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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF PHYSICS AND ASTRONOMY

Doctor of Philosophy

by Salima Boudjemaa

We look at models of neutrino mass and mixing which represent an important as-

pect of physics beyond the Standard Model (SM). We derive approximate analytic

formulae for the neutrino mixing angles in general SD involving NLO and NNLO

corrections. These expressions, which are given in terms of input see-saw param-

eters, provide a useful guide for unified model building. We then evaluate these

formulae in the cases of CSD and PCSD for two numerical GUT inspired models

in order to measure the effect of NLO and NNLO corrections. In addition to this,

we analyse the effects of charged lepton corrections and Renormalisation Group

(RG) running on neutrino mixing angles and various sum rules, in models where

tri-bimaximal mixing is exactly achieved at high energy scale. We find the RG

corrections to neutrino sum rules to be typically small for the case of hierarchical

neutrinos.

Another aspect of physics beyond the Standard Model concerns the search for vi-

able four dimensional string models. We look at moduli stabilisation in the frame-

work of four dimensional models arising from heterotic and type IIA string theories.

The superpotentials in these models involve flux and non-perturbative terms. We

consider a set of conditions which lead to moduli solutions for Minkowski minima of

the scalar potential. Following this procedure, we correct models presented in the

literature and uplift the flat directions. We also study inflation in the framework of

these models. We find that it is successfully achieved along the axionic directions

of the moduli fields for values of the initial conditions within substantial regions

of parameter space. A very interesting structure of the potential is obtained when

considering the evolution of two axionic directions in one of the models in the pres-

ence of a gaugino condensate term. This structure, which involves the existence of

multiple local minima surrounding the global one, represents a perfect background

for realising inflation.
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Chapter 1

General Introduction

1.1 Motivation

The Standard Model (SM) of particle physics is one of the most successful theories

of the last century. However, although its predictions have been confirmed by

experimental data, it falls short of being a complete theory of all the fundamental

interactions observed in nature. One of the problems that the SM suffers from is

the fact that it predicts massless neutrinos which is in disagreement with the most

recent experimental results.

Evidence for neutrino mass and neutrino flavour oscillation came from various

experimental data from solar, atmospheric and reactor experiments. The first

one was the Raymond Davis experiment which detected a deficit in the number

of electron neutrinos emitted by the sun [1]. This result suggested that electron

neutrinos were changing to other flavours such as muon or tau neutrinos. The

compelling evidence for neutrino oscillation came from The Super-Kamiokande

experiment where a deficit in the muon neutrino flux, reaching the Earth, was

observed [2]. Other experiments such as Sudbury Neutrino Observatory (SNO),

KamLAND, K2K and MINOS have all confirmed the results of neutrino oscillation

[3, 4].

Neutrino flavour oscillation generally means that one type of neutrino can be

converted over time to a different type. For example, an electron neutrino turning

into a muon neutrino or a muon neutrino oscillating to a tau neutrino. The mixing

between the different neutrino flavours is controlled by the lepton mixing matrix,

U , which relates the neutrino flavour states νe, νµ, ντ to the neutrino mass states

1
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ν1, ν2, ν3 with masses m1,m2,m3. This great discovery of neutrino oscillation led

to an increase, not only in the amount of experimental data, but also in the interest

in neutrino phenomenology research.

The existence of neutrino mass requires us to look for possible extensions of the SM

in order to provide a description that fits with experimental observations. Studying

models of neutrino mass and mixing opens an important window in the search of

possible theories of physics beyond the SM. One of the main neutrino mixing

patterns that fits with current experimental data is the so called tri-bimaximal

(TB) mixing [5, 6] described by the following matrix,

UTB ≈


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 . (1.1)

TB mixing predicts maximal mixing for both the atmospheric, θ23, and the solar,

θ12, angles while it assumes the reactor angle θ13 to be zero. There are many

models that attempt to reproduce this as a theoretical prediction [7, 8, 9, 10, 11].

One way to achieve this type of mixing is by considering Constrained Sequential

Dominance (CSD).

Part I of this thesis is concerned with deriving analytic formulae for the neu-

trino mixing angles in the presence of NLO and NNLO terms. We also study

numerical estimates of the effects of these NLO and NNLO corrections on the

mixing parameters using two GUT inspired models. In addition, we look at the

model of Tri-bimaximal-Reactor Mixing (TBR) which predicts a non zero reactor

angle while preserving TB solar mixing and maximal atmospheric mixing. The

theoretical prediction of large reactor angle is in agreement with the most recent

experimental data [12].

Although TB mixing can be achieved accurately in the neutrino sector, it usually

exhibits deviations in the flavour basis when considering models arising from Grand

Unified Theories (GUTs). One source of these deviations is the presence of charged

lepton corrections. This gives rise to a variety of sum rules relating neutrino

mixing parameters together; for example, θ12−θ13 cos δ ≈ 35.26o. These sum rules

represent an important tool not only for testing predictions of different neutrino

mixing models but also for comparing these predictions to future high precision

experiments.
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Another source of deviations is Renormalisation Group (RG) running of neutrino

quantities (including mixing angles, phases and masses) from high energy scale

(the GUT scale) to the electroweak scale (MZ scale). We expect future neutrino

experiments to be more sensitive to deviations from TB mixing compared to the

current situation. Therefore, it is of great importance to theoretically measure

the uncertainty in these deviations. This represents one of the main motivations

for Part I of this thesis where we study a set of neutrino sum rules at both high

energy and MZ scales. We also provide the first numerical study of TB deviations

arising from both charged lepton corrections and RG running.

The quest for finding a unified theory of all interactions also suggests looking at

physics beyond the SM. Such a theory would relate the forces of the SM: the strong

force, the weak force and the electromagnetic force to gravity. Many extensions

of the SM were proposed by physicists in order to incorporate other theories such

as Supersymmetry. Perhaps the simplest one is the Minimal Supersymmetric

Standard Model (MSSM). The pursuit of unifying the SM with gravity, however,

takes us to ten and eleven dimensions where string and M-theory exist. Since these

theories exist in far more dimensions than what is observed in our universe, we

need to find a way of hiding the extra dimensions in order to compare the resulting

physics to that of the SM. This mechanism is known as compactification.

Compactification is achieved when the extra dimensions are curled up to a very

small radius (smaller than what we can observe by today’s experiments). For the

case of string theory, we have six extra space dimensions that can all be compact-

ified. However in doing so, we get a four dimensional theory with undesirable side

effects. These are massless scalar fields (moduli fields) that are not observed in

nature and therefore would modify our laws of physics if left massless. Generating

a potential for these fields and stabilising them at their Vacuum Expectation Val-

ues (Vevs) is extremely vital in order to have phenomenologically viable models.

This is the main subject of Part II of this thesis, where we analyse some models

from the literature, using a set of conditions including Supersymmetry breaking

constraints. We also present new solutions for these models and uplift the flat

directions. Stabilising moduli fields is also important for studying inflation since,

without stabilisation, a particular modulus direction becomes flat and therefore

can evolve forever leading to many problems such as decompactification of space

dimensions. This represents another important motivation for studying moduli

stabilisation as it would shed some light on the origin of structure formation and

help us better understand the history of our universe.
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Inflation, which is the dominant theory for the origin of structure, describes a

period of exponential expansion which is introduced prior to the standard Big

Bang theory. It is driven by the fluctuation of one or more scalar fields known as

the inflaton fields. Inflation not only provides solutions for the classical problems

of the Big Bang model including the flatness, horizon and monopole problems, but

it also provides a natural explanation for the spectrum of density perturbation.

During the inflationary period, small inhomogeneities in the energy density occur

due to quantum fluctuations which generate temperature anisotropies in the cosmic

microwave background radiation (CMB). These inhomogeneities were predicted in

the literature [13, 14] and are in excellent agreement with recent observational

data from the Wilkinson Microwave Anisotropy Probe (WMAP) [15]. WMAP

data presents many constraints on inflation and its parameters in order to allow

scientists to select between the different inflationary models. The WMAP also

provides maps of the temperature fluctuations of the CMB radiation with very

high accuracy and therefore it offers an opportunity to shed light on some of

the key questions in cosmology and better understand the large structure of our

universe.

In part II of this thesis, we aim to study inflation within the framework of models

originating from string theory. There were many problems facing the implemen-

tation of inflationary models within string theory including the runaway moduli

problem and also flat directions. With the development of flux compactification

and moduli stabilisation, this field is undergoing promising progress. In this thesis,

we present successful inflationary scenarios, achieved for realistic models of type

IIA and heterotic theories. We also comment on a special structure obtained for

models of type IIA string theories in the presence of gaugino condensation. These

models give rise to unbounded potentials which constitute a prefect environment

for realising eternal inflation.

1.2 Thesis structure

This thesis is divided into two parts. Part I is concerned with studying neutrino

masses and mixing while Part II covers mainly the subjects of moduli stabilisation

and cosmological inflation in the framework of string theory.

The first part is organised as follows. In Chapter 2, we give a brief overview of

the nature of neutrinos and the history behind the discovery of neutrino mass.

We then outline the different types of neutrino mass which leads us to an elegant
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mechanism for explaining the smallness of neutrino masses, known as the see-saw

mechanism. Finally, we review neutrino mixing including TB mixing and charged

lepton corrections and present the derivation of a variety of neutrino sum rules.

Chapter 3 aims to review SD with the special case of CSD, which is a very powerful

tool for obtaining TB mixing. We first discuss the diagonalisation procedure of

the effective left-handed mass matrix resulting from the see-saw mechanism. We

then use this approach to derive analytic expressions of the mixing angles in the

presence of NLO and NNLO corrections. We conclude the chapter by evaluating

these analytic formulae using two numerical examples in the simplified case of

CSD, as well as PCSD involving non-zero 1-1 Yukawa coupling.

Chapter 4, which is the final chapter in Part I, involves studying neutrino mixing

angles and a set of sum rules numerically, at both the high energy scale (GUT

scale) and the electroweak scale (MZ scale). The results were obtained using a

Mathematica package known as REAP [16] which solves RG equations of different

neutrino quantities. The numerical analysis presented in this chapter represents

cases with zero and non-zero Majorana phases. We also study two different models

with light (LSD) and heavy sequential dominance (HSD). We conclude the chapter

by giving justifications for our numerical approach.

The second part of this thesis involves studying the stabilisation of moduli fields

resulting from string compactifications and their contribution to driving cosmo-

logical inflation. Similarly to the first part, this part is also divided into three

chapters as described below.

Chapter 5 gives a brief introduction to string compactification starting with a

review of Kaluza Klein reduction. We then discuss flux compactification and re-

view the nature of moduli fields that result from such compactifications. We also

state the importance of generating a potential for these moduli so that they can

be trapped and stabilised at their Vevs. Finally, we present the four dimensional

content of heterotic and type IIA string compactifications on T 6/(Z2 × Z2) orien-

tifolds which represent the background of the models considered in the following

chapters.

Chapter 6 considers four dimensional models originating from type IIA and het-

erotic string compactifications on T 6/(Z2 × Z2) orientifolds. The resulting super-

potentials are combinations of a flux term and a condensate term, both of which

are given in terms of moduli fields. Extremisation and Supersymmetry breaking

conditions are derived and studied for each model in order to find a minimum of
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the potential along the directions of the relevant moduli. The process of uplifting

the flat directions, in these models, is also presented.

Chapter 7 is the final chapter in part II and considers inflation within the frame-

work of the models discussed in Chapter 6. A brief introduction to the theory

of inflation is given. We then outline the main conditions for achieving slow-roll

inflation. This is followed by a detailed analysis of some of the models presented

in the previous chapter to see whether inflation is successfully achieved along all

moduli directions. Finally, we comment on an important structure of the potential

obtained when considering type IIA models. This interesting structure involves

the existence of a global minimum surrounded by a set of local minima (false

vacua) along certain axionic directions.

We end the thesis with a short chapter giving some concluding remarks. We

also provide three appendices where we describe the diagonalisation procedure

of the left-handed neutrino matrix, the derivation of neutrino mass terms which

are considered in Chapter 3, as well as the numerical calculations of the Hessian

matrices for the models presented in Chapter 6.



Part I

Neutrino Mixing
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Chapter 2

Neutrino Mass and Mixing: An

Overview

In this chapter, we give a brief review of neutrino mixing. We also discuss the

different types of neutrino mass that can be generated, which then leads us to the

introduction of the see-saw mechanism. A non-exhaustive list of useful reviews on

neutrino mass and mixing is [17, 18, 19, 20, 21].

2.1 Neutrinos in the Standard Model

The Standard Model [22] is one of the most successful theories in particle physics.

It describes all the particles that are observed in nature and their interactions. The

latter are namely: the strong force, the weak force and the electromagnetic force.

The particle content of the model is classified in three generations of fermions, each

containing a quark pair and lepton pair (u, d, e, νe), (c, s, µ, νµ) and (t, b, τ, ντ ). The

gauge group of the SM is GSM = SU(3)C × SU(2)L × U(1)Y . It contains spin-1

particles associated with the fundamental interactions. These particles include

gluons which are responsible for the strong force, the photon for electromagnetic

interactions and massive vector bosons responsible for mediating weak interactions.

So far, we have only considered the particle content of the SM without introducing

any mass terms. These mass terms are extremely essential according to experi-

mental results which show that all particles have masses, for instance we know that

the electron has a mass of 511 eV . A mechanism known as the Higgs mechanism

is responsible for generating masses for the gauge bosons as well as the fermions

8
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present in the SM. This is characterised by adding a Higgs scalar doublet to the

spectrum of the Standard Model. Introducing the Higgs mechanism breaks the

electroweak symmetry down to the electromagnetic symmetry.

SU(2)L × U(1)Y → U(1)EM

The basic idea of this mechanism is that the Higgs interacts with the SM particles

which causes the breaking of this symmetry (also known as spontaneous elec-

troweak symmetry breaking (EWSB)) and the particles to acquire masses. This

symmetry is broken due to the fact that the potential of the Higgs field develops

a non-trivial vacuum expectation value (VEV). We will see later how this pro-

cess, when applied in the SM, generates mass terms for the massive gauge bosons

W+,W− and Z. The most general form for the Lagrangian density is,

LY ukawa = −QiLφdjRY
d
ij −QiLφ

cujRY
u
ij − LiLφejRY e

ij + h.c. (2.1)

where φc ≡ (−iτ2φ
∗), Y u

ij , Y
d
ij , Y

e
ij are 3 × 3 Yukawa matrices and the indices

i, j = {1, 2, 3} refer to the three different families. QiL and LiL are left-handed

quark lepton doublets while djR, ujR and ejR are SU(2)L singlet fields of down

quarks, up quarks and charged leptons respectively. To see how the masses for

fermions and gauge bosons are generated in the SM, we consider an isospin doublet

of scalar fields with weak hypercharge Y = 1/2

φ =

(
φ+

φ0

)
(2.2)

where the complex scalar fields φ+, φ0 are given by,

φ+ ≡ (φ1 + iφ2)/
√

2, φ0 ≡ (φ3 + iφ4)/
√

2

The Lagrangian of the Higgs doublet must be invariant under SU(2)L × U(1)Y

symmetry. The simplest choice can be written as

LHiggs = (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2 (2.3)

where µ2 and λ are real parameters with λ > 0. In order to have massless pho-

ton, the electromagnetic symmetry U(1)EM must remain unbroken. This can be

achieved by taking the coefficient µ2 to be negative. As a result, the Higgs poten-

tial (V = µ2φ†φ+ λ(φ†φ)2 ) develops a non zero minimum at 〈φ†φ〉 = −µ2/2λ
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By expanding around this vacuum, the Higgs vacuum expectation value (Vev) can

be written as

φ(x) =
1√
2

(
0

v + h(x)

)
(2.4)

where v =
√
−µ2

λ
and h(x) is the physical Higgs field. After the Higgs field acquires

its Vev, The gauge boson mass terms can be identified as given by the following

Higgs Lagrangian,

(Dµφ)†(Dµφ) =
v2

4
g2W+

µ W
−µ +

v2

8
(g2 + g′2)ZµZ

µ + ... (2.5)

where

W±
µ =

1√
2

(A1
µ ± iA2

µ)

The masses of W± and Z bosons can be given respectively as

MW =
gv

2
, MZ =

√
g2 + g′2 =

gv

2 cos θW
(2.6)

where θW = tan−1(g′/g) is the weak mixing angle.

We have seen how the mass terms for the gauge bosons are generated after intro-

ducing the Higgs mechanism into the SM. All fermions present in the SM, except

neutrinos, acquire mass terms through the same process. After spontaneous sym-

metry breaking, these masses are generated by substituting the Higgs VEV into

the Yukawa Lagrangian, in Eq.(2.1), to give masses of the form,

mu,d,e
ij =

v√
2
Y u,d,e
ij (2.7)

When the Standard Model was first formulated, neutrinos were thought to be

massless for many reasons, including the absence of right-handed neutrinos. How-

ever, in recent years neutrino experiments have shown convincing evidence that

neutrinos are massive as a consequence of their oscillations. As a result, the study

of the physics of neutrino mass and mixing became one of the leading candidates

in the field of physics beyond the Standard Model. One way of generating neu-

trino masses in the SM is by introducing right-handed neutrinos, which gives rise

to neutrino Dirac mass term of the form mν
DνLνR when a right handed neutrino

field νR interacts with a left handed field νL. This type of mass is forbidden in

the SM without the Higgs doublet since only the left handed neutrinos transform

under SU(2) and therefore the mass term is not invariant under the electroweak
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symmetry. In the next section, we will briefly review the main experimental results

supporting neutrino oscillations and also the different types of neutrino mass that

can be generated.

2.2 Evidence of neutrino oscillations

Neutrinos are electrically neutral particles of spin 1/2, which play an important

role in the SU(2)L × U(1)Y electroweak theory. They appear in at least three

different flavours, which are all left-handed, meaning that their spins point in op-

posite directions from their momenta. These three flavours are known respectively

as the electron neutrino νe, the muon neutrino νµ and the tau neutrino ντ . Their

anti-particles, on the other-hand are right-handed.

There are many sources of neutrinos, the most important one is the Sun which

emits around 2 × 1038 electron neutrinos per second. Other sources include relic

neutrinos, which are left over from the early stages of evolution of the universe and

nuclear plants producing mainly electron-antineutrinos. Type II Supernovae are

also a good source of neutrinos emitting nearly 6×1058 of neutrinos with different

flavours every ten seconds.

Neutrino oscillations were first discussed in 1957 by Pontecorvo. In his study, he

mainly looked at oscillations between neutrinos and anti-neutrinos in analogy with

the oscillations of Kaons and their anti-particles. Mixing between two massive

neutrinos was only studied after the discovery of muon neutrinos. It was first

discussed by Maki, Nakagawa and Sakata in 1962.

The first experimental evidence of neutrino oscillation came from the Raymond

Davis experiment [1], when a deficit in the number of solar neutrinos νe, reaching

the earth, was observed (only 1/3 of the total number predicted by solar models).

The discrepancy between the theoretical models and the results of this experiment

led to the conclusion that the electron neutrino is in fact oscillating into other

flavours such as muon or tau neutrinos.

Another compelling evidence for neutrino oscillations was the data presented by

Super-Kamiokande laboratory in 1998 [2]. The results showed a deficit in the

number of muon neutrinos reaching Earth when they had travelled a significant

distance. These results were interpreted as evidence that muon neutrinos oscillate

into tau neutrinos which shows that at least one neutrino flavour has a non-zero
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mass. The Super-Kamiokande experiment has also confirmed the results of Davis’s

experiment and a deficit in the flux of electron neutrinos originating from the sun

was observed. Sudbury Neutrino Observatory (SNO), KamLAND, K2K and MI-

NOS are other experiments which confirmed neutrino flavour oscillation [3, 4]. In

summary, we see that there is strong evidence from different experimental sources

that supports neutrino flavour oscillation. The existence of these oscillations means

that neutrinos are not massless as predicted by the SM. In the next section, we dis-

cuss the different types of neutrino masses that can be generated after introducing

right-handed neutrinos to the Standard Model.

2.3 Neutrino masses

The smallness of neutrino masses, compared to other fermions in the Standard

Model, has been a good description of nature for a long time. However, these

particles appear to be massive according to experimental results. So to resolve this

problem, we have to find a way of introducing these masses in the SM. There is

also a problem of defining the nature of neutrino masses which raises the question:

are neutrino masses Majorana or Dirac masses? If we have a close look at the

nature of neutrinos in order to answer this question, we find that they have no

charge and no colour compared to the other fermions. This evidently means that

they can be their own anti-particles or what is known as Majorana fermions. For

the remainder of this part, we will assume that neutrinos are Majorana.

In the SM, we can have left-handed Majorana masses which are achieved when a

left-handed neutrino field νL couples to its own charge and parity conjugated state

νcL, in other words it couples to a right handed antineutrino field,

mν
LνLν

C
L , (2.8)

where the charge conjugate of the left-handed neutrino νcL can be written as,

νcL = CνTL,

and C is a unitary matrix of charge conjugation which satisfies the following

relations:

CγTαC
−1 = −γα, C† = C−1, CT = −C
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Such Majorana masses do not conserve lepton number (L) and since the combi-

nation νcLνL belongs to a triplet, these masses are strictly forbidden in the SM

assuming only Higgs doublets are present. Another obvious way of generating

neutrino masses in the SM is by introducing right-handed neutrino fields νR. This

gives rise to Dirac masses of the form,

mν
DνLνR (2.9)

which are achieved when the right-handed neutrino field νR interacts with the left-

handed neutrino field νL. The Dirac mass terms mimic the mass terms of quarks

and charged leptons by conserving the lepton number and therefore this type of

masses is allowed by the symmetries of the SM as they are generated through the

Higgs mechanism.

Adding right-handed neutrinos νR to the SM generates another type of Majorana

masses called right-handed Majorana masses which result from the right-handed

neutrino field νR coupling to its CP conjugate field νcR. These masses are also

allowed in the SM and have the following form:

MRνRν
C
R , (2.10)

We now return to our previous question of defining the nature of neutrinos. Since

left-hand Majorana masses do not conserve lepton number, future experiments

may confirm whether this lepton number violation is mainly caused by the presence

of such mass terms, through a very promising approach known as Neutrinoless

double beta decay. In this process, a nucleus consisting of N neutrons decays to

N+2 neutrinos by emitting two electrons. If this process is observed, it will confirm

that neutrinos are different from the other fermions in the SM and that they are

indeed Majorana fermions.

So far, we have summarised three types of neutrino masses which are possible

after introducing right-handed neutrino fields. While the left-handed Majorana

masses are zero in the SM, the magnitude of the right-handed Majorana masses

can be very large since, in principal, there is nothing that prevents the right-

handed neutrino field from coupling to its CP conjugate. This leads to very small

effective left-handed Majorana masses which is explained by an appealing and

simple mechanism known as the see-saw mechanism [23].
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2.4 The see-saw mechanism

In the SM, the right-handed Majorana masses MR can be very heavy compared to

very small effective left-handed neutrino masses. The smallness of these effective

masses is explained by an elegant mechanism known as the see-saw mechanism.

Both Dirac and Majorana masses are present in this mechanism and the main

idea is to assume that left-handed Majorana masses are zero to start with as

predicted by the SM, but are effectively generated after introducing the right-

handed neutrino νR [23]. Once this is done then the right handed Majorana masses

and the Dirac masses are permitted and we have the following mass matrix,

M =
(
νcL νR

)( 0 mD

mT
D MR

)(
νL

νcR

)
. (2.11)

The application of this mechanism means that half of neutrinos are the familiar

light neutrinos while the other half are extremely heavy right-handed Majorana

neutrinos with masses, MR. The right-handed Majorana masses may be orders of

magnitude larger than the electroweak scale, or possibly as large as the GUT scale.

One can diagonalize the matrix in Eq.(2.11) to give effective Majorana masses of

the type in Eq.(2.8) in the approximation that MR � mD,

mL = −mDM
−1
R mT

D . (2.12)

Diagonalising the above matrix M gives rise to two different masses. One of them

is MR and the other one is (mD)2/MR which is equivalent to the effective Majorana

mass mL. We can see that mL � mD since it is suppressed with respect to mD

by the small ratio mD/mR given that mR can be very large. For example, taking

mD of order of the weak scale and MR of order close to the GUT scale, we find

mL ∼ 10−3 eV which looks good for solar neutrinos.

We have seen how the smallness of the effective neutrino Majorana masses is

explained by the see-saw mechanism. However, we still cannot explain the as-

sumption that the right-handed Majorana mass MR is so large compared to the

electroweak scale and the Dirac mass. It is believed that this is mainly due to the

fact that MR is generated at very high energies by the symmetry breaking of the

theory beyond the SM.

The version of the see-saw mechanism discussed so far is known as type I see-saw

mechanism, which is illustrated in Fig.(2.1). Type I see-saw mechanism is often

generalized to a type II see-saw, in Pati-Salam models or GUTs based on SO(10),
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Consider now the full n-generation case. We want to block-diagonalize the matrixM
in eq. (35) so as to decouple light and heavy neutrino degrees of freedom:

nL = UχL , UTMU = UT

(
mL mD

mT
D MR

)
U =

(
m̃L 0

0 M̃R

)
, (45)

where U is a unitary 2n × 2n matrix, and we have changed the notation mR → MR. We
shall be looking for the matrix U of the form

U =

(
1 ρ
−ρ† 1

)
, U †U = 1 +O(ρ2) , (46)

where the elements are n × n matrices, and ρ will be treated as a perturbation. We shall
neglect for simplicity possible CP violation in the leptonic sector and take mL, mD and MR

to be real matrices (effects of CP violation in neutrino oscillations will be discussed in sec.
7.3). The matrix ρ can then also be chosen to be real. Block-diagonalization ofM gives

ρ $ mDM−1
R , m̃L $ mL −mDM−1

R mT
D , M̃R $ MR . (47)

These relations generalize those of eq. (43) to the case of n generations. The diagonalization
of the effective mass matrix m̃L yields n light Majorana neutrinos which are predominantly
composed of the usual (“active”) neutrinos νL with very small (∼ mD/MR) admixture of
“sterile” neutrinos νR; diagonalization of M̃R produces n heavy Majorana neutrinos which
are mainly composed of νR. It is important that the active neutrinos get Majorana masses
m̃L even if they have no “direct” masses, i.e. mL = 0, as it is in the standard model. The
masses of active neutrinos are then of the order of m2

D/MR. Generation of the effective
Majorana mass of light neutrinos is diagrammatically illustrated in fig. 3. It is interesting
that with the largest Dirac mass eigenvalue of the order of the electroweak scale, mD ∼ 200
GeV, the right handed scale MR ∼ 1015 GeV which is close to the typical GUT scales, and
assuming that the direct mass term mL

<∼ m2
D/MR, one obtains the mass of the heaviest of

the light neutrinos mν ∼ (10−2− 10−1) eV, which is just of the right order of magnitude for
the neutrino oscillation solution of the atmospheric neutrino anomaly.

〈H〉

νL mD νR

×
MR νR

〈H〉

mD νL

Figure 3: Seesaw mechanism of mL generation

Problem 6. Perform the approximate block diagonalization of the matrix M and verify
eq. (47).
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Figure 2.1: Type I see-saw mechanism.

where an additional mass term mII
L for the light neutrinos is present [24]. We will

not discuss type II see-saw mechanism here as it is not within the scope of this

thesis.

2.5 Neutrino mixing

As discussed in previous sections, there is strong experimental evidence that neu-

trinos change from one flavour to another which leads us to the subject of “neutrino

mixing”. Neutrino mixing is described by the so called “lepton mixing matrix”

U (this is also known as the Pontecorvo-Maki-Nakagawa-Sakata matrix UPMNS

or just UMNS). For the remainder of this part, we will assume the name UPMNS

unless stated otherwise. This is a unitary matrix connecting the neutrino flavour

fields νf ≡ {νe, νµ, ντ} to the neutrino mass fields νm ≡ {ν1, ν2, ν3} with masses

m1,m2,m3 respectively as presented in Eq.(2.13),

νf = UPMNS νm (2.13)

Current data shows that the state ν1 comprises mostly νe while the state ν2 includes

nearly equal amounts of νe, νµ and ντ . On the other hand, the state ν3 consists

mainly of νµ and ντ . The difference between the mass eigenstates and the neutrino

flavour eigenstates is what causes neutrinos to oscillate from one flavour to another.

Mixing between neutrino flavours may involve two states as well as three families.

According to experimental data, the simplest case of neutrino mixing occurs when

muon neutrinos oscillate into tau neutrinos, which is known atmospheric mixing.
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(
νµ

ντ

)
=

(
c23 s23

−s23 c23

)(
ν2

ν3

)
, (2.14)

here and in the remainder of this part, we will take sij ≡ sin θij and cij ≡ cos θij,

where θij are the neutrino mixing angles. In this mixing, only two mass eigenstates

and two flavour eigenstates are relevant. The current experimental data supports

maximal mixing with,

sin2 2θ23 = 1

As discussed earlier, the three-flavour mixing is governed by a 3×3 unitary matrix

presented in Eq.(2.13). Assuming the light neutrinos are Majorana, this matrix

can be parameterised by three mixing angles θij and three complex phases as

follows:

U =

 1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13e
iδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1

PM , (2.15)

where PM = diag(ei
α1
2 , ei

α2
2 , 0) is the matrix containing the Majorana phases

α1, α2. These phases do not affect neutrino oscillation and have physical con-

sequences only if neutrinos are Majorana particles. They can be eliminated in

the case of massive neutrinos being Dirac particles and not Majorana. This is

done by rephasing the massive neutrino fields which will leave the Dirac term

invariant. The first matrix in the above equation corresponds to Atmospheric

neutrino mixing that we discussed earlier. The second matrix describes Reactor

neutrino oscillations, which are assiciated with the detection of anti-electron neu-

trinos. Solar neutrino oscillations are described by the third matrix in Eq.(2.15).

Recent experimental data from KamLAND [25] have confirmed these oscillations

specifying the large mixing angle (LMA) solar solution with the value,

sin2 θ12 ≈ 0.30

three flavour mixing also involves studying neutrino masses. In the standard Par-

ticle Data Group (PDG) parametrization, the PMNS matrix can be written as
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Figure 12. Projections of the allowed regions from the global oscillation data at 90%,
95%, 99%, and 3σ C.L. for 2 d.o.f. for various parameter combinations. Also shown is
∆χ2 as a function of the oscillation parameters sin2 θ12, sin2 θ23, sin2 θ13, ∆m2

21, ∆m2
31,

minimized with respect to all undisplayed parameters.

4.2. The small parameters α ≡ ∆m2
sol/∆m2

atm and θ13

Genuine three–flavour effects are associated to the mass hierarchy parameter α ≡
∆m2

sol/∆m2
atm and the mixing angle θ13. In particular, in a three–neutrino scheme

CP violation disappears in the limit where two neutrinos become degenerate [20, 106]

and in the limit where θ13 → 0. We discuss in this subsection the present status of these

small parameters.

In Fig. 13 the ∆χ2 from the global data is shown as a function of the mass hierarchy

parameter α. Also shown in this figure is the ∆χ2 as a function of the parameter

combination α sin 2θ12, since to leading order in the long baseline νe → νµ oscillation

probability solar parameters appear in this particular combination [107, 108]. We obtain

the following best fit values and 3σ intervals:

α = 0.035 , 0.024 ≤ α ≤ 0.060 , (16)

α sin 2θ12 = 0.032 , 0.022 ≤ α sin 2θ12 ≤ 0.054 .

Let us now discuss the status of the mixing angle θ13, which at the moment is

the last unknown angle in the three–neutrino leptonic mixing matrix. Only an upper

bound exists, which used to be dominated by the CHOOZ [105] and Palo Verde [109]

reactor experiments. Currently a large effort is put to determine this angle in future

Figure 2.2: Experimental allowed regions for the atmospheric and solar mix-
ing angles as well as the mass difference squared terms [26].

UPMNS =

 c12c13 s12c13 s13e
−iδ

−c23s12 − s13s23c12e
iδ c23c12 − s13s23s12e

iδ s23c13

s23s12 − s13c23c12e
iδ −s23c12 − s13c23s12e

iδ c23c13

PM ,

(2.16)

where δ is the Dirac phase and PM is the Majorana phase matrix. From the

above mixing matrix, we can see that the presence the phase δ is related to the

appearance of the mixing angle θ13, which means that the size of CP violation will

depend on this angle. This is one of the main reasons why exact measurement of

this angle is so important in neutrino physics.

Experimental values and errors for the three neutrino oscillation parameters are

summarised in Tab.(2.1) [26, 27, 28]. Experimental allowed regions for the atmo-

spheric and solar mixing angles are shown in Fig.(2.2) [26].

Parameter Best fit ( ◦) 2 σ ( ◦) 3 σ ( ◦)

θ12 34.44 31.94- 37.46 30.65- 39.23
θ23 45 38.05 - 52.53 35.66 - 54.93
θ13 4.79 ≤ 10.46 ≤ 12.92

Table 2.1: Best fit values, 2 σ and 3 σ intervals for the three- flavour neutrino
oscillation parameters from global data including accelerator (K2K and MINOS)
and solar, atmospheric, reactor (Kam LAND and CHOOZ) experiments [27].
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2.6 Tri-bimaximal mixing

Tri-bimaximal mixing (TB) [5, 6] is achieved in the framework of three-family

mixing with sin2 θ23 = 1/2, sin2 θ12 = 1/3, θ13 = 0. The lepton mixing matrix

is then given by,

UPMNS ≈


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

 . (2.17)

We can explain tri-bimaximal mixing in terms of flavours and mass eigenstates. It

corresponds to the state ν1 having a sixth of both νµ and ντ and two thirds of νe.

As can be seen from the above matrix, only ντ and νµ feature in the third state ν3

corresponding to the third column of UPMNS, with equal amounts. On the other

hand, all the flavours are involved in the state ν2 with equal parts as shown by

the middle column of the mixing matrix.

The latest data from neutrino oscillation experiments is consistent with this TB

pattern. With the advancement of technology, future neutrino experiments will be

extremely sensitive to small deviations from TB mixing and therefore it is of great

importance to study the theoretical uncertainty in such type of mixing. With this

in mind, constructing a new parameterisation of the PMNS matrix, in which

these deviations feature explicitly, might be very useful for both experiments and

theoretical studies of neutrino oscillation. Such parameterisation was developed

in [29]. It was achieved by taking an expansion about the tri-bimaximal matrix in

analogy with Wolfenstein parameterisation of quark mixing. Three small param-

eters r, s and a are introduced to describe the deviations of the reactor, solar and

atmospheric angles from their tri-bimaximal values,

s13 =
r√
2
, s12 =

1√
3

(1 + s), s23 =
1√
2

(1 + a). (2.18)

Global fits of the corresponding mixing angles can be translated into the ranges

[26],

0 < r < 0.22, −0.11 < s < 0.04, −0.12 < a < 0.13. (2.19)

Considering an expansion of the lepton mixing matrix in powers of r, s, a about

the tri-bimaximal form. One gets the following form for the mixing matrix to first
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order in r, s, a,

UMNS ≈


√

2
3
(1− 1

2
s) 1√

3
(1 + s) 1√

2
re−iδ

− 1√
6
(1 + s− a+ reiδ) 1√

3
(1− 1

2
s− a− 1

2
reiδ) 1√

2
(1 + a)

1√
6
(1 + s+ a− reiδ) − 1√

3
(1− 1

2
s+ a+ 1

2
reiδ) 1√

2
(1− a)

PM

(2.20)

2.7 Charged lepton corrections

Lepton mixing can originate entirely from the neutrino sector or from the charged

lepton sector depending on the chosen basis. It can also be generated in both

sectors and, in this case, the Lagrangian is written in terms of mass matrices of

charged leptons Me and neutrinos mν as,

L = −ēLMeeR − 1

2
ν̄LmLν

c
L +H.c, (2.21)

The change in basis from flavour to eigenbasis is performed by,

VeLMeV
†
eR

=

 me 0 0

0 mµ 0

0 0 mτ

 , VνLmLLV
T
νL

=

 m1 0 0

0 m2 0

0 0 m3

 . (2.22)

The PMNS matrix is constructed as a product of a unitary matrix from the charged

lepton sector VeL and a unitary matrix from the neutrino sector VνL ,

UPMNS = VeLV
†
νL

(2.23)

Now that we have discussed tri-bimaximal mixing in the framework of neutrino

oscillations, we need to look into how this mixing is actually achieved and in what

basis. There have been many theoretical speculations about the best way to con-

struct this pattern. Most of the proposed models consider two particular bases.

The first basis is the flavour basis in which the charged lepton mass matrix is di-

agonal, while the neutrino mass matrix takes a particular form such that is results

in TB mixing. The second basis is a particular basis first introduced by Cabibbo

and Wolfenstein in which both the neutrino and charged lepton mass matrices

are non-diagonal, but in which the charged lepton mass matrix is diagonalised by
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a “democratic unitary matrix” involving elements of equal magnitude but differ-

ing by a phase ω = 2π/3. Such a Cabibbo-Wolfenstein basis is particularly well

suited to models of TB mixing based on the discrete group A4 [30]. However in

other classes of models, one attempts to work in the flavour basis and to derive

TB mixing purely from the neutrino sector with the charged lepton matrix being

diagonal, for example using constrained sequential dominance (CSD) [7].

2.8 Charged lepton corrections and sum rules

Tri-bimaximal mixing may be accurately achieved in the neutrino sector for models

arising from Grand Unified Theories (GUTs). However the charged lepton mass

matrix is never accurately diagonal in the flavour basis. Instead, in such models,

the charged lepton mass matrix often resembles the down quark mass matrix,

and involves an additional Cabibbo-like rotation in order to diagonalize it. In

these models, TB mixing arises in the neutrino sector, but with charged lepton

corrections giving deviations [31]. Such Cabibbo-like charged lepton corrections

lead to well defined corrections to TB mixing which can be cast in the form of

sum rules. In this section, we review the derivations of different types of these

sum rules, involving neutrino mixing angles as well as TB deviation parameters.

2.8.1 Cabibbo-like corrections and sum rules

We consider the case where TB mixing applies quite accurately only to the neutrino

mixing in some basis where the charged lepton mass matrix is not exactly diagonal

[32, 33]. This is a situation often encountered in realistic models [7]. Furthermore

in GUT models it is often the case that, in the basis where the neutrino mixing

is of the TB form, the charged lepton mixing matrix has a Cabibbo-like structure

rather similar to the quark mixing and is dominated by a 1-2 mixing θE12 [34],

VeL =

 cθE12 −sθE12e−iλ
E
12 0

sθE12e
iλE12 cθE12 0

0 0 1

 , (2.24)

where cθE12 ≡ cos θE12, sθE12 ≡ sin θE12, and λE12 is a phase required for the diagonalisa-

tion of the charged lepton mass matrix [7]. The physical PMNS oscillation phase
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δ turns out to be related to λE12 by [34],

δ = λE12 + π. (2.25)

We assume that the neutrino mixing is accurately of the TB form,

V †νL =


√

2
3

1√
3

0

− 1√
6

1√
3

1√
2

1√
6
− 1√

3
1√
2

PM . (2.26)

The physical mixing matrix, given by Eq.(2.23), can then be expressed using

Eqs.(2.24, 2.26). The standard PDG form of the PMNS mixing matrix in Eq.(2.16)

requires real elements (UPMNS)11 and (UPMNS)12 and this may be achieved by use

of the phases in PM = diag(ei
α1
2 , ei

α2
2 , 0).

It follows that (UPMNS)31, (UPMNS)32 and (UPMNS)33 are unaffected by the Cabibbo-

like charged lepton corrections and are hence given by:

|(UPMNS)31| = |(V †νL)31| = 1√
6
, (2.27)

|(UPMNS)32| = |(V †νL)32| = 1√
3
, (2.28)

|(UPMNS)33| = |(V †νL)33| = 1√
2
. (2.29)

Since these relations are all on the same footing, it is sufficient to discuss one of

them only and in the following we choose to focus on Eq.(2.27). Using Eq.(2.16),

Eq.(2.27) can be expanded in terms of the standard mixing angles leading to the

following sum rule,

Γ1 ≡ arcsin
(√

2 |s23s12 − s13c23c12e
iδ|
)

= 35.26o, (2.30)

where we have assumed sν23 ≡ sin θν23 = 1√
2
. This sum rule can be simplified further

to leading order in s13,

Γ2 ≡ arcsin
(√

2 (s23s12 − s13c23c12 cos δ)
)
≈ 35.26o. (2.31)

From Eq.(2.29) and using s23 = c23 = 1/
√

2, we can express the above sum rule

to leading order as,

Γ3 ≡ θ12 − θ13 cos(δ) ≈ 35.26o. (2.32)
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The last form of the sum rule was first presented in [7], while all the above forms

can be found in [35, 36]. In Chapter 4, we shall study all three forms of the sum

rules Γi, together with some related sum rules which we now discuss.

In order to see how deviations from TB mixing manifest, we also define the fol-

lowing parameters which express the deviation of the magnitude of the third row

mixing matrix elements from their tri-bimaximal values:

|(UPMNS)31| ≡ 1√
6

(1 + ξ1)

|(UPMNS)32| ≡ 1√
3

(1 + ξ2)

|(UPMNS)33| ≡ 1√
2

(1 + ξ3) (2.33)

Hence from Eq.(2.16), we get the following expressions for the ξi parameters

ξ1 =
√

6 |s23s12 − s13c23c12e
iδ| − 1,

ξ2 =
√

3 | − s23c12 − s13c23s12e
iδ| − 1,

ξ3 =
√

2 |c23c13| − 1.

(2.34)

These third family deviation parameters ξi can also be expressed in terms of the

deviation parameters r, s, a, using Eq.(2.20), as follows

ξ1 ≈ |1 + s+ a− reiδ| − 1,

ξ2 ≈ |1− 1
2
s+ a+ 1

2
reiδ| − 1,

ξ3 ≈ |1− a| − 1.

(2.35)

We can express the relations, given by Eqs.(2.27, 2.28, 2.29), in terms of the third

family deviation parameters defined in Eq.(2.33) as simply:

ξi = 0. (2.36)

Using the parametrization in Eq.(2.18), the sum rule in Eq.(2.32) can be expressed

in terms of the deviation parameters s, r and the Dirac CP phase (δ)[29],

σ1 = r cos δ − s = 0. (2.37)
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To deal with issues of canonical normalisation corrections, the following sum rule

has been proposed [37, 38],

σ2 = r cos δ +
2

3
a− s = 0. (2.38)

This sum rule was claimed to be stable under leading logarithmic third family RG

corrections, although, as emphasized in [37, 38], it does not include the effect of

running the mixing angle, θ13, or r, whose inclusion introduces a Majorana phase

dependence.1 Such effects will be studied numerically in Chapter 4.

So far, we presented a set of sum rules involving the neutrino mixing matrix as

well as the TB deviation parameters. In Chapter 4, we will study the RG running

of these sum rules from the GUT scale to the MZ scale, using the Mathematica

package REAP, for two GUT inspired numerical models. However, before we

discuss the RG running, we will first look at the analytic derivations of the three

neutrino mixing angles, in general SD, as presented in the next chapter.

1This sum rule was derived from an expansion in m2/m3, and the running of r was neglected
because it is suppressed by an extra factor of m2/m3 compared to the running of s and a.



Chapter 3

NLO and NNLO Corrections to

Neutrino Parameters

In this chapter, we present analytic expressions for the neutrino mixing angles

including the NLO and NNLO corrections originating from the second lightest and

lightest neutrino masses [39]. We start by reviewing Sequential Dominance (SD)

in the framework of type I see-saw mechanism. We also review the special cases of

Constrained Sequential Dominance (CSD) and Partially Constrained Sequential

Dominance (PCSD). We then present numerical results for the analytic formulae

of the neutrino mixing angles and masses, for two GUT models, in the presence of

NLO and NNLO corrections. Finally, we compare the numerical results to those

evaluated using the Mathematica package MPT/REAP [16] 1.

3.1 Sequential dominance

Sequential dominance is a very elegant way of accounting for a neutrino mass

hierarchy with large atmospheric and solar mixing angles. In the framework of the

see-saw mechanism, diagonalising the complex neutrino Majorana matrix mν
LL

gives rise to neutrino masses m1,m2 and m3,

V νLmν
LLV

νLT =

 m1 0 0

0 m2 0

0 0 m3

 (3.1)

1Mixing Parameter Tools (MPT) is a package provided with REAP and it is mainly used to
extract neutrino mixing parameters.

24
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In the case of see-saw mechanism with right-handed neutrino dominance, a partic-

ular high energy theory includes a charged lepton Yukawa matrix Y E, a neutrino

Yukawa matrix Y ν and a right-handed neutrino Majorana matrix MRR.

Let us consider the case where the right-handed neutrino Majorana matrix takes

a diagonal form with real eigenvalues as,

MRR ≈

 Y 0 0

0 X 0

0 0 X ′

 . (3.2)

We also write the complex neutrino (Dirac) Yukawa matrix Y ν
LR in terms of the

Yukawa couplings a,b,c,d,e,f,a’,b’,c’ as

Y ν
LR =

 d a a′

e b b′

f c c′

 . (3.3)

The neutrino mass matrix can be derived using the see-saw formula, given by

Eq.(2.12),

mν
LL =


a′2

X′ + a2

X
+ d2

Y
a′b′

X′ + ab
X

+ de
Y

a′c′

X′ + ac
X

+ df
Y

a′b′

X′ + ab
X

+ de
Y

b′2

X′ + b2

X
+ e2

Y
b′c′

X′ + bc
X

+ ef
Y

b′2

X′ + b2

X
+ e2

Y
b′c′

X′ + bc
X

+ ef
Y

c′2

X′ + c2

X
+ f2

Y

 (3.4)

In SD, the atmospheric and solar neutrino mixing angles are obtained in terms of

ratios of Yukawa couplings involving the dominant and subdominant right-handed

neutrinos, respectively. Assuming for simplicity that d = 0, SD then corresponds

to the right-handed neutrino of mass Y being the dominant term, while the right-

handed neutrino of mass X giving the leading sub-dominant contribution to the

see-saw mechanism. The SD condition can then be expressed as,

|e2|, |f 2|, |ef |
Y

� |xy|
X
� x′y′

X ′
(3.5)

where x, y ∈ a, b, c and x′, y′ ∈ a′, b′c′, and all Yukawa couplings are assumed to

be complex. Therefore, according to SD, the leading order (LO) contribution to

the neutrino mass matrix comes from one single right- handed neutrino resulting

in a single neutrino mass eigenvalue m3 and the “atmospheric” mixing angle θ23.

The second largest next-to-leading order (NLO) contribution to the neutrino mass
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matrix in SD, arising from a second right-handed neutrino, induces the second

neutrino mass m2 as well as the “solar” and “reactor” mixing angles θ12 and θ13,

respectively.

In unified models, a third right-handed neutrino contributes to the seesaw mecha-

nism with SD and its next-to-next-to-leading order (NNLO) contribution provides

a mass m1 to the lightest neutrino, which will also give corrections to the analytic

expressions for the neutrino mixing angles at NNLO. These corrections , which are

of order m1/m3, depend on the rather large 3-3 Yukawa coupling c′. The analytic

estimates of the mixing angles in SD have so far only been presented to LO [40, 41]

and these are given by,

tan θν23 ≈
|e|
|f | , (3.6)

tan θν12 ≈
|a|

c23|b| cos(φ′b)− s23|c| cos(φ′c)
, (3.7)

θ13 ≈ ei(φ2+φa−φe) |a|(e∗b+ f ∗c)
(|e|2 + |f |2)3/2

Y

X
, (3.8)

where some of the Yukawa couplings were written as x = |x|eiφx . The phases χν

and φν2 are fixed to give real angles θν12 and θν13 by:

c23|b| sin(φ′b) ≈ s23|c| sin(φ′c), (3.9)

φ2 ≈ φe − φa − φ∗, (3.10)

where

φ′b ≡ φb − φa − φ2 − χ, (3.11)

φ′c ≡ φc − φa + φe − φf − φ2 − χ, (3.12)

φ∗ = arg(e∗b+ f ∗c) (3.13)

and c23 ≡ cos(θ23) and s23 ≡ sin(θ23).

In the large d limit, the angle θ13 can be expressed as follows [40]:

θ13 ≈ |d|√|e|2 + |f |2 ≡ θ0
13. (3.14)

Note that θ13 and θ0
13 are given differently in the small d and large d cases so

we must be careful to distinguish the two limiting cases. The phases φ2 and φ3
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appearing in Eq.(A.9) are fixed by:

φ2 = φe − φd (3.15)

φ3 = φf − φd. (3.16)

In this chapter, we shall derive similar analytic expressions, in the framework of

type I see-saw mechanism with SD, including both the NLO and NNLO correc-

tions. The derivation of these analytic expressions builds on the results presented

in [40] where the NLO and NNLO corrections were not considered 2. For the re-

mainder of this chapter, we will take the LO formulae of the mixing angles given

by Eqs.(3.6, 3.7, 3.8, 3.14) to be t023, t
0
12 and θ0

13 respectively.

3.2 Special cases of Sequential Dominance

3.2.1 Constrained Sequential Dominance

Constrained Sequential Dominance (CSD) [7] corresponds to SD with the con-

straints defined as,

|a| = |b| = |c|, (3.17)

|d| = 0, (3.18)

|e| = |f | (3.19)

e∗b+ f ∗c = 0, (3.20)

where the parameters a, b, c, e, f, d are the complex Yukawa couplings presented in

Eq.(3.3). The above CSD constraints give rise to TB neutrino mixing, in which

tan θν23 = 1, tan θν12 = 1/
√

2 and θν13 = 0. In CSD, a strong hierarchy |m1| �
|m2| < |m3| is assumed which enables m1 to be effectively ignored (typically this

is achieved by taking the third right-handed neutrino mass X ′ to be very heavy

leading to a very light m1). We note that numerical results of neutrino mixing

angles at CSD, in the presence of non-zero 3-3 Yukawa coupling, are only accurate

to leading order in m2/m3 [40, 42, 43] and therefore these conditions do not give

rise to precise TB neutrino mixing. In Chapter 4, we shall see that accurate TB

neutrino mixing only arises when the CSD conditions are perturbed.

2Although the NLO corrections were calculated for the atmospheric angle they were not
considered for the other angles, and NNLO corrections were completely neglected [40].
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3.2.2 Partially Constrained Sequential Dominance

Tri-bimaximal-reactor Mixing (TBR) [44] can arise from type I see-saw mechanism

via a very simple modification to CSD called Partially Constrained Sequential

Dominance (PCSD). This modification involves allowing a non-zero 1-1 element

of the Dirac neutrino mass matrix.

TBR mixing corresponds to the mixing matrix,

UTBR =


√

2
3

1√
3

1√
2
re−iδ

− 1√
6
(1 + reiδ) 1√

3
(1− 1

2
reiδ) 1√

2
1√
6
(1− reiδ) − 1√

3
(1 + 1

2
reiδ) 1√

2

PM , (3.21)

where we have introduced the reactor parameter r defined by s13 = r√
2

[29] and

s2
13 ≈ 0.02 corresponds to r ≈ 0.2. Estimates suggest that PCSD is capable of

accommodating a sizeable reactor angle while the atmospheric and solar angles

are predicted to remain close to their TB values [44]. Similarly to the CSD case,

LO analytic results in the PCSD case are not very accurate and in general they

receive both NLO and NNLO corrections as we shall see in subsequent sections.

3.3 Neutrino parameters in general SD to NLO

and NNLO

In this section, we derive approximate analytic expressions for neutrino mixing

angles in the case of neutrino mass hierarchy, in general SD including NLO and

NNLO corections. The derivations make use of the diagonalisation procedure

outlined in Appendix A.

3.3.1 Derivation of the atmospheric angle

As discussed in Appendix A, the diagonalisation of the mass matrix involves apply-

ing the real rotation R23 after re-phasing the neutrino mass matrix. This rotation

gives rise to two new mass terms m̃ν
22 and m′3 given by Eqs.(B.5,B.3) respectively.
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Let us start by writing the lower 23 block in terms of the Yukawa couplings,(
m22 m23

m23 m33

)
=

(
b2

X
+ e2

Y
bc
X

+ ef
Y

bc
X

+ ef
Y

c′2

X′ + c2

X
+ f2

Y

)
(3.22)

Diagonalising the 23 block according to Eq.(A.10) gives rise to an expression for

tan(2θ23) in terms of the lower block masses and phase φ2, φ3. This can be written

as,

tan(2θ23) =
2(|m23|ei(φ23−φ2−φ3))

|m33|ei(φ33−2φ3) − |m22|ei(φ22−2φ2)
(3.23)

Substituing for the masses in Eq.(3.23), we get the following expression of tan(2θ23)

in terms of the complex Yukawa couplings,

tan(2θ23) ≈ 2 ef
Y

(1 + ε1)ei(−φ2−φ3)

f2

Y
(1 + ε2 + η1)ei(−2φ3) − e2

Y
(1 + ε3)ei(−2φ2)

, (3.24)

where we have introduced new parameters ε1, ε2, ε3 and η1, which are given as

follows,

ε1 =
bc
X
ef
Y

, ε2 =
c2

X
f2

Y

, ε3 =
b2

X
e2

Y

, η1 =
c′2

X′

f2

Y

. (3.25)

Note that εi, ηi are of order m2/m3,m1/m3 respectively, so that εi parametrise the

NLO corrections while ηi parametrise the NNLO corrections.

Introducing the small parameter δ such that |f | = |e|(1− δ), we get

tan(2θ23) ≈ 2 |e|
2

Y
(1− δ)(1 + ε1)ei(φe+φf−φ2−φ3)

|e|2
Y

(1− 2δ)(1 + ε2 + η1)ei(2φf−2φ3) − |e|2
Y

(1 + ε3)ei(2φe−2φ2)
,

≈ tan(2θν23)||e|=|f |
(

1− δ(1− 2(1 + ε2 + η1)

ε2 + η1 − ε3 )

)
, (3.26)

Using Eq.(3.26), we get the final formula for the atmospheric angle, which can be

written in SD as,

tan(θ23) ≈ t023(1 + Re (γ)), (3.27)

where the complex couplings e, f are written in terms of their absolute values and

phases as e = |e|eiφe , f = |f |eiφf respectively. t023 ≡ tan(θ23)|εi=0,ηi=0 is given by

Eq.(3.6) and the complex parameter γ is written, to leading order in εi, η1, as:

γ ≈ 1

2
(ε3 − ε2 − η1) +

δ

2
(ε3 + ε2 − 2ε1 + η1). (3.28)
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We note that the final analytic expression of tan(θ23), given by Eq.(3.27), depends

only on the absolute values of e, f and the parameter γ. On the other hand,

the phases φe, φf are not important for determining this angle. Here and in the

remainder of this chapter, we will refer to sin(θ23) and cos(θ23), in the limit εi =

0, η1 = 0, as s0
23, c

0
23 respectively.

3.3.2 Derivation of the reactor angle

We apply the R13 rotation, as outlined in Appendix A, which modifies the outer

block of the mass matrix as,(
m̃11 0

0 m′3

)
≡ R13

T

(
m11 m̃13

m̃13 m′3

)
R13 (3.29)

We consider the reduced matrix that only involves the 13 elements and this gives

rise to two zeros in the 13, 31 positions as presented in Eq.(3.29). The neutrino

angle θ13 can then be written as,

θν13 ≈
m̃ν

13

m′3
,

≈ 1

m′03
(m̃0

13(1− γ(s0
23)2) + e−iφ2γs0

23(
ab

X
+
de

Y
))(1− β), (3.30)

where the masses m′03 ,m
0
13, are given by Eqs.(B.4, B.10) respectively. The complex

parameter β is given by:

β ≈ (s0
23)2ε3 + (c0

23)2(ε2 + η1)− ε4e−2iφe , (3.31)

where the NLO correction parameter ε4 is defined as,

ε4 =
(bc0

23 − cs0
23e

i(φe−φf ))2

X

( |e|2 + |f |2
Y

)−1

.

We can simplify Eq.(3.30) further, after expressing the masses m′03 ,m
0
13, in terms

of the complex couplings, by considering two different limits, namely the large d

limit and the small d limit, as follows:
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In the large d limit, |de|
Y
, |df |
Y
>> |ab|

X
, |ac|
X

, the angle θ13 can be expressed as,

θ13 ≈ ei(φ2−φe+φd) |d|√|e|2 + |f |2 (1− Re (β)) (3.32)

≈ θ0
13(1− Re (β)), (3.33)

where the angle θ0
13 ≡ θ13|ηi=0,εi=0 is given by Eq.(3.14) and the phases are fixed

by φ2 = φe − φd.

In the small d limit, |de|
Y
, |df |
Y
<< |ab|

X
, |ac|
X

, which is usually the case in CSD, θ13

can be expressed as,

θ13 ≈ θ0
13

(
1− Re (γ)(s0

23)2 − Re (β)
)

(3.34)

+ s0
23|ε5|

(
( Re γ cos(φ′)− Im γ sin(φ′))2 + ( Re γ sin(φ′) + Im γ cos(φ′))2

) 1
2 ,

where φ′ = φ2− 2φe and θ0
13, in this limit, is derived in [41] and given by Eq.(3.8).

The NLO correction parameter ε5 is defined as,

ε5 =
ab

X

( |e|2 + |f |2
Y

)−1

. (3.35)

From Eq.(3.34), we can see that θ13 is proportional to θ0
13 with a small correction

given in terms of the NLO and NNLO parameters. This result shows that the

angle θ13 can be non-zero, in this limit, even in the case of vanishing LO result

presented by θ0
13.

In the PCSD case with non-zero d, we can write the leading result for θ13 as,

θ13 ≈
(
θ0

13 +
|d|√|e|2 + |f |2

)(
1− Re (γ)(s0

23)2 − Re (β)
)

(3.36)

+ s0
23|ε5|

(
( Re γ cos(φ′)− Im γ sin(φ′))2 + ( Re γ sin(φ′) + Im γ cos(φ′))2

) 1
2

+ s0
23 Re (γ)

|d||e|
|e|2 + |f |2 ,

where θ0
13 and the parameter ε5 are given by Eqs.(3.8,3.35) respectively.

3.3.3 Derivation of the solar angle

As shown in Eq.(A.6), applying the phase matrix P1 introduces a new phase χ

to the mass matrix. We can then apply the real rotation R12, as presented in
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Eq.(A.12), which modifies the matrix by putting zeros in the 12, 21 positions.

Using Eqs.(B.5, B.7,B.11), we get the following expression for tan(2θ12),

tan(2θ12) =
2|m̃12|ei(φ̃12−χ)

|m̃22|ei(φ̃22−2χ) − m̃11

≈ 2AB

B2 − A2

(
1− γ(s0

23)2 − ζ1 − ζ2

(
1− ζ1 − γ(s0

23)2
))
, (3.37)

where, similarly to [40], A,B are expressed in terms of the complex couplings as,

A =
a√
X
,

B = e−i(φ2−χ) c
0
23b− s0

23ce
i(φe−φf )

√
X

.

and the new parameters ζ1 and ζ2 are given, in the small d limit, to first order in

γ and β as,

ζ1 ≈ e−i(φ3+χ)

(
acs0

23

ABX

)
γ, (3.38)

ζ2 ≈ 1

B2 − A2

(
η2

(
b2

X
+
e2

Y

)
e−2iχ −B2β

)
, (3.39)

where η2 is given by,

η2 =
c′2

X ′

( |e|2 + |f |2
Y

)−1

. (3.40)

Similarly to the derivation of the atmospheric angle, we can easily derive an ex-

pression for the solar mixing angle in SD using Eq.(3.37), which gives

tan(θ12) ≈ A

B
(1− Re (ζ ′)),

≈ t012(1− Re (ζ ′)), (3.41)

where t012 ≡ tan(θ12)|ηi=0,εi=0 is given by Eq.(3.7). The new parameter ζ ′ is given

as,

ζ ′ ≈ B2 − A2

B2 + A2

(
γ(s0

23)2 + ζ1 + ζ2(1− ζ1 − γ(s0
23)2)

)
. (3.42)
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3.4 Analytic results in the special cases of SD

In this section, we will look at how the rather complicated analytic results for the

neutrino mixing angles, derived in the previous section, can be simplified in the

special SD cases (CSD and PCSD). We will also look at whether the NLO and

NNLO corrections will survive in these cases. For simplicity and for the remainder

of this section, we shall take φe = π and all the remaining Yukawa phases to be

zero except φc′ which is left general.

3.4.1 Neutrino mixing angles in CSD

As discussed in Section.3.2, CSD corresponds to SD with the constraints given

by Eqs.(3.17-3.20). In the CSD limit, there are no NLO corrections to the TB

neutrino mixing angles. However, in practice, the large 3-3 Yukawa coupling (c′)

may be expected to lead to a non-zero m1, and in this case the TB mixing angles

would be expected to be subject to NNLO corrections. Using the analytic results,

derived in the previous section, in SD to NLO and NNLO, we can verify that the

NLO corrections vanish in all cases for CSD leaving only the NNLO corrections.

3.4.1.1 The atmospheric angle

We can write the atmospheric angle, given by Eq.(3.27), in CSD as,

tan(θ23)CSD ≈ 1 + Re (γCSD), (3.43)

which involves a correction γ given by Eq.(3.28). This correction depends on the

NLO parameters εi and the NNLO parameters ηi presented in Eq.(3.25). The CSD

conditions, given by Eqs.(3.17-3.20), imply that the εi are equal (ε2 = ε3 = −ε1)

and δ = 0. From Eq.(3.28), it is clear that the NLO contributions to γ described

by the εi cancel. This result implies that the atmospheric angle is corrected by γ

which only involves NNLO corrections and it is given by,

γCSD ≈ −η1

2
≈ −1

2

|c′|2Y
|e|2X ′ e

i2φc′ . (3.44)
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3.4.1.2 The reactor angle

For the reactor angle θ13, we only need to consider the expression valid in the small

d limit given by Eq.(3.34) since the other limit contradicts with CSD. Imposing

the CSD conditions in Eqs.(3.17-3.20), the LO result for the reactor angle (θ0
13)

becomes exactly zero as can seen from Eq.(3.8). As a result, the first term of

Eq.(3.34) vanishes. The third term also vanishes for CSD and we are only left

with the second term of order ηε,

θCSD13 ≈ s0
23ε5Re(γ

CSD) =
1

4
√

2

|b|2Y 2|c′|2
|e|4XX ′ cos(2φc′). (3.45)

The above analytic result implies that the reactor angle is given by a term pro-

portional to NNLO.NLO corrections.

3.4.1.3 The solar angle

We can also simplify the solar angle, given by Eq.(3.41), in the CSD case. This

angle can be expressed as,

tan(θ12)CSD ≈ 1√
2

(1− Re (ζ ′CSD)) (3.46)

which involves a correction ζ ′ given by Eq.(3.42). We can simplify this parameter

in this limit to get,

ζ ′CSD ≈ 1

3

(
γCSD

2
+ ζCSD1 + ζCSD2

)
. (3.47)

which depends on γCSD as well as the parameters ζ1, ζ2 presented in Eqs.(3.38,3.39).

We note that ξ′ also depends on the small parameter β, through ξ2, which is given

by Eq.(3.31). The parameter γCSD takes the simplified form, which is presented

in Eq.(3.44). The remaining parameters β, ζ1, ζ2, given by Eqs.(3.31, 3.38, 3.39),

can also be simplified in CSD and take the following forms,

βCSD ≈ −γCSD, (3.48)

ζCSD1 ≈ −γ
CSD

2
, (3.49)

ζCSD2 ≈ 1

2

|c′|2X
|a|2X ′ e

i2φc′ . (3.50)



Chapter 3 NLO and NNLO Corrections to Neutrino Parameters 35

We also note that the NLO corrections vanish in this case and the solar angle is

corrected only by NNLO corrections.

3.4.2 Neutrino mixing angles in PCSD

As discussed in Section 3.2.2, PCSD is similar to the CSD case defined by Eqs.(3.17-

3.20), but with a non-zero value of 1-1 Yukawa coupling d. Similarly to the results

found in the case of CSD, we shall see that the mixing angles derived in the PCSD

case are only corrected by NNLO corrections while the NLO corrections vanish.

3.4.2.1 The atmospheric angle

In the PCSD case, the atmospheric angle given by Eq.(3.27) becomes,

tan(θ23)PCSD ≈ 1 + Re (γPCSD). (3.51)

The small parameter γ in this case is identical to the case of CSD,

γPCSD = γCSD. (3.52)

This result implies that the atmospheric angle correction only involves NNLO

corrections, as in the case of CSD.

3.4.2.2 The reactor angle

We can simplify the reactor angle θ13, presented in Eq.(3.30), in PCSD to find,

θPCSD13 ≈ θ0
13(1 + Re (γPCSD))− Re (γPCSD)

2

|b|2Y√
2|e|2X . (3.53)

where the LO expression for the reactor angle, in the large d limit, is given by

Eq.(3.14), and can be written as,

θ0
13 ≈

|d|√
2|e| . (3.54)

Therefore, the reactor angle only receives NNLO corrections, similar to the CSD

case.
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3.4.2.3 The solar angle

In the PCSD case, the solar angle, given by Eq.(3.41), can be simplified as

tan(θ12)PCSD ≈ 1√
2

(1− Re (ζ ′PCSD)), (3.55)

which involves a small correction ζ ′ given by Eq.(3.42), which we approximate here

to,

ζ ′PCSD ≈ 1

3

(
γPCSD

2
+ ζPCSD1 + ζPCSD2

)
. (3.56)

The parameters ζ1, ζ2 can be simplified in the PCSD case as,

ζPCSD1 ≈ γPCSD(1 + θ0
13

√
2|e|2X
|b|2Y ) (3.57)

ζPCSD2 ≈ ζCSD2 +
√

2θ0
13γ

PCSD + (θ0
13)2, (3.58)

where the LO expression for the reactor angle (θ0
13) is given by Eq.(3.54). We note

that the NLO corrections also vanish for the solar angle in the PCSD case however

there is a correction of order (θ0
13)2. The presence of the (θ0

13)2 correction is due

to the difference in the diagonalisation procedure between 2-3 and 1-3 elements

of the neutrino mass. We note that, for the PCSD case, all corrections to the

neutrino mixing angles vanish at NLO, with the NNLO corrections remaining.

3.5 Numerical results

In the previous section, analytic expressions of the neutrino mixing angles, in-

volving NLO and NNLO corrections, were derived. Approximate results in the

special SD cases (CSD and PCSD) were also presented and the NLO corrections

vanished in both cases. In this section, we evaluate the analytic results for two

different numerical GUT inspired models of [7, 10] previously studied in [45]. The

first model is of light sequential dominance (LSD) with the lightest right-handed

neutrino having the dominant contribution to the atmospheric neutrino mass. The

second model is of heavy sequential dominance (HSD) [42, 43] where the heavi-

est right-handed neutrino gives the dominant contribution to the neutrino mass.

We present a brief introduction to the two models. We then present numerical

results for the neutrino mixing angles as well as the neutrino masses, presented in

Appendix B. We also compare the numerical results to those obtained using the

MPT/REAP package.
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3.5.1 Results for the LSD model

The LSD model, we consider in this section, is a simple realistic model based on

the family symmetry SO(3) and Pati-Salam unification[7]. Heavy Higgs super-

fields H,H are introduced in order to break the Pati-Salam symmetry to the SM.

The family symmetry is spontaneously broken (SO(3) → SO(2) → Nothing) by

introducing flavon fields φi (i = {1, 2, 3}), φ23, φ123 with the following vacuum

alignment in order to achieve tri-bimaximal neutrino mixing,

φ1 =

 1

0

0

 , φ2 =

 0

1

0

 , φ3 =

 0

0

1

 , φ23 =

 0

1

−1

 , φ123 =

 1

1

1

 .

The Yukawa matrices can be obtained from the leading Yukawa operators (these

operators are listed in [7]) by considering the dominance of right handed up and

down messenger mass scales over left-handed.

Md ≈ 1

2
Mu �ML

Symmetry breaking effects allow the following numerical values for the expansion

parameters associated with φ23 where the fields are assumed to be replaced by

their vevs,

ε =
φ23

Mu
≈ 0.05, ε =

φ23

Md
≈ 0.15.

Numerical values are also found for the expansion parameters associated with the

remaining flavons. Using these numerical values together with the leading Yukawa

operators [7], the following Dirac neutrino Yukawa matrix can be achieved,

Y ν
LR ≈

 0 y2ε
3 y′′3ε

3

y1ε
3 y2ε

3 0.34y′3ε
2

−y1ε
3 y2ε

3 y3ε
− 1

2

 , (3.59)

where the complex Yukawa couplings are written as, yi = |yi|eiδi . Using the

Majorana operators [7], the right-handed Majorana matrix takes the following

form

MR =

 pε6 0 0

0 qε6 0

0 0 1

M3, (3.60)
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where p, q are complex couplings and the leading heavy mass M3 is given in terms

of the Higgs vev and the neutrino messenger mass scale (Mν = Mu) as,

M3 =
〈H〉2
Mν

We can obtain numerical expressions for the neutrino Majorana mass matrix and

the neutrino Yukawa matrix by taking the following values for the parameters

y1, y2, y3, p, q,

y1 = 1.7, y2 = 0.65, y3 = 1.5, p = 0.32, q = 0.45. (3.61)

These values were chosen so that the light sequential dominance relation, given by

Eq.(3.5), is satisfied.

The above choice of values gives the following diagonal right-handed neutrino

Majorana mass matrix MRR,

MRR =

 5.1× 107 0 0

0 7.05× 107 0

0 0 1016

 . (3.62)

In addition to Eq.(3.59), we can write the Dirac neutrino Yukawa matrix as,

Y ν
LR =

 d a 0

e b 0

f c c′

 , (3.63)

3.5.1.1 The CSD case

We consider the LSD model, presented in the previous section, in the special case

of CSD. We take the complex Yukawa coupling d to be zero as required by the CSD

conditions. We also take the Yukawa couplings in the second column of Eq.(3.63)

such that |a| = |b| = |c| = 8.125× 10−5. In addition to this, we take the absolute

values of the couplings e, f to be |e| = |f | = 2.125 × 10−4 while the value of the

3-3 Yukawa coupling c′ is taken to be |c′| = 0.5809. We choose all the phases of

the Yukawa couplings to be zero except φe (φe = π).

Numerical results for the mixing angles, evaluated using the analytic formulae, are

evaluated in the case of CSD and presented in Tab.(3.1). This table also shows
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numerical results obtained using MPT/REAP package [16, 46], which appear to

be very close to the ones obtained through the analytic approach. We note that

here and in the remainder of this chapter, the MPT/REAP results were evaluated

using the MPT package without considering RG running. As can be seen from

Tab.(3.1), all the values of the mixing angles are slightly deviated from their TB

values and this is mainly due to the presence of the non-zero 3-3 Yukawa coupling

c′.3 In addition to this, we present numerical values for the neutrino masses m1,m2

and m3 given by Eqs.(B.13,B.14, B.15), using both MPT/REAP and the analytic

formulae. As presented in Tab.(3.1), we can see that the MPT/REAP and the

analytic results are very close particularly in the case of m2.

Parameter |d| θ23( ◦) θ13( ◦) θ12( ◦) m1 (eV) m2 (eV) m3 (eV)
Analytic 0 44.44 0.04 33.75 0.00015 0.0088 0.055
MPT/REAP 0 44.38 0.05 33.69 0.00016 0.0088 0.054

Table 3.1: Numerical results for the mixing angles and masses, evaluated in
the CSD case with c′ 6= 0, for a model with light sequential dominance. Analytic

results as well as MPT/ REAP results are presented.

3.5.1.2 The PCSD case

We consider the previous LSD model in the case of PCSD with non-zero Yukawa

coupling d = 0.2|e|, |e| = 2.125×10−4 and |c′| = 0. Keeping all the other conditions

of CSD satisfied as outlined in Section 3.5.1.1, we found that the numerical values

of all the mixing angles are deviated from their TB values particularly the reactor

angle θ13 which becomes larger than zero and takes a value of 8.22o as shown in

Tab.(3.2). This large value satisfies the predictions of TBR mixing and it is in

agreement with the most recent experimental results [12, 47].

MPT/REAP results for the neutrino mixing angles in this case are slightly different

than the analytic results as presented in Tab.(3.2). This is mainly due to the

approximate nature of the diagonalisation procedure that we followed in this thesis.

Tab.(3.2) also shows numerical results for the neutrino masses m1,m2 and m3

evaluated using both MPT/REAP and the analytic expressions. As expected,

the neutrino mass m1 is exactly zero in this case due to the vanishing NNLO

corrections. The results for the masses m2,m3 in the analytic case are slightly

different than the MPT/REAP case as a result of the different diagonalisation

procedures.

3In the limit c′ = 0, the analytic results give exact TB values (θ23 = 45o, θ12 = 35.26o, θ13 =
0.00o).
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Parameter |d| θ23( ◦) θ13( ◦) θ12( ◦) m1 (eV) m2 (eV) m3 (eV)
Analytic 0.2|e| 45.00 8.10 35.08 0 0.0085 0.0538
MPT/REAP 0.2|e| 44.29 8.53 34.89 0 0.0084 0.054

Table 3.2: Numerical results for the neutrino mixing angles and masses,
evaluated in the PCSD case for a model with light sequential dominance, with
c′ = 0 and d = 0.2|e|. Analytic results as well as MPT/REAP results are

presented.

In order to compare our numerical values to experimental data, we present nu-

merical results for the difference in the squares of neutrino masses ∆m2
sol and

∆m2
atm, evaluated for the LSD model, as shown in Tab.(3.3). These results are

evaluated at the SD cases using both the analytic results as well as MPT/REAP.

The numerical results, as shown in Tab.(3.3), are within the experimental ranges

presented in [47] particularly for the value of ∆m2
sol at CSD which is close to the

best fit value of 7.6× 10−5eV 2.

Parameter Analytic MPT/REAP Analytic MPT/REAP
SD case CSD CSD PCSD PCSD
∆m2

sol (eV 2) 7.5× 10−5 7.5× 10−5 7.3× 10−5 7.1× 10−5

∆m2
atm (eV 2) 2.11× 10−3 2.04× 10−3 2.05× 10−3 2.1× 10−3

Table 3.3: Analytic and MPT/REAP numerical results of the difference in the
squares of neutrino masses (∆m2

sol and ∆m2
atm) evaluated for the LSD model.

The results are presented at CSD with non-zero c′ as well as the PCSD case
with zero c′ and non-zero coupling |d| = 0.2|e|.

3.5.2 Results for the HSD model

To check the generality of our numerical results, we consider another model with

heavy sequential dominance (HSD). The right-handed neutrino Majorana mass

matrix MRR, in this case, is given by,

MRR =

 3.991× 108 0 0

0 5.8× 1010 0

0 0 5.021× 1014

 . (3.64)

This model satisfies HSD where the dominant contribution to the neutrino mass is

coming from the heaviest right-handed neutrino. The neutrino Yukawa matrix is

of the form given in Eq.(3.63) with the following values of the Yukawa couplings:

|a| = |b| = |c| = 2.401× 10−3, |e| = |f | = 0.677 and |c′| = 2.992× 10−5. Similarly
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to the LSD model, we take all the phases of the Yukawa couplings to be zero

except the coupling e (φe = π).

Analytic and MPT/REAP results of the mixing angles and masses, in CSD, are

presented and compared as shown in Tab.(3.4). We note that, for this model, the

values of the mixing angles are closer to their TB values compared to the LSD

model, which is mainly due to the smallness of the 3-3 Yukawa coupling c′ in this

case. We also present results for the PCSD case with non-zero d, as shown in

Tab.(3.5), and similar to the LSD model, the reactor angle is found to be large

and within the recent experimental range presented in [12]. The neutrino mass

m1 is exactly zero at the PCSD case with c′ = 0 as expected.

Parameter |d| θ23( ◦) θ13( ◦) θ12( ◦) m1 (eV) m2 (eV) m3 (eV)
Analytic 0 44.96 0.003 35.18 1.01× 10−5 0.009 0.055
MPT/REAP 0 44.96 0.003 35.16 1.1× 10−5 0.009 0.055

Table 3.4: Numerical results for the neutrino mixing angles and masses,
evaluated in CSD with c′ 6= 0, for a model with heavy sequential dominance.

Analytic results as well as MPT/REAP results are presented.

Parameter |d| θ23( ◦) θ13( ◦) θ12( ◦) m1 (eV) m2 (eV) m3 (eV)
Analytic 0.2|e| 45.00 8.10 35.08 0 0.009 0.055
MPT/REAP 0.2|e| 44.27 8.55 34.89 0 0.0089 0.056

Table 3.5: Numerical results for the neutrino mixing angles and masses,
evaluated in the PCSD case for a model with heavy sequential dominance, with
c′ = 0 and d = 0.2|e|. Analytic results as well as MPT/REAP results are

presented.

Similarly to the LSD model, we present numerical results for the difference in

the squares of neutrino masses ∆m2
sol and ∆m2

atm, evaluated for the HSD model,

as shown in Tab.(3.6). The results for this model, which are also presented at

both SD cases using analytic results as well as MPT/REAP, are also within the

experimental ranges presented in [47]. We note that the values of ∆m2
sol, in all

cases, are closer to the upper limit of the 3σ experimental range [47].

3.6 Summary

In this chapter, we discussed Sequential Dominance (SD) which represents an

elegant way of obtaining large atmospheric and solar angles, with hierarchical

neutrino masses, in the framework of type I see-saw mechanism. We also discussed
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Parameter Analytic MPT/REAP Analytic MPT/REAP
SD case CSD CSD PCSD PCSD
∆m2

sol (eV 2) 8.2× 10−5 8.15× 10−5 8.2× 10−5 8× 10−5

∆m2
atm (eV 2) 2.162× 10−3 2.13× 10−3 2.16× 10−3 2.2× 10−3

Table 3.6: Analytic and MPT/REAP numerical results of the difference in the
squares of neutrino masses (∆m2

sol and ∆m2
atm) evaluated for the HSD model.

The results are presented at CSD with non-zero c′ as well as the PCSD case
with zero c′ and non-zero coupling |d| = 0.2|e|.

the two special cases of SD (CSD and PCSD). We derived analytic expressions for

the neutrino mixing angles, including the NLO and NNLO corrections arising from

the second lightest and lightest neutrino masses, in the general SD case as well as

CSD and PCSD. We found that the NLO corrections to the neutrino mixing angles

vanish in the case of CSD. In the PCSD case, the NLO corrections to neutrino

mixing angles are suppressed by the small reactor angle and therefore the mixing

angles only receive NNLO corrections.

We evaluated the analytic results for two GUT inspired models of so-called LSD

type and HSD type including non-zero 3-3 Yukawa coupling in the case of CSD. For

both models the analytic results agree well with the numerical results obtained

using MPT tool provided with MPT/REAP. In the CSD case, the absence of

NLO corrections as well as the dependence of the neutrino mixing angles on the

NNLO corrections were confirmed numerically. In the PCSD case with zero 3-3

Yukawa coupling, for both numerical models, we found that the numerical results

for the solar and atmospheric angles remain close to their TB values while the

reactor angle is much larger than zero. This result is in good agreement with

the predictions of TBR mixing in the absence or smallness of charged lepton

corrections, RG effects and canonical normalisation corrections. They are also

in agreement with the most recent experimental results presented in [12].

In PCSD, the comparison between the analytical results and the numerical val-

ues using MPT/REAP showed small differences, which are however within the

expected range due to the approximate nature of the diagonalisation procedure

followed in this work. Explicitly, θ12 from the analytical results is found to be

larger by about 0.2o than the MPT/REAP value, θ23 is larger by 0.7o while the

reactor angle θ13 is smaller by about 0.4o than the MPT/REAP value for both

models.

In addition to evaluating the analytic formulae for the neutrino mixing angles,

we also presented numerical results for the neutrino masses m1,m2,m3 as well as
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the difference in the squares of neutrino masses (∆m2
sol and ∆m2

atm), for both the

LSD and the HSD models. We found that the numerical results using the analytic

expressions as well as the MPT/REAP package were close and the values of the

difference in mass squared were in agreement with the most recent experimental

results [47].



Chapter 4

RG Running Effects on Neutrino

Parameters

In Quantum Field Theory, the coupling constants are energy dependent both in

QCD and QED. For instance, in the case of QED, there are one loop corrections

affecting an electron or a photon propagating in vacuum. Physically, this means

that there are pairs of virtual electron-positron causing a screening effect of the

bare electron charge. There are essentially three one-loop divergent diagrams in

QED (ultraviolet divergences) as shown in Fig.(4.1). These divergent terms, which

are dependent on the momentum of the external lines, must be regulated and

removed. This is handled by the process of regularisation and also by renormalising

the bare quantities of the theory such as the coupling. After performing these

procedures, the ultraviolet divergences can be absorbed in the coupling constant

of the theory and therefore the coupling becomes momentum dependent.

In general, Renormalisation Group (GR) represents a method used in order to

describe how the dynamics of a particular system or model change as a function

of the energy scale. This is a very powerful tool since it allows us to study each

energy scale at a time. It is also useful for testing the predictions of theoretical

models against experimental results at low energy scale.

In this chapter, we study the effects of RG running and charged lepton corrections

on neutrino mixing parameters. We start by looking at a numerical example of

LSD type to check the reliability of the sum rules, derived in chapter 2, at low

energy scale (MZ scale) [45]. In order to examine the generality of the numerical

results, we also study another numerical example satisfying HSD. The RG running

44



Chapter 4 RG Running Effects on Neutrino Parameters 45

was performed using a Mathematica package known as REAP [16]. A description

of this package is given in a later section.

+ + + · · ·

Figure 11: Electron propagator

The series (3.49) can also be rewritten as an equation

S(p) = S0(p) + S0(p)Σ(p)S(p) . (3.50)

Its solution is

S(p) =
1

S−1
0 (p)− Σ(p)

. (3.51)

Electron self-energy Σ(p) depends on a single vector p, and can have two γ-matrix struc-
tures: 1 and /p. When electron is massless, any diagram for Σ contains an odd number of
γ matrices, and the structure 1 cannot appear:

Σ(p) = /pΣV (p2) . (3.52)

This is due to helicity conservation. In massless QED, the electrons with helicity λ = ∓1
2
,

ψL,R =
1 ± γ5

2
ψ ,

cannot transform into each other. Operators with an odd number of γ matrices, like (3.52),
conserve helicity, and those with an even number of γ matrices flip helicity. Therefore, the
massless electron propagator has the form

S(p) =
1

1− ΣV (p2)

1

/p
. (3.53)

k + p

k

Figure 12: One-loop electron self-energy

Let’s calculate electron self-energy at one loop (Fig. 12):

−i/pΣV (p2) =

∫
ddk

(2π)d
ie0γ

µi
/k + /p

(k + p)2
ie0γ

ν−i

k2

(
gµν − ξ

kµkν

k2

)
, (3.54)
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3.4 Photon self-energy

Now we shall explicitly calculate photon self-energy at one loop (Fig. 10). The fermion
loop gives the factor −1, and

i(p2gµν − pµpν)Π(p2) = −
∫

ddk

(2π)d
Tr ie0γµi

/k + /p

(k + p)2
ie0γν

/k

k2
. (3.22)

To simplify finding the scalar function Π(p2), we contract in µ and ν. In d-dimensional
space–time

δµ
µ = d , (3.23)

and we obtain

Π(p2) =
−ie2

0

(d− 1)(−p2)

∫
ddk

(2π)d

Tr γµ(/k + /p)γµ/k

[−(k + p)2] (−k2)
. (3.24)

k + p

k

Figure 10: One-loop photon self-energy

Now we make a short digression and discuss γ matrices in d dimensions. Their defining
property is

γµγν + γνγµ = 2gµν . (3.25)

Therefore,
γµγ

µ = d . (3.26)

How to find γµ/aγµ? We anticommute γµ to the left:

γµ/aγµ = γµ(−γµ/a + 2aµ) = −(d− 2)/a . (3.27)

Similarly,

γµ/a/bγµ = γµ/a(−γµ/b + 2bµ) = (d− 2)/a/b + 2/b/a = 4a · b + (d− 4)/a/b , (3.28)

and

γµ/a/b/cγµ = γµ/a/b(−γµ/c + 2cµ) = −4a · b− (d− 4)/a/b/c + 2/c/a/b = −2/c/b/a− (d− 4)/a/b/c . (3.29)
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(b)

Therefore, charge renormalization in QED is determined by the photon field renormaliza-
tion:

Zα = Z−1
A . (3.77)

We know ZΓ at one loop from the Ward identity (3.76) and Zψ (3.64). Nevertheless,
let’s also find it by a direct calculation. This will be useful, because we’ll have to do
several similar calculations in QCD. We are only interested in the ultraviolet divergence
of the diagram in Fig. 15. This divergence is logarithmic. We may nullify all external
momenta, because terms which depend on these momenta are convergent:

ie0Λ
α =

∫
ddk

(2π)d
ie0γ

µi
/k

k2
ie0γ

αi
/k

k2
ie0γ

ν−i

k2

(
gµν − ξ

kµkν

k2

)
. (3.78)

Of course, we should introduce some infrared regularization, otherwise this diagram van-
ishes. We have

Λα = −ie2
0

∫
ddk

(2π)d

γµ/kγα/kγµ − ξk2γα

(k2)2
. (3.79)

Averaging over k directions:

/kγα/k → k2

d
γνγ

αγν ,

we obtain (4-dimensional γ-matrix algebra may be used)

Λα = −ie2
0a0γ

α

∫
ddk

(2π)d

1

(−k2)2
. (3.80)

Figure 15: One-loop QED vertex

Now let’s find the ultraviolet divergence (1/ε) of this integral, introducing a sharp
infrared cutoff into the Euclidean integral (we may use Ω4 (2.12) here)∫

ddk

(2π)d

1

(−k2)2

∣∣∣∣
UV

=
i

8π2

∫ ∞

λ

k−1−2εdk =
iλ−2ε

(4π)2ε
=

i

(4π)2

1

ε
. (3.81)

Any infrared regularization can be used; instead of a cut-off, we could insert a non-zero
mass, for example:∫

ddk

(2π)d

1

(−k2)2

∣∣∣∣
UV

=

∫
ddk

(2π)d

1

(m2 − k2)2
=

im−2ε

(4π)2
Γ(ε) =

i

(4π)2

1

ε
(3.82)
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Figure 4.1: QED one-loop diagrams including electron self energy, photon
self energy and QED vertex [48].

4.1 LSD numerical example

In order to study the RG corrections and reliability of the various sum rules, intro-

duced in chapter 2, numerically it is necessary to define the GUT scale matrices

rather specifically. In most of this chapter, we shall consider the same numerical

model as the one described in Section 3.5.1. In Section 4.4, however, we will con-

sider another numerical model leading to qualitatively similar results. In most of

the remainder of this chapter we shall take the right-handed neutrino Majorana

mass matrix MRR to be diagonal and similar to the one presented by Eq.(3.62),

MRR =

 5.1× 10−9 0 0

0 7.05× 10−9 0

0 0 1

M3, (4.1)

where M3 = 1016GeV . This is an example with light sequential dominance

where the lightest right handed neutrino is dominant [40, 42, 43]. Ignoring RGE

corrections to begin with, we find that precise tri-bimaximal neutrino mixing

(θν12 = 35.26 ◦, θν23 = 45.00 ◦, θν13 = 0.00 ◦) can be achieved with the Yukawa

matrix,

Y ν
LR =

 0 1.061667b 0.001

e b 0

−0.9799e b c3

 (4.2)

where b = 8.125× 10−5, e = 2.125× 10−4 and c3 = 0.5809. This matrix is similar

to the one presented by Eq.(3.63) but with some tuning in order to ensure that TB
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predictions are satisfied. These parameters also lead to the following values for the

neutrino masses: m1 = 1.75× 10−4eV , m2 = 8.67× 10−3eV , m3 = 4.95× 10−2eV ,

∆m2
atm = 2.37× 10−3eV 2 and ∆m2

sol = 7.52× 10−5eV 2.

The low energy pole masses of the quarks are all of the right order and given as

follows: mu = 1.22 MeV , md = 2.77 MeV , ms = 53 MeV , mc = 0.595 GeV ,

mb = 2.75 GeV and mt = 163.6 GeV . In order to satisfy these values at low

energy scale, REAP was used to perform the running of these masses from the

MZ scale to the GUT scale and the resulting quark Yukawa matrices Yu and Yd

at the GUT scale were taken as initial conditions for the running of the neutrino

mixing parameters and sum rules from the GUT scale to the MZ scale.

The above parameter choice approximately satisfies the CSD conditions in Eq.(3.17).

However small corrections are used in order to achieve TB neutrino mixing angles

to 2 decimal places. If the CSD conditions were imposed exactly we would find

instead θ12 = 33.97 ◦, θ23 = 44.38 ◦, θ13 = 0.059 ◦ and δ = 0 ◦ which are close

to, but not accurately equal to, the TB values. This is to be expected since the

SD relations are only accurate to leading order in m2/m3 [40, 42, 43]. We are

mainly interested in studying the deviations from exact TB neutrino mixing due

to charged lepton corrections and RG running, and therefore, we shall assume the

matrix given by Eq.(4.2) rather than the CSD conditions as the starting point for

our analysis. In this section, we will only consider the effects of charged lepton

corrections on the physical mixing angles where the neutrino mixing is precisely

tri-bimaximal. To study these effects, we shall use the REAP package previously

discussed. We will consider cabibbo-like charged corrections, to begin, where the

charged lepton Yukawa matrix is diagonal. We also discuss the more general

charged lepton correction including the angle θE23.

4.1.1 Cabibbo-like charged lepton corrections

As stated earlier, it is convenient to work in the basis where the charged lepton

Yukawa matrix is diagonal. Thus, assuming cabibbo-like charged lepton correc-

tions of the form of Eq.(2.24), the neutrino Yukawa matrix in the non-diagonal

charged lepton basis must be transformed to the diagonal charged lepton basis

according to:

Yν → Y ′ν = VeLYν . (4.3)

Hence the original neutrino Yukawa matrix in Eq.(4.2) must be rotated to the

diagonal charged lepton basis according to Eq.(4.3).
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Including the Cabibbo-like charged lepton corrections, physical tri-bimaximal mix-

ing only holds when θE12 = 0. However according to the sum rules for Γi, certain

combinations of mixing parameters sum to 35.262 ◦ for all values of the Cabibbo-

like charged lepton corrections. This is illustrated in Tabs.(4.1,4.2) where the

values of the mixing angles together with the Dirac phase and the sum rules Γ1,

Γ2, Γ3 at the GUT scale are presented for different values of θE12 and λE12. Γ1 was

found to be the most accurate sum rule at the GUT scale with a value of 35.262 ◦

exactly at all values of θE12 and λE12. However the error in all the sum rules is less

than about 0.1◦ in all the examples considered.

θE12 0 1 3 5 8
θ12 35.26 34.648 33.429 32.216 30.407
θ13 0.001 0.708 2.122 3.534 5.648
θ23 45.001 44.997 44.962 44.892 44.721
δ 0 210.204 210.82 211.492 212.672
Γ1 35.262 35.262 35.262 35.262 35.262
Γ2 35.262 35.26 35.247 35.217 35.133
Γ3 35.261 35.26 35.252 35.23 35.162

Table 4.1: Values of the neutrino mixing angles θ12, θ13 and θ23 together
with δ and the sum rules Γ1, Γ2 and Γ3 at the GUT scale, at λE12 = 30 ◦ and

tan(β) = 50. All the angles are in degrees.

λE12 0 7.5 15 30 45
θ12 31.72 31.752 31.846 32.216 32.8
θ13 3.534 3.534 3.534 3.534 3.534
θ23 44.892 44.892 44.892 44.892 44.892
δ 180 187.9 195.789 211.492 227.039
Γ1 35.262 35.262 35.262 35.262 35.262
Γ2 35.262 35.259 35.250 35.217 35.174
Γ3 35.254 35.253 35.248 35.230 35.208

Table 4.2: Values of the parameters: θ12, θ13,θ23, δ and the Γi sum rules at
the GUT scale. These values are found in degrees at θE12 = 5 ◦ and tan(β) = 50.

4.1.2 More general charged lepton corrections

In the previous subsection we saw that the sum rules arising from Cabibbo-like

charged lepton corrections are satisfied to excellent precision at the GUT scale,

for the considered LSD numerical example. In this section we introduce the case

of non-Cabibbo-like charged lepton corrections. To be precise we shall consider
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more general charged lepton corrections given by,

VeL ≈

 cθE12 −sθE12e−iλ
E
12 0

sθE12e
iλE12 cθE12 0

0 0 1


 1 0 0

0 cθE23 −sθE23e−iλ
E
23

0 sθE23e
iλE23 cθE23

 , (4.4)

where we have now allowed both θE23 and λE23 to be non zero. The neutrino Yukawa

matrix will be transformed to the diagonal charged lepton basis according to

Yν → Y ′ν = VeLYν , (4.5)

but now using the non-Cabibbo-like charged lepton rotations in Eq.(4.4). After

performing the charged lepton rotations in Eq.(4.5), values for the mixing angles

as well as the ξi parameters given by Eq.(2.33) can be calculated at the GUT scale.

Of course in the present case of non-Cabibbo-like charged lepton corrections the

third row deviation parameters ξ1, ξ2 and ξ3 are all expected to be non-zero at the

GUT scale. This implies that the sum rules given by Eq.(2.36) no longer apply

in the case of charged lepton corrections with non-zero θE23. The effects of non-

Cabibbo-like charged lepton corrections on the deviation parameters ξi is displayed

in Tab(4.3) using the original neutrino Yukawa matrix as before, namely Eq.(4.2),

but now with a small non-zero value of θE23 = 2◦, and with different values of the

new phase λE23.

Note that the effect of turning on the charged lepton correction θE23 will lead to a

correction of the physical lepton mixing angle θ23 but not θ12 (to leading order)

[7]. Therefore while the sum rules Γ1,2 and σ2 are violated by a non-zero θE23, the

sum rules Γ3 and σ1 are both insensitive to θE23. 1

λE23( ◦) |ξ1| |ξ2| |ξ3|
0 0.034 0.034 0.035
30 0.027 0.031 0.030

Table 4.3: Values of |ξ1|,|ξ2| and |ξ3| at the GUT scale for case of non-
Cabibbo-like charged lepton corrections with θE12 = 5 ◦, λE12 = 30 ◦, θE23 = 2 ◦

and tan(β) = 50, for different values of the phase λE23.

1The insensitivity of the sum rule σ1 to θE
23 is clearly seen numerically in Fig.(4.15) (b).
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4.2 Renormalization group running effects

Assuming that tri-bimaximal neutrino mixing holds in the framework of some uni-

fied theory, we expect Cabibbo-like charged lepton to give rise to corrections that

can be cast in the form of sum rule relations. However, as already indicated, such

sum rules are only strictly valid at the GUT scale, and will be subject to RG

corrections. In this section, we present the RG running results, for the neutrino

mixing angles and sum rules, from the GUT scale to the electroweak scale. For def-

initeness we shall assume the minimal supersymmetric standard model (MSSM),

with a SUSY breaking scale of 1 TeV, below which the SM is valid.

The RG running was performed using a Mathematica package known as REAP

(Renormalization of Group Evolution of Angles and Phases)[16]. This package

solves renormalisation group equations of neutrino quantities such as Yukawa ma-

trices and the gauge couplings [16]. It implements three models. The first one

is the Standard Model (SM) extended by an arbitrary number of right-handed

neutrinos to one-loop order. The second model is the Minimal Supersymmetric

Standard Model (MSSM) extended by an arbitrary number of right-handed neu-

trinos to one and two-loop order. MSSM thresholds are not considered here and

quarks are not integrated out for both this model and the SM. The last model

is the Two Higgs Doublet Model (2HDM) with a Z2 symmetry extended by an

arbitrary number of right-handed neutrinos. The β-functions are to one-loop order

and the Higgs vevs obey v2 = v2
1 +v2

2. In all these models, the calculated evolution

of the neutrino mixing parameters and mass eigenvalues can be achieved from the

running of the neutrino mass matrix.

Future neutrino experiments are expected to have high sensitivities and therefore

determining the RG corrections to neutrino mixing angles exactly, at the MZ

scale, is of great importance. These corrections were studied both theoretically

and numerically as presented in [16, 49]. In these papers, the mixing angles were

found to deviate from their TB values at the low energy scale particularly the

maximal angle θ23. We shall look at the deviations of the mixing angles as well

as the sum rules, presented in Chapter.2, for the LSD numerical model. We will

also comment on the validity of the sum rules, at the MZ scale compared to the

GUT scale, for each model. For the numerical results presented in this section,

we considered all the Majorana phases of the neutrino Yukawa matrix given by

Eq.(4.2) to be zero. We shall look at the case of non-zero Majorana phases in the

next section.
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4.2.1 Sum rules with Cabibbo-like charged lepton correc-

tions

4.2.1.1 Sum rules in terms of mixing angles

In this section, we study the RG running of the sum rules which result from

Cabibbo-like charged corrections. The neutrino Yukawa matrix is taken to be

of the form of Eq.(4.2) as before. The RG change in the quantities, defined for

a parameter P as ∆P = PMZ
− PMGUT

, was calculated for the lepton mixing

parameters and the Γi sum rules, and is presented in Tabs.(4.4,4.5). From the

results we see that the least precise sum rule Γ3 actually is subject to the smallest

RG running since it does not involve θ23 which runs the most.

The RG running of Γi is displayed in Figs.(4.2, 4.3, 4.4, 4.5) for tan(β) = 50. The

RG evolution of Γ1 and Γ3 was also plotted at different values of tan(β) as shown

in Figs.(4.6,4.7).

θE12 0 1 3 5 8
∆θ12 +0.391 +0.402 + 0.423 + 0.444 + 0.473
∆θ13 + 0.151 - 0.116 - 0.095 - 0.071 - 0.033
∆θ23 + 1 + 1.001 + 1.004 + 1.008 + 1.013
∆δ 0 + 7.453 + 2.126 + 1.181 + 0.62
∆Γ1 + 0.953 + 0.953 + 0.953 + 0.953 + 0.953
∆Γ2 + 0.953 + 0.953 + 0.953 + 0.954 + 0.958
∆Γ3 + 0.237 + 0.259 + 0.301 + 0.345 + 0.412

Table 4.4: RG changes of the mixing parameters and sum rules Γ1, Γ2 and
Γ3 at λE12 = 30 ◦ and tan(β) = 50. All values are in degrees

λE12 0 7.5 15 30 45
∆θ12 + 0.454 + 0.453 + 0.452 + 0.444 + 0.432
∆θ13 - 0.092 - 0.091 - 0.087 - 0.071 - 0.046
∆θ23 + 1.009 + 1.009 + 1.009 + 1.008 + 1.006
∆δ 0 + 0.31 + 0.613 + 1.181 + 1.663
∆Γ1 + 0.953 + 0.953 + 0.953 + 0.953 + 0.953
∆Γ2 + 0.953 + 0.953 + 0.953 + 0.954 + 0.956
∆Γ3 + 0.362 + 0.36 + 0.357 + 0.345 + 0.326

Table 4.5: RG changes of the neutrino mixing angles, the Dirac phase δ and
the sum rules Γ1, Γ2 and Γ3 at θE12 = 5 ◦ and tan(β) = 50. All values are in

degrees.
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Figure 4.2: Evolution of sum rules Γ1,Γ2, Γ3 for Cabibbo-like charged lepton
corrections for large tan(β) = 50. This running is achieved at θE12 = 5 ◦ and

λE12 = 0 ◦. Note how the graphs for Γ1 and Γ2 completely overlap.
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Figure 4.3: Evolution of sum rules Γ1,Γ2, Γ3 for Cabibbo-like charged lepton
corrections at θE12 = 8 ◦ and λE12 = 0 ◦. This is achieved for large tan(β) = 50.
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Figure 4.4: Evolution of sum rules Γ1,Γ2, Γ3 for Cabibbo-like charged lepton
corrections at θE12 = 5 ◦ and λE12 = 15 ◦. This is achieved for large tan(β) = 50.
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Figure 4.5: Evolution of sum rules Γ1,Γ2, Γ3 for Cabibbo-like charged lepton
corrections at θE12 = 5 ◦ and λE12 = 30 ◦. This is achieved for large tan(β) = 50.
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Figure 4.6: Evolution of the sum rule Γ1 for Cabibbo-like charged lepton
corrections for various values of tan(β). The running is at θE12 = 5 ◦ and λE12 =
0 ◦. Note the expanded (and different) vertical scales used in this figure; in all

cases of tan(β), the corrections are less than one degree.
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Figure 4.7: Evolution of the sum rule Γ3 for Cabibbo-like charged lepton
corrections for various values of tan(β). The running is at θE12 = 5 ◦ and λE12 =

0 ◦.
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4.2.1.2 Sum rules in terms of TB deviation parameters

In this subsection, for completeness we study the evolution of the TB deviation

parameters defined in Eq.(2.18). Their RG evolution, for different values of θE12,

is shown in Figs.(4.8,4.9). In Figs.(4.10,4.11) we display the evolution of the sum

rules given by Eqs.(2.37, 2.38). From Figs.(4.10,4.11), it is seen that both σ1, σ2

are precisely equal to zero at the GUT scale for θE12 = 0 but differ by a tiny amount

for θE12, λ
E
12 6= 0. In this numerical example it is apparent that the sum rule σ2 is

slightly more stable than the original sum rule σ1, although there is not much more

stability. This is a manifestation of the fact that σ2 does not take into account the

running of r, which introduces an effect coming from the Majorana phases which

we have assumed to be zero in this example. Later on we shall discuss a numerical

example with non-zero Majorana phases where the enhanced stability of σ2 will

be more pronounced.
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Figure 4.8: Evolution of the deviation parameters r, s, a from the GUT scale
to the electroweak scale, in the absence of charged lepton corrections, for large

tan(β) = 50.
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Figure 4.9: Evolution of the deviation parameters r, s, a from the GUT
scale to the electroweak scale, in the presence of Cabibbo-like charged lepton
corrections, for large tan(β) = 50. The values of charged lepton parameters are:

θE12 = 5 ◦ and λE12 = 15 ◦.
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Figure 4.10: Evolution of the sum rules σ1 and σ2 from the GUT scale to the
electroweak scale, in the absence of charged lepton corrections (θE12 = 0 ◦ and

λE12 = 0 ◦), for large tan(β) = 50.
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Figure 4.11: Evolution of the sum rules σ1 and σ2 from the GUT scale to the
electroweak scale, in the presence of Cabibbo-like charged lepton corrections,
for large tan(β) = 50. The values of charged lepton parameters are: θE12 = 5 ◦

and λE12 = 30 ◦.

4.2.2 Sum rules with more general charged lepton correc-

tions including θE23

Finally in this subsection we study the evolution of the ξi parameters for the case of

charged lepton corrections of the more general form in Eq.(4.4). In Fig.(4.12), we

show the RG running of the parameters ξ1, ξ2 and ξ3, given in terms of the mixing

angles in Eq.(2.34), for the case of Cabibbo-like charged lepton corrections. As

expected, for Cabibbo-like charged lepton corrections, these parameters are exactly

zero at the GUT scale for all values of θE12 and λE12, but then diverge from zero

due to the RG corrections. In Fig.(4.13), we now switch on the non-Cabibbo-like

charged lepton corrections by a small amount corresponding to θE23 = 2 ◦. In this

case we see that the parameters ξ1, ξ2 and ξ3 are all non zero at the GUT scale

and deviate even more at low energies due to RG running.

In Figs.(4.14,4.15), we show the running of the TB deviation parameters and the

sum rules σ1 and σ2 for the non-Cabibbo-like case with θE23 = 2 ◦. It is clear from

Fig.(4.15) that the σ1 sum rule is still valid at the GUT scale even for a non-zero

θ23, as remarked earlier.
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Figure 4.12: Evolution of the third row deviation parameters ξ1, ξ2 and ξ3

from the GUT scale to the electroweak scale, in the presence of Cabibbo-like
charged lepton corrections with θE12 = 5 ◦ and λE12 = 30 ◦, for large tan(β) = 50.
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Figure 4.13: Evolution of the third row deviation parameters ξ1, ξ2 and ξ3

from the GUT scale to the electroweak scale, in the presence of more general
charged lepton corrections with θE12 = 5 ◦ and λE12 = 30 ◦, θE23 = 2 ◦ and λE23 =

30 ◦, for large tan(β) = 50.
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Figure 4.14: Running of the TB deviation parameters r, a and s, from the
GUT scale to the electroweak scale, in the presence more general charged lepton
corrections with θE12 = 5 ◦, λE12 = 30 ◦, λE23 = 30 ◦, θE23 = 2 ◦, for large tan(β) =

50.

2 4 6 8 10 12 14 16
log10!Μ"GeV#

"0.01

"0.005

0

0.005

0.01

0.015

0.02

0.025

S
i
g
m
a
i
s
u
m
r
u
l
e
s

Σ1

Σ2

2 4 6 8 10 12 14 16
log10!Μ"GeV#

"0.01

"0.005

0

0.005

0.01

0.015

0.02

0.025

S
i
g
m
a
i
s
u
m
r
u
l
e
s

Figure 4.15: Running of the sum rules σ1, σ2, from the GUT scale to the
electroweak scale, in the presence more general charged lepton corrections with
θE12 = 5 ◦, λE12 = 30 ◦, λE23 = 30 ◦, θE23 = 2 ◦, for large tan(β) = 50. Note that
σ1 = 0 at the GUT scale even in the presence of the more general charged lepton

corrections.
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4.3 RG running with non-zero Majorana phases

So far we have presented results for a particular example with zero Majorana

phases. In this section, we present the running of the σi sum rules and the TB

deviation parameters where the neutrino Yukawa matrix is taken to be similar

to Eq.(4.2) with the same values for |b|, |e| and c3 but with non- zero Majorana

phases (δ1, δ2),

Y ν
LR =

 0 0.97282beiδ2 0.001

eeiδ1 beiδ2 0

−1.012eeiδ1 beiδ2 c3

 (4.6)

where we shall take the values of the phases δ1 and δ2 to be 120o, 60o respec-

tively. We take the right-handed Majorana mass matrix to be the same as the one

given in Eq.(4.1). The numerical value of the Yukawa couplings has been changed

slightly to compensate for the non-zero phases in order to once again yield ex-

act tri-bimaximal neutrino mixing at the GUT scale. This was done by changing

the corrections in the 12 and 31 elements of the above neutrino Yukawa matrix

compared to those given in Eq.(4.2).

In Figs.(4.16,4.17), we show results for the running of the sum rules σi and for the

deviation parameters r, a, s for the above example with non-zero Majorana phases.

In this example the σ2 sum rule is much more stable than σ1 as clearly shown in

Fig.(4.16). This shows that the question of the stability of the sum rule σ2 is

dependent on the choice of Majorana phases via the running of r. In particular

with this choice of Majorana phases the deviation parameters s, a and r all run less

as shown in Fig.(4.17), compared to the previous case with zero phases Fig.(4.8).

The Γi and ξi sum rules also change with the Majorana phases turned on but not

as much as σi sum rules. For instance, at θE12 = 5o and λE12 = 0o, we find that Γ1

and Γ2 get smaller by 0.05 degrees at the MZ scale compared to the case where

the phases are zero. Γ3 on the other hand gets larger by about 0.1 degrees. At

θE12 = 5o and λE12 = 30o, ξ1 and ξ2 get smaller by about 0.001 to 0.003 compared

to the zero phases case whereas ξ3 gets larger by 0.006.
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Figure 4.16: Running of the sum rules σ1, σ2, from the GUT scale to the
electroweak scale, in the presence of non zero Majorana phases (δ1 = 120o

and δ2 = 60o). The running is performed, without charged lepton corrections
(θE12 = 0 ◦, λE12 = 0 ◦), at tan(β) = 50.
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Figure 4.17: Running of the TB deviation parameters (r, a, s), from the GUT
scale to the electroweak scale, in the presence of non zero Majorana phases
(δ1 = 120o and δ2 = 60o). The running is performed, without charged lepton

corrections (θE12 = 0 ◦, λE12 = 0 ◦), at tan(β) = 50.
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4.4 RG running with heavy sequential dominance

So far all the numerical results have been based on a particular example inspired by

the models of [7, 10], namely the case where the GUT scale neutrino Yukawa ma-

trix has the form in Eq.(4.2), or the closely related form in Eq.(4.6) with non-zero

Majorana phases. In these examples the dominant contribution to atmospheric

neutrino mass is coming from the lightest right-handed neutrino via the see-saw

mechanism, a situation known as light sequential dominance (LSD) [42, 43]. In

order to test the generality of the results in this section we consider a quite differ-

ent example in which the dominant contribution to the atmospheric neutrino mass

is coming from the heaviest right-handed neutrino via the see-saw mechanism, a

situation known as heavy sequential dominance (HSD) [42, 43]. This example is

chosen since it the most qualitatively different to the example of LSD considered

previously, yet despite this we shall see that the numerical results for the correc-

tions to TB mixing are qualitatively similar to those encountered previously. This

gives us some confidence that our results and conclusions are not restricted to the

particular numerical example studied but are in fact applicable to a large class of

see-saw models based on hierarchical neutrino masses.

In the HSD example considered here the right handed neutrino Majorana matrix

as well as the neutrino Yukawa matrix are given by the following equations:

MRR =

 3.991× 10−6 0 0

0 5.800× 10−4 0

0 0 5.021

M3,

where M3 = 1014GeV . Ignoring RGE corrections to begin with, we find that

precise tri-bimaximal neutrino mixing at the GUT scale (θν12 = 35.26 ◦, θν23 =

45.00 ◦, θν13 = 0.00 ◦) can be achieved with the Yukawa matrix:

Y ν
LR =

 1.001× 10−7 1.0036 b 0

0 b −1.0013 e

2.992× 10−5 b e

 (4.7)

where b = 2.401× 10−3, e = 0.677. These parameters also lead to the following

values for the neutrino masses: ∆m2
atm = 2.47 × 10−3eV 2 and ∆m2

sol = 7.53 ×
10−5eV 2 which are well within the allowed experimental ranges.

Note that in the case of HSD the Yukawa couplings present in the neutrino Yukawa

matrix are larger than the previous case especially e which we take to be 0.677
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compared to 2.125×10−4 in the previous example. Furthermore there are similarly

two large Yukawa couplings in the third column of the Yukawa matrix. Moreover

the heaviest RH neutrino associated with these large Yukawa couplings has a mass

well below the GUT scale leading larger threshold corrections coming from it.

We assume charged lepton corrections of the form of Eq.(2.24), the neutrino

Yukawa matrix in the non-diagonal charged lepton basis is then transformed to

the diagonal charged lepton basis according to Eq.(4.3). Using the REAP package,

the running of Γi sum rules was performed from the GUT scale to low energy scale

and the results are shown in Figs.(4.18, 4.19, 4.20). From the Figs.(4.18) we can

see that, despite the larger threshold corrections, for tan(β) = 50, the RG running

of Γ3 is still small (about 0.4o) whereas that of Γ1 and Γ2 is about 1.3o, compared

to the results shown in Fig.(4.2) (nearly 1o). This suggests that, qualitatively, the

results obtained for the previous numerical example inspired by the GUT mod-

els in [7, 10] are expected to have wide applicability beyond the specific example

considered. Figs.(4.19, 4.20) show the running of the sum rules Γ1,Γ3 at different

values of tan(β). Similar to the previous model, we see that the RG corrections

for these sum rules, at the MZ scale, get smaller with smaller values of tan(β).
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Figure 4.18: Running of the sum rules Γi, from the GUT scale to the elec-
troweak scale, in the case of heavy sequential dominance. The running was
performed, for the case of Cabibbo-like charged lepton corrections (θE12 = 5 ◦,

λE12 = 0 ◦), at tan(β) = 50.
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Figure 4.19: Evolution of the sum rule Γ1, from the GUT scale to the elec-
troweak scale, in the case of heavy sequential dominance. The running was
performed, for various values of tan(β), for the case of Cabibbo-like charged

lepton corrections with θE12 = 5 ◦ and λE12 = 0 ◦.
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Figure 4.20: Evolution of the sum rule Γ3, from the GUT scale to the elec-
troweak scale, in the case of heavy sequential dominance. The running was
performed, for various values of tan(β), for the case of Cabibbo-like charged

lepton corrections with θE12 = 5 ◦ and λE12 = 0 ◦.
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4.5 Analytic approach to RG running

So far, all the results presented in this chapter have been based on a numerical

evaluation of the RG corrections using the REAP package. In order to investigate

the quantitative accuracy of the analytic approach, we shall compare the analytic

estimates of the RG effects for the LSD example presented in Section.4.1. For this

purpose it is sufficient to switch off the charged lepton corrections and study the

RG corrections to the neutrino mixing angles using the analytic approximations

in [16] which we then compare to the numerical results we obtained earlier in this

chapter, and which we also summarize here for convenience. In order to estimate

the RG corrections to the mixing angles, following [16] it is assumed that the (3,3)

matrix elements govern both the charged Yukawa matrix (Y e) and the neutrino

Yukawa matrix (Y ν)2 in the flavour basis in which the charged lepton mass matrix

is diagonal. Taking Y e ≈ diag(0, 0, yτ ) and Y ν ≈ diag(0, 0, yν3), one finds, to

leading log approximation, that there is a single parameter which governs the RG

corrections to all the mixing angles given by [37, 38]:

ηRG =
y2
τ

8π2
ln
MGUT

MZ

+
y2
ν3

8π2
ln
MGUT

M3

. (4.8)

Assuming tri-bimaximal neutrino mixing at the GUT scale, the low energy scale

parameters are then given approximately by:

sν12(MZ) =
1√
3

(1+
ηRG

6
) , sν23(MZ) =

1√
2

(1+
ηRG

4
) , sν13(MZ) =

ηRG

3

m2

m3

. (4.9)

We now apply the above analytic formalism to the LSD model defined in sec-

tion.4.1, and subsequently studied numerically in the earlier sections of this chap-

ter. In this model from Eq.(4.2) we see that yν3 = c3 ≈ 0.58 at the GUT scale.

We also find yτ = 0.33 and the mass ratio m2/m3 = 0.16 for the case tan(β) = 50.

Using these values, the mixing angles and the quantities (Γi) can be estimated

as presented in Tab.(4.6), where the analytic estimates are shown alongside the

numerical results for comparison.

It is interesting to compare the analytic results of the neutrino mixing angles and

sum rules at the MZ scale to the numerical ones in Tab.(4.6), assuming that they

take the precise TB mixing values at the GUT scale and setting all charged lepton

corrections to zero, for the LSD model described above. The results show that

2We have already noted that for some models such as HSD this is not the case for the neutrino
Yukawa matrix.
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Parameter θν12 θν23 θν13 Γ1 Γ2 Γ3

Analytic (o) 35.59 45.69 0.15 35.94 35.94 35.44
Numerical (o) 35.65 46.00 0.15 36.21 36.21 35.49

Table 4.6: A comparison between the analytic and numerical results for the
RG corrections to neutrino mixing angles at the MZ scale, assuming that they
take the precise TB mixing values at the GUT scale, for the LSD model de-

scribed in the body of the chapter with tan(β) = 50.

the numerical estimate of θν13 (which is equal to zero at the GUT scale) is very

accurately reproduced by the analytic approximation (indeed there is no difference

to 2 d.p.), and the RG correction to θν12 is also well reproduced with the analytic

estimate underestimating the correction by only 0.06 degrees. However the results

also show that there is a significant underestimate of θν23 with the analytically

estimated value at the MZ scale being less than the numerical value by about

0.3 degrees, resulting in the analytically estimated values for Γ1 and Γ2 being less

than the numerical values by about the same amount (0.3o). From the point of

view of the effects studied so far in this chapter (for example, note the precision

of the scales shown in the results in Fig.(4.2)), an error of 0.3o is undesirable and

therefore we would not wish to compromise the numerical results by being subject

to such unnecessary errors incurred when considering the analytic approach.

We remark that the origin of the discrepancy between the analytic estimates, cal-

culated in this section, and the numerical results, for the cases where the analytic

approach is reliable and applicable, is due to the fact that the analytic estimates

are based on the assumption that the Yukawa couplings yτ and yν3 are fixed at

their GUT scale values and do not run, whereas the numerical results allow for the

co-running of all the Yukawa couplings in the matrix (including the second family

Yukawa couplings), with the leading logs being effectively re-summed.

After calculating the analytic estimates of the RG corrections to the neutrino

mixing angles and sum rules, for the LSD model presented in Section.4.1, we

shall now summarise the reasons why we have chosen to study these corrections

numerically, rather than using the analytic estimates presented in [16]:

The first reason we follow the numerical approach is that, as we showed earlier,

some analytic estimates of RG effects which have ignored the effects of phases are

unreliable. For example, the main purpose of the work, presented in this chapter,

is to find out precisely how large the RG corrections are to sum rule relations

which have been proposed in the literature as presented in Section.2.8. Although

the RG corrections to such sum rules are expected to be small, they are certainly
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not negligible compared to the expected precision of future neutrino experiments,

and indeed this prompted the introduction of the modified sum rule in Eq.(2.38),

where the extra term compared to Eq.(2.37) was supposed to take into account

the RG corrections [37, 38]. However, it turns out that the new analytic term,

which ignores the effects of phases, is too simplistic. Indeed the numerical results in

Figs.(4.10, 4.16) clearly show that the extra term included in the analytic estimate

of the RG correction in Eq.(2.38) does not capture the phase dependence of the

RG correction to the original sum rule in Eq.(2.37). The numerical study in this

chapter has highlighted the shortcoming of analytic estimates of the RG corrections

to sum rules which do not include the phase dependence.

The second reason we follow the numerical approach, rather than an analytic ap-

proach, is that for some of the cases studied the analytic approach is simply not

applicable. The usual analytic approach is based on the assumption that only the

third family charged lepton and neutrino Yukawa couplings are taken into account

(while many analytic studies ignore neutrino Yukawa couplings and threshold ef-

fects altogether). Whilst the approximation of keeping only third family Yukawa

couplings is sufficient for some models, for example the LSD class of models, it

is certainly not sufficient for all classes of models. For example the HSD case

that we also study involves two large neutrino Yukawa couplings, and the analytic

estimates in [37, 38] do not directly apply to this case.

The third reason for following a numerical approach is a purely quantitative one,

namely, even for the cases where the analytic approach is reliable and applicable

(and we have already seen examples in the previous two paragraphs when it is

neither) we would like to obtain the best possible estimate of the RG corrections

which are the main focus of this work. If the sum rules are to be confronted

with experiment, it is important to have a reliable quantitative handle on the

RG corrections, and for this purpose it is necessary to go beyond the leading log

analytic approximation presented earlier in this section.

4.6 Summary

In this chapter, we have analyzed the effects of charged lepton corrections and

RG running on the low energy predictions of theories which accurately predict tri-

bimaximal neutrino mixing at the high energy scale. In GUT motivated examples

the charged lepton corrections are often Cabibbo-like and in this case the effect

of charged lepton corrections leads to a range of neutrino mixing sum rules at the
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GUT scale, given by the Γi sum rules in Eqs.(2.30,2.31,2.32), as well as the σi sum

rules expressed in terms of the deviation parameters in Eqs.(2.37, 2.38). We have

studied the RG running of such sum rules numerically for a specific numerical

example inspired by the GUT models in [7, 10], corresponding closely to CSD

with LSD. Our results indicate small but measurable effects for the two examples

studied. For example the Γ3 sum rule which at the GUT scale corresponds to

θ12− θ13 cos(δ) ≈ 35.3o becomes renormalized by about 0.4o even for large tan β =

50. We have also considered the effect on charged lepton corrections coming from

non-Cabibbo-like charged lepton corrections (due to non-zero θE23) and confirmed

that the sum rule σ1 is insensitive to θE23.

Even for a particular class of numerical model, such as the GUT-flavour inspired

LSD model considered, the numerical results will depend in general on the choice of

Majorana phases for that model. We have seen that switching on these Majorana

phases can alter significantly the running of the TB mixing deviation parameters

r, s, a as well as the sum rules such as σi. For example the sum rule σ2 which

includes the leading logarithmic RG corrections due to the running of s and a,

will have a Majorana phase dependence via the running of r which was neglected

in the derivation of σ2 [37]. Thus, the relative stability of σ2 as compared to σ1

turns out to be a Majorana phase dependent question.

Although most of the numerical results are based on a particular GUT-flavour

motivated LSD type of model, we have also considered similar results for a com-

pletely different type of model based on HSD. Overall we have found that the

RG running effects are quite small in both cases which suggests that qualitatively

similar results will apply to other models based on the Minimal Supersymmetric

Standard Model, extended to include the see-saw mechanism, with hierarchical

neutrino masses. These corrections, although small, they will nevertheless be im-

portant when comparing the neutrino mixing sum rules to the results of future

high precision neutrino oscillation experiments [50].
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Chapter 5

String Compactifications: An

Overview

In this chapter, we present a brief, nontechnical, review of string compactifications,

extra dimensions and moduli stabilisation. There are many excellent reviews that

discuss this subject extensively [51, 52, 53, 54, 55].

5.1 String theory

String theory is very attractive as it represents to date the only consistent frame-

work for unifying the Standard Model and gravity. It assumes that everything

in nature is made of one dimensional objects known as strings which can be ei-

ther closed as a loop or open with their ends attached to other extended objects

(branes). This means that in quantum field theory (QFT), all fields including

scalars, fermions and gauge bosons can be described as different vibrational modes

of these strings.

There are five known string theories in ten space-time dimensions [56]: type I, type

IIA, type IIB. heterotic E8×E8 and heterotic SO(32). Identifying the spectrum of

string theory is a complex subject. Here, we list the main fields for closed strings

which are the metric GMN , the dilaton φ, and the anti-symmetric tensor BMN .

The five string theories are all limits of an eleven dimensional theory known as

M-theory. This theory contains other dimensional extended objects called branes

or membranes. In certain limits, M-theory can be related to a particular type of

string theory by compactifying one dimension of space to get a ten dimensional

69
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theory. For instance, taking one of the space dimensions to be in the shape of a

circle, the theory becomes equivalent to type IIA string theory where the size of

the circle plays the role of string coupling (the dilaton). Another compactification

of M-theory, which yields Heterotic E8 × E8 in ten dimensions, is achieved by

taking the circle to have a Z2 symmetry. This is a simple illustration of the idea

of compactifying space dimensions in order to go from higher to lower dimensional

theories. There are also dualities which connect all string theories together, and

these are namely T, S and U duality. The existence of these dualities between

different types of string theory is very important in model building, particularly

when certain calculations in one theory are cumbersome. In such cases, one can

perform equivalent calculations in another string limit, then transform the calcu-

lations back to the more difficult limit of the relevant theory. All string theories

are described at low energy by effective Supergravity theories.

In order to obtain the correct phenomenology in four dimensions, string theories

are preferred to have N = 1 Supersymmetry in ten dimensions. Supersymmetry

is a non-trivial extension of the known symmetries of space and time (which are

described in special relativity by the Poincaré group). In model building, there

are various reasons why one should focus on theories with low energy N = 1

Supersymmetry. An important reason is that it gives rise to other extensions of the

Standard Model (SM) which would solve some of its shortcomings; for example, the

gauge hierarchy problem. One of these extensions is the Minimal Supersymmetric

Standard Model (MSSM) which embeds the SM within a supersymmetric theory.

Looking at string theory, we find that heterotic and type I theories possess N = 1

Supesymmetry in ten dimensions and contain a large number of gauge groups.

Therefore, these theories are good candidates for model building and they can

easily accommodate the ingredients of the SM. On the other hand, Type II theo-

ries seem to have N = 2 Supersymmetry in ten dimensions and very small gauge

groups. This poses a problem when trying to establish a four dimensional the-

ory starting from these theories. To generate the correct phenomenology at four

dimensions, we need to find a mechanism that breaks N = 2 to N = 1 Supersym-

metry.

The study of type II theories was revolutionised after the discovery of Dirichlet-

branes (D-branes)[57, 58]. These are extended objects that exist within the vacua

of these theories. The ends of the open strings are usually attached to the surfaces

of the branes while the closed strings, which are usually identified with gravity

fields, are free to move in ten dimensional space-time without necessarily being
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attached to branes. The dimension of a particular brane is related to the states

of the relevant theory that couples to it and we usually refer to a brane with its

space dimension as Dp brane. We also refer to it as a (p+ 1)-sub manifold of the

full space-time manifold in ten dimensions. This subject is not within the scope

of this thesis and, therefore, will not be discussed any further. We refer the reader

to the reviews [57, 58]

5.2 String compactifications

String theories are leading candidates for the unification of the SM with grav-

ity. However, they all exist in high dimensions that we cannot observe in our

four dimensional universe. This means that, in order to compare the physics of

these theories to our universe, we need to find a way of hiding the extra dimen-

sions so that we can only see the four dimensions required by our universe. This

is known as compactification of space dimensions. Compactification means that

the extra dimensions are curled up with a very small radius (much smaller than

the lengths observed by high energy experiments). Compactifying the six extra

dimensions of string theories (these become seven when considering compactifi-

cations of M-theory), we eventually get a four dimensional theory as required by

phenomenology.

The idea of compactification is not a new one, it was first realised by Kaluza

and Klein [59, 60] where they introduced a fifth dimension, invisible in everyday

life. This gives a generalisation of general relativity to five dimensions. Before

we move on to string compactifications and their implications, let us first briefly

review Kaluza Klein reduction.

5.2.1 Kaluza Klein reduction

Kaluza Klein reduction [59, 60] represents the simplest type of compactification.

In order to review it, let us start by writing the action of Einstein-Hilbert space

in five dimensions (five dimensional gravity) as,

S = −
∫
M
d5X

√
−ĝR̂, (5.1)

where R̂ is the five dimensional Ricci scalar. The five dimensional metric is ĝMN

with indices M,N = 0, 1, 2, 3, 4. We consider the vacuum of this theory where
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the five dimensional space M can be written as a product of the four dimensional

space M4, with 4 dimensional coordinates xµ where {µ = 0, 1, 2, 3}, and a fifth

dimension y. The decomposition of the five dimensional metric can be written as

〈ĝMN〉dXMdXN = 〈gµν〉dxµdxν + 〈g55〉dydy (5.2)

where the quantities are written in terms of their vacuum expectation values and

gµν is the metric in four space-time dimensions.

We solve the Einstein equation R̂MN = 0 in order to see whether the theory admits

such compactification. The solutions are gµν = ηµν and g55 = 1.

The fields φ(x, y), which result by taking fluctuations about the vacuum of the

theory, can be written as a Fourier expansion in terms of the radius of the extra

dimension R. We take this extra dimension to be compact and periodic y ∈
[0, 2πR]. The fields φ(x, y) can then be written as,

φ(x, y) =
1√
2πR

+∞∑
n=−∞

φn(x)einy/R, (5.3)

The field φ satisfies the five dimensional equation of motion given by,

∂µ∂
µφ+ ∂2

yφ = 0. (5.4)

Substituting Eq.(5.3) in Eq.(5.4), we get

+∞∑
n=−∞

(
∂µ∂

µ − n2

R2

)
φn = 0. (5.5)

Taking the radius of the circle to be very small, we recover one massless scalar field,

φ0, and many excited fields with high masses, n/R. To specify an effective theory,

we consider the limit where the radius R vanishes, where we only keep the massless

field and truncate the other heavy modes (Kaluza- Klein modes). This procedure

is known as dimensional reduction and it can be generalised to the case of six or

seven extra dimensions. In such cases, a manifold of extra dimensions is integrated

out to leave an effective four dimensional theory. Kaluza-Klein reduction leads to

a four dimensional theory with the metric gµν , a gauge field Aµ and a scalar field

φ. the action of this theory is written as

S4d =

∫
S

d4x
√−g

(
R− 1

4
φ0Fµν(0)F

µν
(0) −

1

6φ2
0

∂µ∂
µφ0

)
, (5.6)
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where F
(0)
µν is the field strength of the zero mode gauge field. Looking at the above

action, we conclude that compactification of five dimensional gravity gives rise to

electromagnetism and four dimensional gravity. This is a simple example of the

idea of unification and represents the first successful step of unifying one of the SM

forces (electromagnetism) with gravity. We have seen how one extra dimension

can be successfully compactified to give a four dimensional theory. However, the

presence of the massless scalar field (dilaton) poses a major problem in these

constructions. This massless field predicts long range forces that may modify our

laws of physics.

The situation is more complicated when trying to follow this approach to com-

pactify the six extra dimensions corresponding to string theories (or seven extra

dimensions in M-theory constructions). In such cases, compactification leads to

a large number of massless scalars that are not observed in four dimensions. We

will come back to the problem of massless scalar fields and ways of resolving it in

later sections. The physics of the effective four dimensional theory that we obtain

after compactifying the extra dimensions depends greatly on the internal manifold

of the extra dimensions and its geometry. Since there are many ways of arranging

these extra dimensions, we may obtain various four dimensional theories start-

ing from the same high dimensional theory depending on the type of the internal

manifold considered each time.

5.2.2 Internal manifolds

As we stated in the previous section, the idea of compactification can be applied

to string theory, where the six extra dimensions span the geometry of the internal

manifold that we denote by M6. We also refer to the resulting four dimensional

manifold as M4. The manifold in ten dimensions can then be seen as a product

of the four and six dimensional manifolds (M =M4 ×M6). Similar to the case

of Kaluza Klein reduction, the metric decomposes as,

ds = e2A(y)gµνdx
µdxµ + gmndy

mdyn (5.7)

where the indices µ, ν run in four dimensions {0, 1, 2, 3} while the indices m,n run

in six dimensions {1, ..., 6}, gµν is the four dimensional metric while gmn is any six

dimensional metric. The parameter A(y) is a warp factor which is a function of

the internal coordinates.
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Compactifications of string or M-theory are required to preserve minimal Super-

symmetry such that the four dimensional theory is supersymmetric at the compact-

ification scale. Supersymmetry is then spontaneously broken by other mechanisms

such as fluxes or non-perturbative effects. This condition upon the symmetry of

the effective four dimensional theory restricts the choice of the internal geome-

try, which effectively means that only few internal manifolds can give rise to the

required phenomenology at four dimensions.

Toroidal compactifications are not a very good choice for compactifying the extra

dimensions, as they give rise to many Supersymmetries, more than it is required

phenomenologically at low energy. In order to get an effective four dimensional

theory with physics comparable to that of our observed universe, we need to

find other types of internal manifolds. A more interesting and simple type of

manifolds which is widely used in string and M-theory compactifications is known

as Calabi-Yau manifold. Calabi-Yau manifolds (CYn) are compact, Riemannian

with SU(n) ⊂ SO(2n) holonomy. The holonomy goup H is defined in simple

terms as a set of matrices which are achieved when considering parallel transport

along a closed curve on an n-dimensional manifold. In the case of heterotic and

type I string theories, d = 4,N = 1 is achieved by taking the six dimensional

manifold to be a Calabi-Yau three-fold (CY3) with SU(3) holonomy. On the other

hand, compactifications of type II theories, on the same type of manifold, give

rise to d = 4,N = 2 Supersymmetry starting from a 10-d theory with N = 2

Supersymmetry.

Orientifold projections are a good mechanism for breaking Supersymmetry from

N = 2 down to N = 1 Supersymmetry for type II theories. These are Z2 pro-

jections with parity operation on the type II string world-sheet. The projection

acts by transforming left-moving vibrations into right-moving ones. The other way

around is also achieved, and the right-moving vibrations are transformed into left-

moving ones. In general, the number of Supersymmetries is related to the number

of massless gravitinos in the four dimensional theory. This means that breaking

Supersymmetry from N = 2 to N = 1, in type II theories, corresponds to one of

the gravitinos present becoming massive. The presence of intersecting D-branes

in these theories preserves some of Supersymmetry (N = 1) at low energy. One

example of such constructions is type IIB orientifold compactifications on D7 and

D3 branes. We note that breaking N = 1 Supersymmetry also corresponds to

the gravitino becoming massive. In this case, determining the right mass of the

gravitino is very important in the study of phenomenologically viable models as

we will see in the next chapter.
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Similarly to the simple case of one extra dimension, Calabi Yau compactifications

of ten dimensional string theories involve the decomposition of fields of the theory

into four dimensional components. For instance, the 2-form field BMN decomposes

into Bµν which gives only one zero mode. Bµn and Bmn, on the other hand, give

rise to a number of vector and scalar modes respectively. The metric gMN also

decomposes into 3 fields including gµν , which gives rise to one zero mode, identified

as the lower dimensional graviton. The field gmn gives rise to a number of massless

scalar modes at low dimensions. Some of these scalar fields are known as moduli

fields. Calabi-Yau compactification is a vast subject on its own and involves many

sub-fields such as differential geometry. We will not consider the technical details

of such compactifications in this thesis; for a more thorough discussion, the reader

is referred to the reviews [51, 56].

5.2.3 Moduli fields

Here and in the remainder of this thesis, we refer to the massless scalars, result-

ing from string compactifications to four dimensions, as φj. These scalars, which

parameterise continuous families of four dimensional vacua and describe the ge-

ometry of the compact manifolds, are known as moduli fields.1 Moduli are very

important in identifying the configuration of internal manifolds in string theory

compactifications. To understand the nature of the moduli space, let us consider

the moduli space of Ricci flat metrics. This space characterises various choices

of the Ricci metric gij that can be considered in order to achieve a valid string

compactification. It is possible to vary this metric, locally, from one choice to

another at any point in four dimensions. These variations must be described by

fields. These variations between different metrics are, in fact, what gives rise to

massless scalar fields which together form the moduli space. This is similar to the

case of spontaneous symmetry breaking which leads to a massless field (Goldstone

mode). The only diference is that moduli fields can exist without a symmetry.

In general, there are two types of scalar fields: neutral fields and charged matter

fields. In this thesis, we only consider neutral scalars whose interactions are mainly

gravitational. Geometrically, the moduli fields that result from Calabi-Yau com-

pactifications parameterise the space of the associated internal manifolds. Their

expectation values at the vacuum (Vevs) of the four dimensional effective theory

represent the size and shape of the compact manifold. One type of these moduli

1Throughout this thesis, we will refer to scalar fields resulting from string compactifications
as moduli even after a potential is generated for them.
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is called Kähler moduli since they modify the structure of the Kähler manifold.

There are also moduli that alter the complex structure and these are known as

complex structure moduli. There are other types of moduli such as brane moduli,

which represent positions of the branes involved in the compactification process.

We note that this type of moduli will not be considered in this thesis.

The fact that these moduli fields are massless presents a serious problem for string

phenomenology, as stated earlier. The existence of these massless fields means

that they would couple to matter by mediating new long range forces. These

extra forces are problematic, since they can modify the laws of physics of our four

dimensional universe, that have already been confirmed by experiments. In other

words, if these fields couple to varying types of matter, they would give rise to

different forces since their coupling is not universal, which violates the equivalence

theorem. In order to have a realistic theory and resolve this problem, we need to

find a way of generating a potential through which they can be trapped.

Values of four dimensional quantities, such as coupling constants, depend on the

values that the scalar fields take at the minimum of their potential. Since the

values of these quantities can be measured by experiments, generating a potential

for the moduli is crucial in order to have a viable model. Moduli fields are,

usually, fixed at values where one of the minima of the potential lies (in cases

where the potential exhibits such minima). This process of generating a potential

and stabilising the scalar fields at phenomenologically viable minima is known as

moduli stabilisation, which is one of the main themes of this thesis.

Generating a potential for the moduli fields is not only important in string phe-

nomenology but also in inflation. The presence of this potential is important for

realising inflationary scenarios in the framework of string theory since, without it,

it would not be possible for the moduli fields to be trapped. However, even after

generating a potential, the problem of flat directions can still arise. Uplifting these

flat direction is also crucial since, otherwise, they would evolve forever and cause

other more serious problems such as decompactification of internal dimensions.

Our understanding of flux compactifications has led to important progress in this

field in recent years. We will come back to this discussion in Chapter 7.

A typical Calabi-Yau compactification leads to hundreds of moduli fields, which

makes it very difficult to study such models and their phenomenological impli-

cations. The existence of these moduli fields gives rise to many vacua in four

dimensions, which means that we may find many possibilities of low dimensional

physics depending on our choice of the internal manifold. These vacua may be
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classified according to the value of the potential Vmin as: Minkowski (Vmin = 0),

deSitter (Vmin > 0) or Anti-deSitter (Vmin < 0). We refer to all these types of

vacua as the string landscape. Only vacua that fit closely with the requirements

of particle physics and cosmology are considered as phenomenologically viable.

These involve satisfying the condition Vmin = 0 since we generally assume our lo-

cal region of the universe to be modelled as Minkowski space-time2. deSitter vacua

with small value of V may also be included. Even when considering Minkowski

vacua only, we still find many choices of minima in parameter space and one may

ask the question: how do we choose the vacuum that corresponds to our universe?

We still do not know the answer to such a question since any minimum that is

stable and satisfies the requirement of four dimensional physics can be considered

as a viable one. We will not discuss the subject of string landscape in this thesis;

there are, however, many related reviews that the reader may wish to consult such

as [61].

5.3 Flux compactifications

Flux compactifications involve turning on the field strengths of the form fields

present in the ten dimensional theory which are known as fluxes. These fluxes

are related to form fields of dimension p (Cp) and can be written as Fp+1 =

dCp. Introducing non-vanishing expectation values for these ten dimensional fluxes

modifies the theory such that an effective potential is generated in four dimensions.

In general, fluxes exist in two different sectors of string theories. We have those

which correspond to the NS-NS sector, where NS refers to Neveu Schwarz, and

others arising from the Ramond-Ramond (R-R) sector. For string reductions, it

is more useful (and sometimes necessary for purposes of moduli stabilisation) to

consider both types of these fluxes together rather than only one. Fluxes, when

introduced into string compactifications, have the characteristic of stabilising many

moduli. In some cases, they may lead to the stabilisation of all relevant moduli,

particularly when non-perturbative effects are added.

One of the simplest flux compactifications is the T 6/Z2 orientifold of type II

theories. In this construction, T 6 is a six dimensional torus with coordinates

xi, i = 1, .., 6. Compactifications where the compact dimensions are described by

this torus give rise to N = 4 Supersymmetry in four dimensions as stated in earlier

2In this thesis, we mainly consider vacua that satisfy Minkowski space-time.
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sections. This Supersymmetry is then broken down to N = 1 by the parity func-

tion Z2 which affects the coordinates along the compact dimensions (xi → −xi).
In other words, it swaps the left-and right-moving fields in the R-R or NS-NS sec-

tors. This kind of compactifications lead to ten chiral multiplets at D = 4,N = 1

which are namely: the dilaton S, three Kähler moduli and six complex structure

moduli. There are many other compactifications where the fluxes play an impor-

tant role in breaking Supersymmetry and stabilising the moduli fields. One of

these compactifications is T 6/Z2 × Z2 in the heterotic and type II theories which

represent the basic constructions of the superpotentials discussed in Chapter 6.

In the next section, we will briefly review the four dimensional structure of such

compactifications.

5.4 Effective 4-D theories

Since our universe is four dimensional, we are interested in the description of com-

pactifications in four dimensions so that we can relate their content to the SM.

The ten dimensional description is not very attractive for phenomenology as it

usually involves much more information than is needed. In addition to the matter

content, a four dimensional effective N = 1 Supergravity, resulting from dimen-

sional reductions of string or M-theory, is generally described by three functions:

the superpotential W (φj), the Kähler potential K(φj, φj̄) and the gauge kinetic

functions fj(φj). These are described, respectively, as

• The superpotential W (φj) is a complex holomorphic function of the chiral

superfields φj. This function may receive non-perturbative corrections as we

will see in Chapter 6.

• The Kähler potential K(φj, φj̄) is a real non-holomorphic function of the

chiral superfields φj. It may also receive non-perturbative corrections.

• The gauge kinetic functions fj(φj) are complex holomorphic functions of the

superfields φj.

One of the simplest examples of flux compactifications was discussed in the previ-

ous section. A similar compactification is T 6/(Z2 × Z2) orientifold which involves

an additional Z2 projection. We will briefly review the resulting four dimensional

content of these compactifications on type IIA and heterotic theories [62, 63].
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Heterotic theories compactified on T 6/(Z2×Z2) lead to N = 1 Supersymmetry in

four dimensions. As stated earlier, the ten space-time dimensions are split into four

dimensional space-time {1, 2, 3, 4} and six space dimensions {5, .., 10} respectively.

One Z2 projection is taken so that it acts on the coordinates x5,6,7,8 while the other

Z2 acts on x7,8,9,10. This type of compactifications defines three complex planes

(Ai, i = {1, 2, 3}), which remain invariant by Z2×Z2, and correspond to the extra

dimensions of the theory (A1 = 5, 6, A2 = 7, 8 and A3 = 9, 10).

For heterotic compactifications from ten to four dimensions, the fields decompose

into different components. These include the dilaton φ, the two-form potential

Bij and the metric Gij. The moduli fields can be defined in terms of the internal

metric which is written as,

(Gij)A =
tA
uA

(
u2
A + ν2

A νA

νA 1

)
. (5.8)

where the indices i, j are the internal space dimensions {i, j = 5, ..10} and the

index A ranges over {1, 2, 3}. Seven moduli can then be identified as,

S = s+ iσ, TA = tA + iτA, UA = uA + iνA. (5.9)

The four dimensional superfields S, TA and UA are: the dilaton-axion, the volume

moduli and the complex-structure moduli respectively. The real parts of these

complex fields (s, tA, uA) 3 are known as geometrical moduli while the imaginary

parts (σ, τA, νA) are called axions.

The Kähler potential is at the classical level and has the standard form in a general

N = 1 Supergravity theory derived from orbifold compactifications of string theory

(matter fields are not considered in this thesis) [62, 64]:

K = − ln(S + S)−
3∑

A=1

ln(TA + TA)−
3∑

A=1

ln(UA + UA). (5.10)

where S, TA, UA, A ∈ {1, 2, 3} are the seven complex moduli fields resulting from

the compactification scheme. The Kähler potential, given by Eq.(5.10), is obtained

through the process of N = 4 Supergravity gauging of heterotic and type IIA

compactification with z2 × z2 orbifold as discussed in [62, 63, 64]. The orbifold

projection leads to an expression of the gravitino mass in N = 4 Supergravity

theory. Solving a set of constraint equations involving N = 4 scalar fields, one can

3We are using geometric here to refer to the real parts of the moduli and not their connection
to the geometry of the internal manifold.
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rewrite the gravitino mass in terms of the N = 1 seven complex moduli S, UA, TA.

Separating the holomorphic part in the gravitino mass term ( m3/2 = eK/2W ), we

obtain the above formula for the Kähler potential (Eq.(5.10)).

The scalar potential can be easily written for a particular model after identifying

the Kähler potential and superpotential. We write the F-term of this potential, in

N = 1 Supergravity, as,

V = eK(KiDiWDW̄ − 3WW ), (5.11)

where Kij is the inverse Kähler metric (Kij = ∂2K/∂φi∂φj) and DiW = ∂iW +

∂iKW is the Kähler covariant derivative acting on the superpotential. The indices

i, j correspond to the relevant moduli S, TA and UA.

Similar chiral fields structure is also obtained when considering compactifications

of type II theories. Branes are needed to preserve some Supersymmetry in these

constructions. For instance, in the case of type IIA theories, N = 1 Supersymme-

try is achieved with D6 branes. The large number of fluxes present in type IIA

(F0, F2...F6) leads to a richer “zoo” of possibilities of superpotentials, compared

to heterotic constructions, depending on the type and number of fluxes consid-

ered. For such theories at four dimensions, the complex fields Ta are found to be

the same as the heterotic case. However, the real components of the fields S, UA

(s′, u′A) are found to be different from those presented in Eq.(5.9). These geometric

moduli are given, in terms of those identified in the heterotic theory, as

s′ =
√

s

u1u2u3

, u′1 =

√
su2u3

u1

, u′2 =

√
su1u3

u2

, u′3 =

√
su1u2

u3

. (5.12)

Heterotic and type IIA constructions are not only different in terms of identi-

fication of geometric moduli. They also differ in the structure of the resulting

superpotentials. This is mainly due to the fact that the allowed fluxes in heterotic

theory cannot give rise to an explicit S dependence in the superpotentials as we

will see in Chapter 6. Although the fluxes play an important role in generating a

potential for the moduli fields and breaking Supersymmetry, a number of problems

may still arise at low dimensions, such as flat directions and runaway solutions.

These may be resolved by adding a non-perturbative superpotential term. We will

come back to this in the next chapter.

In Chapter 6, we will study moduli stabilisation on a number of models resulting

from heterotic and type IIA compactifications on the T 6/(Z2×Z2) orientifold. We

will discuss the stabilisation of all moduli analytically and numerically before we
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move on to Chapter 7, where we discuss their dynamics and their contribution to

the theory of modular inflation.



Chapter 6

Moduli Stabilisation

6.1 General structure of N = 1 superpotentials

In this section, we discuss the role of gaugino condensation in modifying the struc-

ture of N = 1 superpotentials resulting from compactifications of string theories

as discussed in [64]. We also analyse the breaking of N = 1 Supersymmetry in

the presence of fluxes and the gaugino condensate superpotential.

6.1.1 Gaugino condensate and moduli fields

Compactifications of string theory give rise to many moduli at four dimensions

with exact or spontaneously broken supersymmetries. The stabilisation of these

moduli is very important, not only in particle physics, but also in cosmology since

their dynamics play an important role in the theory of inflation as we shall see in

Chapter 7. In order to have a realistic four dimensional theory, we need to explain

the process of Supersymmetry breaking and its connection to moduli stabilisation.

In some cases, introducing fluxes is not enough to break N = 1 Supersymmetry;

they also do not guarantee the stabilisation of all moduli which means that the

effective potential may have flat or runaway directions. Non-perturbative effects

are very important in breaking N = 1 Supersymmetry. One of such effects is

gaugino condensation which occurs in the infrared regime of strongly coupled

gauge sectors. In general, a non-perturbative term can be written as,

Wnp = µ3e(−kZ), (6.1)

82
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where k = 24π2

b0
, b0 is a one-loop beta-function coefficient, Z is a modulus and

µ is the RG scale. After adding the non-perturbative term (Wnp) to the flux

superpotential (Wflux), one can write the effective superpotential as,

Weff = Wflux +Wnp. (6.2)

To illustrate how the structure of both non-perturbative and flux terms in the

superpotential affects the vacuum at four dimensions, we proceed by examining

some examples discussed in [64].

First, we consider a superpotential where the flux term is given by a quantity a

which is moduli dependent,

W = a+ ω(S), (6.3)

where ω(S) = µ3e−S. The modulus S is rescaled according to

24π2S

b0

→ S. (6.4)

This rescaling leaves the corresponding kinetic terms unchanged and multiplies

the scalar potential by a factor. For heterotic compactifications, the perturbative

term a is only dependent on moduli UA and TA with A = 1, 2, 3, whereas for type

II, the modulus S may feature in this term as we will see in later examples. The

scale µ may depend on moduli UA, TA but we will assume that it is of O(1) for

the models studied in this chapter.

As stated in earlier sections, the F-term scalar potential can be written in terms

of the superpotential W as,

e−KV =
∑
i

|W −Wi(Zi + Z̄i)|2 − 3|W |2. (6.5)

If we consider a situation where the moduli TA are not present in the superpoten-

tial, we can express the scalar potential as,

e−KV =
∑
TA

|W −WTA(TA+ T̄A)|2 +
∑

{Zi}≡{S,UA}
|W −Wi(Zi+ Z̄i)|2−3|W |2. (6.6)

This means that the first term in Eq.(6.6) gives exactly 3|W |2 since, in this case,

the first derivative of the superpotential with respect to TA is zero (WTA = 0).
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This term clearly cancels with the third term and gives a potential of the form,

e−KV =
∑

{Zi}≡{S,UA}
|W −Wi(Zi + Z̄i)|2. (6.7)

We are led to a no-scale model [53], with a semi-positive-definite potential and flat

directions along {TA}. No-scale type usually refers to models where one term of

the positive contribution to the scalar potential offsets the negative term −3|W |2
and gives rise to a positive definite scalar potential. This situation is sometimes

encountered in string models where the three geometrical moduli TA represent flat

directions.

Similar to the Kähler potential, the N = 1 superpotentials, considered in this

thesis, can be generated using the technique of N = 4 Supergravity gauging. Per-

forming this method for heterotic or type II compactications with z2× z2 orbifold

generates expressions for the gravitino mass terms as a function of the N = 4

scalar fields. The z2 × z2 truncation, which is used to reduce Supersymmetry to

N = 1, leads to seven complex fields S, UA, TA in the moduli sector. Using a set

constraint equations, the gravitino mass terms can be rewritten as a function of

N = 1 scalar fields. The N = 1 superpotential can then be obtained, using the

relation m3/2 = eK/2W , as a polynomial in the moduli fields with maximum degree

seven [62, 63, 64].

The identification of N = 1 superpotentials also depends on the possible fluxes

present in the theory. For example, in the case of type IIA theory compactified

to four dimensions, we have R-R fluxes (F0, F2, F4, F6) as well as NS-NS and ge-

ometrical fluxes. After defining the moduli fields in terms of the internal metric,

we can write the flux contributions to the N = 1 superpotential. It is possible to

switch on single fluxes such as the zero-form (F0) which generates a superpotential

dependent on the imaginary parts of the complex moduli fields TA [63],

W = −iF0T1T2T3.

For type IIA orientifolds, we can also have examples with combined fluxes where

most of the moduli fields are stabilised. For instance, switching a system of geo-

metric, R-R and NS-NS fluxes ω3, F0, F2, H3, we get the following superpotential

where four moduli fields are stabilised (for a specific choice of these fluxes)[63]:

W = a(ST1 + ST2 + ST3) + a(T1T2 + T2T3 + T3T1) + 3ib(S + T1T2T3).
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More examples of N = 1 superpotentials are listed in [63].

The presence of both perturbative and non-perturbative superpotentials plays an

important role in modifying the structure of the vacuum in four dimensions [63].

In some cases, non-perturbative contributions to the superpotential not only break

Supersymmetry, but they also have an important effect on the stabilisation of the

relevant moduli and on the positivity of the scalar potential. In the next section,

we will analyse the process of Supersymmetry breaking and its relation to the

different moduli present in the theory. As stated in the previous chapter, we will

mainly consider constructions of Minkowski vacua in four dimensions.

6.1.2 Supersymmetry breaking in Mikowski space

Supersymmetry breaking is very important for the realisation of four dimensional

models comparable to the SM. In general, Supergravity theories provide an attrac-

tive framework for breaking Supersymmetry spontaneously. Such breaking is only

achieved if the Fj auxiliary equations do not vanish along all moduli directions

Zj. These equations can be written as,

Fj ≡ W − (Zj + Zj)Wj = 0, (6.8)

with the Kähler potetial given as outlined in the previous chapter,

K = −
∑
j

ln(Zj + Zj). (6.9)

Let us now look for ways of finding a stationary point of the corresponding scalar

potential, where Supersymmetry breaks. Following [63], we demand that the con-

ditions, given by Eq.(6.10), are satisfied in Minkowski space,

〈V 〉 = 0 , 〈W 〉 6= 0 . (6.10)

We also solve the equations, ∂jV = 0, for each scalar field Zj. These can be

written in terms of the Kähler potential, K, and the superpotential, W , as

0 = e−KV Kj −WjFj − 3WjW+∑
i with i 6=j

[
Wj − (Zi + Zi)Wij

]
Fi − (Zj + Zj)WjjFj, (6.11)
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where the scalar potential is given by,

V = eK(KiDiWDW̄ − 3WW ), (6.12)

As an example, we consider a superpotential of the form,

W = (T1 − T2)(−U1 + U2 − T3 + 2S) + (U1T3 − L)w(S). (6.13)

This superpotential is generated through the method of N = 4 Supergravity

gauging of T 6/(z2 × z2) orientifold compactifications of type IIA theory in the

presence of geometric and F2 fluxes [63, 64]. Using the above expression for W ,

we can see that the first term of Eq.(6.11) vanishes at a Minkowski point while the

second derivative, Wjj, only appears for the case of moduli that are present in the

gaugino condensate term (Modulus S for the superpotential given by Eq.(6.13)).

We consider the case where the scalar fields split in two categories. The first

one controls the breaking of Supersymmetry where the conditions, 〈Wj〉 = 0 and

〈Fj〉 = 〈W 〉 6= 0 are satisfied. The conditions Fj = 0 apply to the second category

which preserves Supersymmetry. The number of scalar fields breaking Supersym-

metry is exactly three as implied by the Minkowski condition 〈V 〉 = 0.

The stationary condition, given by Eq.(6.11), can then be written as

0 =
∑

i with i 6=j
〈Wij ReZi〉, (6.14)

with a summation restricted over moduli that break Supersymmetry. In the re-

mainder of this chapter, we will look into examples where the structure of the

superpotential gives indeed a partition between directions which break Supersym-

metry and those which preserve it. The presence of the gaugino condensate term

in the superpotential does not guarantee Supersymmetry breaking. To illustrate

this, we analyse the following superpotential,

W = A(U1 − U2)(T1 − T2) +B(U1 + U2 − 2U3)(T1 + T2 − 2T3)

+(T1 + T2 − 2T3)ω(S). (6.15)

Let us start by writing the auxiliary equations Fi ≡ W − Wi(Zi + Z̄i) for all

moduli. For instance those corresponding to the moduli U1 and U2 can be written
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explicitly as follows,

FU1 ≡ A(−U1 − U2)(T1 − T2) +B(−U1 + U2 − 2U3)(T1 + T2 − 2T3)

+ (T1 + T2 − 2T3)ω(S), (6.16)

FU2 ≡ A(U1 + U2)(T1 − T2) +B(U1 − U2 − 2U3)(T1 + T2 − 2T3)

+ (T1 + T2 − 2T3)ω(S). (6.17)

Cancellation of the auxiliary equations fixes the TA moduli (TA = T ). We can

clearly see that, for this choice of the TA moduli, the auxiliary equations FU1 , FU2

vanish. However taking these moduli to be all equal at the vacuum gives 〈W 〉 = 0

which contradicts the conditions of Supersymmetry breaking presented in Eq.(6.10).

Clearly Supersymmetry is not broken for this superpotential even though the con-

densate term (T1 + T2 − 2T3)ω(S) is present.

In order to break Supersymmetry, we have to modify the above example by adding

another term which we call the breaking term Wbreak,

Wbreak = R(T1U1 + T2U2). (6.18)

The new superpotential is a combination of the breaking term and the one given

by Eq.(6.1.2),

W ′ = W +Wbreak, (6.19)

For this superpotential, similarly to the previous superpotential W , cancellation

of the F-auxilary equations along U1, U2 shows that the TA moduli are all equal

and real. Due to the presence of Wbreak, the condition 〈W 〉 6= 0 is now satisfied

and Supersymmetry is broken only if the condition 〈V 〉 = 0 is fulfilled as previ-

ously stated in Eq.(6.10). To satisfy this condition, we only require that the first

derivative of superpotential is zero along the directions that break Supersymmetry.

These directions are T3, U3 and S. The conditions W ′
T3

= W ′
U3

= W ′
S = 0 read,

− 2(B(U1 + U2 − 2U3) + ω(S)) = 0, (6.20)

−2B(T1 + T2 − 2T3) = 0, (6.21)

−(T1 + T2 − 2T3)ω(S) = 0. (6.22)

Since the moduli TA are all equal and real, Eqs.(6.21, 6.22) are satisfied exactly.

The remaining directions, T1, T2, U1 and U2, preserve Supersymmetry and, there-

fore, their F-auxilary equations are zero. The auxilary equations along T1 and T2
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can be written as follows,

FT1 ≡ A(U1 − U2)(−T 1 − T2) +B(U1 + U2 − 2U3)(−T 1 + T2 − 2T3)

+ (−T 1 + T2 − 2T3)ω(S) +R(−T 1U1 + T2U2) = 0, (6.23)

FT2 ≡ A(U1 − U2)(T1 + T 2) +B(U1 + U2 − 2U3)(T1 − T 2 − 2T3)

+ (T1 − T 2 − 2T3)ω(S) +R(T1U1 − T 2U2) = 0. (6.24)

Taking UA to be real and U1 = U2 = U , Eqs.(6.23, 6.24) can be simplified as,

− 2TB(2U − 2U3)− 2Tω(S) = 0. (6.25)

This equation, which fixes the field U3 at ω(S)/2B+U at the minimum, is equiva-

lent to Eq.(6.20). The stationary point condition given by Eq.(6.14) can be written

for this model as,

ReS = −2B(U + T )− ω(S). (6.26)

The model studied above has a minimum, with broken Supersymmetry, at real

TA and UA with the moduli TA = T and U1 = U2. The modulus U3 is fixed

at the minimum by Eq.(6.20) while ReS is fixed by Eq.(6.26). Although the

condensate term is present in this model, it does not contribute to the breaking of

Supersymmetry which is only broken when the term Wbreak is added explicitly to

the superpotential. We will not comment on this model any further. Instead, we

will look at another class of models where the presence of the gaugino condensate

term is crucial for breaking Supersymmetry. These models are presented in the

next section with numerical solutions.

6.2 Analysis of DKP models

We have presented examples of models where the presence of the gaugino con-

densate was not responsible for breaking Supersymmetry in Section 6.1. In this

section, we analyse models discussed by Derendinger et al. [64] (from now on, we

refer to these models as DKP models). We will also comment on a model discussed

by Löwen et al. [65], which has similar features to one of the DKP models (we refer

to it as LNZ model). In these models, the presence of the gaugino condensate is

crucial for the breaking of Supersymmetry.



Chapter 6 Moduli Stabilisation 89

6.2.1 Model I

We look at an example of type IIA, where the condensate term breaks Supersym-

metry and, therefore, fully contributes to the structure of the effective theory in

the vacuum. We consider the following superpotential, as given in Eq.(6.13),

W = (T1 − T2)(−U1 + U2 − T3 + 2S) + (U1T3 − L)ω(S), (6.27)

where L is a flux parameter and ω(S) is the condensate term given in terms of the

dilaton field as,

ω(S) = µ3e−S. (6.28)

As discussed in Section.6.1, this model has particular directions which break Su-

persymmetry; these are T1, T2 and the flat direction U3. The directions which

preserve Supersymmetry are: T3, U1, U2 and S. From now on, we will refer to this

as model I.

To ensure that 〈V 〉 = 0, we only require that 〈WT1〉 = 〈WT2〉 = 0. Only two

conditions should be fulfilled for the Supersymmetry breaking directions, since

the superpotential is independent of U3. The resulting Supersymmetry-breaking

condition reads

− U1 + U2 − T3 + 2S = 0. (6.29)

The vanishing of the F -auxiliary fields (Fj ≡ W − (Zj + Zj)Wj = 0) along the

directions T3, U1, U2 and S leads to the following equations,

ξ
(
U1 + U2 − T3 + 2S

)− (U1T3 + L
)
w(S) = 0, (6.30)

ξ
(−U1 − U2 − T3 + 2S

)
+ (U1T3 − L)w(S) = 0, (6.31)

ξ
(−U1 + U2 + T3 + 2S

)− (U1T3 + L
)
w(S) = 0, (6.32)

ξ
(−U1 + U2 − T3 − 2S

)
+ (U1T3 − L)

(
1 + S + S

)
w(S) = 0, (6.33)

where, following [64], we have introduced,

ξ ≡ T1 − T2. (6.34)

The stationary point condition, ∂jV = 0, given by Eq.(6.14) reads,

Re ξ = 0. (6.35)
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Combining Eq.(6.30) and Eq.(6.32), we get

ξ(U1 + U1 − T3 − T 3) + (U1T 3 − U1T3)ω(S) = 0. (6.36)

This equation clearly shows that the moduli T3 and U1 are equal (T3 = U1). A

similar combination of Eq.(6.30) and Eq.(6.31) gives,

ξ(U1 + U1 + U2 + U2)− (U1U1 + U2
1 )ω(S) = 0. (6.37)

For Eq.(6.37) to be consistent, the modulus U1 must be real, which also means

that T3 is real (T3 = U1 = t). We can rearrange Eq.(6.30) for ξ, taking U1, T3 to

be equal and real, and the result is,

ξ =
(t2 + L)ω(S)

U2 + 2S
. (6.38)

To ensure that the stationary point condition is fulfilled ( Re ξ = 0), we adjust

the imaginary part of the modulus S (S = s − iπ
2
). This also implies, through

Eq.(6.29), that U2 = u+ iπ.

So far, we have looked at possible combinations of the F -auxiliary fields, which

gave us certain requirements on the real and imaginary parts of the moduli. Now,

we can easily express the extremisation equations for the fields t, u and s. These

equations are given as Eq.(6.29), a combination of Eq.(6.30) and Eq.(6.31), as well

as a combination of Eq.(6.29), Eq.(6.30) and Eq.(6.33), and read:

u+ 2(s− t) = 0, (6.39)

t
(
t2 − L)− u (t2 + L

)
= 0, (6.40)

t5 + 2Lt3 − 4Lt2 − 3L2t− 4L2 = 0. (6.41)

An expression of ξ = T1− T2 can also be derived using any of the Eqs.(6.30-6.30),

once all the other moduli are fixed. Eq.(6.30), for instance, can be rearranged to

give an expression for ξ as shown in Eq.(6.38); this latter can be simplified further

to

ξ =
t2 + L

u+ 2s
ω(S). (6.42)

The gravitino mass can also be expressed in terms of t, L and ω(S),

e−K/2m3/2 = 〈W 〉 =
(
t2 − L)ω(S). (6.43)
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Using Eq.(6.41) and assuming L > 0, we obtain

L = t2
t− 2 + 2

√
t2 + 1

3t+ 4
, (6.44)

where the choice for the sign of the square root is the only one compatible with

the positivity of all moduli.

As stated earlier, in this model the gaugino condensate is entirely responsible for

the breaking of Supersymmetry. In order to see whether the solutions, given in

Eqs.(6.44-6.34), derived for this model represent viable minima, we need to look

at numerical examples and study the structure of the scalar potential (5.11) along

different moduli directions. One choice of these solutions is presented in Table 6.1,

where the parameter µ is fixed at µ = 2. The scalar potential exhibits a global

minimum at these values, as shown in Figs.(6.1, 6.2). These two figures illustrate

the scalar potential displayed in the complex planes S and U2 respectively.

Since this is a model of seven complex fields, it is hard to see, graphically, whether

the above numerical example is a viable minimum in all directions. Therefore,

calculating the Hessian matrix is crucial in order to identify the viability of this

minimum. This matrix was evaluated and found to be positive definite which

confirms that the above numerical example is indeed a global minimum of the

scalar potential along all the relevant moduli. For details of the calculation of this

matrix, we refer the reader to Appendix C.

Parameter/ Moduli L t u s Im ξ

Values 1.788 2 0.763 1.618 2.295

Table 6.1: One particular choice of numerical solutions to model I.

As shown in Eq.(6.43), the gravitino mass is dependent on the values of ReS and

the parameter µ. In order to achieve a phenomenologically viable gravitino mass

(about 10−14Mp)
1, with ReS as well as the other fields fixed at their minimum

values presented in Table 6.1, the value of µ must be very small of order µ = 10−4.

If, however, we keep the value of µ fixed at µ = 2, which is the value used so

far in the model, larger values of ReS (from 15 up to 30) must be considered in

order to achieve a lighter gravitino mass. Numerical results of the gravitino mass

are presented in Table 6.2, where we also show the corresponding values of µ and

1We denote the Planck mass as Mp ∼ 1019GeV . In most of this thesis, we will assume Planck
units and take Mp = 1.



Chapter 6 Moduli Stabilisation 92

Out[192]=

Figure 6.1: Stabilising potential for ReS, ImS. All other moduli have been
fixed at their minimum values.

Out[181]=

Figure 6.2: Stabilising potential for ReU2, ImU2. The remaining moduli are
fixed at their minimum values.
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ReS. Taking the value of µ to be µ = 10−4 does not affect the values of the moduli

fields at the minimum except the value of Im ξ = ImT1 − ImT2 which becomes

ξ ≈ 2.29 × 10−13. Changing the value of ReS, on the other hand, affects the

minimum values of the other fields and, therefore, in this case we need to look for

another numerical example that is different from the one presented in Table 6.1.

µ 2 2 2 10−3 10−4

ReS 16 20 25 1.618 1.618
m3/2(Mp) 5.2× 10−8 8.7× 10−10 5.4× 10−12 2.4× 10−11 2.4× 10−14

Table 6.2: The dependence of the gravitino mass (in Planck units) on the
parameter µ and modulus S for model I.

We showed how some of the moduli present in this model are successfully stabilised

with numerical examples. However, there are two flat directions. One of them is

along U3, which is not present in the superpotential given by Eq.(6.13). The other

one is along the T1 + T2 direction. Before studying the dynamics of the moduli

presented in this section, we need to find a way to lift the flat directions. One way

to proceed is the application of the local no-scale idea [66, 67].

6.2.2 Lifting the flat directions

The DKP model presented in the previous section (model I) has one problem,

which is the appearance of unfixed U3 moduli in addition to the T1 +T2 direction.

These flat directions can be uplifted by applying the local no-scale idea, where

corrections to the Kähler potential are added to fix the moduli while the flatness

condition (V ≡ 0) applies only locally [65, 66, 67].

For the flatness condition to be around point z0 in D, one demands:

∂z∂ze
−G/3 = φzz(z, z), (6.45)

where D is the positive kinetic energy domain (defined by Gzz > 0) and G is the

Kähler function, which is related to the Kähler potential K and the superpotential

W by,

G = K + ln |W |2. (6.46)
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The function φ(z, z) satisfies the conditions:

φzz ≥ 0,∀z ∈ D, (6.47)

and

φzz(z0, z0) = 0. (6.48)

The solution for Eq.(6.45) is given by:

G = −3

2
log(f + f + φ)2. (6.49)

We can express the condition for the positive kinetic energy domain in terms of

the functions φ, f and their derivatives,

Gzz = 3
|fz + φz|2 − φzz(f + f + φ)

(f + f + φ)2
> 0. (6.50)

In a general N = 1 Supergravity theory, the scalar potential V can be expressed

in terms of the function G as,

V = eG(GzzGzGz − 3). (6.51)

For G given by Eq.(6.49), we can write the scalar potential,

V = 3
φzz(f + f + φ)

|f + f + φ|3 (|fz + φz|2 − φzz(f + f + φ)
) . (6.52)

From the above equation, we can see that the potential is positive definite in D
only if the conditions φzz ≥ 0 and f + f + φ > 0 are satisfied exactly.

Let us consider a correction to the Kähler potential φ, given by,

φ =
(z − z0)2(z − z0)2

4
. (6.53)

This correction affects the shape of the scalar potential only outside the minimum

value z0. If we fix the value of the field at z0, the function, φ, vanishes and the

structure of the potential, without its presence, can be restored. To see how the

correction, φ, modifies the scalar potential along the flat directions in model I, let

us apply this procedure to uplift the flat direction along the complex modulus,

U3 = ReU3 + i ImU3, for example. This function can then be written, in terms of
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ReU3 and ImU3, as

φ(U3) =
(U3 − (U3)0)2(U3 − (U3)0)2

4
,

=
(( ReU3 − ( ReU3)0)2 + ( ImU3 − ( ImU3)0)2)

2

4
, (6.54)

where (U3)0 is the minimum value along U3. The conditions for the positivity of

the scalar potential are both satisfied. To see this, we write φU3U3
and U3 +U3 +φ,

as a function of the real and imaginary parts of U3, as follows,2

φU3U3
= (( ReU3 − ( ReU3)0)2 + ( ImU3 − ( ImU3)0)2, (6.55)

U3 + Ū3 + φ = 2 ReU3

+
(( ReU3 − ( ReU3)0)2 + ( ImU3 − ( ImU3)0)2)

2

4
. (6.56)

The above equations show that the positivity condition, given by Eq.(6.50), is

satisfied. Now, we can study the structure of the scalar potential in this direction.

Fig.(6.4) presents the stabilising potential for the U3 direction, where the minimum

value is taken to be purely real ( ImU3 = 0) with the value (U3)0 = 0.5. A

similar procedure can be followed in order to uplift the T1 + T2 direction locally.

Fig.(6.3) shows the scalar potential as a function of the complex modulus T1, where

the minimum value, along this direction, is given by (T1)0 = 1 + i(ξ0 + 1) with

ξ0 = Im ξ = 2.295, as presented in Table 6.1. The minimum value for T2 is taken

to be (T2)0 = 1 + i, such that Im (T1− T2) = ξ0 and Re (T1− T2) = 0, as required

by the stationary point condition in Eq.(6.35).

2Here, we are taking the function f to be equal to U3.
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Figure 6.3: Scalar potential as a function of the complex modulus T1. The
remaining moduli are all fixed at their Vevs.

Out[25]=

Figure 6.4: Scalar potential as a function of the complex modulus U3. The
remaining moduli are all fixed at their minimum values.
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6.3 Model II

We now consider another DKP model originating from heterotic compactifications,

which we refer to as model II from now on. Although heterotic compactifications

are similar to type II when Supersymmetry breaking is mostly due to fluxes, they

turn out to be very different in cases where Supersymmetry breaking is induced by

a gaugino condensate3. The main reason is the absence of S contributions to the

superpotential directly originating from fluxes. Let us consider a superpotential

with the following form [64],

W = ÂU1 + B̂U2 + ĈU3 + D̂U1U2U3. (6.57)

This superpotential is odd in the fields Ui and captures most of the features of the

heterotic compactifications, with a gaugino condensate. The following functions

of T1, T2 and S have been introduced,

Â = (α + α′ω(S)) ξ + Aω(S), (6.58)

B̂ = (β + β′ω(S)) ξ +Bω(S), (6.59)

Ĉ = (γ + γ′ω(S)) ξ + Cω(S), (6.60)

D̂ = (δ + δ′ω(S)) ξ +Dω(S), (6.61)

where the parameters ξ and w(S) are given as follows,

ξ = T1 − T2 , ω(S) = µ3e−S.

In the remainder of this section, we will present the DKP solutions for model II,

following [64] closely. We will then discuss the problematic aspects of their solution

and propose an alternative one with a numerical example.

6.3.1 The DKP solutions

We start by deriving the stationary point condition given by Eq.(6.14). The mod-

uli directions that break Supersymmetry, in this model, are T1, T2 and the flat

direction T3. On the other hand, Supersymmetry is preserved by the remaining

3The difference between models originating from heterotic and type II compactifications will
become more apparent in the next chapter, when we look at inflation.
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directions along Ui and S. This means that we can express the stationary point

condition as,

(α + α′ω + (δ + δ′)U2U3) Re (T1 − T2) + (β + β′ω + (δ + δ′)U1U3) Re (T1 − T2)+

(γ + γ′ω + (δ + δ′)U1U2) Re (T1 − T2) = 0, (6.62)

which clearly leads to the vanishing of ξ at the minimum ( Re ξ = 0). We choose

the modulus S to have an imaginary part with the value −π/2 (S = s − iπ/2)

and the fields Ui to be all real and equal (Ui = ui). This choice makes everything

consistent provided that the flux parameters α, β, γ, δ and A, B, C, D are all real

while α′, β′, γ′, δ′ are imaginary.

The vanishing first derivatives of the superpotential in terms of T1 and T2 (〈WT1〉 =

〈WT2〉 = 0) means that the no-scale requirement 〈V 〉 = 0 is fulfilled. The corre-

sponding condition reads,

(α + α′ω)u1 + (β + β′ω)u2 + (γ + γ′ω)u3 + (δ + δ′ω)u1u2u3 = 0. (6.63)

The vanishing of the UA-auxiliary and S-auxiliary fields, FS = FUA = 0, read,

− Âu1 + B̂u2 + Ĉu3 − D̂u1u2u3 = 0, (6.64)

Âu1 − B̂u2 + Ĉu3 − D̂u1u2u3 = 0, (6.65)

Âu1 + B̂u2 − Ĉu3 − D̂u1u2u3 = 0. (6.66)

The above equations imply that,

Âu1 = B̂u2 = Ĉu3 = D̂u1u2u3. (6.67)

Following [64], Eq.(6.67) allows us to express u1, u2 and u3, in terms of ξ and s,

as

u1 =

√
B̂Ĉ

ÂD̂
, u2 =

√
ÂĈ

B̂D̂
, u3 =

√
ÂB̂

ĈD̂
. (6.68)

The equation for the S−auxiliary field gives:

2

s
= −4−

(
α′

Â
+
β′

B̂
+
γ′

Ĉ
+
δ′

D̂

)
ξω. (6.69)
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In order to solve for s and ξ, the authors of [64] introduced a set of intermediate

imaginary quantities λi, defined by:

Â = λ1ξω, B̂ = λ2ξω, Ĉ = λ3ξω, D̂ = λ4ξω. (6.70)

The authors also claim that solutions with large and positive s, together with

exponentially small ξ do exist under minor and natural assumptions on the fluxes

(coefficients α, β, γ, δ, α′, β′, γ′, δ′ and A,B,C,D). For simplicity, they consider the

plane-symmetric situation, where

α = β = γ, α′ = β′ = γ′, A = B = C. (6.71)

The above conditions imply,

λ1 = λ2 = λ3 ≡ λ, u1 = u2 = u3 ≡ u, (6.72)

and the resulting equation for u can be written as

u =

√
λ

λ4

. (6.73)

The parameters λ and λ4 are given, in terms of the flux coefficients, by

1

λ
=

ω

3(α + α′ω)

3Dα + Aδ + (3α′D + Aδ′)ω
Dα− Aδ + (Dα′ − Aδ′)ω , (6.74)

1

λ4

= − ω

(δ + δ′ω)

3Dα + Aδ + (3α′D + Aδ′)ω
Dα− Aδ + (Dα′ − Aδ′)ω . (6.75)

Equations for ξ and s can be summarised as follows,

ξ = −1

4

3Dα + Aδ + (3α′D + Aδ′)ω
(α + α′ω)(δ + δ′ω)

ω, (6.76)

2

s
= −4− (α′δ − δ′α)ω

(α + α′ω)(δ + δ′ω)

3Dα + Aδ + (3α′D + Aδ′)ω
Dα− Aδ + (Dα′ − Aδ′)ω . (6.77)

Provided that the flux coefficients α, δ, α′, δ′, A,D are large while their ratios are

of order unity, Eq.(6.77) admits acceptable solutions for s. If this requirement is

fulfilled, a variable ρ (which is a real function of s) can be defined as

ρ = i
Dα− Aδ
Dαω

. (6.78)
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This variable can be taken to be of O(1) since ω is small and the ratio of the

coefficients is also of O(1).

Under these assumptions, an expansion in powers of ω can be performed for all

quantities. This simplifies the expressions of s and ξ as,

ξ ≈ −D
δ
ω, (6.79)

1

2s
≈ −1− D

δ

α′δ − δ′α
Dα′ − Aδ′ − iDαρ. (6.80)

The gravitino mass can also be expressed in terms of the flux parameters and ω

as,

e−K/2m3/2 =
Aδ′ −Dα′ + Aδ−Dα

ω

α + α′ω

(
−3

α + α′ω
δ + δ′ω

)3/2

ω2. (6.81)

In the special case where α′ = iα, δ′ = −iδ, Eq.(6.81) simplifies further to:

e−K/2m3/2 ≈ i

(
2De−2s +

Aδ −Dα
α

e−s
)

≈ i4D

(
−3α

δ

)3/2
s

2s+ 1
ω2. (6.82)

The above equation shows that the gravitino mass scales as ω2. The dependence

of the gravitino mass on ω2 does not guarantee it to have a phenomenologically

viable value. We think that the double suppression appears mainly due to the

arrangement of parameters in the gravitino mass formula in Eq.(6.82). This means

that choosing a small value for ReS, for example ReS = 1, will not always give

rise to a phenomenologically viable value of the gravitino mass even with the

presence of ω2 in the formula. A similar discussion was presented in the previous

section, where we have looked at some numerical examples as shown in Table 6.2.

So far, we have outlined the DKP solutions to model II as presented in [64].

We will proceed, in the next section, by analysing these solutions and presenting

their problematic aspects. We will also propose alternative ones and study them

numerically.
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6.3.2 Alternative solutions to model II

This DKP model, similarly to Model I, has the problem of flat directions along

the U3 and T1 + T2 directions. We will not comment on this problem further as

we have discussed it in detail for model I and presented a way of fixing the flat

directions. Another, more important, problem is the inconsistency in the solutions

presented in Eqs.(6.73-6.82). When trying to find numerically viable minima to

the corresponding scalar potential, it was not possible to find a set of coefficients

α, β, A and D that satisfied all the solutions and gave rise to a Minkowski vacuum

along those directions. We now discuss in detail alternative solutions that result

in phenomenologically viable minima.

Starting from Eqs.(6.64, 6.65, 6.66), we can see that, by taking the fields ui all to

be equal and real, the condition, given by Eq.(6.83), must be fulfilled,

Â = B̂ = Ĉ, (6.83)

which gives rise to the following equation for u

u2 =
Â

D̂
. (6.84)

Expressions for ξ can be derived using the condition presented in Eq.6.83. For

instance, setting the expressions of Â and B̂ to be equal and rearranging for ξ, we

get

(α− β + (α′ − β′)ω)ξ = (B − A)ω. (6.85)

Similar arrangements can be made for the conditions Â = Ĉ and B̂ = Ĉ. This

leads to three expressions for ξ, in terms of the flux coefficients and ω, given as,

ξ =
(B − A)ω

α− β + (α′ − β′)ω =
(C − A)ω

α− γ + (α′ − γ′)ω =
(C −B)ω

β − γ + (β′ − γ′)ω . (6.86)

Rearranging the parameters in the expressions of ξ, presented in Eq.(6.86), also

leads to three different expressions for the term ω. To see this, let us start by

setting the first two expressions in Eq.(6.86) to be equal. This gives,

(C−A)(α−β)+(C−A)(α′−β′)ω = (B−A)(α−γ)+(B−A)(α′−γ′)ω, (6.87)
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which leads to the following expression for ω

ω =
(B − A)(α− γ)− (C − A)(α− β)

(C − A)(α′ − β′)− (B − A)(α′ − γ′) . (6.88)

Using the other expressions of ξ, we obtain two more equations which can be

written as,

ω =
(B − A)(β − γ)− (C −B)(α− β)

(C −B)(α′ − β′)− (B − A)(β′ − γ′) (6.89)

=
(C − A)(β − γ)− (C −B)(α− γ)

(C −B)(α′ − γ′)− (C − A)(β′ − γ′) . (6.90)

From the above equations of ξ and ω, we can clearly see that the DKP choice of

flux coefficients as stated in the previous section, namely: α = β = γ, α′ = β′ = γ′

and A = B = C is inconsistent with the extremisation equations obtained for

both ξ and ω. This particular choice of parameters leads to undefined ξ and ω.

This is one of the main reasons why we think that the DKP solutions, for model

II, are problematic and that it is impossible to achieve numerically viable minima

starting from their solutions.

Another expression for the modulus u can be derived from Eq.(6.63), which in

turn, should be consistent with Eq.(6.84),

u2 = −α + β + γ + (α′ + β′ + γ′)ω
δ + δ′ω

. (6.91)

The modulus s = ReS can also be expressed, in terms of the flux parameters, as

s = − (α + β + γ + δu2)ξ

((α′ + β′ + γ′ + δ′u2)ξ + A+B + C +Du2)ω(S)
. (6.92)

We have obtained all the extremisation equations for the moduli fields present in

this model. The existence of more than one equation for the directions ξ, u and

ω makes it more difficult to search for numerically viable minima since the flux

parameters, entering these equations, have to be fixed at certain values satisfying

all equations without any inconsistencies. We have a large number of flux coeffi-

cients in this model, which means that phenomenologically there are many choices

in parameter space that satisfy the above equations. Here, we are only interested

in one of these choices which is presented in Tables 6.3, 6.4, where the values of

the flux coefficients as well as moduli fields are stated.
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Parameter µ α β γ δ α′ β′ γ′ δ′ A B C D
Values −2.756 2 1 6 45 2 1 1 6 50 i 40 i 30 i 0

Table 6.3: One possible choice of parameters present in model II.

Moduli ω(S) Im ξ u ReS ImS
Values −6 −12 1.29 1.25 0

Table 6.4: Numerical solutions to the moduli corresponding to the choice of
parameters in Table 6.3.

For the above numerical solutions to be viable, we need to examine the structure

of the scalar potential, which can be derived according to Eq.(5.11), along the

relevant moduli fields. Fig.(6.5) shows a plot of the scalar potential as a function

of the complex field U1, while fixing the other moduli fields at their minimum

values. As expected, the minimum lies exactly at the numerical solution for u

( ReU1 = u = 1.29) with a vanishing imaginary part ( ImU1 = 0). Similar plots

can be achieved along the remaining directions and all of them show the global

minimum at the values given in Table 6.4. To ensure the existence of this minimum,

we evaluate the Hessian matrix. Although the analysis of model II suggests the

existence of a minimum. The hessian matrix is not positive definite in this case.

This means that the solutions presented for this model do not correspond to a

minimum in all directions.

Out[34]=

Figure 6.5: The scalar potential as a function of ReU1, ImU1.
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We have found consistent solutions for model II. However, evaluating these solu-

tions as well as studying the dynamics of the corresponding moduli fields numeri-

cally, is extremely costly in terms of time. This is mainly due to the large number

of flux parameters present in the model (about twelve). For this reason, we will

not comment on this model any further and instead we will look at a simplified

version of the model studied first by Löwen et al. [65]. Their model has the same

features as model II but with less moduli fields and flux coefficients.

6.4 Model III (LNZ model)

In this section we study a model presented in [65], which covers the key features

of model II discussed in the previous section.

Consider the following superpotential which is similar to the one presented in

Eq.(6.57) but with only one U field:

W = 3ÂU + D̂U3, (6.93)

with the Kähler potential: K = − ln(TA + TA) − ln(S + S) − 3 ln(U + U). As in

model II, the following functions of T1, T2 and S are introduced:

Â = (α + α′ω(S))ξ + Aω(S), (6.94)

D̂ = (δ + δ′ω(S))ξ +Dω(S), (6.95)

with ξ = T1 − T2 and ω(S) = µ3e−S.

6.4.1 LNZ solutions

We start by identifying the moduli that break Supersymmetry. These are the

same as those presented for model II, namely: T1, T2 and T3. The directions that

preserve it are S and U in this case. The conditions 〈WT1〉 = 〈WT2〉 = 0 can be

expressed as,

(α + α′ω(S)) + (δ + δ′ω(S))U2 = 0. (6.96)

Looking at Eq.(6.96), we find that the stationary point condition (∂jV = 0),

similar to the previous models, can be expressed as Re ξ = 0. We will not go

through all the steps of deriving the stabilisation equations, for S and U here,
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since the analysis is very similar to that presented for model II. We choose S =

s − iπ/2 and U = u real. This choice, together with the requirement that the

flux parameters α, δ and A,D are real while α′, δ′ are imaginary, makes everything

consistent.

The vanishing of the first derivatives of the superpotential W , with respect to

T1 and T2, at the vacuum (given by Eq.(6.96)) guarantees that the requirement

〈V 〉 = 0 is fulfilled. Similar to model II, the modulus T3 does not feature in the

superpotential (flat direction). Eq.(6.96) leads to the following equation for u,

u =

√
−(α + α′ω(S))

(δ + δ′ω(S))
. (6.97)

Another equation for u and minimisation equations for s = ReS and ξ are given by

Eqs.(6.84, 6.76, 6.77). These are achieved by expressing the vanishing F -auxiliary

equations along these directions as shown in the previous section.

The gravitino mass can also be expressed by Eq.(6.81) and in the special case (α′ =

iα, δ′ = −iδ), by Eq.(6.82). The authors of [65] argue that, in order to obtain a

phenomenologically attractive gravitino mass, the position of the minimum in the

S direction must be shifted to larger values, for example S = 15 − iπ/2. They

also claim that a Minkowski vacuum is obtained with the following set of flux

coefficients:

α = 100, δ = −100, A = 10, D = −10.00001, (6.98)

where they considered a fine-tuning of parameters of order Aδ−Dα ≈ 10−3. This

choice of parameters gives a gravitino mass of order 1.11 × 10−14Mp. Löwen et

al. also claim that the gravitino mass is doubly suppressed since it is, like that

expressed for model II, proportional to ω2 as shown in Eq.(6.82). Further to our

discussion for model II, we think that the presence of ω2 does not really guarantee

a viable phenomenological result for the gravitino mass. There is also a problem of

inconsistency in Eq.(6.77) for the value of s = 15. We found that, for this equation

to be satisfied exactly, s should be of order s = ReS = 15.1857. Even with this

correction to the value of s, plots of the corresponding scalar potential as a function

of ReS show no Minkowski minimum as can be seen in Fig.(6.6). Fig.(6.7) shows

another plot of the scalar potential with respect to ReS and ReU . In this figure,

the minimum along the ReU direction is clear while nothing is observed along the

ReS direction.
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Figure 6.6: The scalar potential for model III as a function of ReS.
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Figure 6.7: Stabilising potential for model III as a function of ReS, ReU .
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So far we have analysed the numerical solutions of Löwen et al., and found that

their choice of flux coefficients, particularly the case (α′ = iα, δ′ = −iδ), does

not give rise to a Minkowski minimum in all directions. In the next section, we

look at an alternative choice of flux parameters to see whether it gives rise to a

Minkowski vacuum.

6.4.2 Alternative solutions

As discussed in the previous section, the stationary point condition reads Re ξ = 0.

We choose the same value of ImS, S = s − iπ/2, and we also take the fields U

to be all real (U = u). The solutions for s, ξ and u are given by Eqs.(6.76, 6.77,

6.84, 6.97) respectively. For the choice of the flux coefficients, we require α, δ,

A and D to be real while α′ and δ′ to be imaginary. However, the special case

{α′ = i α, δ′ = −iδ} is no longer considered in what follows.

For all the equations to be consistent, we require D = 0. Our numerical choice of

flux coefficients is given as:

α = −2, δ = 45, α′ = −3 i, δ′ = 135.70656 i, A = 5

The flux parameter δ′ is tuned in order to get a Minkowski minimum since there

is only one value of δ′ that satisfies the equation 〈V 〉 = 0, which is one of the

conditions required for finding a stationary point where Supersymmetry breaks in

Minkowski space [64]. The above choice of the flux parameters, together with a

value of µ of order 1 gives the following values of the relevant moduli fields at the

minimum:

ReS = 1.25, ReU = 0.747, Im ξ = 0.314.

To see whether these solutions correspond to a minimum, the scalar potential is

plotted as a function of ReS as shown in Fig.(6.8). Now, we can clearly see a

minimum along the S direction, which appears to be around ReS = 1.25. We

can also see a minimum in the complex U plane as presented in Fig.(6.9).

We showed how changing the flux parameters, for model III, gives rise to a viable

minimum along the directions T1 − T2, S and U . However, this model is not

free of flat directions (T1 + T2, T3) just like the DKP models. In order to have

a phenomenologically attractive model, we need to ensure the stabilisation of all

moduli. This can be achieved by uplifting the flat directions, following the same



Chapter 6 Moduli Stabilisation 108

Out[46]=

0 1 2 3 4 5
ReHSL0

2

4

6

8

V

Figure 6.8: The scalar potential, for model III, as a function of ReS. All the
other minima are fixed at their minimum values
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Figure 6.9: The scalar potential, for model III, as a function of ReU, ImU .
All the other minima are fixed at their minimum values
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procedure as described in Section 6.2.2, which was also discussed in [65]. Fig.(6.10)

shows a plot of the stabilising potential for the modulus T1, after uplifting the flat

directions, displayed in the complex plane.

Out[70]=

Figure 6.10: The scalar potential, derived for model III after uplifting the flat
directions, as a function of ReT1, ImT1.

Similar to the models presented earlier in this chapter, the calculation of the Hes-

sian matrix is very important for identifying the existence of the Minkowski min-

imum for this model. Evaluating the Hessian matrix, we found that our solutions

correspond to a Minkowski minimum in all directions as presented in Appendix C.

6.5 Summary

In this chapter, we studied moduli stabilisation analytically and numerically in

three different models originating from heterotic and type IIA string compacti-

fications on T 6/Z2 × Z2 orientifolds. We analysed the Supersymmetry breaking

conditions proposed by Derendinger et al. which involve two categories of moduli.

One of them breaks Supersymmetry while the other moduli preserve it. Then, we

presented the problematic aspects of models II and III, which were first analysed

by Derendinger et al. and Löwen et al. respectively, and gave ways of resolving

them, essentially, by choosing different values of the flux parameters present in

each model. These models can only be phenomenologically viable if all the moduli
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fields are stabilised. To achieve this, we also presented a way of uplifting the flat

directions in these models by introducing a correction to the Kähler potential.

Moduli stabilisation plays an important role in cosmological inflation. Each of the

moduli fields present in a particular four dimensional theory can play the role of

an inflaton and their dynamics may give rise to successful inflationary scenarios

upon the fulfilment of some conditions. To see how this idea applies to the models

studied so far, we will proceed in the next chapter by looking at the dynamics

of the moduli fields, for each model, and commenting on their evolutions and on

whether they can be good inflaton candidates.



Chapter 7

Inflation

Due to the advancement in observational cosmology, it is of great importance to de-

velop our theoretical models in order to understand the current astronomical data

and their implications. One promising field, which is the dominant theory for the

origin of structure of our universe, is cosmological inflation [68, 69, 70]. Inflation

refers to a period in the history of the universe where there was an exponential

expansion with an accelerating scale a(t). It solves many problems, including the

horizon problem, which refers to the difficulty in understanding the large-scale of

homogeneity observed in our universe. Inflation gives rise to definite predictions,

not only for the uniformity of the universe, but also for possible deviations from

this uniformity. It also solves the flatness problem, which is concerned with the

ratio, Ω, of the actual density of the universe and the critical density being close

to one. The critical density is defined as the density that causes our universe to be

spatially flat. Another problem that can be solved by Inflation is that of magnetic

monopoles. These are extremely massive particles which would outweigh every-

thing in the universe. In recent years, there has been many attempts to realise

inflation within string theory. In this chapter, we look at inflationary scenarios in

the framework of the models discussed in Chapter 6.

7.1 Inflation in string theory

There has been steady progress in the constructions of inflationary models orig-

inating from string theory in the context of flux compactifications and moduli

stabilisation. This is realised at the level of N = 1 Supergravity, where moduli

111
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are complex scalar fields. As stated in Chapter 6, for any realistic model, Super-

symmetry must be broken and the stabilisation of all moduli fields at the right

scale must be achieved. Models of inflation include brane inflation [71, 72]. this

is a class of models where the inflaton field is associated with the scalar fields

describing relative positions of branes in the compactified space. This particular

type of models does not fall within the scope of this thesis, however, and hence

will not be discussed further in this thesis.

Modular inflation is realised with one (or several) moduli fields, which result from

string compactifications, playing the role of the inflaton field. These models are

conceptually simpler than brane inflation models and do not require the existence

of brane dynamics. In some models of modular inflation, the inflaton field may be

associated with many scalar fields which mark the end of inflation when rolling

down to their minimum values. There are many successful models of modular

inflation such as racetrack inflation [73, 74, 75] and large volume Kähler inflation

[76]. In these models, it is possible to achieve either Minkowski or de Sitter (dS)

vacua.

In general, inflation occurs in a complicated multi-dimensional space as it is the

case with string models. The models considered in this thesis fall into this category,

where the evolution is not necessarily driven by one inflaton field. In some cases, it

is possible to study multi-dimensional models as those with one single inflaton field

by choosing one moduli direction and freezing the remaining fields at their minima.

Despite the success of the inflationary models proposed to date, it is still very hard

to establish inflationary scenarios in controlled compactifications without facing

problems. Particularly the problem of runaway moduli, which occurs mainly due

to the steepness of the scalar potential. In addition to this, there is the initial

conditions problem. It is very important to find regions in parameter space which,

starting the inflaton field at them, lead to successful periods of inflation with

at least 60 e-foldings. In string theory models, the problem of initial conditions

becomes more complicated particularly in cases where there are more than one

inflaton field driving inflation.

Among the models proposed so far is eternal inflation [77]. This is defined, simply,

as a period of inflation that never ends. Eternal inflation involves a false vacuum

(metastable vacuum) decaying exponentially in a particular moduli direction, just

like the decay of a radioactive substance. This decay causes the inflaton field to

move up its potential, to the top of a barrier existing between such a vacuum and
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another minimum. As this vacuum expands exponentially, its volume continues

to grow with time.

The idea of eternally inflating universes was seen as an oddity for many years. This

picture, however, has greatly changed after realising that string compactifications

give rise to hundreds of metastable vacua with varying four dimensional physics.

All of these vacua exist without the presence of any mechanism that favours one

over the other. The study of eternal inflation may provide such a mechanism of

vacuum selection and may, eventually, help in understanding the vast landscape

of string vacua. However, despite the progress made so far in this field, more work

is needed in order to fully understand the conditions and predictions of eternal

inflation.

7.1.1 Slow roll inflation

Slow-roll inflation involves a scalar field which slowly rolls down a flat potential.

It may also involve more than one scalar field, in which case, the fields that are

not driving inflation may be fixed at their minimum values in order to remain

stable during the inflationary period. For slow-roll inflation to be successful, two

conditions must be satisfied which are given as,

ε =
M2

p

2

(
V ′

V

)2

, (7.1)

η = M2
p

V ′′

V
, (7.2)

where Mp is the Planck mass. The derivatives of the potential V are with respect

to the inflaton field (φ). Both of these parameters are required to be very small

(|η|, ε� 1) for inflation to occur. From now on, we will refer to ε and η as slow-roll

parameters.

In string theory, there are many scalar fields and therefore the inflaton represents

one real component of some complex scalar field (Φ). It is useful to express these

parameters in complex field basis {Φa} = (Φi,Φ
̄
) [75],

ε =

(
Kij̄ ∂iV ∂j̄V

V 2

)
, (7.3)

Na
b =

(
N i

j N i
j̄

N ī
j N ī

j̄

)
, (7.4)
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where

N i
k =

Kij̄∂j̄∂kV

V
, Nk

ī =
Kkj̄(∂ī∂j̄V −K ln̄∂ī∂j̄∂lK ∂n̄V )

V
. (7.5)

N ī
j̄ and N k̄

i can be obtained from the above equations of N i
k and Nk

ī by complex

conjugation. In this basis, the η parameter is the smallest negative eigenvalue of

the matrix Na
b. To have a successful inflationary scenario, it is also required that

the number of e-folds Ne is more than 60. Ne can be written in terms of the values

of the scale factor at the start and end of inflation as,

Ne = ln

(
a(tf )

a(ti)

)
. (7.6)

In general, it is difficult to achieve a small value of the parameter η in models

originating from string theory. This is known as the η problem. To see why this

parameter is not small enough we consider the expression for the F-term scalar

potential which is given as,

VF = eK(KijDiWDj̄W − 3|W |2). (7.7)

If we now write an expression for the η parameter using the above scalar potential,

we find that it is proportional to the second derivative of the Kähler potential due

to the presence of the eK factor in the potential. Considering a simple Kähler

potential, for example K = φφ where φ is a complex field, we can easily see that

the parameter η becomes of order one if we take the real part of φ, for example as

an inflaton candidate.

There are some mechanisms which have been studied in order to alleviate this

situation, for instance choosing a Kähler potential which does not contain the

inflaton field. In other words, if the Kähler potential is given as K = ln(φ + φ)

for example, we can see that only the real part of the complex field φ is present in

K (for the Kähler potential K = φ+ φ, both of the real and imaginary parts of φ

are present), and therefore the imaginary part can be a good inflaton candidate.

This applies to the models studied in this thesis as we will see in later sections.

To ensure both slow-roll parameters are sufficiently small, it might be necessary

to fine-tune some of the relevant parameters present in the model studied. Some

models have a potential which has a saddle point near its minimum, this gives rise

to a successful inflationary scenario since the condition ε = 0 can be easily satisfied
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at the saddle point with a bit of tuning to ensure η is small enough [73, 75]. These

are models of topological inflation [78, 79].

In addition to satisfying the conditions imposed on the slow-roll parameters and

finding an inflaton candidate, we are usually faced with the issue of initial condi-

tions for the inflaton field. As discussed earlier, it is important to identify regions

of parameter space that give rise to more than 60 e-folds. This problem becomes

largely irrelevant when considering models of eternal inflation.

7.1.2 Equations of motion

We consider models that are described by a four dimensional N = 1 effective

Supergravity theory with the lagrangian,

LΦ = Ki∂µΦi∂µΦ
 − V. (7.8)

Ki = ∂2K/∂Φi∂Φ


is the Kähler metric and V is the scalar potential.

The form of the Kähler potential K, considered for the models presented in the

previous chapter, is a function of the real parts of the fields only and takes the

following form,

K = −
∑
i

ln(Φi + Φ
ī
), (7.9)

where the sum is understood over all moduli Φi.

Considering homogeneous fields evolving in a spatially flat Friedmann-Robertson-

Walker spacetime background, the equations of motion for fields φi can be written

as,

φ̈i + 3Hφ̇i + Γijkφ̇
jφ̇k +

1

2
Kij̄∂jV, (7.10)

where ∂jV is the partial derivative of the potential V with respect to the field φj,

Γijk is the connection on the Kähler manifold and has the form,

Γijk = Kil̄∂Kjl̄

∂Φk
. (7.11)

The Hubble rate H ≡ ȧ/a, where a(t) is the scale factor of the Universe, is given

by the Friedmann equation

3H2 = κ2
P (Ki̄Φ̇

i ˙̄Φ̄ + V ), (7.12)
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where κ2
P = 8πG and G is the 4-dimensional Newton constant. Here, we set

κ2
P = 1. The scale factor can be defined as,

a(t) = eNe . (7.13)

Since we are considering complex scalar fields, it is very useful to write the equa-

tions of motions for both real and imaginary parts of the complex fields as [80]:

Φ̈i
R + 3HΦ̇i

R + Γijk(Φ̇
j
RΦ̇k

R − Φ̇j
IΦ̇

k
I ) +

1

2
Ki̄∂jRV = 0, (7.14)

Φ̈i
I + 3HΦ̇i

I + Γijk(Φ̇
j
IΦ̇

k
R + Φ̇j

RΦ̇k
I ) +

1

2
Ki̄∂jIV = 0, (7.15)

where Φi
R (Φi

I) refers to the real (imaginary) part of the scalar fields, Φ̇i
R (Φ̇i

I)

is the partial derivative of Φi
R (Φi

I) with respect to time and ∂jRV (∂jIV ) is the

partial derivative of the potential with respect to Φj
R (Φj

I).

7.2 Inflaton candidates

In this section, we study the evolution of the moduli fields present in models I and

III which are described in Chapter.6. We shall consider different moduli direc-

tions for each model in order to find those that give rise to successful inflationary

scenarios. As we shall see, in most of the cases considered, the initial values of

the inflaton fields are considerably larger than the Planck scale (Mp). This is

known as Large-field inflation and can be realised in certain string compactifica-

tions. Recent work on axion inflation shows that a natural mechanism known as

axion monodromy, which occurs in a variety of string compactifications including

Calabi-Yau orientifold compactifications of type II theories, gives rise to large-field

inflation [81, 82]. This mechanism can manage corrections to the potential over

Super-Plankian values. In order to check for the presence of Axion monodromy in

our numerical models, it suffices to see whether the scalar potential is not periodic

under a shift in the values of the axion fields; this is indeed satisfied in all the

cases that we shall consider below.
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7.2.1 Model I

For this model, we have seven complex fields including the dilaton field, complex

structure and Kähler moduli. This means that there is a total of 14 possible

directions for inflation. We will consider the evolution in all of these directions

to see which ones give rise to a successful period of inflation and for which set of

initial conditions.

We start by considering the evolution of the imaginary parts of the fields S, U2,

U1 and T3. We found that evolving these directions in pairs (for example evolving

ImS together with ImU1) gives rise to successful inflationary scenarios. Inflation

can also be achieved successfully by evolving each of the imaginary directions on

its own and fixing the remaining ones at their minimum values. For all these

moduli directions, successful periods of inflation were achieved with initial condi-

tions within substantial regions of parameter space. Let us define the initial shift,

δφi, which represents the difference between the initial values of the the moduli

fields and their corresponding minimum values. Looking at the case where ImS

is evolved on its own, we found that 60 e-folds can be achieved for initial shift of

δS ≥ 34 as can be seen in Fig.(7.1).
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Figure 7.1: Total number of e-folds of inflation as a function of initial con-
ditions of ImS with respect to its value at the minimum. The straight line

indicates the 60 e-folds needed for inflation to be successful.
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In similar fashion to the case of ImS, the ImU2 direction can give rise to successful

periods of inflation if evolved while keeping all the other fields fixed at their min-

ima. The region of initial conditions that give successful inflationary scenarios, in

this case, is δU2 ≥ 12. We can see that for the case ImU2, the region of restricted

initial values is, to some extent, smaller than that of ImS. By restricted initial

values, we mean the region that gives less than 60 e-folds of inflation. The two re-

maining directions ImU1 and ImT3 behave in the exact same way when it comes

to their evolution since they have the same extremisation condition and the same

minimum value ( ImU1 = ImT3 = 2) as presented in the previous chapter. When

evolved each on its own, they both require an initial shift of δU1, δT3 ≥ 45, for

inflation to successfully occur. The above analysis shows that ImS, ImU2, ImU1

and ImT3 are all good inflaton candidates. In cases where more than one direction

is considered, the region of allowed initial conditions may vary depending on the

fields considered. For instance, if we consider the case of evolving ImU1, ImS

together, we may fix ImS at a value very close to its minimum, at ImS = −2,

where the minimum value in this direction is given by ImS = −π/2. Setting

ImU1 at any value within the region δU1 ≥ 45 will, in fact, result in successful

periods of inflation. We will discuss this situation in more detail shortly.

7.2.1.1 Evolution along ImS, ImU2

Here, we study the evolution along the two directions: ImS and ImU2, while

freezing the remaining moduli at their minimum values. The results in this case

also depend on the initial conditions, and inflationary scenarios with more than

60 e-foldings can be achieved for extended regions of initial values. For instance,

setting ImU2 at a value not very far from the minimum (( ImU2)min = π) at an

initial value of 10 while we fix ImS initially at 32, we get more than 60 e-folds

of inflation as shown in Fig.(7.2). This figure shows that the ImU2 and ImS

directions settle at their minima near the end of the inflationary scenario. The

slow roll parameters ε and η, given by Eqs.(7.1-7.5), were evaluated around 60

e-folds from the end of the inflationary period and the results were found to be

very small as required (η ∼ 10−2 and ε ∼ 3× 10−2).

In order to better understand the choice of initial conditions, let us examine the

structure of the scalar potential along these two directions. A plot of this potential

shows a number of degenerate minima with the same value of the potential V ≈
10−17. Fig.(7.3) shows a contour plot along ImS, ImU2 where we can see three of

these degenerate minima aligned diagonally. The global minimum, studied in the
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Figure 7.2: Cosmological evolution of ImS and ImU2 as a function of the
number of e-folds, Ne, for model I. In this case, both fields evolve to the global

minimum at ImS = −π/2, ImU2 = π.

previous chapter, is the middle one and corresponds to the values ImS = −π/2
and ImU2 = π. The other two minima are found at ( ImS ≈ 4.712, ImU2 ≈
−9.424) and ( ImS ≈ −7.853, ImU2 ≈ 15.708) respectively.

Out[94]=

Figure 7.3: Contour plot of ImS, ImU2 trajectories, for model I, which shows
the global minimum together with two local minima.
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The presence of these degenerate minima along ImS, ImU2 means that the infla-

ton field can, in principle, evolve and settle at any one of them, depending on the

initial conditions. For example, if we set ImU2 at −5 and ImS at 40, we find

that both fields evolve to the minimum corresponding to ImS ≈ 4.712, ImU2 ≈
−9.424. This minimum is the bottom one shown in Fig.(7.3). From Figs.(7.4,7.5),

we can see that this evolution also lasts for more than 60 e-folds as required phe-

nomenologically. We can also find scenarios where the two fields evolve to other

vacua of the potential, which exist for larger values of the two moduli, depending

on the chosen initial conditions. Since all of these minima are degenerate in energy

with a value V ≈ 0, they can all be considered as global minima. We also eval-

uated the slow roll parameters for the initial conditions ImS = 40, ImU2 = −5

and the results were found to be ε ∼ 10−2, η ∼ 5× 10−3.

Out[1269]=

78 80 82 84 86 88 90
Ne-12

-10

-8

-6

-4
ImHU2L

Figure 7.4: Cosmological evolution of ImU2 as a function of the number of
e-folds, Ne, for model I. This is achieved when evolving ImS, ImU2.

7.2.1.2 Evolution along ImS, ImU1

After looking at the evolution along the directions ImS, ImU2, we now look at

the evolution along the ImS, ImU1 directions while fixing the remaining moduli,

including ImS, at their minimum values. Comparably to the previous case, we

can find successful inflationary scenarios simply by taking the fields away from

their minima. Fig.(7.6) shows one of these scenarios where the inflaton fields

ImS, ImU1 were initially fixed at −2, 45 respectively.



Chapter 7 Inflation 121

Out[1268]=

80 82 84 86 88 90
Ne2

4

6

8

10

ImHSL

Figure 7.5: Cosmological evolution of ImU2 as a function of the number
of e-folds, Ne, for model I. As indicated in Fig.(7.4). Both fields evolve to a

minimum found at ImS ≈ 4.712, ImU2 ≈ −9.424.

The structure of the scalar potential along these two directions is not simple since

it exhibits many local minima scattered around the global one, found at ImS =

−π/2, ImU1 = 0, as shown in Fig.(7.7). The presence of these local minima is

the main reason why the initial value for ImS was chosen to be very close to

its minimum value ( ImS = −2) in the previous scenario. The small initial shift

in the ImS direction ensures that inflation ends exactly at the global vacuum.

Setting ImS to any other value, less than −4 for instance, while keeping the

initial condition for ImU1 the same, changes the inflationary trajectories and

we can see both fields evolving to a nearby local minimum instead. Fig.(7.7)

shows a contour plot of the potential along these two directions where at least

three local minima are apparent. Two of them are found to the left and right

hand sides of the global minimum at ( ImS ≈ −10.169, ImU1 ≈ −3.770) and

( ImS ≈ 7.027, ImU1 ≈ 3.770) respectively. They are both degenerate in energy

with a value of the potential given as (V ≈ 18.335).

The presence of these local minima around the global vacuum affects the infla-

tionary scenarios greatly. To see how these two fields evolve to one of these lo-

cal minima, for example the one found at ImS ≈ 7.027, ImU1 ≈ 3.770, we set

ImS, ImU1 at initial values of 8 and 15 respectively and the results are as shown

in Figs.(7.8, 7.9). From these figures, we see that both fields evolve to the local

minimum and settle their for a large number of e-folds without rolling down to
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Figure 7.6: Cosmological evolution of ImS and ImU1 as a function of the
number of e-folds, Ne, for model I. Both fields evolve to the global minimum at

( ImS = −π/2, ImU1 = 0).
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Figure 7.7: Contour plot of ImS, ImU1 trajectories, for model I

their global minimum. This is what is known as eternal inflation. In the next

section, we shall come back to this scenario again to study the probability of tun-

neling from the local vacuum. We evaluated the slow roll parameters ε and η, in

this case, and the results were found to be about 2×10−2 and 3×10−2 respectively

around 60 e-folds before the end of inflation.
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Figure 7.8: Cosmological evolution of ImS as a function of the number of
e-folds, Ne, for model I.
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Figure 7.9: Cosmological evolution of ImU1 as a function of the number of
e-folds, Ne, for model I. From this figure and Fig.(7.8), we see that both fields,

ImS, ImU1, evolve to a local minimum at ( ImS =≈ 7.027, ImU1 ≈ 3.770).
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Looking at the structure of the scalar potential along the directions ImS, ImT3, we

see that it is exactly the same as the case of ImS, ImU1 in terms of both positions

and values of the local minima as well as the global one. This is due to the fact

that both U1 and T3 have the same extremisation equations and minimum values

as mentioned earlier. For this reason, the inflationary scenarios in the ImS, ImT3

directions are exactly the same as those in ImS, ImU1 directions as expected.

7.2.1.3 Evolution along the remaining directions

So far, we have mainly looked at inflation along the imaginary parts of the fields

S, U1, U2 and U3, that is the axionic directions of the moduli fields. We found that

successful inflationary periods are possible depending on the initial conditions of

the relevant fields. Contrary to the imaginary parts, the real parts of these four

moduli fields are not good inflaton candidates since inflationary scenarios, along

them, last for just few e-folds (about 4 to 6 e-folds) whether evolved each on its

own or all together. This situation is achieved regardless of the values of initial

conditions. The only cases that show a successful inflationary scenario are the

ones where the real part of one of these moduli fields is evolved together with the

imaginary part. However, even in these cases, the real field reaches its minimum

quickly before the end of inflation and therefore decouples from the inflationary dy-

namics. The fact that only the axionic directions are good condidates for inflation

is probably due to their absence in the Kähler potential.

The remaining three fields which are namely: T1, T2 and U3 are also, like the

real parts of S, U2, U1 and T3, not very good candidates for inflation both along

their real and imaginary parts. This is not to do with the structure of the Kähler

potential but is rather due to the process of uplifting the flat directions performed

in the previous chapter. Uplifting the flat directions along U3 and T1+T2 was local.

This resulted in many singularities around the global minimum which restricts the

choice of initial conditions along these directions.

7.2.2 Model III

This model contains five fields, and these are S, T1, T2, T3 and U . Since only the

imaginary parts of the moduli fields gave successful periods of inflation for the

previous model, we start by looking at these directions first.
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The structure of the scalar potential along ImS, ImU directions is very similar to

the case of ImS, ImU2 in model I with the presence of degenerate minima which

are all positioned at ImU = 0 in this case as can be seen in Fig.(7.10). Similarly

to the axions in the previous model, these two fields can evolve to either of these

minima depending on their initial values particularly the initial value of ImS.

Since all the minima are positioned at ImU = 0, the choice of initial conditions

along this direction does not really affect the chances of the field evolving to

any of these minima. Successful periods of inflation can be easily achieved by

taking the fields away from their minimum values. Initial shifts of 3 and 18 for

ImS and ImU respectively give more than 60 e-folds as shown in Fig.(7.11).

Fig.(7.12) shows another scenario where the fields evolve to another minimum

found at ( ImS ≈ 11, ImU = 0). In Fig.(7.12), we only show the evolution along

the ImS direction since ImU evolves to same minimum value as the previous case

( ImU = 0).

Out[600]=

Figure 7.10: Contour plot of ImS, ImU trajectories for model III

The real parts of the fields S and U are not good candidates for inflation, anal-

ogously to the previous model. The presence of a runaway direction along ReS

prevents inflation from lasting more than 2 or 3 e-foldings. For ReU , inflation

only lasts up to 10 or 15 e-folds, even for large values of initial conditions. The

case with the uplifted directions T1 + T2 and T3 is similar to the previous model.

The local uplifting affects the evolution in these directions and as a result, we can

only choose initial conditions which are very close to the minimum values.
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Figure 7.11: Cosmological evolution of ImS and ImU1 as a function of the
number of e-folds, Ne, for model I. Here, both fields evolve to the global mini-

mum at ( ImS = −π/2, ImU = 0).
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Figure 7.12: Cosmological evolution of ImS as a function of the number of
e-folds, Ne, for model I. This is achieved when evolving ImS and ImU together

and they both settle at the vacuum ImS =≈ 11, ImU = 0.
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After studying the evolution of the moduli fields present in both models, we found

that the results are very similar except for the case of local minima. These minima,

found along ImS, ImU1 directions in model I, do not appear in this model. To

understand this effect, we shall analyse another model originating from type IIA

theory compactifications (presented in [64]) in the next section.

7.2.3 Introducing model IV

To understand the difference in the structure of the scalar potential between model

I and model III, we look at another DKP model (model IV) originating from IIA

string compactifications with a superpotential given as,

W = (T1 − T2)(U1 +U2 + bU3 + gU1U2(U3 − iπ)− 2bS) + (U1U2 −L)ω(S) (7.16)

where ω = µ3e−S and ξ = T1 − T2 as presented in Chapter 6. Most of the moduli

fields are present in this model with two flat directions along T3 and T1 + T2.

Without repeating the procedure of stabilisation along these moduli fields, we

list minimum values in Table.7.1, which represent one choice of solutions for the

minimisation equations of these fields. From the minimisation conditions, we

choose ImU3 = π and ImS = π/2. We also take both moduli U1 and U2 to be

real ( ImU2 = ImU1 = 0). The value of the scalar potential at this minimum is

Vmin ≈ 9.683× 10−17.

Parameter/ Moduli L g b µ ReU1 ReU2 ReU3 ReS Im ξ

Values 3.57 −3 2 1 4 4 0.033 1.618 0.806

Table 7.1: One particular choice of numerical solutions to model IV.

We will not comment further on this minimum since we are more interested in

the structure of the scalar potential along some directions of the moduli fields,

particularly S, U1 and U2. The reason for choosing these fields is mainly due to

the fact that they enter the superpotential, given by Eq.(7.16), in the same way as

the fields S, U1 and T3 did in model I, along which we found the local minima. A

contour plot of the scalar potential derived for this model and plotted as a function

of ImS and ImU1 is presented in Fig.(7.13).

As can be seen from Fig.(7.13), the scalar potential of this model appears to

have local minima. Two of them are found at ImS ∼ 16, ImU1 ∼ 28 and
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Figure 7.13: Contour plot of the scalar potential, for model IV, along the
directions ImS, ImU1.

ImS ∼ −14, ImU1 ∼ −28. The above structure also shows two saddle points

found at ( ImS ∼ 9.58, ImU1 ∼ 14.73) and ( ImS ∼ −6.45, ImU1 ∼ −14.73)

respectively . The two local minima, shown in Fig.(7.13), are both degenerate in

energy with a potential value of about V ∼ 200. Clearly, more local minima can

be found if we consider a larger range of values for ImS and ImU1. The structure

of the potential along the directions ImS, ImU2 for this model is exactly the same

as the one shown in Fig.(7.13) as expected, since both U1 and U2 have the same

extremisation equations and minimum values.

So far, we found that local minima exist for both the above model as well as

model I in contrast to model III where none were found. We argue that the main

reason for the different structures of the scalar potential is, not only the presence of

the condensate term in model I, but also the presence of a linear term in S. On the

other hand, the modulus S enters the superpotential of model III only through

the condensate term. It also seems that the moduli fields which are related to

the condensate term (for example (U1T3 − L)ω(S) in the case of model I) exhibit

this structure when studied alongside S. This explains why this structure is not

observed when plotting the scalar potential as a function of ImU2 and ImS in

model I for example.
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7.3 Tunneling from false vacuum

Moduli fields can be frozen at local minima of a multidimensional potential. Al-

though this configuration can be classically stable, many of these vacua will tunnel

to a region of lower energy density. This process, first analysed by Coleman and

de Luccia (CDL) [83], involves materialisation of bubbles of a lower energy phase,

which then expand eating up the original vacuum. If the spacing between true and

false vacua is small, then the transition between them can be made much smaller

than the bubble radius; this is known as “thin-wall” approximation.

Another approach to false vacuum decay was investigated by Hawking and Moss

[84]. Hawking-Moss tunneling is dominant when the barrier between the true and

false minima is broad, making gravitational effects important. To find the decay

rate in this case, we consider a potential with a single scalar field V (φ), which has

a true vacuum VT at φT , a false vaccum VF at φF and a potential barrier between

the minima VB at φB as shown in Fig.(7.14). It was shown that the probability of

tunneling to the true vacuum is given by

P ∼ exp

(
− 24π2

V (φF )
+

24π2

V (φB)

)
, (7.17)

which is related to the values of the potential at the top barrier as well as the

false vacuum. This scenario can be realised properly in the stochastic approach to

inflation [85, 86].

CDL formalism applies if [87],

|V ′′(φB)|1/2 > 2H(φB), (7.18)

where V ′′(φB) is the second derivative of the potential evaluated at φB.

For our model, we choose to look at one of the local minima in the ImS, ImU1

directions to study the probability of tunnelling to the true minimum. This local

minimum is found at ImS ≈ 7.02757, ImU1 ≈ 3.77092 with V = 18.3352 as can

be seen in Fig.(7.15) where we denote the true vacuum with a letter B and the

false minimum with A. In order to get an aligned picture of both the local and

true minimum, we introduce two new directions ImS ′, ImU ′1, which are given in
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Figure 7.14: Potential with a true vacuum at φT and a false minimum at φF .

terms of ImS and ImU1 as:

ImS ′ = −2.8

π
ImS + 4.312 ImU1 (7.19)

ImU ′1 = − 2

π
ImS + 1.45 ImU1 (7.20)

Fig.(7.16) shows a plot of the scalar potential as a function of ImS ′ where U ′i
is fixed at ImU ′1 = 1. The local and true minima in the ImS ′ direction lie at

ImS ′ = 10, ImS ′ = 1.4 respectively. For our numerical case, the condition, given

by Eq.(7.18), is not satisfied which suggests that this case is HM.

Using Eq.(7.17), the probability of tunneling to the true vacuum was estimated to

be about 0.16 where values of the potential at the false minimum and top barrier

are given by V (φF ) ≈ 18.3 and V (φB) ≈ 21.3 respectively.

In general, a metastable de Sitter (dS) vacuum decays within a time which is

exponentially smaller than the recurrence time of dS space, tr = eS(φ), where

S(φ) = 24π2/V (φ) is the entropy of dS space with vacuum energy density V (φ)

[54, 88]. In the case of Hawking-Moss tunneling, the decay time can be written as

tdecay = tr exp

(
−24π2

VB

)
, (7.21)
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Figure 7.15: A contour plot along the directions ImS, ImU1 for model I.
The false vacuum is represented by the letter A and the true one by B.
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Figure 7.16: A plot of the potential, for model I, along the direction ImS′.

where VB is the value of the potential at the barrier between the dS minimum and

the Minkowski minimum. In our numerical example, the value of the potential at

the barrier between the true and false vacua is VB ∼ 21.3 and therefore we get:

tdecay = (1.48× 10−5)tr. (7.22)



Chapter 7 Inflation 132

7.4 Summary

By looking at string theory based models, we aim to find those which give rise to

successful inflationary scenarios and identify their predictions. In this chapter, we

studied two models presented in Chapter 6, which are: model I and model III. For

model I, we found that all the axionic directions of the moduli fields U1, U2, S, T3

are good inflaton candidate. These gave successful inflationary scenarios with

initial conditions within substantial regions of parameter space. The same result

was found for model III, where we achieved successful periods of inflation along

the axionic directions of the moduli U, S.

One feature, which was only observed in model I, was the presence of local min-

ima when evolving the axionic directions of U1 and S together. To see why this

structure was only observed in model I, we introduced another DKP model (model

IV) and looked at the structure of its potential along the axionic directions. We

found that the same structure appears along the two directions which are related

to the condensate term (in this case U1, U2, (U1U2 − L)ω(S)). We concluded

that this structure is only observed if the dilaton S enters the superpotential not

only through the condensate term but also a linear one. We also argued that this

behaviour is mainly observed along the axionic directions of those moduli which

are related to the condensate term.

Finally, we studied the probability of tunneling, from the false vacuum, for one of

the local minima along ImU1, ImS directions for model I. Following the Hawking-

Moss procedure, the probability of tunneling was calculated and found to be quite

large (about 0.16).
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Conclusions

This thesis concerns two aspects of physics beyond the Standard Model. The

first one is studying models of neutrino mass and mixing which is presented in

Part I. The second aspect is the search for viable four dimensional string inspired

models and their connections with the theory of cosmological inflation as outlined

in Part II.

In Chapter 2, neutrino mixing and the see-saw mechanism were briefly reviewed.

We then presented a set of sum rules that result from GUT motivated models with

charged lepton corrections. In Chapter 3, we reviewed the process of relating high

energy see-saw parameters to low energy neutrino parameters, which we used to

derive analytic expressions for the neutrino mixing angles in SD involving NLO

and NNLO corrections. We also evaluated the analytic formulae, using two GUT

inspired numerical models, in the cases of CSD and PCSD. As expected, the

numerical results in CSD, for the neutrino mixing angles, showed small deviations

from their TB values and this clearly justified why pure CSD does not give exact

tri-bimaximal mixing. In PCSD with non-zero 1-1 Yukawa coupling, we found that

the reactor angle, θ13, was much larger than zero while the solar and atmospheric

angles remained close to their TB values. This result is in good agreement with

the predictions of TBR in the absence or smallness of charged lepton corrections,

RG effects and canonical normalisation corrections. It also clearly agrees with the

most recent experimental data [12].

In Chapter 4, we analysed the effects of Cabibbo-like charged lepton corrections

and RG running on a variety of sum rules, for models where TB mixing is accu-

rately achieved at high energy. This involved studying the RG running of various

sum rules, presented in Chapter 2, for two GUT-flavour motivated models with
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LSD as well as HSD. We showed that sum rules, for both models, are subject to

only mild RG corrections (less than one degree for all the cases studied). With fu-

ture high precision neutrino oscillation experiments, these results, although small,

would be very important in testing the predictions of the underlying theories.

The mild RG corrections to neutrino mixing parameters, evaluated in this thesis,

are mainly in the case of hierarchical neutrino masses. In general, for partially

degenerate and degenerate neurtino masses, in the see-saw framework with se-

quential dominance, the RG corrections can be significant as discussed in[16, 89].

In the case of SM, only corrections to the neutrino mixing angles were found to be

small while the running of neutrino masses can be slightly larger. For the MSSM

model without sequential dominance, the RG corrections can be large especially

for the case of large tan(β) [90].

For the case of more general charged lepton corrections, we found that most sum

rules showed larger deviations at low energy due to the presence of θE23 with the

exception of σ1 which seemed to be insensitive to this angle. We also looked at RG

running in the case of LSD with non-zero Majorana phases. We found that these

phases can significantly alter the running of the TB mixing deviation parameters

as well as the sum rules, particularly σ2 [37].

Part II of this thesis concerns the study of four dimensional models originating

from heterotic and type IIA string theories. In Chapter 5, we gave a brief overview

of string and flux compactification. We also presented the four dimensional con-

tent of T 6/(Z2 × Z2) orientifold constructions which give rise to the main models

considered in this part. In Chapter 6, we presented three different models: two of

them were first studied by Derendinger et al. [64] and one of them by Löwen et al,

[65]. We outlined the main problems that some of their solutions suffer from and

suggested alternative ones which give rise to viable minima in most directions of

models I and III. We also uplifted the flat directions by considering a correction

to the Kähler potential.

Chapter 7 involves the study of inflation within the framework of models I and

III presented in the previous chapter. After briefly reviewing the conditions of

slow roll inflation, We looked at possible inflaton candidates along all the real and

imaginary directions of the complex moduli. We found that the axionic directions

of the moduli S, U1, U2, T3 give rise to successful inflationary scenarios, for model I,

with initial conditions within extended regions in parameter space. Similar results

were achieved for the axionic directions in model III.



Chapter 8 Conclusions 135

Back to the analysis of model I, we found that the case of evolving ImS and ImU1

together was quite interesting since the structure of the potential along these two

directions involved a global minimum with a set of local minima displayed around

it as presented in Fig.(7.7). Inflation, in this case, could be achieved for certain

initial conditions where the inflaton fields roll down to the global minimum. It

could be equally achieved at other sets of initial values, where the fields evolve to

one of the local minima, and this may give rise to eternal inflation. We argued

that this particular structure of the potential is mainly due to the way the dilaton

is presented in the superpotential. For model I, the S modulus appears in the flux

term as well as the gaugino condensate term as,

W = 2S + (U1T3 − L)µ3e−S + · · · , (8.1)

It seems that this structure only appears along the axionic directions that are

connected to the gaugino condensate term when evolved together with ImS (

in this case we have U1 and T3). This clearly confirms that the property of local

minima only appears in type IIA where the superpotential have similar structure to

that of models I and IV. This result is very important as it suggests a background

of unbounded potentials for the realisation of eternal inflation.



Appendix A

Diagonalisation of left-handed

neutrino matrix

In this Appendix, we will briefly review the procedure of diagonalising the neutrino

mass matrix following [40] closely. We start by writing the left-handed neutrino

mass matrix as,

mLL =

 m11 m12 m13

m12 m22 m23

m13 m23 m33

 ≡
 |m11|eiφ11 |m12|eiφ12 |m13|eiφ13

|m12|eiφ12 |m22|eiφ22 |m23|eiφ23

|m13|eiφ13 |m23|eiφ23 |m33|eiφ33

 (A.1)

In general, we diagonalise a complex, hierarchical, neutrino matrix by following a

sequence of transformations [40],

P νL
3
∗R12

TP νL
1
∗RνL

13
TRνL

23
TP νL

2
∗mν

LLP
νL
2 RνL

23R
νL
13P

νL
1 RνL

12P
νL
3 =

 m1 0 0

0 m2 0

0 0 m3

 ,

(A.2)

where the resulting matrix includes the three different neutrino masses m1,m2 and

m3. Rij, i, j = {1, 2, 3} are a set of real rotations, involving the Euler angles θij,
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which can be written as,

R23 =

 1 0 0

0 c23 s23

0 −s23 c23

 (A.3)

R13 =

 c13 0 s13

0 1 0

−s13 0 c13

 (A.4)

R12 =

 c12 s12 0

−s12 c12 0

0 0 1

 . (A.5)

The matrices Pi in Eq.(A.2) are the phase matrices, involving the phases φ2, φ3, χ

and ωi, which we write as,

P1 =

 1 0 0

0 eiχ 0

0 0 1

 (A.6)

P2 =

 1 0 0

0 eiφ2 0

0 0 eiφ3

 (A.7)

P3 =

 eiω1 0 0

0 eiω2 0

0 0 eiω3

 (A.8)

We briefly summarise the different steps of diagonalisation following [40]. We start

by multiplying the mass matrix, given by Eq.(A.1), by the inner phase matrix P νL
2 .

This process modifies the phases of the matrix as follows,

mLL =

 |m11|eiφ11 |m12|ei(φ12−φ2) |m13|ei(φ13−φ3)

|m12|ei(φ12−φ2) |m22|ei(φ22−2φ2) |m23|ei(φ23−φ2−φ3)

|m13|ei(φ13−φ3) |m23|ei(φ23−φ2−φ3) |m33|ei(φ33−2φ3)

 (A.9)

After re-phasing the matrix, we proceed by applying the real rotation R23, defined

in Eq. (A.3). This step modifies the lower 23 block of the mass matrix by putting
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zeroes in the 23, 32 elements of the matrix [40],(
m̃22 0

0 m′3

)
≡ RνL

23
T

(
|m22|ei(φ22−2φ2) |m23|ei(φ23−φ2−φ3)

|m23|ei(φ23−φ2−φ3) |m33|ei(φ33−2φ3)

)
RνL

23 (A.10)

This diagonalisation not only modifies the masses m22 and m33 but also all the

other mass entries except m11. The next step, as shown in Eq.(A.2), is to apply

the rotation R13 which diagonalises the outer 13 block. Similar to the previous

step, this rotation modifies the matrix by putting zeros in the 13, 31 entries.

After applying the 13 rotation, the neutrino mass matrix can be written as,

RνL
13
TRνL

23
TP νL

2
∗mLLP

νL
2 RνL

23R
νL
13 =

 m̃11 m̃12 0

m̃12 m̃22 0

0 0 m′3

 (A.11)

The last step of the diagonalisation involves modifying the upper 12 block of the

matrix. To do this, we first multiply the result of the last step by P νL
1 which

introduces the phase χ. We then apply the real rotation R12. The neutrino mass

matrix can then be written as follows,

Rν
12
T

 m̃11 m̃12 0

m̃12 m̃22 0

0 0 m′3

Rν
12 =

 m′1 0 0

0 m′2 0

0 0 m′3

 (A.12)

From Eq.(A.12), we can see that the neutrino matrix is successfully diagonalised,

however, we still need to multiply the result by the phase matrix P νL
3 in order

to make all the diagonal elements real. To proceed, we write the resulting mass

matrix by substituting for the diagonal mass terms as m′i ≡ mie
iφ′
i , i = {1, 2, 3}.

We then apply the phase matrix and write the phases ωi as ωi = φ′i/2. These

phases cancel with the phases of the neutrino mass matrix which gives a real,

diagonal, neutrino matrix as required.
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Derivation of neutrino mass terms

In this Appendix, we present the derivations of the mass terms resulting from the

diagonalisation of the mass matrix. After applying the rotation R23 A.3. We can

derive expressions for the masses m′3 and m̃22 which are necessary for deriving

expressions for θ13 and tan(θ12). To find these masses, we first take the trace of

both sides of Eq.(A.10) which gives,

m̃22 +m′3 ≈ m22e
−i2φ2 +m33e

−i2φ3

≈ ei(2φe−2φ2) |e|2 + |f |2
Y

(
1 + ε3(s0

23)2 + (c0
23)2(ε2 + η1)

)
, (B.1)

We can also express the determinant of both sides of Eq.(A.10). This reads,

m̃22m
′
3 = m22e

−2iφ2m33e
−2iφ3 − (m23)2e−2i(φ2+φ3)

= e−2i(φ2+φ3)

(
c′2

X ′
(
b2

X
+
e2

Y
) +

(bf − ec)2

XY

)
(B.2)

We take the mass term m′3 to have the following form,

m′3 ≈ m′03 (1 + β), (B.3)

where the parameter β is given by Eq.(3.31) and the mass term m′03 ≡ m′3|εi=0,ηi=0

is given by,

m′03 ≈ ei(2φe−2φ2) |e|2 + |f |2
Y

, (B.4)
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Using Eqs.(B.1, B.2, B.4), m̃22 can be written as,

m̃22 ≈
(
m̃0

22 + η2

(
b2

X
+
e2

Y

))
(1− β), (B.5)

where

m̃0
22 ≡ m̃22|c′=0,εi=0 ≈ e−2iφ2

(bc0
23 − cs0

23e
i(φe−φf ))2

X
, (B.6)

and the parameter η2 is given by Eq.(3.40).

In addition to the derivation of the masses m̃22,m
′
3, applying the rotation R23,

modifies the masses m12,m13. These become m̃12, m̃13, after diagonalising the 23

block, and can be derived to leading order as follows

m̃12 = c23m12e
−iφ2 − s23m13e

−iφ3 ,

≈ m̃0
12(1− γ(s0

23)2)− e−iφ3γs0
23(
ac

X
+
df

Y
), (B.7)

m̃13 = s23m12e
−iφ2 + c23m13e

−iφ3

≈ m̃0
13(1− γ(s0

23)2) + e−iφ2γs0
23(
ab

X
+
de

Y
), (B.8)

where the parameter γ is given by Eq.(3.28), the masses m̃0
12 ≡ m̃12|c′=0,εi=0 and

m̃0
13 ≡ m̃13|c′=0,εi=0 are given to leading order, as presented in [40], by

m̃0
12 ≈ e−iφ2

a(c0
23b− s0

23ce
i(φe−φf ))

X
, (B.9)

m̃0
13 ≈ e−iφ2

(
a

X
(s0

23b+ c0
23ce

i(φe−φf )) + eiφe
d
√|e|2 + |f |2

Y

)
. (B.10)

After applying the R13 rotation, we obtain another mass term, m̃11, which can be

presented to leading order as

m̃11 ≈ m11 − m̃2
13

m′3

≈ m̃0
11(1− 2γ(s0

23)2 − β) +
a2

X
(2γ(s0

23)2 + β) +
d2

Y
(2γ(s0

23)2 + β)

− 2e−2iφeε6(s0
23b+ c0

23ce
i(φe−φf ))γs0

23

(
ab

X
+
de

Y

)
(B.11)
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where the leading order form of m̃0
11 ≡ m̃11|ηi=0,εi=0 is given in [40],

m0
11 ≈

a2

X
− e−iφe 2d√|e|2 + |f |2

a(s0
23b+ c0

23ce
i(φe−φf ))

X
, (B.12)

The small parameter ε6 is written as,

ε6 =
a

X

( |e|2 + |f |2
Y

)−1

.

Similar to the derivation of the masses m̃22,m
′
3, the neutrino masses m′1 and m′2 can

be written using the trace and the determinant of the upper 12 block of Eq.(A.12).

The real neutrino masses m1,m2 can then be written, in the SD cases, as

m1 ≈ |c′|2
6X ′

(
1− Y

X

|b|2
|e|2 +

2|d|
|e|
)
v2
u, (B.13)

m2 ≈
(

3|b|2
X

+
|c′|2
3X ′

(
1− Y

X

|b|2
|e|2 −

|d|
|e|
)

cos(2φc′)

)
v2
u, (B.14)

The neutrino mass m3 can be written in the SD cases, using Eqs.(B.3, B.4), as

m3 ≈
(

2|e|2
Y

+
|c′|2
X ′

cos(2φc′)

)
v2
u. (B.15)



Appendix C

Derivation of Hessian Matrices

Here, we write the derivation of the Hessian matrices for models I, III, presented in

Chapter 6. The Hessian matrix for these models is a matrix of the second partial

derivatives of the potential V in terms of the real fields.

As discussed in the previous chapters, model I consists of seven complex fields

(S, T1, T2, T3, U1, U2, U3), which means that there is a total of 14 real fields: the

real parts, s, t1, t2, t3, u1, u2, u3 and the imaginary parts: si, t1i, t2i, t3i, u1i, u2i, u3i.

The Hessian matrix in this case is a 14× 14 matrix written as,

H =


∂2V
∂s2

∂2V
∂s∂t1

· · · ∂2V
∂s∂u3i

∂2V
∂t1∂s

∂2V
∂t21

· · · ∂2V
∂t1∂u3i

...
...

. . .
...

∂2V
∂u3i∂s

∂2V
∂u3i∂t1

· · · ∂2V
∂u2

3i

 (C.1)

By calculating the Hessian, we can determine the type of a particular critical point.

This critical point is a minimum only if all the eigenvalues of the Hessian matrix,

evaluated at this point, are non-zero and positive. For model I, after uplifting, the

extremum was found at the following values of the real fields,

s = 1.618, t1 = 1, t2 = 1, t3 = 2, u1 = 2, u2 = 0.763, u3 = 0.5,

si = −π/2, t1i = 3.295, t2i = 1, t3i = 0, u1i = 0, u2i = π, u3i = 0,(C.2)
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Evaluating the eigenvalues of the Hessian, given by Eq.(C.1), we find the following

values,

5.986, 5.448, 0.81, 0.559, 0.254, 0.194, 0.155,

0.155, 0.133, 0.086, 0.083, 0.077, 0.077, 0.045. (C.3)

All these values are positive which proves that the extremum found in Chapter 6

is indeed a minimum.

To prove that the extremum found for model III is a minimum, the same procedure

can be followed and the Hessian can be written as shown in Eq.(C.1). In this case,

however, we only have five complex fields (S, T1, T2, T3, U). This means that we

can write the Hessian in terms of ten real fields: s, t1, t2, t3, u, si, t1i, t2i, t3i, ui. The

extremum is presented in Chapter I and corresponds to the following values,

s = 1.25, t1 = 1, t2 = 1, t3 = 1, u = 0.747,

si = −π/2, t1i = 1.314, t2i = 1, t3i = 0, ui = 0. (C.4)

The eigenvalues evaluated for this model are also found to be all non-zero and

positive,

116.314, 115.257, 57.173, 56.156, 3.551,

0.984, 0.617, 0.617, 0.617, 0.617. (C.5)
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