 59, 60], practically all of them are frameworks highly specialised in micromagnetics,

which need ad-hoc extensions in order to introduce new fields or modify the equation

of motion. These tools typically rely on a rigid scheme for performing micromagnetic

simulations, which is depicted in Fig. 5.1-a. When using such tools, the user has to

Figure 5.1: Different approaches to micromagnetic simulations. (a) traditional approach, where

input parameters (a set of numbers) are provided in one or more files. (b) alternative approach, where

the simulation capabilities are collected in a library for a modern and powerful scripting language and

the simulation is carried out just by using the library.

provide one or more files, containing a set of input parameters. These input parameters

are essentially a bunch of numbers describing the material (saturation magnetisation

Msat, exchange coupling constant A, etc.), the initial magnetisation configuration, the

range for the applied magnetic field (in the case of hysteresis loop). When launched,

the simulation tool reads the parameters and runs the simulation, writing the results in

a set of output files. It does all this following a rigid predetermined order of execution

and may thus remind how a vending machine works: select the drink, the amount of

sugar, press the button, get the coffee. This approach is simple and often effective

enough. In many other situations, however, it is desirable to have more flexibility, in

particular when studying new magnetic nanostructures and multiphysics scenarios.

With Nmag we propose an alternative approach (see Fig. 5.1-b), where micro-

magnetism is just one applications of a generalised framework and extensions to the

software (such as adding a new field or modifying the equation of motion) can be made

without recompiling it. The central idea is to embed the simulation capabilities inside
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a library for a scripting language. To run a simulation, then, the user has to write a

small script1, rather than providing a list of input parameters. This approach has a

number of advantages in terms of flexibility:

• it is the user who decides what to do and when: the order of execution is de-

termined by how the user writes the script. He can do a time integration with

the method advance time, perform an hysteresis loop with hysteresis, save the

data with save data. The user decides what to do by calling the appropriate

function in the desired order;

• the micromagnetic simulation library can be used together with other libraries.

For example, if a micromagnetic simulation is carried out in order to determine

the amplitude A of the magnetisation response to a given stimulus s, then an

optimisation library may be used in order to find which stimulus smax maximises

the amplitude A.

• new capabilities can be added easily from within the scripting language;

• there is also an advantage in terms of clarity. A small script is generally clearer

that a file containing just a list of input parameters.

The popular software OOMMF uses an approach which may appear to be very

similar to the one we have just described: it requires the user to provide a Tcl script

[61] in order to carry out a micromagnetic simulation. At present, however, OOMMF

uses Tcl just to collect the input parameters and does not give to the user control over

the order of execution. It thus sticks to the traditional approach of Fig. 5.1-a, with

some additional advantages, such as offering the possibility of setting an arbitrary initial

magnetisation. OOMMF does not allow the user to run more than one simulation per

script [62].

5.2 Implementation details

Nmag consists of two parts: a FEM classical field framework, which provides basic

functionality to define scalar, vector and tensor fields and to operate on them, and a

top layer which uses this framework in order to provide an environment for running

micromagnetic simulations.
1A script is just a program which can be read and executed on the fly, without requiring an inter-

mediate translation into machine code, in contrast to what happens for C or Fortran.
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The bottom layer implements finite element method (FEM) discretisation to arbi-

trary order of the shape functions and is the part of the software which actually does

the computationally intensive work. It is written in OCaml [63], a fast functional pro-

gramming language, and uses a number of well known optimised external libraries to

carry out vector manipulation at the lowest level. In particular, MPICH2 [64] is used

in order to distribute data and computation over multiple machines, Petsc [65] is used

for vector and matrix manipulation, Sundials [47] is used for the time integration of

the Landau-Lifshitz equation.

Such capabilities are exploited by the top layer, which implements the micromag-

netic simulation environment and is written in Python [66], a modern scripting language

which is powerful and still easy to learn and use. It is worth to stress once more that

the full micromagnetic calculation is just an extension to the underlying general pur-

pose FEM library, which we call Nsim. This means, in particular, that the Landau

Lifshitz equation, the computations of the exchange and the demagnetising field are all

specified in the top Python layer. This feature is particularly desirable in multiphysics

scenarios, since extensions to the micromagnetic model can be made by writing Python

code.

Being based on finite element, Nmag requires an unstructured mesh of the ferro-

magnetic sample which is to be simulated, such as the one shown in Fig. 5.3. The

mesh specifies how the volume of the body is subdivided into elements of tetrahedral

shape. To obtain such a decomposition, external meshing programs can be used2: in

this thesis we used Netgen [34]. In summary, to run a simulation the user has to provide

a mesh and a Python script, such as the one shown in Fig. 5.4. The simulation can

be run by putting the script and the mesh file in the same directory and executing

nsim script.py from the command prompt.

It has been said before that Nmag uses MPICH2 to distribute data and computation

over multiple machines. Considering the architecture of the program, where the user

can influence the order of execution of the simulations, this is not a trivial task. The

model we adopted in order to deal with such a task is depicted in Fig. 5.2. We call

it the master-slave approach. The nodes involved in the computation are indeed split

into two groups: the master node, which does actually execute the Python script,

and the slave nodes, which wait for the master node to send instructions and give an

on-demand help with the computation. Running the script only on a single machine
2Actually Nmag provides its own mesher, Nmesh. For large three dimensional meshes, however,

there are free (and commercial) alternative packages which offer considerably better performance.
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Figure 5.2: The approach to parallelisation employed by Nmag : One of the nodes acts as “master”,

the others act as “slaves”. The master node executes the Python script, asking for the help of the slave

nodes only when dealing with computationally intensive tasks. This approach guarantees that a script

written for running on one machine, can run also on multiple machines without requiring any special

modifications.

and using the others as computing nodes has two important advantages with respect

to a more traditional approach where all the nodes are running simultaneously the

same program and are thus treated at the same level. First, this approach removes

conflicts in input/output operations. Such a conflict may arise, for example, when

the user creates a file. Indeed, if the script is running on multiple machines, each of

those will try to concurrently create the same file. Special precautions would then

be needed to avoid the problem and this is something we cannot really expect from

the average user. A more technical reason for using the master-slave approach, is

connected with the memory management of OCaml. OCaml uses garbage collection

to manage memory allocation and, consequently, we may expect some randomness

in the way memory is requested and handed back to the system. This becomes a

major problem when destroying parallel vectors and resources: destructions of parallel

resources need perfect synchronisation between the nodes involved in the computation,

while the garbage collectors of different nodes may lead to asynchronous destruction of
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the distributed parts of vectors and matrices.

An accurate and complete description of Nmag goes beyond the scope of this chap-

ter. A paper going more into the technical details of the package is in preparation. A

short summary of the main features of Nmag and the algorithms used for the different

parts of the micromagnetic calculations is provided below:

• Finite Element Method discretisation;

• vector and matrix management through Petsc [65] and MPI [64];

• demagnetising field calculated using the hybrid FEM/BEM approach [30, 29];

• time integration through a backward preconditioned time integrator using Sun-

dials [47].

5.3 Example 1: hysteresis loop with Nmag

In this and the next section we provide two example scripts in order to show how

Nmag is used in practice. We first give an example of hysteresis loop computation. We

consider a bar made of Permalloy with size 30 × 30 × 100 nm and apply the field in

the (1, 1, 1) direction. The mesh (Fig. 5.3) is obtained using Netgen and is contained

inside a file with name bar.nmesh.h5, which must be placed in the same directory

containing the script. The script is shown in Fig. 5.4. Here we comment it briefly line

by line.

• Lines 2-3: we specify that we want to use Nmag, the library to run micromag-

netic simulations. All the functionality provided by this library will be accessi-

ble in the following lines of the script by using the prefix “nmag.”, such as in

nmag.MagMaterial or nmag.Simulation. In line 3 we indicate that we want to

access the objects SI and at directly, without any prefix. Indeed, the object SI

will be used frequently in the script to associate physical dimensions to numbers.

For example, to provide a length we could write SI(5, "m") (for 5 meters), to

provide a velocity SI(7, "m/s") (7 meters per second).

• Lines 7-8: we define a new material corresponding to Permalloy. We give it the

name “Py” and associate saturation magnetisation Msat = 0.86 × 106 A/m and

exchange coupling constant A = 13× 10−12 J/m.

• Line 10: we define a new simulation object s. Its role will become clearer in the

following lines.
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Figure 5.3: On the left: Mesh of a bar with size 30 × 30 × 100 nm. On the right: hysteresis loop

obtained by applying a field in the ~n = (1, 1, 1) direction with intensity going from 106 A/m to −106

A/m. Note that Mn = ~M · ~n and 〈Mn〉 is the spatial average of Mn.

1 # Import the Python library for doing micromagnetic simulations

2 import nmag

3 from nmag import SI, at

4

5 # Create a new material with appropriate name , saturation magnetisation

6 # and exchange coupling constant

7 mat_Py = nmag.MagMaterial(name=’Py’, Ms=SI(0.86e6, ’A/m’),

8 exchange_coupling=SI(13e-12, ’J/m’))

9

10 s = nmag.Simulation () # Create a new simulation object

11

12 # Load the mesh and associate materials to its regions

13 s.load_mesh(’bar.nmesh.h5’, [(’region1 ’, mat_Py)], unit_length=SI(1e-9, ’m’))

14

15 s.set_m([1, 1, 1]) # Set the initial magnetisation

16

17 # Define a list of applied fields for which we want to run the hysteresis loop

18 Hs = nmag.vector_set(direction =[1, 1, 1],

19 norm_list =[1.0, 0.95, [], -1.0, -0.95, [], 1.0],

20 units=1e6*SI(’A/m’))

21

22 # Run the hysteresis loop. Save averages of fields at convergence of each stage

23 s.hysteresis(Hs, save =[(’averages ’, at(’convergence ’))])

Figure 5.4: Example showing how to setup an hysteresis loop with Nmag. The simulation setup

requires just 23 lines of Python code, of which 12 lines are blank or used for comments.
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• Line 13: the mesh is loaded from the file “bar.nmesh.h5” and is associated

to the simulation object s. A mesh can, in general, have many regions: this

depends on the way it was created. One may, for example, split the bar of

Fig. 5.3 into two or more regions and associate to each region a different mate-

rial. In the current example we have just one region and one material. We use

[(’region1’, mat_Py)] to specify that we call the first and unique region with

the name “region1” and that this region is filled with Permalloy. Finally, with

unit_length=SI(1e-9, ’m’) we indicate that the mesh is expressed in units of

nanometers, i.e. one in the coordinate system of the mesh means one nanometer.

• Line 15: we set the magnetisation along the direction [1, 1, 1]. Note that we could

use the same method set_m to set the magnetisation from a Python function.

• Lines 18-20: we create, in Hs, a list of values for the applied field. The hysteresis

loop will be carried out by setting the applied field and running a simulation for

each of these values (this simulation is also called “stage” of the hysteresis loop).

These values are all pointing in the direction [1, 1, 1] and have norms going

from 1.0u to −1.0u in steps of 0.05u, where u is the unit, 106 A/m.

• Line 23: we run the hysteresis loop and save the averages of all the fields at

convergence of each stage. Here we finally see what the at symbol, which was

imported in line 3, is used for.

The simulation can be run by entering nsim script.py at the command prompt.

The data can be extracted then with a dedicated tool, ncol. The final hysteresis loop

is shown in Fig. 5.3 (right).

5.4 Example 2: proposal for a new standard problem

Introduction

After developing a software package to perform simulations, it is important to assess

its reliability by running a number of tests and by executing comparisons against well

known solutions. This is the reason why researchers in computational micromagnetism

agreed on the formulation of a set of standard problems, whose specifics are now pub-

lished online [50], together with the solutions submitted by several research groups all

over the world. Such an approach helps mutual progress and gives also an opportunity

to compare accuracy and performance of different simulations packages and different
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numerical methods. Unfortunately, the set of standard problems is currently consti-

tuted only by four problems and all of them are single-physics problems, meaning that

they take into account only standard micromagnetic effects. Considering the recent

research trends in micromagnetics, we think it is important to introduce new standard

problems, where multiphysics scenarios are studied. For this reason we collaborated

with researchers from the University of Hamburg (Germany) and from the IBM Zürich

Research Laboratory (Switzerland) to formulate a standard problem including spin

transfer torque effects through the Zhang-Li extension to the Landau-Lifshitz-Gilbert

equation. The collaboration resulted in a paper [67], which collects numerical result

from four different software packages and compares them with the approximated an-

alytical solution. We contributed to this work by helping in the formulation of the

standard problem and by running it with Nmag.

Problem definition

We consider a thin film with cuboid geometry and size 100 × 100 × 10 nm. We use

material parameters similar to Permalloy, with the exception of the damping parameter

α: the saturation magnetisation is Msat = 8×105 A/m, the exchange coupling constant

is A = 13× 10−12 J/m and the gyromagnetic ratio is γ = 2.211× 105 m/(As).

The simulation consists of two sub-simulations. In the first part we are not inter-

ested in the dynamics of the system: we just relax the system, such that a precise initial

magnetisation is obtained. Indeed, we want to get to the equilibrium state where the

magnetisation develops a vortex in the center of the film. In the second part, we apply

a current density and study how the vortex dynamically reacts to it.

The first sub-simulation uses the following expression to set up the initial magneti-

sation:
~M(~r) = Msat

~u(~r)
‖~u(~r)‖

, ~u(~r) = (−(y − y0), x− x0, R) ,

where ~r = (x, y, z) is the position in space and ~r0 = (x0, y0, z0) = (50 nm, 50 nm, 5 nm)

is the center of the film. R = 40 nm is a constant used to make sure that the norm of

~u is always positive. Its sign determines the final chirality of the vortex. This initial

magnetisation is relaxed using a damping constant α = 1 to reach convergence quickly.

The relaxation proceeds until the following convergence criterion is satisfied:

max
~r∈V

∥∥∥∥∥ 1
Msat

d ~M(~r)
dt

∥∥∥∥∥ ≤ 0.01 rad/ns, (5.1)

where V is the region of space occupied by the cuboid. The magnetisation is then saved

to file.
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In the second sub-simulation, the equilibrium magnetisation obtained in the first

sub-simulation is loaded from file and is used as the initial configuration. A fully

polarised (P = 1) current with density j = 1012 A/m2 is instantaneously applied in

the positive x direction. The current density is homogeneous in space and constant in

time. The damping constant is set to α = 0.1 and the degree of non adiabadicity is set

to ξ = 0.05. These parameters are not realistic for Permalloy, but produce enhanced

non-adiabatic effects, helping to identify possible errors in the implementation of the

fourth term in the right hand side of Eq. (3.13). Indeed, using the realistic values

α = 0.01 and ξ = 0.01 would lead to negligible non adiabatic effects, thus weakening

the falsification properties of the standard problem [67]. The behaviour of the spatially

averaged magnetisation reflects the dynamics of the vortex and is hence studied as a

function of time.

The script

The code is discussed below, line by line.

• Lines 2-4 : we import the micromagnetic library Nmag, together with other

Python libraries. We import explicitly SI, at, every and degrees_per_ns. We

will see later how these symbols are used in the script.

• Lines 7-18 : we create the material and the simulation object, we load the mesh,

associate the material with it and return the simulation object. This is very simi-

lar to what discussed in Sec. 5.3 with two differences. First, we are doing all these

operations inside a function. Indeed, the standard problem requires us to run two

simulations of the same system. We then put the material definition and the sim-

ulation setup inside a function so that we can re-use this code twice. Second, we

are providing four more parameters to MagMaterial: the gyromagnetic ratio γ

and the damping parameter α for the Landau-Lifshitz equation (when they are

not provided, the values α = 0.5 and γ = 0.2211 × 106m/As are used instead),

the spin polarisation P and the parameter ξ for Permalloy (see Eq. (3.12)).

• Lines 22-33 : we run the preliminary sub-problem to find the initial magnetisation

for the second sub-problem. We create the simulation object and load the mesh

by calling the function my_simulation that we defined previously in the script.

We set the magnetisation (line 29) using the function initial_m defined in lines

24-26. We then run a simulation and relax the system to find the equilibrium

magnetisation. The simulation stops when the convergence criterion in Eq. (5.1)
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1 # We model a bar 100 nm x 100 nm x 10 nm where a vortex sits in the center.

2 import os, nmag

3 from nmag import SI, every , at

4 from nsim.si_units.si import degrees_per_ns

5

6 # This is an helper function to create the simulation object and load the mesh

7 def my_simulation(name , damping , P=0.0, xi =0.0):

8 mat_Py = nmag.MagMaterial(name="Py",

9 Ms=SI (0.86e6,"A/m"),

10 exchange_coupling=SI (13.0e-12, "J/m"),

11 llg_gamma_G=SI (0.2211e6 , "m/A s"),

12 llg_polarisation=P,

13 llg_xi=xi,

14 llg_damping=damping)

15

16 sim = nmag.Simulation(name)

17 sim.load_mesh("pyfilm.nmesh.h5", [("Py", mat_Py)], unit_length=SI(1e-9,"m"))

18 return sim

19

20 # If the initial magnetisation has not been calculated and saved into

21 # the file "vortex_m.h5", then do it now , by running a preliminary simulation !

22 relaxed_m_file = "vortex_m.h5"

23 if not os.path.exists(relaxed_m_file ):

24 def initial_m(p): # define an initial magnetisation which is likely to relax

25 x, y, z = p # into the vortex state

26 return [-(y-50.0e-9), (x-50.0e-9), 40.0e-9]

27

28 prelim = my_simulation(name="preliminary", damping =1.0)

29 prelim.set_m(initial_m)

30 prelim.set_params(stopping_dm_dt =1.8* degrees_per_ns)

31 prelim.relax(save =[(’fields ’, at(’step’, 0) | at(’stage_end ’))])

32 prelim.save_restart_file(relaxed_m_file)

33 del prelim # delete the preliminary simulation

34

35 # Now we deal with the second simulation : the one with the current!

36 sim = my_simulation(name="simulation", damping =0.1, P=1.0, xi =0.05)

37 sim.load_m_from_h5file(relaxed_m_file)

38 sim.set_current_density ([1e12 , 0, 0], unit=SI("A/m^2"))

39 sim.set_params(stopping_dm_dt =0.0) # WE decide when the simulation should stop!

40 sim.relax(save =[(’fields ’, at(’stage_end ’) | every(’time’, SI(1.0e-9, "s"))),

41 (’averages ’, every(’time’, SI(0.05e-9, "s")) | at(’stage_end ’))],

42 do =[(’exit’, at("time", SI(10e-9, "s")))])

Figure 5.5: The script used to run the spin transfer torque standard problem with nmag. The script

is discussed line by line in the text.
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is met (0.01 radians per nanosecond = 1.8 degrees per nanosecond). We save all

the fields before and after the relaxation, so that we can obtain the pictures in Fig.

5.6 and in Fig. 5.7. After the relaxation we save the magnetisation configuration

to file, so that it can be re-loaded and used in the second part of the script. Notice

that all these commands are executed only if the file vortex_m.h5 does not exist

(see line 22-23). If such a file exists, then we assume that the first sub-problem

has already been executed and proceed straight to the second sub-problem.

• Lines 35-42 : We use again the function my_simulation to setup a second sim-

ulation. We then load the magnetisation from the file vortex_m.h5, set a cur-

rent density with intensity 1012 A/m along the x axis and set the parameter

stopping_dm_dt to 0 degrees per nanosecond. With this choice the convergence

criterion will never be met. We finally run the simulation, saving all the fields

every 1 nanosecond and at the end of the simulation. The field averages are saved

every 50 picoseconds and at the end of the simulation. The simulation is forced

to last for a total of 10 nanoseconds. Note how the time constructs (at(...),

every(...)) can be combined together: the operator | (or) is used to specify that

“something” should be saved/done when at least one of the two given conditions

is met. The operator & (and) specifies that “something” should be saved/done

when both the two conditions are met (it is not used in this example). The thing

to save/do is specified via a string, such as fields, averages, exit. However,

the user can also provide an arbitrary function to be executed when the time

specification is matched, resulting in a considerable flexibility.

The components of the average magnetisation are plotted as functions of time for

the second sub-problem. The decaying sinusoidal behaviour of the three curves reflects

the spiralling motion of the vortex [67], which is induced by the sudden application of

the current.

5.5 Contributed extensions

Nmag has been designed and implemented by a team of people, including Hans Fangohr,

Thomas Fischbacher, Matteo Franchin, Giuliano Bordignon, Andreas Knittel, Jaceck

Generowicz, Michael Walter and James Kenny. Here we briefly list the work which was

done on Nmag while working on the project for this thesis.

• we implemented the local exchange coupling to model ferrimagnetic materials
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Figure 5.6: The magnetisation used as initial configuration for the first sub-simulation in the spin

torque standard problem.

Figure 5.7: The magnetisation at the end of the preliminary sub-problem. This is the initial

magnetisation used by the second sub-simulation. Notice that the magnetisation is everywhere in

plane, except near the center of the film, where the vortex sits.
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Figure 5.8: The plot shows the dynamic response of the average magnetisation to the applied current

density for the second sub-part of the standard problem. The solid lines show the results obtained with

the script discussed line-by-line in the text (Nmag). The unstructured mesh which was used consists

of 4536 points, 19215 simplices and has edge lengths between 1.66 and 4.71 nm. The circles show the

results obtained with M3S (a FD package [67]) and cell size 2× 2× 2 nm.

and DyFe2-YFe2 multilayers. This work was necessary for studying the exchange

spring systems of Ch. 6;

• we implemented the Zhang-Li extension to the Landau-Lifshitz-Gilbert equation

in order to model spin transfer torque effects in the systems. This feature was

necessary for the studies conducted in Ch. 6, 7 and 8;

• we contributed to the development of the Python interface of Nmag, focusing in

particular on the hysteresis and relax commands and the logic behind the at

and every constructs.

• we contributed to Nmag, by performing tests, fixing bugs and improving the

performance of the package;

• we improved the build system so that researchers in other groups can quickly

install Nmag on their computers. We also provided support to them.
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• we wrote the documentation for Nmag, contributing to the manual which can be

found online [68].

5.6 Summary

We have introduced the Nmag micromagnetic simulation package, explaining the moti-

vations behind the creation of this new software and describing briefly its main features.

We gave two examples of usage, including the corresponding source scripts and explain-

ing them line-by-line. The first example shows how to set up an hysteresis loop, while

the second shows how to produce the result for the recently published micromagnetic

standard problem including the spin transfer torque.
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Chapter 6

Exchange springs in multilayer

systems

6.1 Magnetic exchange spring systems

Exchange spring systems are nanocomposites of ferromagnetic materials with high

magnetic anisotropy (hard materials) and low magnetic anisotropy (soft materials),

exchange coupled across the interfaces between the two phases. Realisations of such

systems include the clustered structure (Fig. 6.1-a), where soft inclusions are randomly

dispersed inside the hard phase, and the multilayer structure (Fig. 6.1-b), made of

alternating hard and soft layers. In this thesis we discuss only multilayer structures

(thin films or nanopillars), which have simpler geometry and are easier to study. In

all their forms, exchange spring systems are characterised by the interplay between the

magnetic properties of the hard and the soft phases. Quite in general, hard materials

are characterised by a strong preference for the magnetisation to align along some pre-

ferred directions relative to the crystal lattice. On the other hand, in soft materials

the magnetisation easily aligns with the external applied field. When hard and soft

materials are put together in an exchange spring system, a peculiar physics emerges:

the magnetisation of the soft material tries to follow the applied field, except near the

hard-soft interfaces, where the hard-soft exchange coupling bounds its direction to the

direction of the hard magnetisation. As a consequence, the magnetisation of the soft

material responds to the applied field in a position-dependent way: it keeps a fixed

direction at the interfaces, and twists towards the applied field in the bulk. The soft

magnetisation here bends in a way which is proportional to the applied field. This

resembles a mechanical torsion spring, thus comes the name “exchange spring”. Many
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Figure 6.1: Exchange spring system in the form of a nanocomposite (a), where soft clusters are

embedded into the hard phase, and in the form of a multilayer film (b), made of alternating soft and

hard layers.

of the properties of such systems can be tuned by selecting suitable geometries and

compositions. For example, the size of the soft regions is usually quite important,

since a larger soft region usually corresponds to enhanced torsion of the soft magneti-

sation, as most of the soft material is far from the interfaces. On the other hand, if

the soft material has a high exchange coupling constant, then it is harder to twist its

magnetisation. The properties we have briefly presented so far make exchange spring

systems promising candidates for many technological applications. Studies in the liter-

ature have suggested that they could be used to obtain high densities in storage media,

while keeping acceptable writability and thermal stability [69]. They could also be

used as high-performance permanent magnets [70] or to develop GMR (Giant Magneto

Resistance) sensors [71].

We now discuss in more details how an exchange spring system reacts to an external

applied field, giving a visualisation of the process in a simple case. We consider the

system depicted in Fig. 6.2-a: a trilayer thin film made of one soft layer sandwiched

between two hard layers. Suppose the initial configuration is the one shown in the part

(a) of the figure: both the hard and soft magnetisations are pointing to the right. We

apply an external field ~Happ which is initially zero and then increases pointing to the

left. The system initially does not change its configuration and continues to stick to

the state shown in Fig. 6.2-a, even for non-zero values of the applied field, ~Happ. This

behaviour can be explained in the following way: the magnetisation of the soft layer

would like to align with the applied field, because a non-alignment has a cost in terms

of energy. At the same time, however, the alignment breaking is contrasted by the soft-

soft and the soft-hard exchange couplings, which prefer to keep the magnetisation of

the soft layer parallel to the fixed magnetisation of the hard layer.1 It turns out that the
1Remember that the strong anisotropy constrains the magnetisation to be fixed in the hard layers,
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Figure 6.2: A simple example of exchange spring system: one layer of soft magnetic material

sandwiched between two layers of hard material. The figure shows how the magnetisation reacts to

different intensities of the applied field ~Happ.

balance of these effects favours the completely aligned state (a), unless the applied field

exceeds a well determined threshold field Hb, the bending field. When this happens,

the situation changes as shown in Fig. 6.2-b. The magnetisation of the soft material

starts to bend near the center of the layer in a way which is somewhat proportional to

the applied field, while at the boundaries it stays aligned with the magnetisation of the

hard material, due to the strong exchange coupling. Finally, for fields large enough,

also the magnetisation of the hard layers switches to follow ~Happ and the resulting state

of the system is the one shown in Fig. 6.2-c, a mirrored image of Fig. 6.2-a, with the

magnetisations of all the layers pointing to the left. This intuitive description of the

behaviour of a typical exchange spring system has been better justified with simple

theoretical models [72]. We present an analytical study in the next section.

6.2 Analytical study of the static equilibrium configura-

tions

In this section we present an analytical investigation which validates the rough intu-

itive picture given in the previous section. We study the trilayer thin film with a one

dimensional model, thus neglecting the inhomogeneities of the magnetisation in the

plane of the film. We assume that the magnetic anisotropy of the hard material is

so strong, that the hard moments are — to a good approximation — rigidly pinned

at least for sufficiently small fields.
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along an easy axis direction. We also assume that the exchange coupling between hard

and soft moments is infinitely strong. These assumptions reduce the complexity of the

system, since the hard layers can be taken into account just by imposing a constraint

on the direction of the soft magnetisation at the soft layer boundaries. On the other

hand, they make the model unsuitable to describe the switching of the hard layers (the

transition from Fig. 6.2-b to Fig. 6.2-c).

We choose the reference frame as shown in Fig. 6.3, with the x axis along the out

of plane direction. The soft layer occupies the region 0 ≤ x ≤ L. Its magnetisation

Figure 6.3: Simple one dimensional model of an exchange spring system. The red arrows represent

the soft magnetisation and the two planes represent the hard-soft interfaces. The moments which lie in

there are rigidly pinned along the positive z direction, while the external field is applied in the opposite

direction.

~M = Msat ~m is defined only in this region and must satisfy the rigid pinning constraints:

~m(x = 0, L) = û,

where û is the direction of the hard moments in both the two external hard layers.

The applied magnetic field is assumed to be antiparallel to û. For simplicity, we chose

û = ẑ (see Fig. 6.3), but we stress that this choice is not determinant for the derivation

presented in this section.

We now write the energy, taking into account only the exchange coupling and the

interaction with the applied field and neglecting the demagnetising field,

U [~m] =
∫ L

0
dx
{
A (∂x ~m)2 + µ0MsatHapp ~m · ẑ

}
.

The same energy can be expressed in spherical coordinates, with û chosen as the polar

axis. Spherical coordinates have an important advantage with respect to cartesian
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coordinates: they allow to easily take the constraint ~m2 = 1 into account. The energy

of the system is then,

U [θ, φ] =
∫ L

0
dx
{
A (∂xθ)2 +A sin2 θ (∂xφ)2 + µ0MsatHapp cos θ

}
, (6.1)

and depends only on two variables: the azimuthal angle φ(x) and the polar angle θ(x).

The first two terms under the integral are the representation of (∂x ~m)2 in spherical

coordinates. The second term is the only one where φ appears, it is non negative

and becomes zero (and hence mimimum) when ∂xφ(x) = 0. We then can assume

∂xφ(x) = 0, when searching for energy minima, since there is no other choice of ∂xφ(x)

which can lower the energy,

U [θ, φ] =
∫ L

0
dx
{
A (∂xθ)2 + µ0MsatHapp cos θ

}
. (6.2)

6.2.1 Calculation of the bending field

We now prove that the state where the magnetisation is uniformly anti-parallel to the

applied field Happ, minimises the energy when Happ is lower than a critical value, the

bending field Hb. In order to do that, we show that the difference of energy between

a given state ∆θ(x) 6= 0 and the uniformly aligned state θ(x) = 0 is always positive,

when Happ ≤ Hb. Such an energy difference can be written as:

∆U = U [∆θ]− U [0] =
∫ L

0
dx
{
A (∂x∆θ)2 + µ0MsatHapp(cos ∆θ − 1)

}
,

where ∆θ(x) is chosen arbitrarily, but satisfies the rigid pinning requirement at the soft

layer borders: ∆θ(0) = ∆θ(L) = 0. We now notice that (cos ∆θ − 1) = −2 sin2 ∆θ
2 .

Moreover the inequality sinx < x, which is valid for x > 0, implies that sin2 x < x2,

for every real number x 6= 0. Consequently (cos ∆θ − 1) > − (∆θ)2

2 :

∆U >
µ0Msat

2

∫ L

0
dx
{
C (∂x∆θ)2 −Happ(∆θ)2

}
. (6.3)

Here we have introduced the quantity C = 2A/µ0Msat. We notice that, when ∆θ → 0,

the right hand side becomes a good approximation for the left hand side, since sin ∆θ →
∆θ. We now use the Fourier representation of ∆θ,

∆θ =
∞∑
n=1

cn sin
(πn
L
x
)
. (6.4)

The cosine components are omitted, because they are not compatible with the require-

ment ∆θ(0) = ∆θ(L) = 0. Substituting (6.4) in (6.3) and using the orthogonality
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property: ∫ L

0
dx sin

(
n
π

L
x
)

sin
(
m
π

L
x
)

=
L

2
δn,m,

∆U becomes:

∆U >
µ0MsatL

4

∞∑
n=1

c2
n

(
n2Hb −Happ

)
, (6.5)

where,

Hb = C
(π
L

)2
=

2A
µ0Msat

(π
L

)2
. (6.6)

When Happ ≤ Hb, the quantity (n2Hb−Happ) is non negative for n = 1 and positive for

n ≥ 2. Consequently ∆U = U [∆θ]− U [0] is positive. We conclude that U [∆θ] > U [0]

for every ∆θ 6= 0. In other words, the configuration θ(x) = 0 is a global energy

minimum, when Happ ≤ Hb. On the other hand, for Happ > Hb and ci = c δi,1 the

right hand side of Eq. (6.5) is negative, for every choice of the real constant c 6= 0. We

conclude that, above the bending field, the uniformly aligned configuration θ(x) = 0 is

not a local (nor global) energy minimum.

6.2.2 Equilibrium magnetisation above the bending field

In the previous section we proved that the configuration θ(x) = 0, which minimises

the energy when Happ ≤ Hb, is not a stable equilibrium configuration for Happ > Hb.

We now show that, in such a regime, the equilibrium magnetisation twists towards the

applied field. The derivation we present is similar to the one proposed by Goto et al. [73]

for a bilayer exchange spring system. The equilibrium magnetisation is calculated by

minimising the energy functional U [θ]. Such a minimisation is done using a conventional

variational approach: for a given θ(x), the variation δU = U [θ+δθ]−U [θ], is calculated

with δθ(0) = δθ(L) = 0. If the configuration minimises the energy, then δU = 0, for

every variation δθ:

0 = δU =
∫ L

0
dx {2A∂xθ ∂xδθ − µ0HappMsat sin θ δθ} .

Integration by parts on the first integrand leads to

0 = δU =
∫ L

0
dx
{
−2A∂2

xθ − µ0HappMsat sin θ
}
δθ.

Which should hold for any variation δθ and therefore:

∂2
xθ = −Happ

C
sin θ. (6.7)

This is the pendulum equation. It has one trivial solution, θ(x) = 0, which is — as

previously remarked — an unstable equilibrium configuration, in the regimeHapp > Hb.
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We then have to search for other non trivial solutions to this equation. Fortunately, the

pendulum equation is well known and its solution is derived and discussed in published

works [74]. In the case we are considering, it can be written as:

θ(x) = 2 arcsin[k sn(λx, k)], (6.8)

where,

λ =

√
Happ

C
=
π

L

√
Happ

Hb
,

and sn denotes the elliptic sine function. k can be obtained from the following relation:

π

2

√
Happ

Hb
= K(k) =

∫ π/2

0

dφ√
1− k2 sin2 φ

, (6.9)

where K(k) is called the complete elliptic integral of the first kind. We also have

k = sin θmax
2 , where θmax is the maximum bending angle, which is reached at the center

of the soft layer θmax = θ(L/2).

The analytical derivation presented in this section is checked against the results

of micromagnetic simulations carried out using Nmag. We study a system with soft

layer made of permalloy (Msat = 0.86 × 106 A/m, A = 13 × 10−12 J/m) and width

L = 20 nm. For such a system the bending field is calculated from Eq. (6.6) as

Hb = 0.594×106 A/m. We run a one-dimensional micromagnetic simulation increasing

the applied field from 0 to 4 × 106A/m. The increment ∆H is chosen to be smaller
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Figure 6.4: The z component of the magnetisation, averaged over the soft layer, as a function of

the applied field, which is expressed in units of Hb = 0.594× 106 A/m (as calculated from Eq. (6.6)).

The circle shows the configuration chosen for Fig. 6.5.
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near the bending field, in order to resolve better the high slope which is characteristic

of that region (see Fig. 6.4). The configuration obtained for Happ = 106A/m = 1.68Hb

is shown in Fig. 6.5, together with the analytical solution. To calculate the analytical

-20
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θ 
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)
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Analytic formula
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Figure 6.5: The configuration of the magnetisation (polar angle θ as a function of the position x)

for a trilayer exchange spring system as obtained analytically from equations (6.8, 6.9) (solid line) and

from a one-dimensional micromagnetic simulation performed using Nmag(crosses).

solution we first find k by solving Eq. (6.9). We then calculate θ(x), following Eq. 6.8.

This is done by a small C program which uses the open source GSL library [75] for

the calculation of K(k), sn(λx, k) and for the implementation of the bisection method.

The agreement between the numerical result and the analytical solution is excellent.

As a final remark, we notice that φ appears in the energy (6.1) only through ∂xφ.

As a consequence, the energy is invariant for transformations φ→ φ+ ∆φ. This means

that, if we rotate each magnetic moment around the pinning direction û (ẑ in the case

considered here) by the same angle ∆φ, the energy of the system does not change. We

then conclude that, when Happ > Hb, there are infinite states which equally minimise

the energy. In multilayer films, this symmetry is broken by the demagnetising field,

which favours in-plane directions for the magnetisation.

6.3 Computational study of the dynamics near the bend-

ing field

In the first part of the chapter we focused on the equilibrium configurations and on the

static properties of multilayer exchange spring systems. Now we move our attention to
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the dynamic properties. In particular, we study the magnetisation dynamics for values

of the applied field close to the bending field. One reason why we are so interested in

this regime for the applied field can be understood by looking at Fig. 6.4. Here we see

that the slope of the magnetisation is particularly high near the bending field, meaning

that a small increase in the applied field can cause a great reaction of the magnetisation.

In other words, near the bending field the system exhibits an amplified sensitivity to

external perturbations. This feature is desirable when studying spin transfer torque

phenomena, since it may help to reduce the current density required in order to obtain

significant effects. Studying the dynamics of exchange spring systems near the bending

field may then be relevant for technological applications. Moreover Brillouin light

scattering experiments have shown interesting properties near the bending field, where

the measured magnon frequency reaches a minimum value [76].

In this section we present computer investigations of a thin film made of one cen-

tral magnetically soft YFe2 layer sandwiched between two thinner magnetically hard

DyFe2 layers. We make such a peculiar material choice, because DyFe2-YFe2 multilayer

samples have been the subject of experimental investigation in our group. We study

the dynamical reaction of the system to small variations of the applied field and anal-

yse numerically its oscillatory nature. Part of the results we present in the following

sections have been published in the journal “IEEE Transactions on Magnetics” [54].

6.3.1 DyFe2-YFe2 multilayers

Three different kinds of atoms are present in DyFe2-YFe2 multilayers: one rare earth

metal, Dy, and two transition metals, Fe and Y. The yttrium has negligible magnetic

moment: only the iron moments contribute to the magnetisation of the soft YFe2 layers.

Conversely, in the hard layers, both the atomic species of the DyFe2 compound give

a relevant contribution to the magnetisation. At the temperature we consider here,

T = 100K, DyFe2 is a ferrimagnet, because the magnetic moment of iron is lower and

antiparallel to the moment of dysprosium. The magnetisation dynamics in the trilayer

system is determined mainly by the following interactions:

• in the DyFe2 layers, a strong magnetocrystalline cubic anisotropy tries to keep

the Dy moments along one easy axis direction;

• in the DyFe2 layers, a strong antiferromagnetic Fe-Dy exchange coupling tries to

keep the iron moments antiparallel to the Dy moments;

• in all the three layers, an even stronger [77] Fe-Fe exchange coupling opposes to
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any spatial variation of the Fe magnetisation;

• the magnetostatic field tries to keep the magnetisation in the plane of the film.

The Dy-Dy exchange coupling is rather weak, due to the localisation of the magnetic

orbitals (4f) of Dysprosium, and we ignore it. The typical configuration of the mag-

netisations of Fe and Dy, when there is no applied field, is shown in Fig. 6.6.

Figure 6.6: The Dy and Fe components of the magnetisation in a DyFe2-YFe2 multilayer exchange

spring system. Dy moments (black arrows) are pinned along an easy axis direction, while Fe moments

(red arrows) are forced to align along the opposite direction, due to the strong Dy-Fe antiferromagnetic

exchange coupling.

We emphasise that the Fe-Fe exchange coupling occurs also across the boundary

surfaces between the layers and thus affects the iron moments throughout all the sample.

Indeed, the iron moments may be thought as belonging to a unique homogeneous crystal

lattice which extends over all the three layers. Such a picture is justified by the similarity

between the crystal lattices of DyFe2 and YFe2. In particular the two materials have

the same lattice structure and almost the same size of primary cell (at temperature

T = 4.2 K, the lattice constant is 0.7363 nm for YFe2 and 0.7325 nm for DyFe2 [78]).

The main difference between the two materials is that Dy atoms in DyFe2, are replaced

with Y atoms in YFe2. The computational model which we present in the next section

exploits this peculiar characteristic of DyFe2-YFe2 multilayer systems.

Finally, it should be noted that DyFe2-YFe2 multilayers are usually grown by molec-

ular beam epitaxy over a substrate. In such samples the different thermal dilatation of

the layers with respect to the substrate is the source of a strain in the layers. The strain

produces a magnetic anisotropy whose strength increases with temperature. However,

for temperatures around and below ≈ 100 K, this effect is weak [79] and we neglect it.

More details about the chemistry, the lattice structure and the magnetic properties of

these systems can be found in the provided references [72, 80, 77, 81].
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6.3.2 Computational model

We represent the configuration of the magnetic moments in the system with two contin-

uous magnetisation fields ~MDy(x) and ~MFe(x), defined over the one-dimensional space:
~MDy is the moment density of Dy atoms in DyFe2 and ~MFe is the moment density of Fe

atoms in DyFe2 and YFe2. Their norms are MDy = ‖ ~MDy‖ and MFe = ‖ ~MFe‖, which at

the temperature of 100 K are MDy = 1.73×106 A/m and — for both DyFe2 and YFe2—

MFe = 0.55×106 A/m. As remarked in the previous section, the assumption of continu-

ity of MFe is supported by the fact that the iron sublattices in DyFe2 and in YFe2 have

the same structure and similar lattice constants, making the density of iron moments

almost identical in the two materials. This feature allows to use the same equation of

motion for ~MFe in all the three layers. The Brown’s theory of micromagnetics is used

to derive the effective fields acting on ~MDy and ~MFe:

~HDy = ~Happ + ~Hd + ~Hanis + (J/µ0) ~MFe,

~HFe = ~Happ + ~Hd + ~Hexch + (J/µ0) ~MDy.

The applied field acts on both dysprosium and iron. ~HDy also receives a cubic anisotropy

contribution, whose three axes are shown in Fig. 6.7. The three coefficients used in the
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Figure 6.7: Orientation of the anisotropy axes of the DyFe2 layers with respect to the plane of

the film. In the chosen reference frame the axis are ~a1 = (1, −1, 0)/
√

2, ~a2 = (1, 1, 0)/
√

2 and

~a3 = ~a1 × ~a2 = (0, 0, 1).

anisotropy expansion [82] are K1 = 33.9 × 106 J/m3, K2 = −16.2 × 106 J/m3 and

K3 = 16.4 × 106 J/m3. The iron experiences an exchange field ~Hexch = 2A
µ0MFe

∇2 ~mFe,

where A = 1.46 × 10−11 J/m is the exchange coupling constant, µ0 is the free space

permeability and ~mFe = ~MFe/MFe. The dipolar field is taken into account in the limits

of the one dimensional model and is calculated as ~Hd = −Mxx̂, where Mx is the out-

of-plane component of the total magnetisation field and x̂ is the unit vector which

points towards the positive x direction. This contribution evidently tries to reduce the

surface magnetic charges, pulling the magnetisation into the plane of the film. The
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Dy-Fe coupling is modeled by an extra energy term U = J
∫
~MDy · ~MFe dz, where

J = 2× 10−4 N/A2 is the coupling constant [77] and the integral is done over the hard

layers, where both magnetisations are defined. The Landau-Lifshitz-Gilbert equation

is then used to calculate the dynamics of the two magnetisations.

The unidimensional model is a severe approximation for a description of the switch-

ing processes, where domain walls can form and play an important role, but for our

investigation near the bending field the model should be quite accurate.

6.3.3 Results

For the simulations we use Nmag, the micromagnetic simulation package developed

by our group [68], choosing the first order FEM to discretise the space. The mesh is

a unidimensional lattice with constant spacing ∆x: the whole meshed region (which

is 20 nm wide) is subdivided into 162 cells of identical size, corresponding to 163

nodes with spacing ∆x = 20/162 ≈ 0.123 nm. This peculiar discretisation choice

guarantees that each hard-soft boundary lies exactly at the middle of a discretisation

cell (and thus “belongs” equally to both the soft and the hard layers), giving a more

accurate representation of the geometry of the system and of the soft layer width,

which is important in determining the bending field (see Eq. 6.6). We first calculate

the hysteresis loop of the sample covering a wide range for the applied field ~Happ: from

−60 T to 60 T (see Fig. 6.8). ~Happ is directed along the z axis. To avoid the system to

be trapped in an unstable equilibrium configuration, we follow the standard practice

of adding a small constant deviation to the applied field:

~Hdev = (1, 1, 0)× 0.005 T. (6.10)

The high switching field (around 55 T) represents a clear manifestation of Brown’s

paradox and the inadequacy of the one dimensional model to describe the switching

of the hard layers. In this study, however, we are not concerned with this, since we

are exploring a low-field region near the bending field, where the unidimensional model

should be rather accurate. The bending field has been located around Hb ≈ 3.95 T (for

details about how this value has been obtained take a look at the caption of Fig. 6.8).

A calculation from formula (6.6) yields Hb = 5.25 T. We will see in the next sections,

that such a difference is due to the non-infinite strength of the pinning in the hard

layers.

After these preliminary calculations we start the main simulation. We prepare the

system in the configuration where ~MFe lies in the plane of the film and points along the
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the vicinity of the bending field, Hb ≈ 3.95 T. This value has been obtained by fitting the data in the
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Figure 6.9: Top: The trajectories of 〈 ~MFe〉 for Hn = 3.50, 3.80, 3.90 T. They show how equilibrium

is restored when the field is changed from Happ = Hn + ∆H to Happ = Hn. Only the trajectories with

α = 0.02 are shown. Notice the different scales used for the two axes. Bottom: The x component of

〈 ~MFe〉 is also plotted as a function of time for ~Happ = 3.90 T together with the fitted curve.

positive z axis, while ~MDy points along the opposite direction (see Fig. 6.6). This is an

equilibrium configuration when the applied field ~Happ is zero, which is the situation we

choose to start with in our simulation. To study a certain applied field ~Happ = −Happ ẑ

we use a two stage method. We first set the applied field to Happ = Hn+∆H, where ∆H

is a small perturbation, and run a simulation with a high damping parameter, α = 0.5,

to quickly determine the equilibrium magnetisation configuration. Then, starting from

this very same configuration, we set Happ = Hn, thus removing the perturbation in

the applied field, and run the second simulation, using — this time — a realistic value

for the damping parameter, α = 0.02. The trajectory of the mean magnetisation

〈 ~M〉, through which the new equilibrium is restored, is then studied carefully. This

procedure is repeated for many values of Hn. In particular ~Happ = −Happ ẑ points

along the negative z direction with intensity Happ in the range from 0 to 12 T. We

use more values of ~Happ near the bending field, to better resolve the behaviour of the

system in that region. For all the considered applied fields we use the same value of

∆H = 0.01 T. It should be noted that we do not know precisely the value of the

damping constant for YFe2 and DyFe2. Here we use the same value, α = 0.02, for both

the compounds.

A piece of the 〈 ~MFe〉 trajectory, projected in the yx plane, is shown in Fig. 6.9

(top). The shape of these curves are all similar one to the other: they are spirals
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compressed along the out-of-plane x-direction. The graph shows only a few trajectories

for Happ < Hb. For higher fields the spirals become much wider. In Fig. 6.9 (bottom)

the x-component of the mean magnetisation is plotted as a function of time for the

case Happ = 3.90 T, just below the bending field. We fit these results to the equations

of motion for a damped harmonic oscillator:

Mx(t) = Mx,0 + ∆Mx e
−λxt cos(ωx(t− t0) + ϕx),

My(t) = My,0 + ∆My e
−λyt cos(ωy(t− t0) + ϕy).

(6.11)

We analyse the trajectories individually, to extract the frequencies, the decay times

and the amplitudes of the oscillations produced as a reaction to the small perturbation

∆H. Fig. 6.10 collects the results of the fits. The corresponding curves match closely

the data. An example is shown in Fig. 6.9. The graphs in Fig. 6.10 show clearly that

near the bending field the dynamical reaction of the system is amplified: the same

perturbation ∆H produces wider oscillations with smaller frequency and which last

longer (higher decay time λ−1). The plot of the frequencies shows a minimum near

Hb and a qualitative behaviour which is consistent with previous experimental and

theoretical results [76]. The amplitudes, whose magnitude depends on the value chosen

for ∆H, show an interesting feature: the shapes of the spiral trajectories (Fig. 6.9)

change with the applied field, being elongated in the in-plane y direction for Happ � Hb

and in the out-of-plane x direction for Happ � Hb. We conclude2 that below the

bending field the out of plane direction is “harder” than the in plane direction (meaning

that moving along that direction has a greater energy cost), while, above the bending

field, it becomes “softer”.

6.4 Analytical study of the dynamics near the bending

field

We now present analytical studies of the system which was investigated with computer

simulations in the previous section, with the aim to understand and support the ob-

tained results. We begin with introducing a first simple calculation, which is later

extended gradually by more general and complex models. Such a presentation reflects

the way the theory was actually derived.
2If α = 0, the magnetisation moves on a constant-energy trajectory (which is likely to be an ellipse,

in this case). If 0 < α � 1, this is not exactly true (the ellipse becomes a spiral), but still the

magnetisation moves preferentially towards “soft” directions.
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In particular we present a linearisation of the Landau-Lifshitz equation, which also

includes the effects of an electric current flowing in the out of plane direction. The

derivation leads to an expression for the trajectory of the magnetisation of the soft

layer, which is valid only for values of the applied field below the bending field. We

also get to a new formula for the bending field, which takes into account the penetration

of the exchange spring inside the hard layers (finite pinning in the hard layers).

6.4.1 The infinite pinning model

As a first step, we assume infinitely strong pinning of the Dy magnetisation in the hard

layers and infinitely strong antiferromagnetic coupling between Fe and Dy moments.

This means that, inside the hard layers, both the magnetisations of iron and dysprosium

do not change in time. In particular, if the Fe moments are rigidly aligned along the

positive z direction (z is an easy axis), then the Dy moments are aligned in the opposite

direction, as shown in Fig. 6.6. We can then neglect what happens inside the hard

layers and focus on the soft layer. Since only the magnetisation of iron plays a role in

the dynamics, we denote it simply by ~M ≡ ~MFe. The configuration of the system is

then fully described by just one vector field ~M(x, t) defined for x ∈ [0, L], with

~M(x, t)/Msat = ẑ, x = 0, L. (6.12)

The model is then very similar to the one which, in section 6.2, was used to study the

static equilibrium configurations of a simple trilayer exchange spring. The dynamics

of ~M is governed by the Landau-Lifshitz equation (2.3). If we neglect the damping

processes we can rewrite it as:

∂tM̂ = −γ′ M̂ × ~H, (6.13)

where M̂ = ~M/Msat and ~H = C ∂2
xM̂ + ~Happ. Here we neglect the demagnetising field

and the corresponding shape anisotropy. We now show that one solution to (6.13) has

the simple form:

~M =
(
M⊥ cosωt sin

(
π
x

L

)
,M⊥ sinωt sin

(
π
x

L

)
,M‖

)
. (6.14)

This can be done by replacing (6.14) into (6.13). To do this, we first calculate the

exchange field ~Hexch = C ∂2
xM̂ :

~Hexch = − C

Msat

(π
L

)2
sin
(
π
x

L

)
(M⊥ cosωt,M⊥ sinωt, 0)

= −C
(π
L

)2
(
M̂ − ẑ

M‖

Msat

)
.
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Then we replace it into Eq. (6.13):

∂tM̂ = −γ′ M̂ ×
[
~Happ − C

(π
L

)2
(
M̂ − ẑ

M‖

Msat

)]
.

Considering that M̂ × M̂ = 0 and that ~Happ = −Happ ẑ, this equation becomes:

∂tM̂ = −γ′ M̂ × ẑ
[
C
M‖

Msat

(π
L

)2
−Happ

]
.

∂tM̂ can be calculated by taking the time derivative of Eq. (6.14), which gives ∂tM̂ =

−ω γ′ M̂ × ẑ. Substituting this in the previous equation, we get to the condition:

ω = γ′
∣∣∣∣Happ − C

M‖

Msat

(π
L

)2
∣∣∣∣ .

We recognise the bending field Hb = C
(
π
L

)2 and rewrite this equation as

ω = γ′
∣∣∣∣Happ −

M‖

Msat
Hb

∣∣∣∣ .
Below or near the bending, field M‖ ≈Msat and

ω ≈ γ′ |Happ −Hb| . (6.15)

This equation gives us the value that ω should have in order for Eq. (6.14) to be

a solution of Eq. (6.13). We notice that there are other solutions to Eq. (6.13).

In particular, if we replace sin(xπ/L) with sin(xnπ/L) for n = 1, 2, . . ., we get to

solutions corresponding to higher values of ω and higher energy (since to greater values

of n corresponds a stronger spatial variation of the magnetisation and hence a higher

exchange energy). Eq. (6.15) says that the frequency should decrease linearly with

Happ and vanish exactly for Happ = Hb, which is qualitatively the behaviour observed

in Fig. 6.10. From a quantitative point of view, fitting the data of this same figure

with Eq. (6.15), for Happ < 3.9 T, yields:

γ′|fit = (2.280± 0.015)× 105 m/(As), Hb|fit = (4.212± 0.017) T.

The result of the fit is shown in Fig. 6.11. γ′|fit agrees reasonably well with the value

used in the simulations, γ′ = 2.210×105 m/(As). Concerning the bending field Hb, the

fit leads to a value, Hb|fit = 4.212 T, which is sensibly smaller than the one calculated

from formula (6.6), Hb = 5.25 T, suggesting that the rigid pinning assumption may

be quite a rough approximation. There are two other remarks to make. First, the

frequency ω(Happ) does not seem to vanish at the bending field, as can be deduced
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Figure 6.11: The data in the graph on the top of Fig. 6.10 is fitted against Eq. (6.15) below the

bending field. Notice that the line intersects the horizontal axis in Hb|fit, which is visibly greater than

the value for which the frequency is minimum: the fit overestimates the bending field.

by looking at where the red line from the fit intersects the horizontal axis in Fig.

6.11. Such a disagreement is likely to be due to neglecting the demagnetising effects

in the analytical model. Indeed, the reason why the frequency vanishes at the bending

field is because the applied field perfectly compensates the “alignment” action of the

exchange coupling. Such compensation allows the magnetisation to freely move out of

the alignment direction, i.e. the z axis. In the numerical model, however, there is an

additional binding effect which cannot be compensated just by applying a field along

the z direction: this is the demagnetising field, which acts by pulling the magnetisation

in the plane of the film. When the magnetisation tries to rotate out of the alignment

direction, it experiences such a shape anisotropy and is hence pulled back into the plane

of the film. As a consequence, the magnetisation precesses with positive frequency even

at the bending field. A second thing to notice is the disagreement between Hb|fit and

the value Hb = 3.95 T which was deduced in the caption of Fig. 6.8: apparently, the

fit of Fig. 6.11 overestimates the bending field. This deviation is likely to be another

consequence of neglecting the demagnetising effects in the analytical model. Indeed,

from Fig. 6.11, we see that the non vanishing value of ω(Happ = Hb) causes the fitted

line to intersect the horizontal axis above the value of Happ for which ω is minimum.

6.4.2 The pinning field model

The infinite pinning model discussed in the previous section neglects the characteristics

of the hard layers. In particular, the exchange spring is confined inside the soft layer,
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by imposing infinite pinning and hence the rigidity of the magnetisation in the hard

layers. In this section, we present a more general model, where the strength of the

pinning in the hard layers is finite. The model we employ is again a single field model:

we neglect the dysprosium magnetisation and assume that the iron magnetisation is

defined and has homogeneous properties throughout all the three layers. This means

that we treat the trilayer system as if it were a monolayer system, made only of soft

material. The only difference between the central soft layer and the two external hard

layers lies in the applied field Happ. Indeed, we assume that ~Happ(x) = −Happ(x) ẑ ,

with

Happ(x) =

{
H0 for |x| < L/2

H0 −HP for |x| ≥ L/2
,

and the reference frame is chosen as in Fig. 6.6. Inside the soft layer the iron magneti-

sation experiences only the external field ~Happ = −H0 ẑ, while inside the hard layers a

fictitious pinning field HP is introduced to keep the iron magnetisation aligned along

the positive z direction, ~Happ = (HP−H0) ẑ with HP > H0 > 0. Modeling the pinning

in such a way may seem artificial, but in the next sections we show that this approach

is actually general enough to capture most of the physics of the DyFe2-YFe2 trilayer

system for applied fields below the bending field. We can now write down the equation

of motion (2.3) for the Fe magnetisation, the Landau-Lifshitz equation:

− 1
γ′
∂tM̂ = M̂ × ~H + α M̂ × (M̂ × ~H). (6.16)

We notice that there is an “ambiguity” in the choice of ~H[M̂ ], which stems from the

property M̂×M̂ = 0. In particular, ~H[M̂ ] can be replaced with ~H[M̂ ]+λ M̂ , obtaining

an equivalent equation, for any real number λ. Here we choose λ = −M̂ · ~H and define
~h[M̂ ] = ~H[M̂ ] − M̂ (M̂ · ~H[M̂ ]). This choice guarantees that ~h is orthogonal to M̂ ,

which lets us rewrite (6.16) as

− 1
γ′
∂tM̂ = M̂ × ~h− α~h, (6.17)

where we used the well known identity ~A×( ~B× ~C) = ~B ( ~A· ~C)− ~C ( ~A· ~B). This equation

is still rather difficult to solve analytically. Fortunately, below the bending field, the

equilibrium configuration is very simple: M̂ is just aligned uniformly along the positive

z axis. A linearisation may then be employed in order to study the magnetisation dy-

namics near equilibrium. This is a procedure which is often used in magnetic resonance

(MR) studies to find the resonance frequency for the interaction of an electromagnetic

wave with the magnetisation of a ferromagnetic material [83, 84].
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Linearising the Landau-Lifshitz equation is a rather simple task. First, we assume

that the magnetisation configuration M̂ slightly deviates from the equilibrium config-

uration M̂0:

M̂ = M̂0 + ~R, ‖~R‖ � 1.

This expression can then be substituted in Eq. (6.17):

− 1
γ′
∂t ~R = M̂0 × ~h+ ~R× ~h− α~h. (6.18)

We notice that O(‖~h‖) = O(‖~R‖). We can prove it easily expanding ~h[~R] in Taylor

series and observing that ~h[~R = 0] = 0. This must necessarily happen, because ~h[~R = 0]

is the component of ~H[M̂0] orthogonal to M̂0, which must be zero for M̂0 to be an

equilibrium configuration (the torque M̂0 × ~H[M̂0] is zero at equilibrium). We then

conclude that the second term in the right hand side of (6.18) has order O(~R2) and

can be neglected. With this approximation one obtains

∂t ~R = −γ′ M̂0 × ~h+ γ′ α~h. (6.19)

This equation can now be applied to our specific case, for which M̂0 = ẑ:
∂trx = γ′(αhx + hy)

∂try = γ′(αhy − hx)

∂trz = hz = 0

, (6.20)

where ~R = (rx, ry, rz) and ~h = (hx, hy, hz). hz = 0, because ~h is orthogonal to M̂0 = ẑ

at the first order in ~R. This formula can be written again in vectorial notation:

∂t ~R = γ′(α+ J)~h, (6.21)

where the scalar α should be interpreted as α I and I is the identity matrix while J is

the following square matrix:

J =

(
0 1

−1 0

)
. (6.22)

Here and in the next formulas we omit the third component of vectors and the third

row/column of matrices. Indeed, the problem we are considering is effectively a two

dimensional problem. We now consider the effective field ~h, which receives contributions

from the applied field and from the exchange field. We have to remember that ~h =
~H − ( ~H · M̂) M̂ , where ~H = C ∂2

xM̂ + ~Happ = C ∂2
x
~R −Happ ẑ. Applying this formula

and neglecting terms of order ~R2, we find ~h = C ∂2
x
~R+Happ

~R, which substituted inside

(6.21), gives:

∂t ~R = γ′(α+ J)(C ∂2
x +Happ)~R. (6.23)
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6.4.3 The solutions

Equation (6.23) can be diagonalised, transforming ~R = D ~D, where:

D =
1√
2

(
1 −i
−i 1

)
, D−1 =

1√
2

(
1 i

i 1

)
, (6.24)

Making this substitution in equation (6.23),

∂t ~D = γ′(α+ D−1JD)(C ∂2
x +Happ) ~D,

where,

D−1JD =

(
−i 0

0 i

)
.

Then, if ~D = (d+, d−), we have

∂td± = γ′(α∓ i)(C ∂2
x +Happ)d±. (6.25)

For now, we again consider the case of infinite pinning in the hard layers and try to

find a solution with the same spatial dependency used in Eq. (6.14). In particular,

we take d±(x, t) = T±(t) sin(xπ/L), where T±(t) contain the time dependence of the

solution. We then get to:

∂td± = ω(−α± i)d±, (6.26)

and ω = γ′(C (π/L)2 −Happ). The solutions of these two independent equations are:

d+(x, t) = d+,0 e
−αωt+iωt sin

(π
L
x
)
, d−(x, t) = id−,0 e

−αωt−iωt sin
(π
L
x
)
,

and,

~R = D ~D =
e−αωt√

2

(
d+,0 e

+iωt + d−,0 e
−iωt,

−i(d+,0 e
+iωt − d−,0 e−iωt)

)
sin
(π
L
x
)
.

Requiring ~R to be real for all the possible values of t one obtains the condition d+,0 =

R0e
iϕ/
√

2 and d−,0 = R0e
−iϕ/
√

2 for two given real constants R0 and ϕ. The solution

then becomes:

~R(x, t) = R0 sin
(π
L
x
)
e−αωt (cos(ωt+ ϕ), sin(ωt+ ϕ)) , (6.27)

which can be integrated in space to obtain the time dependence of the spatially averaged

magnetisation:
〈Mx(t)〉 = M0 e

−αωt cos(ωt+ ϕ),

〈My(t)〉 = M0 e
−αωt sin(ωt+ ϕ).

(6.28)
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This result confirms that the average magnetisation approaches equilibrium by moving

in spiral trajectories, as was assumed in Eqs. (6.11). In particular, comparing the two

pairs of equations we notice that:

• in Eqs. (6.11) we chose to have independent amplitudes ∆Mx and ∆My for

the x and y oscillations. The fits led to quite different values for Mx,0 and My,0,

meaning that the spirals are compressed more along one direction rather than the

other. On the other hand, the theoretical trajectories from Eqs. (6.28) do not

exhibit such a compression. This discrepancy between theory and simulations is

likely to be due to omitting the shape anisotropy (i.e. the demagnetising field) in

the theoretical description. Indeed, in the simulation the demagnetising field tries

to keep the magnetisation in the plane of the film by compressing the trajectories

in the out of plane direction. In the theoretical description, the demagnetising

field is not taken into account and hence such a compression is not observed.

• the spirals of Eqs. (6.28) are centered around the point (0, 0), while for the

simulated trajectories we found nonzero values of Mx,0 and My,0. This is not

surprising, since the applied field in the simulations is not perfectly aligned along

the z direction (remember the deviation introduced with Eq. (6.10)).

Eq. (6.28) contains however other interesting results. First, it confirms that, below the

bending field, the frequency can be written as ω = γ′(Hb−Happ), where Hb = C
(
π
L

)2.

This is not a new result: it was already derived in the previous section using a simpler

model. There is however a new important result: we see from Eq. (6.28) that the

parameter λ introduced in Eqs. (6.11) (as λx and λy) is related to the frequency ω by

the following formula:

λ = αω. (6.29)

We check the correctness of this relation by plotting the values of λx obtained by the

fits of Fig. 6.10 together with the values ωx multiplied by α. If Eq. (6.29) is correct,

then the two curves should lie one over the other. This is what we did in Fig. 6.12.

We conclude the section pointing out that the theoretical results which we have

obtained are meaningful only when Happ < Hb. For greater values of the applied

field, λ becomes non-positive with the consequence that the magnetisation does not

approach the configuration M̂0 = ẑ as t → +∞. In these cases we can only conclude

that the magnetisation leaves the configuration M̂0 = ẑ to approach another different

equilibrium configuration.
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Figure 6.12: λx and αωx are plotted in the same graph in order to check the relation λ = αω derived

in the text. The two curves match rather well for values of the applied field below the bending field,

as predicted by Eq. (6.29). The graph uses the same data as in Fig. 6.10.

6.4.4 Spin transfer torque contributions

In the previous sections we have studied the dynamics in a three layer exchange spring

system. We have seen that the soft magnetisation exhibits an enhanced sensitivity

near the bending field. In particular, the same small increment of applied field leads to

oscillations whose amplitude is maximum when the applied field is close to the bending

field, as shown in Fig. 6.10. We anticipated at the beginning of Sec. 6.3, that such a

behaviour may be desirable when studying spin transfer torque effects. Indeed, greater

amplitude for the same external stimulus means also weaker external stimulus to get

to the same amplitude. In other words, enhanced magnetisation reaction may allow us

to use lower current densities to obtain the same effect on the magnetisation dynamics.

Such a characteristic is particularly important, since one major difficulty in building

spin transfer torque devices lies on the excessive current density which is often required

to obtain significant effects.

In this section we include spin transfer torque effects in the linearised model that

we have presented previously in the chapter. In particular we linearise Eq. (3.13),

the Landau-Lifshitz equation with the inclusion of the Zhang-Li terms. The system

is the three layer exchange spring system which we have considered in the previous

sections, with the difference that a current is now assumed to flow in the out of plane

direction. We treat the trilayer as if it were made of just one material and assume

that the electron and spin transport properties are homogeneous throughout all the

three layers. This assumption relies on the fact that the iron sublattices of YFe2 and
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DyFe2 have almost identical structure and lattice constant and that the yttrium and

dysprosium sublattices are not playing any role with respect to the electron transport

phenomena.

The equation we want to linearise is now Eq. (3.13), which we rewrite as:

∂tM̂ = −γ′M̂ × ~HP − γ′M̂ × (M̂ × ~HD), (6.30)

where we have defined the two fields ~HP and ~HD as:

~HP = ~H +
av′

γ′
∂xM̂,

~HD = α ~H +
av′

γ′
∂xM̂.

A straightforward generalisation of equation (6.21) is then:

∂t ~R = γ′
(
~HD + J ~HP

)
, (6.31)

and:

~HP = C ∂2
x
~R+

av′

γ′
∂x ~R+Happ

~R,

~HD = αC ∂2
x
~R+

av′

γ′
∂x ~R+ αHapp

~R.

The form of equation (6.31) is very similar to the form of equation (6.21) and a similar

strategy can be followed to find the solutions. The same transformation ~R = D ~D then

leads to an equation similar to (6.25):

∂td± = −
[
γ′C(−α± i)∂2

x + v′(−a± i a)∂x + γ′Happ(−α± i)
]
d±. (6.32)

Defining γ′C(−α±i) = c±, (−a±i a) = 2b± c± (1+α2) (consequently b± = (ξ±i)/2γC)

and U(x) = −Happ(x)/C, this equation becomes:

∂td± = c±
(
−∂2

x − 2b±v ∂x + U
)
d±.

We conclude that d+ and d− obey two equations with the same form, but different

coefficients. We therefore have only to study the following equation:

∂td(x, t) = cS d(x, t), where S = −∂2
x − 2bv ∂x + U(x). (6.33)

This equation if formally very similar to the Schrödinger equation. Actually, when j =

0, Eq. (6.33) becomes identical to the Schrödinger equation, with just one difference.

While in the Schrödinger equation c is −i/~, a pure complex number, in Eq. (6.33)
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c is γ′C(−α ± i) and has non-vanishing real and complex parts. As a consequence,

while the Schrödinger equation gives rise to a time evolution which preserves energy,

Eq. (6.33) leads to dissipation of energy, unless the real part of c, Re c = −γ′Cα and

hence the damping, α, is zero! We will return on this point in the next section.

The similarities which Eq. (6.33) has with the Schrödinger equation suggest that we

may be able to use a formalism analogous to the one of quantum mechanics in order to

deal with it: its solutions may be easily found once the eigenfunctions of the operator S

are known. Unfortunately, when j 6= 0, this operator is not Hermitian and therefore its

eigenvalues are not guaranteed to be real numbers. Moreover the term 2bv ∂x is not real

and consequently the eigenfunctions of S cannot be chosen to be real functions of space.

Fortunately the problem of finding the eigenvalues/eigenfunctions of the operator S

can be trivially related to the problem of finding the eigenvalues/eigenfunctions of an

Hermitian operator S0:

Theorem. s0(x) is an eigenfunction of the operator S0 = −∂2
x+U(x), with eigenvalue

σ0, if and only if s(x) = e−bv x s0(x) is eigenfunction of S = S0−2bv ∂x with eigenvalue

σ = σ0 + (bv)2.

Proof. First, we calculate ∂xs(x) and ∂2
xs(x) for an arbitrary (well behaved) function

s0(x) and s(x) = e−bv x s0(x),

∂xs(x) = e−bv x (∂xs0(x)− bvs0(x)) ,

∂2
xs(x) = e−bv x

(
∂2
xs0(x)− 2bv∂xs0(x) + (bv)2s0(x)

)
,

which are used to calculate S s(x),

S s(x) = e−bv x
(
−∂2

x + (bv)2 + U(x)
)
s0(x)

= e−bv x
(
S0 + (bv)2

)
s0(x). (6.34)

We now deal with the forward implication and assume s0(x) is an eigenfunction of S0

with eigenvalue σ0. Eq. (6.34) then becomes:

S s(x) = e−bv x
(
σ0 + (bv)2

)
s0(x)

=
(
σ0 + (bv)2

)
s(x),

which proves that s(x) is eigenfunction of S with eigenvalue σ = σ0 + (bv)2. We

now deal with the backward implication and assume that s(x) is eigenfunction of S

with eigenvalue σ. We can then substitute the left hand side of Eq. (6.34) with

σ s(x) = σ e−bv x s0(x), obtaining:

σ e−bv x s0(x) = e−bv x
(
S0 + (bv)2

)
s0(x).
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Simplifying the exponential and rearranging the terms, we get S0 s0(x) = σ0 s0(x).

This result simplifies considerably the problem of finding eigenvalues of S, since it

states that they are in a one-to-one correspondence with the eigenvalues of S0, which

is an Hermitian operator.

6.4.5 The energy in the linearised model

The parallelism between the formalism of quantum mechanics and the one we are

developing here is striking. One is tempted to think to S as the reduced3 Hamiltonian

of the system and to calculate the reduced energy as 〈 ~D | S | ~D〉. This obviously would

not make sense, since S is not Hermitian, but what about S0? In this section we try to

understand better the meaning of these operators and their relationship with the total

energy of the system.

The total energy of the system, when there is no current travelling through it, is:

E[M̂ ] = µ0Msat

∫ +∞

−∞
dx
[
C

2
(∂xM̂)2 − M̂ · ~Happ

]
.

In our case ~Happ = −Happ(x) ẑ. Moreover M̂2 = 1 and hence ∂xM̂2 = 2M̂ · ∂xM̂ = 0.

A further differentiation leads to: 0 = ∂x(M̂ · ∂xM̂) = (∂xM̂)2 + M̂ · ∂2
xM̂ . We then

can write:

E[M̂ ] = µ0Msat

∫ +∞

−∞
dx
[
−C

2
M̂ · ∂2

xM̂ +Happ(x) (M̂ · ẑ)
]
.

Now we remember that ~R was defined such that M̂ = M̂0 + ~R, where M̂0 = ẑ is the

equilibrium configuration for the magnetisation. In particular from 1 = M̂2 = (ẑ+ ~R)2,

we get ẑ · ~R = −~R2/2 and we can write:

E[~R] = const.+ µ0Msat

∫ +∞

−∞
dx

[
−C

2
M̂ · ∂2

x
~R−Happ(x)

~R2

2

]
.

Since the energy is defined up to a constant, we omit the (infinite) constant in what

follows. We now replace −Happ(x) = C U(x), coherently with the previous definition of

U . We also notice that M̂ · ∂2
x
~R = (ẑ+ ~R) · ∂2

x
~R, where ẑ · ∂2

x
~R = ∂2

x(ẑ · ~R) = −∂2
x
~R2/2,

which gives zero contribution, if we assume ~R2 → 0 and ∂x ~R
2 → 0 for x → ±∞. We

then obtain:

E[~R] = µ0Msat
C

2

∫ +∞

−∞
dx
[
−~R · ∂2

x
~R+ U(x) ~R2

]
,

3If Hψ(x) =
“
− ~2

2m
∂2
x + V (x)

”
ψ(x) = Eψ(x) is the time-independent Schrödinger equation of a one

dimensional particle of mass m and A = ~2/2m, we call H/A, U(x) ≡ V (x)/A and ε = E/A reduced

Hamiltonian, reduced potential and reduced energy respectively.
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which can be expressed as:

E[~R] = µ0Msat
C

2

∫ +∞

−∞
dx ~R · S0

~R ≡ µ0Msat
C

2
〈~R | S0 | ~R〉.

The notation on the right hand side is the so-called bra-ket notation and is here used as

a short-hand for the integral appearing in the same equation. We now notice that the

operator S0 commutes with the matrix D defined in Eq. (6.24) (S0 acts in the same way

over all the components of the vector it is applied to). We then have S0 = DS0D−1,

and:

E[~R] = µ0Msat
C

2
〈~R | DS0D−1 | ~R〉 = µ0Msat

C

2
〈 ~D | S0 | ~D〉.

From this expression it is now easy to prove that, as anticipated in the previous section,

if c in Eq. (6.33) has a non-vanishing real part, then the energy is not preserved in

time but rather decreases. In our particular case, since Re c = −γ′Cα, this means that

to a non zero damping constant α corresponds a dynamics where the energy decreases

with time. Taking the time derivative of E[~R] and considering that S0 does not depend

explicitly on time, we get:

dE[~R]
dt

= µ0Msat
C

2

(
∂〈 ~D |
∂t

S0 | ~D〉+ 〈 ~D | S0
∂ | ~D〉
∂t

)
.

We can now use Eq. (6.33) and obtain:

dE[~R]
dt

= −γ′µ0MsatC
2α 〈 ~D | S2

0 | ~D〉.

The right hand side of this equation is non-positive, meaning that the energy will

decrease (or stay constant) in time. When α = 0, the energy is conserved in time. Note

that C cannot be zero, since we have previously assumed C 6= 0, when defining the

potential U = −Happ/C. We point out that this result holds only for j = 0. When

j 6= 0, the term 2bv ∂x gives an extra contribution to the energy which can lead to an

increase or decrease of energy depending on the particular magnetisation configuration

and on the intensity of the applied current density.

6.4.6 The solutions including the spin-transfer-torque effects

We are now ready to obtain a solution of (6.31). We first have to find d±, which are

the solutions of the two equations

∂td± = c±S± d±, where S± = S0 − 2b±v ∂x. (6.35)

83



We proceed as follows: given an eigenfunction s0(x) of S0 with eigenvalue σ0, we define

the following two functions

s±(x) = e−b±v xs0(x).

Since S0 is a purely real operator, we can choose the eigenfunction s0(x) to be real

for every value x, similarly to what is usually done for one dimensional problems in

quantum mechanics. We know that S± s±(x) = σ± s±(x), where σ± = σ0 + (b±v)2.

Consequently the two functions

d+(x, t) = d+,0 e
c+σ+ ts+(x) = d+,0 e

f+(x, t)s0(x),

d−(x, t) = i d−,0 e
c−σ− ts−(x) = i d−,0 e

f−(x, t)s0(x),

are solutions of (6.35) and,

f±(x, t) = c±σ± t− b±v x = c±
[
σ0 + (b±v)2

]
t− b±v x

= γ′C(−α± i)
[
σ0 +

(
(ξ±i) v

2γC

)2
]
t− (ξ±i) v

2γC x

= (−λ± iω) t+ (κ± ik)x,

where,

λ = γ′Cα

[
σ0 +

(
v

2γC

)2 (
ξ2 − 1 + 2ξ

α

)]
= λ0 + α(v′)2

4γ′C

(
ξ2 − 1 + 2ξ

α

)
,

ω = γ′C

[
σ0 +

(
v

2γC

)2 (
ξ2 − 1− 2αξ

)]
= ω0 + (v′)2

4γ′C

(
ξ2 − 1− 2αξ

)
,

κ = − ξv
2γC ,

k = − v
2γC ,

(6.36)

where λ0 = γ′Cασ0 and ω0 = γ′Cσ0 are the zero current values for λ and ω and

depend on the particular shape of the applied field Happ(x), which indeed determines

the eigenvalue σ0. We now apply the transformation ~R = D ~D, to obtain:

~R(x, t) =
s0(x)eκx e−λt√

2

(
d+,0 e

+i(ωt+kx) + d−,0 e
−i(ωt+kx),

−i
(
d+,0 e

+i(ωt+kx) − d−,0 e−i(ωt+kx)
) ) .

Requiring ~R to be real for all the possible values of t one obtains the condition

d+,0 = R0e
iψ/
√

2 and d−,0 = R0e
−iψ/
√

2 for two given real constants R0 and ψ. The

solution then becomes:

~R(x, t) = R0 s0(x)eκx e−λt (cos (ωt+ kx+ ψ) , sin (ωt+ kx+ ψ)) . (6.37)

We can now integrate this equation in space, to obtain the average magnetisation as a

function of time. In order to do that, we write down the averages 〈Mx(t)〉 and 〈My(t)〉

84



as:
〈Mx(t)〉 = Re I(t),

〈My(t)〉 = Im I(t),

where:

I(t) = R0

∫ L

0
s0(x) eκx e−λt ei(ωt+kx+ψ)dx = R0 e

−λt eiωt I0,

where I0 = I(t = 0) is a constant which depends on the particular shape of the

eigenfunction s0. We take I0 = Feiϕ, where F and ϕ are two unknown constants. We

then get to:

I(t) = R0F e
−λtei (ωt+ϕ),

from which we deduce:

〈Mx(t)〉 = M0 e
−λt cos(ωt+ ϕ),

〈My(t)〉 = M0 e
−λt sin(ωt+ ϕ).

(6.38)

Surprisingly, we conclude that the spin polarised current does not change the shape of

the average magnetisation trajectory, which has indeed the same spiral form which we

got in Eq. (6.28). The polarised current, however, leads to corrections to the precession

frequency ω and to the damping parameter λ, as shown in Eq. (6.36). In particular,

from this equation we can get to a generalisation of Eq. (6.29):

λ = αω +
ξv2

2γC
. (6.39)

Note that this equation and Eqs. (6.38) are extremely general, since we have not

made any particular assumption on the shape of the eigenfunction s0 and hence on

the particular form of the applied field Happ(x). These results should hold for any

reasonable choice of Happ(x), as long as the state where the magnetisation is uniformly

aligned along the ẑ direction is an equilibrium configuration.

6.4.7 Discussion and validation

In the previous section we found that the average soft magnetisation of an exchange

spring approaches equilibrium by moving in spiral trajectories, even when an electric

current flows orthogonal to the layers. The current, however, changes the precession

frequency ω as well as the damping rate λ. Interestingly, the variation of the frequency

∆ω and of damping rate ∆λ are found not to depend on the applied field Happ and the

geometry of the system (thickness of the soft layer). In particular, from Eqs. (6.36),

∆λ = λ− λ0 =
α(v′)2

4γ′C

(
ξ2 − 1 +

2ξ
α

)
≈ (v′)2

4γ′C
(2ξ − α) , (6.40)

∆ω = ω − ω0 =
(v′)2

4γ′C
(
ξ2 − 1− 2αξ

)
≈ − (v′)2

4γ′C
. (6.41)
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Assuming the values α = 0.02, ξ = 0.01, MFe = 0.55× 106 A/m, A = 1.46× 10−11 J/m

and a polarised current Pj = X × 1012 A/m2, one gets v = X2 × 105.5 m/s and:

∆λ = X2 × 594 s−1,

∆ω = −X2 × 0.0473 GHz.

We see that even for the case X = 1, which corresponds to quite a high current density

(Pj = 1012 A/m2), the spin transfer torque effects on the frequency and on the damping

rate are rather weak. In particular, for the DyFe2-YFe2 trilayer simulated in Sec. 6.3, it

is difficult to identify any current-induced effects on ω and λ. Indeed, the values we have

just calculated for ∆ω and ∆λ are respectively three and seven orders of magnitude

smaller than the typical values shown in the graphs of Fig. 6.10. We conclude that, in

this kind of exchange spring, the effects of the applied electric current are not relevant as

we expected. In particular, if, on the one hand, the magnetisation reaction to external

stimuli is amplified near the bending field, on the other, the magnetisation is there

nearly homogeneous leading to weak spin transfer torque effects.

This conclusion is still the result of a purely theoretical analysis. It is then desirable

to prove and validate it numerically. In order to do that, we repeat the simulations

of Sec. 6.3 with the inclusion of the spin transfer torque as modeled by Eq. (3.13).

The procedure employed is identical to the one used in Sec. 6.3 to obtain ω and λ as

functions of the applied field. The only difference is that the dynamical relaxation to

the equilibrium is done in the presence of an applied current. In this way we can obtain

graphs analogous to the ones of Fig. 6.10, but with the inclusion of spin transfer torque

effects.

By carrying out the micromagnetic simulations for a current density Pj = 1012 A/m2

we found that — as predicted by Eqs. (6.40, 6.41) — the current induced effects are

so weak that the graphs for ω and λ look identical to the ones of Fig. 6.10. For this

reasons we do not show them. We rather repeat the simulations for a higher current

density Pj = 1013 A/m2 (corresponding to X = 10), so that we get amplified current-

induced effects and we can then perform a better validation of the theory. Note that,

since our main objective here is the validation of the theory, we chose a value ξ = 0.05

which is higher than the one which is typically used ξ = 0.01 (notice that we do not

have any experimental estimate of ξ for YFe2). This choice gives higher values for ∆λ

and thus facilitates the comparison between theory and simulations. The results of

the simulations are shown in Fig. 6.13, where ω and λ are plotted as functions of the

applied field. Note that also the zero-current results from Fig. 6.10 are included to
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Figure 6.13: The frequency and damping rate which characterise the near-equilibrium dynamics

of the magnetisation in a DyFe2-YFe2-DyFe2 exchange spring system are plotted as functions of the

applied field. The red curves are obtained in the presence of a current flowing orthogonal to the layers.

The dashed black curves are the same as in Fig. 6.10 and are shown just to allow a better visual

assessment of the effects of the current.

allow a better evaluation of the changes induced by the application of the current. Fig.

6.13 shows that — in agreement with the theoretical prediction — the current induces

a translation of the frequencies and of the damping rates by fixed amounts ∆ω and

∆λ, respectively.

For the frequencies, we subtract the solid red curve and the dashed black curve to

obtain the separation between the two. We then fit the resulting values with a constant

function ∆ω(Happ) = const, for Happ < 3.5 T and get ∆ω|fit = (−4.83 ± 0.06) GHz.

We get good agreement with the theoretical value, ∆ω = −4.73 GHz, calculated from

Eq. (6.41): the difference is around 2.1 %. Similarly, for the damping rates, we get

∆λ|fit = (2.386± 0.019)× 109 s−1 while the theoretical result is ∆λ = 2.367× 109 s−1.

The difference between the two is 0.8 %.

Note that, since ∆ω and ∆λ do not depend on the geometry of the system, one may

choose a system with thicker soft layer. In a system where L = 100 nm, for example, the

bending field is reduced by a factor 100, according to Eq. (6.6), and the corresponding

frequencies and damping rates are then reduced by the same factor, as deduced from

Eq. (6.15) and Eq. (6.29), but the values of ∆ω and ∆λ are unchanged. In such a
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system, a current density of Pj = 1012 A/m2 should then lead to a significant relative

change of frequencies and damping rates.

We end the section by pointing out that the results we have obtained so far consider

only the case of constant applied current (DC). It may be argued that a pulsed current

(AC) is likely to lead to greater effects (maybe through the mechanism described in Ref.

[85]). In this thesis, however, we won’t study spin transfer effects for pulsed currents.

We rather focus on different exchange spring systems (see Ch. 7), which — we think

— are more promising than the DyFe2-YFe2-DyFe2 trilayer film considered so far.

6.4.8 Infinite pinning field

In the theoretical analysis we have conducted so far, we haven’t yet made any assump-

tions on the particular shape of the applied field Happ(x). We have been able anyway to

characterise the spin transfer torque effects, which are indeed independent of Happ(x).

In the remaining part of the chapter we will try to determine the effects of the shape

of Happ(x). When choosing Happ(x), we also determine the potential U(x) and hence

the operator S0. As a consequence, also the ground state s0(x) and the corresponding

eigenvalue σ0 are determined. This allows to determine the actual dynamics of the

magnetisation as well as the exact value of the bending field.

In this section we assume that:

Happ(x) =

{
H0 for|x| < L/2

−∞ for|x| ≥ L/2
, (6.42)

where H0 is the intensity of magnetic field, which is applied along the direction −ẑ.
The function U(x) = −Happ(x)/C has the following form:

U(x) =

{
−H0/C for|x| < L/2

+∞ for|x| ≥ L/2
. (6.43)

Then the operator S0 is formally identical to the reduced Hamiltonian of a one dimen-

sional quantum particle in an infinitely deep square potential well. This problem has

well known solutions. One finds [86] that the system has an entirely discrete spectrum

and the eigenvalues are,

σn = −H0

C
+
(π
L
n
)2
, n = 1, 2, . . .

In particular, for the ground state,

σ1 =
Hb −H0

C
,
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where Hb = C
(
π
L

)2 is defined as before. Then we can calculate explicitly the parame-

ters (6.36):
λ = αγ′

[
Hb −H0 + v2

4γ′2C

(
ξ2 − 1 + 2ξ

α

)]
,

ω = γ′
[
Hb −H0 + v2

4γ′2C

(
ξ2 − 1− 2αξ

)]
.

(6.44)

The solution (6.37) requires λ ≥ 0 in order to converge for t→ +∞. We can find then

a requirement over the field:

H0 ≤ H ′b = Hb +
v2

4γ2C

(
ξ2 − 1 +

2ξ
α

)
.

H ′b is the bending field, when the current is applied (in contrast with Hb, which is the

zero-current bending field). When H0 = H ′b,

ω = − ξ

2γC

(
α+

1
α

)
v2.

6.4.9 Finite pinning field

A more realistic situation with respect to the one considered in the previous section is

finite pinning in the hard layers:

Happ(x) =

{
H0 for|x| < L/2

H0 −HP for|x| ≥ L/2
, (6.45)

where H0 is the intensity of the applied magnetic field, while HP is the “pinning” field.

We assume HP > H0 > 0. The corresponding potential U(x) is:

U(x) =

{
−H0/C for|x| < L/2

(HP −H0)/C for|x| ≥ L/2
. (6.46)

The quantum mechanical analogue is now a one-dimensional particle in a finite square

well. The energy spectrum of this system is divided in different regions:

• −H0/C < σ < (HP −H0)/C, for which a discrete spectrum is obtained (bound

states);

• σ > (HP −H0)/C, for which a continuous and degenerate spectrum is obtained

(with reflection and transmission of waves);

The ground state σ1 is in the discrete spectrum, whose eigenvalues σn can be determined

graphically [86] as the intersections between the function f(ξ) = 2 sin−1 ξ and the linear

functions yn(ξ) = πn−L
√
HP ξ, where ξ lies between 0 and 1 and is expressed in terms
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Figure 6.14: Plot of ξ∞ and ξ1 as functions of a. ξ∞(a) is the smallest positive zero of the function

y(ξ) = cos(aξ)− ξ, while ξ1 is an approximation of ξ∞ obtained using just one Newton iteration (Eq.

(6.47)). The Newton method converges very quickly: ξ2 would not be distinguishable from ξ∞, if it
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q
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q
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represents the hardness of the pinning in the hard

layers. If a� 1 the field required in order to switch the hard layers (HP) is much higher than the one

needed to develop an exchange spring (H∞b ).

of σ as: ξ =
√

Cσ+H0
HP

. For the ground state (n = 1) the problem reduces to finding

the smallest positive zero of the function y(ξ) = cos(aξ) − ξ, where a = L
√

HP
4C . This

can be done approximatively with the Newton method:

ξi+1 = ξi −
y(ξi)
y′(ξi)

=
aξi sin aξi + cos aξi

a sin aξi + 1
. (6.47)

As a first point we choose ξ0 = π
2a and obtain:

ξ1 =
π

2
1

1 + a
. (6.48)

For large values of a (large pinning) this is already a good approximation, as can be

seen in Fig. 6.14. The corresponding value for σ is then:

σ1 =
HP

C

(
π

2 + 2a

)2

− H0

C
=
Hb −H0

C
,
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where we have re-defined the bending field as:

Hb = HP

(
π

2 + 2a

)2

= C

(
π√

4C/HP + L

)2

.

The equations for λ and ω are again (6.44). Moreover one sees immediately that in the

limit of infinite pinning:

HP → +∞, Hb → H∞b = C
(π
L

)2
.

The finite-pinning bending field can be expressed as:

Hb = H∞b

(
1 +

2
L

√
C

HP

)−2

. (6.49)

This equation expresses the bending field as a function of the pinning fieldHP. However,

since the pinning is usually due to a magnetic anisotropy in the hard layers, it would

be more convenient to relate Hb to the anisotropy constants K1, K2, . . ., rather than

to the more abstract quantity HP. In the next section we prove that this can be done,

since, near the bending field, an uniaxial or cubic anisotropy can be well approximated

by introducing a pinning field.

6.4.10 Bending field for DyFe2-YFe2 multilayers

In the analytical characterisations of exchange spring that we have introduced in the

previous sections the pinning of the magnetisation in the hard layers has been modeled

by a pinning field HP. Using a constant field HP is certainly a simple way to take the

pinning effects into account, but, on the other hand, it may look somewhat artificial and

unjustified. In the computer simulations of Sec. 6.3, for example, the pinning in the

DyFe2 hard layers has a more complex origin: it is the result of the combined action of

a cubic anisotropy and an antiferromagnetic exchange coupling. The cubic anisotropy

holds the Dy moments along an easy axis direction, while the antiferromagnetic cou-

pling holds the Fe moments antiparallel to the Dy moments. Even if the physics in

such a system is rather complex, it can be well approximated by the simple single field

model that we have studied in the previous sections. Indeed, we now show that, under

appropriate assumptions, the physics of the Dy magnetisation and the Fe-Dy antiferro-

magnetic coupling can be taken into account only through an effective pinning field HP

acting on ~MFe. We begin by writing down the energy density inside the DyFe2 hard

layers:

u[ ~MFe, ~MDy] = −µ0
~MDy · ~H+ε( ~MDy)+J ~MFe · ~MDy−µ0

~MFe · ~H+A (∂x ~mFe)2. (6.50)
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Here ε( ~MDy) is the energy density for the cubic anisotropy acting on the Dy moments,

while J ~MFe · ~MDy represents the antiferromagnetic exchange coupling. Our goal is

to show that, if one is concerned with the Fe moments only, this expression can be

reasonably approximated by the pinning field model, whose energy density is,

u′[ ~MFe] = −µ0
~MFe · ( ~H − ~HP ) +A (∂x ~mFe)2, (6.51)

where ~H = −ẑ H is the applied field and ~HP = ẑ HP. is a constant pinning field.

Notice that while equation Eq. (6.51) contains both ~MFe and ~MDy, Eq. (6.51)

contains only ~MFe. We conclude that to reduce the former equation to the latter,

we must necessarily reduce the number of degrees of freedom of the system and, in

particular, we must remove the freedom on the choice of ~MDy.

The approximation we employ for such a reduction is the following. For a given ~MFe

we calculate the value of ~MDy which minimises the energy (6.50). Such an expression

for ~MDy is then substituted inside (6.50) to obtain an expression which depends only on
~MFe. Such an approach will lead to an energy density accurate only near the equilibrium

or, to be more precise, near any magnetisation configuration which minimises the energy

with respect to ~MDy. Fortunately, this is the case we are considering in our analytical

model, which is indeed based on a linearisation of the Landau-Lifshitz equation around

a static equilibrium configuration. We then can start with the procedure we have just

sketched and find the value of ~MDy which makes u[ ~MFe, ~MDy] minimum for a given

fixed ~MFe. We choose a reference frame such that ~H lies along the negative z axis and
~MFe lies in the xz plane, as shown in Fig. 6.15. θ and φ are spherical coordinates for

Figure 6.15: The reference frame chosen in the text to write down the energy density in the hard

layers.

~MDy with respect to the polar axis −z, while α is the angle between ~MFe and the z

axis. In terms of these quantities, the vectors ~MFe and ~MDy can be expressed as:

~MDy = MDy (sin θ cosφ, sin θ sinφ, cos θ), ~MFe = MFe (sinα, 0, cosα).
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By substituting these expressions into Eq. (6.50), we get to:

u = −µ0MDyH cos θ + ε(θ, φ) + JMDyMFe(sin θ cosφ sinα− cos θ cosα) + ũ[ ~MFe],

where ũ[ ~MFe] contains all the terms of Eq. (6.50) which do not depend on ~MDy. It

can be shown (see Appx C) that, when the angle θ between ~MDy and the easy axis is

small, the cubic anisotropy energy can be approximated as ε(θ, φ) ≈ K1 θ
2, where K1

is the same coefficient which appears in (2.10). The requirement ∂φu = 0, then leads

to −JMDyMFe sin θ sinφ sinα = 0 and hence to sinφ = 0 and cosφ = ±1. We then

can rewrite the energy as:

u = −µ0MDyH cos θ +K1 θ
2 − JMDyMFe cos(θ ± α) + ũ[ ~MFe].

For small angles θ and α,

u =
1
2
µ0MDyH θ2 +K1 θ

2 +
1
2
JMDyMFe(θ ± α)2 + ũ[ ~MFe], (6.52)

which is accurate up to the third order in θ. The condition ∂θu = 0 can now be written

as,

0 = µ0MDyH θ + 2K1θ + JMDyMFe(θ ± α).

from which θ can be found as a function of α:

θ = ∓ α

1 +B
, whereB =

µ0MDyH + 2K1

JMDyMFe
≈ 2K1

JMDyMFe
,

where we have assumed 2K1 � µ0MDyH. We can now remove any dependency on θ

in Eq. (6.52):

u =
[
µ0MDyH + 2K1 + JMDyMFeB

2
] α2

2 (1 +B)2
+ ũ[ ~MFe],

=
JMDyMFe

1 +B−1

α2

2
+ ũ[ ~MFe], (6.53)

This result can now be compared against the simple pinning field model of Eq. (6.51),

which for small angles α, becomes:

u′[ ~MFe] = const.+ µ0MFeHP
α2

2
+ ũ[ ~MFe]. (6.54)

Eq. (6.53) reduces to Eq. (6.54) (except for an additive constant) when,

µ0MFeHP =
JMDyMFe

1 +B−1
=⇒ HP =

1

µ0MFe

(
1

2K1
+ 1

JMFeMDy

) .
93



This expression for HP behaves as one would expect: when one of the two interactions

becomes infinitely strong it “disappears”, leaving only the other interaction. However,

when both interactions become infinitely strong, HP becomes infinite, as it should! An

analogy could be made with the compressibility of two connected springs: when one of

the two springs is incompressible then the compressibility of the whole system is given

by the compressibility of the other spring, while, when both springs are incompressible,

also the whole system becomes incompressible. We can finally insert the expression of

HP into Eq. (6.49), obtaining:

Hb = H∞b

(
1 +

2
L

√
2A
(

1
2K1

+
1

JMFeMDy

))−2

. (6.55)

We note that we may rewrite the bending field of a finite-pinning exchange spring

system starting from the infinite pinning formula (6.6) and replacing:

L→ L+ 2

√
2A
(

1
2K1

+
1

JMFeMDy

)
. (6.56)

The expression above may give a rough idea about the extent to which the exchange

spring penetrates inside the hard layers. An interesting feature can be noticed: the

penetration depth does not depend on L, the thickness of the soft layer.

To validate Eq. (6.55) we consider again the system presented in Sec. 6.3. From

the simulation we extrapolated a value for the bending field Hb|sim = (3.947±0.024) T

(see caption of Fig. 6.8). Eq. (6.55) gives Hb|theory = 3.952 T. The theoretical

value differs by less than 0.13 % from the value which was deduced numerically. The

agreement is really quite good, but it consists of just one single comparison between

two numbers. It may then be a mere coincidence! To make sure this is not the case,

we redo the simulations of Sec. 6.3 changing some parameters just to have a second

opportunity to validate the theory. We change the cubic anisotropy constant from

K1 = 33.9 × 106 J/m3 to K1 = 20.0 × 106 J/m3 and the antiferromagnetic exchange

coupling from J = 2×10−4 N/A2 to J = 10−4 N/A2. All the others parameters are left

unchanged, while the simulations are repeated following the same procedure used in Sec.

6.3. We get Hb|theory = (3.643 ± 0.018) T while Eq. (6.55) gives Hb|theory = 3.625 T.

The deviation between the two is less than 0.5 %, confirming that Eq. (6.55) provides

a quite accurate estimate of the bending field, especially if compared with the rigid

pinning formula of Eq. (6.6), which overestimates the bending field by ∼ 30 %.
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6.5 Summary

In this chapter we studied both the static and the dynamic properties of trilayer ex-

change spring systems, focusing in particular on a DyFe2/YFe2/DyFe2 trilayer system.

We used computer simulations and introduced analytical models in order to investigate

and understand the magnetisation dynamics near the bending field and found that the

average magnetisation in the soft layer approaches equilibrium moving in spiral trajec-

tories with frequency and damping which become minima for values of the applied field

near to the bending field. We concluded that the magnetisation reacts in an enhanced

way near the bending field and discussed the importance of this characteristic for max-

imising spin transfer torque effects. The effects of spin polarised currents were then

taken into account first in an analytical model and later in computer simulations. We

found that, below the bending field, the application of a current changes the frequency

and the damping of the oscillations, but does not change the shape of the trajectories

of the average magnetisation. Unfortunately a high current is required in order to ob-

tain significant effects and this was attributed to the fact that below the bending field

the configuration of the magnetisation is almost uniform and thus gives rise to a weak

spin transfer torque. We concluded the chapter presenting an accurate calculation of

the bending field, which takes into account the strength of the cubic anisotropy, the

strength of the Fe-Dy antiferromagnetic coupling and the penetration of the exchange

spring inside the hard layers. Throughout all the chapter we found good agreement

between the results from the simulations and from the analytical models.
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Chapter 7

Spin-polarised currents in

exchange spring nanopillars

7.1 Introduction

In the previous chapter we investigated exchange spring systems and focused on the

dynamics near the bending field, in the hope of finding relevant response to an applied

electric current. We found that if, on the one hand, the magnetisation exhibits enhanced

response to external stimuli near the bending field, on the other, in such an applied

field regime the magnetisation is almost uniform, leading to minimal spin transfer

torque. We concluded that such a particular choice of exchange spring system was not

the most appropriate in order to investigate and maximise spin transfer torque effects.

Nevertheless, exchange spring systems have a remarkable feature: the interplay between

the strong anisotropy of the hard materials and the soft-hard exchange coupling, can

give rise to artificial domain walls whose shape and length can be controlled in two ways:

at the engineering phase, by selecting suitable geometry and material composition, and

later in the laboratory, with the application of an external field (a domain wall is

developed when the applied field exceeds the bending field).

In this chapter we give an example of how this feature can be exploited in order

to build a system where the spin transfer torque effects are enhanced and play an

important role. We first explain the idea which guided us to the design of the exchange

spring nanopillar which is investigated in this chapter: find a system whose ground

state is degenerate (i.e. whose energy is minimum for a whole continuous trajectory of

magnetisation configurations).

The results presented in this chapter have been published in the Journal of Applied
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Figure 7.1: A sketch of the nanopillar which is discussed in the text (not to scale). Dysprosium

moments (white arrows) pin the iron moments (black arrows) at the borders of the soft layer.

Physics [55].

7.2 The system

Consider a system whose ground state energy is degenerate: it has infinitely many

different equilibrium configurations, which all have the same minimal energy and form

a continuous curve in the phase space. This system can be “dragged” through this

curve, changing its configuration from one equilibrium state to another and this can be

achieved “easily”, because there is no energy barrier between them. In such a system,

an electric current may find a very favourable situation to fully manifest its effects.

The idea is very simple, but can serve as a guideline to develop micromagnetic

systems where spin-transfer-torque effects are maximised. In this chapter we discuss a

possible example of such a system. We study a trilayer exchange spring system in the

form of a cylindrical nanopillar, where a central magnetically soft layer is sandwiched

between two magnetically hard layers, as shown in Fig. 7.1. The system materials are

chosen in the following way: YFe2 for the soft layer and DyFe2 for the two hard layers.

This choice allows us to study the system with a model similar to the one used in Ch.

6. Regarding the geometry, the diameter of the cylindrical nanopillar is 10 nm, while

the thicknesses of the hard and soft layers are 5 and 40 nm, respectively.

As seen in the previous chapter, Yttrium has negligible magnetic moment and only

two species of atoms contribute to the magnetisation of the system: the first one, iron

(Fe), is present in all the three layers, the second one, dysprosium (Dy), is present only

in the two hard layers. Neighboring iron moments are exchange coupled, throughout all
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the hard and soft layers and across the hard-soft interfaces. This coupling favours the

alignment of the magnetisation of iron throughout the entire nanopillar. This alignment

is however broken, because the magnetisation of iron in the two hard layers is pinned

along opposite directions, as shown in Fig. 7.1. We remind the reader, that the pinning

of the iron moments is the result of the joint actions of two strong interactions: the

cubic anisotropy of DyFe2, which pins the dysprosium moments along an easy axis

direction, and the anti-ferromagnetic coupling between Dy and Fe, which transmits

this pinning to the iron moments of the hard layers.

Among all the interactions which we take into account, the cubic anisotropy of

DyFe2 is the only one which is not symmetric under rotations around the axis of the

nanopillar. However in the case we are considering, where there is no applied field

and the soft layer is relatively thick, the dysprosium moments keep their direction well

aligned with the one they initially have and the degeneracy of the ground state is well

preserved, as we will see from the results of the computer simulations. This means

that configurations which differ by a rotation around the x axis have almost the same

energy. Then if the applied current wants to rotate the whole magnetisation around

the x axis, nothing will oppose to its action, since this is a constant-energy trajectory.

7.3 The model

Since the density of iron atoms and their position in the lattice structure is the same

for DyFe2 and YFe2 (they both crystallise in Laves phase structures), we use a single

magnetisation vector ~MFe to describe the magnetic configuration of iron in all the three

layers. The configuration of dysprosium is modeled by another magnetisation field ~MDy

which is defined over the hard layers only. The model is similar to the one-dimensional

model used in Ch. 6, extended to three dimensions (the stray field is calculated using

the hybrid FEM/BEM method [30, 29]). We also consider the same temperature (100

K) and the same material parameters: the moment densities of iron (in both DyFe2

and YFe2) and dysprosium are ‖ ~MFe‖ = 0.55× 106 A/m and ‖ ~MDy‖ = 1.73×106 A/m,

respectively; the easy axes for the anisotropy are û1 = (0, 1, 1)/
√

2, û2 = (0,−1, 1)/
√

2

and û3 = (1, 0, 0), and the coefficients are K1 = 33.9×106 J/m3, K2 = −16.2×106 J/m3,

K3 = 16.4×106 J/m3. The effects of the electric current are modelled using Eq. (3.13),

the Zhang-Li correction to the Landau-Lifshitz-Gilbert equation. Similarly to Ch. 6, we

assume that only the iron moments interact with the spin of the conduction electrons:

the magnetic electrons in the 4f orbitals of dysprosium are strongly localised at the
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ion core and their interaction with the conduction electrons should be negligible. In

the simulation the damping parameter is chosen to be α = 0.02; the current density is

assumed to be fully polarised (P = 1) and ξ, the ratio between the exchange relaxation

time and the spin-flip relaxation time, is taken to be ξ = 0.01. The Oersted field and

the effects of Joule heating are ignored.

7.4 Results

For the micromagnetic simulations we use Nmag, the software package which we have

developed in our group [68]. The cylindrical nanopillar is modelled by a three-dimensional

unstructured mesh and first order FEM is used to discretise the space. In this case

FEM is preferable with respect to finite differences, because it allows a better represen-

tation of the cylindrical geometry. Finite differences would introduce artifacts in the

discretisation of the rounded surface of the nanopillar.

The initial magnetizations ~MFe and ~MDy are obtained by letting the system relax

to one of its degenerate equilibrium configurations. The system then evolves from this

configuration (t = 0) up to t = 10.5 ns. The dynamics of 〈 ~MFe〉, the iron magnetisation

averaged over all the nanopillar, is studied in Fig. 7.2. For simplicity we identify four

points on the time axis: A at 0 ns, B at 3.5 ns, C at 7 ns and D at 10.5 ns. The time axis

is then subdivided into three regions AB, BC and CD. The applied current density ~j is

uniform and constant in each of these three time intervals. In particular it is directed

along the axis of the cylinder: ~j = j x̂, with j = 1011 A/m2 in AB, j = 0 in BC and

j = −1011 A/m2 in CD. We remind the reader that the applied field is always zero,

throughout all the simulation.

The graph in Fig. 7.2 shows the behaviour of the components of 〈 ~MFe〉: in region AB

the current produces a precession of the whole magnetisation of the system around the x

axis. This precession is accompanied by a movement — and consequent compression —

of the artificial domain wall in the direction of the electron flow (negative x direction),

which reflects in an increase of the x component of 〈 ~MFe〉. Such an effect may be

explained with a current-induced motion of the artificial domain wall. Current-induced

motion is a well known effect for domain walls in nanowires: it has been observed

experimentally and has been proved analytically [18, 20, 21].

In the time interval AB the current pumps energy into the system, which is stored

in the compression of the domain-wall. In the time interval BC the current is switched

off and this energy is gradually released: the domain-wall decompresses, restoring the
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Figure 7.2: The evolution in time of the three components of 〈~mFe〉 = 〈 ~MFe/‖ ~MFe‖〉, the normalised

magnetisation of iron averaged over all the nanopillar. The three boxes above the graph show the

configuration of ~MFe at t = 0, t = 3.5 ns and t = 10.5 ns.

configuration it had at time t = 0. Finally, during the time interval CD the system

behaves in a way which is symmetrical to the one observed in AB: 〈MFe,x〉 rotates in

the opposite direction and the wall is compressed in the positive x direction, leading

to negative values for 〈MFe,x〉.
Expressing 〈 ~MFe〉 in spherical coordinates with x chosen as the polar axis, we ob-

tained the precession angle φ(t) of 〈 ~MFe〉 around the x axis as a function of time t.

We computed the time derivative ω(t) = φ′(t) to obtain the precession frequency as

a function of time. The result is shown in Fig. 7.3. The sign of ω(t) depends on

the sense of rotation around the x axis. This graph shows that the applied current

j = ±1011 A/m2, produces a precession motion with frequency around 14 GHz, in the

microwave frequency range. The frequency seems to be related to the compression of

the domain wall: it increases rapidly when 〈MFe,x〉 increases and stabilises when also

〈MFe,x〉 does.

The accuracy of the discretisation of space has been verified by increasing the num-

ber of mesh elements (from 4129 to 19251), obtaining differences in the precession

frequency at 3.5 ns lower than 1.2 %.
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Figure 7.3: The time dependence of the frequency ω for the precession of 〈 ~MFe〉 around the x axis.

The sign of ω is related to the sense of rotation.

7.5 Discussion

The physics we studied in this work has not been reported — to our best knowledge —

in previous published works. While the current-driven motion of domain wall has been

intensively studied in recent publications [18, 87, 20], the compression and concurrent

precession has not been reported nor predicted previously. The system we presented

may be interesting for applications as a nano-sized microwave generator which can

operate without external applied field and can be driven by a direct current. Deeper

investigations are, however, needed in order to better understand the physics of the

system and to assess the importance of the assumptions we made to get to these results.

In particular, the model we presented does not take into account some effects which

complicate the physics of real systems. The imperfections of the geometry and the

impurities in the materials can break the cylindrical symmetry. The effect of such

imperfections is difficult to predict.

The size of the sample was chosen to speed up the simulation. However we expect

a similar precessional dynamics in nanopillars with greater radii. Also the materials

could have been chosen differently and the DyFe2 anisotropy could have been well

approximated by an infinite pinning on the iron moments, resulting in a simplification

of the model. However this approximation would have removed the only source of

symmetry breaking, besides the irregularity of the unstructured mesh. To conclude we

remark that a symmetry breaking could be introduced on purpose to obtain bistable

systems, where the current may be used to switch the magnetisation between two states.
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7.6 Summary

In this chapter we studied the current driven dynamics of the magnetisation in a cylin-

drical exchange spring nanopillar made of one soft layer sandwitched between two hard

layers. We assumed that the magnetisation in the two hard layers points along opposite

directions with the consequence that a domain wall is developed inside the soft layer.

We found that a current applied along the nanopillar axis induces the domain wall to

compress along the direction of the electron flow and — at the same time — it induces

the domain wall to precess around the axis of the nanopillar. When a direct current

(DC) is applied, the system reaches a stationary equilibrium, where the magnetisation

rotates with constant frequency and where the amount of energy pumped in by the

electric current is totally dissipated by the damping effects. The system may thus be

exploited to obtain a microwave generator capable of operating without any external

applied field and with emission frequency controlled by a DC.
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Chapter 8

Electric current flowing through

a constrained domain wall

8.1 Introduction

The interaction between electric currents and domain walls in ferromagnetic nanowires

has been the subject of intensive study in recent years. Experiments have shown that

a spin polarised current can produce a domain wall movement in the direction of the

electron flow [88, 18, 87, 20]. This effect has been investigated analytically and nu-

merically [89, 23, 90]. In the previous chapter we studied the case where a domain

wall occurs inside a ferromagnetic nanopillar as a consequence of the pinning of the

magnetisation at the nanopillar ends. The situation is similar to the one which occurs

for a domain wall in a nanowire, with an important difference: the domain wall is

pinned and cannot translate freely along the nanopillar. For such a system one may

expect a compression of the domain wall, rather than a translation. We have seen

that micromagnetic simulations confirm this expectation and show that the applied

current produces a compression of the domain wall in the direction of the electron flow.

More surprisingly the system reaches a stationary equilibrium characterised by a rota-

tion of the compressed domain wall around the nanopillar axis with frequency which

is constant in time and lies within the microwave frequency range. This behaviour is

not found for domain walls in nanowires and suggests novel technological applications:

such a system may be used to obtain microwaves emission from a DC electric current

without the need for an external magnetic field.

In this chapter, we study how the rotation frequency depends on the applied cur-

rent density and on the nanopillar length. We first present the results of three dimen-
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Figure 8.1: A sketch of the system. The arrows on the cylinder axis represent the magnetisation,

pinned in opposite directions at the nanopillar ends.

sional and one dimensional micromagnetic simulations. We then introduce an analyt-

ical model and find two current regimes: the low current regime, where the frequency

depends linearly on the current density, and the high current regime, where the de-

pendence becomes quadratic. We derive approximate formulae for the frequency in

these two regimes and find good agreement with the results from the simulations. The

analytical model supports the numerical results and gives more insight on the physics

of the system. Parts of this chapter have been published in Physical Review B [56].

8.2 The system

The system under investigation is a ferromagnetic nanopillar in the shape of a cylinder,

as shown in Fig. 8.1. The magnetic moments at the right and left faces of the cylinder

are assumed to be pinned, pointing to the right at the right face and to the left at the left

face. As a consequence, a domain wall is developed. The system may thus approximate

the situation we considered in Ch. 7, where a nanopillar made of a magnetically soft

material was sandwiched between two magnetically hard layers and the pinning was

provided by the exchange coupling at the soft-hard interfaces. In this context however

we do not make any assumptions on the origin of the pinning, which can be achieved in

other ways. One example is given in Fig. 8.2, which shows a ferromagnetic body, made

by two regions connected through a small constriction: a domain wall is developed in

the constriction, when the wider regions are magnetised in opposite directions [91, 92].

In this work we study how the constrained domain wall reacts to a uniform and

constant electric current flowing along the axis of the nanopillar. Both the simulations

and the analytical investigations we present are based on a micromagnetic model, where

the interaction between the spins of the conduction electrons and the magnetisation is
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Figure 8.2: A constrained domain wall can develop inside a ferromagnetic body as a consequence

of its geometry. Here two square films are magnetised in opposite directions. As a consequence, the

magnetisation inside the channel which connects the two bodies is forced to twist by 180 degrees, thus

developing an “artificial” domain wall [91, 92].

taken into account using the Zhang and Li correction [23] to the Landau-Lifshitz-Gilbert

equation, which we presented and discussed in Ch. 3. The dynamics of the system

then follows Eq. (3.12), where the effective field ~H receives two main contributions:

one from the exchange interaction, the other from the magnetostatic interaction. The

exchange interaction tries to keep neighboring moments aligned. The exchange field is
~Hexch = C ∂2

x ~m, where C = 2A
µ0Msat

, A is the exchange coupling constant of the material

and ∂2
x ≡ ∂2

∂x2 . The magnetostatic interaction mainly tries to align ~M with the axis

of the nanopillar (when its length is much greater than its radius) thus reducing the

magnetic surface charges.

The model does neither include the effects of Joule heating nor the effects of the

Oersted field. We discuss these assumptions in Sec. 8.6.

8.3 Three dimensional micromagnetic simulations

For the micromagnetic simulations we use Nmag [68], the finite element method (FEM)

micromagnetic simulation package which we developed. The cylindrical nanopillar is

modelled by a three dimensional unstructured mesh and first order FEM is used to

discretise the space. The time evolution of the magnetisation is calculated using equa-

tion (3.13), except for the sites which lie on the left and right faces of the nanopillar.

For these sites we assume ∂t ~m = 0, which corresponds to infinitely strong pinning on

the magnetisation. The magnetostatic field is calculated using the hybrid FEM/BEM

method [30, 29]. We use material parameters of permalloy: Msat = 0.8 × 106 A/m,

A = 1.3 × 10−11 A/m and ξ = 0.01. The damping constant is chosen to be α = 0.02.
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Figure 8.3: The evolution of the components of the average normalised magnetisation 〈~m〉 =D
~M
E
/Msat as a function of time. The nanopillar length is L = 40 nm.

This value was estimated for permalloy in a previous work[93]. The applied magnetic

field is zero, for all the simulations presented in this chapter.

We first consider a nanopillar with length L = 40 nm and diameter d = 20 nm and

prepare a simulation with the aim of verifying that the system we are considering in

this study can give results similar to those obtained in Ch. 7 for the trilayer exchange

spring nanopillar. The simulation starts from an initial magnetisation configuration,

which is obtained by preliminarily relaxing the system with jP = 0 and is shown in Fig.

8.4-a. A polarised current with density jP = Pj = 1011 A/m2 is then applied at time

t = 0 along the positive x direction, meaning that the conduction electrons flow in the

opposite direction. The procedure is similar to the one employed in Ch. 7.

The simulation shows that the domain wall compresses along the direction of the

electron flow. In Fig. 8.3 the components of the normalised spatially averaged mag-

netisation 〈~m〉 =
〈
~M
〉
/Msat are plotted as functions of time up to 6.6 ns. The x

component of 〈~m〉 is initially zero, reflecting the symmetry of the initial configuration

(Fig. 8.4-a) for inversions x→ −x. The current gradually pumps energy into the sys-

tem and compresses the domain wall against the left face of the nanopillar (Fig. 8.4-b).

In the opposite side of the nanopillar the magnetisation aligns along the positive x axis,

resulting in an increase of 〈mx〉. The compression is accompanied by a rotation of the

whole domain wall around the axis of the nanopillar, as can be seen clearly by looking

at behaviour of the y and z components of 〈~m〉 in Fig. 8.3. To obtain the rotation
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Figure 8.4: The magnetisation configuration for the simulation of Fig. 8.3 is shown at t = 0 ns (a)

and t = 6.6 ns (b).

frequency we express 〈~m〉 in spherical coordinates where x is chosen as the polar axis.

The frequency is then calculated numerically as ν = |∂tφ|/2π, where φ is the azimuth

angle. In the case we are considering here, where the current points in the direction

of the positive x axis, the sign of ∂tφ is negative and indicates a left-handed rotation

around the same axis (or equivalently a right-handed rotation around the negative x

axis, which is actually the compression direction). The rotation frequency is initially

zero and increases monotonically towards a maximum asymptotical value νf , as shown

in Fig. 8.5.

To determine νf we let the simulation proceed up to the point where the variation

in time of the frequency becomes lower than a given threshold. In particular we stop

the simulation when ∆ν/∆t becomes lower than 0.01 GHz/ns. The variation ∆ν/∆t

is calculated with ∆t = 100 ps. The simulation then proceeds up to tf = 6.6 ns and the

asymptotical frequency is found to be νf ≈ ν(t = tf) = 11.3 GHz (at 11 ns the frequency

is only 0.004 GHz higher, which corresponds to an increase of 0.04 %).

The asymptotical dynamics is characterised by a rotation around the x axis, without

deformation of the domain wall. In such a state, the total energy of the system is

constant in time and hence the energy dissipated by the damping term must be exactly

balanced by the energy pumped in by the applied current. The results obtained so far

confirm that, even if the system we are considering in this chapter is simpler than the

exchange spring nanopillar investigated in Ch. 7, it shares most of its physics.
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Figure 8.5: The time dependence of the frequency for the rotation of the domain wall around the

x axis for a three dimensional micromagnetic simulation of a nanopillar with L = 40 nm.

Further simulations are performed to find the exact dependence of the frequency

on the polarised current density jP and on the length of the nanopillar L. A different

mesh is considered for each different value of L. All the meshes are obtained meshing

cylinders with diameter d = 20 nm and are generated such that their simplices have

edge length lower than 2.6 nm (on average their edges are around 1.2 nm long).

The graph in Fig. 8.6 shows the asymptotic frequency νf obtained repeating the

simulation for jP = 1, 2, 4, . . . , 18, 20×1010 A/m2 and for L = 20, 25, . . . , 45 nm. The

figure shows that while the frequency changes considerably with the current density jP,

there are small differences between the curves obtained for different nanopillar lengths

L. In particular the curves for different values of L overlap, showing that this parameter

has different effects for different current regimes: for currents around 1010 A/m2, the

highest rotation frequency is reached by the shortest nanopillar, while for currents

around 2× 1011 A/m2 the highest frequency is reached by the longest nanopillar.

8.4 One dimensional micromagnetic simulations

We repeat the simulations discussed in Sec. 8.3 for a simplified model, where the

nanopillar is represented by a one dimensional magnetic string. Such a study has a

two-fold purpose: on the one hand, it provides data for a comparison with the three-

dimensional model, which allows to better understand the effects of the nanopillar shape
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Figure 8.6: The frequency as a function of jP for different nanopillar lengths L, as obtained from

three dimensional micromagnetic simulations.

and size. On the other hand, it gives insight on the limitations of one dimensional

models, such as the one presented in Sec. 8.5.

For the one dimensional simulations we use the same material parameters and the

same procedure as in Sec. 8.3. The three dimensional meshes are, however, replaced

by one dimensional meshes with 0.5 nm spacing between neighboring nodes. This one

dimensional model neglects the inhomogeneities of the magnetisation in the plane or-

thogonal to the nanopillar axis and — more importantly — it neglects the contribution

of the magnetostatic field.

The results of the simulations are shown in Fig. 8.7. We study the system for L =

20, 25 . . . , 60 nm and for the same values of jP as in Sec. 8.3. The curves for different

nanopillar lengths are more clearly spaced with respect to the three dimensional case

and show that to a longer nanopillar corresponds a lower rotation frequency. This result

is reasonable for such a one dimensional system, where the width of the domain wall is

just L: to a smoother change of the magnetisation corresponds a reduced spin transfer

torque effect. In the three dimensional system, things are different. The magnetostatic

field pulls the magnetisation along the axis of the nanopillar to reduce the magnetic

charges at the surface. This is an additional pinning effect which keeps the width of

the domain wall from growing for larger values of L. In other words, in the three

dimensional system the domain wall width does not depend on L, if L is large enough.

Then the frequency does not depend on L either.
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one dimensional micromagnetic simulations. The dotted and dashed curves show the results obtained

for the three dimensional system (Fig. 8.6) in the case L = 20 and L = 45, respectively.

In fig. 8.7 we see that the frequencies for L = 20 nm obtained in the one dimensional

model are close to the ones obtained in the full three dimensional model. This seems

to suggest that the magnetostatic effects become less important in shorter nanopillars.

8.5 The analytical model

We investigate the system with a one-dimensional analytical micromagnetic model.

The purpose of such a study is to support the micromagnetic simulations and to give

a better understanding of the physics of the system. The model does not include

the magnetostatic field and assumes it does not qualitatively affect the physics of the

system. We begin by writing equation (3.13) in spherical coordinates:

∂τ ′θ = 2 cos θ ∂uθ ∂uφ+ sin θ ∂2
uφ+

+ α
[
∂2
uθ − sin θ cos θ (∂uφ)2

]
+

+ V a ∂uθ + V a sin θ ∂uφ

∂τ ′φ sin θ = α
[
2 cos θ ∂uθ ∂uφ+ sin θ ∂2

uφ
]

− ∂2
uθ + sin θ cos θ (∂uφ)2 −

− V a ∂uθ + V a sin θ ∂uφ

(8.1a)

(8.1b)
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Only dimensionless quantities appear in this equations: u = x
L , τ ′ = γ′C

L2 t, V = L
γC v.

We want the magnetisation to point to the left at the left boundary and to the right

at the right boundary:

θ(u = 0) = π, θ(u = 1) = 0, (8.2)

which are boundary conditions for our system of differential equations. When the

current is zero, V = 0, the equilibrium (such that 0 = ∂τ ′θ = ∂τ ′φ) is obtained for:

θ(u) = π(1− u), φ(u) = const, (8.3)

as can be seen with a substitution in (8.1). For V > 0, computer simulations show

that the system approaches a stationary equilibrium where the whole magnetisation

rotates with constant frequency around the axis of the nanopillar. We then investigate

the case where there is no further compression of the domain wall, while it could still

rotate with constant angular velocity around the x-axis:

∂τ ′θ = 0, ∂τ ′φ = Ω′ = const. (8.4)

The rotation frequency can be obtained from Ω′ through the relation νf = γ′C
2π L2 |Ω′|.

As a first try to find such a solution we assume ∂uφ = 0 and find the corresponding

compression profile from Eq. (8.1a):

α∂2
uθ + V a ∂uθ = 0.

Solving this equation we get:

∂uφ = 0, θ(u) = π
eλ(1−u) − 1
eλ − 1

,

where λ = V a
α . However this is not a solution of (8.1), as can be easily verified with a

substitution in the second equation of this system:

−∂2
uθ − V a ∂uθ 6= Ω′ sin θ.

We conclude that ∂uφ cannot be neglected. It is then important to understand the role

of ∂uφ, the torsion of the domain wall produced as an effect of the flow of the electric

current.

We point out that the rotation is a consequence of the compression of the domain

wall and — in this sense — can be thought to be an indirect effect of the spin transfer

torque. This can be seen clearly by considering the zero-current equilibrium config-

uration (8.3) and looking at the derivatives of θ and φ with respect to the reduced
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time τ ′, when a current density is immediately applied (this is the situation which

occurs at t = 0 in the simulations). Eq. (8.1a) becomes ∂τ ′θ = −V aπ, which suggests

that a compression of the domain wall is going to take place. Eq. (8.1b) becomes

sin θ ∂τ ′φ = V aπ. We have found a direct contribution to the rotation of the domain

wall. This contribution however is suppressed by the factor V a ∼ −5× 10−4, which is

rather small for the materials and the range of current densities we are interested in

(j = 1011 A/m2, V ∼ 5×10−2). We conclude that the domain wall initially compresses

without significant rotation and torsion. The compression however leads to non vanish-

ing values for the term ∂2
uθ and this in turn requires non vanishing values for sin θ ∂τ ′φ,

as can be seen by looking at (8.1b). In summary, the compression of the domain wall

(i.e. ∂2
uθ 6= 0) produces a torsion and rotation of the domain wall (i.e. sin θ ∂τ ′φ 6= 0).

We now proceed by rearranging (8.1) and imposing (8.4):

−Ω sin θ = ∂2
uθ − sin θ cos θ (∂uφ)2

+ V ξ ∂uθ − V sin θ ∂uφ

αΩ sin θ = 2 cos θ ∂uθ ∂uφ+ sin θ ∂2
uφ

+ V ∂uθ + V ξ sin θ ∂uφ

(8.5a)

(8.5b)

We have here introduced Ω = Ω′/(1 + α2). We note that, at the boundaries of the

nanopillar (u = 0, 1), Eq. (8.5b) gives:

θ = π, 0 −→ ∂uθ

(
∂uφ∓

V

2

)
= 0.

∂uθ cannot be zero at the boundaries, at least for small currents, for which we expect

the solution to be close to the zero current solution (8.3). We then conclude:

∂uφ|u=0 = +
V

2
, ∂uφ|u=1 = −V

2
.

This result suggests that ∂uφ should be of the same order of V . This is an assumption

we make, which enables us to proceed with important approximations. Indeed, for

the material and the geometry we are dealing with, and a current density around

j ∼ 1011 A/m2, we have V ∼ 0.05. Therefore the assumption ∂uφ ∼ V implies that

the typical torsion of the domain wall is, in general, rather small ∆φ ≈ V ≈ 3 ◦. It

implies also that the second and fourth terms on the right hand side of (8.5a) are of

order V 2 ≈ 2.5×10−3. On the other hand (8.3) suggests that ∂uθ ∼ −π and we expect

∂2
uθ to be of the same order of magnitude, when the domain wall is compressed. We

may then neglect terms of order V 2 and terms of order ξV , since typically ξ ∼ 10−2.
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Then the system (8.5) reduces to:

{
−Ω sin θ = ∂2

uθ

αΩ sin θ = 2 cos θ ∂uθ ∂uφ+ sin θ ∂2
uφ+ V ∂uθ

(8.6a)

(8.6b)

We immediately note that all the terms containing ξ have disappeared from the system:

we are neglecting the non adiabatic effects of the spin transfer torque interaction.

Eq. (8.6a) is the pendulum equation. It could be used together with the boundary

conditions (8.2) to obtain θ(u), once Ω is known. However determining Ω is not easy.

We can find a constraint on Ω and θ from the second equation (8.6b), by multiplying

both of its sides by sin θ,

αΩ sin2 θ = ∂u[sin2 θ ∂uφ]− V ∂u cos θ. (8.7)

This equation can be integrated:∫ 1

0
sin2 θ du = −2V

αΩ
. (8.8)

θ(u) can now be found by searching for the solutions of the pendulum equation (8.6a)

which also satisfy (8.2) and (8.8). Our main goal, however, is to find Ω(V ), rather than

finding θ(u) and φ(u). To do this, we multiply both sides of (8.6a) by ∂uθ:

Ω ∂u cos θ =
1
2
∂u (∂uθ)

2 ,

which can be integrated, obtaining:

Ω cos θ + I =
1
2

(∂uθ)
2 ,

where I is a positive (take θ = π/2) integration constant. This equation gives an

expression for ∂uθ:

∂uθ = −
√

2(I + Ω cos θ). (8.9)

The sign in front of the square root was chosen in order to satisfy the boundary condi-

tions (8.2). We can now change variable of integration in (8.8), obtaining:∫ π

0

sin2 θ dθ√
2(I + Ω cos θ)

= −2V
αΩ

. (8.10)

A second integral equation can be derived integrating the identity dθ/∂uθ = du and

using the boundary conditions (8.2):∫ π

0

dθ√
2(I + Ω cos θ)

= 1. (8.11)
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I and Ω can then be found by solving the following system of equations:f1

(
Ω
I

)
= − 2V

αΩ

√
I

f2

(
Ω
I

)
=
√
I

(8.12)

where the two functions f1 and f2 are defined in the following way:

f1(x) =
∫ π

0

sin2 θ dθ√
2(1 + x cos θ)

,

f2(x) =
∫ π

0

dθ√
2(1 + x cos θ)

,

and x has to be such that |x| < 1 in order for f2 to exist. The system (8.12) is difficult

to solve in general. Here we consider two limiting cases:

• |ΩI | & 0. Since f1(0) = π
2
√

2
and f2(0) = π√

2
, we get I = π2

2 and Ω ≈ −4V
α . The

condition |ΩI | & 0, becomes then |Vα | �
π2

8 ;

• |ΩI | . 1. Since f1(1) = 4
3 , Ω ≈ −3

2
V
α

√
I. Considering that |I| ≈ |Ω|, we finally

get Ω ≈ −
(

3
2
V
α

)2. Moreover when x → 1, f2(x) → +∞. We then conclude that

|I| ≈ |Ω| � 1 and hence |Vα | � 1.

These results are summarised below:

Ω =

{
−4V

α for
∣∣V
α

∣∣� 1

−
(

3
2
V
α

)2 for
∣∣V
α

∣∣� 1
(8.13)

The frequency can be deduced easily from the formula νf = γ′C
2π L2 |Ω′| = γC

2π L2 |Ω|:

νf =


2
π
v
αL for

∣∣∣ LvαγC

∣∣∣� 1
1

2π γC

(
3
2
v
α

)2 for
∣∣∣ LvαγC

∣∣∣� 1
(8.14)

Let’s now define j0 such that V/α = jP/j0. Then the low current condition |Vα | � 1

becomes |jP| � j0 and similarly the high current condition becomes |jP| � j0 and,

j0 =
2eγ
µ0µB

αA

L
(8.15)

Which shows, in particular, that the critical current which distinguishes between the

low current regime and the high current regime depends on the nanopillar length L.

We note that in the low current regime the frequency does not depend on the

strength of the exchange interaction C = 2A/µ0Msat. It depends on the length of the

domain wall L and on the magnitude of the applied current v. On the other hand,
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Figure 8.8: Comparison between the numerical values for |Ω(V )| obtained from the one dimensional

micromagnetic simulations (crosses) and the low current (dotted line) and high current (solid line)

analytical solutions.

in the high current regime, the frequency does not depend on L anymore. It depends

however on the strength of the exchange coupling C and depends quadratically on v.

Fig. 8.8 shows the validation of the analytic expressions for Ω(V ) against the

results of the one dimensional micromagnetic simulations of Fig. 8.7. The graph

contains all the data shown in Fig. 8.7 plotted in terms of the reduced quantities V

and Ω. Consequently all the points obtained for different values of L and jP lie in a

single curve. The graph shows good agreement between theory and simulations, thus

supporting the approximations which were made to get to the final formulas.

We make a final remark on the different dependence of the frequency on the applied

current in the two regimes. There are two reasons why an increase of the current may

lead to an increased asymptotic frequency. Firstly, the two terms through which the

spin-transfer torque enters Eq. (3.12) share the prefactor v ∝ j: double the current,

double the spin-transfer torque terms and double the effect. The second way the current

may increase the frequency is by reducing the domain wall width. A reduced domain

wall width corresponds to an increased value of ∂x ~M , which appears in both the spin-

transfer torque terms. In the linear regime, only the first effect occurs. Indeed, from

(8.9) we see that ∂uθ = −
√

2I
√

1 + Ω
I cos θ, where Ω

I ≈ 0 and I = π2

2 . We then

get, ∂uθ ≈ −π, which means that, in the low current regime, the domain wall shape

does not change too much with respect to the zero current configuration (8.3). On the
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other hand, in the high current regime, Ω
I ≈ −1 and ∂uθ = −3V

α sin θ
2 . ∂uθ depends

on j, through V . This analysis suggests that the low/high current regimes correspond

respectively to low/high domain wall deformation.

8.6 Discussion

We discussed the role of the nanopillar shape in Ch. 7: due to the cylindrical shape

of the nanopillar, a rotation of the whole magnetisation around the nanopillar axis

does not require to overcome any energy barriers. This feature is extremely impor-

tant for the dynamic process we have studied here, because it allows the current to

gradually transfer energy to the system and store it by compressing the domain wall.

An important question to answer is then: how much does the shape of the nanopillar

affect the dynamics of such systems? We have cross performed simulations for nanopil-

lars with a square section and found very similar results: for a nanopillar with length

L = 40 nm and square section 20×20 nm we chose j = 1010 A/m2 and found a frequency

νf ≈ 0.61 GHz, while for the corresponding cylindrical nanopillar νf = 0.64 GHz.

Equations (8.13) and (8.14) show that the rotation frequency can be expressed as

a function of V/α and ultimately as a function of jP/α. This means that for a value

of α larger by a factor two, a current density larger by a factor two is required in

order to obtain the same frequency. This consideration indicates that low damping

constant is a desirable feature, when choosing a material for a concrete realisation

of the system proposed in this chapter. We have chosen permalloy, because, besides

being a particularly soft magnetic material, it has been intensively studied in spin

transport experiments in recent years and values between 0.01 and 0.02 have been

estimated[93, 94, 21] for its damping constant α. We point out that our choice, α =

0.02, is conservative: the value α = 0.01 would lead to considerably enhanced current

effects and — in the quadratic regime — would lead to quadrupled frequency.

The electric currents required in spin transfer torque experimental studies are often

high enough to produce considerable Joule heating and Oersted field. These effects

should however be expected to become less and less important as the system is scaled

down. Indeed, smaller systems are able to dissipate heat more efficiently than big

systems, since reduced size corresponds to increased surface/volume ratio. Similarly,

the Oersted field is reduced in smaller nanowires, being proportional to the total current

flowing throughout the sample. On the other hand, the spin transfer torque does not

depend on the system size, provided the current density remains constant. These
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considerations suggest that the nanopillar we presented in this chapter should be even

less affected than the larger nanowires studied in other works[20, 18, 21], where Oersted

field and Joule heating were found to be negligible or unable to limit the effects of

spin transfer torque. Besides these empirical arguments, we can obtain an estimate of

the Oersted field, using a simple model, where the nanowire is approximated with an

infinitely long cylinder with radius R and is traversed by a uniform current density j.

In this simple picture, the Oersted field circulates around the nanopillar axis and has

maximum intensity Bmax = µ0Rj/2, which is reached on the surface of the nanopillar.

Considering the extreme case jP = 2×1011 A/m2 and P = 0.4, we get j = 5×1011 A/m2

and Bmax = 0.00314 T. This field does not act against the rotation of the whole

magnetisation around the nanopillar axis, since it is invariant for such transformations.

Moreover its intensity is so small that we cannot really expect any relevant deformations

of the artificial domain wall created by the pinning (the demagnetising field is two

orders of magnitude bigger and still produces only moderate profile adjustments). We

conclude that neglecting the Oersted field is an appropriate approximation.

8.7 Summary

We used micromagnetic simulations to study the spin transfer torque effects that occur

in a nanopillar when the magnetisation is pinned at its ends. We showed that the

dynamics of such a system is characterised by a stationary precession of the whole

magnetisation of the system around its axis. We presented both three dimensional

and one dimensional computations, and studied the asymptotical precession frequency

νf as a function of the polarised current and of the nanopillar length. We derived an

analytical model which provides further insight into the physics of the system and shows

that there are two current regimes, where the system exhibits different dependencies on

the applied current. We found good agreement between the results of the simulations

and the theory.
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Chapter 9

Summary and outlook

9.1 Summary

The research on magnetism is facing a new era, characterised by an unprecedented

interest in the interplay between magnetism and other types of physics. Researchers

in the field are facing new challenges when studying phenomena such as the effect of a

spin polarised current or a light pulse on the magnetisation dynamics, and computer

simulations can prove invaluable to help the understanding of experimental results or

to assist in the research and optimisation of new devices. Numerical investigations of

such effects require new powerful and flexible simulation tools, which can go beyond

pure micromagnetics and can perform real multiphysics simulations.

For this thesis we devoted considerable effort in developing Nmag, a flexible finite el-

ement method micromagnetic simulation package which was used for our own computer

simulations and has also been made available — as open source — to the magnetism

community. We used Nmag to investigate the micromagnetic systems which are of

interest to our group in Southampton, publishing our findings in specialised journals

[54, 55, 56].

In particular, in Ch. 6 we developed a new model for studying DyFe2-YFe2 multi-

layered exchange spring systems, which uses two distinct fields to represent the mag-

netisation of iron and dysprosium. This is certainly an improvement over previous

computational approaches [95], where the magnetisation in the DyFe2 layers is mod-

eled by a single vector field, assuming rigid antiparallelism between the moments of

the two species. The two fields model was used to investigate a trilayer DyFe2-YFe2-

DyFe2 exchange spring system, showing that the average magnetisation moves in spiral

trajectories near equilibrium. We found that, for such a precessional motion, the damp-
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ing parameter and frequency both reach their minimum values when the applied field

gets close to the bending field, while the amplitude of the spiralling orbits reaches its

maximum value. Such an observation motivated further investigations on the effects

of an electric current travelling in the out of plane direction in the very same trilayer

system. If on the one hand, we found that the magnetisation is particularly reactive

to external stimuli near the bending field, on the other, the spin transfer torque effects

are rather weak in such a situation, because the magnetisation is almost uniform. We

linearised the Landau-Lifshitz-Gilbert equation and derived analytical models for the

system which we studied numerically. This theoretical work was used to validate and

improve our understanding of the numerical results. We derived a new expression for

the bending field which takes into account the penetration of the exchange spring inside

the hard layers and gives estimates which agree nicely with the numerical values.

In Ch. 7 we showed that, despite the results obtained in the previous chapter, rele-

vant spin transfer torque effects may be observed in a trilayer exchange spring system,

when the geometry and the materials are chosen appropriately. We studied again a

trilayer exchange spring system, but with two differences with respect to the system

investigated in Ch. 6. The geometry is the first difference: we studied a cylindrical

nanopillar, rather than a thin film. The second difference lies in the configuration of

the magnetisation. We assumed the two hard layers to be magnetised in opposite di-

rections, forcing the magnetisation to rotate by 180 degrees inside the soft layer, thus

developing what we called “artificial” domain wall. We studied how an electric current

(with density around j = 1011 A/m2), flowing along the axis of the cylindrical nanopil-

lar, interacts with the magnetisation and found interesting results: the domain wall

compresses along the direction of the electron flow reaching a stationary equilibrium

where the magnetic moments rotate coherently with constant frequency around the

nanopillar axis.

In Ch. 8 we performed computer simulations in order to assess how the asymptotic

precession frequency depends on the the current density and on the nanopillar length.

We studied a system similar to the one presented in the previous chapter, with one

difference: the cylindrical nanopillar was made of just one single material and the action

of the hard layers was reproduced by assuming infinite pinning on the magnetisation

at the two opposite faces of the cylinder. Using infinite pinning (which corresponds

to keeping the magnetisation constant), we reproduced qualitatively all the results

obtained for the trilayer nanopillar, thus clarifying that the role of the hard layers is

just to pin the magnetisation along opposite directions at the soft-hard interfaces. We

119



also presented a one dimensional analytical model, much simpler than the numerical

model, but still able to capture the essence of the physics of the system and able to

reproduce most of its features. The analytical model shows that the precession of

the magnetisation is an effect of the compression. It gives a mathematical formula

that, together with the numerical results, helps to understand how the parameters

for geometry and materials balance to determine the asymptotical frequency of the

magnetisation precession.

9.2 Conclusion and outlook

In conclusion, we developed Nmag, a software package which we used to produce all

the numerical results presented in our thesis. We used Nmag to carry out multiphysics

simulations. In Ch. 6 we performed simulation of DyFe2-YFe2 exchange spring system,

where the micromagnetic model was extended to allow a two-field representation of

the magnetisation in the hard layers. In Ch. 7 and 8 we extended the micromagnetic

model with the spin transfer torque effects to study a novel and interesting effect. While

current driven domain wall motion in nanowires has been widely reported and studied

in recent publications, the compression and rotation of a domain wall constrained in

a cylindrical nanopillar is indeed — to our best knowledge — a new effect, which was

presented and understood for the first time in this thesis and the derived publications.

We hope to be able to see soon these effects in experimental samples.

There are some open problems which may be the natural continuation of the work

presented in this thesis. We list them below:

• carry out further studies on the system presented in Ch. 7 and 8 and understand

if the same mechanism could be exploited to obtain a bistable system which can

be switched from one status to the other by the application of an electric current.

One possible idea to achieve this is shown in Fig. 9.1.

• work on other multiphysics extensions to Nmag. It would be useful — in particular

— to include Joule heat generation and diffusion, since one of the main concerns

when studying current-driven magnetisation dynamics is the magnitude of the

current density and the heating which may be connected to it. Another useful

multiphysics extension would be the calculation of the Oersted field, relevant —

in particular — when assessing the importance of spin transfer torque effects.

• in Ch. 6 we found that a continuous current has weak effects on the dynamics

120



Figure 9.1: Sketch of a hard/soft/hard/soft/hard exchange spring system. This picture shows how

the mechanism which was used in Ch. 7 and 8 to generate microwaves may be used in order to switch

a hard magnetic layer. The electric current pushes the domain wall from the soft layer on the left (a)

into the soft layer on the right (b), thus switching the central hard layer.

of the considered trilayer exchange spring system. The magnetisation dynamics

may be different for a pulsed current. We may get a noticeable amplification of

the effects near the resonance frequency, with a mechanism analogous to the one

described in Fig. 1 of Ref. [85]. Further studies may then be carried out in order

to assess the importance of such an effect.
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Appendix A

The choice of units for the LLG

equation

In this appendix we show how to choose units in such a way that all the parameters

which describe a typical micromagnetic physical system have numerical values around

one. This approach is useful during debugging, since it makes it simple to read and

understand the numerical values involved in the simulation. Most importantly, this is

the choice of units which has been made for Nmag, the software package which has

been used to produce the results in this thesis.

In the following table we present some typical numerical values1 used in the LL

equation.2

free space permeability µ0 = (4π/10)·10−6 N/A2

saturation magnetisation Msat ≈ 0.8·106 A/m

damping factor α ≈ 0.5 or3 0.02

gyromagn. ratio γ′ ≈ 0.2·106 m/As

exchange stiffness constant A ≈ 13·10−12 J/m

Provided that we express times in picoseconds (1 ps = 10−12 s) and lengths in nanome-

ters (1 nm = 10−9 m), we can omit the factors 10... and use µ0 = 4π/10, M = 0.8, etc

inside the LL equation. We can verify it in the following way: let us use typewriter font

to denote the values used inside the program. For example: H = H · 106A/m, where H

1The values of Msat and A are relative to permalloy.
2The exchange length lex is calculated as lex =

q
2A

µ0M2 , for permalloy lex = 5.686 nm.
3 The more realistic value is 0.02, but the value 0.5 is often used to speed up the convergence of the

simulations where the dynamics of the system is not being investigated.
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could be imagined as the variable used to store the effective magnetic field. If inside the

program we write H = 0.5, we mean that the actual field will be H = 0.5 · 106A/m =

500000 A/m. This means that inside the program we should multiply by the factor 106

before using the value stored inside H. However our choice is such that these factors

cancel out and therefore such a multiplication is not needed. We use:

time t = t · 10−12 s

space r = r · 10−9 m

magnetic fields H = H · 106 A/m

gyromagn. ratio γ′ = gamma · 106 m/As

exchange stiffness constant A = A · 10−12 J/m

We consider the LL equation for the normalised vector ~m (which is consequently non-

dimensional).

∂t ~m = −γ′
[
~m× ~H + α ~m×

(
~m× ~H

)]
After the substitutions:

∂(t·10−12 s) ~m = −(gamma · 106 m/As)[~m× (H · 106A/m) + . . .

. . .+ α ~m×
(
~m× (H · 106 A/m)

)
]

We see easily that the factors cancel out. This means that we do not need to change

our program and adapt it to the new units. We simply should give numbers as shown

inside the above tables. A similar check can easily be done for the expression of the

effective field:
~H =

2A
µ0M

∇2 ~m(~r) + ~Ha + ~Hd,

where ~Ha is the applied field and ~Hd is the demagnetising field, which is obtained

solving the Poisson equation:

∇2φ = ∇ · ~M,

where ~Hd = −∇φ.
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Appendix B

Solution of the LLG equation for

constant applied field

The LL equation can be solved analytically when the effective field is constant in time.

In this appendix we derive such an analytical solution following the paper published

by Jiang et al. [96, 43]. Assuming constant applied field is evidently a restrictive hy-

pothesis in micromagnetics, but nevertheless it is worth to consider it: firstly because

analytical solutions are always useful for testing purposes or for getting a better un-

derstanding of the underlying physics and secondly because this particular analytical

solution has been used several times in semi-analytical models, as discussed in Ch. 4.

Derivation

The idea underlying the method is to decompose the LL equation into two components:

the one parallel to the applied field, ~H, and the one orthogonal to it. We will see that

if ~H is constant in time, this separation leads to an exact analytical solution. Consider

the well known identity for triple vector products:

~A× ( ~B × ~C) = ( ~A · ~C) ~B − ( ~A · ~B)~C, (B.1)

which holds for any triple of vectors ~A, ~B and ~C. Let us choose ~A = ~h, ~B = ~v and
~C = ~h for a given vector ~v. We obtain:

~v = (~v · ~h)~h+ ~h× (~v × ~h).

Defining:

P~v = (~v · ~h)~h, (B.2)

Q~v = ~v −P~v = ~h× (~v × ~h), (B.3)
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we can write:

~v = P~v + Q~v.

P and Q are two projectors: P projects onto the space of vectors parallel to ~h, while

Q projects onto the space of vectors orthogonal to ~h. We apply the projectors P and

Q to both the sides of Eq. (4.1):

P~m′ = −γ′H
[
P(~m× ~h) + αP(~m× (~m× ~h))

]
, (B.4)

Q~m′ = −γ′H
[
Q(~m× ~h) + αQ(~m× (~m× ~h))

]
. (B.5)

From Eq. (B.2) we see that P(~m × ~h) = 0. Applying the identity (B.1) for the cross

product we obtain: ~m× (~m× ~h) = ~m(~m · ~h)− ~h, which allows us to write:

P(~m× (~m× ~h)) = (~m · ~h) P~m− ~h = (~m · ~h)2~h− ~h.

Since (~m · ~h)2 = ‖P~m‖2, Eq. (B.4) becomes:

P~m′ = γ′Hα (1−P~m ·P~m)~h. (B.6)

This is the LL equation projected along the direction of ~h. Now let’s consider the Q-

projection of the LL equation. As before the cross product is expressed as ~m×(~m×~h) =

~m(~m · ~h)− ~h. Obviously Q~h gives 0, hence:

Q(~m× (~m× ~h)) = (~m · ~h) Q~m.

Finally we consider ~m×~h. This vector belongs to the plane orthogonal to ~h, where

Q behaves like the identity operator:

Q(~m× ~h) = ~m× ~h. (B.7)

However, as we will see later, we need to express this value as a function of Q~m in

order to handle the projected equation. For this reason we define the following linear

operator:

J~v = (~h · ~v)~h− ~v × ~h. (B.8)

If we now apply J to the vector Q~m1:

J(Q~m) = J(~m− (~h · ~m)~h) = −~m× ~h.
1J represents a rotation of 90 degrees around the axis parallel to ~h. This can be used to derive the

same result in a more intuitive fashion.
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Using this result into Eq. (B.7), we find:

Q(~m× ~h) = −J(Q~m). (B.9)

We can finally write the LL equation projected along the plane orthogonal to ~h:

Q~m′ = γ′H
(
J− α (~m · ~h) I

)
Q~m, (B.10)

I is the identity operator.

Suppose now that ~H does not change in time. In this case P~m′ =
(
∂t ~m · ~h

)
~h =

∂t(~m·~h)~h = (P~m)′. In a similar way Q~m′ = (Q~m)′. If we define the scalar u = (P~m)·~h
and the vector ~v = Q~m, the projected Eqs. (B.6) and (B.10) can be rewritten in the

following way:

u′ = γ′Hα(1− u2),

~v′ = γ′H
(
J− α (~m · ~h) I

)
~v.

The first of these two equations is independent of ~v and can be therefore integrated

immediately:

u(t) =
u0 cosh(αγ′H t) + sinh(αγ′H t)
cosh(αγ′H t) + u0 sinh(αγ′H t)

,

u0 is the initial value for u: u(t = 0) = u0. This result can be used to integrate the

second equation [96, 43]:

~v(t) =
cos(γ′H t) I + sin(γ′H t) J

cosh(αγ′H t) + u0 sinh(αγ′H t)
~v0.

~v0 is the initial value for ~v and defines the initial condition, together with u0. Remem-

bering how u and ~v were defined, we obtain ~m(t) = u(t)~h + ~v(t). We can express the

initial condition using ~m0 = m(t = 0). This is easily done using Eqs. (B.2) and (B.3).

We see that: u0 = ~m0 · ~h and ~v0 = ~h× (~m0 × ~h).

Summary

Since we consider these solutions quite interesting we write them in a different and

slightly clearer formulation. First we express the equations as they appear in the

original papers [96, 43]. If ~H = H~h is constant in time, then (we omit the space

dependence):

~m(t) = a(t)~h+ B(t)
[
~h× (~m0 × ~h)

]
,
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where ~m0 = ~m(t = 0),

a(t) =
(~m0 · ~h) cosh(γ′αH t) + sinh(γ′αH t)

cosh(γ′αH t) + (~m0 · ~h) sinh(γ′αH t)
,

B(t) =
cos(γ′H t) I + sin(γ′H t) J

cosh(γ′αH t) + (~m0 · ~h) sinh(γ′αH t)
,

γ′ =
γ

1 + α2
,

and, given any vector ~v:

I~v = ~v,

J~v = (~h · ~v)~h− ~v × ~h.

In our particular case:

J
[
~h× (~m0 × ~h)

]
= ~h× ~m0.

So we can rewrite the equations in a more convenient form (for computation):

~m(t) = a(t) ~h

+ b(t) ~h× ~m0

+ c(t)
[
(~h× ~m0)× ~h

]
, (B.11)

where ~m0 = ~m(t = 0), γ′ = γ/(1 + α2) as before, and:

a(t) =
[
(~m0 · ~h) cosh(γ′α t) + sinh(γ′αH t)

]
/D(t), (B.12)

b(t) = sin(γ′H t)/D(t), (B.13)

c(t) = cos(γ′H t)/D(t), (B.14)

D(t) = cosh(γ′αH t) + (~m0 · ~h) sinh(γ′αH t). (B.15)

To understand the dynamics better we express this result in spherical coordinates: we

take a reference frame with z axis along ~h and y axis along ~m0 × ~h (as a consequence

the x axis lies along the vector (~h× ~m0)×~h). In this reference frame the solution can

be expressed easily as: ~m(t) = (c(t) sin θ0, b(t) sin θ0, a(t)), where sin θ0 = ‖~h× ~m0‖ =

‖(~h× ~m0)×~h‖. Note that this vector has unit norm. We can write it using the spherical

coordinates θ(t) and φ(t) with polar axis along z:

~m(t) = (sin θ(t) cosφ(t), sin θ(t) sinφ(t), cos θ(t))

Equating these two expressions of ~m, we obtain:

φ(t) = γ′H t, (B.16)

cos θ(t) = a(t) = tanh
(
γ′αH (t− t0)

)
, (B.17)

sin θ(t) = sin θ0
D(t) =

1
cosh (γ′αH (t− t0))

, (B.18)
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t0 = 1
γ′αH log sin θ0

1+cos θ0
is the time at which ~m passes through the plane xy.

Discussion

These solutions give interesting hints to understand the dynamics generated by the LL

equation. From Eq. (B.16) we see immediately that the vector ~m precesses around

the effective field ~h with constant angular velocity. The frequency of this rotation is

ν = γ′H
2π . This means that — as expected — the dynamics is faster for higher effective

field.2

When there is no damping (α = 0) D(t) = 1 and from Eq. (B.18), sin θ(t) = sin θ0:

the angle θ(t) between the vectors ~m(t) and ~h is constant in time. This means that the

dynamics is simply a rotation with constant angular velocity around the effective field.

When the damping is nonzero, the vector ~m(t) still precesses around ~h as before,

but now it also moves towards ~h. This effect is shown clearly by Eq. (B.17). We

can also make an estimate of how fast this movement is by finding the time at which

the angle between ~m(t) and ~h is equal to a very small angle ∆θ. From Eq. (B.18)

we know that this happens when γ′αH (t − t0) � 1. In this case we can use the

approximations cosh(γ′αH (t − t0)) ≈ eγ
′αH (t−t0)/2 and sin ∆θ ≈ ∆θ to rewrite Eq.

(B.18) as ∆θ ≈ 2 exp(−γ′αH (t− t0)). Solving for t we obtain:

tswitch ≈
1

γ′αH
log
(

2 sin θ0

∆θ (1 + cos θ0)

)
.

tswitch is the time needed for the magnetisation, ~m, to get from θ = θ0 to θ = ∆θ,

where θ is the angle between ~m and the constant applied field of magnitude H. Such a

switching time is inversely proportional to H and α. The same formula can be inverted

to obtain ∆θ ∝ e−γ
′αHt, which shows that the angle between the magnetisation and

the applied field decays exponentially for t→ +∞.

Jiang et al. propose to use the analytical formulas for the magnetisation evolution

in order to integrate the LL equation. The procedure they suggest is the following: to

go from time t0 to time t0+∆t they assume that the change of ~H(t) in this time interval

is negligible and use Eqs. (B.11–B.15) with ~H replaced by ~H(t0). For this procedure to

work, one must obviously choose ∆t in a proper way: Jiang et al. suggested to use ∆t

such that the fastest precessional motion, among all the sites of the mesh, is resolved

in a given number N of steps per period [43]. This could be done in this way: let’s use

the index i to label the physical entities defined at the site i of the mesh. From Eq.
2This could be argued from the beginning: the substitution T = γ′H t in Eq. (4.1), shows that the

solution of the LL equation must be a function of γ′H t
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(B.16) one calculates the time ∆ti required to span an angle 2π/N : ∆ti = 2π/γ′NHi.

∆t = min{∆ti}i is then chosen.
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Appendix C

Anisotropy near the easy axis

In this appendix we express uniaxial and cubic anisotropy in spherical coordinates,

choosing the polar axis aligned along one easy/hard direction. We then expand the

anisotropies for small values of θ, the angle between the magnetisation and the easy/hard

axis. We start from Eq. (2.9) and (2.10), the expressions of the uniaxial and cubic

anisotropy introduced in Ch. 2:

εua(m1) = −K1m
2
1 −K2m

4
1, (C.1)

εca(m1, m2, m3) = K1(m2
1m

2
2 +m2

2m
2
3 +m2

3m
2
1) +K2(m2

1m
2
2m

2
3)

+K3(m4
1m

4
2 +m4

2m
4
3 +m4

3m
4
1). (C.2)

m1, m2 and m3 are defined as mi = ~m · x̂i, where x̂i are the unit vectors lying

along the three orthogonal axes shown in Fig. C.1 and x̂1 is chosen to be one of the

easy/hard directions. In terms of θ and φ, we can rewrite mi as:

Figure C.1: We express both uniaxial and cubic anisotropy in spherical coordinates, choosing an

easy axis as the polar axis, which is here denoted by x1.
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m1 = cos θ,

m2 = sin θ cosφ,

m3 = sin θ sinφ,

which can then be substituted inside (C.1) and (C.2), obtaining:

εua(θ) = −K1 cos2 θ −K2 cos4 θ,

εca(θ, φ) = K1(sin2 θ cos2 θ + sin4 θ sin2 φ cos2 φ)

+K2 sin4 θ cos2 θ cos2 φ sin2 φ

+K3(sin8 θ cos4 φ sin4 φ+ sin4 θ cos4 θ (1− 2 cos2 φ sin2 φ)).

When θ � 1, we can approximate these expressions with:

εua(θ) = const.+ (K1 + 2K2)θ2 +O(θ4),

εca(θ, φ) = K1θ
2 +O(θ4).

We conclude that both uniaxial and cubic anisotropy can be approximated by Aθ2,

when the magnetisation deviates by a small angle θ from an easy axis direction.
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