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by Salima Boudjemaa

We look at models of neutrino mass and mixing which represent an important as-
pect of physics beyond the Standard Model (SM). We derive approximate analytic
formulae for the neutrino mixing angles in general SD involving NLO and NNLO
corrections. These expressions, which are given in terms of input see-saw param-
eters, provide a useful guide for unified model building. We then evaluate these
formulae in the cases of CSD and PCSD for two numerical GUT inspired models
in order to measure the effect of NLO and NNLO corrections. In addition to this,
we analyse the effects of charged lepton corrections and Renormalisation Group
(RG) running on neutrino mixing angles and various sum rules, in models where
tri-bimaximal mixing is exactly achieved at high energy scale. We find the RG
corrections to neutrino sum rules to be typically small for the case of hierarchical

neutrinos.

Another aspect of physics beyond the Standard Model concerns the search for vi-
able four dimensional string models. We look at moduli stabilisation in the frame-
work of four dimensional models arising from heterotic and type ITA string theories.
The superpotentials in these models involve flux and non-perturbative terms. We
consider a set of conditions which lead to moduli solutions for Minkowski minima of
the scalar potential. Following this procedure, we correct models presented in the
literature and uplift the flat directions. We also study inflation in the framework of
these models. We find that it is successfully achieved along the axionic directions
of the moduli fields for values of the initial conditions within substantial regions
of parameter space. A very interesting structure of the potential is obtained when
considering the evolution of two axionic directions in one of the models in the pres-
ence of a gaugino condensate term. This structure, which involves the existence of
multiple local minima surrounding the global one, represents a perfect background

for realising inflation.
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Chapter 1

General Introduction

1.1 Motivation

The Standard Model (SM) of particle physics is one of the most successful theories
of the last century. However, although its predictions have been confirmed by
experimental data, it falls short of being a complete theory of all the fundamental
interactions observed in nature. One of the problems that the SM suffers from is
the fact that it predicts massless neutrinos which is in disagreement with the most

recent experimental results.

Evidence for neutrino mass and neutrino flavour oscillation came from various
experimental data from solar, atmospheric and reactor experiments. The first
one was the Raymond Davis experiment which detected a deficit in the number
of electron neutrinos emitted by the sun [1]. This result suggested that electron
neutrinos were changing to other flavours such as muon or tau neutrinos. The
compelling evidence for neutrino oscillation came from The Super-Kamiokande
experiment where a deficit in the muon neutrino flux, reaching the Earth, was
observed [2]. Other experiments such as Sudbury Neutrino Observatory (SNO),
KamLAND, K2K and MINOS have all confirmed the results of neutrino oscillation
3, 4].

Neutrino flavour oscillation generally means that one type of neutrino can be
converted over time to a different type. For example, an electron neutrino turning
into a muon neutrino or a muon neutrino oscillating to a tau neutrino. The mixing
between the different neutrino flavours is controlled by the lepton mixing matrix,

U, which relates the neutrino flavour states v., v, v; to the neutrino mass states
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vy, Vg, V3 With masses mq, msy, m3. This great discovery of neutrino oscillation led
to an increase, not only in the amount of experimental data, but also in the interest

in neutrino phenomenology research.

The existence of neutrino mass requires us to look for possible extensions of the SM
in order to provide a description that fits with experimental observations. Studying
models of neutrino mass and mixing opens an important window in the search of
possible theories of physics beyond the SM. One of the main neutrino mixing
patterns that fits with current experimental data is the so called tri-bimaximal

(TB) mixing [5, 6] described by the following matrix,

2 1L
3 V3
~ -+t L 1
Urs Ve V3 ov2 | (1.1)
1 1 1
V6T VB V2

TB mixing predicts maximal mixing for both the atmospheric, 653, and the solar,
012, angles while it assumes the reactor angle 6,3 to be zero. There are many
models that attempt to reproduce this as a theoretical prediction [7, 8, 9, 10, 11].
One way to achieve this type of mixing is by considering Constrained Sequential
Dominance (CSD).

Part T of this thesis is concerned with deriving analytic formulae for the neu-
trino mixing angles in the presence of NLO and NNLO terms. We also study
numerical estimates of the effects of these NLO and NNLO corrections on the
mixing parameters using two GUT inspired models. In addition, we look at the
model of Tri-bimaximal-Reactor Mixing (TBR) which predicts a non zero reactor
angle while preserving TB solar mixing and maximal atmospheric mixing. The
theoretical prediction of large reactor angle is in agreement with the most recent

experimental data [12].

Although TB mixing can be achieved accurately in the neutrino sector, it usually
exhibits deviations in the flavour basis when considering models arising from Grand
Unified Theories (GUTs). One source of these deviations is the presence of charged
lepton corrections. This gives rise to a variety of sum rules relating neutrino
mixing parameters together; for example, 615 — 613 cos § ~ 35.26°. These sum rules
represent an important tool not only for testing predictions of different neutrino
mixing models but also for comparing these predictions to future high precision

experiments.
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Another source of deviations is Renormalisation Group (RG) running of neutrino
quantities (including mixing angles, phases and masses) from high energy scale
(the GUT scale) to the electroweak scale (M scale). We expect future neutrino
experiments to be more sensitive to deviations from TB mixing compared to the
current situation. Therefore, it is of great importance to theoretically measure
the uncertainty in these deviations. This represents one of the main motivations
for Part I of this thesis where we study a set of neutrino sum rules at both high
energy and My scales. We also provide the first numerical study of TB deviations

arising from both charged lepton corrections and RG running.

The quest for finding a unified theory of all interactions also suggests looking at
physics beyond the SM. Such a theory would relate the forces of the SM: the strong
force, the weak force and the electromagnetic force to gravity. Many extensions
of the SM were proposed by physicists in order to incorporate other theories such
as Supersymmetry. Perhaps the simplest one is the Minimal Supersymmetric
Standard Model (MSSM). The pursuit of unifying the SM with gravity, however,
takes us to ten and eleven dimensions where string and M-theory exist. Since these
theories exist in far more dimensions than what is observed in our universe, we
need to find a way of hiding the extra dimensions in order to compare the resulting

physics to that of the SM. This mechanism is known as compactification.

Compactification is achieved when the extra dimensions are curled up to a very
small radius (smaller than what we can observe by today’s experiments). For the
case of string theory, we have six extra space dimensions that can all be compact-
ified. However in doing so, we get a four dimensional theory with undesirable side
effects. These are massless scalar fields (moduli fields) that are not observed in
nature and therefore would modify our laws of physics if left massless. Generating
a potential for these fields and stabilising them at their Vacuum Expectation Val-
ues (Vevs) is extremely vital in order to have phenomenologically viable models.
This is the main subject of Part II of this thesis, where we analyse some models
from the literature, using a set of conditions including Supersymmetry breaking
constraints. We also present new solutions for these models and uplift the flat
directions. Stabilising moduli fields is also important for studying inflation since,
without stabilisation, a particular modulus direction becomes flat and therefore
can evolve forever leading to many problems such as decompactification of space
dimensions. This represents another important motivation for studying moduli
stabilisation as it would shed some light on the origin of structure formation and

help us better understand the history of our universe.
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Inflation, which is the dominant theory for the origin of structure, describes a
period of exponential expansion which is introduced prior to the standard Big
Bang theory. It is driven by the fluctuation of one or more scalar fields known as
the inflaton fields. Inflation not only provides solutions for the classical problems
of the Big Bang model including the flatness, horizon and monopole problems, but
it also provides a natural explanation for the spectrum of density perturbation.
During the inflationary period, small inhomogeneities in the energy density occur
due to quantum fluctuations which generate temperature anisotropies in the cosmic
microwave background radiation (CMB). These inhomogeneities were predicted in
the literature [13, 14] and are in excellent agreement with recent observational
data from the Wilkinson Microwave Anisotropy Probe (WMAP) [15]. WMAP
data presents many constraints on inflation and its parameters in order to allow
scientists to select between the different inflationary models. The WMAP also
provides maps of the temperature fluctuations of the CMB radiation with very
high accuracy and therefore it offers an opportunity to shed light on some of
the key questions in cosmology and better understand the large structure of our

universe.

In part IT of this thesis, we aim to study inflation within the framework of models
originating from string theory. There were many problems facing the implemen-
tation of inflationary models within string theory including the runaway moduli
problem and also flat directions. With the development of flux compactification
and moduli stabilisation, this field is undergoing promising progress. In this thesis,
we present successful inflationary scenarios, achieved for realistic models of type
ITA and heterotic theories. We also comment on a special structure obtained for
models of type ITA string theories in the presence of gaugino condensation. These
models give rise to unbounded potentials which constitute a prefect environment

for realising eternal inflation.

1.2 Thesis structure

This thesis is divided into two parts. Part I is concerned with studying neutrino
masses and mixing while Part II covers mainly the subjects of moduli stabilisation

and cosmological inflation in the framework of string theory.

The first part is organised as follows. In Chapter 2, we give a brief overview of
the nature of neutrinos and the history behind the discovery of neutrino mass.

We then outline the different types of neutrino mass which leads us to an elegant



Chapter 1 General Introduction )

mechanism for explaining the smallness of neutrino masses, known as the see-saw
mechanism. Finally, we review neutrino mixing including TB mixing and charged

lepton corrections and present the derivation of a variety of neutrino sum rules.

Chapter 3 aims to review SD with the special case of CSD, which is a very powerful
tool for obtaining TB mixing. We first discuss the diagonalisation procedure of
the effective left-handed mass matrix resulting from the see-saw mechanism. We
then use this approach to derive analytic expressions of the mixing angles in the
presence of NLO and NNLO corrections. We conclude the chapter by evaluating
these analytic formulae using two numerical examples in the simplified case of

CSD, as well as PCSD involving non-zero 1-1 Yukawa coupling.

Chapter 4, which is the final chapter in Part I, involves studying neutrino mixing
angles and a set of sum rules numerically, at both the high energy scale (GUT
scale) and the electroweak scale (M scale). The results were obtained using a
Mathematica package known as REAP [16] which solves RG equations of different
neutrino quantities. The numerical analysis presented in this chapter represents
cases with zero and non-zero Majorana phases. We also study two different models
with light (LSD) and heavy sequential dominance (HSD). We conclude the chapter

by giving justifications for our numerical approach.

The second part of this thesis involves studying the stabilisation of moduli fields
resulting from string compactifications and their contribution to driving cosmo-
logical inflation. Similarly to the first part, this part is also divided into three

chapters as described below.

Chapter 5 gives a brief introduction to string compactification starting with a
review of Kaluza Klein reduction. We then discuss flux compactification and re-
view the nature of moduli fields that result from such compactifications. We also
state the importance of generating a potential for these moduli so that they can
be trapped and stabilised at their Vevs. Finally, we present the four dimensional
content of heterotic and type ITA string compactifications on T°/(Zy x Zs) orien-
tifolds which represent the background of the models considered in the following

chapters.

Chapter 6 considers four dimensional models originating from type ITA and het-
erotic string compactifications on T°/(Z, x Z,) orientifolds. The resulting super-
potentials are combinations of a flux term and a condensate term, both of which
are given in terms of moduli fields. Extremisation and Supersymmetry breaking

conditions are derived and studied for each model in order to find a minimum of
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the potential along the directions of the relevant moduli. The process of uplifting

the flat directions, in these models, is also presented.

Chapter 7 is the final chapter in part II and considers inflation within the frame-
work of the models discussed in Chapter 6. A brief introduction to the theory
of inflation is given. We then outline the main conditions for achieving slow-roll
inflation. This is followed by a detailed analysis of some of the models presented
in the previous chapter to see whether inflation is successfully achieved along all
moduli directions. Finally, we comment on an important structure of the potential
obtained when considering type ITA models. This interesting structure involves
the existence of a global minimum surrounded by a set of local minima (false

vacua) along certain axionic directions.

We end the thesis with a short chapter giving some concluding remarks. We
also provide three appendices where we describe the diagonalisation procedure
of the left-handed neutrino matrix, the derivation of neutrino mass terms which
are considered in Chapter 3, as well as the numerical calculations of the Hessian

matrices for the models presented in Chapter 6.



Part 1

Neutrino Mixing



Chapter 2

Neutrino Mass and Mixing: An

Overview

In this chapter, we give a brief review of neutrino mixing. We also discuss the
different types of neutrino mass that can be generated, which then leads us to the
introduction of the see-saw mechanism. A non-exhaustive list of useful reviews on

neutrino mass and mixing is [17, 18, 19, 20, 21].

2.1 Neutrinos in the Standard Model

The Standard Model [22] is one of the most successful theories in particle physics.
It describes all the particles that are observed in nature and their interactions. The
latter are namely: the strong force, the weak force and the electromagnetic force.
The particle content of the model is classified in three generations of fermions, each
containing a quark pair and lepton pair (u, d, e, v), (¢, s, p, v,) and (¢, b, 7, v;). The
gauge group of the SM is Ggyr = SU(3)¢ x SU(2), x U(1)y. It contains spin-1
particles associated with the fundamental interactions. These particles include
gluons which are responsible for the strong force, the photon for electromagnetic

interactions and massive vector bosons responsible for mediating weak interactions.

So far, we have only considered the particle content of the SM without introducing
any mass terms. These mass terms are extremely essential according to experi-
mental results which show that all particles have masses, for instance we know that
the electron has a mass of 511 eV. A mechanism known as the Higgs mechanism

is responsible for generating masses for the gauge bosons as well as the fermions

8
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present in the SM. This is characterised by adding a Higgs scalar doublet to the
spectrum of the Standard Model. Introducing the Higgs mechanism breaks the

electroweak symmetry down to the electromagnetic symmetry.

The basic idea of this mechanism is that the Higgs interacts with the SM particles
which causes the breaking of this symmetry (also known as spontaneous elec-
troweak symmetry breaking (EWSB)) and the particles to acquire masses. This
symmetry is broken due to the fact that the potential of the Higgs field develops
a non-trivial vacuum expectation value (VEV). We will see later how this pro-
cess, when applied in the SM, generates mass terms for the massive gauge bosons

W+ W~ and Z. The most general form for the Lagrangian density is,

Ly ukawa = — Qi 0d;rY — Qip¢°ujrY;) — Lipde;rY;; + h.c. (2.1)
where ¢¢ = (—in¢"), Y}, V4, VS are 3 x 3 Yukawa matrices and the indices

i,7 = {1,2,3} refer to the three different families. @, and L, are left-handed
quark lepton doublets while d;g,u;r and e;p are SU(2), singlet fields of down
quarks, up quarks and charged leptons respectively. To see how the masses for
fermions and gauge bosons are generated in the SM, we consider an isospin doublet

of scalar fields with weak hypercharge Y = 1/2

(o
¢‘<w> 22)

where the complex scalar fields ¢, " are given by,

" = (¢1+ 1@52)/\/57 ¢° = (¢3+ Z¢4)/\/§

The Lagrangian of the Higgs doublet must be invariant under SU(2);, x U(1)y

symmetry. The simplest choice can be written as

Liziggs = (D,0) (D ¢) — 12p' e — Mp' ) (2.3)

where ;2 and A\ are real parameters with A > 0. In order to have massless pho-
ton, the electromagnetic symmetry U(1)gy must remain unbroken. This can be
achieved by taking the coefficient 42 to be negative. As a result, the Higgs poten-
tial (V = p2¢'¢ + A(¢'¢)? ) develops a non zero minimum at (¢'¢) = —pu?/2X
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By expanding around this vacuum, the Higgs vacuum expectation value (Vev) can

1 0
¢(x) = 7 ( o+ hz) ) (2.4)

where v = 4/ _T’ﬂ and h(x) is the physical Higgs field. After the Higgs field acquires

its Vev, The gauge boson mass terms can be identified as given by the following

be written as

Higgs Lagrangian,
2

v? o
(Do) (DHp) = Zfw;w . g(g2 + 92, 7" + ... (2.5)

where

1
We=—
V2

The masses of W+ and Z bosons can be given respectively as

1 42
(AM:I:zAM)

MW:@ Mz =+/g?+g” = 92

= 2.6
2’ 2 cos Oy (2:6)

where Oy = tan'(g'/g) is the weak mixing angle.

We have seen how the mass terms for the gauge bosons are generated after intro-
ducing the Higgs mechanism into the SM. All fermions present in the SM, except
neutrinos, acquire mass terms through the same process. After spontaneous sym-
metry breaking, these masses are generated by substituting the Higgs VEV into

the Yukawa Lagrangian, in Eq.(2.1), to give masses of the form,

mu,d,e _ Lyu,d,e (27)

i \/5 i

When the Standard Model was first formulated, neutrinos were thought to be
massless for many reasons, including the absence of right-handed neutrinos. How-
ever, in recent years neutrino experiments have shown convincing evidence that
neutrinos are massive as a consequence of their oscillations. As a result, the study
of the physics of neutrino mass and mixing became one of the leading candidates
in the field of physics beyond the Standard Model. One way of generating neu-
trino masses in the SM is by introducing right-handed neutrinos, which gives rise
to neutrino Dirac mass term of the form m{7rvg when a right handed neutrino
field vg interacts with a left handed field v;. This type of mass is forbidden in
the SM without the Higgs doublet since only the left handed neutrinos transform

under SU(2) and therefore the mass term is not invariant under the electroweak
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symmetry. In the next section, we will briefly review the main experimental results
supporting neutrino oscillations and also the different types of neutrino mass that

can be generated.

2.2 Evidence of neutrino oscillations

Neutrinos are electrically neutral particles of spin 1/2; which play an important
role in the SU(2), x U(1)y electroweak theory. They appear in at least three
different flavours, which are all left-handed, meaning that their spins point in op-
posite directions from their momenta. These three flavours are known respectively
as the electron neutrino v, the muon neutrino v, and the tau neutrino v,. Their

anti-particles, on the other-hand are right-handed.

There are many sources of neutrinos, the most important one is the Sun which
emits around 2 x 10%® electron neutrinos per second. Other sources include relic
neutrinos, which are left over from the early stages of evolution of the universe and
nuclear plants producing mainly electron-antineutrinos. Type II Supernovae are
also a good source of neutrinos emitting nearly 6 x 10°® of neutrinos with different

flavours every ten seconds.

Neutrino oscillations were first discussed in 1957 by Pontecorvo. In his study, he
mainly looked at oscillations between neutrinos and anti-neutrinos in analogy with
the oscillations of Kaons and their anti-particles. Mixing between two massive
neutrinos was only studied after the discovery of muon neutrinos. It was first
discussed by Maki, Nakagawa and Sakata in 1962.

The first experimental evidence of neutrino oscillation came from the Raymond
Davis experiment [1], when a deficit in the number of solar neutrinos v, reaching
the earth, was observed (only 1/3 of the total number predicted by solar models).
The discrepancy between the theoretical models and the results of this experiment
led to the conclusion that the electron neutrino is in fact oscillating into other

flavours such as muon or tau neutrinos.

Another compelling evidence for neutrino oscillations was the data presented by
Super-Kamiokande laboratory in 1998 [2]. The results showed a deficit in the
number of muon neutrinos reaching Earth when they had travelled a significant
distance. These results were interpreted as evidence that muon neutrinos oscillate

into tau neutrinos which shows that at least one neutrino flavour has a non-zero
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mass. The Super-Kamiokande experiment has also confirmed the results of Davis’s
experiment and a deficit in the flux of electron neutrinos originating from the sun
was observed. Sudbury Neutrino Observatory (SNO), KamLAND, K2K and MI-
NOS are other experiments which confirmed neutrino flavour oscillation [3, 4]. In
summary, we see that there is strong evidence from different experimental sources
that supports neutrino flavour oscillation. The existence of these oscillations means
that neutrinos are not massless as predicted by the SM. In the next section, we dis-
cuss the different types of neutrino masses that can be generated after introducing
right-handed neutrinos to the Standard Model.

2.3 Neutrino masses

The smallness of neutrino masses, compared to other fermions in the Standard
Model, has been a good description of nature for a long time. However, these
particles appear to be massive according to experimental results. So to resolve this
problem, we have to find a way of introducing these masses in the SM. There is
also a problem of defining the nature of neutrino masses which raises the question:
are neutrino masses Majorana or Dirac masses? If we have a close look at the
nature of neutrinos in order to answer this question, we find that they have no
charge and no colour compared to the other fermions. This evidently means that
they can be their own anti-particles or what is known as Majorana fermions. For

the remainder of this part, we will assume that neutrinos are Majorana.

In the SM, we can have left-handed Majorana masses which are achieved when a
left-handed neutrino field v, couples to its own charge and parity conjugated state

v§, in other words it couples to a right handed antineutrino field,

ml vy, (2.8)
where the charge conjugate of the left-handed neutrino v can be written as,

Ve = Ot

and C is a unitary matrix of charge conjugation which satisfies the following

relations:

CAlC = —,, Cl=C, CT=—C
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Such Majorana masses do not conserve lepton number (L) and since the combi-
nation 7§ vy belongs to a triplet, these masses are strictly forbidden in the SM
assuming only Higgs doublets are present. Another obvious way of generating
neutrino masses in the SM is by introducing right-handed neutrino fields vg. This

gives rise to Dirac masses of the form,
MHVLVR (2.9)

which are achieved when the right-handed neutrino field vy interacts with the left-
handed neutrino field v7,. The Dirac mass terms mimic the mass terms of quarks
and charged leptons by conserving the lepton number and therefore this type of
masses is allowed by the symmetries of the SM as they are generated through the

Higgs mechanism.

Adding right-handed neutrinos vg to the SM generates another type of Majorana
masses called right-handed Majorana masses which result from the right-handed
neutrino field vz coupling to its CP conjugate field v§. These masses are also

allowed in the SM and have the following form:

MgoRvy | (2.10)

We now return to our previous question of defining the nature of neutrinos. Since
left-hand Majorana masses do not conserve lepton number, future experiments
may confirm whether this lepton number violation is mainly caused by the presence
of such mass terms, through a very promising approach known as Neutrinoless
double beta decay. In this process, a nucleus consisting of N neutrons decays to
N+2 neutrinos by emitting two electrons. If this process is observed, it will confirm
that neutrinos are different from the other fermions in the SM and that they are

indeed Majorana fermions.

So far, we have summarised three types of neutrino masses which are possible
after introducing right-handed neutrino fields. While the left-handed Majorana
masses are zero in the SM, the magnitude of the right-handed Majorana masses
can be very large since, in principal, there is nothing that prevents the right-
handed neutrino field from coupling to its CP conjugate. This leads to very small
effective left-handed Majorana masses which is explained by an appealing and

simple mechanism known as the see-saw mechanism [23].
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2.4 The see-saw mechanism

In the SM, the right-handed Majorana masses My can be very heavy compared to
very small effective left-handed neutrino masses. The smallness of these effective
masses is explained by an elegant mechanism known as the see-saw mechanism.
Both Dirac and Majorana masses are present in this mechanism and the main
idea is to assume that left-handed Majorana masses are zero to start with as
predicted by the SM, but are effectively generated after introducing the right-
handed neutrino v [23]. Once this is done then the right handed Majorana masses

and the Dirac masses are permitted and we have the following mass matrix,

M= (7w vﬂ(ﬂ% ZZ)(Z) (2.11)

The application of this mechanism means that half of neutrinos are the familiar
light neutrinos while the other half are extremely heavy right-handed Majorana
neutrinos with masses, Mg. The right-handed Majorana masses may be orders of
magnitude larger than the electroweak scale, or possibly as large as the GUT scale.
One can diagonalize the matrix in Eq.(2.11) to give effective Majorana masses of

the type in Eq.(2.8) in the approximation that Mg > mp,
myp = —mDMlglmg ) (2.12)

Diagonalising the above matrix M gives rise to two different masses. One of them
is Mp and the other one is (mp)? /Mg which is equivalent to the effective Majorana
mass my. We can see that m; < mp since it is suppressed with respect to mp
by the small ratio mp/mpg given that mpg can be very large. For example, taking
mp of order of the weak scale and Mg of order close to the GUT scale, we find

my, ~ 1073 eV which looks good for solar neutrinos.

We have seen how the smallness of the effective neutrino Majorana masses is
explained by the see-saw mechanism. However, we still cannot explain the as-
sumption that the right-handed Majorana mass My is so large compared to the
electroweak scale and the Dirac mass. It is believed that this is mainly due to the
fact that Mp is generated at very high energies by the symmetry breaking of the
theory beyond the SM.

The version of the see-saw mechanism discussed so far is known as type I see-saw
mechanism, which is illustrated in Fig.(2.1). Type I see-saw mechanism is often

generalized to a type II see-saw, in Pati-Salam models or GUTs based on SO(10),
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FiGUuRrE 2.1: Type I see-saw mechanism.

where an additional mass term m}! for the light neutrinos is present [24]. We will
not discuss type Il see-saw mechanism here as it is not within the scope of this

thesis.

2.5 Neutrino mixing

As discussed in previous sections, there is strong experimental evidence that neu-
trinos change from one flavour to another which leads us to the subject of “neutrino
mixing”. Neutrino mixing is described by the so called “lepton mixing matrix”
U (this is also known as the Pontecorvo-Maki-Nakagawa-Sakata matrix Upprns
or just Upyns). For the remainder of this part, we will assume the name Upy/ys
unless stated otherwise. This is a unitary matrix connecting the neutrino flavour
fields vy = {v.,v,, v, } to the neutrino mass fields v, = {v1, 1,3} with masses

my, ma, mg respectively as presented in Eq.(2.13),

Vi = UPMNS VUm (213)

Current data shows that the state 1y comprises mostly v, while the state v, includes
nearly equal amounts of v,, v, and v;. On the other hand, the state v3 consists
mainly of v, and v;. The difference between the mass eigenstates and the neutrino

flavour eigenstates is what causes neutrinos to oscillate from one flavour to another.

Mixing between neutrino flavours may involve two states as well as three families.
According to experimental data, the simplest case of neutrino mixing occurs when

muon neutrinos oscillate into tau neutrinos, which is known atmospheric mixing.
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m _ C23 523 ) (2 14)
Vr —S523 (€23 V3 ’

here and in the remainder of this part, we will take s;; = sin6;; and ¢;; = cosb,;,

where 0;; are the neutrino mixing angles. In this mixing, only two mass eigenstates
and two flavour eigenstates are relevant. The current experimental data supports
maximal mixing with,

sin? 20,3 = 1

As discussed earlier, the three-flavour mixing is governed by a 3 x 3 unitary matrix
presented in Eq.(2.13). Assuming the light neutrinos are Majorana, this matrix

can be parameterised by three mixing angles 0;; and three complex phases as

follows:
1 0 0 C13 0 81367% C12 s1o O
U= 0 o3  So3 0 1 0 —5s12 c12 0 PM7 (215)
0 —S8923 (a3 —513ei5 0 C13 0 0 1
where Py = diag(e®, "% ,0) is the matrix containing the Majorana phases

a1, 9. These phases do not affect neutrino oscillation and have physical con-
sequences only if neutrinos are Majorana particles. They can be eliminated in
the case of massive neutrinos being Dirac particles and not Majorana. This is
done by rephasing the massive neutrino fields which will leave the Dirac term
invariant. The first matrix in the above equation corresponds to Atmospheric
neutrino mixing that we discussed earlier. The second matrix describes Reactor
neutrino oscillations, which are assiciated with the detection of anti-electron neu-
trinos. Solar neutrino oscillations are described by the third matrix in Eq.(2.15).
Recent experimental data from KamLAND [25] have confirmed these oscillations

specifying the large mixing angle (LMA) solar solution with the value,
sin? 615 ~ 0.30

three flavour mixing also involves studying neutrino masses. In the standard Par-

ticle Data Group (PDG) parametrization, the PMNS matrix can be written as
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FIGURE 2.2: Experimental allowed regions for the atmospheric and solar mix-
ing angles as well as the mass difference squared terms [26].
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(2.16)
where 0 is the Dirac phase and P, is the Majorana phase matrix. From the
above mixing matrix, we can see that the presence the phase § is related to the
appearance of the mixing angle 6,3, which means that the size of CP violation will
depend on this angle. This is one of the main reasons why exact measurement of

this angle is so important in neutrino physics.

Experimental values and errors for the three neutrino oscillation parameters are
summarised in Tab.(2.1) [26, 27, 28]. Experimental allowed regions for the atmo-

spheric and solar mixing angles are shown in Fig.(2.2) [26].

Parameter Best fit (°) 20 (°) 30 (°)
012 34.44 31.94- 37.46  30.65- 39.23
Oa3 45 38.05 - 52.53  35.66 - 54.93
015 4.79 < 10.46 < 12.92

TABLE 2.1: Best fit values, 2 ¢ and 3 ¢ intervals for the three- flavour neutrino
oscillation parameters from global data including accelerator (K2K and MINOS)
and solar, atmospheric, reactor (Kam LAND and CHOOZ) experiments [27].
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2.6 Tri-bimaximal mixing

Tri-bimaximal mixing (TB) [5, 6] is achieved in the framework of three-family
mixing with sin?fy; = 1/2, sin?f15 = 1/3, 63 = 0. The lepton mixing matrix

is then given by,
2

2 1L 9
3 VB
~| -L L L
UPMNS 75 7 7 (217)
1 11
V6 VB V2

We can explain tri-bimaximal mixing in terms of flavours and mass eigenstates. It
corresponds to the state v having a sixth of both v, and v, and two thirds of v..
As can be seen from the above matrix, only v, and v, feature in the third state v
corresponding to the third column of Upysyg, with equal amounts. On the other
hand, all the flavours are involved in the state v, with equal parts as shown by

the middle column of the mixing matrix.

The latest data from neutrino oscillation experiments is consistent with this TB
pattern. With the advancement of technology, future neutrino experiments will be
extremely sensitive to small deviations from TB mixing and therefore it is of great
importance to study the theoretical uncertainty in such type of mixing. With this
in mind, constructing a new parameterisation of the PM NS matrix, in which
these deviations feature explicitly, might be very useful for both experiments and
theoretical studies of neutrino oscillation. Such parameterisation was developed
in [29]. It was achieved by taking an expansion about the tri-bimaximal matrix in
analogy with Wolfenstein parameterisation of quark mixing. Three small param-
eters r, s and a are introduced to describe the deviations of the reactor, solar and

atmospheric angles from their tri-bimaximal values,

L +a. (2.18)

V2

T 1
:_(1+8)7 S23 =

513 =—=, 5
13 ) 12 73

Global fits of the corresponding mixing angles can be translated into the ranges
[26],
0<r<0.22 —-011<s<0.04, —-0.12<a<0.13. (2.19)

Considering an expansion of the lepton mixing matrix in powers of r, s, a about

the tri-bimaximal form. One gets the following form for the mixing matrix to first
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order in 7, s, a,

\/g(l — 35) Z5(1+5) \%’re‘i‘s

Unmns = —\/Lé(l—i-s—a—i-rei‘s) \/Lg(l—%s—a—%rei‘s) (1 +a) Py
\/Lé(l + 5+ a—re?) —\/Lg(l — 1s+a+ sre?) %(1 —a)

2.7 Charged lepton corrections

Lepton mixing can originate entirely from the neutrino sector or from the charged
lepton sector depending on the chosen basis. It can also be generated in both
sectors and, in this case, the Lagrangian is written in terms of mass matrices of

charged leptons M, and neutrinos m, as,

1
L= —éLMe(aR - §ﬂLmLVE -+ H.C, (221)

The change in basis from flavour to eigenbasis is performed by,

me O 0 m; 0 0
Vo MVE =1 0 m, 0 |, VipmeeVi=1 0 my 0 |. (2.22)
0 0 m, 0 0 mg

The PMNS matrix is constructed as a product of a unitary matrix from the charged
lepton sector V., and a unitary matrix from the neutrino sector V,, ,

Upyns =V, VI (2.23)

€L "vy,

Now that we have discussed tri-bimaximal mixing in the framework of neutrino
oscillations, we need to look into how this mixing is actually achieved and in what
basis. There have been many theoretical speculations about the best way to con-
struct this pattern. Most of the proposed models consider two particular bases.
The first basis is the flavour basis in which the charged lepton mass matrix is di-
agonal, while the neutrino mass matrix takes a particular form such that is results
in TB mixing. The second basis is a particular basis first introduced by Cabibbo
and Wolfenstein in which both the neutrino and charged lepton mass matrices

are non-diagonal, but in which the charged lepton mass matrix is diagonalised by
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a “democratic unitary matrix” involving elements of equal magnitude but differ-
ing by a phase w = 27/3. Such a Cabibbo-Wolfenstein basis is particularly well
suited to models of TB mixing based on the discrete group A, [30]. However in
other classes of models, one attempts to work in the flavour basis and to derive
TB mixing purely from the neutrino sector with the charged lepton matrix being

diagonal, for example using constrained sequential dominance (CSD) [7].

2.8 Charged lepton corrections and sum rules

Tri-bimaximal mixing may be accurately achieved in the neutrino sector for models
arising from Grand Unified Theories (GUTs). However the charged lepton mass
matrix is never accurately diagonal in the flavour basis. Instead, in such models,
the charged lepton mass matrix often resembles the down quark mass matrix,
and involves an additional Cabibbo-like rotation in order to diagonalize it. In
these models, TB mixing arises in the neutrino sector, but with charged lepton
corrections giving deviations [31]. Such Cabibbo-like charged lepton corrections
lead to well defined corrections to TB mixing which can be cast in the form of
sum rules. In this section, we review the derivations of different types of these

sum rules, involving neutrino mixing angles as well as TB deviation parameters.

2.8.1 Cabibbo-like corrections and sum rules

We consider the case where TB mixing applies quite accurately only to the neutrino
mixing in some basis where the charged lepton mass matrix is not exactly diagonal
(32, 33]. This is a situation often encountered in realistic models [7]. Furthermore
in GUT models it is often the case that, in the basis where the neutrino mixing
is of the TB form, the charged lepton mixing matrix has a Cabibbo-like structure

rather similar to the quark mixing and is dominated by a 1-2 mixing 6%, [34],

_ —iA
CoE, i SpEe 0
_ i
Ve, = Spp €12 cor, 01, (2.24)
0 0 1

where cyp = Sgr. = sin n 1 requir r iagonalisa-
here o = cos 0, spp = sin 073, and A is a phase required for the diagonalisa

tion of the charged lepton mass matrix [7]. The physical PMNS oscillation phase



Chapter 2 Neutrino Mass and Mixing: An Overview 21

§ turns out to be related to AE, by [34],
§= A+ (2.25)

We assume that the neutrino mixing is accurately of the TB form,

2 1L
i P
— 1 1 1
vl oL Py (2.26)
1 1 1
V6 V3 V2

The physical mixing matrix, given by Eq.(2.23), can then be expressed using
Eqgs.(2.24, 2.26). The standard PDG form of the PMNS mixing matrix in Eq.(2.16)
requires real elements (Uppsvs)11 and (Upasnvs)i2 and this may be achieved by use

of the phases in Py = diag(e'=, e'%,0).

It follows that (Uparns)si, (Upans)se and (Uppnvs)ss are unaffected by the Cabibbo-

like charged lepton corrections and are hence given by:

(Upnins)a| = (V] )ar] = % (2.27)
1

|(Upnins)sa| = |(Vf )a2| = 7 (2.28)
1

|(Uparns)ss| = [(V] )as| = o3 (2.29)

Since these relations are all on the same footing, it is sufficient to discuss one of
them only and in the following we choose to focus on Eq.(2.27). Using Eq.(2.16),
Eq.(2.27) can be expanded in terms of the standard mixing angles leading to the

following sum rule,
Fl = arcsin <\/§ ’523812 — 3130230126150 = 35.260, (230)

where we have assumed s5; = sin 55 = \/Li This sum rule can be simplified further

to leading order in sy3,
['s = arcsin (\/§ (823812 — S13Ca3C12 COS 5)) ~ 35.26°. (2.31)

From Eq.(2.29) and using so3 = cp3 = 1/1/2, we can express the above sum rule
to leading order as,
Fg = 912 — 913 COS<5) ~ 35.26°. (232)
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The last form of the sum rule was first presented in [7], while all the above forms
can be found in [35, 36]. In Chapter 4, we shall study all three forms of the sum

rules I';, together with some related sum rules which we now discuss.

In order to see how deviations from TB mixing manifest, we also define the fol-
lowing parameters which express the deviation of the magnitude of the third row

mixing matrix elements from their tri-bimaximal values:

|(Upmns)s| = %(14%1)
Urins)nl = —=(1+)
|(Upmns)ss| = L(1—1-53) (2.33)

S

Hence from Eq.(2.16), we get the following expressions for the §; parameters

&1 = \/6 |523812 - 513023612€i5| -1,
§ = \/g ’ — S23C12 — 813023312616’ -1, (2'34)
& = V2 |eascrs] — 1.

These third family deviation parameters &; can also be expressed in terms of the

deviation parameters 7, s, a, using Eq.(2.20), as follows

& o~ |l+s+a—re®|—1,
& 1 —1s+a+ ire?| -1, (2.35)
£ ~ |1 —al —1.

Q

We can express the relations, given by Eqs.(2.27, 2.28, 2.29), in terms of the third
family deviation parameters defined in Eq.(2.33) as simply:

& = 0. (2.36)

Using the parametrization in Eq.(2.18), the sum rule in Eq.(2.32) can be expressed

in terms of the deviation parameters s, r and the Dirac CP phase (J)[29],

o1 =rcosd —s=0. (2.37)
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To deal with issues of canonical normalisation corrections, the following sum rule
has been proposed [37, 38|,

2
02:7“0085—1—5(1—3:0. (2.38)

This sum rule was claimed to be stable under leading logarithmic third family RG
corrections, although, as emphasized in [37, 38|, it does not include the effect of
running the mixing angle, 6,3, or r, whose inclusion introduces a Majorana phase

dependence.! Such effects will be studied numerically in Chapter 4.

So far, we presented a set of sum rules involving the neutrino mixing matrix as
well as the TB deviation parameters. In Chapter 4, we will study the RG running
of these sum rules from the GUT scale to the My scale, using the Mathematica
package REAP, for two GUT inspired numerical models. However, before we
discuss the RG running, we will first look at the analytic derivations of the three

neutrino mixing angles, in general SD, as presented in the next chapter.

!This sum rule was derived from an expansion in msy/mg, and the running of r was neglected
because it is suppressed by an extra factor of msy/ms compared to the running of s and a.



Chapter 3

NLO and NNLO Corrections to

Neutrino Parameters

In this chapter, we present analytic expressions for the neutrino mixing angles
including the NLO and NNLO corrections originating from the second lightest and
lightest neutrino masses [39]. We start by reviewing Sequential Dominance (SD)
in the framework of type I see-saw mechanism. We also review the special cases of
Constrained Sequential Dominance (CSD) and Partially Constrained Sequential
Dominance (PCSD). We then present numerical results for the analytic formulae
of the neutrino mixing angles and masses, for two GUT models, in the presence of
NLO and NNLO corrections. Finally, we compare the numerical results to those
evaluated using the Mathematica package MPT/REAP [16] *.

3.1 Sequential dominance

Sequential dominance is a very elegant way of accounting for a neutrino mass
hierarchy with large atmospheric and solar mixing angles. In the framework of the
see-saw mechanism, diagonalising the complex neutrino Majorana matrix mY

gives rise to neutrino masses mq, mo and msg,

mq 0 0
Vam VAT =10 my 0 (3.1)
0 0 ms

'Mixing Parameter Tools (MPT) is a package provided with REAP and it is mainly used to
extract neutrino mixing parameters.

24
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In the case of see-saw mechanism with right-handed neutrino dominance, a partic-
ular high energy theory includes a charged lepton Yukawa matrix Y ¥, a neutrino

Yukawa matrix Y and a right-handed neutrino Majorana matrix Mgzg.

Let us consider the case where the right-handed neutrino Majorana matrix takes

a diagonal form with real eigenvalues as,

Y 0 0
Mpr~| 0 X 0 |. (3.2)
0 0 X

We also write the complex neutrino (Dirac) Yukawa matrix Y, in terms of the

Yukawa couplings a,b,c,d,e,f,a’b’.c’ as

d a d
Yip=| e b v |. (3.3)
f c

The neutrino mass matrix can be derived using the see-saw formula, given by
Eq.(2.12),

a’? a? d2  a'b ab de a'c ac df

vttty = +txty S tx T3

v a'b’ ab de p'2 b2 e2 b be ef
my=| Y+ Y XY A3 Y (34)

b2 b2 e v be ef 2 2 2
v +tTxtTy xtxty +x+7%

In SD, the atmospheric and solar neutrino mixing angles are obtained in terms of
ratios of Yukawa couplings involving the dominant and subdominant right-handed
neutrinos, respectively. Assuming for simplicity that d = 0, SD then corresponds
to the right-handed neutrino of mass Y being the dominant term, while the right-
handed neutrino of mass X giving the leading sub-dominant contribution to the
see-saw mechanism. The SD condition can then be expressed as,

CLIPL s Jeyl 2

v > 5 (3.5)

where z,y € a,b,c and 2’y € a/,b'c, and all Yukawa couplings are assumed to
be complex. Therefore, according to SD, the leading order (LO) contribution to
the neutrino mass matrix comes from one single right- handed neutrino resulting
in a single neutrino mass eigenvalue m3 and the “atmospheric” mixing angle 6a3.

The second largest next-to-leading order (NLO) contribution to the neutrino mass
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matrix in SD, arising from a second right-handed neutrino, induces the second
neutrino mass msy as well as the “solar” and “reactor” mixing angles ¢, and 63,

respectively.

In unified models, a third right-handed neutrino contributes to the seesaw mecha-
nism with SD and its next-to-next-to-leading order (NNLO) contribution provides
a mass my to the lightest neutrino, which will also give corrections to the analytic
expressions for the neutrino mixing angles at NNLO. These corrections , which are
of order m; /ms, depend on the rather large 3-3 Yukawa coupling ¢’. The analytic
estimates of the mixing angles in SD have so far only been presented to LO [40, 41]

and these are given by,

) el
nt, “ (3.6)
|al
o~ 3.7
an b, cas|b| cos(¢),) — sa3|c| cos(¢L)’ 0
b st €D 0 )

(el + 22 X

where some of the Yukawa couplings were written as x = |z|e**=. The phases x”

and ¢4 are fixed to give real angles 67, and 65 by:

Co3|bl sin(¢y) A~ sas|c]sin(dy), (3.9)
P2 R Qe — o — O, (3.10)
where
b = b~ da— P2 — X, (3.11)
¢£z = ¢C_¢a+¢€_¢f_¢2_><a (312)
¢* = arg(e’b+ f*c) (3.13)

and co3 = cos(fa3) and s93 = sin(fag).
In the large d limit, the angle 6,3 can be expressed as follows [40]:

d
013 ~ 4 =0, (3.14)

Vel + [/

Note that 613 and 69; are given differently in the small d and large d cases so

we must be careful to distinguish the two limiting cases. The phases ¢o and ¢
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appearing in Eq.(A.9) are fixed by:

P2 = Ge— Pa (3.15)
¢3 = ¢f — Pa (3.16)

In this chapter, we shall derive similar analytic expressions, in the framework of
type I see-saw mechanism with SD, including both the NLO and NNLO correc-
tions. The derivation of these analytic expressions builds on the results presented
in [40] where the NLO and NNLO corrections were not considered 2. For the re-
mainder of this chapter, we will take the LO formulae of the mixing angles given
by Eqs.(3.6, 3.7, 3.8, 3.14) to be t9;, 19, and 0Y; respectively.

3.2 Special cases of Sequential Dominance

3.2.1 Constrained Sequential Dominance

Constrained Sequential Dominance (CSD) [7] corresponds to SD with the con-

straints defined as,

la| =16l = |d, (3.17)
ld| = 0, (3.18)
fl = If (3.19)
e'b+ f'c = 0, (3.20)

where the parameters a, b, ¢, e, f, d are the complex Yukawa couplings presented in
Eq.(3.3). The above CSD constraints give rise to TB neutrino mixing, in which
tanfy, = 1, tan6, = 1/v/2 and 6%, = 0. In CSD, a strong hierarchy |m;| <
|ma| < |mg]| is assumed which enables m; to be effectively ignored (typically this
is achieved by taking the third right-handed neutrino mass X’ to be very heavy
leading to a very light m;). We note that numerical results of neutrino mixing
angles at CSD, in the presence of non-zero 3-3 Yukawa coupling, are only accurate
to leading order in mso/mg [40, 42, 43] and therefore these conditions do not give
rise to precise TB neutrino mixing. In Chapter 4, we shall see that accurate TB

neutrino mixing only arises when the CSD conditions are perturbed.

2Although the NLO corrections were calculated for the atmospheric angle they were not
considered for the other angles, and NNLO corrections were completely neglected [40].
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3.2.2 Partially Constrained Sequential Dominance

Tri-bimaximal-reactor Mixing (TBR) [44] can arise from type I see-saw mechanism
via a very simple modification to CSD called Partially Constrained Sequential
Dominance (PCSD). This modification involves allowing a non-zero 1-1 element

of the Dirac neutrino mass matrix.

TBR mixing corresponds to the mixing matrix,

3 V3 V2
Urpr = —\/Lé(l + ret) \/Lg(l — sre’) \/Li P, (3.21)
\/Lg(l — re) —\%(1 + sre’?) \/Li
where we have introduced the reactor parameter r defined by s;3 = \/Li [29] and

s1, ~ 0.02 corresponds to r &~ 0.2. Estimates suggest that PCSD is capable of

accommodating a sizeable reactor angle while the atmospheric and solar angles
are predicted to remain close to their TB values [44]. Similarly to the CSD case,
LO analytic results in the PCSD case are not very accurate and in general they

receive both NLO and NNLO corrections as we shall see in subsequent sections.

3.3 Neutrino parameters in general SD to NLO
and NNLO

In this section, we derive approximate analytic expressions for neutrino mixing
angles in the case of neutrino mass hierarchy, in general SD including NLO and
NNLO corections. The derivations make use of the diagonalisation procedure

outlined in Appendix A.

3.3.1 Derivation of the atmospheric angle

As discussed in Appendix A, the diagonalisation of the mass matrix involves apply-
ing the real rotation Ry3 after re-phasing the neutrino mass matrix. This rotation

gives rise to two new mass terms mb, and mj given by Eqgs.(B.5,B.3) respectively.
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Let us start by writing the lower 23 block in terms of the Yukawa couplings,

( Mo T ) = ( ) (3.22)

Diagonalising the 23 block according to Eq.(A.10) gives rise to an expression for

Cl2

+
ty %

+ xiE
M +
+ =k

=S <
==

=1L <%

tan(26s3) in terms of the lower block masses and phase ¢, ¢3. This can be written

as,
(’m23|ei(¢23—¢2—¢3))

tan(2023) = 33| €163 -263) — [1yp|il$22-262)

(3.23)

Substituing for the masses in Eq.(3.23), we get the following expression of tan(26,3)
in terms of the complex Yukawa couplings,

2%(1 + El)ei(—¢2—¢3)
L1+ € +m)ei=26) — €(1 4 e3)eil-262)’

tan(26’23) ~ (324)

where we have introduced new parameters €, €5, €3 and 7y, which are given as

follows,
be 2 b o
_ X _ X _ X _ X
Q= 2= 5 8= 2 h= f2- (3.25)
Y Y Y Y

Note that €;, n; are of order my/ms, my/ms respectively, so that ¢; parametrise the

NLO corrections while 7; parametrise the NNLO corrections.

Introducing the small parameter ¢ such that |f| = |e|(1 — ), we get

2%(1 . 5)(1 4 el)ei(¢e+¢f_¢2_¢3)
5 (1= 20)(1+ e + my)i2rm209) — [52(1 4 g )ei(20e-20)

2(1+€2—|—7’]1))
~ tan(20%) o (1= 0(1 — 22— =2~ T
( 23)||\ |f|( ( 62+771—€3

tan(2923) ~

(3.26)

Using Eq.(3.26), we get the final formula for the atmospheric angle, which can be

written in SD as,
tan(fy3) ~ t9;(1 + Re (7)), (3.27)

where the complex couplings e, f are written in terms of their absolute values and
phases as e = |e|e’®, f = |f|e respectively. ¢35 = tan(fa3)|e,—0.n—0 1S given by

Eq.(3.6) and the complex parameter v is written, to leading order in €;, 7y, as:

—_

)
v~ —(63 — €9 — 771) + 5(63 + €9 — 261 + 771). (328)

\V)
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We note that the final analytic expression of tan(f,3), given by Eq.(3.27), depends
only on the absolute values of e, f and the parameter . On the other hand,
the phases ¢, ¢y are not important for determining this angle. Here and in the
remainder of this chapter, we will refer to sin(f,3) and cos(fs3), in the limit ¢; =

_ 0 0 :
0,71 = 0, as sy3, Co3 respectively.

3.3.2 Derivation of the reactor angle

We apply the Ry3 rotation, as outlined in Appendix A, which modifies the outer

block of the mass matrix as,

- 0 ~
( Y ) = Ri” ( i ) Ry (3.29)
0 my my3 Mg

We consider the reduced matrix that only involves the 13 elements and this gives
rise to two zeros in the 13,31 positions as presented in Eq.(3.29). The neutrino

angle #13 can then be written as,

m
oY ~ 13
13 mé?
L i ab de
- (MYy(1 = 7(s5)") + P sh(57 + )= 6), (3.30)

where the masses mj, mY;, are given by Eqs.(B.4, B.10) respectively. The complex

parameter ( is given by:
[ = (sh3)es + (chs)*(ea + ) — eae™, (3.31)

where the NLO correction parameter ¢4 is defined as,

(bcgs - CSgsei(¢E_¢f))2 ’€|2 + |f|2 -
€4 = .
4 X Y

We can simplify Eq.(3.30) further, after expressing the masses m4, m{;, in terms

of the complex couplings, by considering two different limits, namely the large d

limit and the small d limit, as follows:
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Idel \df\ lab ~|ac|

In the large d limit, < X

>> the angle 6,3 can be expressed as,

ld|

———(1— Re 3.32
———(1- Re () (3.32)

~ 60(1— Re(B)), (3.33)

O3 ~ ei(62-detda)

ni=0,ci—0 18 given by Eq.(3.14) and the phases are fixed

where the angle 09, =
by ¢2 = ¢ — @a-

¢ ldel ldfl __ lab] Jacl

Yy < ¥ Which is usually the case in CSD, 6,3

In the small d limi

can be expressed as,
b3 ~ 05 (1— Re(7)(sp3)° — Re(0)) (3.34)
+  s%les| ((Reycos(¢) — Imysin(¢'))® + (Reysin(¢') + Imvcos(d))z)% ,

where ¢/ = ¢y — 2¢, and Y, in this limit, is derived in [41] and given by Eq.(3.8).

The NLO correction parameter €5 is defined as,

1
6= %b (M) | (3.35)

From Eq.(3.34), we can see that 6,3 is proportional to 6, with a small correction
given in terms of the NLO and NNLO parameters. This result shows that the
angle 013 can be non-zero, in this limit, even in the case of vanishing LO result

presented by 69,.

In the PCSD case with non-zero d, we can write the leading result for 6,3 as,

|d]|
Oy ~ (0% +—D ) (1- 0 .
3 < s+ W) (1 - Re(2)(s2)? — Re(5) (3.36)
+ s9ses) ((Re’ycos(¢') — Imysin(¢'))? + (Reysin(¢) + Im'ycos(qﬁ'))Q)%
0 |d||e]
+ 523 Re (7)\e|2 + |f’27

where 6%, and the parameter ¢; are given by Eqs.(3.8,3.35) respectively.

3.3.3 Derivation of the solar angle

As shown in Eq.(A.6), applying the phase matrix P; introduces a new phase x

to the mass matrix. We can then apply the real rotation Ri5, as presented in
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Eq.(A.12), which modifies the matrix by putting zeros in the 12,21 positions.

Using Eqs.(B.5, B.7,B.11), we get the following expression for tan(26,2),

2|m12|6i(<l~512*X)
’m22|ei($22—2><) — My

2AB
B (17085 = G = G (1= G —(s5)?)) . (3.37)

tan(2912) =

where, similarly to [40], A, B are expressed in terms of the complex couplings as,

B = e*i(¢2*X) Cg3b _ 833061'(%7%)
VX

and the new parameters (; and (5 are given, in the small d limit, to first order in

~v and [ as,
, acsy
(o e (AB?;) . (3.38)
1 vooet\ o
@ N (m (Y + 7) - 325) (339

where 1), is given by,
& (lef+ 1P
=—=|— : A4
= ( v (3.40)

Similarly to the derivation of the atmospheric angle, we can easily derive an ex-

pression for the solar mixing angle in SD using Eq.(3.37), which gives

Q

tan(@lg) _(1 — Re (C/))a

th5(1 — Re (¢), (3.41)

Q

where 1, = tan(612)],,-0.,—0 is given by Eq.(3.7). The new parameter ¢’ is given

as,
B? — A?

/N
CNB2+A2

(v (s95) + G+ LA -G — (323)2)) : (3.42)
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3.4 Analytic results in the special cases of SD

In this section, we will look at how the rather complicated analytic results for the
neutrino mixing angles, derived in the previous section, can be simplified in the
special SD cases (CSD and PCSD). We will also look at whether the NLO and
NNLO corrections will survive in these cases. For simplicity and for the remainder
of this section, we shall take ¢. = 7 and all the remaining Yukawa phases to be

zero except ¢ which is left general.

3.4.1 Neutrino mixing angles in CSD

As discussed in Section.3.2, CSD corresponds to SD with the constraints given
by Eqs.(3.17-3.20). In the CSD limit, there are no NLO corrections to the TB
neutrino mixing angles. However, in practice, the large 3-3 Yukawa coupling (¢)
may be expected to lead to a non-zero my, and in this case the TB mixing angles
would be expected to be subject to NNLO corrections. Using the analytic results,
derived in the previous section, in SD to NLO and NNLO, we can verify that the

NLO corrections vanish in all cases for CSD leaving only the NNLO corrections.

3.4.1.1 The atmospheric angle

We can write the atmospheric angle, given by Eq.(3.27), in CSD as,
tan(fy3) 9" ~ 1 + Re (y95P), (3.43)

which involves a correction v given by Eq.(3.28). This correction depends on the
NLO parameters ¢; and the NNLO parameters 7; presented in Eq.(3.25). The CSD
conditions, given by Eqs.(3.17-3.20), imply that the ¢; are equal (€5 = €3 = —¢)
and 0 = 0. From Eq.(3.28), it is clear that the NLO contributions to vy described
by the ¢; cancel. This result implies that the atmospheric angle is corrected by ~

which only involves NNLO corrections and it is given by,

e, (3.44)
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3.4.1.2 The reactor angle

For the reactor angle 6,3, we only need to consider the expression valid in the small
d limit given by Eq.(3.34) since the other limit contradicts with CSD. Imposing
the CSD conditions in Egs.(3.17-3.20), the LO result for the reactor angle (6Y;)
becomes exactly zero as can seen from Eq.(3.8). As a result, the first term of
Eq.(3.34) vanishes. The third term also vanishes for CSD and we are only left

with the second term of order 7e,

1 b 2y2 /|2
9%5[) CSD) _ ‘ ’ ‘C’ COS(2¢C/). (3‘45)

42 e X XY

~ 0
~ spzeslte(y

The above analytic result implies that the reactor angle is given by a term pro-
portional to NNLO.NLO corrections.

3.4.1.3 The solar angle

We can also simplify the solar angle, given by Eq.(3.41), in the CSD case. This

angle can be expressed as,
1
tan(f12)°P ~ —(1 — Re (%P 3.46
(612)°7 & (1= Re(C)) (3.46)

which involves a correction ¢’ given by Eq.(3.42). We can simplify this parameter

in this limit to get,

99 3 (L 4P ) (3.47)

2

which depends on 7“7 as well as the parameters (1, (, presented in Egs.(3.38,3.39).
We note that £’ also depends on the small parameter 3, through &, which is given
by Eq.(3.31). The parameter v takes the simplified form, which is presented
in Eq.(3.44). The remaining parameters 3, (1, (2, given by Eqgs.(3.31, 3.38, 3.39),

can also be simplified in CSD and take the following forms,

ﬁCSD ~ _/yCSD7 (348)
CSD VCSD
1 N (3.49)
1 |c’|2X X
cSD 12¢.
h ~ 5 |a|2 J€ . (3.50)
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We also note that the NLO corrections vanish in this case and the solar angle is

corrected only by NNLO corrections.

3.4.2 Neutrino mixing angles in PCSD

As discussed in Section 3.2.2, PCSD is similar to the CSD case defined by Eqgs.(3.17-
3.20), but with a non-zero value of 1-1 Yukawa coupling d. Similarly to the results
found in the case of CSD, we shall see that the mixing angles derived in the PCSD

case are only corrected by NNLO corrections while the NLO corrections vanish.

3.4.2.1 The atmospheric angle

In the PCSD case, the atmospheric angle given by Eq.(3.27) becomes,
tan(fa3) "% ~ 1 + Re (4795P). (3.51)

The small parameter v in this case is identical to the case of CSD,

PCSD — CSD. (352)

v v

This result implies that the atmospheric angle correction only involves NNLO

corrections, as in the case of CSD.

3.4.2.2 The reactor angle

We can simplify the reactor angle f;3, presented in Eq.(3.30), in PCSD to find,

Re (,YPCSD> |b|2y
2 V20e|2X

OFCSP 2 0% (1 + Re (v795P)) — (3.53)

where the LO expression for the reactor angle, in the large d limit, is given by

Eq.(3.14), and can be written as,

09, ~ | .
13 \/§’€|

Therefore, the reactor angle only receives NNLO corrections, similar to the CSD

(3.54)

case.
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3.4.2.3 The solar angle

In the PCSD case, the solar angle, given by Eq.(3.41), can be simplified as

tan(612) "OSP & (1~ Re (¢POSP)), (3.55)

V2
which involves a small correction ¢’ given by Eq.(3.42), which we approximate here

to,

¢POSD o 1

’YPCSD PCSD PCSD
3 (— +¢G + ¢, > . (3.56)

2
The parameters (1, (> can be simplified in the PCSD case as,

PCSD ., . PCSD 0 \/516‘2)(
1 ~ (1 + 913W) (3-57)
2O A G V2T (0)°, (3.:58)

where the LO expression for the reactor angle (6%) is given by Eq.(3.54). We note
that the NLO corrections also vanish for the solar angle in the PCSD case however
there is a correction of order (6%)2. The presence of the (6%)? correction is due
to the difference in the diagonalisation procedure between 2-3 and 1-3 elements
of the neutrino mass. We note that, for the PCSD case, all corrections to the

neutrino mixing angles vanish at NLO, with the NNLO corrections remaining.

3.5 Numerical results

In the previous section, analytic expressions of the neutrino mixing angles, in-
volving NLO and NNLO corrections, were derived. Approximate results in the
special SD cases (CSD and PCSD) were also presented and the NLO corrections
vanished in both cases. In this section, we evaluate the analytic results for two
different numerical GUT inspired models of [7, 10] previously studied in [45]. The
first model is of light sequential dominance (LSD) with the lightest right-handed
neutrino having the dominant contribution to the atmospheric neutrino mass. The
second model is of heavy sequential dominance (HSD) [42, 43] where the heavi-
est right-handed neutrino gives the dominant contribution to the neutrino mass.
We present a brief introduction to the two models. We then present numerical
results for the neutrino mixing angles as well as the neutrino masses, presented in
Appendix B. We also compare the numerical results to those obtained using the
MPT/REAP package.
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3.5.1 Results for the LSD model

The LSD model, we consider in this section, is a simple realistic model based on
the family symmetry SO(3) and Pati-Salam unification[7]. Heavy Higgs super-
fields H, H are introduced in order to break the Pati-Salam symmetry to the SM.
The family symmetry is spontaneously broken (SO(3) — SO(2) — Nothing) by
introducing flavon fields ¢; (i = {1,2,3}), ¢a3, ¢123 with the following vacuum

alignment in order to achieve tri-bimaximal neutrino mixing,

0 0 0 1
¢1 = 0 ) ¢2 = 1 5 ¢3 = 0 ) ¢23 = 1 ) ¢123 = 1
0 0 1 —1 1

The Yukawa matrices can be obtained from the leading Yukawa operators (these
operators are listed in [7]) by considering the dominance of right handed up and
down messenger mass scales over left-handed.

d 1 U L
Symmetry breaking effects allow the following numerical values for the expansion

parameters associated with ¢93 where the fields are assumed to be replaced by

their vevs,

¢23 —~ — ¢23 —~

Numerical values are also found for the expansion parameters associated with the

remaining flavons. Using these numerical values together with the leading Yukawa

operators [7], the following Dirac neutrino Yukawa matrix can be achieved,

0 y2€3 Y3 €’

Yip~ | wne® ye® 034yie® |, (3.59)

—y1€® yoed  ysE

[V

where the complex Yukawa couplings are written as, y; = |y;|e?. Using the
Majorana operators [7], the right-handed Majorana matrix takes the following

form

Mp = 0 qe® 0 | Ms, (3.60)
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where p, ¢ are complex couplings and the leading heavy mass M3 is given in terms

of the Higgs vev and the neutrino messenger mass scale (M* = M") as,

(H)?
MV

M; =

We can obtain numerical expressions for the neutrino Majorana mass matrix and

the neutrino Yukawa matrix by taking the following values for the parameters

Y1,Y2,Y3, P, q,

g1 = 1.7, yo = 0.65, y3 = 1.5, p=0.32, ¢ = 0.45. (3.61)

These values were chosen so that the light sequential dominance relation, given by
Eq.(3.5), is satisfied.

The above choice of values gives the following diagonal right-handed neutrino

Majorana mass matrix Mgg,

5.1 x 107 0 0
Mpgr = 0 7.05x 107 0 |. (3.62)
0 0 106

In addition to Eq.(3.59), we can write the Dirac neutrino Yukawa matrix as,

d a O
Y=|e b 0|, (3.63)
f e

3.5.1.1 The CSD case

We consider the LSD model, presented in the previous section, in the special case
of CSD. We take the complex Yukawa coupling d to be zero as required by the CSD
conditions. We also take the Yukawa couplings in the second column of Eq.(3.63)
such that |a| = |b] = |¢| = 8.125 x 107°. In addition to this, we take the absolute
values of the couplings e, f to be |e| = |f| = 2.125 x 10~* while the value of the
3-3 Yukawa coupling ¢ is taken to be || = 0.5809. We choose all the phases of
the Yukawa couplings to be zero except ¢, (¢, = 7).

Numerical results for the mixing angles, evaluated using the analytic formulae, are
evaluated in the case of CSD and presented in Tab.(3.1). This table also shows
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numerical results obtained using MPT/REAP package [16, 46], which appear to
be very close to the ones obtained through the analytic approach. We note that
here and in the remainder of this chapter, the MPT/REAP results were evaluated
using the MPT package without considering RG running. As can be seen from
Tab.(3.1), all the values of the mixing angles are slightly deviated from their TB
values and this is mainly due to the presence of the non-zero 3-3 Yukawa coupling
¢’ 3 In addition to this, we present numerical values for the neutrino masses my, ms
and mg3 given by Eqs.(B.13,B.14, B.15), using both MPT/REAP and the analytic
formulae. As presented in Tab.(3.1), we can see that the MPT/REAP and the

analytic results are very close particularly in the case of m..

Parameter |d| | 023(°) | O13(°) | O12(°) | mq (eV) | mg (eV) | m3 (eV)
Analytic 0 | 44.44 | 0.04 | 33.75 | 0.00015 | 0.0088 0.055
MPT/REAP | 0 | 44.38 | 0.05 | 33.69 | 0.00016 | 0.0088 0.054

TABLE 3.1: Numerical results for the mixing angles and masses, evaluated in
the CSD case with ¢’ # 0, for a model with light sequential dominance. Analytic
results as well as MPT/ REAP results are presented.

3.5.1.2 The PCSD case

We consider the previous LSD model in the case of PCSD with non-zero Yukawa
coupling d = 0.2|e], |e] = 2.125x107* and |¢/| = 0. Keeping all the other conditions
of CSD satisfied as outlined in Section 3.5.1.1, we found that the numerical values
of all the mixing angles are deviated from their TB values particularly the reactor
angle 013 which becomes larger than zero and takes a value of 8.22° as shown in
Tab.(3.2). This large value satisfies the predictions of TBR mixing and it is in

agreement with the most recent experimental results [12, 47].

MPT/REAP results for the neutrino mixing angles in this case are slightly different
than the analytic results as presented in Tab.(3.2). This is mainly due to the
approximate nature of the diagonalisation procedure that we followed in this thesis.
Tab.(3.2) also shows numerical results for the neutrino masses ms, ms and ms
evaluated using both MPT/REAP and the analytic expressions. As expected,
the neutrino mass m; is exactly zero in this case due to the vanishing NNLO
corrections. The results for the masses my, m3 in the analytic case are slightly
different than the MPT/REAP case as a result of the different diagonalisation

procedures.

3In the limit ¢/ = 0, the analytic results give exact TB values (fo3 = 45°, 612 = 35.26°, 013 =
0.00°).
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Parameter |d| Oa3(°) | 013(°) | 612(°) | my (eV) | ma (eV) | mg (eV)
Analytic O.2]e| 45.00 8.10 35.08 0 0.0085 0.0538
MPT/REAP | 0.2]e| | 44.29 | 8.53 | 34.89 0 0.0084 0.054

TABLE 3.2: Numerical results for the neutrino mixing angles and masses,

evaluated in the PCSD case for a model with light sequential dominance, with

d =0 and d = 0.2]e|. Analytic results as well as MPT/REAP results are
presented.

In order to compare our numerical values to experimental data, we present nu-
merical results for the difference in the squares of neutrino masses Am?2, and
Am?2,,., evaluated for the LSD model, as shown in Tab.(3.3). These results are
evaluated at the SD cases using both the analytic results as well as MPT/REAP.
The numerical results, as shown in Tab.(3.3), are within the experimental ranges
presented in [47] particularly for the value of Am?2, at CSD which is close to the

best fit value of 7.6 x 10~%eV?2.

Parameter Analytic | MPT/REAP | Analytic | MPT/REAP
SD case CSD CSD PCSD PCSD
Am?, (eV?) | 7.5 x107° 7.5 x 107° 7.3 x 107° 7.1x107°
Am?, (V%) [ 211 x 1072 | 2.04 x 1073 | 2.05 x 1073 | 2.1 x 1073

TABLE 3.3: Analytic and MPT/REAP numerical results of the difference in the

squares of neutrino masses (Am?, and Am2,,) evaluated for the LSD model.

The results are presented at CSD with non-zero ¢’ as well as the PCSD case
with zero ¢’ and non-zero coupling |d| = 0.2]e|.

3.5.2 Results for the HSD model

To check the generality of our numerical results, we consider another model with
heavy sequential dominance (HSD). The right-handed neutrino Majorana mass

matrix Mpgg, in this case, is given by,

3.991 x 108 0 0
Mggr = 0 5.8 x 1010 0 . (3.64)
0 0 5.021 x 10

This model satisfies HSD where the dominant contribution to the neutrino mass is
coming from the heaviest right-handed neutrino. The neutrino Yukawa matrix is
of the form given in Eq.(3.63) with the following values of the Yukawa couplings:
la] = |b] = |¢| = 2.401 x 1073, |e| = | f| = 0.677 and || = 2.992 x 107°. Similarly
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to the LSD model, we take all the phases of the Yukawa couplings to be zero
except the coupling e (¢, = 7).

Analytic and MPT/REAP results of the mixing angles and masses, in CSD, are
presented and compared as shown in Tab.(3.4). We note that, for this model, the
values of the mixing angles are closer to their TB values compared to the LSD
model, which is mainly due to the smallness of the 3-3 Yukawa coupling ¢’ in this
case. We also present results for the PCSD case with non-zero d, as shown in
Tab.(3.5), and similar to the LSD model, the reactor angle is found to be large
and within the recent experimental range presented in [12]. The neutrino mass

my is exactly zero at the PCSD case with ¢ = 0 as expected.

Parameter |d| 923(0) 913(()) 912(0) mq (eV) mo (GV) ms (eV)
Analytic 0 | 44.96 | 0.003 | 35.18 | 1.01 x 10=° | 0.009 0.055
MPT/REAP | 0 | 44.96 | 0.003 | 35.16 | 1.1 x 10~ 0.009 0.055

TABLE 3.4: Numerical results for the neutrino mixing angles and masses,
evaluated in CSD with ¢’ # 0, for a model with heavy sequential dominance.
Analytic results as well as MPT/REAP results are presented.

Parameter |d| Oa3(°) | 613(°) | O12(°) | my (V) | mg (eV) | mg (eV)
Analytic O.2|e| 45.00 8.10 35.08 0 0.009 0.055
MPT/REAP O.2|6| 44 .27 8.95 34.89 0 0.0089 0.056

TABLE 3.5: Numerical results for the neutrino mixing angles and masses,

evaluated in the PCSD case for a model with heavy sequential dominance, with

d =0 and d = 0.2]e|. Analytic results as well as MPT/REAP results are
presented.

Similarly to the LSD model, we present numerical results for the difference in
the squares of neutrino masses Am?, and Am?, . evaluated for the HSD model,
as shown in Tab.(3.6). The results for this model, which are also presented at

both SD cases using analytic results as well as MPT/REAP, are also within the

2

o in all

experimental ranges presented in [47]. We note that the values of Am

cases, are closer to the upper limit of the 30 experimental range [47].

3.6 Summary

In this chapter, we discussed Sequential Dominance (SD) which represents an
elegant way of obtaining large atmospheric and solar angles, with hierarchical

neutrino masses, in the framework of type I see-saw mechanism. We also discussed
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Parameter Analytic | MPT/REAP | Analytic | MPT/REAP
SD case CSD CSD PCSD PCSD
AmZ, (V) | 82x10° | 815 %100 | 82x10° | 8x10°

sol
Am? (eVQ) 2.162 x 1073 | 213 x 1072 | 2.16 x 10~ 2.2 x 107

atm

TABLE 3.6: Analytic and MPT/REAP numerical results of the difference in the

squares of neutrino masses (Am?2 , and Am?2,,,) evaluated for the HSD model.

The results are presented at CSD with non-zero ¢’ as well as the PCSD case
with zero ¢’ and non-zero coupling |d| = 0.2]e|.

the two special cases of SD (CSD and PCSD). We derived analytic expressions for
the neutrino mixing angles, including the NLO and NNLO corrections arising from
the second lightest and lightest neutrino masses, in the general SD case as well as
CSD and PCSD. We found that the NLO corrections to the neutrino mixing angles
vanish in the case of CSD. In the PCSD case, the NLO corrections to neutrino
mixing angles are suppressed by the small reactor angle and therefore the mixing

angles only receive NNLO corrections.

We evaluated the analytic results for two GUT inspired models of so-called LSD
type and HSD type including non-zero 3-3 Yukawa coupling in the case of CSD. For
both models the analytic results agree well with the numerical results obtained
using MPT tool provided with MPT/REAP. In the CSD case, the absence of
NLO corrections as well as the dependence of the neutrino mixing angles on the
NNLO corrections were confirmed numerically. In the PCSD case with zero 3-3
Yukawa coupling, for both numerical models, we found that the numerical results
for the solar and atmospheric angles remain close to their TB values while the
reactor angle is much larger than zero. This result is in good agreement with
the predictions of TBR mixing in the absence or smallness of charged lepton
corrections, RG effects and canonical normalisation corrections. They are also

in agreement with the most recent experimental results presented in [12].

In PCSD, the comparison between the analytical results and the numerical val-
ues using MPT/REAP showed small differences, which are however within the
expected range due to the approximate nature of the diagonalisation procedure
followed in this work. Explicitly, 615 from the analytical results is found to be
larger by about 0.2° than the MPT/REAP value, 63 is larger by 0.7° while the
reactor angle 03 is smaller by about 0.4° than the MPT/REAP value for both

models.

In addition to evaluating the analytic formulae for the neutrino mixing angles,

we also presented numerical results for the neutrino masses my, mo, ms as well as
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the difference in the squares of neutrino masses (Am?,; and Am?, ), for both the
LSD and the HSD models. We found that the numerical results using the analytic
expressions as well as the MPT/REAP package were close and the values of the
difference in mass squared were in agreement with the most recent experimental

results [47].



Chapter 4

RG Running Effects on Neutrino

Parameters

In Quantum Field Theory, the coupling constants are energy dependent both in
QCD and QED. For instance, in the case of QED, there are one loop corrections
affecting an electron or a photon propagating in vacuum. Physically, this means
that there are pairs of virtual electron-positron causing a screening effect of the
bare electron charge. There are essentially three one-loop divergent diagrams in
QED (ultraviolet divergences) as shown in Fig.(4.1). These divergent terms, which
are dependent on the momentum of the external lines, must be regulated and
removed. This is handled by the process of regularisation and also by renormalising
the bare quantities of the theory such as the coupling. After performing these
procedures, the ultraviolet divergences can be absorbed in the coupling constant

of the theory and therefore the coupling becomes momentum dependent.

In general, Renormalisation Group (GR) represents a method used in order to
describe how the dynamics of a particular system or model change as a function
of the energy scale. This is a very powerful tool since it allows us to study each
energy scale at a time. It is also useful for testing the predictions of theoretical

models against experimental results at low energy scale.

In this chapter, we study the effects of RG running and charged lepton corrections
on neutrino mixing parameters. We start by looking at a numerical example of
LSD type to check the reliability of the sum rules, derived in chapter 2, at low
energy scale (M scale) [45]. In order to examine the generality of the numerical

results, we also study another numerical example satisfying HSD. The RG running

44
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was performed using a Mathematica package known as REAP [16]. A description

of this package is given in a later section.

k+p ) E+p
(a) (B) ()

FIGURE 4.1: QED one-loop diagrams including electron self energy, photon
self energy and QED vertex [48].

4.1 LSD numerical example

In order to study the RG corrections and reliability of the various sum rules, intro-
duced in chapter 2, numerically it is necessary to define the GUT scale matrices
rather specifically. In most of this chapter, we shall consider the same numerical
model as the one described in Section 3.5.1. In Section 4.4, however, we will con-
sider another numerical model leading to qualitatively similar results. In most of
the remainder of this chapter we shall take the right-handed neutrino Majorana

mass matrix Mgg to be diagonal and similar to the one presented by Eq.(3.62),

5.1 x 107 0 0
Mpgr = 0 7.05x107° 0 | Ms, (4.1)
0 0 1
where M3 = 10°GeV. This is an example with light sequential dominance

where the lightest right handed neutrino is dominant [40, 42, 43]. Ignoring RGE
corrections to begin with, we find that precise tri-bimaximal neutrino mixing
(07, = 35.26°, 05, = 45.00°, 07, = 0.00°) can be achieved with the Yukawa

matrix,
0 1.0616670 0.001

Vg = e b 0 (4.2)
—0.9799¢ b C3

where b = 8.125 x 107°, e = 2.125 x 107* and ¢3 = 0.5809. This matrix is similar
to the one presented by Eq.(3.63) but with some tuning in order to ensure that TB
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predictions are satisfied. These parameters also lead to the following values for the
neutrino masses: m; = 1.75 x 10™4eV, my = 8.67 x 1073V, mg = 4.95 x 107 2eV,
Am?2, =237 x1073eV? and Am?2 , = 7.52 x 107%eV2,

atm sol

The low energy pole masses of the quarks are all of the right order and given as
follows: m, = 1.22 MeV, mgq = 2.77 MeV, m, = 53 MeV, m. = 0.595 GeV,
my = 2.75 GeV and m; = 163.6 GeV. In order to satisfy these values at low
energy scale, REAP was used to perform the running of these masses from the
My scale to the GUT scale and the resulting quark Yukawa matrices Y, and Yy
at the GUT scale were taken as initial conditions for the running of the neutrino

mixing parameters and sum rules from the GUT scale to the M scale.

The above parameter choice approximately satisfies the CSD conditions in Eq.(3.17).
However small corrections are used in order to achieve TB neutrino mixing angles
to 2 decimal places. If the CSD conditions were imposed exactly we would find
instead 015 = 33.97°, 093 = 44.38°, #13 = 0.059° and &6 = 0° which are close
to, but not accurately equal to, the TB values. This is to be expected since the
SD relations are only accurate to leading order in mo/ms [40, 42, 43]. We are
mainly interested in studying the deviations from exact TB neutrino mixing due
to charged lepton corrections and RG running, and therefore, we shall assume the
matrix given by Eq.(4.2) rather than the CSD conditions as the starting point for
our analysis. In this section, we will only consider the effects of charged lepton
corrections on the physical mixing angles where the neutrino mixing is precisely
tri-bimaximal. To study these effects, we shall use the REAP package previously
discussed. We will consider cabibbo-like charged corrections, to begin, where the
charged lepton Yukawa matrix is diagonal. We also discuss the more general

charged lepton correction including the angle 6.

4.1.1 Cabibbo-like charged lepton corrections

As stated earlier, it is convenient to work in the basis where the charged lepton
Yukawa matrix is diagonal. Thus, assuming cabibbo-like charged lepton correc-
tions of the form of Eq.(2.24), the neutrino Yukawa matrix in the non-diagonal
charged lepton basis must be transformed to the diagonal charged lepton basis
according to:

Y, = V) = V., Ve (4.3)

Hence the original neutrino Yukawa matrix in Eq.(4.2) must be rotated to the

diagonal charged lepton basis according to Eq.(4.3).
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Including the Cabibbo-like charged lepton corrections, physical tri-bimaximal mix-
ing only holds when 0E, = 0. However according to the sum rules for I';, certain
combinations of mixing parameters sum to 35.262° for all values of the Cabibbo-
like charged lepton corrections. This is illustrated in Tabs.(4.1,4.2) where the
values of the mixing angles together with the Dirac phase and the sum rules I'y,
[y, T's at the GUT scale are presented for different values of 6, and \f,. T'; was
found to be the most accurate sum rule at the GUT scale with a value of 35.262 °
exactly at all values of 0% and A\E,. However the error in all the sum rules is less

than about 0.1° in all the examples considered.

2 1 3 5 8

012 | 35.26 | 34.648 | 33.429 | 32.216 | 30.407
613 | 0.001 | 0.708 | 2.122 | 3.534 | 5.648
03 | 45.001 | 44.997 | 44.962 | 44.802 | 44.721
5 0 | 210.204 | 210.82 | 211.492 | 212.672
T, | 35.262 | 35.262 | 35.262 | 35.262 | 35.262
T, | 35.262 | 3526 | 35.247 | 35.217 | 35.133
Ty | 35261 | 3526 | 35.252 | 35.23 | 35.162

TABLE 4.1: Values of the neutrino mixing angles 012, #13 and 3 together
with § and the sum rules I'1, I'y and I's at the GUT scale, at )\{32 = 30° and

tan(B) = 50. All the angles are in degrees.

A5 0 7.5 15 30 45

010 | 31.72 | 31.752 | 31.846 | 32.216 32.8

015 | 3.534 | 3.534 3.534 3.534 3.534
0oz | 44.892 | 44.892 | 44.892 | 44.892 | 44.892
o 180 187.9 | 195.789 | 211.492 | 227.039
'y | 35.262 | 35.262 | 35.262 | 35.262 | 35.262
'y | 35.262 | 35.259 | 35.250 | 35.217 | 35.174
I's | 35.254 | 35.253 | 35.248 | 35.230 | 35.208

TABLE 4.2: Values of the parameters: 615, 613,023, § and the I'; sum rules at
the GUT scale. These values are found in degrees at 05 = 5° and tan(3) = 50.

4.1.2 More general charged lepton corrections

In the previous subsection we saw that the sum rules arising from Cabibbo-like
charged lepton corrections are satisfied to excellent precision at the GUT scale,
for the considered LSD numerical example. In this section we introduce the case

of non-Cabibbo-like charged lepton corrections. To be precise we shall consider
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more general charged lepton corrections given by,

_iNE

CoE —sgp e M2 () 1 0 0

912 5 012 P
~ ix —iA
Ve = | spme CoE, 0 0 cp —sgpe | (4.4)
N\ E
0 0 1 0 symeas CoE
23 23

where we have now allowed both 625 and A%, to be non zero. The neutrino Yukawa

matrix will be transformed to the diagonal charged lepton basis according to
Y, =Y, =V,Y,, (4.5)

but now using the non-Cabibbo-like charged lepton rotations in Eq.(4.4). After
performing the charged lepton rotations in Eq.(4.5), values for the mixing angles
as well as the & parameters given by Eq.(2.33) can be calculated at the GUT scale.
Of course in the present case of non-Cabibbo-like charged lepton corrections the
third row deviation parameters &1, & and &3 are all expected to be non-zero at the
GUT scale. This implies that the sum rules given by Eq.(2.36) no longer apply
in the case of charged lepton corrections with non-zero 6%. The effects of non-
Cabibbo-like charged lepton corrections on the deviation parameters &; is displayed
in Tab(4.3) using the original neutrino Yukawa matrix as before, namely Eq.(4.2),
but now with a small non-zero value of 85 = 2°, and with different values of the

new phase \%;.

Note that the effect of turning on the charged lepton correction 6%, will lead to a
correction of the physical lepton mixing angle s3 but not 5 (to leading order)
[7]. Therefore while the sum rules I'y » and o9 are violated by a non-zero 6’53, the

sum rules I'; and o, are both insensitive to 6%. !

A(®) | &l | &l | 1&]
0 0.034 | 0.034 | 0.035

30 0.027 | 0.031 | 0.030

TABLE 4.3: Values of [£1],/€2| and 3] at the GUT scale for case of non-
Cabibbo-like charged lepton corrections with 655 = 5° A\, = 30°, 92E3 = 2°
and tan(B) = 50, for different values of the phase \%;.

!The insensitivity of the sum rule oy to 6% is clearly seen numerically in Fig.(4.15) (b).
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4.2 Renormalization group running effects

Assuming that tri-bimaximal neutrino mixing holds in the framework of some uni-
fied theory, we expect Cabibbo-like charged lepton to give rise to corrections that
can be cast in the form of sum rule relations. However, as already indicated, such
sum rules are only strictly valid at the GUT scale, and will be subject to RG
corrections. In this section, we present the RG running results, for the neutrino
mixing angles and sum rules, from the GUT scale to the electroweak scale. For def-
initeness we shall assume the minimal supersymmetric standard model (MSSM),
with a SUSY breaking scale of 1 TeV, below which the SM is valid.

The RG running was performed using a Mathematica package known as REAP
(Renormalization of Group Evolution of Angles and Phases)[16]. This package
solves renormalisation group equations of neutrino quantities such as Yukawa ma-
trices and the gauge couplings [16]. It implements three models. The first one
is the Standard Model (SM) extended by an arbitrary number of right-handed
neutrinos to one-loop order. The second model is the Minimal Supersymmetric
Standard Model (MSSM) extended by an arbitrary number of right-handed neu-
trinos to one and two-loop order. MSSM thresholds are not considered here and
quarks are not integrated out for both this model and the SM. The last model
is the Two Higgs Doublet Model (2HDM) with a Z; symmetry extended by an
arbitrary number of right-handed neutrinos. The -functions are to one-loop order
and the Higgs vevs obey v? = v? +v3. In all these models, the calculated evolution
of the neutrino mixing parameters and mass eigenvalues can be achieved from the

running of the neutrino mass matrix.

Future neutrino experiments are expected to have high sensitivities and therefore
determining the RG corrections to neutrino mixing angles exactly, at the My
scale, is of great importance. These corrections were studied both theoretically
and numerically as presented in [16, 49]. In these papers, the mixing angles were
found to deviate from their TB values at the low energy scale particularly the
maximal angle fy3. We shall look at the deviations of the mixing angles as well
as the sum rules, presented in Chapter.2, for the LSD numerical model. We will
also comment on the validity of the sum rules, at the My scale compared to the
GUT scale, for each model. For the numerical results presented in this section,
we considered all the Majorana phases of the neutrino Yukawa matrix given by
Eq.(4.2) to be zero. We shall look at the case of non-zero Majorana phases in the

next section.
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4.2.1 Sum rules with Cabibbo-like charged lepton correc-

tions
4.2.1.1 Sum rules in terms of mixing angles

In this section, we study the RG running of the sum rules which result from
Cabibbo-like charged corrections. The neutrino Yukawa matrix is taken to be
of the form of Eq.(4.2) as before. The RG change in the quantities, defined for
a parameter P as AP = Py, — Pu,p, Was calculated for the lepton mixing
parameters and the I'; sum rules, and is presented in Tabs.(4.4,4.5). From the
results we see that the least precise sum rule I's actually is subject to the smallest

RG running since it does not involve fy3 which runs the most.

The RG running of I'; is displayed in Figs.(4.2, 4.3, 4.4, 4.5) for tan(3) = 50. The

RG evolution of I'; and I's was also plotted at different values of tan(3) as shown

in Figs.(4.6,4.7).

0L, 0 1 3 5 8

Abry | +0.391 | 40402 | + 0.423 | + 0.444 | + 0.473
Al | +0.151 | - 0.116 | - 0.095 | - 0.071 | - 0.033
Aby; | +1 | +1.001 |+ 1.004 | + 1.008 | + 1.013
AS 0 | +7.453 |+ 2.126 | + L.181 | + 0.62
ATy | +0.953 | + 0.953 | + 0.953 | + 0.953 | + 0.953
ATy | +0.953 | + 0.953 | + 0.953 | + 0.954 | + 0.958
AT | +0.237 | +0.259 | + 0.301 | + 0.345 | + 0.412

TABLE 4.4: RG changes of the mixing parameters and sum rules I'y, I's and

I3 at Af5 = 30° and tan(3) = 50. All values are in degrees

£ 0 7.5 15 30 45

Abyy | + 0.454 | + 0.453 | + 0.452 | + 0.444 | + 0.432
Af3 | -0.092 | -0.091 | -0.087 | -0.071 | - 0.046
Afys | + 1.009 | + 1.009 | + 1.009 | + 1.008 | 4 1.006
Ad 0 + 031 | +0.613 | + 1.181 | + 1.663
Ay | +0.953 | +0.953 | +0.953 | + 0.953 | + 0.953
ATy | +0.953 | +0.953 | + 0.953 | + 0.954 | + 0.956
Al's | +0.362 | +0.36 | + 0.357 | + 0.345 | + 0.326

TABLE 4.5: RG changes of the neutrino mixing angles, the Dirac phase § and
the sum rules I'y, I's and I's at 9{52 = 5° and tan(B) = 50. All values are in
degrees.
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FIGURE 4.2: Evolution of sum rules I'1,I's, I'3 for Cabibbo-like charged lepton

corrections for large tan(8) = 50. This running is achieved at 65 = 5° and
A5, =0°. Note how the graphs for I'; and I'y completely overlap.
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FIGURE 4.3: Evolution of sum rules I'1,I's, I'3 for Cabibbo-like charged lepton
corrections at 615 = 8° and A, = 0°. This is achieved for large tan(3) = 50.
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FIGURE 4.4: Evolution of sum rules I'1,I's, I'3 for Cabibbo-like charged lepton
corrections at 65 = 5° and A\, = 15°. This is achieved for large tan(3) = 50.
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FIGURE 4.5: Evolution of sum rules I'y,I's, I's for Cabibbo-like charged lepton
corrections at 6% = 5° and A\, = 30°. This is achieved for large tan(3) = 50.
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FIGURE 4.6: Evolution of the sum rule I'y for Cabibbo-like charged lepton

corrections for various values of tan(3). The running is at 0% = 5° and A5, =

0°. Note the expanded (and different) vertical scales used in this figure; in all
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FIGURE 4.7: Evolution of the sum rule I's for Cabibbo-like charged lepton
corrections for various values of tan(3). The running is at 0 = 5° and AL, =
0°.
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4.2.1.2 Sum rules in terms of TB deviation parameters

In this subsection, for completeness we study the evolution of the TB deviation
parameters defined in Eq.(2.18). Their RG evolution, for different values of 6%,
is shown in Figs.(4.8,4.9). In Figs.(4.10,4.11) we display the evolution of the sum
rules given by Eqs.(2.37, 2.38). From Figs.(4.10,4.11), it is seen that both oy, o9
are precisely equal to zero at the GUT scale for 6%, = 0 but differ by a tiny amount
for 6%, \E, £ 0. In this numerical example it is apparent that the sum rule oy is
slightly more stable than the original sum rule oy, although there is not much more
stability. This is a manifestation of the fact that oo does not take into account the
running of r, which introduces an effect coming from the Majorana phases which
we have assumed to be zero in this example. Later on we shall discuss a numerical
example with non-zero Majorana phases where the enhanced stability of gy will

be more pronounced.
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FIGURE 4.8: Evolution of the deviation parameters r, s, a from the GUT scale

to the electroweak scale, in the absence of charged lepton corrections, for large
tan(g3) = 50.
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FIGURE 4.9: Evolution of the deviation parameters r, s, a from the GUT

scale to the electroweak scale, in the presence of Cabibbo-like charged lepton

corrections, for large tan((3) = 50. The values of charged lepton parameters are:
0f, = 5° and A\, = 15°.

0.006 ¢
0.004 ¢

.002 ¢

sum rules
o

-0.002 ¢

-0.004 ¢

Sigma;

-0.006
01

2 4 6 8 10 12 14 16
logy (1/Gev)

FIGURE 4.10: Evolution of the sum rules o and o9 from the GUT scale to the
electroweak scale, in the absence of charged lepton corrections (9{52 = 0° and
M, = 0°), for large tan(3) = 50.
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FIGURE 4.11: Evolution of the sum rules o1 and o9 from the GUT scale to the
electroweak scale, in the presence of Cabibbo-like charged lepton corrections,
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for large tan(3) = 50. The values of charged lepton parameters are: 7 =
and A\, = 30°.

4.2.2 Sum rules with more general charged lepton correc-

tions including 6%

Finally in this subsection we study the evolution of the &; parameters for the case of
charged lepton corrections of the more general form in Eq.(4.4). In Fig.(4.12), we
show the RG running of the parameters &, & and &3, given in terms of the mixing
angles in Eq.(2.34), for the case of Cabibbo-like charged lepton corrections. As
expected, for Cabibbo-like charged lepton corrections, these parameters are exactly
zero at the GUT scale for all values of 65 and AL, but then diverge from zero
due to the RG corrections. In Fig.(4.13), we now switch on the non-Cabibbo-like
charged lepton corrections by a small amount corresponding to 65 = 2°. In this
case we see that the parameters &, & and &3 are all non zero at the GUT scale

and deviate even more at low energies due to RG running.

In Figs.(4.14,4.15), we show the running of the TB deviation parameters and the
sum rules o; and oy for the non-Cabibbo-like case with 9% = 2°. It is clear from
Fig.(4.15) that the o7 sum rule is still valid at the GUT scale even for a non-zero

013, as remarked earlier.
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FIGURE 4.12: Evolution of the third row deviation parameters &1, & and &3
from the GUT scale to the electroweak scale, in the presence of Cabibbo-like
charged lepton corrections with 6% = 5° and A, = 30°, for large tan(3) = 50.

£i sum rules
o

2 4 6 8 10 12
log;q (1/GeV)

14 16

FIGURE 4.13: Evolution of the third row deviation parameters &1, & and &3
from the GUT scale to the electroweak scale, in the presence of more general
charged lepton corrections with 0 = 5° and A% = 30°, 0%, = 2° and \}; =

30°, for large tan(3) = 50.
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FIGURE 4.14: Running of the TB deviation parameters r,a and s, from the
GUT scale to the electroweak scale, in the presence more general charged lepton
corrections with 655 = 5°, M\, =30°, A\}; = 30°, GQEB = 2°, for large tan(f3) =
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FIGURE 4.15: Running of the sum rules o1, o9, from the GUT scale to the

electroweak scale, in the presence more general charged lepton corrections with

0F, = 5°, A, = 30°, Al = 30°, 0 = 2°, for large tan(3) = 50. Note that

o1 = 0 at the GUT scale even in the presence of the more general charged lepton
corrections.
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4.3 RG running with non-zero Majorana phases

So far we have presented results for a particular example with zero Majorana
phases. In this section, we present the running of the ¢; sum rules and the TB
deviation parameters where the neutrino Yukawa matrix is taken to be similar
to Eq.(4.2) with the same values for |b|, |e| and c3 but with non- zero Majorana

phases (01, 02),

0 0.97282b¢™2  0.001
Yip= e be® 0 (4.6)
—1.012ee™ be%2 C3

where we shall take the values of the phases §; and 05 to be 120° 60° respec-
tively. We take the right-handed Majorana mass matrix to be the same as the one
given in Eq.(4.1). The numerical value of the Yukawa couplings has been changed
slightly to compensate for the non-zero phases in order to once again yield ex-
act tri-bimaximal neutrino mixing at the GUT scale. This was done by changing
the corrections in the 12 and 31 elements of the above neutrino Yukawa matrix

compared to those given in Eq.(4.2).

In Figs.(4.16,4.17), we show results for the running of the sum rules o; and for the
deviation parameters r, a, s for the above example with non-zero Majorana phases.
In this example the o5 sum rule is much more stable than o, as clearly shown in
Fig.(4.16). This shows that the question of the stability of the sum rule oy is
dependent on the choice of Majorana phases via the running of r. In particular
with this choice of Majorana phases the deviation parameters s, a and r all run less

as shown in Fig.(4.17), compared to the previous case with zero phases Fig.(4.8).

The I'; and &; sum rules also change with the Majorana phases turned on but not
as much as o; sum rules. For instance, at 65, = 5° and \f, = 0°, we find that T
and I'y get smaller by 0.05 degrees at the My scale compared to the case where
the phases are zero. I's on the other hand gets larger by about 0.1 degrees. At
0F, = 5° and \E, = 30°, & and & get smaller by about 0.001 to 0.003 compared
to the zero phases case whereas &3 gets larger by 0.006.
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electroweak scale, in the presence of non zero Majorana phases (6; = 120°

and 69 = 60°). The running is performed, without charged lepton corrections
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FIGURE 4.17: Running of the TB deviation parameters (r, a, s), from the GUT

scale to the electroweak scale, in the presence of non zero Majorana phases

(61 = 120° and d2 = 60°). The running is performed, without charged lepton
corrections (05 = 0°, \f;, = 0°), at tan(3) = 50.
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4.4 RG running with heavy sequential dominance

So far all the numerical results have been based on a particular example inspired by
the models of [7, 10], namely the case where the GUT scale neutrino Yukawa ma-
trix has the form in Eq.(4.2), or the closely related form in Eq.(4.6) with non-zero
Majorana phases. In these examples the dominant contribution to atmospheric
neutrino mass is coming from the lightest right-handed neutrino via the see-saw
mechanism, a situation known as light sequential dominance (LSD) [42, 43]. In
order to test the generality of the results in this section we consider a quite differ-
ent example in which the dominant contribution to the atmospheric neutrino mass
is coming from the heaviest right-handed neutrino via the see-saw mechanism, a
situation known as heavy sequential dominance (HSD) [42, 43]. This example is
chosen since it the most qualitatively different to the example of LSD considered
previously, yet despite this we shall see that the numerical results for the correc-
tions to TB mixing are qualitatively similar to those encountered previously. This
gives us some confidence that our results and conclusions are not restricted to the
particular numerical example studied but are in fact applicable to a large class of

see-saw models based on hierarchical neutrino masses.

In the HSD example considered here the right handed neutrino Majorana matrix

as well as the neutrino Yukawa matrix are given by the following equations:

3.991 x 107¢ 0 0
Mpr = 0 5.800 x 107 0 Ms,
0 0 5.021

where Mz = 10GeV. Ignoring RGE corrections to begin with, we find that
precise tri-bimaximal neutrino mixing at the GUT scale (67, = 35.26°, 05, =
45.00°, 0Y; = 0.00°) can be achieved with the Yukawa matrix:

1.001 x 107 1.0036 b 0
Y, = 0 b —1.0013¢ (4.7)
2.092 x 1075 b e

where b = 2.401 x 1073, e = 0.677. These parameters also lead to the following
values for the neutrino masses: Am?, = 2.47 x 107%eV? and Am?, = 7.53 x

atm
10~°eV? which are well within the allowed experimental ranges.

Note that in the case of HSD the Yukawa couplings present in the neutrino Yukawa

matrix are larger than the previous case especially e which we take to be 0.677
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compared to 2.125x 10~* in the previous example. Furthermore there are similarly
two large Yukawa couplings in the third column of the Yukawa matrix. Moreover
the heaviest RH neutrino associated with these large Yukawa couplings has a mass

well below the GUT scale leading larger threshold corrections coming from it.

We assume charged lepton corrections of the form of Eq.(2.24), the neutrino
Yukawa matrix in the non-diagonal charged lepton basis is then transformed to
the diagonal charged lepton basis according to Eq.(4.3). Using the REAP package,
the running of I'; sum rules was performed from the GUT scale to low energy scale
and the results are shown in Figs.(4.18, 4.19, 4.20). From the Figs.(4.18) we can
see that, despite the larger threshold corrections, for tan(3) = 50, the RG running
of I's is still small (about 0.4°) whereas that of 'y and I'y is about 1.3°, compared
to the results shown in Fig.(4.2) (nearly 1°). This suggests that, qualitatively, the
results obtained for the previous numerical example inspired by the GUT mod-
els in [7, 10] are expected to have wide applicability beyond the specific example
considered. Figs.(4.19, 4.20) show the running of the sum rules I'y, I's at different
values of tan(f). Similar to the previous model, we see that the RG corrections

for these sum rules, at the My scale, get smaller with smaller values of tan((3).
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FIGURE 4.18: Running of the sum rules I';, from the GUT scale to the elec-

troweak scale, in the case of heavy sequential dominance. The running was

performed, for the case of Cabibbo-like charged lepton corrections (65 = 5°,
A5 =0°), at tan(3) = 50.
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FIGURE 4.19: Evolution of the sum rule I'y, from the GUT scale to the elec-

troweak scale, in the case of heavy sequential dominance. The running was

performed, for various values of tan(f), for the case of Cabibbo-like charged
lepton corrections with 655 = 5° and A\, = 0°.
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FIGURE 4.20: Evolution of the sum rule I's, from the GUT scale to the elec-

troweak scale, in the case of heavy sequential dominance. The running was

performed, for various values of tan(f3), for the case of Cabibbo-like charged
lepton corrections with 85 = 5° and A, = 0°.
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4.5 Analytic approach to RG running

So far, all the results presented in this chapter have been based on a numerical
evaluation of the RG corrections using the REAP package. In order to investigate
the quantitative accuracy of the analytic approach, we shall compare the analytic
estimates of the RG effects for the LSD example presented in Section.4.1. For this
purpose it is sufficient to switch off the charged lepton corrections and study the
RG corrections to the neutrino mixing angles using the analytic approximations
in [16] which we then compare to the numerical results we obtained earlier in this
chapter, and which we also summarize here for convenience. In order to estimate
the RG corrections to the mixing angles, following [16] it is assumed that the (3,3)
matrix elements govern both the charged Yukawa matrix (Y¢) and the neutrino
Yukawa matrix (Y”)? in the flavour basis in which the charged lepton mass matrix
is diagonal. Taking Y°¢ = diag(0,0,y,) and Y" =~ diag(0,0,y,,), one finds, to
leading log approximation, that there is a single parameter which governs the RG

corrections to all the mixing angles given by [37, 38]:

2 M, 2 M

T8 M, sx? A

n

Assuming tri-bimaximal neutrino mixing at the GUT scale, the low energy scale
parameters are then given approximately by:

1 RG 1 RG RG

1 = —14+—) , s = —(1+—) , s{3(Mz =02y
s12(Mz) = \/§(1+ 6 ) 5 s93(Mz) \/5(14‘ ) 5 s13(Mz) (4.9)

3m3

We now apply the above analytic formalism to the LSD model defined in sec-
tion.4.1, and subsequently studied numerically in the earlier sections of this chap-
ter. In this model from Eq.(4.2) we see that y,, = ¢3 =~ 0.58 at the GUT scale.
We also find y, = 0.33 and the mass ratio ms/ms = 0.16 for the case tan(3) = 50.
Using these values, the mixing angles and the quantities (I';) can be estimated
as presented in Tab.(4.6), where the analytic estimates are shown alongside the

numerical results for comparison.

It is interesting to compare the analytic results of the neutrino mixing angles and
sum rules at the My scale to the numerical ones in Tab.(4.6), assuming that they
take the precise TB mixing values at the GUT scale and setting all charged lepton

corrections to zero, for the LSD model described above. The results show that

2We have already noted that for some models such as HSD this is not the case for the neutrino
Yukawa matrix.
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Parameter 07, 05, 075 Iy Iy Is
Analytic (°) | 35.59 | 45.69 | 0.15 | 35.94 | 35.94 | 35.44
Numerical (°) | 35.65 | 46.00 | 0.15 | 36.21 | 36.21 | 35.49

TABLE 4.6: A comparison between the analytic and numerical results for the

RG corrections to neutrino mixing angles at the My scale, assuming that they

take the precise TB mixing values at the GUT scale, for the LSD model de-
scribed in the body of the chapter with tan(3) = 50.

the numerical estimate of 67, (which is equal to zero at the GUT scale) is very
accurately reproduced by the analytic approximation (indeed there is no difference
to 2 d.p.), and the RG correction to 67, is also well reproduced with the analytic
estimate underestimating the correction by only 0.06 degrees. However the results
also show that there is a significant underestimate of 65; with the analytically
estimated value at the My scale being less than the numerical value by about
0.3 degrees, resulting in the analytically estimated values for I'y and I's being less
than the numerical values by about the same amount (0.3°). From the point of
view of the effects studied so far in this chapter (for example, note the precision
of the scales shown in the results in Fig.(4.2)), an error of 0.3° is undesirable and
therefore we would not wish to compromise the numerical results by being subject

to such unnecessary errors incurred when considering the analytic approach.

We remark that the origin of the discrepancy between the analytic estimates, cal-
culated in this section, and the numerical results, for the cases where the analytic
approach is reliable and applicable, is due to the fact that the analytic estimates
are based on the assumption that the Yukawa couplings y, and y,, are fixed at
their GUT scale values and do not run, whereas the numerical results allow for the
co-running of all the Yukawa couplings in the matrix (including the second family

Yukawa couplings), with the leading logs being effectively re-summed.

After calculating the analytic estimates of the RG corrections to the neutrino
mixing angles and sum rules, for the LSD model presented in Section.4.1, we
shall now summarise the reasons why we have chosen to study these corrections

numerically, rather than using the analytic estimates presented in [16]:

The first reason we follow the numerical approach is that, as we showed earlier,
some analytic estimates of RG effects which have ignored the effects of phases are
unreliable. For example, the main purpose of the work, presented in this chapter,
is to find out precisely how large the RG corrections are to sum rule relations
which have been proposed in the literature as presented in Section.2.8. Although

the RG corrections to such sum rules are expected to be small, they are certainly
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not negligible compared to the expected precision of future neutrino experiments,
and indeed this prompted the introduction of the modified sum rule in Eq.(2.38),
where the extra term compared to Eq.(2.37) was supposed to take into account
the RG corrections [37, 38]. However, it turns out that the new analytic term,
which ignores the effects of phases, is too simplistic. Indeed the numerical results in
Figs.(4.10, 4.16) clearly show that the extra term included in the analytic estimate
of the RG correction in Eq.(2.38) does not capture the phase dependence of the
RG correction to the original sum rule in Eq.(2.37). The numerical study in this
chapter has highlighted the shortcoming of analytic estimates of the RG corrections

to sum rules which do not include the phase dependence.

The second reason we follow the numerical approach, rather than an analytic ap-
proach, is that for some of the cases studied the analytic approach is simply not
applicable. The usual analytic approach is based on the assumption that only the
third family charged lepton and neutrino Yukawa couplings are taken into account
(while many analytic studies ignore neutrino Yukawa couplings and threshold ef-
fects altogether). Whilst the approximation of keeping only third family Yukawa
couplings is sufficient for some models, for example the LSD class of models, it
is certainly not sufficient for all classes of models. For example the HSD case
that we also study involves two large neutrino Yukawa couplings, and the analytic

estimates in [37, 38] do not directly apply to this case.

The third reason for following a numerical approach is a purely quantitative one,
namely, even for the cases where the analytic approach is reliable and applicable
(and we have already seen examples in the previous two paragraphs when it is
neither) we would like to obtain the best possible estimate of the RG corrections
which are the main focus of this work. If the sum rules are to be confronted
with experiment, it is important to have a reliable quantitative handle on the
RG corrections, and for this purpose it is necessary to go beyond the leading log

analytic approximation presented earlier in this section.

4.6 Summary

In this chapter, we have analyzed the effects of charged lepton corrections and
RG running on the low energy predictions of theories which accurately predict tri-
bimaximal neutrino mixing at the high energy scale. In GUT motivated examples
the charged lepton corrections are often Cabibbo-like and in this case the effect

of charged lepton corrections leads to a range of neutrino mixing sum rules at the
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GUT scale, given by the I'; sum rules in Eqs.(2.30,2.31,2.32), as well as the o; sum
rules expressed in terms of the deviation parameters in Eqs.(2.37, 2.38). We have
studied the RG running of such sum rules numerically for a specific numerical
example inspired by the GUT models in [7, 10], corresponding closely to CSD
with LSD. Our results indicate small but measurable effects for the two examples
studied. For example the I's sum rule which at the GUT scale corresponds to
015 — 613 cos(9) = 35.3° becomes renormalized by about 0.4° even for large tan § =
50. We have also considered the effect on charged lepton corrections coming from
non-Cabibbo-like charged lepton corrections (due to non-zero 6%}) and confirmed

that the sum rule o is insensitive to 6%.

Even for a particular class of numerical model, such as the GUT-flavour inspired
LSD model considered, the numerical results will depend in general on the choice of
Majorana phases for that model. We have seen that switching on these Majorana
phases can alter significantly the running of the TB mixing deviation parameters
r,s,a as well as the sum rules such as ;. For example the sum rule o, which
includes the leading logarithmic RG corrections due to the running of s and a,
will have a Majorana phase dependence via the running of » which was neglected
in the derivation of gy [37]. Thus, the relative stability of o, as compared to oy

turns out to be a Majorana phase dependent question.

Although most of the numerical results are based on a particular GUT-flavour
motivated LSD type of model, we have also considered similar results for a com-
pletely different type of model based on HSD. Overall we have found that the
RG running effects are quite small in both cases which suggests that qualitatively
similar results will apply to other models based on the Minimal Supersymmetric
Standard Model, extended to include the see-saw mechanism, with hierarchical
neutrino masses. These corrections, although small, they will nevertheless be im-
portant when comparing the neutrino mixing sum rules to the results of future

high precision neutrino oscillation experiments [50].
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Chapter 5

String Compactifications: An

Overview

In this chapter, we present a brief, nontechnical, review of string compactifications,
extra dimensions and moduli stabilisation. There are many excellent reviews that
discuss this subject extensively [51, 52, 53, 54, 55].

5.1 String theory

String theory is very attractive as it represents to date the only consistent frame-
work for unifying the Standard Model and gravity. It assumes that everything
in nature is made of one dimensional objects known as strings which can be ei-
ther closed as a loop or open with their ends attached to other extended objects
(branes). This means that in quantum field theory (QFT), all fields including
scalars, fermions and gauge bosons can be described as different vibrational modes

of these strings.

There are five known string theories in ten space-time dimensions [56]: type I, type
ITA, type IIB. heterotic Eg x Fg and heterotic SO(32). Identifying the spectrum of
string theory is a complex subject. Here, we list the main fields for closed strings
which are the metric Gy, the dilaton ¢, and the anti-symmetric tensor Bjsy.
The five string theories are all limits of an eleven dimensional theory known as
M-theory. This theory contains other dimensional extended objects called branes
or membranes. In certain limits, M-theory can be related to a particular type of

string theory by compactifying one dimension of space to get a ten dimensional
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theory. For instance, taking one of the space dimensions to be in the shape of a
circle, the theory becomes equivalent to type IIA string theory where the size of
the circle plays the role of string coupling (the dilaton). Another compactification
of M-theory, which yields Heterotic Fgs X FEg in ten dimensions, is achieved by
taking the circle to have a Z5 symmetry. This is a simple illustration of the idea
of compactifying space dimensions in order to go from higher to lower dimensional
theories. There are also dualities which connect all string theories together, and
these are namely T, S and U duality. The existence of these dualities between
different types of string theory is very important in model building, particularly
when certain calculations in one theory are cumbersome. In such cases, one can
perform equivalent calculations in another string limit, then transform the calcu-
lations back to the more difficult limit of the relevant theory. All string theories

are described at low energy by effective Supergravity theories.

In order to obtain the correct phenomenology in four dimensions, string theories
are preferred to have NV = 1 Supersymmetry in ten dimensions. Supersymmetry
is a non-trivial extension of the known symmetries of space and time (which are
described in special relativity by the Poincaré group). In model building, there
are various reasons why one should focus on theories with low energy NV = 1
Supersymmetry. An important reason is that it gives rise to other extensions of the
Standard Model (SM) which would solve some of its shortcomings; for example, the
gauge hierarchy problem. One of these extensions is the Minimal Supersymmetric
Standard Model (MSSM) which embeds the SM within a supersymmetric theory.

Looking at string theory, we find that heterotic and type I theories possess N’ = 1
Supesymmetry in ten dimensions and contain a large number of gauge groups.
Therefore, these theories are good candidates for model building and they can
easily accommodate the ingredients of the SM. On the other hand, Type II theo-
ries seem to have AN/ = 2 Supersymmetry in ten dimensions and very small gauge
groups. This poses a problem when trying to establish a four dimensional the-
ory starting from these theories. To generate the correct phenomenology at four
dimensions, we need to find a mechanism that breaks N’ = 2 to /' = 1 Supersym-

metry.

The study of type II theories was revolutionised after the discovery of Dirichlet-
branes (D-branes)[57, 58]. These are extended objects that exist within the vacua
of these theories. The ends of the open strings are usually attached to the surfaces
of the branes while the closed strings, which are usually identified with gravity

fields, are free to move in ten dimensional space-time without necessarily being
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attached to branes. The dimension of a particular brane is related to the states
of the relevant theory that couples to it and we usually refer to a brane with its
space dimension as D,, brane. We also refer to it as a (p + 1)-sub manifold of the
full space-time manifold in ten dimensions. This subject is not within the scope
of this thesis and, therefore, will not be discussed any further. We refer the reader
to the reviews [57, 58]

5.2 String compactifications

String theories are leading candidates for the unification of the SM with grav-
ity. However, they all exist in high dimensions that we cannot observe in our
four dimensional universe. This means that, in order to compare the physics of
these theories to our universe, we need to find a way of hiding the extra dimen-
sions so that we can only see the four dimensions required by our universe. This
is known as compactification of space dimensions. Compactification means that
the extra dimensions are curled up with a very small radius (much smaller than
the lengths observed by high energy experiments). Compactifying the six extra
dimensions of string theories (these become seven when considering compactifi-
cations of M-theory), we eventually get a four dimensional theory as required by

phenomenology.

The idea of compactification is not a new one, it was first realised by Kaluza
and Klein [59, 60] where they introduced a fifth dimension, invisible in everyday
life. This gives a generalisation of general relativity to five dimensions. Before
we move on to string compactifications and their implications, let us first briefly

review Kaluza Klein reduction.

5.2.1 Kaluza Klein reduction

Kaluza Klein reduction [59, 60] represents the simplest type of compactification.
In order to review it, let us start by writing the action of Einstein-Hilbert space

in five dimensions (five dimensional gravity) as,
S = —/ X \/—gR, (5.1)
M

where R is the five dimensional Ricci scalar. The five dimensional metric is JMN
with indices M, N = 0,1,2,3,4. We consider the vacuum of this theory where
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the five dimensional space M can be written as a product of the four dimensional
space My, with 4 dimensional coordinates z* where {u = 0,1,2,3}, and a fifth

dimension y. The decomposition of the five dimensional metric can be written as
(Gan ) dXMAXY = (g, )datda” + (gs5)dydy (5.2)

where the quantities are written in terms of their vacuum expectation values and

g"* is the metric in four space-time dimensions.

We solve the Einstein equation R v = 0 in order to see whether the theory admits

such compactification. The solutions are g, = 7,, and gs5 = 1.

The fields ¢(x,y), which result by taking fluctuations about the vacuum of the
theory, can be written as a Fourier expansion in terms of the radius of the extra
dimension R. We take this extra dimension to be compact and periodic y €
0,27 R]. The fields ¢(z,y) can then be written as,

D)= e S fulz)e™/R, (5.3)

The field ¢ satisfies the five dimensional equation of motion given by,

0,0"p+ 050 = 0. (5.4)

Substituting Eq.(5.3) in Eq.(5.4), we get

+00 2
3y (a#a“ - %) b = 0. (5.5)

n=—oo

Taking the radius of the circle to be very small, we recover one massless scalar field,
¢0, and many excited fields with high masses, n/R. To specify an effective theory,
we consider the limit where the radius R vanishes, where we only keep the massless
field and truncate the other heavy modes (Kaluza- Klein modes). This procedure
is known as dimensional reduction and it can be generalised to the case of six or
seven extra dimensions. In such cases, a manifold of extra dimensions is integrated
out to leave an effective four dimensional theory. Kaluza-Klein reduction leads to
a four dimensional theory with the metric g,,, a gauge field A, and a scalar field

¢. the action of this theory is written as

1

1
Sig= | d*z/=g | R — ~¢oFuno)FlY —
4d /S T g( 1%0F o o) 62

aua%o) , (5.6)
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where I ,58) is the field strength of the zero mode gauge field. Looking at the above
action, we conclude that compactification of five dimensional gravity gives rise to
electromagnetism and four dimensional gravity. This is a simple example of the
idea of unification and represents the first successful step of unifying one of the SM
forces (electromagnetism) with gravity. We have seen how one extra dimension
can be successfully compactified to give a four dimensional theory. However, the
presence of the massless scalar field (dilaton) poses a major problem in these
constructions. This massless field predicts long range forces that may modify our

laws of physics.

The situation is more complicated when trying to follow this approach to com-
pactify the six extra dimensions corresponding to string theories (or seven extra
dimensions in M-theory constructions). In such cases, compactification leads to
a large number of massless scalars that are not observed in four dimensions. We
will come back to the problem of massless scalar fields and ways of resolving it in
later sections. The physics of the effective four dimensional theory that we obtain
after compactifying the extra dimensions depends greatly on the internal manifold
of the extra dimensions and its geometry. Since there are many ways of arranging
these extra dimensions, we may obtain various four dimensional theories start-
ing from the same high dimensional theory depending on the type of the internal

manifold considered each time.

5.2.2 Internal manifolds

As we stated in the previous section, the idea of compactification can be applied
to string theory, where the six extra dimensions span the geometry of the internal
manifold that we denote by Mg. We also refer to the resulting four dimensional
manifold as My. The manifold in ten dimensions can then be seen as a product
of the four and six dimensional manifolds (M = M, x Mp). Similar to the case

of Kaluza Klein reduction, the metric decomposes as,
ds = **Wg,, de’dzt 4 gpndy™dy" (5.7)

where the indices i, v run in four dimensions {0, 1,2, 3} while the indices m, n run
in six dimensions {1, ..., 6}, g, is the four dimensional metric while g,,, is any six
dimensional metric. The parameter A(y) is a warp factor which is a function of

the internal coordinates.
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Compactifications of string or M-theory are required to preserve minimal Super-
symmetry such that the four dimensional theory is supersymmetric at the compact-
ification scale. Supersymmetry is then spontaneously broken by other mechanisms
such as fluxes or non-perturbative effects. This condition upon the symmetry of
the effective four dimensional theory restricts the choice of the internal geome-
try, which effectively means that only few internal manifolds can give rise to the

required phenomenology at four dimensions.

Toroidal compactifications are not a very good choice for compactifying the extra
dimensions, as they give rise to many Supersymmetries, more than it is required
phenomenologically at low energy. In order to get an effective four dimensional
theory with physics comparable to that of our observed universe, we need to
find other types of internal manifolds. A more interesting and simple type of
manifolds which is widely used in string and M-theory compactifications is known
as Calabi-Yau manifold. Calabi-Yau manifolds (CY,,) are compact, Riemannian
with SU(n) € SO(2n) holonomy. The holonomy goup H is defined in simple
terms as a set of matrices which are achieved when considering parallel transport
along a closed curve on an n-dimensional manifold. In the case of heterotic and
type I string theories, d = 4, N = 1 is achieved by taking the six dimensional
manifold to be a Calabi-Yau three-fold (C'Y3) with SU(3) holonomy. On the other
hand, compactifications of type II theories, on the same type of manifold, give
rise to d = 4,N' = 2 Supersymmetry starting from a 10-d theory with N' = 2

Supersymmetry.

Orientifold projections are a good mechanism for breaking Supersymmetry from
N = 2 down to N = 1 Supersymmetry for type II theories. These are Zy pro-
jections with parity operation on the type II string world-sheet. The projection
acts by transforming left-moving vibrations into right-moving ones. The other way
around is also achieved, and the right-moving vibrations are transformed into left-
moving ones. In general, the number of Supersymmetries is related to the number
of massless gravitinos in the four dimensional theory. This means that breaking
Supersymmetry from N = 2 to N' = 1, in type II theories, corresponds to one of
the gravitinos present becoming massive. The presence of intersecting D-branes
in these theories preserves some of Supersymmetry (N = 1) at low energy. One
example of such constructions is type IIB orientifold compactifications on D7 and
D3 branes. We note that breaking AN/ = 1 Supersymmetry also corresponds to
the gravitino becoming massive. In this case, determining the right mass of the
gravitino is very important in the study of phenomenologically viable models as

we will see in the next chapter.
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Similarly to the simple case of one extra dimension, Calabi Yau compactifications
of ten dimensional string theories involve the decomposition of fields of the theory
into four dimensional components. For instance, the 2-form field B,y decomposes
into By, which gives only one zero mode. B, and B,,,, on the other hand, give
rise to a number of vector and scalar modes respectively. The metric g,y also
decomposes into 3 fields including g,,,, which gives rise to one zero mode, identified
as the lower dimensional graviton. The field g,,, gives rise to a number of massless
scalar modes at low dimensions. Some of these scalar fields are known as moduli
fields. Calabi-Yau compactification is a vast subject on its own and involves many
sub-fields such as differential geometry. We will not consider the technical details
of such compactifications in this thesis; for a more thorough discussion, the reader

is referred to the reviews [51, 56].

5.2.3 Moduli fields

Here and in the remainder of this thesis, we refer to the massless scalars, result-
ing from string compactifications to four dimensions, as ¢;. These scalars, which
parameterise continuous families of four dimensional vacua and describe the ge-
ometry of the compact manifolds, are known as moduli fields.! Moduli are very
important in identifying the configuration of internal manifolds in string theory
compactifications. To understand the nature of the moduli space, let us consider
the moduli space of Ricci flat metrics. This space characterises various choices
of the Ricci metric g;; that can be considered in order to achieve a valid string
compactification. It is possible to vary this metric, locally, from one choice to
another at any point in four dimensions. These variations must be described by
fields. These variations between different metrics are, in fact, what gives rise to
massless scalar fields which together form the moduli space. This is similar to the
case of spontaneous symmetry breaking which leads to a massless field (Goldstone

mode). The only diference is that moduli fields can exist without a symmetry.

In general, there are two types of scalar fields: neutral fields and charged matter
fields. In this thesis, we only consider neutral scalars whose interactions are mainly
gravitational. Geometrically, the moduli fields that result from Calabi-Yau com-
pactifications parameterise the space of the associated internal manifolds. Their
expectation values at the vacuum (Vevs) of the four dimensional effective theory

represent the size and shape of the compact manifold. One type of these moduli

!Throughout this thesis, we will refer to scalar fields resulting from string compactifications
as moduli even after a potential is generated for them.
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is called Kéahler moduli since they modify the structure of the Kéahler manifold.
There are also moduli that alter the complex structure and these are known as
complex structure moduli. There are other types of moduli such as brane moduli,
which represent positions of the branes involved in the compactification process.

We note that this type of moduli will not be considered in this thesis.

The fact that these moduli fields are massless presents a serious problem for string
phenomenology, as stated earlier. The existence of these massless fields means
that they would couple to matter by mediating new long range forces. These
extra forces are problematic, since they can modify the laws of physics of our four
dimensional universe, that have already been confirmed by experiments. In other
words, if these fields couple to varying types of matter, they would give rise to
different forces since their coupling is not universal, which violates the equivalence
theorem. In order to have a realistic theory and resolve this problem, we need to

find a way of generating a potential through which they can be trapped.

Values of four dimensional quantities, such as coupling constants, depend on the
values that the scalar fields take at the minimum of their potential. Since the
values of these quantities can be measured by experiments, generating a potential
for the moduli is crucial in order to have a viable model. Moduli fields are,
usually, fixed at values where one of the minima of the potential lies (in cases
where the potential exhibits such minima). This process of generating a potential
and stabilising the scalar fields at phenomenologically viable minima is known as

moduli stabilisation, which is one of the main themes of this thesis.

Generating a potential for the moduli fields is not only important in string phe-
nomenology but also in inflation. The presence of this potential is important for
realising inflationary scenarios in the framework of string theory since, without it,
it would not be possible for the moduli fields to be trapped. However, even after
generating a potential, the problem of flat directions can still arise. Uplifting these
flat direction is also crucial since, otherwise, they would evolve forever and cause
other more serious problems such as decompactification of internal dimensions.
Our understanding of flux compactifications has led to important progress in this

field in recent years. We will come back to this discussion in Chapter 7.

A typical Calabi-Yau compactification leads to hundreds of moduli fields, which
makes it very difficult to study such models and their phenomenological impli-
cations. The existence of these moduli fields gives rise to many vacua in four
dimensions, which means that we may find many possibilities of low dimensional

physics depending on our choice of the internal manifold. These vacua may be
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classified according to the value of the potential V,,;, as: Minkowski (V,,:, = 0),
deSitter (Vuim > 0) or Anti-deSitter (V,,;,, < 0). We refer to all these types of
vacua as the string landscape. Only vacua that fit closely with the requirements
of particle physics and cosmology are considered as phenomenologically viable.
These involve satisfying the condition V,,;, = 0 since we generally assume our lo-
cal region of the universe to be modelled as Minkowski space-time?. deSitter vacua
with small value of V' may also be included. Even when considering Minkowski
vacua only, we still find many choices of minima in parameter space and one may
ask the question: how do we choose the vacuum that corresponds to our universe?
We still do not know the answer to such a question since any minimum that is
stable and satisfies the requirement of four dimensional physics can be considered
as a viable one. We will not discuss the subject of string landscape in this thesis;
there are, however, many related reviews that the reader may wish to consult such
as [61].

5.3 Flux compactifications

Flux compactifications involve turning on the field strengths of the form fields
present in the ten dimensional theory which are known as fluxes. These fluxes
are related to form fields of dimension p (C},) and can be written as F,44 =
dC,. Introducing non-vanishing expectation values for these ten dimensional fluxes

modifies the theory such that an effective potential is generated in four dimensions.

In general, fluxes exist in two different sectors of string theories. We have those
which correspond to the NS-NS sector, where NS refers to Neveu Schwarz, and
others arising from the Ramond-Ramond (R-R) sector. For string reductions, it
is more useful (and sometimes necessary for purposes of moduli stabilisation) to
consider both types of these fluxes together rather than only one. Fluxes, when
introduced into string compactifications, have the characteristic of stabilising many
moduli. In some cases, they may lead to the stabilisation of all relevant moduli,

particularly when non-perturbative effects are added.

One of the simplest flux compactifications is the T°/Z, orientifold of type II
theories. In this construction, 7% is a six dimensional torus with coordinates
2, =1,..,6. Compactifications where the compact dimensions are described by

this torus give rise to A/ = 4 Supersymmetry in four dimensions as stated in earlier

2In this thesis, we mainly consider vacua that satisfy Minkowski space-time.
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sections. This Supersymmetry is then broken down to N/ = 1 by the parity func-
tion Zy which affects the coordinates along the compact dimensions (z* — —z?).
In other words, it swaps the left-and right-moving fields in the R-R or NS-NS sec-
tors. This kind of compactifications lead to ten chiral multiplets at D = 4, N =1
which are namely: the dilaton S, three Kahler moduli and six complex structure
moduli. There are many other compactifications where the fluxes play an impor-
tant role in breaking Supersymmetry and stabilising the moduli fields. One of
these compactifications is T°/Zy x Z in the heterotic and type II theories which
represent the basic constructions of the superpotentials discussed in Chapter 6.
In the next section, we will briefly review the four dimensional structure of such

compactifications.

5.4 Effective 4-D theories

Since our universe is four dimensional, we are interested in the description of com-
pactifications in four dimensions so that we can relate their content to the SM.
The ten dimensional description is not very attractive for phenomenology as it
usually involves much more information than is needed. In addition to the matter
content, a four dimensional effective N’ = 1 Supergravity, resulting from dimen-
sional reductions of string or M-theory, is generally described by three functions:

the superpotential W (¢,), the Kéhler potential K(¢;, ¢

functions f;(¢;). These are described, respectively, as

=) and the gauge kinetic

e The superpotential W (¢;) is a complex holomorphic function of the chiral
superfields ¢;. This function may receive non-perturbative corrections as we

will see in Chapter 6.

e The Kihler potential K(¢;,¢;) is a real non-holomorphic function of the

chiral superfields ¢;. It may also receive non-perturbative corrections.

e The gauge kinetic functions f;(¢;) are complex holomorphic functions of the

superfields ¢,.

One of the simplest examples of flux compactifications was discussed in the previ-
ous section. A similar compactification is T°/(Zy x Z5) orientifold which involves
an additional Z, projection. We will briefly review the resulting four dimensional

content of these compactifications on type IIA and heterotic theories [62, 63].
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Heterotic theories compactified on T°/(Zy x Z,) lead to N' = 1 Supersymmetry in
four dimensions. As stated earlier, the ten space-time dimensions are split into four
dimensional space-time {1, 2, 3,4} and six space dimensions {5, .., 10} respectively.
One Z, projection is taken so that it acts on the coordinates 278 while the other

Zy acts on x7%910

. This type of compactifications defines three complex planes
(A;, i = {1,2,3}), which remain invariant by Zs x Zs, and correspond to the extra

dimensions of the theory (A; = 5,6, Ay =7,8 and A3 =9, 10).

For heterotic compactifications from ten to four dimensions, the fields decompose
into different components. These include the dilaton ¢, the two-form potential
B;; and the metric G;;. The moduli fields can be defined in terms of the internal

metric which is written as,

(Gij)a = L4 ( Wit Vi Va ) : (5.8)

UA Vg 1

where the indices i, j are the internal space dimensions {i,j = 5,..10} and the

index A ranges over {1,2,3}. Seven moduli can then be identified as,
S=s+1i0, Ta=ts+ita, Usg=uys+ivy. (5.9)

The four dimensional superfields S, T4 and U, are: the dilaton-axion, the volume
moduli and the complex-structure moduli respectively. The real parts of these
complex fields (s,t4,u4) > are known as geometrical moduli while the imaginary

parts (0,74, v4) are called axions.

The Kéhler potential is at the classical level and has the standard form in a general
N = 1 Supergravity theory derived from orbifold compactifications of string theory
(matter fields are not considered in this thesis) [62, 64]:

w

K=-In(S+58)=> In(Ty+Ta)— Y In(Us+Ta). (5.10)

A=1 A=1

where S, Tx,Ua, A € {1,2,3} are the seven complex moduli fields resulting from
the compactification scheme. The Kéhler potential, given by Eq.(5.10), is obtained
through the process of N' = 4 Supergravity gauging of heterotic and type ITA
compactification with zo X zy orbifold as discussed in [62, 63, 64]. The orbifold
projection leads to an expression of the gravitino mass in N' = 4 Supergravity

theory. Solving a set of constraint equations involving N' = 4 scalar fields, one can

3We are using geometric here to refer to the real parts of the moduli and not their connection
to the geometry of the internal manifold.
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rewrite the gravitino mass in terms of the A’ = 1 seven complex moduli S, Uy, Ty.
Separating the holomorphic part in the gravitino mass term ( mz/ = e%/2W), we
obtain the above formula for the Kéhler potential (Eq.(5.10)).

The scalar potential can be easily written for a particular model after identifying
the Kahler potential and superpotential. We write the F-term of this potential, in
N = 1 Supergravity, as,

V = (K7D;WD;W — 3WW), (5.11)

where K is the inverse Kihler metric (K; = 0°K/0¢;0¢5) and D;W = ;W +
0; K W is the Kéhler covariant derivative acting on the superpotential. The indices

1, 7 correspond to the relevant moduli S, T4 and Uy,.

Similar chiral fields structure is also obtained when considering compactifications
of type II theories. Branes are needed to preserve some Supersymmetry in these
constructions. For instance, in the case of type IIA theories, N' = 1 Supersymme-
try is achieved with Dg branes. The large number of fluxes present in type ITA
(Fo, Fy...Fg) leads to a richer “zoo” of possibilities of superpotentials, compared
to heterotic constructions, depending on the type and number of fluxes consid-
ered. For such theories at four dimensions, the complex fields T, are found to be
the same as the heterotic case. However, the real components of the fields S, Uy,
(s',uy) are found to be different from those presented in Eq.(5.9). These geometric

moduli are given, in terms of those identified in the heterotic theory, as

S SUgU3 SUius SU1UL
/ / / /
§ = , Uy = , Uy = , Uy = . (5.12)
UrU2Us3 Uy Uz Us

Heterotic and type IIA constructions are not only different in terms of identi-

fication of geometric moduli. They also differ in the structure of the resulting
superpotentials. This is mainly due to the fact that the allowed fluxes in heterotic
theory cannot give rise to an explicit S dependence in the superpotentials as we
will see in Chapter 6. Although the fluxes play an important role in generating a
potential for the moduli fields and breaking Supersymmetry, a number of problems
may still arise at low dimensions, such as flat directions and runaway solutions.
These may be resolved by adding a non-perturbative superpotential term. We will

come back to this in the next chapter.

In Chapter 6, we will study moduli stabilisation on a number of models resulting
from heterotic and type ITA compactifications on the T°/(Z, x Z,) orientifold. We

will discuss the stabilisation of all moduli analytically and numerically before we
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move on to Chapter 7, where we discuss their dynamics and their contribution to

the theory of modular inflation.



Chapter 6

Moduli Stabilisation

6.1 General structure of A/ = 1 superpotentials

In this section, we discuss the role of gaugino condensation in modifying the struc-
ture of A/ = 1 superpotentials resulting from compactifications of string theories
as discussed in [64]. We also analyse the breaking of N' = 1 Supersymmetry in

the presence of fluxes and the gaugino condensate superpotential.

6.1.1 Gaugino condensate and moduli fields

Compactifications of string theory give rise to many moduli at four dimensions
with exact or spontaneously broken supersymmetries. The stabilisation of these
moduli is very important, not only in particle physics, but also in cosmology since
their dynamics play an important role in the theory of inflation as we shall see in
Chapter 7. In order to have a realistic four dimensional theory, we need to explain
the process of Supersymmetry breaking and its connection to moduli stabilisation.
In some cases, introducing fluxes is not enough to break A/ = 1 Supersymmetry;
they also do not guarantee the stabilisation of all moduli which means that the
effective potential may have flat or runaway directions. Non-perturbative effects
are very important in breaking N/ = 1 Supersymmetry. One of such effects is
gaugino condensation which occurs in the infrared regime of strongly coupled

gauge sectors. In general, a non-perturbative term can be written as,

W = p2eF2) (6.1)

82
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2472
by

w is the RG scale. After adding the non-perturbative term (W,,) to the flux

superpotential (Wy,, ), one can write the effective superpotential as,

where k£ = by is a one-loop beta-function coefficient, Z is a modulus and

Weff = Wfluz + Wnp. (62)

To illustrate how the structure of both non-perturbative and flux terms in the
superpotential affects the vacuum at four dimensions, we proceed by examining

some examples discussed in [64].

First, we consider a superpotential where the flux term is given by a quantity a
which is moduli dependent,
W =a+w(S), (6.3)

where w(S) = p3e™®. The modulus S is rescaled according to

24728
bo

— S, (6.4)

This rescaling leaves the corresponding kinetic terms unchanged and multiplies
the scalar potential by a factor. For heterotic compactifications, the perturbative
term a is only dependent on moduli Uy and T4 with A = 1,2, 3, whereas for type
IT, the modulus S may feature in this term as we will see in later examples. The
scale u may depend on moduli Uy, T4 but we will assume that it is of O(1) for

the models studied in this chapter.

As stated in earlier sections, the F-term scalar potential can be written in terms

of the superpotential W as,

e KV =N |W = WiZi + Z,)]P = 3[W)%. (6.5)

If we consider a situation where the moduli T4 are not present in the superpoten-

tial, we can express the scalar potential as,

eV =N W =W (Ta+Ta)*+ > [W=Wi(Zi+Z)] = 3[W[*. (6.6)
Ta {Zi}E{S,UA}

This means that the first term in Eq.(6.6) gives exactly 3|W|? since, in this case,
the first derivative of the superpotential with respect to T4 is zero (Wp, = 0).
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This term clearly cancels with the third term and gives a potential of the form,

V= > W =WilZi+ Z). (6.7)
{Z:}={S,Ua}

We are led to a no-scale model [53], with a semi-positive-definite potential and flat
directions along {T4}. No-scale type usually refers to models where one term of
the positive contribution to the scalar potential offsets the negative term —3|WW|?
and gives rise to a positive definite scalar potential. This situation is sometimes
encountered in string models where the three geometrical moduli T4 represent flat

directions.

Similar to the Kahler potential, the AN/ = 1 superpotentials, considered in this
thesis, can be generated using the technique of N' = 4 Supergravity gauging. Per-
forming this method for heterotic or type II compactications with z5 X 2, orbifold
generates expressions for the gravitino mass terms as a function of the N' = 4
scalar fields. The zy X 2o truncation, which is used to reduce Supersymmetry to
N =1, leads to seven complex fields S, Uyu, T4 in the moduli sector. Using a set
constraint equations, the gravitino mass terms can be rewritten as a function of
N =1 scalar fields. The N/ = 1 superpotential can then be obtained, using the
relation mz/, = eX/21V | as a polynomial in the moduli fields with maximum degree
seven [62, 63, 64].

The identification of N = 1 superpotentials also depends on the possible fluxes
present in the theory. For example, in the case of type ITA theory compactified
to four dimensions, we have R-R fluxes (Fy, Iy, Fy, Fs) as well as NS-NS and ge-
ometrical fluxes. After defining the moduli fields in terms of the internal metric,
we can write the flux contributions to the N' = 1 superpotential. It is possible to
switch on single fluxes such as the zero-form (Fj) which generates a superpotential

dependent on the imaginary parts of the complex moduli fields T4 [63],
W == —iFQTlTQTg.

For type ITA orientifolds, we can also have examples with combined fluxes where
most of the moduli fields are stabilised. For instance, switching a system of geo-
metric, R-R and NS-NS fluxes ws, Fy, Fs, H3, we get the following superpotential

where four moduli fields are stabilised (for a specific choice of these fluxes)[63]:

W = CL(STl + ST2 + STg) + a(Tng + TQTg + T3T1) + 3'lb(S + T1T2T3).
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More examples of N = 1 superpotentials are listed in [63].

The presence of both perturbative and non-perturbative superpotentials plays an
important role in modifying the structure of the vacuum in four dimensions [63].
In some cases, non-perturbative contributions to the superpotential not only break
Supersymmetry, but they also have an important effect on the stabilisation of the
relevant moduli and on the positivity of the scalar potential. In the next section,
we will analyse the process of Supersymmetry breaking and its relation to the
different moduli present in the theory. As stated in the previous chapter, we will

mainly consider constructions of Minkowski vacua in four dimensions.

6.1.2 Supersymmetry breaking in Mikowski space

Supersymmetry breaking is very important for the realisation of four dimensional
models comparable to the SM. In general, Supergravity theories provide an attrac-
tive framework for breaking Supersymmetry spontaneously. Such breaking is only
achieved if the F}; auxiliary equations do not vanish along all moduli directions

Zj. These equations can be written as,
with the Kahler potetial given as outlined in the previous chapter,

K=-) In(Z+7Z) (6.9)

Let us now look for ways of finding a stationary point of the corresponding scalar
potential, where Supersymmetry breaks. Following [63], we demand that the con-

ditions, given by Eq.(6.10), are satisfied in Minkowski space,
(Vy=0, (W)Y #£0. (6.10)

We also solve the equations, 9;V = 0, for each scalar field Z;. These can be

written in terms of the Kéahler potential, K, and the superpotential, W, as

0=e XVK; - W;F; — 3W,;W+
S W= (Zi+ Z)Wy| T — (2 + Z;) Wy, F; (6.11)

i with i£j
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where the scalar potential is given by,

V = (K"D,WD;W — 3WW), (6.12)

As an example, we consider a superpotential of the form,
W =(Ty = To)(=Uy + Uy — T5 + 25) + (U, T35 — L)w(S). (6.13)

This superpotential is generated through the method of N' = 4 Supergravity
gauging of T°®/(zy X 29) orientifold compactifications of type ITA theory in the
presence of geometric and F; fluxes [63, 64]. Using the above expression for W,
we can see that the first term of Eq.(6.11) vanishes at a Minkowski point while the
second derivative, W;;, only appears for the case of moduli that are present in the

gaugino condensate term (Modulus S for the superpotential given by Eq.(6.13)).

We consider the case where the scalar fields split in two categories. The first
one controls the breaking of Supersymmetry where the conditions, (W;) = 0 and
(Fj) = (W) # 0 are satisfied. The conditions F; = 0 apply to the second category
which preserves Supersymmetry. The number of scalar fields breaking Supersym-

metry is exactly three as implied by the Minkowski condition (V') = 0.

The stationary condition, given by Eq.(6.11), can then be written as

0= Y  (W;ReZ), (6.14)

i with i£j

with a summation restricted over moduli that break Supersymmetry. In the re-
mainder of this chapter, we will look into examples where the structure of the
superpotential gives indeed a partition between directions which break Supersym-
metry and those which preserve it. The presence of the gaugino condensate term
in the superpotential does not guarantee Supersymmetry breaking. To illustrate

this, we analyse the following superpotential,

W - A(Ul - Ug)(Tl - TQ) + B(Ul + U2 - 2U3)(T1 + TQ - 2T3)

Let us start by writing the auxiliary equations F; = W — W;(Z; + Zi) for all

moduli. For instance those corresponding to the moduli U; and U; can be written
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explicitly as follows,

Fy, A(=U; — Up)(Th — T) + B(~=Uy + Uy — 2U3)(Ty + Ty — 2T3)

b (T + Ty — 2T3)w(S), (6.16)
FU2 = A(Ul + UQ)(Tl — Tg) —+ B(Ul — UQ — 2U3)<T1 + T2 — 2T3)
+ (T1 + TQ - 2T3)W(S) (617)

Cancellation of the auxiliary equations fixes the T4 moduli (74 = 7). We can

clearly see that, for this choice of the Ty moduli, the auxiliary equations Fy,, Fy,

vanish. However taking these moduli to be all equal at the vacuum gives (W) =0

which contradicts the conditions of Supersymmetry breaking presented in Eq.(6.10).
Clearly Supersymmetry is not broken for this superpotential even though the con-

densate term (T + 15 — 275)w(S) is present.

In order to break Supersymmetry, we have to modify the above example by adding

another term which we call the breaking term Wi, eqx,
Wbreak - R(T1U1 + T2U2). (618)

The new superpotential is a combination of the breaking term and the one given
by Eq.(6.1.2),
W' =W + Whreak, (6.19)

For this superpotential, similarly to the previous superpotential W, cancellation
of the F-auxilary equations along U;, Us shows that the T4 moduli are all equal
and real. Due to the presence of Wiy,eqr, the condition (W) # 0 is now satisfied
and Supersymmetry is broken only if the condition (V) = 0 is fulfilled as previ-
ously stated in Eq.(6.10). To satisfy this condition, we only require that the first
derivative of superpotential is zero along the directions that break Supersymmetry.
These directions are T3, Uz and S. The conditions Wy, = W{,, = Wg = 0 read,

—2(B(U1+U2 —2U3)+w(5)) = 0, (620)
—2B(Ty + T, — 2T3) = 0, (6.21)
—(T1 + T2 - 2T3>W(S> = 0. (622)

Since the moduli T4 are all equal and real, Eqs.(6.21, 6.22) are satisfied exactly.
The remaining directions, T, T, Uy and U,, preserve Supersymmetry and, there-

fore, their F-auxilary equations are zero. The auxilary equations along 77 and T5
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can be written as follows,

Fr, = AU, —Uy)(=T, —Tp) + B(Uy + Uy — 2Us) (=T, + T — 2T3)

+ (=T, + Ty — 2T3)w(S) + R(~=T Uy + TyUs) = 0, (6.23)
FT2 = A(Ul — UQ)(Tl +TQ> + B(Ul + UQ — 2U3)(T1 — TQ — 2T3)
+ (Tl — TQ — 2T3)CU(S) + R(TlUl - TQUQ) =0. (624)

Taking U4 to be real and Uy = Uy = U, Egs.(6.23, 6.24) can be simplified as,
—9TB(2U — 2Us) — 2Tw(S) = 0. (6.25)

This equation, which fixes the field U at w(S)/2B+ U at the minimum, is equiva-
lent to Eq.(6.20). The stationary point condition given by Eq.(6.14) can be written
for this model as,

ReS=-2B(U+T)—w(S). (6.26)

The model studied above has a minimum, with broken Supersymmetry, at real
T4 and U, with the moduli Ty = T and U; = U,. The modulus Us is fixed
at the minimum by Eq.(6.20) while ReS is fixed by Eq.(6.26). Although the
condensate term is present in this model, it does not contribute to the breaking of
Supersymmetry which is only broken when the term Wh,...x is added explicitly to
the superpotential. We will not comment on this model any further. Instead, we
will look at another class of models where the presence of the gaugino condensate
term is crucial for breaking Supersymmetry. These models are presented in the

next section with numerical solutions.

6.2 Analysis of DKP models

We have presented examples of models where the presence of the gaugino con-
densate was not responsible for breaking Supersymmetry in Section 6.1. In this
section, we analyse models discussed by Derendinger et al. [64] (from now on, we
refer to these models as DKP models). We will also comment on a model discussed
by Lowen et al. [65], which has similar features to one of the DKP models (we refer
to it as LNZ model). In these models, the presence of the gaugino condensate is

crucial for the breaking of Supersymmetry.
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6.2.1 Model 1

We look at an example of type ITA, where the condensate term breaks Supersym-
metry and, therefore, fully contributes to the structure of the effective theory in

the vacuum. We consider the following superpotential, as given in Eq.(6.13),
W =(Ty = To)(=Uy + Uy — T35+ 25) + (Ui T3 — L)w(S), (6.27)

where L is a flux parameter and w(S) is the condensate term given in terms of the
dilaton field as,
w(8) = pe™. (6.28)

As discussed in Section.6.1, this model has particular directions which break Su-
persymmetry; these are Ty, T, and the flat direction Us. The directions which
preserve Supersymmetry are: T3, Uy, Us and S. From now on, we will refer to this

as model 1.

To ensure that (V) = 0, we only require that (Wrp,) = (Wg,) = 0. Only two
conditions should be fulfilled for the Supersymmetry breaking directions, since
the superpotential is independent of Us. The resulting Supersymmetry-breaking
condition reads

— Ui+ Uy —T5 +25 = 0. (6.29)

The vanishing of the F-auxiliary fields (F; = W — (Z; + Z;)W; = 0) along the
directions T3, Uy, Us and S leads to the following equations,

E(U+Us—T5+2S) — (UiTs+ L) w(S) = 0, (6.30)
E(-U1 = Uy = T3 +25) + (LT3 — L)w(S) = 0, (6.31)
E(-U1+ Uy +T3+25) — (UiTs + L)w(S) = 0, (6.32)
E(-U14+U,—T5 —25)+ (LT3 — L) (1+ S+ S)w(S) = 0, (6.33)
where, following [64], we have introduced,
E=T —To. (6.34)

The stationary point condition, 9;V = 0, given by Eq.(6.14) reads,

Re¢ = 0. (6.35)
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Combining Eq.(6.30) and Eq.(6.32), we get
f(Ul + U1 — T3 — Tg) -+ (Ung — Ung)W(S) = 0. (636)

This equation clearly shows that the moduli 73 and U; are equal (13 = Up). A
similar combination of Eq.(6.30) and Eq.(6.31) gives,

EUL+ U, + Uy +Usy) — (U U + UHw(S) = 0. (6.37)

For Eq.(6.37) to be consistent, the modulus U; must be real, which also means
that T3 is real (T3 = U; = t). We can rearrange Eq.(6.30) for £, taking Uy, T3 to

be equal and real, and the result is,

(1> + L)w(S)

Us + 28 (6.38)

f =
To ensure that the stationary point condition is fulfilled (Re{ = 0), we adjust
the imaginary part of the modulus S (S = s —¢%). This also implies, through
Eq.(6.29), that Uy = u + i7.

So far, we have looked at possible combinations of the F-auxiliary fields, which
gave us certain requirements on the real and imaginary parts of the moduli. Now,
we can easily express the extremisation equations for the fields ¢, u and s. These
equations are given as Eq.(6.29), a combination of Eq.(6.30) and Eq.(6.31), as well
as a combination of Eq.(6.29), Eq.(6.30) and Eq.(6.33), and read:

u+2s—t) = 0, (6.39)
t(t*—L)—u(®+L) = 0, (6.40)
2+ 2Lt3 — ALt — 3L* — 417 = 0. (6.41)

An expression of £ = T} — T5 can also be derived using any of the Eqgs.(6.30-6.30),
once all the other moduli are fixed. Eq.(6.30), for instance, can be rearranged to
give an expression for £ as shown in Eq.(6.38); this latter can be simplified further

to
P+ L

= w
u+ 2s

¢ (S). (6.42)

The gravitino mass can also be expressed in terms of ¢, L and w(S),

e K mygp = (W) = (£ — L) w(S). (6.43)
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Using Eq.(6.41) and assuming L > 0, we obtain

_ptm 242V T

L ;
3t + 4

(6.44)

where the choice for the sign of the square root is the only one compatible with

the positivity of all moduli.

As stated earlier, in this model the gaugino condensate is entirely responsible for
the breaking of Supersymmetry. In order to see whether the solutions, given in
Eqs.(6.44-6.34), derived for this model represent viable minima, we need to look
at numerical examples and study the structure of the scalar potential (5.11) along
different moduli directions. One choice of these solutions is presented in Table 6.1,
where the parameter p is fixed at © = 2. The scalar potential exhibits a global
minimum at these values, as shown in Figs.(6.1, 6.2). These two figures illustrate

the scalar potential displayed in the complex planes S and U, respectively.

Since this is a model of seven complex fields, it is hard to see, graphically, whether
the above numerical example is a viable minimum in all directions. Therefore,
calculating the Hessian matrix is crucial in order to identify the viability of this
minimum. This matrix was evaluated and found to be positive definite which
confirms that the above numerical example is indeed a global minimum of the
scalar potential along all the relevant moduli. For details of the calculation of this

matrix, we refer the reader to Appendix C.

Parameter/ Moduli L ¢t w s Im¢
Values 1.788 2 0.763 1.618 2.295

TABLE 6.1: One particular choice of numerical solutions to model I.

As shown in Eq.(6.43), the gravitino mass is dependent on the values of Re S and
the parameter p. In order to achieve a phenomenologically viable gravitino mass
(about 107'*M,)!, with Re S as well as the other fields fixed at their minimum
values presented in Table 6.1, the value of u must be very small of order u = 1074,
If, however, we keep the value of u fixed at p© = 2, which is the value used so
far in the model, larger values of Re S (from 15 up to 30) must be considered in
order to achieve a lighter gravitino mass. Numerical results of the gravitino mass

are presented in Table 6.2, where we also show the corresponding values of u and

1We denote the Planck mass as M, ~ 10'GeV. In most of this thesis, we will assume Planck
units and take M, = 1.
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FIGURE 6.1: Stabilising potential for Re S, Im S. All other moduli have been
fixed at their minimum values.

FIGURE 6.2: Stabilising potential for Re Us, Im Us. The remaining moduli are
fixed at their minimum values.
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Re S. Taking the value of i to be p = 10~* does not affect the values of the moduli
fields at the minimum except the value of Im¢ = Im 77 — Im 75 which becomes
£ ~ 229 x 10713, Changing the value of ReS, on the other hand, affects the
minimum values of the other fields and, therefore, in this case we need to look for

another numerical example that is different from the one presented in Table 6.1.

m 2 2 2 103 10-1
Re S 16 20 25 1.618 1.618
maja(M,) 52x107° 87x107" 54 x 107" 24x107" 24 x107"

TABLE 6.2: The dependence of the gravitino mass (in Planck units) on the
parameter p and modulus S for model 1.

We showed how some of the moduli present in this model are successfully stabilised
with numerical examples. However, there are two flat directions. One of them is
along Us, which is not present in the superpotential given by Eq.(6.13). The other
one is along the T7 + T, direction. Before studying the dynamics of the moduli
presented in this section, we need to find a way to lift the flat directions. One way

to proceed is the application of the local no-scale idea [66, 67].

6.2.2 Lifting the flat directions

The DKP model presented in the previous section (model I) has one problem,
which is the appearance of unfixed Us moduli in addition to the T} + 715 direction.
These flat directions can be uplifted by applying the local no-scale idea, where
corrections to the Kéahler potential are added to fix the moduli while the flatness
condition (V' = 0) applies only locally [65, 66, 67].

For the flatness condition to be around point zy in D, one demands:
0.0-¢73 = ¢.2(2,%), (6.45)

where D is the positive kinetic energy domain (defined by G,z > 0) and G is the
Kahler function, which is related to the Kéhler potential K and the superpotential
W by,

G=K-+In|W}> (6.46)
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The function ¢(z,z) satisfies the conditions:
¢z > 0,Vz €D, (6.47)
and

¢-2(20,%0) = 0. (6.48)

The solution for Eq.(6.45) is given by:

G- —glog(f+7+¢)2. (6.49)

We can express the condition for the positive kinetic energy domain in terms of

the functions ¢, f and their derivatives,

|fe ¢ — d(f + f+¢)
(f+f+0)

G.-=3 > 0. (6.50)

In a general N' = 1 Supergravity theory, the scalar potential V' can be expressed

in terms of the function G as,
V = e%(G*G.G5 - 3). (6.51)
For G given by Eq.(6.49), we can write the scalar potential,

b=(f+[+9)

V=3 — — .
F+F+oP(Ifs +¢:2— du(f+ F+ )

(6.52)
From the above equation, we can see that the potential is positive definite in D
only if the conditions ¢,z > 0 and f + f + ¢ > 0 are satisfied exactly.

Let us consider a correction to the Kahler potential ¢, given by,

(Z — 20)2(2 — 20)2

¢ = . . (6.53)

This correction affects the shape of the scalar potential only outside the minimum
value zy. If we fix the value of the field at 2y, the function, ¢, vanishes and the
structure of the potential, without its presence, can be restored. To see how the
correction, ¢, modifies the scalar potential along the flat directions in model I, let
us apply this procedure to uplift the flat direction along the complex modulus,

Us; = ReUsz + 1 Im Us, for example. This function can then be written, in terms of
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ReUs and ImUs, as

o(Us) = (Us — (U3)0>2iU3 — (U3)0)2’

_ ((ReUs — (ReUs)o)? Z(Im Us — (Im U3>0)2)27 (6.54)

where (Us)g is the minimum value along Us. The conditions for the positivity of
the scalar potential are both satisfied. To see this, we write ¢y, 7, and Us +Us+09,

as a function of the real and imaginary parts of Us, as follows,?

b, = ((ReUs — (ReUs)o)® + (ImUs — (Im Us)o)?, (6.55)

U3+Ug+¢ = 2ReUs;
((ReUs — (ReUs)o)? + (ImUs — (Tm Us)o)?)?

y (6.56)

The above equations show that the positivity condition, given by Eq.(6.50), is
satisfied. Now, we can study the structure of the scalar potential in this direction.
Fig.(6.4) presents the stabilising potential for the Us direction, where the minimum
value is taken to be purely real (ImUs = 0) with the value (Us)g = 0.5. A
similar procedure can be followed in order to uplift the T} + T3 direction locally.
Fig.(6.3) shows the scalar potential as a function of the complex modulus 7}, where
the minimum value, along this direction, is given by (T1)o = 1 +i(§ + 1) with
o= ImE& = 2.295, as presented in Table 6.1. The minimum value for 75 is taken
to be (T2)g = 1+, such that Im (77 — T3) = & and Re (71 — T3) = 0, as required
by the stationary point condition in Eq.(6.35).

2Here, we are taking the function f to be equal to Us.
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FIGURE 6.3: Scalar potential as a function of the complex modulus 77. The
remaining moduli are all fixed at their Vevs.

-0.10

FIGURE 6.4: Scalar potential as a function of the complex modulus Us. The
remaining moduli are all fixed at their minimum values.
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6.3 Model 11

We now consider another DKP model originating from heterotic compactifications,
which we refer to as model II from now on. Although heterotic compactifications
are similar to type II when Supersymmetry breaking is mostly due to fluxes, they
turn out to be very different in cases where Supersymmetry breaking is induced by
a gaugino condensate®. The main reason is the absence of S contributions to the
superpotential directly originating from fluxes. Let us consider a superpotential
with the following form [64],

W = AU, + BU, + CUs + DU U,Us. (6.57)

This superpotential is odd in the fields U; and captures most of the features of the
heterotic compactifications, with a gaugino condensate. The following functions
of Ty, T and S have been introduced,

A= (a+dw(S)) €&+ Aw(S), (6.58)
B = (B+3w(S)) &+ Buw(S), (6.59)
C = (v +7w(S)) & + Cw(S), (6.60)
D = (6 + 8w(S)) €+ Dw(S), (6.61)

where the parameters £ and w(S) are given as follows,
E=Ty—T, , w(S)=pPe®.
In the remainder of this section, we will present the DKP solutions for model II,

following [64] closely. We will then discuss the problematic aspects of their solution

and propose an alternative one with a numerical example.

6.3.1 The DKP solutions

We start by deriving the stationary point condition given by Eq.(6.14). The mod-
uli directions that break Supersymmetry, in this model, are 77,7, and the flat

direction 73. On the other hand, Supersymmetry is preserved by the remaining

3The difference between models originating from heterotic and type II compactifications will
become more apparent in the next chapter, when we look at inflation.
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directions along U; and S. This means that we can express the stationary point

condition as,

(a+dw+ (0 +8NUUs)Re (Th — Tn) + (B + B'w+ (6 + 8") U 1Us) Re (Th — 1)+
(Y +~'w+ (0 +8)UUz) Re (Ty — Tz) =0, (6.62)

which clearly leads to the vanishing of ¢ at the minimum (Re& = 0). We choose
the modulus S to have an imaginary part with the value —7/2 (S = s —in/2)
and the fields U; to be all real and equal (U; = u;). This choice makes everything
consistent provided that the flux parameters o, 3, v, d and A, B, C, D are all real

while o/, 3, v/, ¢ are imaginary.

The vanishing first derivatives of the superpotential in terms of T} and T, ((Wr,) =
(Wr,) = 0) means that the no-scale requirement (V') = 0 is fulfilled. The corre-

sponding condition reads,
(a+ dw)uy + (B + fw)ug + (v + Y w)us + (§ + §'w)ugusuz = 0. (6.63)

The vanishing of the Uy-auxiliary and S-auxiliary fields, Fis = Fyy, = 0, read,

— Auy 4+ Bug + Cus — Dujusus = 0, (6.64)
flul — BUQ -+ éUg — Dumzug = 0, (665)
Auy + Buy — Cuz — Duyusus = 0. (6.66)

The above equations imply that,
Aul = B’UQ = éng = [)'LHUQ'U,;;. (667)

Following [64], Eq.(6.67) allows us to express u;, us and us, in terms of £ and s,

Uy = H AA, Q—HAA 3—\/ (668)

The equation for the S—auxiliary field gives:

2___ ﬁ/ /
— = <A+B+C+D>§. (6.69)



Chapter 6 Moduli Stabilisation 99

In order to solve for s and &, the authors of [64] introduced a set of intermediate

imaginary quantities \;, defined by:

A= MN&w, B=w, C=X\éw, D= \Ew. (6.70)

The authors also claim that solutions with large and positive s, together with
exponentially small ¢ do exist under minor and natural assumptions on the fluxes
(coefficients «, 3,7,0,a/, 3',+',0" and A, B, C, D). For simplicity, they consider the

plane-symmetric situation, where

a=0=v o =03=+, A=B=C. (6.71)
The above conditions imply,

M=X=A3= A\, u; =uy = uz = u, (6.72)

and the resulting equation for u can be written as

A
v (6.73)

The parameters A\ and A4 are given, in terms of the flux coefficients, by

1 w 3Da+ Ad + (3a/D + Ad')w (6.74)

A 3(a+ dw) Da— Ad+ (Do’ — Ad)w '
1w 3Dat+ A5+ (3d'D+ Ad)w (6.75)
Ay (0 +0'w) Da— Ad+ (Do’ — Ad)w '

Equations for £ and s can be summarised as follows,

~ 13Da+ Ad+ (3a/'D + Ad)w
&= 4 (a+ dw)(§ + d'w) “ (6.76)

i——él— (a/d —da)w  3Da+ Ad+ (3¢/D + Ad')w (6.77)
s (a+ dw)(d + d'w) Da— Ad+ (Do/ — Ad)w '

Provided that the flux coefficients «, 0, o/, ', A, D are large while their ratios are
of order unity, Eq.(6.77) admits acceptable solutions for s. If this requirement is
fulfilled, a variable p (which is a real function of s) can be defined as

_Z,Da—Aé

o= (6.78)

Daw
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This variable can be taken to be of O(1) since w is small and the ratio of the

coefficients is also of O(1).

Under these assumptions, an expansion in powers of w can be performed for all

quantities. This simplifies the expressions of s and ¢ as,

£ ~ — 5 (6.79)
1 D a'd—da
2s 8 Da —AY —iDap (6.80)

The gravitino mass can also be expressed in terms of the flux parameters and w

as,

(6.81)

Ad—Da 3/2
K/ A — Do/ + 5222 < a+o/w) / 2

2 _ —
/2 a+ dw 0+ 0w

In the special case where o =ia, § = —id, Eq.(6.81) simplifies further to:

Ad— D
e’K/zmg/g SN (2De2S + Taes>
30\*? s
~ 4D | —=— 2, 6.82
' ( 5 ) 25 +1° (6.82)

The above equation shows that the gravitino mass scales as w?. The dependence
of the gravitino mass on w? does not guarantee it to have a phenomenologically
viable value. We think that the double suppression appears mainly due to the
arrangement of parameters in the gravitino mass formula in Eq.(6.82). This means
that choosing a small value for Re S, for example Re S = 1, will not always give
rise to a phenomenologically viable value of the gravitino mass even with the
presence of w? in the formula. A similar discussion was presented in the previous

section, where we have looked at some numerical examples as shown in Table 6.2.

So far, we have outlined the DKP solutions to model II as presented in [64].
We will proceed, in the next section, by analysing these solutions and presenting
their problematic aspects. We will also propose alternative ones and study them

numerically.
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6.3.2 Alternative solutions to model 11

This DKP model, similarly to Model I, has the problem of flat directions along
the Us and T + T5 directions. We will not comment on this problem further as
we have discussed it in detail for model I and presented a way of fixing the flat
directions. Another, more important, problem is the inconsistency in the solutions
presented in Eqs.(6.73-6.82). When trying to find numerically viable minima to
the corresponding scalar potential, it was not possible to find a set of coefficients
a, 3, A and D that satisfied all the solutions and gave rise to a Minkowski vacuum
along those directions. We now discuss in detail alternative solutions that result

in phenomenologically viable minima.

Starting from Egs.(6.64, 6.65, 6.66), we can see that, by taking the fields w; all to
be equal and real, the condition, given by Eq.(6.83), must be fulfilled,

~ ~ ~

A=B=¢C, (6.83)

which gives rise to the following equation for u

A
u = . (6.84)
D

Expressions for £ can be derived using the condition presented in Eq.6.83. For
instance, setting the expressions of A and B to be equal and rearranging for &, we
get

(a=0B+ (- )w)E=(B—-Aw. (6.85)

Similar arrangements can be made for the conditions A= C and B = C. This

leads to three expressions for £, in terms of the flux coefficients and w, given as,

- (B—A)w (C—Aw (C — Bw

_O(—ﬂ‘i‘(og/_ﬁ/)w:a_,y_i_(a/_,y/)w:6_7_’_(6,_7/)&)- (686)

Rearranging the parameters in the expressions of £, presented in Eq.(6.86), also
leads to three different expressions for the term w. To see this, let us start by

setting the first two expressions in Eq.(6.86) to be equal. This gives,

(C=A)a=PF)+(C—A)(d =)= (B-A)(a—7)+(B-A)(a =7 )w, (6.87)
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which leads to the following expression for w

_ (B M=y~ (C - Aa-p)
SO A7) - (B A ) (05

Using the other expressions of &, we obtain two more equations which can be

written as,
. (B=A)B—-17) - (C-B)a-p)
w = (C—B)(o/ — ) — (B—A) (B — ') (6.89)
_ (C=A)B=1)=-(C=B)a=1) 690
(C=B)(« —9) = (C=A)@B —~) '

From the above equations of ¢ and w, we can clearly see that the DKP choice of
flux coefficients as stated in the previous section, namely: a« = =,/ =3 =~/
and A = B = (' is inconsistent with the extremisation equations obtained for
both ¢ and w. This particular choice of parameters leads to undefined ¢ and w.
This is one of the main reasons why we think that the DKP solutions, for model
I1, are problematic and that it is impossible to achieve numerically viable minima

starting from their solutions.

Another expression for the modulus u can be derived from Eq.(6.63), which in
turn, should be consistent with Eq.(6.84),
9 a+B+y+ (@ + 0+ w

w = — e , (6.91)

The modulus s = Re S can also be expressed, in terms of the flux parameters, as

- (4 B+ + 6u?)E
. _<<a,+ﬁ,+’}// +5’u2)§—|—A+ B+(C+ DUQ)(,U(S) (692)

We have obtained all the extremisation equations for the moduli fields present in
this model. The existence of more than one equation for the directions &, u and
w makes it more difficult to search for numerically viable minima since the flux
parameters, entering these equations, have to be fixed at certain values satisfying
all equations without any inconsistencies. We have a large number of flux coeffi-
cients in this model, which means that phenomenologically there are many choices
in parameter space that satisfy the above equations. Here, we are only interested
in one of these choices which is presented in Tables 6.3, 6.4, where the values of

the flux coefficients as well as moduli fields are stated.
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Parameter " @
Values —2.756 2

6~ ¢ o B 8 A B C D
1 6 45 2 1 1 6 507 407 307 O

TABLE 6.3: One possible choice of parameters present in model II.

Moduli w(S) Im¢ w ReS ImS
Values -6 —12 1.29 1.25 0

TABLE 6.4: Numerical solutions to the moduli corresponding to the choice of
parameters in Table 6.3.

For the above numerical solutions to be viable, we need to examine the structure
of the scalar potential, which can be derived according to Eq.(5.11), along the
relevant moduli fields. Fig.(6.5) shows a plot of the scalar potential as a function
of the complex field Uy, while fixing the other moduli fields at their minimum
values. As expected, the minimum lies exactly at the numerical solution for u
(ReU; = u = 1.29) with a vanishing imaginary part (ImU; = 0). Similar plots
can be achieved along the remaining directions and all of them show the global
minimum at the values given in Table 6.4. To ensure the existence of this minimum,
we evaluate the Hessian matrix. Although the analysis of model II suggests the
existence of a minimum. The hessian matrix is not positive definite in this case.
This means that the solutions presented for this model do not correspond to a

minimum in all directions.

-0027

FIGURE 6.5: The scalar potential as a function of Re Uy, Im Uj.
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We have found consistent solutions for model II. However, evaluating these solu-
tions as well as studying the dynamics of the corresponding moduli fields numeri-
cally, is extremely costly in terms of time. This is mainly due to the large number
of flux parameters present in the model (about twelve). For this reason, we will
not comment on this model any further and instead we will look at a simplified
version of the model studied first by Lowen et al. [65]. Their model has the same

features as model II but with less moduli fields and flux coefficients.

6.4 Model ITII (LNZ model)

In this section we study a model presented in [65], which covers the key features

of model II discussed in the previous section.

Consider the following superpotential which is similar to the one presented in

Eq.(6.57) but with only one U field:
W = 3AU + DU®, (6.93)
with the Kihler potential: K = —In(T4 + T4) — In(S + 5) — 3In(U + U). As in

model II, the following functions of 77,7, and S are introduced:

~

A= (a+dw(S))E+ Aw(S), (6.94)

D = (6 + §w(8))¢ + Dw(S), (6.95)

with £ =Ty — Ty and w(S) = pde5.

6.4.1 LNZ solutions

We start by identifying the moduli that break Supersymmetry. These are the
same as those presented for model II, namely: 77,75 and T3. The directions that
preserve it are S and U in this case. The conditions (Wr,) = (Wp,) = 0 can be
expressed as,

(a+a'w(8)) + (6 + §w(S))U* = 0. (6.96)

Looking at Eq.(6.96), we find that the stationary point condition (9;V = 0),
similar to the previous models, can be expressed as Re& = 0. We will not go

through all the steps of deriving the stabilisation equations, for S and U here,
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since the analysis is very similar to that presented for model II. We choose S =
s —im/2 and U = wu real. This choice, together with the requirement that the
flux parameters «,d and A, D are real while o, §’ are imaginary, makes everything

consistent.

The vanishing of the first derivatives of the superpotential W, with respect to
Ty and T3, at the vacuum (given by Eq.(6.96)) guarantees that the requirement
(V) = 0 is fulfilled. Similar to model II, the modulus T3 does not feature in the
superpotential (flat direction). Eq.(6.96) leads to the following equation for w,

| —(a+dw(9))
u_\/ T TeE) (6.97)

Another equation for © and minimisation equations for s = Re S and £ are given by
Eqs.(6.84, 6.76, 6.77). These are achieved by expressing the vanishing F-auxiliary

equations along these directions as shown in the previous section.

The gravitino mass can also be expressed by Eq.(6.81) and in the special case (o/ =
io, &' = —id), by Eq.(6.82). The authors of [65] argue that, in order to obtain a
phenomenologically attractive gravitino mass, the position of the minimum in the
S direction must be shifted to larger values, for example S = 15 — iw/2. They
also claim that a Minkowski vacuum is obtained with the following set of flux
coefficients:

a =100, 6 =—-100, A=10, D = —10.00001, (6.98)

where they considered a fine-tuning of parameters of order Aj — Do ~ 1073, This
choice of parameters gives a gravitino mass of order 1.11 x 107*M,,. Lowen et
al. also claim that the gravitino mass is doubly suppressed since it is, like that
expressed for model II, proportional to w? as shown in Eq.(6.82). Further to our
discussion for model II, we think that the presence of w? does not really guarantee
a viable phenomenological result for the gravitino mass. There is also a problem of
inconsistency in Eq.(6.77) for the value of s = 15. We found that, for this equation
to be satisfied exactly, s should be of order s = Re S = 15.1857. Even with this
correction to the value of s, plots of the corresponding scalar potential as a function
of Re S show no Minkowski minimum as can be seen in Fig.(6.6). Fig.(6.7) shows
another plot of the scalar potential with respect to Re S and ReU. In this figure,
the minimum along the Re U direction is clear while nothing is observed along the
Re S direction.
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FI1GURE 6.6: The scalar potential for model III as a function of Re S.

FIGURE 6.7: Stabilising potential for model III as a function of Re S, ReU.
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So far we have analysed the numerical solutions of Lowen et al., and found that
their choice of flux coefficients, particularly the case (o/ = i, ¢ = —id), does
not give rise to a Minkowski minimum in all directions. In the next section, we
look at an alternative choice of flux parameters to see whether it gives rise to a

Minkowski vacuum.

6.4.2 Alternative solutions

As discussed in the previous section, the stationary point condition reads Re& = 0.
We choose the same value of Im S, S = s — i7/2, and we also take the fields U
to be all real (U = u). The solutions for s,& and u are given by Eqs.(6.76, 6.77,
6.84, 6.97) respectively. For the choice of the flux coefficients, we require a, 9,
A and D to be real while o/ and ¢’ to be imaginary. However, the special case

{o/ =i a, & = —id} is no longer considered in what follows.

For all the equations to be consistent, we require D = 0. Our numerical choice of

flux coefficients is given as:
a=-2,0=45 o = -3, &' =135.70656 i, A =15

The flux parameter ¢’ is tuned in order to get a Minkowski minimum since there
is only one value of ¢’ that satisfies the equation (V') = 0, which is one of the
conditions required for finding a stationary point where Supersymmetry breaks in
Minkowski space [64]. The above choice of the flux parameters, together with a
value of i of order 1 gives the following values of the relevant moduli fields at the
minimum:

ReS =125, ReU =0.747, Im¢ =0.314.

To see whether these solutions correspond to a minimum, the scalar potential is
plotted as a function of ReS as shown in Fig.(6.8). Now, we can clearly see a
minimum along the S direction, which appears to be around Re S = 1.25. We

can also see a minimum in the complex U plane as presented in Fig.(6.9).

We showed how changing the flux parameters, for model III, gives rise to a viable
minimum along the directions 77 — T5,S and U. However, this model is not
free of flat directions (7 + T, T3) just like the DKP models. In order to have
a phenomenologically attractive model, we need to ensure the stabilisation of all

moduli. This can be achieved by uplifting the flat directions, following the same
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) E—— S Rel)

FIGURE 6.8: The scalar potential, for model III, as a function of Re S. All the
other minima are fixed at their minimum values

FIGURE 6.9: The scalar potential, for model III, as a function of ReU, ImU.
All the other minima are fixed at their minimum values
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procedure as described in Section 6.2.2, which was also discussed in [65]. Fig.(6.10)
shows a plot of the stabilising potential for the modulus 77, after uplifting the flat

directions, displayed in the complex plane.

0003 "

0.002

0 .OQ/I

0.00(8).99

1.010

FIGURE 6.10: The scalar potential, derived for model III after uplifting the flat
directions, as a function of ReTy, ImT7.

Similar to the models presented earlier in this chapter, the calculation of the Hes-
sian matrix is very important for identifying the existence of the Minkowski min-
imum for this model. Evaluating the Hessian matrix, we found that our solutions

correspond to a Minkowski minimum in all directions as presented in Appendix C.

6.5 Summary

In this chapter, we studied moduli stabilisation analytically and numerically in
three different models originating from heterotic and type IIA string compacti-
fications on T%/Z, x Z, orientifolds. We analysed the Supersymmetry breaking
conditions proposed by Derendinger et al. which involve two categories of moduli.
One of them breaks Supersymmetry while the other moduli preserve it. Then, we
presented the problematic aspects of models IT and III, which were first analysed
by Derendinger et al. and Lowen et al. respectively, and gave ways of resolving
them, essentially, by choosing different values of the flux parameters present in

each model. These models can only be phenomenologically viable if all the moduli
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fields are stabilised. To achieve this, we also presented a way of uplifting the flat

directions in these models by introducing a correction to the Kahler potential.

Moduli stabilisation plays an important role in cosmological inflation. Each of the
moduli fields present in a particular four dimensional theory can play the role of
an inflaton and their dynamics may give rise to successful inflationary scenarios
upon the fulfilment of some conditions. To see how this idea applies to the models
studied so far, we will proceed in the next chapter by looking at the dynamics
of the moduli fields, for each model, and commenting on their evolutions and on

whether they can be good inflaton candidates.



Chapter 7

Inflation

Due to the advancement in observational cosmology, it is of great importance to de-
velop our theoretical models in order to understand the current astronomical data
and their implications. One promising field, which is the dominant theory for the
origin of structure of our universe, is cosmological inflation [68, 69, 70]. Inflation
refers to a period in the history of the universe where there was an exponential
expansion with an accelerating scale a(t). It solves many problems, including the
horizon problem, which refers to the difficulty in understanding the large-scale of
homogeneity observed in our universe. Inflation gives rise to definite predictions,
not only for the uniformity of the universe, but also for possible deviations from
this uniformity. It also solves the flatness problem, which is concerned with the
ratio, €2, of the actual density of the universe and the critical density being close
to one. The critical density is defined as the density that causes our universe to be
spatially flat. Another problem that can be solved by Inflation is that of magnetic
monopoles. These are extremely massive particles which would outweigh every-
thing in the universe. In recent years, there has been many attempts to realise
inflation within string theory. In this chapter, we look at inflationary scenarios in

the framework of the models discussed in Chapter 6.

7.1 Inflation in string theory

There has been steady progress in the constructions of inflationary models orig-
inating from string theory in the context of flux compactifications and moduli

stabilisation. This is realised at the level of N' = 1 Supergravity, where moduli

111
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are complex scalar fields. As stated in Chapter 6, for any realistic model, Super-
symmetry must be broken and the stabilisation of all moduli fields at the right
scale must be achieved. Models of inflation include brane inflation [71, 72]. this
is a class of models where the inflaton field is associated with the scalar fields
describing relative positions of branes in the compactified space. This particular
type of models does not fall within the scope of this thesis, however, and hence

will not be discussed further in this thesis.

Modular inflation is realised with one (or several) moduli fields, which result from
string compactifications, playing the role of the inflaton field. These models are
conceptually simpler than brane inflation models and do not require the existence
of brane dynamics. In some models of modular inflation, the inflaton field may be
associated with many scalar fields which mark the end of inflation when rolling
down to their minimum values. There are many successful models of modular
inflation such as racetrack inflation [73, 74, 75] and large volume Kéhler inflation
[76]. In these models, it is possible to achieve either Minkowski or de Sitter (dS)

vacua.

In general, inflation occurs in a complicated multi-dimensional space as it is the
case with string models. The models considered in this thesis fall into this category,
where the evolution is not necessarily driven by one inflaton field. In some cases, it
is possible to study multi-dimensional models as those with one single inflaton field
by choosing one moduli direction and freezing the remaining fields at their minima.
Despite the success of the inflationary models proposed to date, it is still very hard
to establish inflationary scenarios in controlled compactifications without facing
problems. Particularly the problem of runaway moduli, which occurs mainly due
to the steepness of the scalar potential. In addition to this, there is the initial
conditions problem. It is very important to find regions in parameter space which,
starting the inflaton field at them, lead to successful periods of inflation with
at least 60 e-foldings. In string theory models, the problem of initial conditions
becomes more complicated particularly in cases where there are more than one

inflaton field driving inflation.

Among the models proposed so far is eternal inflation [77]. This is defined, simply,
as a period of inflation that never ends. Eternal inflation involves a false vacuum
(metastable vacuum) decaying exponentially in a particular moduli direction, just
like the decay of a radioactive substance. This decay causes the inflaton field to

move up its potential, to the top of a barrier existing between such a vacuum and



Chapter 7 Inflation 113

another minimum. As this vacuum expands exponentially, its volume continues

to grow with time.

The idea of eternally inflating universes was seen as an oddity for many years. This
picture, however, has greatly changed after realising that string compactifications
give rise to hundreds of metastable vacua with varying four dimensional physics.
All of these vacua exist without the presence of any mechanism that favours one
over the other. The study of eternal inflation may provide such a mechanism of
vacuum selection and may, eventually, help in understanding the vast landscape
of string vacua. However, despite the progress made so far in this field, more work
is needed in order to fully understand the conditions and predictions of eternal

inflation.

7.1.1 Slow roll inflation

Slow-roll inflation involves a scalar field which slowly rolls down a flat potential.
It may also involve more than one scalar field, in which case, the fields that are
not driving inflation may be fixed at their minimum values in order to remain
stable during the inflationary period. For slow-roll inflation to be successful, two

conditions must be satisfied which are given as,

M2 V/ 2
V//

where M, is the Planck mass. The derivatives of the potential V' are with respect
to the inflaton field (¢). Both of these parameters are required to be very small
(In], e < 1) for inflation to occur. From now on, we will refer to € and 7 as slow-roll

parameters.

In string theory, there are many scalar fields and therefore the inflaton represents
one real component of some complex scalar field (®). It is useful to express these
parameters in complex field basis {®*} = (&%, &) [75],

K99,V 0;V
€ = T y (73)

Nz‘ . i
Nab — 7'] Nﬁ] 7 (74)
NZ]' Nzi
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where

_ K990,V NE K"(3;0;V — K"0;0;0,K 0,V') R

Ni _
k vV s 7 %

N 23 and N¥; can be obtained from the above equations of N’ and N*; by complex
conjugation. In this basis, the n parameter is the smallest negative eigenvalue of
the matrix N%,. To have a successful inflationary scenario, it is also required that
the number of e-folds IV, is more than 60. N, can be written in terms of the values

of the scale factor at the start and end of inflation as,

N, =In (Ziif)) ) . (7.6)

In general, it is difficult to achieve a small value of the parameter 1 in models
originating from string theory. This is known as the n problem. To see why this
parameter is not small enough we consider the expression for the F-term scalar

potential which is given as,
Vi = (K D;WD;W — 3|W ). (7.7)

If we now write an expression for the 1 parameter using the above scalar potential,
we find that it is proportional to the second derivative of the Kahler potential due
to the presence of the e® factor in the potential. Considering a simple Kahler
potential, for example K = ¢¢ where ¢ is a complex field, we can easily see that
the parameter 17 becomes of order one if we take the real part of ¢, for example as

an inflaton candidate.

There are some mechanisms which have been studied in order to alleviate this
situation, for instance choosing a Kéhler potential which does not contain the
inflaton field. In other words, if the Kihler potential is given as K = In(¢ + @)
for example, we can see that only the real part of the complex field ¢ is present in
K (for the Kihler potential K = ¢ 4 ¢, both of the real and imaginary parts of ¢
are present), and therefore the imaginary part can be a good inflaton candidate.
This applies to the models studied in this thesis as we will see in later sections.
To ensure both slow-roll parameters are sufficiently small, it might be necessary
to fine-tune some of the relevant parameters present in the model studied. Some
models have a potential which has a saddle point near its minimum, this gives rise

to a successful inflationary scenario since the condition € = 0 can be easily satisfied
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at the saddle point with a bit of tuning to ensure 7 is small enough [73, 75]. These
are models of topological inflation [78, 79].

In addition to satisfying the conditions imposed on the slow-roll parameters and
finding an inflaton candidate, we are usually faced with the issue of initial condi-
tions for the inflaton field. As discussed earlier, it is important to identify regions
of parameter space that give rise to more than 60 e-folds. This problem becomes

largely irrelevant when considering models of eternal inflation.

7.1.2 Equations of motion

We consider models that are described by a four dimensional N' = 1 effective

Supergravity theory with the lagrangian,
Lo = K;0,0'0"% — V. (7.8)

Kj; = 2K/9%'0% is the Kihler metric and V is the scalar potential.

The form of the Kahler potential K, considered for the models presented in the
previous chapter, is a function of the real parts of the fields only and takes the

following form, i
K=-) In(®+3), (7.9)

where the sum is understood over all moduli ®°.

Considering homogeneous fields evolving in a spatially flat Friedmann-Robertson-
Walker spacetime background, the equations of motion for fields ¢’ can be written
as,

.. . 1. -
¢'+3H¢ + T 0" + 5Kwajv, (7.10)

where 9;V is the partial derivative of the potential V' with respect to the field ¢7,

I is the connection on the Kahler manifold and has the form,

. 0K .7
i il l

The Hubble rate H = a/a, where a(t) is the scale factor of the Universe, is given

by the Friedmann equation

3H? = 1k5(K;id7 + V), (7.12)
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where k% = 87G and G is the 4-dimensional Newton constant. Here, we set

k% = 1. The scale factor can be defined as,

a(t) = e, (7.13)

Since we are considering complex scalar fields, it is very useful to write the equa-

tions of motions for both real and imaginary parts of the complex fields as [80]:

DY + BHPY, + Iy (PRPY — D1P)) + 5 K905,V =0, (7.14)
|+ BHD, + Ty ()0, + 3,0F) + K70,V =0, (7.15)

where ®%, (®%) refers to the real (imaginary) part of the scalar fields, ®%, (%)
is the partial derivative of ®% (®%) with respect to time and 9;,V (9;,V) is the
partial derivative of the potential with respect to <I>{% (<I>]I)

7.2 Inflaton candidates

In this section, we study the evolution of the moduli fields present in models I and
IIT which are described in Chapter.6. We shall consider different moduli direc-
tions for each model in order to find those that give rise to successful inflationary
scenarios. As we shall see, in most of the cases considered, the initial values of
the inflaton fields are considerably larger than the Planck scale (M,). This is
known as Large-field inflation and can be realised in certain string compactifica-
tions. Recent work on axion inflation shows that a natural mechanism known as
axion monodromy, which occurs in a variety of string compactifications including
Calabi-Yau orientifold compactifications of type II theories, gives rise to large-field
inflation [81, 82]. This mechanism can manage corrections to the potential over
Super-Plankian values. In order to check for the presence of Axion monodromy in
our numerical models, it suffices to see whether the scalar potential is not periodic
under a shift in the values of the axion fields; this is indeed satisfied in all the

cases that we shall consider below.
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7.2.1 Model 1

For this model, we have seven complex fields including the dilaton field, complex
structure and Kahler moduli. This means that there is a total of 14 possible
directions for inflation. We will consider the evolution in all of these directions
to see which ones give rise to a successful period of inflation and for which set of

initial conditions.

We start by considering the evolution of the imaginary parts of the fields S, Us,
Uy and T3. We found that evolving these directions in pairs (for example evolving
Im S together with Im U;) gives rise to successful inflationary scenarios. Inflation
can also be achieved successfully by evolving each of the imaginary directions on
its own and fixing the remaining ones at their minimum values. For all these
moduli directions, successful periods of inflation were achieved with initial condi-
tions within substantial regions of parameter space. Let us define the initial shift,
d¢', which represents the difference between the initial values of the the moduli
fields and their corresponding minimum values. Looking at the case where Im S
is evolved on its own, we found that 60 e-folds can be achieved for initial shift of
dS > 34 as can be seen in Fig.(7.1).

N,
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FIGURE 7.1: Total number of e-folds of inflation as a function of initial con-
ditions of Im S with respect to its value at the minimum. The straight line
indicates the 60 e-folds needed for inflation to be successful.
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In similar fashion to the case of Im .S, the Im U, direction can give rise to successful
periods of inflation if evolved while keeping all the other fields fixed at their min-
ima. The region of initial conditions that give successful inflationary scenarios, in
this case, is 60Uy > 12. We can see that for the case Im U,, the region of restricted
initial values is, to some extent, smaller than that of Im.S. By restricted initial
values, we mean the region that gives less than 60 e-folds of inflation. The two re-
maining directions Im U; and Im T3 behave in the exact same way when it comes
to their evolution since they have the same extremisation condition and the same
minimum value (Im U; = Im T3 = 2) as presented in the previous chapter. When
evolved each on its own, they both require an initial shift of Uy, 673 > 45, for
inflation to successfully occur. The above analysis shows that Im .S, Im U,, Im Uy
and Im T3 are all good inflaton candidates. In cases where more than one direction
is considered, the region of allowed initial conditions may vary depending on the
fields considered. For instance, if we consider the case of evolving Im Uy, Im S
together, we may fix Im S at a value very close to its minimum, at Im S = —2,
where the minimum value in this direction is given by Im S = —n/2. Setting
Im U; at any value within the region 0U; > 45 will, in fact, result in successful

periods of inflation. We will discuss this situation in more detail shortly.

7.2.1.1 Evolution along Im .S, Im U,

Here, we study the evolution along the two directions: Im.S and Im U,, while
freezing the remaining moduli at their minimum values. The results in this case
also depend on the initial conditions, and inflationary scenarios with more than
60 e-foldings can be achieved for extended regions of initial values. For instance,
setting Im U, at a value not very far from the minimum ((Im Us),,, = ) at an
initial value of 10 while we fix Im S initially at 32, we get more than 60 e-folds
of inflation as shown in Fig.(7.2). This figure shows that the ImU; and Im S
directions settle at their minima near the end of the inflationary scenario. The
slow roll parameters ¢ and 7, given by Eqgs.(7.1-7.5), were evaluated around 60
e-folds from the end of the inflationary period and the results were found to be

very small as required (n ~ 1072 and € ~ 3 x 1072).

In order to better understand the choice of initial conditions, let us examine the
structure of the scalar potential along these two directions. A plot of this potential
shows a number of degenerate minima with the same value of the potential V' =
10717, Fig.(7.3) shows a contour plot along Im S, Im U, where we can see three of

these degenerate minima aligned diagonally. The global minimum, studied in the
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FIGURE 7.2: Cosmological evolution of Im.S and ImUs as a function of the
number of e-folds, N., for model I. In this case, both fields evolve to the global
minimum at Im S = —7/2, ImUs = 7.

previous chapter, is the middle one and corresponds to the values Im S = —7/2
and ImU,; = w. The other two minima are found at (ImS ~ 4.712, Im U, ~
—9.424) and (Im S ~ —7.853, Im U, ~ 15.708) respectively.

Im(S)
20 | N ]
7 R
15 —?—/l
10 ]
, .
5 T ]
0 Im(Us)
_sl ]
~10 e\
~10 -5 0 5 10

FIGURE 7.3: Contour plot of Im S, Im Us trajectories, for model I, which shows
the global minimum together with two local minima.
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The presence of these degenerate minima along Im .S, Im U; means that the infla-
ton field can, in principle, evolve and settle at any one of them, depending on the
initial conditions. For example, if we set Im U, at —5 and Im S at 40, we find
that both fields evolve to the minimum corresponding to Im .S ~ 4.712, Im U, =
—9.424. This minimum is the bottom one shown in Fig.(7.3). From Figs.(7.4,7.5),
we can see that this evolution also lasts for more than 60 e-folds as required phe-
nomenologically. We can also find scenarios where the two fields evolve to other
vacua of the potential, which exist for larger values of the two moduli, depending
on the chosen initial conditions. Since all of these minima are degenerate in energy
with a value V' = 0, they can all be considered as global minima. We also eval-
uated the slow roll parameters for the initial conditions Im.S = 40, ImU; = —5

and the results were found to be e ~ 1072, 7 ~ 5 x 1073,

Im(U.
_n};(, 2)

—10+

_7“‘\‘“\“‘\“‘\“‘\“‘\“‘\Ne
12, 78 80 82 84 86 88 90

FIGURE 7.4: Cosmological evolution of Im Us as a function of the number of
e-folds, Ne, for model I. This is achieved when evolving Im S, Im Us.

7.2.1.2 Evolution along Im .S, Im U,

After looking at the evolution along the directions Im S, Im Uy, we now look at
the evolution along the Im S, Im U; directions while fixing the remaining moduli,
including Im S, at their minimum values. Comparably to the previous case, we
can find successful inflationary scenarios simply by taking the fields away from
their minima. Fig.(7.6) shows one of these scenarios where the inflaton fields

Im S, Im U; were initially fixed at —2, 45 respectively.



Chapter 7 Inflation 121

Im(S)

10+

FiGurRE 7.5: Cosmological evolution of ImUs as a function of the number
of e-folds, N., for model I. As indicated in Fig.(7.4). Both fields evolve to a
minimum found at Im S ~ 4.712, Im Uy &~ —9.424.

The structure of the scalar potential along these two directions is not simple since
it exhibits many local minima scattered around the global one, found at Im S =
—n/2, ImU; = 0, as shown in Fig.(7.7). The presence of these local minima is
the main reason why the initial value for Im S was chosen to be very close to
its minimum value (Im S = —2) in the previous scenario. The small initial shift
in the Im.S direction ensures that inflation ends exactly at the global vacuum.
Setting Im S to any other value, less than —4 for instance, while keeping the
initial condition for ImU; the same, changes the inflationary trajectories and
we can see both fields evolving to a nearby local minimum instead. Fig.(7.7)
shows a contour plot of the potential along these two directions where at least
three local minima are apparent. Two of them are found to the left and right
hand sides of the global minimum at (ImS ~ —10.169, ImU; ~ —3.770) and
(Im S =~ 7.027, ImU; =~ 3.770) respectively. They are both degenerate in energy
with a value of the potential given as (V' ~ 18.335).

The presence of these local minima around the global vacuum affects the infla-
tionary scenarios greatly. To see how these two fields evolve to one of these lo-
cal minima, for example the one found at Im S ~ 7.027, ImU; ~ 3.770, we set
Im S, Im U; at initial values of 8 and 15 respectively and the results are as shown
in Figs.(7.8, 7.9). From these figures, we see that both fields evolve to the local

minimum and settle their for a large number of e-folds without rolling down to
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FIGURE 7.6: Cosmological evolution of Im.S and ImU; as a function of the
number of e-folds, N., for model 1. Both fields evolve to the global minimum at
(ImS =—7/2, ImU; =0).
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Fi1GURE 7.7: Contour plot of Im S, Im U; trajectories, for model 1

their global minimum. This is what is known as eternal inflation. In the next

section, we shall come back to this scenario again to study the probability of tun-

neling from the local vacuum. We evaluated the slow roll parameters € and 7, in

this case, and the results were found to be about 2 x 1072 and 3 x 10~2 respectively

around 60 e-folds before the end of inflation.
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{mSS)

FiGure 7.8: Cosmological evolution of Im S as a function of the number of
e-folds, N,, for model 1.

0 10 20 30 40 50 60 70

FIGURE 7.9: Cosmological evolution of Im U; as a function of the number of
e-folds, N, for model I. From this figure and Fig.(7.8), we see that both fields,
Im S, Im Uy, evolve to a local minimum at (Im S =~ 7.027, Im U; =~ 3.770).
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Looking at the structure of the scalar potential along the directions Im S, Im T3, we
see that it is exactly the same as the case of Im S, Im U; in terms of both positions
and values of the local minima as well as the global one. This is due to the fact
that both U; and T3 have the same extremisation equations and minimum values
as mentioned earlier. For this reason, the inflationary scenarios in the Im S, Im T3

directions are exactly the same as those in Im .S, Im U; directions as expected.

7.2.1.3 Evolution along the remaining directions

So far, we have mainly looked at inflation along the imaginary parts of the fields
S, Uy, Uy and Us, that is the axionic directions of the moduli fields. We found that
successful inflationary periods are possible depending on the initial conditions of
the relevant fields. Contrary to the imaginary parts, the real parts of these four
moduli fields are not good inflaton candidates since inflationary scenarios, along
them, last for just few e-folds (about 4 to 6 e-folds) whether evolved each on its
own or all together. This situation is achieved regardless of the values of initial
conditions. The only cases that show a successful inflationary scenario are the
ones where the real part of one of these moduli fields is evolved together with the
imaginary part. However, even in these cases, the real field reaches its minimum
quickly before the end of inflation and therefore decouples from the inflationary dy-
namics. The fact that only the axionic directions are good condidates for inflation

is probably due to their absence in the Kahler potential.

The remaining three fields which are namely: 73, 75 and U; are also, like the
real parts of S, U, U; and T3, not very good candidates for inflation both along
their real and imaginary parts. This is not to do with the structure of the Kahler
potential but is rather due to the process of uplifting the flat directions performed
in the previous chapter. Uplifting the flat directions along Us and T +T5 was local.
This resulted in many singularities around the global minimum which restricts the

choice of initial conditions along these directions.

7.2.2 Model II1

This model contains five fields, and these are S, Ty, T, T3 and U. Since only the
imaginary parts of the moduli fields gave successful periods of inflation for the

previous model, we start by looking at these directions first.
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The structure of the scalar potential along Im S, Im U directions is very similar to
the case of Im S, Im Us in model I with the presence of degenerate minima which
are all positioned at Im U = 0 in this case as can be seen in Fig.(7.10). Similarly
to the axions in the previous model, these two fields can evolve to either of these
minima depending on their initial values particularly the initial value of Im.S.
Since all the minima are positioned at Im U = 0, the choice of initial conditions
along this direction does not really affect the chances of the field evolving to
any of these minima. Successful periods of inflation can be easily achieved by
taking the fields away from their minimum values. Initial shifts of 3 and 18 for
ImS and ImU respectively give more than 60 e-folds as shown in Fig.(7.11).
Fig.(7.12) shows another scenario where the fields evolve to another minimum
found at (Im S ~ 11, ImU = 0). In Fig.(7.12), we only show the evolution along
the Im S direction since Im U evolves to same minimum value as the previous case

(ImU = 0).

Im(S)

Im(U)

FIGURE 7.10: Contour plot of Im.S, Im U trajectories for model I1I

The real parts of the fields S and U are not good candidates for inflation, anal-
ogously to the previous model. The presence of a runaway direction along Re S
prevents inflation from lasting more than 2 or 3 e-foldings. For ReU, inflation
only lasts up to 10 or 15 e-folds, even for large values of initial conditions. The
case with the uplifted directions T7 4+ T and T3 is similar to the previous model.
The local uplifting affects the evolution in these directions and as a result, we can

only choose initial conditions which are very close to the minimum values.
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Im(S)

FiGURE 7.11: Cosmological evolution of Im.S and ImU; as a function of the
number of e-folds, N, for model I. Here, both fields evolve to the global mini-
mum at (ImS = —n/2, ImU = 0).
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FIGURE 7.12: Cosmological evolution of Im S as a function of the number of
e-folds, N, for model I. This is achieved when evolving Im S and Im U together
and they both settle at the vacuum Im S =~ 11, ImU = 0.
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After studying the evolution of the moduli fields present in both models, we found
that the results are very similar except for the case of local minima. These minima,
found along Im S, Im U; directions in model I, do not appear in this model. To
understand this effect, we shall analyse another model originating from type IIA

theory compactifications (presented in [64]) in the next section.

7.2.3 Introducing model 1V

To understand the difference in the structure of the scalar potential between model
I and model III, we look at another DKP model (model IV) originating from IIA

string compactifications with a superpotential given as,
W = (T1 — TQ)(Ul + U2 + bUg + gUlUQ(Ug — Z’]T) — QbS) + (U1U2 — L)W(S) (716)

where w = p?e™® and € = T} — T5 as presented in Chapter 6. Most of the moduli
fields are present in this model with two flat directions along T3 and T} + T5.
Without repeating the procedure of stabilisation along these moduli fields, we
list minimum values in Table.7.1, which represent one choice of solutions for the
minimisation equations of these fields. From the minimisation conditions, we
choose ImU; = m and Im S = 7/2. We also take both moduli U; and U; to be
real ( ImUs = ImU; = 0). The value of the scalar potential at this minimum is
Vinin ~ 9.683 x 10717,

Parameter/ Moduli L g b pu ReU; ReU; ReUs; ReS Im¢
Values 357 =3 2 1 4 4 0.033 1.618 0.806

TABLE 7.1: One particular choice of numerical solutions to model IV.

We will not comment further on this minimum since we are more interested in
the structure of the scalar potential along some directions of the moduli fields,
particularly S, U; and Us. The reason for choosing these fields is mainly due to
the fact that they enter the superpotential, given by Eq.(7.16), in the same way as
the fields S, U; and T3 did in model I, along which we found the local minima. A
contour plot of the scalar potential derived for this model and plotted as a function
of Im S and Im U, is presented in Fig.(7.13).

As can be seen from Fig.(7.13), the scalar potential of this model appears to

have local minima. Two of them are found at ImS ~ 16, ImU; ~ 28 and
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FIGURE 7.13: Contour plot of the scalar potential, for model IV, along the
directions Im S, Im U;.

ImS ~ —14, ImU; ~ —28. The above structure also shows two saddle points
found at (ImS ~ 9.58, ImU; ~ 14.73) and (Im S ~ —6.45, ImU; ~ —14.73)
respectively . The two local minima, shown in Fig.(7.13), are both degenerate in
energy with a potential value of about V' ~ 200. Clearly, more local minima can
be found if we consider a larger range of values for Im S and Im U;. The structure
of the potential along the directions Im S, Im Us for this model is exactly the same
as the one shown in Fig.(7.13) as expected, since both U; and U, have the same

extremisation equations and minimum values.

So far, we found that local minima exist for both the above model as well as
model I in contrast to model III where none were found. We argue that the main
reason for the different structures of the scalar potential is, not only the presence of
the condensate term in model I, but also the presence of a linear term in S. On the
other hand, the modulus S enters the superpotential of model III only through
the condensate term. It also seems that the moduli fields which are related to
the condensate term (for example (U173 — L)w(S) in the case of model I) exhibit
this structure when studied alongside S. This explains why this structure is not
observed when plotting the scalar potential as a function of Im U, and Im S in

model I for example.
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7.3 Tunneling from false vacuum

Moduli fields can be frozen at local minima of a multidimensional potential. Al-
though this configuration can be classically stable, many of these vacua will tunnel
to a region of lower energy density. This process, first analysed by Coleman and
de Luccia (CDL) [83], involves materialisation of bubbles of a lower energy phase,
which then expand eating up the original vacuum. If the spacing between true and
false vacua is small, then the transition between them can be made much smaller

than the bubble radius; this is known as “thin-wall” approximation.

Another approach to false vacuum decay was investigated by Hawking and Moss
[84]. Hawking-Moss tunneling is dominant when the barrier between the true and
false minima is broad, making gravitational effects important. To find the decay
rate in this case, we consider a potential with a single scalar field V' (¢), which has
a true vacuum Vr at ¢p, a false vaccum Vp at ¢ and a potential barrier between
the minima Vg at ¢p as shown in Fig.(7.14). It was shown that the probability of

tunneling to the true vacuum is given by

(7.17)

2472 2472 )

oo (_va) V6w

which is related to the values of the potential at the top barrier as well as the
false vacuum. This scenario can be realised properly in the stochastic approach to
inflation [85, 86].

CDL formalism applies if [87],
V" (¢5)|"? > 2H(¢p), (7.18)

where V' (¢p) is the second derivative of the potential evaluated at ¢p.

For our model, we choose to look at one of the local minima in the Im.S, Im U,
directions to study the probability of tunnelling to the true minimum. This local
minimum is found at Im S ~ 7.02757, ImU; =~ 3.77092 with V' = 18.3352 as can
be seen in Fig.(7.15) where we denote the true vacuum with a letter B and the
false minimum with A. In order to get an aligned picture of both the local and

true minimum, we introduce two new directions Im S’, Im U], which are given in
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FIGURE 7.14: Potential with a true vacuum at ¢ and a false minimum at ¢p.

terms of Im S and Im U, as:

2.

ImS = 28 Im S +4.312 Im U (7.19)
7r
2

U = —Z ImS+ 145 ImU, (7.20)
m

Fig.(7.16) shows a plot of the scalar potential as a function of ImS" where U/
is fixed at ImU; = 1. The local and true minima in the Im S’ direction lie at
ImS” =10, Im S” = 1.4 respectively. For our numerical case, the condition, given
by Eq.(7.18), is not satisfied which suggests that this case is HM.

Using Eq.(7.17), the probability of tunneling to the true vacuum was estimated to
be about 0.16 where values of the potential at the false minimum and top barrier
are given by V(¢p) ~ 18.3 and V(¢p) ~ 21.3 respectively.

In general, a metastable de Sitter (dS) vacuum decays within a time which is

S(@) where

exponentially smaller than the recurrence time of dS space, ¢, = e
S(¢) = 2472 /V (¢) is the entropy of dS space with vacuum energy density V(¢)

[54, 88]. In the case of Hawking-Moss tunneling, the decay time can be written as

242
Liecay = by €XD (— VW ) , (7.21)
B
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FIGURE 7.15: A contour plot along the directions Im S, Im U; for model I.
The false vacuum is represented by the letter A and the true one by B.
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FIGURE 7.16: A plot of the potential, for model I, along the direction Im S’.

where Vp is the value of the potential at the barrier between the dS minimum and
the Minkowski minimum. In our numerical example, the value of the potential at

the barrier between the true and false vacua is Vg ~ 21.3 and therefore we get:

tdecay = (1.48 X 107°)¢,.. (7.22)
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7.4 Summary

By looking at string theory based models, we aim to find those which give rise to
successful inflationary scenarios and identify their predictions. In this chapter, we
studied two models presented in Chapter 6, which are: model I and model III. For
model I, we found that all the axionic directions of the moduli fields Uy, Us, S, T3
are good inflaton candidate. These gave successful inflationary scenarios with
initial conditions within substantial regions of parameter space. The same result
was found for model III, where we achieved successful periods of inflation along

the axionic directions of the moduli U, S.

One feature, which was only observed in model I, was the presence of local min-
ima when evolving the axionic directions of U; and S together. To see why this
structure was only observed in model I, we introduced another DKP model (model
IV) and looked at the structure of its potential along the axionic directions. We
found that the same structure appears along the two directions which are related
to the condensate term (in this case Uy, Uy, (U1Us — L)w(S)). We concluded
that this structure is only observed if the dilaton S enters the superpotential not
only through the condensate term but also a linear one. We also argued that this
behaviour is mainly observed along the axionic directions of those moduli which

are related to the condensate term.

Finally, we studied the probability of tunneling, from the false vacuum, for one of
the local minima along Im U;, Im S directions for model I. Following the Hawking-
Moss procedure, the probability of tunneling was calculated and found to be quite
large (about 0.16).
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Conclusions

This thesis concerns two aspects of physics beyond the Standard Model. The
first one is studying models of neutrino mass and mixing which is presented in
Part 1. The second aspect is the search for viable four dimensional string inspired
models and their connections with the theory of cosmological inflation as outlined
in Part II.

In Chapter 2, neutrino mixing and the see-saw mechanism were briefly reviewed.
We then presented a set of sum rules that result from GUT motivated models with
charged lepton corrections. In Chapter 3, we reviewed the process of relating high
energy see-saw parameters to low energy neutrino parameters, which we used to
derive analytic expressions for the neutrino mixing angles in SD involving NLO
and NNLO corrections. We also evaluated the analytic formulae, using two GUT
inspired numerical models, in the cases of CSD and PCSD. As expected, the
numerical results in CSD, for the neutrino mixing angles, showed small deviations
from their TB values and this clearly justified why pure CSD does not give exact
tri-bimaximal mixing. In PCSD with non-zero 1-1 Yukawa coupling, we found that
the reactor angle, #,3, was much larger than zero while the solar and atmospheric
angles remained close to their TB values. This result is in good agreement with
the predictions of TBR in the absence or smallness of charged lepton corrections,
RG effects and canonical normalisation corrections. It also clearly agrees with the

most recent experimental data [12].

In Chapter 4, we analysed the effects of Cabibbo-like charged lepton corrections
and RG running on a variety of sum rules, for models where TB mixing is accu-
rately achieved at high energy. This involved studying the RG running of various

sum rules, presented in Chapter 2, for two GUT-flavour motivated models with
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LSD as well as HSD. We showed that sum rules, for both models, are subject to
only mild RG corrections (less than one degree for all the cases studied). With fu-
ture high precision neutrino oscillation experiments, these results, although small,

would be very important in testing the predictions of the underlying theories.

The mild RG corrections to neutrino mixing parameters, evaluated in this thesis,
are mainly in the case of hierarchical neutrino masses. In general, for partially
degenerate and degenerate neurtino masses, in the see-saw framework with se-
quential dominance, the RG corrections can be significant as discussed in[16, 89].
In the case of SM, only corrections to the neutrino mixing angles were found to be
small while the running of neutrino masses can be slightly larger. For the MSSM
model without sequential dominance, the RG corrections can be large especially
for the case of large tan(3) [90].

For the case of more general charged lepton corrections, we found that most sum
rules showed larger deviations at low energy due to the presence of 6% with the
exception of o; which seemed to be insensitive to this angle. We also looked at RG
running in the case of LSD with non-zero Majorana phases. We found that these
phases can significantly alter the running of the TB mixing deviation parameters

as well as the sum rules, particularly oy [37].

Part II of this thesis concerns the study of four dimensional models originating
from heterotic and type ITA string theories. In Chapter 5, we gave a brief overview
of string and flux compactification. We also presented the four dimensional con-
tent of T°/(Zy x Z) orientifold constructions which give rise to the main models
considered in this part. In Chapter 6, we presented three different models: two of
them were first studied by Derendinger et al. [64] and one of them by Lowen et al,
[65]. We outlined the main problems that some of their solutions suffer from and
suggested alternative ones which give rise to viable minima in most directions of
models I and III. We also uplifted the flat directions by considering a correction
to the Kahler potential.

Chapter 7 involves the study of inflation within the framework of models I and
IIT presented in the previous chapter. After briefly reviewing the conditions of
slow roll inflation, We looked at possible inflaton candidates along all the real and
imaginary directions of the complex moduli. We found that the axionic directions
of the moduli S, Uy, Us, T3 give rise to successful inflationary scenarios, for model I,
with initial conditions within extended regions in parameter space. Similar results

were achieved for the axionic directions in model I1II.
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Back to the analysis of model I, we found that the case of evolving Im S and Im Uy
together was quite interesting since the structure of the potential along these two
directions involved a global minimum with a set of local minima displayed around
it as presented in Fig.(7.7). Inflation, in this case, could be achieved for certain
initial conditions where the inflaton fields roll down to the global minimum. It
could be equally achieved at other sets of initial values, where the fields evolve to
one of the local minima, and this may give rise to eternal inflation. We argued
that this particular structure of the potential is mainly due to the way the dilaton
is presented in the superpotential. For model I, the S modulus appears in the flux

term as well as the gaugino condensate term as,
W =28+ (UTs — L)p*e™ + -, (8.1)

It seems that this structure only appears along the axionic directions that are
connected to the gaugino condensate term when evolved together with Im S (
in this case we have U; and T3). This clearly confirms that the property of local
minima only appears in type IIA where the superpotential have similar structure to
that of models I and IV. This result is very important as it suggests a background

of unbounded potentials for the realisation of eternal inflation.



Appendix A

Diagonalisation of left-handed

neutrino matrix

In this Appendix, we will briefly review the procedure of diagonalising the neutrino
mass matrix following [40] closely. We start by writing the left-handed neutrino

mass matrix as,

mypr Miz M3 |m11|€i¢)11 |m12|€i¢>12 |77”L13|6w513
mrp = | M1z Moy Moz | = |mig]ei®2  |magglei®22  |mgs|eté2s (A1)
mi3 M3 M33 Imys)e’®® |mosle®2  |mgs|etdss

In general, we diagonalise a complex, hierarchical, neutrino matrix by following a

sequence of transformations [40],

mq 0 0

Py Ris" Py R Ry Py ml PP R RSP RAPY = | 0 my 0 |,
0 0 ms

(A.2)

where the resulting matrix includes the three different neutrino masses my, mo and

mg. Rij, 1,7 ={1,2,3} are a set of real rotations, involving the Euler angles 6;;,

136



Appendix A Diagonalisation of left-handed neutrino matrix 137

which can be written as,

Ry = 0 co3  S23 (A.3)

0 —s23 o3

ci3 0 sp3
Ri3 = 0 1 0 (A.4)

—s13 0 3

ciz2 S12 0
Ry = —s12 c12 0 . (A-5)
0 0 1

The matrices P; in Eq.(A.2) are the phase matrices, involving the phases ¢, ¢3, x

and w;, which we write as,

1 0 O

Po= | 0 ex 0 (A.6)
0O 0 1
1 0 0

Py = 0 e 0 (A7)
0 0 e
et 0 0

Py = 0 e« 0 (A8)

0 0 ews

We briefly summarise the different steps of diagonalisation following [40]. We start
by multiplying the mass matrix, given by Eq.(A.1), by the inner phase matrix Py*.

This process modifies the phases of the matrix as follows,

|y e |m12|€z‘(¢1r¢z) |m13|€i(¢137¢3)
mrr = ’mm‘ei(%z—@) |m22|€i(¢22—2¢2) |m23|€i(¢23—¢2_¢3) (A.9)

’mlg ‘ ei(d13—¢3) |m23|ei(¢23—¢2—¢3) ‘m33‘€i(¢33—2¢3)

After re-phasing the matrix, we proceed by applying the real rotation Rs3, defined
in Eq. (A.3). This step modifies the lower 23 block of the mass matrix by putting
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zeroes in the 23, 32 elements of the matrix [40],

Mo 0} _ |migg|ei(9227202) [mgg|eil#2s=9203) RyE (A.10)
0 mg -2 ’m23’ei(¢23—¢2—¢3) ‘m33’ei(¢33—2¢3) 23 '

This diagonalisation not only modifies the masses moy and ms3 but also all the
other mass entries except my;. The next step, as shown in Eq.(A.2), is to apply
the rotation R;3 which diagonalises the outer 13 block. Similar to the previous

step, this rotation modifies the matrix by putting zeros in the 13, 31 entries.

After applying the 13 rotation, the neutrino mass matrix can be written as,

my; miz 0
v, T pvy T pup * VL RVL RVL __ i b~
Ry5" Ryy” Pyt mpp Py" Ry Ry = | g 1oy 0 (A.11)

0 0 mj

The last step of the diagonalisation involves modifying the upper 12 block of the
matrix. To do this, we first multiply the result of the last step by P;* which
introduces the phase y. We then apply the real rotation Ri5. The neutrino mass

matrix can then be written as follows,

mi myz 0 m; 0 0
R, | iyt 0 = 0 mjy O (A.12)
0 0 mj 0 0 mj

From Eq.(A.12), we can see that the neutrino matrix is successfully diagonalised,
however, we still need to multiply the result by the phase matrix P;* in order
to make all the diagonal elements real. To proceed, we write the resulting mass
matrix by substituting for the diagonal mass terms as m; = me, i = {1,2,3}.
We then apply the phase matrix and write the phases w; as w; = ¢}/2. These
phases cancel with the phases of the neutrino mass matrix which gives a real,

diagonal, neutrino matrix as required.



Appendix B

Derivation of neutrino mass terms

In this Appendix, we present the derivations of the mass terms resulting from the
diagonalisation of the mass matrix. After applying the rotation R A.3. We can
derive expressions for the masses mj and gy which are necessary for deriving
expressions for 013 and tan(f;5). To find these masses, we first take the trace of
both sides of Eq.(A.10) which gives,

- r —i2 —i2
Moy +Mf = Mogge 2% 4 mygze 2%

ol el + | f|?
oi(20e 2¢2)% (1 + € (323) + (033)2(62 + nl)) , (B.1)

~
~

We can also express the determinant of both sides of Eq.(A.10). This reads,

mQng — m226 ¢2m 6 2’L¢3 o m23)26—21(¢2+¢3)
. /2 b2 62 (bf . 60)2

—2i(¢2+¢3) v B9

‘ (X’(X+Y)+ Xy_) (B.2)

We take the mass term mj to have the following form,

myy ~ my (1+ 6), (B.3)
where the parameter (3 is given by Eq.(3.31) and the mass term m% = m}]|,—o.,—o
is given by,

2 2
m0 as ¢i(20e=262) e[ + [/] (B.4)

Y 9
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Using Egs.(B.1, B.2, B.4), 19y can be written as,

i (e (45 ) ) -0 (8.5)

where ( ; 0 o ))2
- - oy (bCoq — CS5,eM\PeTPF
M9y = Mip|er—0,e,—0 A €722 3:; , (B.6)

and the parameter 7y is given by Eq.(3.40).

In addition to the derivation of the masses mgo, m4, applying the rotation Rog,
modifies the masses mis, m13. These become mqq, M3, after diagonalising the 23

block, and can be derived to leading order as follows

M1y = CozMige ?? — sgzmyze %%
- » ac df
~ m(l)Q(l - 7(333)2) - ¢37523(X Y) (B.7)
Mig = SogMis€ 2% + cogmyze 93
13 23M12 23113
. i ab de
~ m(1]3(1 - 7(323) ) +e ¢27523(X + ?)a (B‘S)

where the parameter v is given by Eq.(3.28), the masses m{y = my2|r—o,—0 and

My = Mi3]w—o,,—0 are given to leading order, as presented in [40], by

0 0 . i(de—
o2 a(cyzb — 5230‘51((7j d)f))
X )

) d 2+ 2
m(l)S ~oe' (X(323b+02306 Uge— d)f) €Z¢e—|e|y 7] ) . (B.10)

(B.9)

After applying the R;3 rotation, we obtain another mass term, 711, which can be

presented to leading order as

~ 9
mis
!
3

my R myp —
2 d2
m(lJl(l - 27(323)2 — )+ X@W(Sg ) + ) + (27(523) + )

, , ab de
— 26_27’¢e€6<s(2)3b _|_ ngcez(¢6_¢f)>rysg3 <— —|— —) (B].l)

Q

X Y
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where the leading order form of m; = Mmq1l,,—0.¢-0 is given in [40],

o _ a_2 ide 2d a(s93h + Yyceil@e=91))
mpy =+ -

€ Y
X Vel + [f]? X

The small parameter €4 is written as,

) le]? + | £12\
67 X Y '

Similar to the derivation of the masses 1mgg, mj, the neutrino masses m} and m/, can

(B.12)

be written using the trace and the determinant of the upper 12 block of Eq.(A.12).

The real neutrino masses mq, mo can then be written, in the SD cases, as

‘C/P |b’2 21d\ o
~ L Y oIt 2d] B.13
my X X ‘6’2 + ]e\ Uy ( )
3|b’2 |Cl|2 Y ‘b|2 |d| 2
X |—+——[(1—-—=—F— — 20 , B.14
ma ( 3X e cos(2¢y) | v ( )

The neutrino mass mg can be written in the SD cases, using Egs.(B.3, B.4), as

2el* <P 2
~ (25 L os(200) ) 02, B.1
ms ( v T X cos(2¢y) | v; (B.15)



Appendix C

Derivation of Hessian Matrices

Here, we write the derivation of the Hessian matrices for models I, III, presented in
Chapter 6. The Hessian matrix for these models is a matrix of the second partial

derivatives of the potential V' in terms of the real fields.

As discussed in the previous chapters, model I consists of seven complex fields
(S,T1,Ty,T3,Uy,Us, Us), which means that there is a total of 14 real fields: the
real parts, s,tq,t9,t3, U1, ug, us and the imaginary parts: s;,ty;, to;, t3;, U1, Ui, Us;.

The Hessian matrix in this case is a 14 x 14 matrix written as,

i 0%V . 0%V
Os2 0s0tq 0s0usz;
i 9’V . 9’V
Ot10s ot? Ot10us;
H= . . v (C.1)
9%V 0%V . 0%V
Oug;0s Oug; Oty augi

By calculating the Hessian, we can determine the type of a particular critical point.
This critical point is a minimum only if all the eigenvalues of the Hessian matrix,
evaluated at this point, are non-zero and positive. For model I, after uplifting, the

extremum was found at the following values of the real fields,

S = 1618, tl = 1, tQ = 1, t3 = 27 Uy = 2, Uy = 0763, Uz = 05,
S; — —7T/2, th’ = 3295, tgi = 1, tgi = O, Uy, = 0, Ug; = T, Uz; = O,(CZ)
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Evaluating the eigenvalues of the Hessian, given by Eq.(C.1), we find the following

values,

5.986, 5.448, 0.81, 0.559, 0.254, 0.194, 0.155,
0.155, 0.133, 0.086, 0.083, 0.077, 0.077, 0.045. (C.3)

All these values are positive which proves that the extremum found in Chapter 6

is indeed a minimum.

To prove that the extremum found for model III is a minimum, the same procedure
can be followed and the Hessian can be written as shown in Eq.(C.1). In this case,
however, we only have five complex fields (5,71, 75,T3,U). This means that we
can write the Hessian in terms of ten real fields: s,ty,ts, t3, u, s;, t1;, to;, t3;, u;. The

extremum is presented in Chapter I and corresponds to the following values,

s = 125, t1 = 1, to = 1, ty = 1, U = 0747,
S; — —7T/2, th' = 1314, tgl' = 1, tgi = O, U; = 0. (C4)

The eigenvalues evaluated for this model are also found to be all non-zero and
positive,

116.314, 115.257, 57.173, 56.156, 3.551,
0.984, 0.617, 0.617, 0.617, 0.617. (C.5)
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