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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF PHYSICS AND ASTRONOMY

Doctor of Philosophy

E6 INSPIRED SUPERSYMMETRIC STANDARD MODELS

by Richard Howl

This work investigates extensions to the Standard Model that are inspired by supersym-
metric models with an E6 gauge group. The models are non-minimal supersymmetric
theories which keep the Higgs mass stable against the quantum corrections from higher
energy physics, but do not contain the µ-problem or little hierarchy problem of the Mini-
mal Supersymmetric Standard Model (MSSM). Also, unlike conventional Grand Unified
Theories, the E6 inspired models do not contain any doublet-triplet splitting and the
Minimal E6 Supersymmetric Model (ME6SSM) only contains complete E6 multiplets at
low energies. A particularly exciting feature of the ME6SSM is the prediction of gauge
coupling unification at the Planck scale rather than the conventional GUT scale, hinting
at a potential unification of the Standard Model forces with quantum gravity.

If extended with a discrete non-Abelian family symmetry, the E6 inspired models
can explain the masses and mixings of the quarks and leptons that are observed in
particle experiments. These are not understood in the Standard Model since they are
free parameters, creating a flavour problem for the theory. Extending the Standard
Model or MSSM with a family symmetry offers an attractive resolution to the flavour
problem, and the recent discovery of neutrino oscillations, which indicate a high-level of
symmetry in the lepton mixings, has led to a renewed interest in these models. However,
explaining why the Higgs mass is small is essential in these models since it sets the scale
for the quark and lepton masses. This motivates the synthesis of a family symmetry with
the E6 inspired supersymmetric models, which resolves a number of problems facing the
Standard Model including the hierarchy problem and the flavour problem. A particular
success of the resulting models is their ability to suppress proton decay and flavour
changing neutral currents, from supersymmetry and extended Higgs sectors, using the
same family symmetry that is responsible for a tri-bi-maximal mixing of leptons.
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Chapter 1

Introduction

1.1 Beyond the Standard Model

For more than thirty years the Standard Model has provided the most accurate descrip-

tion of particle physics and there has been little direct experimental evidence to suggest

that the model should be replaced with a new theory. However, the Standard Model

cannot explain the recent discovery of neutrino oscillations [1], which suggests that the

theory must be modified. Mounting cosmological evidence for dark matter and dark

energy also suggests that the model is incomplete [2, 3].

Although it has been experimentally successful, the Standard Model has long been

considered to be unsatisfactory in a number of theoretical areas. For example, it is

incompatible with General Relativity, our most accurate theory of gravity, and the Higgs

mass is unstable with the addition of higher energy physics [4]. There is also a lack of

explanation for the observed structure of quark and lepton masses and CKM matrix

elements, introducing a flavour problem to the theory. The most popular solution to the

instability of the Higgs mass is to treat the Standard Model as a low-energy effective

field theory of the Minimal Supersymmetric Standard Model (MSSM) [5], which is the

minimal application of supersymmetry to the Standard Model. In the MSSM each

Standard Model particle is given a supersymmetric partner so that there is an equal

number of boson and fermion degrees of freedom. The Higgs mass is then stable because

the quantum corrections from the fermions and bosons cancel [6].

As well as stabilizing the Higgs mass, the MSSM also hints at solutions to a num-

ber of other failings of the Standard Model. For example, the MSSM (with R-parity

conserved) potentially provides a candidate for dark matter since the lightest supersym-

metric particle (LSP) is stable and should be weakly interacting [5]. The MSSM also

1



Chapter 1. Introduction 2

indicates the existence of a new theory at a very high-energy scale which provides new

insights into many theoretical problems of the Standard Model. If the MSSM gauge

coupling constants are run to high energies they meet at approximately 3 × 1016 GeV,

which is called the GUT scale [7]. This suggests that the strong nuclear force and the

electroweak force unify at this high-energy scale and that the MSSM is a low-energy

approximation to a supersymmetric Grand Unified Theory [8].

Supersymmetric Grand Unified Theories (SUSY GUTs) based on gauge groups such

as SO(10) and E6 can explain the mysterious anomaly cancellations of the Standard

Model and the quantization of electric charge [9]. They can also predict right-handed

neutrinos which, since they do not take part in the gauge interactions of the Stan-

dard Model, would be expected to obtain GUT scale masses. A conventional see-saw

mechanism then predicts small neutrino masses [10], and the out-of-equilibrium decays

of right-handed neutrinos can explain baryon asymmetry through Sphaleron processes

[11].

However, despite its obvious attractions, the standard paradigm of SUSY GUTs

based on the MSSM faces some serious shortcomings. On the one hand, the failure

to discover superpartners or the Higgs boson by the LEP and the Tevatron indicates

that the scale of SUSY breaking must be higher than previously thought, leading to

fine-tuning at the per cent level [12]. On the other hand experimental limits on proton

decay and the requirement of Higgs doublet-triplet splitting provides some theoretical

challenges at the high scale. Related to the doublet-triplet splitting problem is the origin

of µ, the SUSY Higgs and Higgsino mass parameter, which from phenomenology must

be of order the SUSY breaking scale, but which a priori is independent of the SUSY

breaking scale [13].

An elegant solution to the µ-problem is to extend the particle content of the MSSM

by introducing a new field S that is a singlet of the Standard Model gauge group and

couples to the MSSM Higgs doublets such that its dynamically generated vacuum expec-

tation value (VEV) provides an effective TeV scale µ-term that is related to the breaking

of supersymmetry [14]. In such theories there is also an advantage to be gained by intro-

ducing an additional low-energy Abelian gauge group U(1) since, without a U(1) gauge

group, a Goldstone boson would be created by the singlet field’s VEV [15]. The U(1)

group also explains why there is no explicit µ-term and why S does not get a large

Majorana mass.

SUSY GUTs based on an E6 gauge group naturally contain additional U(1) groups

and Standard Model singlets S [16]. This suggests that supersymmetric models based on

an E6 gauge symmetry can be alternatives to the MSSM that do not contain a µ-problem.

A low-energy model that is inspired by an E6 SUSY GUT is the E6 supersymmetric
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Standard Model (E6SSM) [17]. This model does not contain the µ-problem or the

little hierarchy problem of the MSSM. However, an unsatisfactory aspect of the E6SSM

is that, to obtain gauge coupling unification at the GUT scale, the E6SSM contains

two electroweak doublets H ′ and H
′ that do not form complete E6 representations

and reintroduce a µ′-problem and a doublet-triplet splitting problem. In this work

a new model called the Minimal E6 Supersymmetric Standard Model (ME6SSM) is

introduced that only contains complete E6 representations but still predicts unification

of the Standard Model gauge coupling constants. This model contains all the benefits

of the E6SSM such as a stable Higgs field and no µ-problem, little hierarchy problem or

doublet-triplet splitting but does not reintroduce any of these problems. In the ME6SSM

the gauge coupling constants are predicted to unify at the Planck scale rather than the

GUT scale suggesting a potential unification of the Standard Model forces with quantum

gravity.

Another failing of simple SUSY GUTs is their inability to explain the quark and

lepton masses and mixing angles that are observed in particle experiments. Since quarks

and leptons are unified (or partially unified) into the same representations of the simple

gauge group, Grand Unified Theories predict relations between the quark and lepton

masses. However they do not explain why there are three generations of quarks and

leptons, and why these generations have a strong hierarchical structure. Further, only

the unification of the quark and lepton Yukawa couplings for the heaviest generation is

successful when renormalized at the electroweak scale [18].

The lack of understanding of quark and lepton masses has seen renewed interest in

recent years due to the observation of neutrino masses and lepton mixing angles [19]. An

elegant solution to explaining the smallness of neutrino masses is the conventional see-

saw mechanism, which naturally occur in Grand Unified Theories such as SO(10) or E6.

When combined with a family symmetry this mechanism can also explain the large lepton

mixing angles which are, at present, consistent with a tri-bi-maximal symmetry [20].

Family symmetries control the Yukawa couplings of the quarks and leptons to the Higgs

field, and discrete non-Abelian family symmetry such as ∆27 are particularly successful

at explaining the quark and lepton masses and mixing angles [21]. When applied to

supersymmetric theories, non-Abelian family symmetries also provide a solution to the

SUSY flavour and CP problems [22]. Extending SUSY GUTs with a family symmetry

is thus very successful at resolving the flavour problem of the Standard Model (and

MSSM).

In models with a family symmetry the Higgs VEV sets the (upper) scale of the

quark and lepton masses and so the Higgs mass must be small (of order the electroweak

symmetry) in these models. This strongly suggests extending the E6SSM or ME6SSM
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with a family symmetry and in this work the ME6SSM and E6SSM are chosen to be

extended with a ∆27 family symmetry. The resulting models solve many of the theo-

retical and experimental problems facing the Standard Model. For example, the Higgs

mass is stable, the quark and lepton masses and mixing angles are explained, a dark

matter candidate is provided, and, in the ME6SSM models, the gauge coupling constants

unify at the Planck scale, which implies unification of the Standard Model forces with

quantum gravity.

1.2 Structure of Thesis

This thesis is organised as follows: In Chapter 2 the Higgs mechanism of the Standard

Model is reviewed and the supersymmetric solution to the instability of the Higgs mass is

discussed. Supersymmetric Grand Unified Theories are then motivated and the E6SSM

is analysed in the context of the µ-problem of the MSSM. Chapter 3 introduces the µ′-

problem of the E6SSM and explains how the Standard Model gauge coupling constants

can unify in a SUSY E6 GUT that only contains complete representations of E6, which is

equivalent to the particle spectrum of the E6SSM but without the additional electroweak

doublets H ′ and H
′. Chapter 4 uses the results of Chapter 3 to develop an alternative

to the E6SSM called the ME6SSM that resolves the µ-problem of the MSSM without

reintroducing this problem. Chapter 5 describes the lack of explanation of quark and

lepton models in the Standard Model and introduces family symmetries as a potential

resolution to this problem. Chapter 6 then extends the E6SSM and ME6SSM with a

simple discrete non-Abelian family symmetry to solve the flavour problem of the MSSM

and SM. In Chapter 7 a family symmetry is applied to the E6SSM that fully resolves the

flavour problem of the model and illustrates how the flavour changing neutral currents

from supersymmetric theories with extended Higgs sectors can be suppressed. The

overall conclusions to this thesis then follow in Chapter 8.

Appendix A illustrates the two-loop β-functions that are used in Chapters 3 and 4

for the ME6SSM. Appendix B describes the origin of the U(1)X group of the ME6SSM in

detail, and finally, Appendix C reviews how flavour changing neutral currents (FCNCs)

are introduced in models with extended Higgs sectors.



Chapter 2

The Higgs Field and

Supersymmetry

2.1 The Standard Model

The Standard Model is a quantum field theory that is based on the local gauge group

SU(3)c×SU(2)L×U(1)Y where SU(3)c describes the strong nuclear force and SU(2)L×
U(1)Y describes the unified electroweak force. The symmetry of the electroweak force

SU(2)L×U(1)Y is spontaneously broken in the Standard Model to the weak nuclear force

W±, Z0 and the electromagnetic force U(1)em [23]. Classically a scalar field called the

Higgs field takes on a nonzero global value, which does not respect the SU(2)L×U(1)Y
symmetry, at every point in space and causes the symmetry to be broken. This is

analogous to a ferromagnet in statistical mechanics that is subjected to an external field

with a directional character, which breaks the spatial invariance of the magnet. The

material for this Section is based on that in [24].

2.1.1 Spontaneous Symmetry Breaking

To illustrate how the electroweak symmetry is broken, consider the Lagrangian of a U(1)

gauge field and a charged complex scalar field h:

L = −1
4

(Fµν)2 + |Dµh|2 − V (h) (2.1)

where Fµν is the field strength of the U(1) gauge field Aµ; Dµ is the covariant derivative

of the scalar field, which describes the interaction between the scalar and gauge fields;

and V (h) is the potential of the scalar field. The field strength and covariant derivative

5
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are given by Eq.2.2 and Eq.2.3 respectively, and Eq.2.4 represents the most general form

for V (h) which provides a renormalizable theory.

Fµν = ∂µAν − ∂νAµ (2.2)

Dµ = ∂µ + igQhAµ (2.3)

V (h) = µ2h†h+ λ(h†h)2 (2.4)

where g is the gauge coupling constant of U(1); Qh is the charge of the scalar field h;

and µ2 and λ are coupling constants.

The above scalar potential V (h) for µ2 > 0 and λ > 0 is plotted in the left panel

of Fig.2.1. In this case the minimum potential energy of the scalar field is at the origin

of the potential and respects the U(1) gauge symmetry. However, if we instead assume

that µ2 < 0, then the minimum of the potential is no longer at the origin, as illustrated

by the right panel of Fig.2.1. The scalar field will oscillate around its minimum potential

energy and it is therefore useful to expand around the minimum h0 by redefining h such

that h(x) = h0 + H(x), where the local U(1) gauge symmetry has been used to make

h(x) real-valued at every point x.1 The kinetic energy of the scalar field, given by |Dµh|2

in Eq.2.1, now contains a mass term for the U(1) gauge field in the new coordinates:

|Dµh|2 = (∂µH)2 + g2Q2
hh

2
0AµA

µ + · · · .

Therefore, if the scalar field lives near the minimum of its potential with µ2 < 0, the

U(1) gauge symmetry appears to be spontaneously broken, that is, the gauge boson

acquires a mass and there is no U(1) symmetry. The non-zero value of the scalar field’s

potential energy h0 is called the scalar’s vacuum expectation value (VEV), and is given

by:

υ =

√
−µ2

2λ
. (2.5)

By interacting with the complex scalar field h over all space, the U(1) gauge field has

thus acquired a mass at every point in space.

2.1.2 Electroweak Symmetry Breaking

This argument can be extend to the non-Abelian electroweak theory SU(2)L × U(1)Y .

In this case the complex scalar field, called the Higgs field h, transforms in the spinor

representation of SU(2)L and has Y = 1
2 hypercharge [25]. The covariant derivative of

1Eq.2.1 is invariant under a local U(1) transformation: φ(x) → eiα(x)φ(x) and Aµ(x) → Aµ(x) −
1

gQh
∂µα(x). We can choose α(x) so that φ(x) is real-valued at every pint x. This is called the unitarity

gauge.
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Figure 2.1: Shape of the scalar potential V (h) where the left panel is for µ2 > 0 and
the right panel is for µ2 < 0. h1 and h2 denote the real and imaginary parts of the

complex scalar field h.

the scalar field is then:

Dµh = ∂µh+ ig2LT
a
LW

a
Lµh+ i

1
2
gYBY µh (2.6)

where W a
Lµ and BY µ are the SU(2)L and U(1)Y gauge fields respectively, and the SU(2)L

generators T aL are given by 1
2σ

a where σa are the Pauli matrices with a = 1 . . . 3.

The Form of the potential V (h) is taken to be the same as in Eq.2.4 and so the

scalar field h again obtains a VEV 〈h〉. We can use the freedom of SU(2)L rotations to

write this VEV in any SU(2)L component, for example:

〈h〉 =

(
0

υ

)

where υ =
√
−µ2

2λ from Eq.2.5.

Expanding around the minimum of the scalar potential, the Kinetic Energy of the

Higgs field, given by the mod square of the covariant derivative, then contains the

following SU(2)L × U(1)Y gauge field mass terms:

(
0 υ

)(
g2LW

a
LµT

a
L +

1
2
gYBY µ

)(
g2LW

bµ†
L T b†L +

1
2
gYB

µ†
Y

)( 0

υ

)
(2.7)

=
υ2

4

[
g2

2L

∣∣W 1
Lµ

∣∣2 + g2
2L

∣∣W 2
Lµ

∣∣2 +
∣∣− g2LW

3
µ + gYBY µ

∣∣2].
The VEV of h therefore generates mass terms for the SU(2)L fields associated with

the Pauli matrices τ1, τ2; and mixes the hypercharge field BY with the SU(2)L field
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associated with τ3. The mixing of the A3
L field and BY can be written as the matrix

product 1
4υ

2BTMB where BT ≡
(
BY W 3

L

)
, and M is given by:

(
g2
Y −g2LgY

−g2LgY g2
2L

)
.

The fields W 3
L and BY are the eigenstates of the SU(2)L × U(1)Y interactions but,

since they are mixed by the above mass terms, they cannot be the same as the mass

eigenstates. These are instead found by diagonalizing the above matrix M. The diagonal

matrix D of M is defined by D ≡ VTMV where V is the matrix (v1,v2) of the

eigenvectors v1 and v2 of M. The matrix product 1
4υ

2BTMB can therefore be written

as 1
4υ

2ATDA where A ≡ VTB contains the mass eigenstates of the fields and is given

by: (
Aγ

Z0

)
=

(
cos θ sin θ

− sin θ cos θ

)(
BY

W 3
2L

)

where tan θ = gY /g2L. The eigenstate Aγ corresponds to a zero eigenvalue for M and is

therefore a massless field, whereas the Z0 field has acquired a mass mZ given by:

1
2
m2
Z =

1
4
υ2(g2

2L + g2
Y ). (2.8)

Replacing the interaction eigenstates with the above mass eigenstate in the covariant

derivative Eq.2.6 then gives:

Dµ = ∂µ − i
g√
2

(W+
µ T

+ +W−µ T
−)− i g2L

cos θ
Zµ(T 3 − sin2 θQem)− ieAµQem

where W±µ = 1√
2
(W 1

µ ∓ iW 2
µ) and T± = 1

2(σ1 ± iσ2). The coupling constant e and the

generator Qem are defined by the following:

e = g2L sin θ, (2.9)

Qem = T 3
L + Y. (2.10)

The generator Qem leaves the scalar field’s vacuum invariant and so it is not affected

by the VEV of the scalar field which explains why Aµ remains massless. The SU(2)L ×
U(1)Y electroweak symmetry has thus been spontaneously broken to the symmetry of

electromagnetism U(1)em. The electroweak force is therefore broken in the Standard

Model because the vacuum in which all particle interactions takes place is not actually

empty but is instead filled with a condensate of particles from the Higgs field. The

W±, Z0 bosons continuously interact with the Higgs field as they travel through the

vacuum, which appears to give them mass. In fact the Higgs field effectively ‘slows

down’ anything that interacts with it, and in the Standard Model all fundamental mass
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comes from the Higgs field. The way in which the Higgs field gives mass to the quarks

and leptons is described in detail in Chapter 5.

Eq.2.10 enables us to determine the hypercharge Y of the various fields in the

Standard Model by measuring their electric charge. However we could have just as

easily defined hypercharge as:

Y = N(Q− T 3
L) (2.11)

where N is any real number, as long as we also redefine the gauge coupling constant

gY as gY /N so that the strength of interaction remains the same. In Section 2.4.1 a

particular choice of N is introduced that is motivated by higher energy physics.

Eq.2.9 defines the gauge coupling constant of electromagnetism (at the electroweak

symmetry breaking scale) in terms of the hypercharge and SU(2)L gauge coupling con-

stants. This can be re-written as:

1
αe

=
1
α2L

+
1
αY

(2.12)

where α ≡ g2/4π. This boundary condition applies at the electroweak symmetry break-

ing scale.

2.1.3 The Hierarchy Problem

The previous Section illustrated that if we rewrite the covariant derivative Eq.2.6 in

terms of the Higgs field’s oscillation around its VEV h = 〈h〉 + H then mass terms

appear for the electroweak gauge fields. Likewise, if we rewrite the whole Lagrangian

describing the scalar and the SU(2)L × U(1)Y gauge fields, then we also find a mass

term for the scalar field’s oscillation H in the scalar potential V (h):

V (h) = (µ2 + 6λυ2)H2 + · · ·

≡ 1
2
m2
HH

2 + · · ·

where mH = −2µ2 = 4λυ2 and µ2 < 0.

The quantum of the field h(x) is called the Higgs boson and has a classical mass

mH . Just as with the vector bosons, the mass of this field comes from the product of

the VEV of the complex scalar field h and a renormalizable coupling constant. However

unlike for the vector bosons the renormalizable coupling constant λ is, at the time of

writing, undetermined by experiment. This is because the Higgs boson has not yet been

observed, although it is hoped to be found at the upcoming Large Hadron Collider in

CERN. The present experimental limit on the Higgs boson’s mass is set by LEP to be
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mH > 114.4 GeV at 95% CL [26].2 The Tevatron has also given an exclusion region

of 160 − 170 GeV at 95% CL [26]. Theoretical arguments based on the perturbativity

of the theory can also be used to place approximate upper and lower bounds upon

the Higgs boson’s mass [27]. For example, for large Higgs boson masses the coupling

λ rises with energy and so the theory would eventually become non-perturbative. The

requirement that this does not occur below a given energy scale Λ defines an upper bound

for the Higgs mass. A lower bound is obtained from the study of quantum corrections

to the Standard Model and from requiring the effective potential to be positive definite.

These theoretical bounds imply that if the Standard Model is to be perturbative up to

MGUT = 1016 GeV, the Higgs boson mass should be within about 130 and 190 GeV

[27].3

Since we haven’t yet observed the Higgs boson then we cannot say for definite if the

Standard Model’s explanation of electroweak symmetry breaking is correct. However its

successful description of the W± and Z0 bosons and the fact that it also provides the

quarks and leptons with mass suggests that, if it isn’t correct, then the true mechanism

of electroweak symmetry breaking must be very similar to that in the Standard Model.

There is an awkward element about the Standard Model Higgs mechanism however.

This arises when we investigate the quantum corrections to the Higgs boson’s mass

and find that the square of the Higgs boson’s mass m2
H receives enormous quantum

corrections from the virtual effects of every particle that couples to it [4]. This is not

a problem so much for the Standard Model itself since the theory is renormalizable,

but instead implies a rather disturbing sensitivity of the Higgs potential to new physics

in almost any imaginable extension of the Standard Model. This is because quantum

corrections to the Higgs boson’s mass from new physics would not be eliminated without

the physically unjustifiable tuning of counter-terms specifically for that purpose.4 In fact

m2
H is sensitive to the masses of the heaviest particles that H couples to, so that, if the

mass scale of these fields is very large, its effects on the Standard Model do not decouple

but instead make it difficult to understand why m2
H is so small. This problem arises

even if there is no direct coupling between the Standard Model Higgs boson and the

unknown heavy physics.

This would of course not be a problem if there was no new physics beyond the

Standard Model, but this is considered to be very unlikely, particular in light of the

expected need for a quantum mechanical description of gravity. We therefore anticipate
2For a SUSY theory the limit is mH > 92.8 GeV for the lightest Higgs.
3Indirect experimental bounds for the Standard Model Higgs boson mass are obtained from fits to

precision measurements of electroweak observables, and to the measured top and W± masses. These
measurements are sensitive to the logarithm of the Higgs mass, and the latest indirect bounds are:
129+70
−50 GeV [26].
4If one introduces a momentum cut-off ΛUV rather than using dimensional regularization then the

quantum corrections to m2
H scale as Λ2

UV .
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that, when we include higher energy physics such as quantum gravity, the Higgs mass

becomes unstable. Theoretically then we expect that the Higgs mass should be similar

to the Planck mass and electroweak symmetry breaking should occur near the Planck

scale, which is of course not what we observe experimentally. This is generically called

the hierarchy problem of the Standard Model [4].

2.2 Supersymmetry

The Higgs field is very important since it sets the scale of everything in the Standard

Model, and given that we expect new physics to occur at higher energies, then we must

somehow stabilize the Higgs field. Thus, the Standard Model is expected to be embedded

in a more fundamental theory which will stabilize the hierarchy between the electroweak

scale and the Planck scale in a natural way. The material for this Section is based on

that in [13].

The instability of the Higgs mass turns out to be a general property of scalar fields

in quantum field theories since, unlike fermions and vector bosons, their mass is not

protected from a chiral or gauge symmetry.5 This suggests that an approach to stabi-

lizing the Higgs mass is to introduce a symmetry for scalar fields. One such symmetry

is supersymmetry [28], which transforms a bosonic state into a fermionic state and vice

versa: 6

Q† or Q|Boson >= |Fermion >, Q† or Q|Fermion >= |Boson >

where Q and Q† are fermionic operators (anti-commuting spinors) since they carry spin

angular momentum 1/2. This illustrates that supersymmetry is a spacetime symmetry.

Supersymmetry protects the mass of scalar particles from the virtual effects of heavy

particles by cancelling the various contributions to the quantum corrections [28]. For

example, at one loop there is a relative minus sign between the fermion and boson

contributions to ∆m2
H and so, by introducing a boson for every fermion and vice-versa,

the contributions to the Higgs mass cancel. This cancellation occurs to all orders of

perturbation theory and so the Higgs mass becomes stable.

The single particle states of a supersymmetric theory fall into irreducible repre-

sentations of the supersymmetry algebra called supermultiplets. Each supermultiplet

contains both fermion and boson states, which are commonly known as superpartners
5Chiral symmetry requires that the quantum corrections to a fermion’s mass are proportional to the

mass itself, resulting in much smaller tuning than quantum corrections to scalar masses.
6Only the simplest type of supersymmetric algebra, N = 1 supersymmetry is considered in this work,

where N refers to the number of supersymmetries (the number of distinct copies of Q,Q†).
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of each other. Since the generators of supersymmetry commute with the generators of

gauge transformations, particles in the same supermultiplet must also be in the same

representation of the gauge group.

2.3 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) [5] is the result of what is gener-

ally considered to be the simplest application of supersymmetry to the Standard Model.

In the MSSM every particle of the Standard Model has a supersymmetric partner called

a sparticle. For example, the quarks and leptons have scalar partners called squarks and

sleptons that together make up chiral supermultiplets, and the Standard Model gauge

bosons have fermionic partners, called gauginos, that together form vector supermulti-

plets.

The Higgs sector of the MSSM however does not just contain the Standard Model

Higgs and its fermionic superpartner. Instead it contains two Higgs chiral supermulti-

plets called the up and down Higgs supermultiplets hu and hd. Two Higgs fields rather

than one are principally required so that the gauge anomalies for the electroweak gauge

symmetry cancel. If these didn’t cancel then the model would be an inconsistent quan-

tum field theory. The cancellation of gauge anomalies includes the requirement that

Tr[(T 3
L)2Y ] = Tr[Y 3] = 0, where traces run over all the left-handed Weyl fermionic

degrees of freedom in the theory. In the Standard Model, these conditions are already

satisfied by the known quarks and leptons, but a fermionic partner of a Higgs field must

be a weak isodoublet with weak hypercharge Y = 1/2 or Y = −1/2. In either case the

fermion will make a non-zero contribution to the traces and spoil anomaly cancellation.

This can be avoided however if there are two Higgs supermultiplets with opposite hy-

percharge so that the total contribution to the anomaly traces from the two fermionic

members of the Higgs chiral supermultiplets vanishes.

2.3.1 The MSSM Superpotential

The superpotential of a supersymmetric model lists all the non-gauge interactions for

particles that live in the chiral supermultiplets of the model. The form of the non-gauge

couplings, including the mass terms, is highly restricted by the requirement that the

action that is invariant under supersymmetry transformations is renormalizable. The
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superpotential of the MSSM is given below:7

WMSSM = λijuQiu
c
jhu + λijd Qid

c
jhd + λije Lie

c
jhd + µhuhd (2.13)

where Qi, Li, eci , u
c
i and dci are the quark and lepton chiral supermultiplets; λiju , λ

ij
d , λ

ij
e , µ

are renormalizable parameters; i, j = 1 . . . 3 are flavour indices; and c denotes a charge-

conjugate of a left-handed field. WMSSM is the supersymmetric version of the Yukawa

interactions of the Standard Model.

Other terms, which are allowed by the gauge symmetry of the MSSM, are not present

in the MSSM superpotential because of a discrete Z2 symmetry called R-parity. These

terms are LLhd, QLdc, Lhu, which arise because L and hd are identical under the MSSM

gauge group, and ucdcdc. These operators would cause phenomenological problems such

as rapid proton decay if they aren’t forbidden or heavily suppressed.

The first three terms in Eq.2.15 illustrate that two Higgs fields are also required so

as to give mass to both the up and down the quarks and charged leptons. If hu develops

a VEV then it will give mass to the up quarks, and if hd also develops a VEV then it

will give mass to the down quarks and charged leptons. Terms such as Quch∗d, Qd
ch∗u

and Qech∗u are forbidden in the superpotential since it must be analytic in the chiral

superfields.

The µhuhd term in the superpotential, called the µ-term, can be written out as

µ(hu)α(hd)βεαβ where α, β are SU(2)L indices. Terms such as h∗uhu or h∗dhd are for-

bidden in the superpotential since again it must be analytic. The µ-term is therefore

the supersymmetric version of the Higgs boson mass in the Standard Model potential

Eq.2.4. The full Higgs potential in the MSSM is reviewed in Section 2.3.3.

2.3.2 Soft Supersymmetry Breaking

The theory described so far is in strong violation of experimental data since supersym-

metry requires that the mass of all superpartners is equal and so we should have observed

the various squarks and sleptons in particle accelerators. In the MSSM this problem is

avoided by including explicit mass terms for the scalar particles of the chiral supermulti-

plets and the fermion particles of the vector supermultiplets. These explicit mass terms

then break supersymmetry but maintain a hierarchy between the electroweak scale and

the Planck (or any other very large) mass scale [29].8 Excluding the gaugino mass terms,
7If we include three right-handed neutrinos νR then there would also be an additional term λijν Liν

c
jhu.

8From a theoretical perspective we expect that supersymmetry should be an exact symmetry that is
broken spontaneously. That is, the underlying model should have a Lagrangian density that is invariant
under supersymmetry, but a vacuum state that is not, analogous to the electroweak symmetry breaking
in the Standard Model.
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the supersymmetry-breaking couplings in the MSSM are the following:

LMSSM
soft =− (aijku Q̃ũchu − aijkd Q̃d̃chd − aijke Q̃ẽchd + c.c.) (2.14)

− Q̃†i (m
ij
Q)2Q̃j − L̃†i (m

ij
L )2L̃j − ũc

†
i (m

ij
u )2ũcj

− d̃c†i (mij
u )2d̃cj − ẽc

†
i (m

ij
e )2ẽcj

−m2
huh
∗
uhu −m2

hd
h∗dhd − (bhuhd + c.c.)

where a tilde denotes the scalar component of the chiral superfield.

It has been shown rigorously that a softly broken supersymmetric theory with Lsoft
as given by Eq.2.14 is free of quadratic divergences for quantum corrections to scalar

masses to all orders in perturbation theory [29].

The soft masses in the above equation allow for the Standard Model superpartners

(except for the Higgs’ superpartners, called the higgsinos) to have a mass which, if large

enough, would prevent them from being observable in previous experiments. However,

these masses cannot be too large since the Higgs mass is sensitive to the mass difference

between the superpartners of a supermultiplet. The fact that we haven’t yet observed

the superpartners of the Standard Model or Higgs boson introduces a little hierarchy

problem to the MSSM [30].

2.3.3 The Higgs Potential

The scalar potential V (φ, φ†) of a supersymmetric theory is divided into ‘F -term’ and

‘D-term’ contributions:

V (φ, φ†) = F ∗iFi +
1
2

∑
a

DaDa

where the sum is over the gauge interactions of the theory; F are complex auxiliary

fields; and D are gauge auxiliary fields. The auxiliary fields are just book-keeping

devices that are introduced to the supersymmetry algebra to make it consistent off-

shell. They therefore do not have a kinetic term and can be eliminated on-shell using

their algebraic equation of motion. The F -terms are fixed by Yukawa couplings and

fermion mass terms, and the D-terms are fixed by the gauge interactions.
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Ignoring the soft SUSY breaking terms, the Higgs potential of the MSSM would be

the following:

V = |µ|2(|h0
u|2 + |h+

u |2 + |h0
d|2 + |h−d |

2)

+
1
8

(g2
2L + g2

Y )(|h0
u|2 + |h+

u |2 − |h0
d|2 − |h−d |

2)2

+
1
2
g2

2L|h+
u h

0∗
d + h0

uh
−∗
d |

2.

The terms proportional to |µ|2 come from the F -terms, and the terms proportional to

g2 and g2
Y are the D-term contributions. Since |µ|2 > 0 this potential takes the form

of that in Fig.2.1 for each Higgs field. The minimum of the potential would therefore

occur at the origin with |h0
u| = |h0

d| = 0 and there would be no electroweak symmetry

breaking. However, the full Higgs potential of the MSSM also includes the soft SUSY

breaking terms for the Higgs fields and is given by:

V = (|µ|2 +m2
hu)(|h0

u|2 + |h+
u |2) + (|µ|2 +m2

hd
)(|h0

d|2 + |h−d |
2) (2.15)

+ [b(h+
u h
−
d − h

0
uh

0
d) + c.c.] +

1
2
g2

2L|h+
u h

0∗
d + h0

uh
−∗
d |

2

+
1
8

(g2
2L + g2

Y )(|h0
u|2 + |h+

u |2 − |h0
d|2 − |h−d |

2)2.

With the above soft SUSY terms introduced, the Higgs potential can now have a mini-

mum at which |h0
u| = |h0

d| 6= 0 and the electroweak symmetry is spontaneously broken.

This is effectively because the mass terms for the up (and down) Higgs fields can now

be negative since m2
hu

and m2
hd

, unlike |µ|2 can be negative parameters. The form of the

potential then becomes a generalization of that in Fig.2.1 which represents the Higgs po-

tential of the Standard Model. Thus the soft SUSY breaking terms are not just required

to explain the absence of Standard Model superpartners at previous experiments, but

also to break the electroweak symmetry in an analogous way to the Standard Model.

Assuming that the Higgs field obtains a vacuum expectation value and using the

freedom of SU(2)L × U(1)Y gauge transformations we can simplify Eq.2.15 to:

V (h0
u, h

0
d) = (|µ|2 +m2

hu)|h0
u|2 + (|µ|2 +m2

hu)|h0
d|2 − (bh0

uh
0
d + c.c)

+
1
8

(g2
2L + g2

Y )(|h0
u|2 − |h0

d|2)2

where h0
u and h0

d are real and positive. CP cannot be spontaneously broken by the

Higgs scalar potential, since the VEVs and b can be simultaneously chosen real, as a

convention.

For V to really have a minimum the potential must be bounded from below for

arbitrarily large values of the scalar fields. In general the scalar quartic interactions in
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V will stabilize the potential for almost all arbitrarily large values of h0
u and h0

d but,

for the special directions in field space |h0
u| = |h0

d|, the quartic contributions to V are

identically zero. Such directions in field space are called D-flat directions, because along

them the part of the scalar potential coming from D-terms vanishes. In order for the

potential to be bounded from below, the quadratic part of the scalar potential must be

positive along the D-flat directions. This requires:

2b < 2|µ|2 +m2
hu +m2

hd
. (2.16)

Then, for V to have a stable minimum (or for h0
u = h0

d = 0 to be an unstable minimum)

we require that one linear combination of h0
u and h0

d has a negative squared mass near

h0
u = h0

d = 0. This results in:

b2 > (|µ|2 +m2
hu)(|µ|2 +m2

hd
). (2.17)

The above inequalities are the necessary conditions for h0
u and h0

d to get non-zero VEVs

and we can now require that they are compatible with the observed phenomenology

of electroweak symmetry breaking. That is, the Higgs’ VEVs must satisfy the MSSM

version of the of the Standard Model condition given by Eq.2.8:

υ2 ≡ υ2
u + υ2

d = 2m2
Z/(g

2
2L + g2

Y ) ≈ (174 GeV)2 (2.18)

where υu ≡ 〈h0
u〉 and υd ≡ 〈h0

d〉. The ratio of the up and down Higgs VEVs is conven-

tionally denoted by tanβ ≡ υu/υd and is an unknown parameter.

Thus, as long as certain conditions are met, the Higgs potential of the MSSM can

break the electroweak symmetry analogous to how it is broken in the Standard Model.

This is achieved without the quantum corrections from higher energy physics upsetting

the results, that is, the Higgs mass is stable in this theory.

2.4 Supersymmetric Grand Unified Theories

In the previous Section the instability of the Standard Model Higgs field to the addition

of higher energy physics led us to consider the Standard Model to be an effective low-

energy approximation to the MSSM. In this Section we will find that certain aspects of

the MSSM then naturally lead us to consider it to be a low-energy approximation to a

theory that is, on a logarithmic scale, close to the Planck scale. This new theory solves

a number of mysteries about the Standard Model and MSSM such as the quantization

of electric charge and gauge anomaly cancellation.
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Figure 2.2: Two-loop running of the gauge coupling constants in the Standard Model.
α1 ≡ g1/4π is the GUT normalized U(1)Y gauge coupling constant, α2 ≡ g2L/4π is
the SU(2)L gauge coupling constant, and α3 ≡ g3c/4π is the gauge coupling constant
of SU(3)c. The green lines describe the running of the gauge coupling constants in the
Standard Model between the mass of the Z0 boson and top quark. The thickness of the
lines indicates the experimental uncertainty in the initial values of the gauge coupling

constants.

2.4.1 Gauge Coupling Unification in the MSSM

If the Standard Model is considered to be an effective approximation to a higher energy

theory then the SU(3)c × SU(2)L × U(1)Y gauge coupling constants can usefully be

thought of as energy-dependent entities. Using the Standard Model renormalization

group equations one can calculate how the gauge coupling constants run with energy to

a given order in perturbation theory, and if we run gauge couplings to higher energies

then, depending on the normalization chosen for the definition of hypercharge in Eq.2.11,

they can meet at a very high-energy scale.9 The unification of gauge coupling constants

would unlikely be a coincidence and would instead imply that something new occurs at

the unification scale. A strong possibility is that a theory based on a semi-simple gauge

group such as SU(5) spontaneously breaks to the Standard Model gauge group at the

unification scale, analogous to how SU(2)L×U(1)Y breaks to U(1)em [18]. Such a theory

is called a Grand Unified Theory (GUT) and would of course have just a single gauge

coupling constant. However, if SU(3)c × SU(2)L × U(1)Y comes from a semi-simple

gauge group then the normalization of hypercharge is automatically fixed [9]. This is

because Y like T aL and T a3c must come from the generators of the semi-simple group.

For any simple compact Lie group, there is a conventional choice of generators Ta
with totally antisymmetric structure constants, which in each reducible or irreducible

9If the hypercharge normalization N in Eq.2.11 is taken to be
√

13
10

then the gauge couplings unify

at ≈ 1017 GeV to one-loop, and 4× 1016 GeV to two-loops [31, 32].
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Figure 2.3: Running of the SU(3)c, SU(2)L and GUT normalized U(1)Y gauge cou-
pling constants for the MSSM using two-loop renormalization group equations. The
pink lines are the running of the gauge coupling constants of the Standard Model, below

the assumed scale of supersymmetry.

representation D satisfy the following normalization condition:

Tr[TaTb] = NDδab.

If the Standard Model gauge symmetries come from a single gauge group then we must

therefore have Tr(Tc)2 = Tr(T2L)2 = Tr(Y )2 where Tc, T2L and Y are the generators

of SU(3)c, SU(2)L and U(1)Y respectively, and the trace is over all the fermions. These

are given by Tr(Tc)2 = 6g2
3, Tr(T2L)2 = 6g2

2L and Tr(Y 2) = 10g2
Y which sets g2

3 =

g2L = (5/3)g2
Y at the GUT scale. Thus the normalization constant in Eq.2.11 is given

by N =
√

3
5 so that in this case hypercharge is defined as:

Y =

√
3
5

(Qem − T3). (2.19)

If we run the SU(3)c×SU(2)L×U(1)Y gauge coupling constants in the Standard Model

with this hypercharge normalization to higher energies, assuming that there are no new

particles, then they come close to unifying at a high energy scale, but just miss each

other. This is illustrated by Fig.2.2 to two-loops in perturbation theory.

If the MSSM is used instead of the Standard Model however then the SU(3)c ×
SU(2)L × U(1)Y gauge couplings almost exactly unify at an energy scale of ≈ 3× 1016

GeV, which is illustrated to two-loops by Fig.2.3 [7]. This is under the assumption that

there is nothing between the SUSY scale, around 1 TeV, and the so-called GUT scale

≈ 3 × 1016 GeV. The huge energy region between these two scales is generically called
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the Grand Desert.10

This suggests that the MSSM is a low-energy approximation to a supersymmetric

theory with a semi-simple gauge group that spontaneously breaks at ≈ 3 × 1016 GeV.

Such a theory is called a SUSY GUT and the next Section provides a brief review for

the SU(5) and SO(10) SUSY GUTs.

2.4.2 SU(5) and SO(10) SUSY GUTs

The smallest simple Lie group that contains SU(3) × SU(2) × U(1) as a subgroup

is SU(5). In an SU(5) GUT the Standard Model gauge bosons (and gauginos) are

then unified in the adjoint representation, which has dimension 24 [8]. If SU(5) is

spontaneously broken to the Standard Model gauge group at 3 × 1016 GeV, then the

gauge bosons that are not part of the Standard Model would get mass at this high-energy

scale, in an analogous way to how W± and Z0 get mass from electroweak symmetry

breaking.

Just as the MSSM gauge supermultiplets are unified in an SU(5) SUSY GUT, so

too are the quark and lepton supermultiplets, although this is only a partial unification.

In SU(5) the quarks and leptons fit neatly into the representations 10 + 5. The 10 rep-

resentation contains one generation of the left-handed up and down quarks (Q), charged

conjugated up quarks (uc) and leptons (ec); whereas the 5 contains one generation of

the left-handed leptons (L) and charged-conjugated down quarks (dc). In total then

three copies of 10 + 5 are required to replicate the MSSM matter content. The up and

down Higgs doublets must also come from SU(5) representations and the smallest ones

available are 5 for hu and 5 for hd.

Another promising SUSY GUT is that based on the SO(10) gauge group.11 Unlike

in SU(5) SUSY GUTs, one generation of quarks and leptons are unified in a single

representation. This is the fundamental spinor representation 16 and three copies of

this representation are therefore required. As well as one generations of quarks and

leptons, the 16 representation also contains a Standard Model singlet which can be

identified as a right-handed neutrino. This particle can be used to explain the resent

discovery of neutrino oscillations which is discussed in more detail in Chapter 5.
10If complete GUT representations are at a particular scale which lies between these two scales then

the unification of gauge coupling constants will still occur at around 1016 GeV provided that the coupling
constants remain in the perturbative regime.

11The Lie group involved is not really the special orthogonal group SO(10), but rather its double cover
Spin(10).
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The MSSM Higgs doublets are also unified into the same SO(10) representation,

which is the fundamental representation 10. The MSSM superpotential is then con-

tained in the simple SO(10) tensor product 16 × 16 × 10 for the three copies of the

16 representation. This automatically forbids the R-parity violating operators of the

MSSM further illustrating that the MSSM appears to fit neatly inside an SO(10) SUSY

GUT.

Another virtue of the SO(10) GUT is its explanation for gauge anomaly cancellation

in the Standard Model (and MSSM). This is discussed in the next subsection.

2.4.3 Anomaly Cancellation

In theoretical physics a gauge anomaly is a quantum mechanical effect (usually a one-loop

diagram) which invalidates the gauge symmetry of a quantum field theory. Therefore

all gauge anomalies must cancel out, and this is indeed what happens in the Standard

Model. The anomaly in vector gauge anomalies (in gauge symmetries whose gauge boson

is a vector) is a chiral anomaly and can be calculated exactly at one-loop level using

a Feynman diagram with a chiral fermion running in the loop with N external gauge

bosons attached to the loop where N = 1 + d/2 and d is the spacetime dimension.12

The anomaly is proportional to the completely symmetric constant factor dabc:

dabc ≡
1
2
Tr
[
{Ta, Tb}Tc

]
(2.20)

where Ta is the representation of the gauge algebra on the set of all left-handed fermion

and anti-fermion fields, and Tr denotes a sum over these fermion and antifermion species.

This condition may be satisfied for any gauge group if the fermion fields furnish a suitable

reducible or irreducible representation of the group. In addition, there are some gauge

groups for which the above is satisfied for fermions in any representation of the group.

The condition is obviously satisfied if the left-handed fermion (and anti-fermion)

fields furnish a representation Ta of the gauge algebra that is equivalent to its complex

conjugate such that:

(iTa)∗ = S(iTa)S−1

or equivalently:

T Ta = −STaS−1. (2.21)

Inserting this into Eq.2.20 gives dabc = −dabc. Such a representation Ta may be ei-

ther real or pseudoreal, and there is therefore no anomaly for gauge algebras that have
12Anomalies occur only in even spacetime dimensions, and since d = 4 in the Standard Model, the

diagram involved is a triangle diagram with axial and vector currents at one of its vertices.
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only real or pseudoreal representations, namely SO(2n+ 1) (including SU(2) ≡ SO(3),

SO(4n) for n ≥ 2, G2, F4, E7 and E8) [9]. A few other algebras also have only represen-

tations for which dabc vanishes, even though some representations are neither real nor

pseudoreal [33]. These are SO(4n+ 2) (except for SO(2) = U(1) and SO(6) = SU(4))

and E6. Anomalies are thus only possible for gauge algebras that include SU(n) (for

n ≥ 3) or U(1) factors.

Given that the Standard Model is based on the gauge group SU(3) × SU(2) ×
U(1) then the we must rely on the gauge anomalies due to the various quarks and

leptons cancelling to make the theory free of anomalies. Fortunately this is exactly

what happens. However, from the point of view of the Standard Model, this cancellation

amongst the quarks and leptons is mysterious since the apparently arbitrary quantum

numbers of the quarks and leptons are just right for the Standard Model to be free of

anomalies.

From the point of view of Grand Unified Theories however the cancellation of gauge

anomalies in the Standard Model can be neatly understood by noting that SU(3) ×
SU(2) × U(1) may be embedded in SO(10) [34]. All of the representations of SO(10)

are anomaly-free, so the same property is inherited by any reducible representation of

SU(3) × SU(2) × U(1) that furnishes a complete representation of SO(10). As noted

in Section 2.4.2, it turns out that the left-handed fields of a single generation of quarks,

leptons, antiquarks and antileptons plus one additional (SU(3)×SU(2)×U(1))-singlet (a

right-handed neutrino) forms a complete 16-dimensional representation of SO(10) (the

fundamental spinor representation). The singlet would not contribute to such anomalies,

and so there are no anomalies in the gauge symmetries of the Standard Model.

The cancellation of gauge anomalies in the MSSM from the point of view of SUSY

GUTs is perhaps less obvious since the left-handed fermions of the MSSM do not come

from complete SO(10) representations. This is because the MSSM Higgsinos come from

a fundamental 10 representation of SO(10) but, as discussed further in Section 2.4.5.2,

their triplet higgsino partners are missing in the MSSM. However, since the triplet

higgsinos transform as a (3, 1)− 1
3

and (3, 1) 1
3

under SU(3)c × SU(2)L × U(1)Y , they

form conjugate representations under the Standard Model gauge group and so their

gauge anomalies cancel.



Chapter 2. The Higgs Field and Supersymmetry 22

2.4.4 Radiative Symmetry Breaking

In Section 2.1.1 we found that the parameter µ2 must be negative for the Standard Model

Higgs field to obtain a VEV in order to break the electroweak symmetry. Similarly

in the MSSM the conditions for electroweak symmetry breaking Eq.2.16-Eq.2.17 are

helped by m2
hu

(and m2
hd

) being negative. However, although there is nothing stopping

us choosing these parameters to be negative, it seems a little unnatural, especially when

every other parameter in the scalar potential is anticipated to be positive.13 A solution

to this naturalness problem is obtained by using the fact that, just as the gauge coupling

constants can run with energy, so also can these Standard Model and MSSM parameters.

Assuming the grand desert between the MSSM and GUT scales, it has been shown that

m2
hu

can run negative at a low energy scale such as the electroweak energy scales if it

starts from a positive value at the GUT scale [35]. This occurs in particular for m2
hu

because the top Yukawa coupling is expected to be O(1), which reduces the effective

value of m2
hu

as the energy scale of interest decreases. In models with tanβ � 1 however,

m2
hd

can also run negative since the bottom Yukawa constant is also large in these models.

Generating a negative value for m2
hu

(and m2
hd

) in this way is called radiative elec-

troweak symmetry breaking and helps to explain why the electroweak scale is so much

smaller than the GUT or Planck scales as it takes a large energy region form2
hu

(andm2
hd

)

to run negative from a positive value at the GUT scale (assuming an MSSM spectrum

and a Grand Desert).

Radiative electroweak symmetry breaking is particularly well motivated by super-

gravity theories [35]. These are quantum field theories in which supersymmetry is consid-

ered to be a local rather than a global symmetry and offer a candidate for the unification

of the Standard Model forces with gravity. In simple supergravity models all the soft

SUSY breaking parameters are equal and positive at the GUT scale but run differently

with energy to the electroweak scale. Together with the size of the top and bottom

Yukawa couplings this then explains why only m2
hu

(and m2
hd

) run negative and not

other soft MSSM parameters such as the square mass for the selectron m2
e.

2.4.5 Proton Decay and Doublet-Triplet Splitting

2.4.5.1 Gauge Mediated Proton Decay

Since the quarks and leptons are unified in representations of a GUT’s gauge group G,

interactions with the gauge bosons of G will introduce processes involving violations of
13For example we wouldn’t want m2

t̃ < 0 otherwise it might induce a VEV for the stop and thus break
the strong nuclear force.
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baryon and lepton number. This can then lead to proton decay, which has not been

observed experimentally. The interactions that lead to proton decay are d = 6 operators

that conserve B − L so that the proton always decays into an antilepton.

The gauge bosons that mediate proton decay are the ones that are not present in the

Standard Model and are expected to get GUT scale masses once the symmetry group

G is spontaneously broken. The proton decay interactions will therefore be suppressed

by the GUT scale masses of the gauge bosons and we can a naive model-independent

estimation for the mass of the superheavy gauge bosons using the experimental lower

bound on the proton lifetime [36]. Using:

Γp ≈ α2
GUT

m5
p

M4
V

and τ(p → π0e+) > 1.6 × 1033 yrs then a naive lower bound on the superheavy gauge

boson masses is MV > (2.57 − 3.23) × 1015 GeV for αGUT = 1/40 − 1/25. This is just

below the GUT scale 3×1016 GeV and therefore general SUSY GUTs are within present

experimental limits for proton decay mediated by the gauge bosons.

2.4.5.2 Higgs Triplets

Just as the quarks, leptons and gauge bosons come from GUT representations, so must

the MSSM Higgs fields hu and hd. For example, in SUSY SU(5) hu fits into a 5 rep-

resentation, called 5u, whereas hd comes from a 5 representation called 5d. The MSSM

superpotential then comes from the SU(5) superpotential:

λiju 10i10j5u + λijd 10i5j5d + µ5u5d (2.22)

where i, j label the three generations, λiju , λ
ij
d are coupling constants, and µ is an SU(5)

generalization of the MSSM µ-parameter. Since these SU(5) Higgs representations are

of dimension five they must contain particles other than each MSSM Higgs field. These

particles are coloured states called Higgs triplets, which are denoted by D and D, and

transform as (3, 1)− 1
3

and (3, 1) 1
3

respectively under the SU(3)c×SU(2)L×U(1)Y gauge

group. This is not just peculiar to the SU(5), all GUTs contain coloured partners to

Higgs doublets. This is due to the unification of SU(3)c with SU(2)L×U(1)Y in GUTs.

Since the MSSM Higgs fields and Higgs triplet fields come from the same GUT mul-

tiplet they would be expected to have the same or very similar mass, which should be

near to the electroweak scale. However, if we include the Higgs triplet supermultiplets

D and D at low energies then the SU(3)c × SU(2)L × U(1)Y gauge coupling constants

no longer unify. This is a failing of simple GUTs since they don’t predict gauge coupling
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unification, which is the very thing that is required for their existence. Even worse,

because of their interactions with the quarks and leptons due to the SU(5) superpoten-

tial Eq.2.22, electroweak scale Higgs triplets would cause rapid proton decay in great

violation with what we observe in nature [37].

In traditional GUTs this problem is solved by splitting the mass of the MSSM

Higgs doublets and their coloured GUT partners. If the Higgs triplets have a GUT scale

mass then they obviously won’t interfere with the running of the MSSM gauge coupling

constants and so won’t upset unification. Generally this also pushes the induced proton

decay rate just beyond the experimental limits [36]. This however leaves the question

of how Higgs triplets have GUT scale mass but MSSM Higgs doublets have electroweak

scale mass. This is called the doublet-triplet splitting problem.

In an SO(10) theory, there is potential solution to the doublet-triplet splitting prob-

lem known as the ’Dimopoulos-Wilczek’ mechanism [38]. In SO(10) the SU(5) repre-

sentations 5u and 5d are contained in a single fundamental 10 representation. The

doublet-triplet splitting can be achieved by coupling this vector to an adjoint Higgs rep-

resentation 45H . The VEV of the 45H , when written in the fundamental representation,

can take the form 〈45H〉 ∝ diag(a1, a2, a3, a4, a5) ⊗ iτ2, where there is no requirement

that the trace Σiai vanishes. Thus one can have 〈45H〉 ∝ diag(0, 0, 0, 1, 1) ⊗ iτ2 which

is just proportional to the SO(10) generator B − L. Such a VEV will give mass to the

triplets in 10 while leaving the doublets massless. This is not possible in SU(5) since

the adjoint field can only have a VEV that is traceless.

However, to arrange for the VEV to align along this direction (and still not mess

up the other details of the model) often requires very contrived models. Also, because

the adjoint of SO(10) in the fundamental representation is a 10 × 10 antisymmetric

matrix, two distinct 10 representations must appear in the coupling 10145H102. Thus

four Higgs doublets, not two, are left massless which would destroy the unification of

gauge couplings. The mechanism must then be complicated by the existence of an

explicit mass term M102102 where M & MGUT .

Other methods to solving the problems introduced by Higgs triplet fields are moti-

vated by higher energy theories such as string theory. For example, the compactification

of extra dimensions via Wilson-line symmetry breaking or orbifolding can be used to

split the Higgs triplets from the Higgs doublets.
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2.5 The µ-problem of the MSSM

Although the MSSM solves the instability of the Higgs mass to higher energy physics,

it does not explain why the Higgs mass is so small in the first place (why electroweak

symmetry breaking occurs at energies much smaller than the Planck scale). The pre-

diction of gauge coupling unification at 3 × 1016 GeV for the MSSM led us to consider

the MSSM to be an effective low-energy approximation to a SUSY GUT. Radiative elec-

troweak symmetry breaking in a SUSY GUT can then shed light on why electroweak

symmetry breaking occurs at a scale much smaller than the GUT scale, since RGEs

can cause m2
hu

to run negative well below the GUT scale. However, this condition is

not all that is required for the Higgs field to break the electroweak symmetry. From

Section 2.3.3 we found that the Higgs potential also depends on the SUSY respecting

parameter µ. Therefore to fully understand why the electroweak symmetry breaking

scale is much lower than the GUT or Planck scale we need to understand the origin of

this parameter.14

We can write the necessary conditions Eq.2.16 and Eq.2.17 for the Higgs potential

to have a minimum in terms of m2
Z and tanβ using the phenomenological condition

Eq.2.18. These two conditions can then be solved to obtain the following [13]:

m2
Z =

|m2
hd
−m2

hu
|√

1− sin2(2β)
−m2

hu −m
2
hd
− 2|µ|2 (2.23)

where sin(2β) is given by:

sin(2β) =
2b

m2
hu

+m2
hd

+ 2|µ|2
.

Eq.2.23 highlights a slight peculiarity of the MSSM. Without miraculous cancellations,

all of the Lagrangian parameters m2
hu
,m2

hu
, b and |µ|2 ought to be within an order

of magnitude or two of m2
Z0 . However, in the MSSM, µ is a supersymmetry-respecting

parameter that appears in the superpotential, while b, m2
hu

and m2
hd

are supersymmetry-

breaking parameters that appear in the soft SUSY potential. Thus there is no a priori

reason for the µ parameter to have a numerical value close to m2
hu
,m2

hd
or b since they

are conceptually distinct. Furthermore, given that µ is a dimensional parameter (the

only dimensional parameter) that is supersymmetry-respecting, we might expect it take

a value close to the cut-off scale of the MSSM, which is anticipated to be the GUT or

Planck scale at ≈ 1016 GeV or ≈ 1019 GeV respectively. The fact that the µ-parameter
14The origin of the µ-parameter is also related to the doublet-triplet splitting problem since, in grand

unified theories, this term is upgraded to a term that also gives mass to the Higgs triplets.
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appears to be related to the soft SUSY breaking scale, and not to the Planck or GUT

scales, is called the µ-problem of the MSSM.

The rest of this Section reviews non-minimal supersymmetric extensions of the Stan-

dard Models. that resolve the µ-problem of the MSSM.

2.5.1 The Next-to-Minimal Supersymmetric Standard Model

An elegant solution to the µ-problem is to extend the Higgs sector of the MSSM by

introducing a Standard Model singlet field S that couples to the Higgs doublets to

generate the term Shuhd in the superpotential. An effective MSSM µ-term would then

be generated if S gains a VEV. We will see in the next Section that the VEV of this

singlet field can be related to the soft SUSY mass scale and thus an effective MSSM

µ-term can be related to the soft SUSY mass scale. With the bare µ-term forbidden,

the µ-problem of the MSSM would then be resolved.

However, by forbidding the µ-term of the MSSM and introducing the trilinear term

Shuhd, one creates a global U(1) symmetry called a Pecci-Quinn symmetry for the su-

perpotential under which the singlet field is charged [39]. A Goldstone boson, which

has not been observed in experiments, would therefore be created by the VEV of S [40].

In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [41] the unwanted

Goldstone boson is avoided by explicitly breaking the global U(1) symmetry with a S3

term in the superpotential. However, such an approach is accompanied by additional

problems. For example, the S3 term introduces a Z3 discrete symmetry associated with

the NMSSM superpotential which should lead to the formation of domain walls in the

early universe between regions which were causally disconnected during the period of

electroweak symmetry breaking [42]. Such domain structure of vacuum create unac-

ceptably large anisotropies in the cosmic microwave background radiation [43]. In an

attempt to break the Z3 symmetry, operators suppressed by powers of the Planck scale

could be introduced. But it has been shown that these operators give rise to quadrat-

ically divergent tadpole contributions, which destabilise the mass hierarchy once again

[44].

2.5.2 The USSM

An alternative way to avoid the Goldstone boson is to gauge the global U(1) symmetry

[15]. This can be achieved by assuming a local U(1) symmetry, denoted by U(1)′, in

addition to the Standard model gauge symmetry SU(3)c×SU(2)L×U(1)Y , for which the

field S has a non-zero charge. Supersymmetric models that contain a U(1)′ symmetry
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and a charged Standard Model singlet S field are generically called USSMs. If S gains

a VEV in these models, then the U(1)′ gauge group eats the Goldstone boson, resulting

in an observable massive Z ′. So far a Z ′ vector boson has not been detected in particle

experiments, which puts a lower limit on its mass of 500− 600 GeV [45].

The U(1)′ gauge group forbids the MSSM µ-term µhuhd in the USSM superpotential

and replaces it with λSShuhd where λS is a dimensionless coupling constant. The S3 of

the NMSSM is also forbidden by the U(1)′ symmetry. The soft SUSY breaking sector of

the USSM contains a soft mass term for the S field m2
S |S|2 and the b-term of the MSSM

is replaced with aSbSh0
uh

0
d where aS is a dimensional parameter. The singlet field’s pure

scalar potential is therefore given by [46]:

V (S) = m2
S |S|2 +

g′2

2
(QS |S|2)2

where g′ is the gauge coupling constant of the U(1)′ gauge field, and QS is the U(1)′

charge of the singlet field. The quartic terms are from D-term contributions which

stabilize the potential and are for obvious reasons not present in the NMSSM.15 If

m2
S < 0 then minimum of the potential is at:

|S|2 = −
m2
S

g′2Q2
S

. (2.24)

The VEV of the singlet field S is therefore determined by minimizing a potential that

depends on a soft SUSY breaking parameter and so the value of the effective parameter

µ is no longer conceptually distinct from the mechanism of SUSY breaking and should

take a value close to the soft SUSY mass scale. The µ-problem of the MSSM is thus

resolved in the USSM. Also, there is also no longer an unknown dimensional parameter

in the superpotential which would be expected to take a value close to the GUT or

Planck scales.

2.6 The E6SSM

2.6.1 Motivation

As described in Section 2.4.3 the gauge symmetries of a quantum field theory must be

anomaly free for the theory to be consistent. We must therefore make sure that, when

we add a U(1)′ group to the Standard Model, the gauge symmetry does not contain any

gauge anomalies. The importance of gauge anomalies in determining models has already

been encountered in Section 2.3 where it was shown that two Higgs chiral supermultiplets
15The NMSSM uses the S3 term to stabilize the potential instead.
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Q L uc dc ec νc hu hd D D S H ′ H
′

Y 1
6 −1

2 −2
3

1
3 1 0 1

2 −1
2 −1

3
1
3 0 −1

2
1
2

N 1 2 1 2 1 0 −2 −3 −2 −3 5 2 −2

Table 2.1: List of the U(1)N and U(1)Y charges for the E6SSM chiral supermultiplets.

are required in the MSSM rather than just one. Similarly, for a general U(1)′ symmetry,

new fields in addition to the S field must be introduced to make it anomaly free. In

general however, the required number and type of new fields is not fixed and often

requires either the presence of exotic chiral supermultiplets [47] or family-non-universal

U(1)′ couplings [48]. Any family dependence of the U(1)′ charges would result in flavour

changing neutral currents (FCNCs) mediated by the Z ′, which can manifest themselves

in rare B decays and B −B mixing [49].

2.6.2 The U(1)N Group

If the U(1)′ symmetry comes from a GUT group such as SO(10) or E6 however then

the gauge anomalies will automatically cancel as long as complete GUT representations

survive to the U(1)′ symmetry breaking scale. This fixes the number and type of fields

required to cancel the anomalies. In particular, SUSY GUTs based on an E6 gauge group

turn out to be very promising candidates for USSM models that have no gauge anoma-

lies [16]. E6 is the only exceptional Lie group that has complex representations and

therefore the only exceptional group that can be used as a GUT in four dimensions.16 A

supersymmetric model that is inspired by an E6 SUSY GUT is the Exceptional Super-

symmetric Standard Model (E6SSM) [17]. The U(1)′ symmetry of the E6SSM is called

the U(1)N group and arises from the following symmetry breaking chain [50]:

E6 → SO(10)× U(1)ψ

→ SU(5)× U(1)χ × U(1)ψ

→ SU(3)c × SU(2)L × U(1)Y × U(1)N

where SO(10) × U(1)ψ is a maximal subgroup of E6, SU(5) × U(1)χ is a maximal

subgroup of SO(10) [51], and the above symmetry breaking is assumed to take place at

the GUT scale. The U(1)N group is defined as the linear combination of the U(1)ψ and

U(1)χ groups for which the right-handed neutrinos are not charged. This combination

is defined as:

U(1)χ cos θ + U(1)ψ sin θ

16Complex representations are required for the theory to be chiral.
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where θ = tan−1
√

15.

2.6.3 Matter Spectrum

The U(1)N charge assignments are the same for each generation of matter and so the

model does not suffer from the FCNC problem of general U(1)′ symmetries. In the

E6SSM one generation of quarks and leptons is unified into a fundamental E6 represen-

tation, which has dimension 27. The fundamental representation of E6 decomposes to

the following SO(10) representations:

27→ 16 + 10 + 1. (2.25)

The fundamental SO(10) representation contains Higgs doublet and triplet chiral super-

multiplets as in conventional SO(10) SUSY GUTs: 10 = hu+hd+D+D. The effective

MSSM µ-term is thus forbidden by the E6 symmetry since 27×27 is not an E6 invariant.

For the U(1)N group to be anomaly free, complete irreducible E6 representations must

survive to low energies, and since three generations of quarks and leptons have been

observed, three copies of a 27 E6 representation are assumed in the E6SSM. The U(1)N
group of the E6SSM is therefore automatically anomaly free if the particle content forms

complete irreducible representations of E6. However, two additional electroweak doublet

states H ′ and H ′ are also included in the E6SSM which form incomplete E6 representa-

tions but, since the H ′ and H ′ states have opposite U(1)N charges, the gauge anomalies

cancel in an analogous way to how the gauge anomalies from hu and hd cancel in the

MSSM. In total the E6SSM therefore contains the following SU(3)c × SU(2)L × U(1)Y
representations:

3× 27 +H ′, H
′ = 3(Q, uc, dc, L, ec, νc) + 3(hu, hd) + 3(D, D) + 3S +H ′, H

′

where S denotes the SO(10) singlet in Eq.2.25.

There are thus three generations of quarks and leptons, three copies of (up and

down) Higgs doublets and triplets, and three singlet fields S. Table 4.5 contains the

U(1)N charges of all the above E6SSM particles. Only the ‘third generation’ of the up

and down Higgs-like fields, denoted by hu3 and hd3, are defined to obtain electroweak

scale VEVs and thus act like the MSSM Higgs fields. The other generations of the up

and down Higgs-like fields do not get VEVs and so do not contribute to electroweak

symmetry breaking (or the quark and lepton masses). Only the third generation of the

singlet fields S is likewise taken to obtain a VEV, which generates the effective µ-term

of the MSSM, as discussed in Sections 2.5.1 and 2.5.2.
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2.6.4 The Effective MSSM Yukawa Interactions

In the E6SSM the effective MSSM Yukawa interactions between the quarks, leptons and

Higgs fields come from the E6 tensor product 27 × 27 × 27 which decomposes to the

SO(10) tensor products 16× 16× 10 and 1× 10× 10. For the three generations this E6

product can be written as the following:

λijk27i27j27k = λijk16i16j10k + λijk1i10j10k (2.26)

where λijk is a coupling constant and i, j, k = 1 . . . 3 label the three generations.

The SO(10) tensor product λijk16i16j10k can be written as λij316i16j103

+λijα16i16j10α where α = 1, 2. In the E6SSM the effective MSSM Yukawa interactions

are contained in λij316i16j103 since the third Higgs doublet generations hu3 and hd3

come from the 103 representation, and are the only Higgs fields that are assumed to get

electroweak scale VEVs and thus give mass to the quarks and leptons.

2.6.5 Non-Higgs Doublets

The interactions λijα16i16j10α will create tree-level flavour changing neutral currents

due to the exchange of the first and second generation (non-Higgs) doublets huα and

hdα. These interactions will violate experimental data unless they are suppressed or

forbidden. Appendix C discusses these types of interactions in more detail. The E6SSM

includes a discrete Z2 symmetry called ZH2 that forbids the operators λijα16i16j10α.

All E6SSM states are assumed to be odd under this discrete symmetry except the third

generation of Higgs doublets and the third generation of MSSM singlets S3. In Section

2.6.7 it is shown that the ZH2 symmetry is a broken symmetry of the E6SSM however,

which can reintroduce these interactions but, as long as the couplings between huα, hdα
and the first and second generation of quarks and leptons are sufficiently suppressed,

then no experimental observations will be violated. For example, in order to suppress

the contribution of new particles and interactions to the K0 − K0 oscillations and to

the muon decay channel µ → e−e+e− in accordance with experimental limits, it is

necessary to assume that the Yukawa couplings of huα, hdα to the quarks of the first and

second generations are less than 10−4 and their couplings to the leptons of the first two

generations are smaller than 10−3. The couplings to the third generation on the other

hand can be as large as 10−1.
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The fact that only the Higgs doublets hu3 and hd3 couple to the quarks and leptons

(in the limit of an exact ZH2 ) can be used to explain why only these Higgs fields get elec-

troweak VEVs. This is because only their soft masses can be driven negative by the top

(and bottom) Yukawa coupling, generating radiative electroweak symmetry breaking.

2.6.6 The Effective MSSM µ-term

The λijk1i10j10k term in Eq.2.26 can be written as the following:

λijk1i10j10k = λ333S3103103 + λ3αβS310α10β + λαβ3Sα10β103 (2.27)

+λαβγSα10β10γ + λα33Sα103103.

The ZH2 symmetry that was introduced in the previous Section forbids the interactions

of the second line, leaving only λ333S3103103, λ3αβS310α10β and λαβ3Sα10β103. Since

only the third generation of the singlet fields S3 is assumed to get a VEV, which breaks

the U(1)N symmetry, the operator S3hu3hd3 in S3103103 generates an effective MSSM

µ-term. The VEV of S3 also gives mass to the first and second generation higgsinos

h̃uα, h̃dα because of the operators S3huαhdβ in S310α10β. The fermionic partners of the

singlet fields Sα, singlinos, obtain mass from the operators Sαhuβhd3 and Sαhdβhu3 in

Sα10β103.

The operator λijk1i10j10k in Eq.2.27 also includes the term λ3ijS3DiDj which gives

mass to the Higgs tripletsDi andDi because of the VEV of S3. In the E6SSM the Yukawa

coupling constant for the S3DiDj operator can contribute to the renormalization group

evolution of the soft singlet mass m2
S3

driving it negative from a positive value at the

GUT scale and thus triggering S to gain a VEV [52, 53]. This mechanism for generating

a VEV for S3 is analogous to radiative symmetry breaking used in some extensions to

the MSSM as discussed in Section .

In addition to solving the µ-problem of the MSSM, the little hierarchy problem of

the MSSM should also be resolved by the ME6SSM. This is because there are extra

particles below the conventional GUT scale of 1016 GeV that are not contained in the

MSSM. These extra particles are from the three copies of the 27 E6 multiplet. Due

to Renormalization Group effects, the extra states increase the value of the Yukawa

coupling constant for S3hu3hd3 at low energies, and hence increase the mass of the

lightest CP even Higgs boson [54].
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2.6.7 Proton Decay and Higgs Triplet Decay

The GUT partners of the Higgs doublets, called the Higgs triplets, Di and Di do not

have equal and opposite U(1)N charges and so their contributions to a gauge anomaly do

not cancel. Therefore these particles cannot have GUT scale masses as in conventional

GUTs, and instead must obtain electroweak or TeV scale masses. The operators given by

λijk16i16j10k in Eq.2.26 contain interactions between the Higgs triplets and the quarks

and leptons, which are the following:

W1 = λijkD DiQjQk + λijk
D
Did

c
ju
c
k (2.28)

W2 = λijkd Diν
c
jd
c
k + λijku Die

c
ju
c
k + λijkQ DiLjQk.

If all of these interactions are allowed then baryon number is violated and, if the Higgs

triplets have TeV scale masses or lower, then the proton will decay with a lifetime much

shorter than that observed. However if all of the above interactions are forbidden, thus

avoiding rapid proton decay, then the Higgs triplets Di and Di can’t decay. The Higgs

triplets are then stable, strongly interacting particles with small masses. Any heavy

stable particle would have been copiously produced during the very early epochs of the

Big Bang. The strong (or electromagnetically) interacting fermions and bosons which

survive annihilation would subsequently have been confined in heavy hadrons which

would annihilate further. The remaining heavy hadrons originating from the Big Bang

should be present in terrestrial matter and there are very strong upper limits on the

abundances of nuclear isotopes which contain such stable relics in the mass range from

1 GeV to 10 TeV. Different experiments set limits on their relative concentrations from

10−15 to 10−30 per nucleon [55]. At the same time various theoretical estimations [56]

show that if remnant particles exist in nature today their concentration is expected to

be at the level of 10−10 per nucleon. Therefore E6 inspired models with stable Higgs

triplets are ruled out.

However, if either W1 or W2 are forbidden, with the other allowed, then rapid proton

decay can be avoided and the Higgs triplets can still decay. A Z2 discrete symmetry

is used in the E6SSM to achieve this scenario. This Z2 symmetry can be used in two

ways: either the leptons are odd under Z2 (in which case the symmetry is called ZL2 )

so that W2 is forbidden but W1 is allowed, or the leptons and Higgs triplets are odd (in

which case the symmetry is called ZB2 ) so that W1 is forbidden but W2 is allowed. The

former case with only W1 allowed is called Model I whereas the latter case with only

W2 allowed is called Model II.

Neither ZL2 nor ZB2 commute with the E6 symmetry if all the states of the E6SSM

(excluding the H ′ and H
′) come from just three copies of a 27 multiplet. Instead, for
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either the ZL2 or ZB2 symmetry to commute with E6, the quarks and leptons must come

from different 27 multiplets to each other. These different multiplets are denoted here

by 27Qi and 27Li where i = 1 . . . 3 respectively. In the case of ZB2 the Higgs triplets

and quarks must also come from different E6 multiplets. If the E6 symmetry in the

E6SSM is a conventional SUSY GUT then a mechanism is required that explains why

only the leptons (and Higgs triplets for ZB2 ) of 27L2 survive to low-energies but the other

states do not, and why the quarks and not the leptons of 27Qi survive to low-energies.

This is similar to the doublet-triplet splitting problem facing conventional GUTs but is

expected to be more troublesome since the leptons in 27L2 would also have to be split

from the Higgs-doublet states. At present no mechanism has been provided.

An alternative possibility is that the E6 is as a symmetry of a string theory or a

quantum field theory that has extra dimensions.17 Different 27 representations from

different E6 multiplets could then potentially arise from the compactification of extra

dimensions. For example, by orbifolding the extra dimensions or using Wilson-line

symmetry breaking to break the E6 symmetry. Again no particular mechanism has

been found to explain the splitting required by the ZL2 or ZB2 symmetries in the E6SSM,

and this work does not attempt to resolve this problem. Instead a particular unknown

mechanism, perhaps string inspired, that solves this problem is assumed.

Another issue arises from the ZH2 symmetry discussed in Section 2.6.5. Since all the

27 states were assumed to have odd ZH2 parity except for the third generation of Higgs

and singlet fields, both W1 and W2 are forbidden by ZH2 . In the E6SSM it is assumed

that ZH2 is a broken symmetry that allows either W1 or W2 or both. A solution to this

problem is proposed in Chapter 7 where an effective ZH2 symmetry arises from a family

symmetry that allows W1 and W2. Other possible solutions include replacing ZH2 with

a Z2 symmetry under which only h1, h2, S1 and S2 are odd, or giving the Di even ZH2

parity.

2.6.8 H ′ and H
′
Interactions

As well as the particles from three copies of a 27 E6 representation, the E6SSM also

contains two additional electroweak doublet particles H ′ and H
′ that form incomplete

E6 representations. These are required for the unification of gauge coupling constants

as discussed in Section 2.6.10. If the H ′ and H
′ come from a 27 and 27 representation

17The E6 symmetry could exist at the Planck scale where it is broken to SO(10) which then breaks
to the Standard Model gauge group at the GUT scale.
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Figure 2.4: Two-loop running of the SU(3)c × SU(2)L × U(1)Y gauge coupling con-
stants in a theory with three copies of low-energy complete 27 multiplets of E6.

of E6, denoted by 27′ and 27′, then the following E6 respecting interactions are allowed:

W ′ = µ′H ′H
′ + µ′iH

′
Li + λiνci hu3H

′ + λiecihd3H
′ (2.29)

+ λiανci huαH
′ + λiαecihdαH

′.

If odd under ZH2 and ZL2 or ZB2 then the operators in the second line of Eq.2.29 are

forbidden. Adding another Z2 symmetry called Z ′2 for which only H ′ and H
′ then just

allows the term µ′H ′H
′.

2.6.9 E6-Violating Operators

Since the discrete symmetries ZH2 and ZL2 (or ZB2 ) do not commute with the E6 symmetry

if the E6SSM particles (except for H ′ and H
′) only come from three complete 27 E6

multiplets, then we must also consider the operators involving these particles that would

otherwise violate the E6 symmetry. In both Model I and II (with the Z ′2 symmetry) the

only operator that disrespects the E6 symmetry is Mijν
c
i ν
c
j which is a Majorana mass

term for the right-handed neutrinos.

2.6.10 Gauge Coupling Unification in the E6SSM

To cancel gauge anomalies of the U(1)N group, three copies of 27 E6 representations

survive to low-energies which contain three generations of quarks and leptons. If we

run the gauge coupling constants with energy using this matter spectrum then they

will never meet, as illustrated by Fig.2.4. We have thus lost one of the most important
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Figure 2.5: The two-loop running of the gauge coupling constants for the E6SSM.
The particle content of this theory is equivalent to three copies of E6 27 multiplets and
two additional electroweak doublets H ′ and H ′. The thickness of the lines represents

the experimental error in the gauge coupling constants.

predictions of the MSSM and the inspiration for a model based on an E6 unified gauge

symmetry.

To rectify this, two additional electroweak doublet states, denoted by H ′ and H ′, are

included at low-energies. With these extra states included the matter spectrum of the

E6SSM then looks like the MSSM but with three additional complete SU(5) multiplets

(5 + 5 + 1). The gauge coupling constants will now meet at the conventional GUT scale

since we have just added complete GUT states to the MSSM, which is illustrated by

Fig.2.5. Note that, although, gauge coupling unification still occurs at the GUT scale

(at least at one-loop order), the value of the unified gauge coupling constant is now much

larger than it is in the MSSM [57]. However the unified coupling still in the perturbative

regime and is similar in size to the QCD coupling at the electroweak symmetry breaking

scale.



Chapter 3

Intermediate Symmetries and

Gauge Coupling Unification

3.1 Introduction

In the previous Chapter an E6 inspired supersymmetric model called the E6SSM was

proposed as an alternative to the Standard Model. This was motivated by the instability

of the Higgs mechanism in the Standard Model to higher energy physics. In the E6SSM

(and MSSM) the Higgs mechanism is protected by supersymmetry which cancels all the

quantum corrections from fermions and bosons to all orders in perturbation theory. The

E6SSM also resolves the µ-problem associated with the Higgs mass in the MSSM. This

is achieved without the additional problems of theories such as the NMSSM for example

which predicts the formation of domain walls in the early Universe. However a failing

of the E6SSM, called the µ′-problem, is highlighted in Section 3.2 which questions the

theoretical naturalness of its solution to the µ-problem. The purpose of this Chapter is

to resolve the µ′-problem of the E6SSM.

3.2 The µ′-Problem of the E6SSM

In Section 2.6 we found that, since the SU(3)c×SU(2)L×U(1)Y×U(1)N gauge symmetry

of the E6SSM is derived from an E6 symmetry, and the quarks and leptons are contained

in fundamental 27 representations of E6, three copies of 27 multiplets must survive to

low energies for the theory to be free of gauge anomalies. Unfortunately however three

copies of low-energy 27 multiplets do not lead to gauge coupling unification, making it

difficult to connect the theory to a high energy E6 symmetry. To solve this problem new

36
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particles called H ′ and H
′ that transform as electroweak doublets are included at the

TeV scale so that the particle content of E6SSM resembles the MSSM but with complete

SU(5) multiplets that do not upset gauge coupling unification. These new particles must

be related to the high-energy E6 symmetry, and since they have opposite U(1)N charges

so that the additional Abelian group is anomaly free, the simplest possibility is that

they come from a 27 and 27 multiplet respectively (called 27′ and 27′). This then leaves

the question of why the rest of the SU(3)c×SU(2)L×U(1)Y ×U(1)N states from these

E6 multiplets do not contribute to the running of the gauge coupling constants.

One possibility is that the rest of the 27′ and 27′ states gain mass at the GUT scale

due to a mechanism that is similar to the doublet-triplet splitting mechanisms used in

conventional SUSY GUTs. However, there are more states in the 27′ and 27′ multiplets

than just the coloured partners of H ′ and H
′. For example, in both E6 multiplets 27′

and 27′ there are states that transform in the same way as H ′ and H ′ respectively under

SU(3)c×SU(2)L×U(1)Y but just have different U(1)N charges. Explaining why these

particles get GUT masses whereas H ′ and H
′ get TeV masses would be particularly

tricky and at present there is no solution to this problem.1 This is referred to as the

27′,27′ splitting problem.

The H ′ and H
′ states also introduce a problem analogous to the µ-problem of the

MSSM. The mass parameter µ′ in the E6SSM superpotential Eq.2.29 should not be too

large otherwise it spoils gauge coupling, but on the other hand it cannot be too small

since µ′H ′H ′ is solely responsible for the mass of the charged and neutral components of

the H ′ and H ′ fermions. In fact we typically require µ′ ≈ O(1TeV) just as µ ≈ O(1TeV)

is required in the MSSM. Unfortunately however we cannot use the U(1)N gauge group

to solve this µ′-problem since the bilinear term µ′H ′H
′ has zero overall U(1)N charge.

If we wish to solve the µ′-problem in a similar way to how the µ-problem of the MSSM

is solved in the E6SSM then we must introduce another U(1) gauge symmetry and a

new E6 singlet field that is charged under the U(1) symmetry. Thus we would have to

look for a larger gauge group than E6.

Within SUGRA models the term µ′H ′H
′ in the superpotential can be induced

just after the breakdown of local SUSY if the Kähler potential contains an extra term

(Z(H ′H ′) + h.c.). This mechanism is analogous to the same one that can used to solve

the µ-problem of the MSSM [59]. But in models based on an E6 symmetry, the bilin-

ear terms involving hd and hu are forbidden by the E6 symmetry both in the Kähler

potential and superpotential since they transform in a 27 representation. As a result
1An alternative could be to use a doublet-triplet splitting mechanism that results from the compactifi-

cation of extra dimensions. For example, orbifolding or Wilson-line symmetry breaking in string inspired
theories can split Higgs triplets from Higgs doublets [58]. Explaining why three full 27 representations
are present in the low-energy theory but only one electroweak doublet from another 27 representation
is also light is likely to be particularly difficult however.
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the mechanism mentioned above cannot be applied for the generation of µhuhd in the

E6SSM superpotential. However this mechanism may be used to give mass to the non-

Higgs doublets H ′ and H
′ from additional 27′ and 27′ since the corresponding bilinear

terms are allowed by the E6 symmetry both in the Kähler potential and superpotential.

However it is somewhat unappealing that the principal motivation of the E6SSM, to

solve the µ-problem of the MSSM, requires the use of a mechanism that can be used as

an alternative to solving this problem instead.

On the other hand the only purpose of including the H ′ and H
′ states however is

to achieve gauge coupling unification at MGUT ≈ 1016 GeV. This allows the possibility

of removing these states from the spectrum and thus avoiding the µ′-problem and the

27′, 27′ mass-splitting problem altogether. Of course we must then search for alternative

methods of achieving gauge coupling unification, which is the subject of the rest of this

Chapter.

3.3 Intermediate Symmetries

An alternative to including the H ′ and H
′ states at a low-energy scale is to change

the gauge symmetry of the E6SSM at a high-energy scale. This would then change the

RGEs and the gauge coupling constants of the theory. We can then choose a gauge

symmetry such that its gauge coupling constants run with energy until they unify at

some high-energy scale, where an E6 would be anticipated to exist. In this case the

pattern of symmetry breaking from the E6 unification scale down to the electroweak

symmetry breaking scale would be the following:

E6

ME6︷︸︸︷−→ IS
MIS︷︸︸︷−→ GE6SSM

TeV︷︸︸︷−→ G321

EW︷︸︸︷−→ G31 (3.1)

where G31 ≡ SU(3)c ×U(1)em; G321 ≡ SU(3)c × SU(2)L ×U(1)Y ; GE6SSM ≡ SU(3)c ×
SU(2)L×U(1)Y ×U(1)N is the gauge symmetry of the E6SSM; IS is the new gauge sym-

metry, which is called an intermediate symmetry; and ME6 and MIS are respectively the

high-energy scales at which the E6 and IS symmetries are broken respectively. Starting

from the Standard Model gauge symmetry, the gauge coupling constants would run to

the E6SSM scale, where they are joined with a U(1)N gauge coupling constant, and then

continue to run to the scale MIS where they are replaced with the gauge couplings of

IS. The IS gauge couplings then take over which run until they meet at ME6 .

Since the H ′ and H ′ states would no longer be required, the supersymmetric theory

would just contain three copies of a 27 E6 multiplet. We therefore need to search for a

symmetry IS that provides unification of the gauge coupling constants in a theory that
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contains three copies of a 27 multiplet. This symmetry must obviously be large enough

to contain the E6SSM gauge symmetry, but small enough to fit inside an E6 symmetry.

That is, GE6SSM must be a subgroup of IS, and IS must be a subgroup of E6.

Unification in supersymmetric models containing three 27 representations of the

gauge group E6 was recently considered in [60]. In this paper the authors assumed an

intermediate Pati-Salam gauge group SU(4)×SU(2)L×SU(2)R with a left-right discrete

symmetry at the scale 1015 GeV. At this scale the Standard Model (SM) couplings satisfy

α1 = α2 where α1 and α2 are the U(1)Y and SU(2)L gauge coupling constants. The

resulting Pati-Salam gauge couplings then subsequently meet at a higher energy scale

of about 1018 GeV.

This suggests that the IS symmetry could be the Pati-Salam symmetry G422 ≡
SU(4) × SU(2)L × SU(2)R. However, as will be shown in Section 3.5.2, the condition

α1 = α2 cannot be consistently applied at the Pati-Salam breaking scale and thus the

analysis in [60] is incorrect. Instead it will be shown that the Pati-Salam breaking scale

must be about an order of magnitude larger than the crossing point α1 = α2, close

to MGUT ≈ 1016 GeV, with full unification close to Mp ≈ 1019 GeV. In this case the

Standard Model gauge coupling constants will run up to MGUT where they are replaced

with the G422 gauge coupling constants, which run until they unify at Mp. This is

illustrated by Fig.3.1 which is discussed in more detail in Section 3.6.

A Pati-Salam gauge symmetry G422 is not large enough to contain GE6SSM as a

subgroup however and so cannot by itself by the IS symmetry in Eq.3.1. In Chapter 4

it is shown that if the G422 gauge group is extended with an extra U(1) group, called

U(1)ψ, then it can contain GE6SSM as a subgroup. However in this Chapter the U(1)N
and U(1)ψ groups are initially ignored to simplify the analysis. This is done because

there is no experimental data for a U(1)N gauge coupling constant and so it will not

help to determine the unification scale. U(1)ψ is thus considered to be broken at the

Planck scale in this Chapter.

In the next Section a short introduction to the Pati-Salam Symmetry is provided

before the pattern of symmetry breaking and RGEs of the intermediate Pati-Salam

symmetry are analysed in Sections and respectively.
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3.4 Pati-Salam Gauge Symmetry

The Pati-Salam symmetry was first introduced by Jogesh Pati and Abdus Salam in 1974

as a possible extension to the Standard Model gauge group [61]. Under this symmetry

the Standard Model leptons are considered to be the ‘4th colour’ of the SU(4) symme-

try. Together with the left-handed quarks, the left-handed leptons form the Pati-Salam

representation (4, 2, 1), denoted by F , whereas the charge-conjugated quark and lepton

fields form the (4, 1, 2) representation, denoted by F c. This can be represented by the

following matrix notation:

Fαa = (4, 2, 1) =

(
ur ug ub νe

dr dg db e

)
,

Fγa = (4, 1, 2) =

(
dcr dcg dcb ec

ucr ucg ucb νce

)

where u fields are left-handed; uc stands for charge-conjugated left-handed fields; r, g, b

stand for colours of SU(3)c; a = 1 . . . 4 is an SU(4) index which labels the columns of

the matrices; and α, γ = 1, 2 are SU(2)L and SU(2)R indices respectively that label the

rows of the matrix.

The (4, 1, 2) representation also contains a state that is not in the Standard Model.

It is a singlet of the Standard Model and is an SU(2)R partner to the charge-conjugated

electron ec. This particle is therefore a charge-conjugated neutrino, and since we expect

it to have a mass near 1012−16 GeV in conventional see-saw mechanisms (see Section

5.3.1), we might anticipate that a Pati-Salam symmetry is broken around these high-

energy scales.

The SU(2)R group only couples to right-handed fermions just as the SU(2)L group

only couples to left-handed fermions. The Pati-Salam symmetry, unlike the Standard

Model, thus respects parity. A discrete left-right symmetry called DLR can be further

applied to the G422 gauge group under which the matter multiplets transform as qL → qcL

where q denotes any matter multiplet, and the gauge groups SU(2)L and SU(2)R become

interchanged [62].

A supersymmetric Pati-Salam symmetry also looks like a promising extension to

the MSSM since the Higgs fields can come from the complete representation (1, 2, 2):

hαγ = (1, 2, 2) =

(
h+
u h0

d

h0
u h−d

)



Chapter 3. Intermediate Symmetries and Gauge Coupling Unification 41

where the SU(2)L index α labels the rows, and the SU(2)R index γ labels the columns.2

3.5 Pattern of Symmetry Breaking

The two step pattern of gauge group symmetry breaking analysed in this Section is:

E6

Mp︷︸︸︷−→ G422 ×DLR

MGUT︷︸︸︷−→ G321 (3.2)

where G321 ≡ SU(3)c× SU(2)L×U(1)Y . The first stage of symmetry breaking close to

Mp will not be considered since it is likely to be a quantum gravity theory. Whatever

this quantum gravity theory is, it will involve some high-energy threshold effects, which

will depend on the details of the high energy theory, and which is not considered in

following analysis.

3.5.1 The Pati-Salam Higgs Sector

The second stage of symmetry breaking close to MGUT is within the realm of conven-

tional quantum field theory, and requires a Higgs sector, in addition to the assumed

matter content of three 27 representations of the gauge group E6, to break the Pati-

Salam symmetry to the Standard Model gauge group. In order to break the Pati-Salam

symmetry G422 to G321 at MGUT the minimal Higgs sector required are the G422 rep-

resentations HR = (4, 1, 2) and HR = (4, 1, 2). When these particles obtain VEVs

in the right-handed neutrino directions they break the SU(4) × SU(2)R symmetry to

SU(3)c × U(1)Y with the desired hypercharge assignments, as discussed later.

Although a Higgs sector consisting of HR and HR is perfectly adequate for breaking

Pati-Salam symmetry, it does not satisfy DLR. If we wish to satisfy this symmetry we

must therefore also consider an extended Higgs sector including their left-right symmetric

partners. A minimal left-right symmetric Higgs sector capable of breaking Pati-Salam

symmetry consists of the SO(10) Higgs states 16H and 16H . If complete E6 multiplets

are demanded in the entire theory below Mp, then the Pati-Salam breaking Higgs sector

at MGUT may be assumed to be 27H and 27H . Therefore in the following analysis two

possible Higgs sectors are considered which contribute to the SUSY beta functions in

the region between MGUT and Mp, namely either the SO(10) states 16H+16H or the E6

states 27H + 27H , where it is understood that only the Pati-Salam gauge group exists
2Note that for the Higgs fields the hypercharge generator Y is equivalent to the T 3

R generator of
SU(2)R (see Section 3.5.2). The matrix can therefore be constructed by considering the T 3

L and Y
charges for each Higgs component.
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in this region, and these Higgs representations must be decomposed under the Pati-

Salam gauge group. No such Higgs sectors were included in the analysis in [60]. For

the analysis which involves the 16H + 16H states, the rest of the SO(10) representations

that together with the 16H + 16H states make up complete E6 representations (such as

a 27 and 27) are assumed to be at or above the E6 breaking scale and so do not affect

the running of the gauge coupling constants below the unification scale.

3.5.2 Pati-Salam Symmetry Breaking

When HR and HR (contained in either the SO(10) states 16H + 16H or E6 states

27H+27H) develop VEVs in the right-handed neutrino directions they break the SU(4)×
SU(2)R symmetry to SU(3)c×U(1)Y with the desired hypercharge assignments. Six of

the SU(4) and two of the SU(2)R fields are then given masses related to the VEV of the

Higgs bosons and the gauge bosons associated with the T 15 and T 3
R generators are rotated

by the Higgs bosons to create one heavy gauge boson and the gauge boson associated with

U(1)Y . In breaking SU(4)× SU(2)R to SU(3)c ×U(1)Y the SM hypercharge generator

is a combination of the diagonal generator T 15 =
√

3
2 diag(1

6 ,
1
6 ,

1
6 ,−

1
2) of SU(4) and

the diagonal generator of SU(2)R, T 3
R = 1

2 diag(1,−1). T 15 =
√

3
2(B − L)/2 where B

and L are the baryon and lepton number assignments of each Standard Model particle.

Comparing these diagonal generators to the hypercharge values we must have Y = T 3
R+

(B − L)/2. Then, analogous to the electroweak symmetry breaking condition Eq.2.12,

one finds the following relation between the hypercharge gauge coupling constant gY
and the SU(4) and SU(2)R gauge coupling constants g4 and g2R respectively:

1
αY

=
1
α2R

+
1

3
2α4

(3.3)

where αY ≡
g2Y
4π , α2R ≡

g22R
4π and α4 ≡

g24
4π .

Because the Pati-Salam symmetry, and hence the standard model, is assumed to

come from an E6 group, then all the charges and generators should be correctly nor-

malized.3 In this case the conventional standard model hypercharge assignments must

be modified by a factor of
√

5
3 as discussed in Section 2.4.1. Therefore Eq.3.3 should be

rewritten in terms of the ‘GUT’ normalized hypercharge g1 ≡
√

5
3gY :

5
α1

=
3
α2R

+
2
α4

(3.4)

3The E6 generators Ga are chosen to be normalized by Tr(GaGb) = 3δab. It then follows that the
Pati-Salam and standard model operators are conventionally normalized by Tr(T aT b) = 1

2
δab. See

Appendix B for more detail.
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Figure 3.1: Two-loop Planck Scale Unification in two supersymmetric models that
contain three generations of SUSY 27 particles, and an intermediate left-right symmet-
ric Pati-Salam symmetry. Both models are described in the main body of the text.
Near to the conventional GUT scale the α3 gauge coupling constant becomes the α4

gauge coupling constant of SU(4), and the SU(2)R gauge coupling constant α2R is the
combination of the α1 and α3 gauge coupling constants given by Eq.3.4.

where α1 ≡
g21
4π . Eq.3.4 is the boundary condition for the gauge couplings at the Pati-

Salam symmetry breaking scale, in this case MGUT . Due to left-right symmetry, at

the Pati-Salam symmetry breaking scale we have the additional boundary condition

α2L = α2R. In [60] it was assumed that at the Pati-Salam symmetry breaking scale

α1 = α2L = α2R which disagrees with Eq.3.4, since α4 6= α2L = α2R at this scale. This

is discussed further in the next Section.

3.6 Two-loop analysis of gauge coupling unification

In this Section a SUSY two-loop RG analysis of the gauge couplings is performed, corre-

sponding to the pattern of symmetry breaking discussed in the previous Section. Three

complete 27 SUSY representations of the group E6 are assumed in the spectrum which

survive down to low energies, but, unlike the original E6SSM, there are no additional

H ′, H
′ states so the gauge couplings are not expected to converge at MGUT . Instead, the

pattern of symmetry breaking shown in Eq.3.2 is envisaged, where above the Pati-Salam

symmetry breaking scale MGUT we assume, in addition to the three 27 representations, a

Pati-Salam symmetry breaking Higgs sector of either the SO(10) states 16H +16H or E6

states 27H + 27H which are assumed to gain masses of order the Pati-Salam symmetry

breaking scale MGUT , leaving only the three 27 matter representations below this scale.

For the present RG analysis, the couplings are run up from low energies to high

energies, using as input the SM couplings measured on the Z-pole at LEP, which are as

follows [26]: α1(MZ) = 0.016947(6), α2(MZ) = 0.033813(27) and α3(MZ) = 0.1187(20).
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The general two-loop beta functions used to run the gauge couplings are given in Ap-

pendix A.

From MZ up to an assumed MSSM threshold energy of 250 GeV only the non-

SUSY SM spectrum is assumed including a top quark threshold at 172 GeV. From 250

GeV to 1.5 TeV all the states of the MSSM are included. From 1.5 TeV up to the

Pati-Salam symmetry breaking scale the remaining states which fill out three complete

SUSY 27 representations are included. The assumed threshold energies correspond to

those in [57], where a full discussion of MSSM and E6SSM threshold effects is given.

The only difference is that here the H ′, H ′ states of the E6SSM are not included, so the

gauge couplings do not converge at MGUT . Instead MGUT is taken to be the Pati-Salam

symmetry breaking scale, which is determined as follows.

In the previous Section the relation in Eq.3.4 between the hypercharge and Pati-

Salam coupling constants at the Pati-Salam symmetry breaking scale was discussed.

This can be turned into a boundary condition involving purely G321 couplings constants

at the Pati-Salam breaking scale, since SU(3)c comes from SU(4) so α3 = α4 at this

scale, and, as remarked, DLR symmetry requires that α2R = α2L at the Pati-Salam

symmetry breaking scale. Therefore Eq.3.4 can be re-expressed as:

5
α1

=
3
α2L

+
2
α3
. (3.5)

Having specified the low-energy matter content, and thresholds, Eq.3.5 allows a unique

determination of the Pati-Salam breaking scale, by simply running up the gauge cou-

plings until the condition is satisfied. In practice, α3 runs quite slowly (its one loop

beta-function is zero), while the inverse hypercharge coupling decreases most rapidly

and the condition is satisfied for a Pati-Salam symmetry breaking scale about an order

of magnitude higher than the crossing point of α1 and α2 assumed in [60]. Assuming

the above matter content and threshold corrections, the Pati-Salam symmetry is found

to be broken at MGUT = 1016.44(4) GeV as illustrated in Fig.3.1. This is close to the

conventional GUT energy scale, and justifies the use of the notation MGUT to denote

the Pati-Salam breaking scale.

Above the scale MGUT the two Pati-Salam gauge couplings, namely α4 and α2L =

α2R, are run up including, in addition to the three SUSY 27 matter representations, also a

Pati-Salam SUSY Higgs breaking sector consisting of either the SO(10) states 16H+16H
or E6 states 27H + 27H . Fig.3.1 illustrates the running of the gauge coupling constants,

where the left panel includes the 16H + 16H fields while the right-panel contains the

27H + 27H fields. The Pati-Salam couplings are found to converge at either 1018.83(7)
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GeV or 1018.97(9) GeV for the left and right-panels respectively.4 These values are close

to the Planck scale Mp = 1.2× 1019 GeV, and suggests a Planck scale unification of all

forces with gravity.

The value of the gauge coupling constant at the unification scales 1018.83(7) GeV or

1018.97(9) GeV is αP = 0.166(7) or αP = 0.321(46) for the 16H + 16H or 27H + 27H
particle spectra, respectively. These values of the unified gauge coupling at the Planck

scale are much larger than the conventional values of αGUT , and indeed are larger even

than α3(MZ), however they are still in the perturbative regime.

Of course there are expected to be large threshold corrections coming from Planck

scale physics which are not included in this analysis. Indeed, we would expect that QFT

breaks down as we approach the Planck scale, so that the RG analysis ceases to be valid

as we approach the Planck scale. The precise energy scale Enew at which quantum field

theories of gravity are expected to break down and new physics takes over is discussed in

[63] based on estimates of the scale of violation of (tree-level) unitarity. An upper bound

for this new physics energy scale is given by E2
new = 20[G(2

3Ns+Nf +4NV )]−1 where Ns,

Nf and NV are the number of scalars, fermions and vectors respectively that gravity

couples to. Assuming three low-energy 27 multiplets, Enew would be equal to 1018.6

GeV which sets an upper bound for the scale at which the above quantum field theory

analysis (and with any corrections from effective quantum gravity theories included)

can no longer be trusted. In the above RGEs analysis the gauge coupling constants are

predicted to be very close to one another at this scale, and if they are extrapolated,

they will unify just below Mp. That is, the RGEs have been naively extrapolated up to

Mp, even though new physics associated with quantum gravity must enter an order of

magnitude below this. The fact that the two PS couplings are very close to each other at

Enew, and are on a convergent trajectory must be regarded, at best, as a suggestive hint

of a unification of the gauge fields with gravity in this approach. For other discussions

of Planck scale unification of gauge coupling constants see for example [64].

3.7 Conclusions

This Chapter looked at how gauge coupling unification can be achieved in a supersym-

metric model with three copies of 27 E6 multiplets at low energies. It was found that, if

the Standard Model gauge group becomes a left-right symmetric Pati-Salam gauge group

near the conventional GUT scale, then unification at the planck scale is possible. The
4If the DLR symmetry is dropped then, with a minimal Pati-Salam Higgs content consisting of just

HR and HR, the equation 5
α1

= 3
α2R

+ 2
α3

at the Pati-Salam scale would predict that the Pati-Salam

symmetry is broken at 1014.4(1) GeV and that unification would occur at 1019.72(15) GeV.
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motivation for considering this pattern of symmetry breaking was to find an alternative

to including the additional electroweak doublets H ′ and H
′ at the TeV scale which is

used in the E6SSM to achieve gauge coupling unification. A alternative method was

sought because H ′ and H
′ introduce a number of theoretical problems in the E6SSM,

namely the µ′-problem and the 27′, 27′ splitting problem. No such problems should exist

in a theory with just complete E6 representations.



Chapter 4

The Minimal Exceptional

Supersymmetric Standard Model

4.1 Motivation

The previous Chapter looked at how gauge coupling unification could be achieved in

a supersymmetric theory with only three complete 27 E6 multiplets surviving to low

energies. This then paves a way for a new E6 inspired supersymmetric model that can

solve the µ-problem of the MSSM but without the additional complications introduced

by the additional H ′ and H
′ states of the E6SSM. However, for the model to solve

the µ-problem we must make sure that a MSSM singlet field S and an additional U(1)

gauge group can survive to low energies. This is the topic of the present Chapter in

which a Minimal E6 Supersymmetric Standard Model (ME6SSM) is proposed that is

based on three low-energy 27 E6 representations. This allows Planck scale unification

and provides a solution to the µ-problem and doublet-triplet splitting problem, without

re-introducing either of these problems.

Above the conventional GUT scale the ME6SSM is embedded into a left-right sym-

metric supersymmetric Pati-Salam model with an additional U(1) gauge group, called

U(1)ψ, arising from an E6 gauge group broken near the Planck scale. For simplicity

the previous analysis in Section 3.6 assumed that the U(1)ψ gauge group was broken

at the Planck scale. Here it is instead assumed that U(1)ψ remains unbroken down to

MGUT and that below MGUT an additional U(1)X gauge group, consisting of a novel

and non-trivial linear combination of U(1)ψ and two Pati-Salam generators, survives

down to low energies. Eventually U(1)X is broken at the TeV scale by the same singlet

that also generates the effective µ term, resulting in a new low-energy Z ′ gauge boson.

47
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The U(1)X group is not in general the same as the U(1)N group of the E6SSM.

However, both groups are low-energy U(1)′ groups that allow for a conventional see-saw

mechanism since the right-handed neutrinos have zero charge. The U(1)X group of the

ME6SSM thus acts like the U(1)N group of the E6SSM.

This Chapter is divided up as follows. In Section 4.2 the chain of symmetry breaking

used to derive the ME6SSM is described and the origin of the U(1)X symmetry is

discussed. In Section 4.2.2 the two-loop renormalization group running of the gauge

coupling constants of the ME6SSM is calculated. In Section 4.3 the superpotential of

the ME6SSM is discussed and the suppression of proton decay is illustrated. Section

4.4 then discusses the phenomenology of the Z ′ of the ME6SSM and compares it to the

Z ′ of the E6SSM to discover how they can be distinguished by their different couplings,

which enables the two models to be resolved experimentally. Then finally Section 4.5

concludes the Chapter.

4.2 Chain of Symmetry Breaking

The two step pattern of gauge group symmetry breaking that is analysed in this Chapter

is the following:

E6

Mp︷︸︸︷−→ G4221 ×DLR

MGUT︷︸︸︷−→ G3211 (4.1)

where the gauge groups are defined by:

G4221 ≡ SU(4)× SU(2)L × SU(2)R × U(1)ψ,

G3211 ≡ SU(3)c × SU(2)L × U(1)Y × U(1)X (4.2)

and it has been assumed that the first stage of symmetry breaking happens close to

the Planck scale and that the second stage happens close to the conventional GUT

scale. The first stage of symmetry breaking is based on the maximal E6 subgroup

SO(10) × U(1)ψ and the maximal SO(10) subgroup G422 × DLR corresponding to a

Pati-Salam symmetry with DLR being a discrete left-right symmetry. The difference

between the pattern of symmetry breaking assumed in this Section to that assumed in

Section 3.5 is the inclusion of the U(1)ψ symmetry, which enables a U(1)′ group called

U(1)X to appear after the G4221 symmetry is broken.

The first stage of symmetry breaking close to Mp will not be considered explicitly for

the same reasoning given in Section 3.5, i.e. quantum field theory is expected to break-

down near Mp. Under E6 → G4221 the fundamental E6 representation 27 decomposes
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as:

27→ F + F c + h+D + S (4.3)

where F ≡ (4, 2, 1) 1
2

contains one family of the left-handed quarks and leptons, F c ≡
(4, 1, 2) 1

2
can contain one family of the charge-conjugated quarks and leptons, which

includes a charge-conjugated neutrino; h ≡ (1, 2, 2)−1 contains the MSSM Higgs doublets

hu and hd; D ≡ (6, 1, 1)−1 contains two Higgs triplets; and S ≡ (1, 1, 1)2 is a MSSM

singlet. The subscripts are related to the U(1)ψ symmetry’s charge assignments which

are discussed further in Appendix B.

The second stage of symmetry breaking close to MGUT is within the realm of con-

ventional quantum field theory and requires some sort of Higgs sector in addition to the

assumed matter content of three 27 representations of the gauge group E6. In order to

break the symmetry G4221 to G3211 at MGUT , the minimal Higgs sector required is pro-

vided by the G4221 representations HR = (4, 1, 2) 1
2

and HR = (4, 1, 2)− 1
2
.1 These fields

are the G4221 equivalent to the G422 fields HR = (4, 1, 2) and HR = (4, 1, 2) described in

Section 3.5.1. When these particles obtain VEVs in the right-handed neutrino directions

〈HR〉 = 〈νcH〉 and 〈HR〉 = 〈νHR 〉 they break the SU(4) × SU(2)R × U(1)ψ symmetry to

SU(3)c × U(1)Y × U(1)X . Six of the off-diagonal SU(4) and two of the off-diagonal

SU(2)R fields receive masses related to the VEV of the Higgs bosons. The gauge bosons

associated with the diagonal SU(4) generator T 15
4 , the diagonal SU(2)R generator T 3

R

and the U(1)ψ generator Tψ, are rotated by the Higgs bosons to create one heavy gauge

boson and two massless gauge bosons associated with U(1)Y and U(1)X . The part of

the symmetry breaking G4221 to G3211 involving the diagonal generators is then:

U(1)T 15
4
× U(1)T 3

R
× U(1)ψ → U(1)Y × U(1)X . (4.4)

Note that this is a generalization of the symmetry breaking found in the Standard Model

U(1)T 3
L
× U(1)Y → U(1)em described in Section 2.6.6 where U(1)T 3

L
is the subgroup of

SU(2)L that is associated with the diagonal generator T 3
L. The charges of the “right-

handed neutrino” component of the Higgs which gets the VEV are:

νHR =

(
−1

2

√
3
2
,

1
2
, −1

2

√
1
6

)
(4.5)

1In Appendix B it is shown that the symmetry breaking G4221 to G3211 also requires an MSSM singlet
S from a 27 multiplet of E6 to get a low-energy VEV. The VEV of this MSSM singlet is also used to
solve the µ problem.
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under the corresponding correctly E6 normalized diagonal generators:2

T 15
4 =

√
3
2
diag(

1
6
,
1
6
,
1
6
,−1

2
), T 3

R =
1
2
diag(1,−1), Tψ/

√
6. (4.6)

Appendix B discusses the symmetry breaking in Eq.4.4 in detail. To simplify the discus-

sion here it is observed that T 15 =
√

3
2

(B−L)
2 where B and L are the baryon and lepton

number assignments of each Standard Model particle. The Higgs charges can then be

written as

νHR =
(
−1

2
,

1
2
, −1

2

)
(4.7)

under the corresponding generators TB−L = B−L
2 , T 3

R and Tψ. It is then clear to see

why the hypercharge generator Y is preserved by the Higgs HR and HR since

Y = T 3
R +

(B − L)
2

(4.8)

takes a zero value for the right-handed neutrino and anti-neutrino Higgs components

which develop VEVs. The generator Y thus leaves the vacuum invariant and its associ-

ated gauge field remains massless.

From the analysis in Section 3.5.2, Eq.4.8 provides a relation between the hyper-

charge gauge coupling constant gY and the SU(4) and SU(2)R gauge coupling constants

g4 and g2R, which is given by Eq.3.3. The GUT normalized version of this relation is then

given by Eq.3.4. This is a boundary condition for the gauge couplings at the Pati-Salam

symmetry breaking scale, in this case MGUT . Due to the left-right symmetry DLR,

at the G4221 symmetry breaking scale we also have the additional boundary condition

α2L = α2R, which is used in Eq.3.5.

4.2.1 The Additional Abelian Gauge Group

Hypercharge Y is not the only Abelian generator that is preserved by this Higgs sector.

The Higgs HR and HR VEVs also preserve the combinations of generators Tψ +T 3
R and

Tψ − TB−L which together form the charge X of the U(1)X group. This is discussed in

Appendix B where the charge X is chosen to be defined by:3

X = (Tψ + T 3
R)− c2

12Y (4.9)

2Note that the E6 generators Ga have been taken to be normalized by Tr(GaGb) = 3δab. It then
follows that the Pati-Salam and standard model operators are conventionally normalized by Tr(T aT b) =
1
2
δab. The correctly normalized E6 generator corresponding to U(1)ψ is Tψ/

√
6 where Tψ corresponds

to the charges in Eq.4.3. See Appendix B for more detail.
3Alternatively we could have defined X to be g2

2R(Tψ + T 3
R) + g2

B−L(Tψ − TB−L).
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where c12 = cos θ12 and the mixing angle is given by

tan θ12 =
g2R

gB−L
, gB−L =

√
3
2
g4, (4.10)

where the E6 normalized Pati-Salam coupling constants g2R and g4 are evaluated at the

G4221 symmetry breaking scale MGUT . Note that this Abelian generator X depends on

the values that the Pati-Salam coupling constants take at a particular energy scale. It is

easy to prove that it is a general rule that, if three massless gauge fields are mixed, then

at least two of the resulting mass eigenstate fields must have a charge that depends on

the value of the original gauge coupling constants. See Appendix B for more discussion

on this unusual aspect of X.

The gauge coupling constant g0
X of U(1)X may be expressed in terms of the SU(4),

SU(2)R and U(1)ψ gauge coupling constants g4, g2R and gψ as:

1
α0
X

=
1

1
6αψ

+
1

3
2α4 + α2R

(4.11)

where α0
X = (g0X)2

4π , α2R = g22R
4π ; α4 = g24

4π ; and αψ =
g2ψ
4π .

Just as TY ≡
√

3
5Y is the GUT normalized hypercharge, we can define a GUT (in

this case E6) normalized generator for X as:

TX =
1
NX

X (4.12)

where, from the discussion in Appendix B, the normalization constant NX is given by:

N2
X ≡ 7− 2c2

12 +
5
3
c4

12. (4.13)

In terms of the E6 normalized generator TX = X/NX , the normalized gauge coupling

constant gX is defined by gX ≡ g0
XNX so that αX = α0

XN
2
X . Thus Eq.4.11 can be

written as:
N2
X

αX
=

6
αψ

+
2

3α4 + 2α2R
. (4.14)

This boundary condition applies at the symmetry breaking scale MGUT and is analogous

to the boundary condition for the normalized hypercharge gauge coupling constant g1

given by Eq.3.5. Table 4.1 lists the values that the generators Y , TB−L, T 3
R, Tψ and

Tψ + T 3
R (and therefore X) take for the G3211 representations of the 27 multiplet. Note

that both Tψ + T 3
R and Y are zero for νc and therefore neither BY or BX couple to

right-handed neutrinos. This is a consequence of Goldstone’s theorem [65] since the

right-handed neutrino comes from the same G4221 representation as the Higgs boson

component that gets a VEV to break the symmetry.
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Q L uc dc ec νc hu hd D D S

TB−L
1
6 −1

2 −1
6 −1

6
1
2

1
2 0 0 −1

3
1
3 0

T 3
R 0 0 −1

2
1
2

1
2 −1

2
1
2 −1

2 0 0 0
Tψ

1
2

1
2

1
2

1
2

1
2

1
2 −1 −1 −1 −1 2

Y 1
6 −1

2 −2
3

1
3 1 0 1

2 −1
2 −1

3
1
3 0

Tψ + T 3
R

1
2

1
2 0 1 1 0 −1

2 −3
2 −1 −1 2

Table 4.1: List of the TB−L ≡ B−L
2 , T 3

R, Tψ, hypercharge Y ≡ TB−L + T 3
R, and

Tψ + T 3
R charge assignments for the G3211 representations of the 27 multiplet of E6.

The U(1)X associated with the preserved generator in Eq.4.9 is an anomaly-free

gauge group which plays the same role in solving the µ problem as the U(1)N of the

E6SSM since it allows the coupling Shuhd that generates an effective µ term, while

forbidding S3 and the µhuhd (see Section 2.6). U(1)X is broken by the S singlet VEV

near the TeV scale, yielding a physical Z ′ which may be observed at the LHC. It also

allows for a conventional see-saw mechanism since right-handed neutrinos have zero

U(1)X charge.

4.2.2 Two-Loop RGEs Analysis for U(1)X

The previous Chapter investigated the SUSY two-loop RG analysis corresponding to

the pattern of symmetry breaking discussed in Section 3.5. For simplicity this analysis

excluded the running of the gauge coupling constant of U(1)X . The running of this

gauge coupling constant is important however to determine its value at the electroweak

scale, which is required to understand its phenomenology. It will also affect the running

of the other gauge coupling constants at the two-loop order. However it is shown that

this effect is negligible and so the results of Section 3.6 are not significantly modified,

and it was a good approximation to ignore it.

This Section performs a SUSY two-loop RG analysis of the gauge coupling constants,

corresponding to the pattern of symmetry breaking discussed in the Section 4.2. It is

assumed that there are three complete 27 SUSY representations of the gauge group E6

which survive down to low energies. Above the G4221 symmetry breaking scale MGUT ,

the minimal left-right symmetric Higgs sector capable of breaking the G4221 symmetry

consists of the SO(10) × U(1)ψ Higgs states (16H) 1
2

and (16H)− 1
2
, where (16H) 1

2
=

(4, 2, 1) 1
2

+ (4, 1, 2) 1
2

and (16H)− 1
2

= (4, 2, 1)− 1
2

+ (4, 1, 2)− 1
2

is assumed in addition to

the three 27 representations. The components which get VEVs are HR = (4, 1, 2) 1
2

and HR = (4, 1, 2)− 1
2
. If complete E6 multiplets are demanded in the entire theory

below Mp, then the Pati-Salam breaking Higgs sector at MGUT may be assumed to be

27H and 27H . For the analysis which involves the 16H + 16H states, the rest of the
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SO(10) representations that together with the 16H + 16H states make up complete E6

representations (such as a 27 and 27) are assumed to be at or above the E6 breaking scale

and so do not affect the running of the gauge coupling constants below the unification

scale.

The running of the gauge coupling constants at two-loops is therefore investigated

for an E6 theory that contains three complete 27 multiplets at low energies and either

the SO(10) × U(1)ψ states (16H) 1
2

+ (16H)− 1
2

or the E6 states 27H + 27H above the

G4221 symmetry breaking scale. The E6 symmetry is assumed to be broken to a left-

right symmetric G4221 gauge symmetry, which is then broken to the Standard Model

gauge group and a U(1)X group as described in Section 4.2.

As discussed in Section 3.5.2 the relation in Eq.3.4 between the hypercharge and

Pati-Salam gauge coupling constants at the G4221 symmetry breaking scale can be turned

into a boundary condition involving purely Standard Model gauge couplings constants

at the G4221 breaking scale as given by Eq.3.5. This is because SU(3)c comes from

SU(4) so α3 = α4 at this scale, and, as remarked, the DLR symmetry requires that

α2R = α2L at the G4221 symmetry breaking scale. It is also argued that having specified

the low energy matter content and thresholds, Eq.3.5 allows a unique determination of

the Pati-Salam breaking scale, by running up the gauge couplings until the condition is

satisfied.

However the symmetry breaking pattern is slightly different in this Chapter since

a U(1)X symmetry has been included at two-loops the running of the U(1)X gauge

coupling constant will change the running of the Standard Model gauge coupling con-

stants, and the charge of the U(1)X group TX depends on the values that the g4 and g2R

coupling constants take at the G4221 symmetry breaking scale, which is written into the

cosine c12 of the mixing angle tan θ12 ≡ g2R/gB−L. This upsets the unique determination

of the Pati-Salam scale using Eq.3.5.

The running of the gauge coupling constants to two-loops is therefore calculated as

follows: First the U(1)X and U(1)ψ symmetries are ignored and the two-loop running

found in Section 3.6 is used to determine the unification scale. Using one-loop RGEs, the

U(1)ψ gauge coupling is then run down from this unification scale and the U(1)X gauge

coupling is determined at the G4221 symmetry breaking scale MGUT from the boundary

condition in Eq.4.11. The U(1)X gauge coupling is then run down to the TeV scale to

give a value for the U(1)X gauge coupling constant at low energies (unlike the Standard

Model gauge couplings we do not know the value of the U(1)X value at low-energies

since it has not been observed).
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Figure 4.1: Two-loop RGEs running of the gauge coupling constants in two ME6SSM
toy models that are described in the main body of the text. The thickness of the lines
represents the experimental uncertainty in the initial values of the coupling constants.
The blue lines represent the Pati-Salam inverse gauge coupling constants 1/α4 and
1/α2L = 1/α2R. Near to the conventional GUT scale the SU(3)c gauge coupling
constant α3 becomes the SU(4) gauge coupling constant α4, and the SU(2)R and
U(1)ψ gauge coupling constants α2R and αψ are the combination of the SU(3)c, U(1)Y

and U(1)X gauge coupling constants α3, α1 and αX given by Eq.3.4 and Eq.4.14.

Given this one-loop value for the U(1)X gauge coupling constant at the TeV scale,

all the gauge coupling constants are then run up to the unification scale using two-

loop RGEs. Since this is performed at the two-loop order however, the running of the

U(1)X symmetry will affect the running of the SU(3)c×SU(2)L×U(1)Y gauge coupling

constants so that the values for g4 and g2R calculated from Eq.3.5 will now differ from

those found when we ignored the U(1)X symmetry, and the unification scale will be

slightly modified. Using the new values for g4 and g2R the process is repeated by re-

calculating TX and running the U(1)ψ gauge coupling using one-loop RGEs down from

the new unification scale to determine the value of the U(1)X gauge coupling constant

at low energies. Again this new value is used to re-calculate the running of the gauge

couplings to two-loops and determine the unification scale. This process is repeated until

the g4 and g2R values and unification scale no longer change to within four significant

figures.

After this recursion of the two-loop RGE analysis it is calculated that, with either

(16H) 1
2

+ (16H)− 1
2

or 27H + 27H included above the G4221 symmetry breaking scale, c2
12

is equal to 0.71 to two significant figures. However, for convenience the physical value

of c2
12 is taken to be equal to 5

7 (≈ 0.71) so that TX can be written in terms of fractions.

Using this value of c2
12 in equation Eq.B.8, TX is calculated for all the standard model

particles of the three low-energy 27 multiplets. The values that TX , TY and TN take

for the particles of the 27 multiplets are given in Table 4.2, where TN is the generator

associated with the U(1)N group in the E6SSM.
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The results are shown in Fig.4.1. The left-panel illustrates the running of the gauge

coupling constants for the E6 theory that contains the SO(10)×U(1)ψ states (16H) 1
2

+

(16H)− 1
2

particles. A low-energy effective threshold of 250 GeV for the MSSM states is

used in this model and therefore an effective threshold of (6×250) = 1.5 TeV is assumed

for the rest of states of the three complete 27 multiplets. This was also assumed in Section

3.6, which follows the analysis of effective MSSM thresholds from [57]. The right-panel

of Fig.4.1 is for the E6 theory that contains the E6 states 27H + 27H . The MSSM

threshold must be increased to 350 GeV (and hence the 1.5 TeV threshold is increased

to 2.1 TeV) in this model to ensure unification for the gauge coupling constants of the

G4221 symmetry.

The gauge couplings are run up from low energies to high energies, using as input

the SM gauge coupling constants measured on the Z-pole at LEP, which are as follows

[26]: α1(MZ) = 0.016947(6), α2(MZ) = 0.033813(27) and α3(MZ) = 0.1187(20). The

general two-loop beta functions used to run the gauge couplings are described in Ap-

pendix A. Using a two-loop renormalization group analysis, it is calculated that the

G4221 symmetry is broken at 1016.45(3) GeV or 1016.40(3) GeV and that gauge coupling

unification occurs at 1018.95(8) GeV or 1019.10(10) GeV for the models that contain the

SO(10)× U(1)ψ states (16H) 1
2

+ (16H)− 1
2

or E6 states 27H + 27H respectively.

The value of the gauge coupling constant at the unification scales 1018.95(8) GeV

or 1019.10(10) GeV is αP = 0.183(10) or αP = 0.432(121) for the (16H) 1
2

+ (16H)− 1
2

or

27H + 27H particle spectra, respectively. The values of the unified gauge coupling at

the Planck scale are much larger than the conventional values of αGUT and indeed are

larger even than α3(MZ), however they are still in the perturbative regime. Of course

there are expected to be large threshold corrections coming from Planck scale physics

which are not included in this analysis.

In terms of a logarithmic scale, the Pati-Salam symmetry breaking scale and uni-

fication scale have not been significantly changed from the results of Section 3.6 which

ignored the U(1)X and U(1)ψ symmetries. Planck scale unification and a GUT scale

Pati-Salam symmetry breaking are still predicted.

4.3 The ME6SSM

In this Section a realistic ME6SSM is formulated, focussing on the model building issues.

The ME6SSM has a more ‘minimal’ particle content than the E6SSM since it only

contains three complete 27 multiplets at low energies, whereas the E6SSM contains two

additional EW doublets which can be considered as states of incomplete 27 and 27 E6
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Q L uc dc ec νc hu hd D D S
Y 1

6 - 1
2 - 2

3
1
3 1 0 1

2 - 1
2 - 1

3
1
3 0

X 8
21

6
7

10
21

16
21

2
7 0 - 6

7 - 8
7 - 16

21 - 26
21 2

N 1 2 1 2 1 0 -2 -3 -2 -3 5
TY 0.129 -0.387 -0.516 0.258 0.775 0 0.387 -0.387 -0.258 0.258 0
TX 0.150 0.338 0.188 0.301 0.113 0 -0.338 -0.451 -0.301 -0.489 0.789
TN 0.158 0.316 0.158 0.316 0.158 0 -0.316 -0.474 -0.316 -0.474 0.791

Table 4.2: The values that the charges Y , X and N take for the all the G3211

representations of the E6 27 multiplet. Y is hypercharge, X is the charge of U(1)X for
the model presented in Section 4.2.2, and N is the charge associated with the U(1)N
group in the E6SSM. The respective GUT normalized charges TY , TX and TN are also
given. NX and X have been calculated for the case when c212 = 5/7 which, to two

significant figures, agrees with the RGEs analysis in Section 4.2.2.

multiplets. From the previous RGEs analysis, unification of the G4221 gauge coupling

constants occurs near the Planck scale where an E6 symmetry should in principle exist.

However, given the expected strength of quantum gravity at this scale, it is likely that any

such E6 symmetry is for all practical purposes broken by gravitational effects. Therefore,

the model that is proposed in this Section is chosen to not respect an E6 symmetry but

instead obey the G4221 symmetry that exists between the conventional GUT and Planck

scales where quantum gravity effects are anticipated to not be so significant. G4221 must

be a symmetry of the model since its RGEs were used to determine the scale of gauge

coupling unification in Section 4.2.2. The E6 symmetry on the other hand was never

used.

Under E6 → SO(10) × U(1)ψ → G4221, the fundamental E6 representation breaks

into the following: 27→ 16 1
2

+10−1 +12 → F +F c+h+D+S. Including three families

contained in three 27i reps, then, without further constraints on the theory, the allowed

couplings are contained in the tensor products:

27i27j27k → FiF
c
j hk + FiFjDk + F ci F

c
jDk + Sihjhk + SiDjDk (4.15)

where i, j, k = 1 . . . 3 are family indices. However not all these terms are desirable since

the presence of extra Higgs doublets can give rise to flavour changing neutral currents

(FCNCs) and the presence of light Higgs triplets can induce proton decay. Therefore

extra symmetries are required to control the couplings, a suitable choice being the R-

symmetry and the discrete ZH2 symmetry displayed in Table 4.3, which reduces the

allowed couplings to those shown in Table 4.4, where the lowest order non-renormalizable

terms are displayed. The physics of the allowed and suppressed terms are now discussed.
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field SU(4)× SU(2)L × SU(2)R × U(1)ψ U(1)R ZH2
Fi, F ci (4, 2, 1) 1

2
, (4, 1, 2) 1

2
1 −

h3, hα (1, 2, 2)−1 0 +,−
S3, Sα (1, 1, 1)2 2 +,−
Di (6, 1, 1)−1 0 −

HL, HR (4, 2, 1) 1
2
, (4, 1, 2) 1

2
2 +

HL, HR (4, 2, 1)− 1
2
, (4, 1, 2)− 1

2
0 +

Table 4.3: All the charge assignments for the G4221 representations of the ME6SSM ,
where i = 1 . . . 3 is a family index and α = 1, 2. The U(1)R is an R-symmetry and ZH2
distinguishes the third family Higgs which get VEVs. The superpotential terms that
are allowed by these symmetries are given in Table 4.4. The h3 supermultiplet contains
the MSSM Higgs bosons and S3 is the MSSM singlet that generates an effective µ-term.

4.3.1 Suppressed Flavour Changing Neutral Currents

The FiF
c
j h3 superpotential terms are taken to contain the MSSM Yukawa couplings

since, as in the E6SSM, the third generation h3 is assumed to contain the MSSM-like

Higgs doublets hu and hd that gain electroweak VEVs. The other hα states are taken

to not get VEVs and will cause FCNCs unless the superpotential term FiF
c
j hα, where

α = 1, 2, is forbidden or highly suppressed by some new symmetry [17]. These terms are

forbidden using a ZH2 discrete symmetry that respects the G4221 symmetry but not the

Planck-scale E6 symmetry since the latter is assumed to be broken by quantum gravity.

Under this ZH2 symmetry the ‘matter particles’ Fi and F ci and ‘non-Higgs’ particles

hα are taken to have ZH2 = −1 and the MSSM Higgs doublets from h3 are assumed to

have ZH2 = +1. The FCNC inducing terms FiF cj hα are therefore forbidden by the ZH2
symmetry and the effective MSSM superpotential terms FiF cj h3 are allowed. The fact

that only the third generation of Higgs doublets h3 couple strongly to the quark and

leptons could explain why only these electroweak doublet fields gain VEVs as discussed

in Section 2.6.4 for the E6SSM.

The ZH2 symmetry used here forbids the FCNCs in the same way that the ZH2

symmetry of the E6SSM forbids the FCNCs from the hα ‘non-Higgs’ particles in that

model [17]. However, it is shown later that, although the FiF cj hα terms are forbidden at

the renormalizable level by ZH2 , they are still generated from non-renormalizable terms,

which are heavily suppressed so that the induced FCNCs are not significant.

Note that the ZH2 does not commute with an E6 symmetry if all the ME6SSM sates

come from only complete representations of E6. It is assumed that the E6 symmetry

may not be respected by low-energy symmetries as it is broken by quantum gravity

effects. For example if the ME6SSM sates come from four incomplete 27 representations

then ZH2 will commute with E6, which could be explained by compactification of higher
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dimensions in a quantum gravity theory such as string theory. Such higher energy effects

are not considered here however.

4.3.2 The µ-Term and Exotic Mass Terms

Following the E6SSM, only the third generation of the Si states is assumed to get a

vacuum expectation value so that the S3h3h3 term, from the G4221 superpotential term

Sihjhk, will generate an effective MSSM µ-term. For this term to be allowed by the

ZH2 symmetry, the S3 particles must have ZH2 = +1. No Goldstone boson is created by

the VEV of S3 since it is charged under the local U(1)X group. Instead a Z ′ boson is

created whose phenomenology is discussed in Section 4.4.

In addition to solving the µ-problem of the MSSM, the little hierarchy problem of

the MSSM should also be resolved by the ME6SSM. This is because there are extra

particles below the conventional GUT scale of 1016 GeV that are not contained in the

MSSM. These extra particles are from the three copies of the 27 E6 multiplet and form

two copies of a 5 + 5 of the SU(5) subgroup of E6, and one Higgs triplet particle. Due

to Renormalization Group effects, the extra states increase the value of the Yukawa

coupling constant for S3h3h3 at low energies, and hence increase the mass of the lightest

CP even Higgs boson [17].

The S3 particle is also used to give mass to the ‘non-Higgs’ particles hα and Higgs

triplet particles Di via the terms S3hαhβ and S3DiDj respectively where β = 1, 2. For

general U(1)′ models, the S3DiDj superpotential term has been shown to induce a VEV

for the singlet S3 so that it can generate an effective µ-term [52, 53]. From Table 4.4 the

SαDiDj and Sαhβhγ (where γ = 1, 2) superpotential terms are forbidden at tee-level so

that the Sα particles should not acquire VEVs. These Sα particles will instead get mass

from the Sαhβh3 superpotential terms where Sα has ZH2 = −1. This is exactly the same

as in the E6SSM, which was reviewed in Section 2.6.6.

4.3.3 Exotic Decay and Suppressed Proton Decay

The remaining G4221 superpotential terms to be discussed from Eq.4.15 are FiFjDk
and F ci F

c
jDk. These will cause rapid proton decay in this model unless they are highly

suppressed or forbidden by some symmetry [17, 38]. Under G4221 → G3211 these terms

decompose to the following:

FFD → QQD +QLD (4.16)

F cF cD → ucdcD + ucecD + dcνcD
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Allowed couplings Physics
FiF

c
j h3 MSSM superpotential

S3h3h3 Effective MSSM µ-term
S3hαhβ hα mass
S3DiDj Di mass
Sαhβh3 Sα mass

1
Mp

Σ(FiFjDk + F ci F
c
jDk) Allows Di and proton decay

1
MP

ΣFiF cj hα Heavily suppressed FCNCs
1
MP

ΣSαDiDj Harmless
1
MP

ΣSαhβhγ Harmless
1
MP

ΣSαh3h3 Harmless
1
Mp
F ci F

c
jHRHR νc mass

1
Mp
FiFjHLHL Harmless

Table 4.4: The G4221 superpotential terms that are obtained from all the renormaliz-
able and first-order non-renormalizable E6 tensor products of 27i, the SO(10)×U(1)ψ
states (16H) 1

2
+ (16H)− 1

2
(that are assumed to derive from a 27 + 27), and Σ, that

are allowed by the ZH2 and U(1)R symmetries of the ME6SSM. i, j, k = 1 . . . 3 and
α, β, γ = 1, 2 are family indices.

where D = (3, 1)− 1
3
, D = (3, 1) 1

3
and the family indices and coupling constants have

been dropped for ease of notation. These operators are also found in the E6SSM and are

separated into the superpotentials W1 and W2 in Eq.2.28 in Section 2.6.7. In the E6SSM

a ZL2 or ZB2 discrete symmetry forbids W1 or W2 respectively as discussed in detail in

Section 2.6.7. This forbids the otherwise induced proton decay and also allows the D and

D states to decay. Unfortunately however we cannot use the ZL2 or ZB2 symmetry in the

ME6SSM since they do not commute with the Pati-Salam gauge symmetry.4 Therefore

a different method to avoid rapid proton decay is required.

The FiFjDk and F ci F
c
jDk superpotential terms cannot be forbidden altogether since

the Di particles would become stable, strongly interacting particles with TeV scale

masses. Such particles cannot exist in nature and in fact could potentially cause prob-

lems for nucleosynthesis even if they are unstable with a lifetime greater than just 0.1s

[56]. This was discussed in more detail in Section 2.6.7 for the E6SSM. Forbidding

FiFjDk over F ci F
c
jDk or vice versa would not help either since both terms contain parts

of W1 and W2 as illustrated by Eq.4.16.

The Standard Model representations of Dk are often found to some degree in other

GUTs and the rapid proton decay problems are often solved using some doublet-triplet

splitting mechanism that gives large (above the GUT scale) mass to the analogue of

the Di (triplet) particles, but EW mass to the Higgs doublets. Section 2.4.5 describes

4ZL2 and ZB2 can commute with G4221 if the quarks and leptons are taken to come from separate F
and F c representations. This would be difficult to explain using a conventional field theory however.
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such a mechanism in more detail. However, in this model we cannot give a large mass

to the Di particles because gauge anomalies would then exist, due to the U(1)X group,

and Planck scale unification would be lost. Also, as discussed above, the Di particles

can be used to help induce a VEV for the S3 particle, around the TeV scale, if they

contribute to the low energy theory. We must therefore highly suppress the FiFjDk
and F ci F

c
jDk superpotential terms using a small Yukawa coupling constant rather than

using the general GUT method of creating large Di masses. In this case the Yukawa

couplings of the quarks and leptons to Higgs doublets and Higgs triplets are ‘split’ rather

than their masses. To achieve this the FiFjDk and F ci F
c
jDk superpotential terms are

forbidden at the tree-level but generated from the non-renormalizable terms ΣFiFjDk
and ΣF ci F

c
jDk, where Σ is an E6 singlet, by taking both Σ and Di to have ZH2 = −1.

These non-renormalizable superpotential terms are expected to survive from the Planck

scale and so will likely be suppressed by a factor of 1/Mp. We can therefore control the

degree of suppression of the FiFjDk and F ci F
c
jDk terms by choosing the energy scale at

which Σ gets a VEV. The level of suppression, and therefore the Σ VEV scale, must be

such that the induced proton decay has a rate smaller than present experimental limits,

but the Di states still decay faster than 0.1s.

In Section 4.3.3.1 the minimum level of suppression required for the proton’s lifetime

to be within experimental limits is estimated. This is then compared to the maximum

level of suppression required for the Di particles’ lifetime to be greater than 0.1s which

is estimated in Section 4.3.3.2.

4.3.3.1 Proton Decay

The superpotential terms λFFD and λF cF cD (with the family indices dropped for

simplicity) cause proton decay through d = 5 and d = 6 operators [36, 66], and the most

stringent experimental limits on the proton’s lifetime are set by the d = 5 p → K+ν

and d = 6 p → π0e+ decay channels, which are 1.6 × 1033 years and 5.0 × 1033 years

respectively [26]. The d = 6 operators are found in all simple GUTs (including non-

SUSY GUTs) and a dimensional analysis estimate for the decay width of the proton is

[36]:

Γp ≈ |λDuλDd|2
m5
p

m4
D

(4.17)

where mD, mp are the mass of the Di particles and proton respectively; and λDu, λDd are

the strength of couplings between the Di mass eigenstate and the up quark (and charged

lepton) and down quark mass eigenstates. Taking mD = 1.5 TeV in Eq.4.17 for example

requires that λ . 10−13 for the proton’s lifetime to be greater than 5.0 × 1033 years in

the approximation that λDu = λDd ≡ λ. In the ME6SSM this suppression λ will be
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approximately given by 〈Σ〉/Mp so that 〈Σ〉 . 106 GeV for the d = 6 decay p→ π0e+ to

be within experimental limits. Of course this is only a rough order of magnitude estimate

and assumes that the operators 1
Mp

ΣFFD and 1
Mp

ΣF cF cD represent the interactions

between the D, quark and lepton mass eigenstates.

The d = 5 operators are only found in SUSY GUTs since they contain the coloured

partners to the higgsinos (the ‘triplet higgsinos’) and must be dressed with squarks and

sleptons to generate proton decay [36]. These operators only exist if the supersymmetric

theory contains a mass term that mixes the coloured partners to the up higgsinos with

the coloured partners to the down higgsinos. In the ME6SSM this mass term is provided

by S3DiDj once S gets a VEV. The matrix element for the d = 5 decay channel p→ K+ν

can be found in [36, 67] and is proportional to λDuλDd/mDmSUSY where mSUSY is the

mass scale for the Standard Model’s superpartners. For the lifetime of the proton to be

within experimental limits, it was found that mD & 7.6 × 1016 GeV was required for a

Yukawa suppression of order λhuλhd where λhu and λhd are the Yukawa couplings of the

up and down quark with the SUSY Higgs fields [67]. This suppression can be estimated

as mumd/mtmb ≈ 10−10, which sets an upper limit for the Yukawa suppression used in

[67]. This result can then be scaled to obtain an estimate for the suppression required

in the case that mD = 1.5 TeV rather than mD & 7.6× 1016 GeV:

λ2 ≈ mD
mD
|λhuλhd|

where λ is the suppression factor of the superpotential terms FFD and F cF cD in the

ME6SSM; mD = 7.6 × 1016 GeV; mD = 1.5 TeV and the scale mSUSY used in [67] is

assumed to be roughly the same as that in the ME6SSM. With |λhuλhd| ≈ 10−10 then

λ . 10−12 is required for the d = 5 decay p→ K+ν to be within experimental limits.

The d = 5 decay channel is thus less constraining than the d = 6 decay channel when

the mass of the Higgs triplets is equal to 1.5 TeV. This is the opposite to what is found

in conventional SUSY GUTs where the d = 5 channels set stringent limits on the mass

of the triplet higgsinos. For example the d = 6 channels generically require mD ≈ 1011

GeV whereas, as stated above, the d = 5 channels can require mD ≈ 7.6 × 1016 GeV.

The reason that this is not the case in the ME6SSM is because mSUSY ≈ mD so that

the matrix elements of the d = 5 and d = 6 channels converge.

In summary the proton decay requires that the terms FFD and F cF cD in the

ME6SSM superpotential are suppressed by a factor of λ = 10−13 or smaller, which is set

by the d = 6 channel p→ π0e+.
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4.3.3.2 Higgs Triplet Decay

The effective superpotential terms FiFjDk and F ci F
c
jDk, generated from 1

Mp
ΣFiFjDk and

1
Mp

ΣF ci F
c
jDk, are the only source for the Di particles to decay. Assuming that mt̃ < mD,

where mt̃ is the mass of the heaviest stop, the D Standard Model representation of the

G4221 D particle will predominantly decay through the channel D → t̃ + b [17]. Using

the standard 2-body decay kinematic formula [26] it is estimated that the decay rate for

D → t̃+ b, under the assumption that mb � mt̃, is:

dΓ ≈ 1
32π2

|M|2
m2
D −m2

t̃

2m3
D

dΩ.

At tree-level, a rough order of magnitude estimate of the matrix M for the D → t̃ + b

decay channel gives:

|M|2 ≈ 2(m2
D −m2

t̃
)λ2.

Taking the mass of the stop to be around the TeV scale, it is estimated that the FiFjDk
and F ci F

c
jDk operators must be multiplied by an effective Yukawa coupling λ that is

greater than 10−13 for the Di particles to have a lifetime less than 0.1s.5

The superpotential terms λFFD and λF cF cD are effectively generated from the

Planck-suppressed operators 1
Mp

ΣFFD and 1
Mp

ΣF cF cD, and so the Yukawa coupling λ

is effectively given by 〈Σ〉/Mp. To avoid cosmological difficulties from the Di particles,

the above analysis shows that 〈Σ〉 & 106 GeV, and to avoid experimentally observable

proton decay we require that 〈Σ〉 . 106 GeV. It is therefore assumed that 〈Σ〉 ≈ 106

GeV and that the generated level of suppression is compatible with both proton decay

and Higgs triplet decay.

This small allowed window of couplings warrants a more detailed analysis of both

proton decay and triplet decay since it will lead to testable predictions for proton decay

and the ME6SSM. The TeV scale Higgs triplet states, which would be quasi-stable at

colliders, would also lead to striking signatures at the LHC [68].

4.3.4 R-Symmetry and R-Parity

To ensure that the LSP is stable in this model, so that it is a candidate for dark matter,

an R-parity is derived from the U(1)R symmetry [69], which commutes with the G4221

symmetry but not the E6 symmetry because the latter may not be respected by low-

energy symmetries as it is assumed to be broken by quantum gravity effects. To allow
5If the stop has a mass mt̃ > 1.5 TeV then a suppression of 10−12 would be required. The stop must

therefore have a mass smaller than 1.5 TeV in the ME6SSM.
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the G4221 superpotential terms, which respect the ZH2 discrete symmetry, and to derive a

generalization of the MSSM R-parity, the G4221 supermultiplets of the three 27 E6 have

the following U(1)R R-charge assignments: Fi and F ci have R = +1; h3, hα, Di and Σ

have R = 0; and S3 and Sα have R = +2 (see table 4.3). The 16H state also has R = +2

so that, when it gets a VEV, the U(1)R is broken to a Z2 discrete symmetry called ZR2 .

Under this ZR2 symmetry the scalar components of Fi, F ci and the fermionic components

of h3 (the MSSM sparticles) all have ZR2 = −1 while the fermionic components of Fi
and F ci and the scalar components of h3 (the MSSM particles) all have ZR2 = +1. The

ZR2 symmetry is therefore equivalent to the R-parity of the MSSM for the Fi, F ci and

h3 supermultiplets.

The hα, Di, Si and Σ supermultiplets are not in the MSSM. All the scalar com-

ponents of these ‘new’ supermultiplets can be shown to have ZR2 = +1 while all the

fermionic components have ZR2 = −1. Therefore Fi and F ci are the only supermultiplets

in the theory which have ZR2 = +1 for their fermionic components and ZR2 = −1 for their

scalar components. This ZR2 symmetry therefore stops the ‘non-MSSM’ particles from

allowing the MSSM LSP to decay as well as operating as the R-parity of the MSSM.

The introduction of the ZR2 symmetry thus ensures a stable dark matter candidate.

Note that the ZH2 symmetry in Table 4.3 is equivalent to an MSSM matter-parity.

Therefore, if it was left unbroken, it would also prevent the MSSM LSP from decaying.

However, as discussed in Section 4.3.1, the ZH2 symmetry is broken by the E6 singlet Σ

at around 106 GeV generating the effective operators FiFjDk, F ci F cjDk and FiF cj hα that

disrespect ZH2 , and enabling the MSSM LSP to decay. Hence the ZR2 symmetry must

be introduced in addition to the ZH2 symmetry so that the MSSM LSP is stable.

4.3.5 Neutrino Mass

The above R-charge assignments forbid phenomenologically-problematic terms and allow

the charge-conjugated neutrinos, from F ci , to obtain a large Majorana massO(M2
GUT /Mp)

from a 1
Mp
F ci F

c
j (16H)− 1

2
(16H)− 1

2
≡ 1

Mp
F ci F

c
jHRHR superpotential term. This term will

create a conventional see-saw mechanism for the left-handed neutrinos together with the

superpotential term FiF
c
j h3.

The operators 1
Mp
F ci F

c
j (16H)− 1

2
(16H)− 1

2
≡ 1

Mp
F ci F

c
jHRHR and 1

Mp
FiFjHLHL, which

is phenomenologically harmless, are the only superpotential terms that contain inter-

actions between the three 27 E6 multiplets and the (16H) 1
2

+ (16H)− 1
2

multiplets. In

Section 4.2.2 the RGEs analysis was performed for two ME6SSM toy models, one with

16H + 16H and the other with 27H + 27H . If the 27H + 27H states are included above

the G4221 symmetry breaking scale than an additional Z2 symmetry must be added to
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Table 4.3 to prevent any phenomenologically problematic terms between these states

and the quarks and leptons. Including incomplete E6 states above the G4221 symmetry

breaking is considered acceptable here because they are split from their E6 particles by

≈ 103 orders of magnitude. This is compared to the splitting between the mass of the

top and up quark which is ≈ 105 orders of magnitude.

4.4 Phenomenology of the new Z ′ in the ME6SSM

This Section investigates certain phenomenological implications of the Z ′ gauge boson in

the ME6SSM. The results are compared to those calculated for the Z ′ in the E6SSM to

see if a possible distinction can be made between the two models in future experiments.

The covariant derivatives for the E6SSM and ME6SSM symmetries below the GUT scale

are first reviewed and then the different U(1)′ groups from the two models are compared.

In Section 4.4.3 the mixing between the Z ′ of the ME6SSM and the Standard Model Z

gauge boson is then calculated and shown to be negligible as in the E6SSM. In Section

4.4.4 the axial and vector couplings of the Z ′ to the low energy particle spectrum are

calculated and it is shown that the charged lepton vector couplings do differ in the

E6SSM and ME6SSM, which could potentially lead to a distinction between the two

models in future experiments.

4.4.1 The Z ′ of the E6SSM

In the E6SSM the E6 symmetry is not broken through a Pati-Salam intermediate sym-

metry but instead breaks to SU(3)c × SU(2)L × U(1)Y × U(1)N via a E6 → SO(10)×
U(1)ψ → SU(5) × U(1)χ × U(1)ψ symmetry breaking chain. The covariant derivative

for the SU(3)c × SU(2)L × U(1)Y × U(1)N symmetry can be written as:

Dµ = ∂µ + ig3T
n
3cA

n
3cµ + ig2LT

s
LA

s
Lµ + ig1TYBY µ + igNTNBNµ (4.18)

where n = 1 . . . 8 and s = 1 . . . 3; An3cµ, AsLµ, BY µ and BNµ are the SU(3)c, SU(2)L,

U(1)Y and U(1)N quantum fields respectively; g3, g2L, g1 and gN denote the universal

gauge coupling constants of the respective fields and Tn3c, T
s
L, TY and TN represent their

generators. At low energies the U(1)N gauge group will be broken giving rise to a

massive Z ′ gauge boson associated with the E6SSM.

The gN gauge coupling constant is equal to g1 to an excellent approximation [17],

independent of the energy scale of interest. This is to be compared to the universal

gauge coupling constant gX of the group U(1)X in the models presented in this Section,

which is always less than g1.
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Similar to TY and TX , we can split TN into an E6 normalization constant NN and a

non-normalized charge N so that TN ≡ N/NN where the conventional choice is N2
N ≡ 40

and N ≡ 1
4χ+ 5

2Tψ where χ ≡ 2
√

10Tχ [17].

4.4.2 The Z ′ of the ME6SSM

The covariant derivative of the G4221 symmetry is discussed in Appendix B and is given

by Eq.B.1 as:

Dµ = ∂µ + ig4T
m
4 Am4µ + ig2LT

s
LA

s
Lµ + ig2RT

r
RA

r
Rµ +

1√
6
igψTψAψµ

where m = 1 . . . 15 and r, s = 1 . . . 3; Am4µ, ArRµ and Aψµ are the SU(4), SU(2)R and

U(1)ψ quantum fields respectively; g4, g2R and gψ denote the universal gauge coupling

constants of the respective fields; and Tm4 , T rR and Tψ represent their generators.

The covariant derivative of the G3211 symmetry is also derived in Appendix B and

is given by Eq.B.12 as:

Dµ = ∂µ + ig3T
n
3cA

n
3cµ + ig2LT

s
LA

s
Lµ + ig1TYBY µ + igXTXBXµ (4.19)

where n = 1 . . . 8 and s = 1 . . . 3; and BXµ and TX are the gauge field of the U(1)X group

and its (E6 normalized) charge respectively. At low energies the U(1)X gauge group will

be broken, giving rise to a massive Z ′ gauge boson associated with the ME6SSM.

As is clear from Table 4.2, for c2
12 = 5

7 , the TX and TN charges are different for

all of the G3211 representations of the 27 multiplets. However, in the limit c2
12 = 3

5 ,

corresponding to g2R = g4 at the G4221 symmetry breaking scale, then TX and TN

become identical.6 This can be seen if one sets g2R = g4 =
√

2
3gB−L in Eq.4.9 and

Eq.4.13, in which case TX is given by:

TX =
1
4

[
4

2
√

10

(
T 3
R −

3
2
TB−L

)
+
√

15
(
Tψ/
√

6
)]

≡ 1
4

[
Tχ +

√
15
(
Tψ/
√

6
)]

≡ Tχ cos θ + (Tψ/
√

6) sin θ

≡ TN
6Although TX and TN are identical for c212 = 3/5, X and N and hence NX and NN are not. However,

we could have defined X and NX differently so that they agree with N and NN when c212 = 3/5.
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where θ = arctan
√

15 and Tχ is the E6 normalized charge for the U(1)χ group, which

is defined by SO(10)→ SU(5)× U(1)χ [50] 7.

In the E6SSM the U(1)N group is defined as the linear combination of the two groups

U(1)χ and U(1)ψ for which the right-handed neutrino is a singlet of the symmetry [17].

This linear combination is U(1)χ cos θ + U(1)ψ sin θ, where θ = arctan
√

15 [17], which

is the same linear combination of U(1)χ and U(1)ψ that U(1)X becomes if gR = g4

as shown above. Thus if gR = g4 at the G4221 symmetry breaking scale, then the

covariant derivative for the E6SSM, Eq.4.18, and the covariant derivative for G3211,

Eq.4.19, become equivalent because of the reasons stated above. However, in the E6

theories proposed in Section 4.2.2, c2
12 ≈ 5

7 not 3
5 so that, in general, one expects gR 6= g4

at the G4221 symmetry breaking scale in realistic models. This way of relating the E6SSM

and the ME6SSM (i.e. by setting g4 = g2R at the G4221 symmetry breaking scale) is

utilized in Chapter 6.

It is clearly of interest to try to distinguish the Z ′ of the E6SSM from that of

the ME6SSM, since the former one is associated with GUT scale unification, while the

latter is associated with Planck scale unification. In the remainder of this Section the

phenomenology of the new Z ′ of the ME6SSM is discussed and compared to that of

the E6SSM. In principle, different Z ′ gauge bosons can be distinguished at the LHC

by measuring the leptonic forward-backward charge asymmetries as discussed in [70]

(providing the mass of the Z ′ is not much larger than about 2 TeV).

4.4.3 Mixing between Z and the Z ′ of the ME6SSM

This Section investigates the mixing between the Z gauge boson and the Z ′ gauge

boson of U(1)X which is generated once the Higgs doublets hu and hd from h3 get

vacuum expectation values and break the electroweak symmetry. When the MSSM

singlet particle S from the low-energy 27 multiplets of the ME6SSM gets a VEV, the

U(1)X group will be broken and a heavy Z ′ gauge boson will be produced. Then, when

hu and hd get VEVs, the SU(2)L × U(1)Y symmetry will be broken to U(1)em and a

heavy neutral Z gauge boson, which is the following mixture of the SU(2)L and U(1)Y
fields: Zµ = W 3

µ cos θW−AY sin θW where θW is the Electroweak (EW) symmetry mixing

angle. Since hu and hd transform under U(1)X , they couple to Z ′ and so mix the Z ′ and

Z gauge bosons when they get VEVs. After S, hu and hd get VEVs the mass squared
7When g2L = g2R = g4 the Pati-Salam generators can be thought of as SO(10) generators, on the

same footing as the SU(5) and U(1)χ generators when their gauge couplings are equal, as in the E6SSM.
In this limit the above argument shows that there is no distinction between U(1)N and U(1)X .
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mixing matrix for the Z and Z ′ gauge bosons is given by [71]:

M2
ZZ′ =

(
M2
Z δM2

δM2 M2
Z′

)

where:

M2
Z = (g2

2L + g2
Y )(Y h)2υ2

h

M2
Z′ = g2

Xυ
2
h[(T h1

X )2 cos2 β + (T h2
X )2 sin2 β] + g2

X(TSX)2s2

δM2 =
√
g2

2L + g2
Y gX Y h(T h1

X cos2 β − T h2
X sin2 β)υ2

h

and Y h is the magnitude of the hu and hd Higgs bosons’ hypercharge; T h1
X , T h2

X and TSX
are the values that the E6 normalized U(1)X charge, TX , takes for the h1, h2 and S

states respectively; g2L and gY are the SU(2)L and (non-GUT normalized) hypercharge

gauge coupling constants evaluated at the EW symmetry breaking scale;8 gX is the

U(1)X gauge coupling constant evaluated at the U(1)X symmetry breaking scale; s is

the VEV of the MSSM singlet S; υh =
√
υ2
u + υ2

d and tanβ = υd
υu

where υu and υd are

the vacuum expectation values for the hu and hd MSSM Higgs bosons respectively.

The mass eigenstates generated by this mass mixing matrix are:

Z1 = Z cos θZZ′ + Z ′ sin θZZ′

Z2 = −Z sin θZZ′ + Z ′ cos θZZ′

with masses M2
Z1,Z2

= 1
2

[
M2
Z +M2

Z′∓
√

(M2
Z −M2

Z′) + 4δM4
]

respectively, and mixing

angle tan(2θZZ′) = 2δM2

M2
Z′−M

2
Z
.

In terms of the above mixing angle the covariant derivative for the mass eigenstate

gauge bosons Z1 and Z2 is:

Dµ = ∂µ + i

(
cos θZZ′√
g2
Y + g2

2L

(g2
2LT

3
L − g2

Y Y )− gXTX sin θZZ′
)
Z1µ

+ i

(
gXTX cos θZZ′ +

sin θZZ′√
g2
Y + g2

2L

(g2
2L − g2

Y Y )
)
Z2µ

where gY and g2L are evaluated at the EW symmetry breaking scale and gX is evaluated

at the scale at which S gets a VEV to break the U(1)X symmetry. Phenomenology

constrains the mixing angle θZZ′ to be typically less than 2−3×10−3 [72] and the mass

of the extra neutral gauge boson to be heavier than 500− 600 GeV [45]. It is calculated

8The non-GUT normalized hypercharge coupling constant gY is identified as gY ≡
√

3
5
g1.
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that, if the S particle gets a VEV at 1.5 TeV in the ME6SSM, then θZZ′ = 3×10−3 and

MZ′ = 544 GeV so that phenomenologically acceptable values are therefore produced

for s > 1.5 TeV. This vacuum expectation value is consistent with the RGEs analysis in

Section 4.2.2 and the scale of electroweak symmetry breaking.

Since the mixing angle θZZ′ is very small in the ME6SSM, the two mass eigenstate

gauge bosons can be approximated to be just Z and Z ′. These are the neutral gauge

bosons of the broken SU(2)L × U(1)Y and U(1)X symmetries respectively. The above

covariant derivative is then simplified to:

Dµ = ∂µ + i
1√

g2
Y + g2

2L

Zµ
(
g2

2LT
3
L − g2

Y Y
)

+ igXZ
′
µTX .

4.4.4 Axial and Vector Couplings for Z ′ in the ME6SSM

If the mixing between the Z and Z ′ gauge bosons is ignored, then the most general

Lagrangian for the U(1)X group is [73]:

LX =
1
2
MZ′Z

′µZ ′µ −
gX
2

∑
i

ψiγ
µ(f iV − f iAγ5)ψiZ ′µ −

1
4
F ′µνF ′µν −

sinχ
2

F ′µνFµν

where F ′µν and Fµν are the field strength tensors for U(1)X and U(1)Y respectively;

ψi are the chiral fermions; and f iV and f iA are their vector and axial charges which are

given by f iV ≡
1
NX

(Xi
L + Xi

R) and f iA ≡
1
NX

(Xi
L − Xi

R) where XL and XR are the X

charges for the left-handed and right-handed particles respectively.

4.4.4.1 Kinetic Term

The sinχ
2 F ′µνFµν term in the above Lagrangian represents the kinetic term mixing for

the two Abelian symmetries U(1)Y and U(1)X . In general, the kinetic term mixing for

two Abelian gauge groups is non-zero because the field strength tensor is gauge-invariant

for an Abelian theory. However, if both Abelian groups come from a simple gauge group,

such as E6, then sinχ is equal to zero at the tree-level, although non-zero elements could

arise at higher orders if the trace of the U(1) charges is not equal to zero for the states

lighter than the energy scale of interest [73]. The trace of the U(1)Y and U(1)X charges

is given by:

Tr (TY TX) =
∑

i=chiral fields

(T iY T iX).

This trace is only non-zero if incomplete GUT multiplets are present in the low-energy

particle spectrum. There are no low-energy incomplete E6 multiplets in the ME6SSM
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u d e ν D h S

fV /NX
1
2 −

5
6c

2
12 −1

2 + 1
6c

2
12 −1

2 + 3
2c

2
12

1
2 + 1

2c
2
12

2
3c

2
12 −1 + c2

12 2
fA/NX

1
2 + 1

2c
2
12

3
2 −

1
2c

2
12

3
2 −

1
2c

2
12

1
2 + 1

2c
2
12 −2 −2 2

fV −0.0376 −0.1503 0.2255 0.3382 0.1879 −0.1127 0.7892
fA 0.3382 0.4510 0.4510 0.3382 −0.7892 −0.7892 0.7892
f0
V 0.0278 −0.1637 0.1081 0.2996 0.1359 −0.1915 0.7906
f0
A 0.2996 0.4910 0.4910 0.2996 −0.7906 −0.7906 0.7906

Table 4.5: The axial fA and vector fV U(1)X charge assignments for the G3211

representations of the complete 27 E6 multiplet in the ME6SSM. The assignments for a
general ME6SSM model and for the model presented in Section 4.2.2, which has c212 =
5/7, are both given. The E6 normalization factor NX is given by N2

X = 7−2c212 + 5
3c

4
12.

The axial and vector U(1)N charge assignments f0
V and f0

A in the E6SSM are also
included.

and so sinχ = 0 at the tree-level and at higher orders in this particular case. There is

therefore no kinetic term mixing for the U(1)Y and U(1)X groups in the ME6SSM.

In the E6SSM the two additional EW doublets H ′ and H
′ from incomplete E6 27′

and 27′ multiplets are kept light. In this case, sinχ has a non-zero value, which leads

to a kinetic term mixing for the U(1)N and U(1)Y fields. This can be eliminated by

means of a non-unitary transformation of the two U(1) gauge fields [17]. In terms of

the new gauge variables, one has the same gauge coupling constant and charge as the

hypercharge field, and so can be identified with the hypercharge field BY µ, whereas the

other has a gauge coupling constant that is a particular combination of the U(1)N and

U(1)Y charge. This results in the charge of the other U(1) field being dependent on the

U(1)Y and U(1)N gauge coupling constants. This is similar to the fact that the U(1)X
charge depends on the g4 and g2R gauge coupling constants.

4.4.4.2 Interaction with the Fermions

The second term in the U(1)X Lagrangian LX represents the interaction between the

Z ′ gauge boson and the fermions. Table 4.5 lists the vector and axial U(1)X charges

for the G4221 representations of the complete 27 low-energy E6 multiplets in a general

E6 theory and the ME6SSM, which has c2
12 = 5/7. The vector and axial U(1)N charges

of the E6SSM for the low-energy 27 multiplets are also listed for a comparison. The

differences between the values of the vector and axial couplings of the two Z ′ gauge

bosons of the U(1)X and U(1)N groups are due to the difference in value between the

E6 normalized TX and TN charges and the fact that the kinetic term mixing between

the U(1)Y and the U(1)′ groups is non-zero in the E6SSM but zero in the ME6SSM. The

largest difference between the vector and axial couplings of U(1)X and U(1)N exists for
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the charged leptons where the vector coupling for U(1)X is a factor of two larger than

for U(1)N .

As noted above the vector and axial U(1)X charges depends on the value c2
12 and

therefore the value of the g4 and g2R gauge coupling constants at the G4221 symmetry

breaking scale. The presence of additional threshold corrections at the Planck scale will

not change the Pati-Salam breaking scale or the values of the Standard Model gauge

couplings at this scale to one-loop order. However, since these quantities are determined

by running up the couplings from low energies, there will be some sensitivity to TeV

scale threshold corrections. Since the vector and axial vector couplings of the Z ′ are

determined from the values of the gauge couplings at the Pati-Salam breaking scale,

there will therefore be little sensitivity to Planck scale threshold corrections on the

determined vector and axial vector couplings of the Z ′.

4.5 Conclusions

In this Chapter an E6 inspired supersymmetric model called the Minimal E6 Super-

symmetric Standard Model (ME6SSM) was introduced. This model is based on three

low-energy 27 E6 representations and which has many attractive features compared to

the MSSM. In particular it provides a solution to the µ problem and doublet-triplet

splitting problem, without re-introducing either of these problems. In addition, the

model also resolves the little fine-tuning problem of the MSSM.

Above the conventional GUT scale the ME6SSM is embedded into a left-right sym-

metric Supersymmetric Pati-Salam model, which allows complete gauge unification at

the Planck scale, subject to gravitational uncertainties. At low energies there is an ad-

ditional U(1)X gauge group, consisting of a novel and non-trivial linear combination of

one Abelian and two non-Abelian Pati-Salam generators. The U(1)X is broken at the

TeV scale by the same singlet that also generates the effective µ-term, resulting in a

new low energy Z ′ gauge boson. The Z ′ of the ME6SSM (produced via the Pati-Salam

breaking chain of E6, where E6 is broken at the Planck scale) was compared to the Z ′ of

the E6SSM (from the SU(5) breaking chain of E6, where E6 is broken at the GUT scale)

in Section 4.4.4.2 where it was shown that they could be (in principal) distinguished by

their axial and vector different couplings. The possible discovery of such Z ′ gauge bosons

is straightforward at the LHC and the different couplings should enable the two models

to be resolved experimentally. In particular, the most significant difference between the

vector and axial couplings of the Z ′ of the E6SSM and ME6SSM is in the vector coupling

of the charges leptons, which is twice as large in the ME6SSM as in the E6SSM.
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In Section 4.3 an R-symmetry and discrete ZH2 symmetry were introduced that

address the potential major phenomenological problems such as flavour changing neutral

currents and proton decay, which would otherwise be introduced to the theory by Higgs

triplets and extra non-Higgs doublets from the three copies of the 27 multiplet. In the

ME6SSM, right-handed Majorana masses of the correct order of magnitude can naturally

arise from the Higgs mechanism that breaks the intermediate Pati-Salam and U(1)ψ
symmetry to the standard model and U(1)X gauge group, leading to a conventional

see-saw mechanism.

In conclusion, the ME6SSM has clear advantages over both the MSSM and NMSSM,

and even the E6SSM, which make it a serious candidate SUSY Standard Model. It also

has a certain elegance in the way that the low energy theory contains only complete 27

representations that also allow for anomaly cancellation of the gauged U(1)X . It has

been shown that the potentially dangerous couplings of the exotic particles can readily

be tamed by simple symmetries, leading to interesting predictions at the LHC of exotic

colour triplet fermions (triplet higgsinos) and a new Z ′ with distinctive couplings. The

discovery and study of such new particles could potentially provide a glimpse into the

physics of unification at the Planck scale.



Chapter 5

Family Symmetries and the

Flavour Problem

The previous Chapter demonstrated that the ME6SSM can successfully resolve the hier-

archy problem of the Standard Model, that is, it can explain why the scale of electroweak

symmetry breaking and the Higgs boson’s mass are small compared to the GUT scale.

However, although this model adequately explains the mass of the W±, Z0 bosons and

the anticipated mass of the Higgs boson, it does not address the flavour problem in

particle physics. That is, it does not provide an adequate explanation for the structure

of quark and lepton masses and mixing angles that we observe in particle experiments.

In the Standard Model the quark and lepton masses are created by the VEV of

the Higgs field in a similar way to how the W± and Z0 bosons obtain mass, and most

theories that attempt to explain the structure of the quark and lepton masses retain

this Standard Model approach. It is therefore essential that, if these theories are to fully

address the flavour problem, then they must also explain why the Higgs boson’s mass is

small. The ME6SSM thus provides a working extension to the Standard Model to which

one can introduce new physics that solves the flavour problem in particle physics.

In the past decade, the flavour problem has been enriched by the discovery of neu-

trino masses and mixings, leading to an explosion of interest in this area [19]. A common

approach is to suppose that the quarks and leptons are described by some family sym-

metry which is spontaneously broken at a high-energy scale [21]. In particular, the

approximately tri-bi-maximal nature of lepton mixing provides a renewed motivation

for the notion that the Yukawa couplings are controlled by a spontaneously broken non-

Abelian family symmetry which spans all three families. Also, small neutrino masses

have long been predicted by conventional see-saw mechanisms and, when combined with

family symmetries, can lead naturally to tri-bi-maximal mixing. Grand Unified theories

72
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based on SO(10) and E6 naturally contain such see-saw mechanisms suggesting that

they should be extended with a family symmetry. The fact that the ME6SSM is an

E6 inspired supersymmetric model that contains a see-saw mechanism, and solves the

hierarchy problem, implies that it should be extended with a family symmetry to solve

the flavour problem.

In this Chapter the flavour problem in particle physics is reviewed and a brief in-

troduction is given on how the this problem is resolved in SUSY GUTs that have been

extended with a family symmetry. In particular, the ∆27 family symmetry model in

[74], which is based on an SO(10) SUSY GUT, is reviewed and described. Chapter 6

then extends the ME6SSM (and E6SSM) with a discrete non-Abelian family symmetry

to generate viable models that can resolve the flavour problem of particle physics.

The layout of this Chapter is as follows. Section 5.1 reviews the mechanism used in

the Standard Model to generate quark and lepton masses, and highlights its flavour prob-

lem. Section 5.3 then shows how the Standard Model can be extended to describe the

recent observations of neutrino oscillations. Sections 5.4 and 5.5 illustrate how this mech-

anism is modified in the MSSM and simple SUSY GUTs such as SO(10). Section 5.6

reviews how family symmetries can explain quark and charged lepton masses and CKM

matrix elements. Section 5.6.3 then introduces a discrete non-Abelian family symmetry

called ∆27 which will be implemented in Chapters 6 and 7. Section 5.7 demonstrates

how this family symmetry predicts tri-bi-maximal mixing using constrained sequential

dominance, and finally, in Section 5.8 a short review is given on how non-Abelian family

symmetries can solve the SUSY flavour and CP problems.

5.1 Quark and Lepton Masses in the Standard Model

In addition to the Higgs field and the SU(3)c × SU(2)L × U(1)Y gauge bosons, the

Standard Model also contains fermions called quarks and leptons that transform under

its gauge symmetry. The quarks are defined as the fermions that couple to the SU(3)c
gauge bosons and are therefore said to come in three colours, whereas the leptons have

no SU(3)c interactions and are therefore colourless. The way in which the quarks and

leptons transform under the Standard Model gauge symmetry is described by their

different SU(3)c × SU(2)L × U(1)Y representations. Each quark and lepton comes in

three copies called generations where each generation transforms in the same way under

the gauge symmetries but has a different mass.

The general Lagrangian for a QFT involving fermion and gauge fields contains the

covariant derivative term ψiγµDµψ which describes the interaction between a Dirac
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fermion ψ and gauge fields Aaµ, where Dµ = ∂µ+ igT aAaµ. This term splits into separate

parts for the left-handed and right-handed fermion chiralities ψL and ψR:

ψiγµDµψ = ψLiγ
µDµψL + ψRiD

µ∂µψR.

We can therefore assign ψL and ψR to different representations of the gauge group, and

this is exactly what we have in the Standard Model where the gauge bosons of SU(2)L
only couple to left-handed chirality states of quarks and leptons. Explicitly, the left-

handed quarksQi and left-handed leptons Li form the following SU(3)c×SU(2)L×U(1)Y
representations:

Qi =

(
ui

di

)
= (3, 2) 1

6
; Li =

(
νei

ei

)
= (1, 2)− 1

2

where i = 1 . . . 3 labels the different generation of the quarks and leptons (for example,

u3 denotes the left-handed top quark t), whereas the right-handed quarks uR, dR and

leptons eR transform as:1

uiR = (3, 1) 2
3
; diR = (3, 1)− 1

3
; eiR = (1, 1)−1.

Unlike the covariant derivative term however, the bare Dirac mass term mψψ cannot

be split into separate parts for the left-handed and right-handed helicity states. Instead

one obtains the following mixed mass terms:

mψψ = m(ψLψR + ψRψL).

This means that bare fermion mass terms cannot be written down for the quarks and

leptons in the Standard Model since these would be forbidden by global gauge invariants.

For example, me(eLeR+eReL) is forbidden since eL and eR belong to different SU(2)L×
U(1)Y representations. Without mass terms for the different quarks and leptons we

would therefore expect that all quarks and leptons should be massless, which is in strong

violation with experimental observations.

Fortunately the Higgs field provides a solution to this problem. Just as the Higgs

field gives mass to three of the SU(2)L×U(1)Y gauge bosons through its various gauge

interactions, the Higgs field can also give mass to the quarks and leptons through its

Yukawa interactions. The Yukawa interactions that are allowed by the gauge symmetry

of the Standard Model are represented by the following Lagrangian:

LY uk = λijd QidRjh
† + λijuQiuRjh+ λije LieRjh

† + h.c. (5.1)

1By definition there is no right-handed neutrino νR in the Standard Model.
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where i, j = 1 . . . 3 label the three different generations of each quark and lepton; and

Qhuc = εabQ
ahbuc where a, b = 1 . . . 2 are SU(2)L indices.

When we insert the Higgs field VEV υ, the above terms become:

λijd υdLidRj + λiju υuLiuRj + λije υeLieRj + h.c.

≡ mij
d dLidRj +mij

u uLiuRj +mij
e eLieRj + h.c. (5.2)

where mij
d ≡ λijd υ, mij

u ≡ λiju υ and mij
e ≡ λije υ are 3 × 3 matrices called mass matrices.

The terms in Eq.5.2 look like effective dirac mass terms for all the quarks and leptons

with each mass given by the product of the particular strength of the interaction with the

Higgs field (the Yukawa coupling constant) and the Higgs field’s VEV. We are therefore

effectively treating the left-handed and right-handed chirality states as different physical

states which are mixed to form Dirac fermions by the Higgs field’s VEV. In many ways

it is a spectacular result that the Higgs field is in just the right representation to break

electroweak symmetry and give mass to all the quarks and leptons.

5.2 The Flavour Problem

Although the Higgs mechanism in the Standard Model can explain why the quarks

and leptons have mass, it does not adequately explain the large differences between

the masses that we observe in experiments. For example, the mass of up quark is

observed to be 1.5 − 3.3 MeV [26] whereas the top quark, which has exactly the same

SU(3)c × SU(2)L × U(1)Y representations, has mass 169.0 − 173.6 GeV [26]. In the

Standard Model the strength of interaction between the top quark and the Higgs field

must therefore be 105 orders of magnitude greater than the up quark’s interaction. This

huge difference is unexplained since the Yukawa coupling constants are renormalizable

parameters and so are not predicted by the theory (they are free parameters). Instead we

would expect that each copy of a particular quark or lepton has approximately the same

mass and that all the masses are of order the scale of electroweak symmetry breaking.

The physical mass of a charged lepton is just the pole of its propagator and can

therefore be measured directly. However, since quarks are confined inside hadrons, their

masses cannot be measured directly. Instead the only way to determine the quark masses

is through the study of their impact on hadron properties. The quark mass parameters

in the QCD and electroweak Lagrangians depend both on the renormalization scheme

adopted to define the theory and on the scale parameter µ. This dependence reflects

the fact that a bare quark is surrounded by a cloud of gluons and quark-antiquark pairs.

To get the relative magnitudes of different quark masses in a physically meaningful way,
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one has to describe all quark masses in the same scheme and at the same scale. It is

instructive to consider the light and heavy quark masses at the scale µ = MZ0 , the

mass of the Z0 boson, by adopting the MS scheme. The advantage of choosing MZ0 as

the reference scale is that, for scales above MZ0 , extensions of the standard model may

naturally appear, and for scales below MZ0 , the strong-interaction coupling constant α3

is sizable. The latest experimental values for the quark and charged lepton masses are

the following [26]:

mu = 0.9-2.9 MeV

mc = 530 - 680 MeV

mt = 168 - 180 GeV

md = 1.8 - 5.3 MeV

ms = 35 - 100 MeV

mb = 2.8 - 3.0 GeV

me = 0.5110 MeV

mµ = 105.7 MeV

mτ = 1.777 GeV

where the leptons masses are given to four significant figures and the quark masses have

been scaled to µ = MZ0 in the MS scheme as discussed above. To get a proper sense of

the hierarchy involved with is useful to rewrite the above masses as approximate ratios

between the different quark and lepton generations:

mt : mc : mu ≈ 1 : (0.05)2 : (0.05)4

mb : ms : md ≈ 1 : (0.15)2 : (0.15)4

mτ : mµ : me ≈ 1 : 3(0.15)2 : (0.15)4/3.

Although only approximate, these illustrate that the three generations obey a strong

hierarchical structure, and each hierarchy is slightly different for the different types of

SU(3)c × SU(2)L × U(1)Y fermions.

5.2.1 The CKM Matrix

The interactions between the gauge bosons and the quarks and leptons is highly re-

stricted by the local gauge symmetry since ordinary derivatives are just replaced with

covariant derivatives. This does not allow any mixing between the various quark and

lepton generations. The coupling of the Higgs field to the quarks and leptons however

does not follow from a gauge principle and so does not have any such restrictions. The

Higgs couplings will therefore, in general, mix the different generations of quarks and

leptons.

We could consider the Lagrangian for the Yukawa operators in Eq.5.1 to be part

of the full Standard Model Lagrangian, which includes the quark and lepton gauge

interactions. It then seems natural to assume that the full Lagrangian is written in

terms of the interaction basis (the basis in which the quarks and leptons are defined to
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be the eigenstates of the SU(3)c × SU(2)L × U(1)Y gauge symmetry). However, since

the couplings of the Higgs field to the quarks and leptons do not follow from a gauge

principle, this basis may not may not be the same as the mass basis (the basis in which

the quarks and leptons are defined to be the mass eigenstates, which are equivalent to

the eigenstates of the mass matrices in Eq.5.1). In this Section it is shown that, although

the interaction eigenstates of the strong force are equivalent to the mass eigenstates, the

interaction eigenstates of the charged weak force are not.

For ease of notation we can rewrite Eq.5.1 so that the Yukawa couplings λij are

written as 3 × 3 matrices and the fermions are column vectors in generation space.

Eq.5.1 then becomes the following:

Lq + Ll = −(dRMddL + uRMuuL + eRMeeL + h.c.). (5.3)

In general the Yukawa matrices are 3×3 complex matrices and such matrices are diago-

nalized by two different unitary matrices acting from the left and the right. For example,

the up quark Yukawa matrix is diagonalized by:

Mu = VuRMuV
†
uL (5.4)

where VuL and VuR are Unitary matrices and Mu = diag(mu,mc,mt). If we insert

Eq.5.4 into Eq.5.3, we can define the up quark mass eigenstates by:

umR ≡ VuRuR

umL ≡ VuLuL

and equivalently for diL, diR and eiL, eiR. Written in terms of the quark and lepton mass

eigenstates, the Yukawa interactions are:

Lq + Ll = −(dmRMddmL + umRMuumL + emRMeemL + h.c.).

When we also rewrite the fermion gauge interactions (covariant derivatives) of the Stan-

dard Model Lagrangian in terms of the mass eigenstates we find that everything is

invariant except for the fermion couplings to the W± vector bosons, which transforms

as the following:

Lq
W± =

1√
2
uLγµdL →

1√
2
umL γ

µVCKMdmL

where VCKM ≡ V†uLVdL is the Cabibbo-Kobayashi-Maskawa (CKM) Matrix [75]. The

fermion couplings to the W± vector bosons is not invariant to this change of basis

essentially because the SU(2)L gauge interactions only couple to left-handed fields.
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The above CKM matrix can be parameterized by three rotation angles and one

complex phase that is CP violating. A popular parametrization is the following:

|VCKM | ≈


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

−iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


where cij ≡ cos θij , sij ≡ sin θij and δ is the CP violating phase. The angles θ12, θ13,

θ23 are defined as the mixing angles of the various quark fields. The latest experiment

values for the CKM matrix elements are given below [26]:

|VCKM | ≈


0.97419± 0.00022 0.2257± 0.0010 0.00359± 0.00016

0.2256± 0.0010 0.97334± 0.00023 0.0415± 0.0011

0.00874± 0.00037 0.0407± 0.0010 0.999133± 0.000044

 (5.5)

and J ≈ (3.05 ± 0.20) × 10−5. J is the Jarlskog invariant and is related to the CP

violating phase by = c12c23c
2
13s12s23s13 sin δ.

Note that the CKM matrix is not diagonal and so the quark eigenstates of the

(charged) weak nuclear force are not the same as the quark mass eigenstates. The

matrix is almost diagonal however and so the two bases do not differ by very much.

There also appears to be a small amount of symmetry in the CKM matrix: it is almost

symmetrical and the closer the quark generations are in mass, the larger the CKM entry

(and mixing angle). We also find that there are approximate relations between the CKM

elements and the quark masses, which will be discussed in Section 5.6.2. These relations

and the symmetries of the CKM matrix (as well as the quark and lepton masses) are

not explained in the Standard Model.

5.3 Neutrino Masses

Unlike the quarks, the leptons are not predicted to have mixing angles in the Standard

Model and there is no analogous matrix to the quark CKM matrix. This is because

there are no right-handed neutrinos in the Standard Model and so neutrinos are massless

particles. Therefore there is no left-handed unitary matrix VνL that transforms between

the neutrino mass and interaction eigenstates.

In recent years however there has been growing experimental evidence that neutrinos

are not massless and that leptons have large mixing angles [19]. The present experimental

data is given below where only the difference between the squares of neutrino masses has
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been observed, and the lepton mixing angles contain substantial errors (see B. Kayser

in [26]):

sin2(2θ12) = 0.87± 0.03 m2
21 = (7.59± 0.20)× 10−5 eV2

sin2(2θ23) > 0.92 |m2
31| = (2.43± 0.13)× 10−3 eV2

sin2(2θ13) < 0.19 (90% CL).

This suggests that right-handed neutrinos should be included in the Standard Model

so that the Yukawa interactions contain operators such as λijν νLiνRjh where i, j are

generation indices.2 In that case, when we re-write the modified Standard Model La-

grangian in terms of the mass basis, the charged weak interactions contain a matrix

analogous to the quark CKM matrix for the leptons given by V†νLVeL which is called

the Maki-Nakagawa-Sakata (MNS) matrix [76].

If we assume that there are no large cancellations between the neutrino masses then

we expect that the absolute neutrinos masses are of order 10−3 eV . This is approxi-

mately 1014 orders of magnitude smaller than the electroweak symmetry breaking scale

and is thus inadequately explained by the Standard Model Higgs mechanism with only

operators such as λijν νLiνRjh included in the Lagrangian.

5.3.1 The Conventional See-Saw Mechanism

The neutrinos that are observed (as missing energy) in electroweak processes only act like

left-handed neutrinos and not right-handed neutrinos. This can be explained by the fact

that right-handed neutrinos would not have any Standard Model gauge interactions since

they transform in the trivial singlet representation (1, 1)0 of SU(3)c× SU(2)L×U(1)Y .

A Majorana mass term for the right-handed neutrinos MRRνRν
c
R can thus be included

in the Standard Model Lagrangian where MRR is a dimensional parameter, which could

take a very large value without upsetting the experimental evidence that supports the

Standard Model. If we think of the right-handed and left-handed neutrinos as separate

particles (mixed by their Higgs coupling) then this mass term could give a large mass to

the right-handed neutrinos, which would explain why we haven’t observed their missing

energy in experiments, and, in conjunction with the Dirac mass term generated by the

Higgs field’s VEV, give very small masses to the neutrinos that we observe as missing

energy. For example, if we add three right-handed neutrinos to the Standard Model,

all with Majorana masses, then, ignoring the gauge interactions, the Lagrangian for the
2There are other ways of modifying the Standard Model to generate neutrino masses, such as including

SU(2)L-triplet Higgs states. However including right-handed neutrinos is considered to be the most
natural explanation for neutrino masses.
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neutrinos would be the following:

λijν νLiνRjh+M ij
RRνRiν

c
Rj + h.c.

We can rewrite this as a 2× 2 block matrix:

(
νLi νcRi

)( 0 M ij
LR

M ji
LR M ij

RR

)(
νcLj

νRj

)
.

where 0 is a 3×3 matrix of zeros. Diagonalizing the above matrix in the approximation

that M ij
LR � M ij

RR we obtain effective Majorana mass terms for the left-handed and

right-handed neutrino states:

(
νmLi νmcRi

)( M ij
LL 0

0 M ij
RR

)(
νmcLj

νmRj

)

where, the superscript m denotes the mass eigenstates, and, in matrix notation, the

left-handed Majorana masses are given by:

MLL = MLRM−1
RRMT

LR. (5.6)

This mechanism for generating effective Majorana masses for the left-handed neutrinos

is called the Type I or conventional see-saw mechanism [10]. As an example of the

scales involved we can simplify Eq.5.6 by assuming that there is only one generation of

neutrinos rather than three, and take the Dirac mass MLR to be of order the weak scale

≈ 80 GeV. Then to generate an effective left-handed mass MLL of order 10−3 eV, we

would require that MRR ≈ 1016 GeV, which is of order the GUT scale. This then gives

further credence to the idea that the Standard Model is a low-energy approximation to

a grand unified theory such as SO(10). This is further discussed in Section 5.5.

By diagonalizing MLL in Eq.5.6 we finally end up with the mass basis for the left-

handed neutrinos. The SU(2)L gauge interactions are not invariant to this change of

basis and we obtain the MNS matrix, which is analogous to the quark CKM matrix.

This matrix is given by the product of the (single) unitary matrix Vν that diagonalizes

MLL, and the unitary matrix VeL that diagonalizes the charged lepton mass matrix

from the left. Note that the see-saw mechanism has the potential to explain why the

lepton mixing angles are so different to the quark mixing angles since the right-handed

Majorana neutrino mass terms break the quark-lepton symmetry introduced by the

Dirac neutrino mass terms. However, the see-saw mechanism by itself cannot explain

why the lepton mixing angles appear to be so different to one another.
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5.4 Quark and Lepton Masses in the MSSM

In the MSSM the quark and lepton masses come from the Yukawa interactions in the

superpotential given by Eq.2.15 where the up quark masses are generated by the VEV of

the up Higgs field hu whereas the down quark and charged lepton masses are generated

by the VEV of the down Higgs field hd. The VEV of the additional Higgs field introduces

a new parameter for determining the quark and lepton masses that is not present in the

Standard Model. This could potentially be used to explain why the mass of the bottom

quark mb is smaller than the mass of the top quark mt. For example, the top and bottom

Yukawa coupling constants could both be O(1) so that the mass of the top quark is of

order the up Higgs VEV υu and the mass of the bottom quark is of order the down

Higgs VEV υd. A particular scalar potential could then create υu > υd, which would

explain why mt > mb. However, the extra Higgs VEV does not provide any new insight

into why the different quarks and leptons have a hierarchical mass structure since this

still requires a hierarchical structure for the renormalizable Yukawa coupling constants,

which are free parameters of the theory.

In fact with the introduction of TeV scale SUSY the flavour problem increases

dramatically due to the undetermined superpartner masses, mixings and phases that

must also be explained [77]. Indeed in SUSY extensions of the SM there are typically

about a hundred or so additional physical parameters associated with the soft SUSY

breaking Lagrangian, depending on the precise nature of the SUSY SM and the origin

of neutrino masses and mixings in the SUSY context.

Experimental data seems to imply that the off-diagonal elements of the soft SUSY

breaking Lagrangian should be smaller than the diagonal elements, but there is no a prior

reason why this should be the case. This is called the SUSY flavour problem. There is

also a so-called SUSY CP problem stemming from the fact that, in general, there could

be large extra CP phases coming from the soft SUSY breaking sector of the MSSM.

However, the Standard Model accounts for the observed CP violating effects to such a

level of accuracy that one must impose stringent bounds on such extra contributions to

avoid conflict with experiment[77]. This is, however, often at odds with naturalness.

5.5 Quark and Lepton Masses in SUSY GUTs

Since Grand Unified Theories unify quarks and leptons into representations of the semi-

simple gauge group, the number of renormalizable Yukawa coupling constants is reduced

and relations between different quark and lepton Yukawa couplings are introduced. For

example, in the simple SO(10) GUT all the Standard Model quarks and leptons come
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from three copies of the fundamental spinor representation, which has dimension 16.

Since the MSSM Higgs fields come from the fundamental 10 representation, all the

Standard Model Yukawa interactions are embedded into the SO(10) tensor product

λij16i16j10 where i, j label the number of generations. This leads to the unification

of the Yukawa coupling constants (written in the mass basis) for each generation of

up quarks, down quarks and charged leptons. For example, for the third generation we

obtain the relation λt = λb = λτ , where λt, λb and λτ are the Yukawa coupling constants

for the top quark, bottom quark and tau lepton in the mass basis.3. When renormalized

at the electroweak scale the relation λb/λτ = 1 agrees well with experiment. For large

tanβ the relation λt/λb = 1 also works well when renormalized at the electroweak scale.

However, the equivalent relations for the first and second generations are not suc-

cessful when renormalized at the electroweak scale. A common approach to resolving

this problem is to extend the simple SO(10) GUT with a new scalar field, denoted by

H45, that only couples to the second generation of the quarks and leptons such that,

when the field obtains a VEV, the (2, 2) component of the charged lepton Yukawa ma-

trix λije becomes three times larger than the equivalent component of the down quark

Yukawa matrix λijd . If H45 is a fundamental scalar field then the smallest dimensional

representation it can be is a 45 of SU(5) which comes from a 210 of SO(10) [51]. The

factor of three that the H45 VEV generates is related to the fact that quarks come in

three colours.

When we diagonalize the charged lepton and down quark Yukawa matrix in this

case we end up with the relations λµ = 3λs and λe = λd/3, which work very well when

renormalized at the electroweak scale [18]. This leaves the GUT relations λu = λd

and λc = λs. If modified to λu = λd/3 and λc = λs/3 then these also work well at

the electroweak scale but are difficult to generate in SO(10) GUTs. In Section 5.6 a

mechanism is introduced that generates these relations just below the GUT scale instead.

Fifteen of the sixteen components of the fundamental spinor representation of SO(10)

form one generation of the Standard Model particles. The remaining component is a

right-handed neutrino. SO(10) GUTs thus predict that right-handed neutrinos exist

and that neutrinos have non-zero masses. The right-handed neutrinos can only obtain a

mass once the SO(10) symmetry is broken and GUT scale see-saw mechanisms, which

can explain the recently observed neutrino masses as discussed in Section 5.3.1, are thus

well motivated in SO(10) GUTs.

3Theoretically at the electroweak scale λb
λτ

= mb
mτ
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5.6 Family Symmetries

Although Grand Unified Theories, particularly those based on an SO(10) symmetry,

improve the explanation provided by the Standard Model for the observed mass structure

of the quarks and leptons (by relating the Yukawa couplings of the quarks and leptons

that are contained in the same generation), they do not help with understanding why

the different generations of the quarks and leptons have hierarchical masses. Inspired

by the success of the extra Higgs field in the MSSM for explaining the difference in the

top and bottom quark masses, one possibility could be to extend the Higgs sector of

an SO(10) SUSY GUT such that there are two Higgs fields for each quark and lepton

generation. Each Higgs field could then perhaps couple differently to the various quarks

and leptons because of new gauge or global symmetries. The hierarchical structure of

the quark and lepton masses might then be explained by a hierarchical structure of

the VEVs of the Higgs fields, which would result from a particular Higgs potential and

radiative electroweak symmetry breaking.

A number of problems occur if we extend the Higgs sector of the Standard Model

and equivalently the MSSM however. In general, extra Higgs fields generate large flavour

changing neutral currents for the quarks and leptons which strongly violate experimental

data [78], and is the reason for the ZH2 discrete symmetry in the ME6SSM and E6SSM

models, which is expected to prevent the first and second Higgs-doublet generations

from obtaining VEVs.4

The problems caused by extended Higgs sectors suggest that the quark and lepton

masses are the result of a very different mechanism. One possibility is that extra physics

is somehow controlling the Yukawa couplings of the quarks and leptons to the Standard

Model Higgs field that explains why they take such different values. This can be achieved

by extending the Standard Model with a family symmetry [21]. In these models the

quarks and leptons are chosen to transform under the family symmetry so that some

or all of the Yukawa interactions of the Standard Model are forbidden in the classical

Lagrangian. Instead the Yukawa interactions are generated effectively once the family

symmetry is spontaneously broken by the VEVs of additional scalar fields. This is then

like an extension of the method used by the Standard Model in which the bare Dirac

mass terms are generated effectively once the electroweak symmetry is broken by the

Higgs VEV. Extending SUSY GUTs with a family symmetry can also help to solve the

flavour problem of the MSSM as described in Section 5.8.
4Gauge coupling unification in the MSSM with two Higgs fields also suggests that no more Higgs

fields exist at the electroweak scale.
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U(1)F
163 0
162 1
161 3
10 0
φ -1

Table 5.1: This table illustrates a simple SO(10) SUSY GUT with a U(1)F family
symmetry.

5.6.1 Abelian Family Symmetries

An example of a simple family symmetry is a gauged U(1) symmetry, called U(1)F ,

which couples to the different quark and lepton generations with different charges, but

doesn’t couple to the Higgs field. This symmetry forbids the Standard Model Yukawa

interactions such as Quch and we instead assume that the quarks, leptons and Higgs

fields couple to very massive particles H through interactions such as Y QhH and Y ucφH

where Y is some coefficient and φ is an additional scalar field that carries a U(1)F charge

and is generically called a flavon. Since the H particles, called messenger fields, are much

heavier than the electroweak scale we can, to a good approximation, remove them from

the theory so that the quarks and leptons interact with the Higgs fields through higher-

order operators such as Y
MQu

chφ where M is the mass of the particles H and Y is some

coupling constant which we assume to be O(1). The type of interactions that reduce to
Y
MQu

chφ at lower energy scales are illustrated by the Froggart-Nielsen diagrams [79],

an example of which is given by Fig.5.1. This is analogous to the Fermi description of

the weak nuclear interactions where the W± and Z0 vector bosons are removed from

the electroweak theory of the Standard Model to leave non-renormalizable interactions

between the quarks and leptons. The Fermi theory is an accurate approximation to the

electroweak theory at energies much smaller than the mass of W± and Z0 since these

particles can be integrated out of the theory.

If the flavon field φ obtains a VEV, spontaneously breaking the U(1)F symmetry,

then the higher-order operators become effective Standard Model Yukawa interactions

such as Y 〈φ〉
M Quch.5 In this example the effective Yukawa coefficient is given by Y 〈φ〉

M

where we expect Y to be O(1). The Standard Model Yukawa coefficients are thus

determined as the ratio of the scale of the spontaneous breakdown of the U(1)F family

symmetry and the mass of the messenger fields. By assigning the different quark and

lepton generations with different U(1)F charges we can then generate all of the Standard
5The scale of the flavon VEV, although smaller than the messenger scale, must be significantly larger

than the electroweak scale otherwise the family symmetry would generate rapid transitions between the
various quark and lepton generations, which has not been observed.
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Model Yukawa interactions in this way. Table 5.1 gives an example of a particular U(1)F
symmetry applied to an SO(10) SUSY GUT. This U(1)F symmetry allows the following

higher-order operators where the messengers have been integrated out to leave behind

a mass suppression factor M :

WY uk = Y 3316316310 +
1
M
Y 2316216310φ+

1
M2

Y 2216216210φ2 (5.7)

+
1
M3

Y 1316116310φ3 +
1
M4

Y 1216116210φ4 +
1
M6

Y 1116116110φ6.

When we insert the φ field’s VEV the operators in Eq.5.7 become effective Yukawa

operators λij16i16j10 with coefficients λij given by different powers of ε ≡ 〈φ〉/M . We

can write all these Yukawa coefficients in matrix form:

λij =


Y 11ε6 Y 12ε4 Y 13ε3

Y 12ε4 Y 22ε2 Y 23ε

Y 13ε3 Y 23ε Y 33

 . (5.8)

To obtain the physical mass eigenstates we must diagonalize this matrix and, if

we assume that all coefficients Y ij
u have the same value Y , then the diagonal matrix

of Eq.5.8 is approximately given by diag(ε4, ε2, 1)Y . Therefore, with Y = O(1) and

ε ≈ 0.05 or ε ≈ 0.15, the U(1)F symmetry produces approximately the correct mass

hierarchy for the up or down quarks respectively. If a H45 scalar field attaches itself to

the 1
M2 16216210φ2 operator then the correct hierarchy for the charged leptons can also

be generated if ε ≈ 0.15 for the reasons given in Section 5.5.

To generate different ε factors for the down quarks and up quarks we could assume

that the family symmetry is broken below the GUT scale so that the mass Mu of the

messenger fields that couple to right-handed up quarks are different to the massMd of the

messenger fields that couple to the right-handed down quarks. For this to be allowed the

SU(2)R subgroup of SO(10) must of course be broken before the messenger scale. If we

first take the messenger fields that couple to the left-handed quarks to be much heavier

than those that couple to the right-handed quarks, then the mass suppression factors in

Eq.5.7 will predominantly come from the latter messengers fields. The terms in Eq.5.7

would then be split into sperate terms for the right-handed up and down quark fields.

For example, the term 1
M2 16216210φ2 will decompose to 1

M2
u
Q2u

c
2huφ

2 + 1
M2
d
Q2d

c
2hdφ

2,

which generates different ε factors given by εu = 〈φ〉
Mu

and εd = 〈φ〉
Md

respectively once

φ develops a VEV. If 〈φ〉 = 0.15Md and Mu = 3Md then the correct ε factors are

generated.
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Figure 5.1: An example of a Froggatt-Nielsen supergraph that generates quark and
lepton masses. φ represents a flavon field that obtains a VEV, χ the messengers that

can be integrated out of the theory at low energies, and Ψ the quarks and leptons.

The operators in Eq.5.7 then should really be written in terms of the Standard

Model gauge group rather than the SO(10) (and SU(2)R) gauge group. However it

is assumed that the messenger scale is so close to the SO(10) scale that the SO(10)

predictions are approximately correct. For instance, a symmetrical Yukawa matrix is

still assumed. The SO(10) notation is thus kept for convenience.

5.6.2 Yukawa Matrices

The product of the left-handed unitary matrices that diagonalize the up and down

quark Yukawa matrices generated by the operators in Eq.5.7 will give an effective CKM

matrix. This is because the quark and lepton eigenstates of the U(1)F family symmetry

are the same as the interaction eigenstates of Eq.5.1, since the U(1)F symmetry is a

gauge symmetry. Thus, by diagonalizing the Yukawa matrix Eq.5.8 we are transforming

from the interaction basis to the mass basis, and this change of basis generates the

CKM matrix as discussed in Section 5.2.1. Unfortunately the effective CKM matrix

generated by above U(1)F symmetry does not agree with experiment, but, if we could

determine the form of the up and down quark Yukawa matrices in the interaction basis

that reproduces the observed CKM matrix (and mass hierarchies) when transformed to

the mass basis, then all we would have to do is search for a new family symmetry that

generates this particular form of up and down quark Yukawa matrices. However, while

the quark mass matrices and the CKM matrix are intimately related, measurement of

the eigenvalues of the mass matrices and the matrix elements of VCKM is not sufficient

to determine the structure of the full mass matrix and of the matrix of Yukawa couplings

giving rise to them. That is, there is an under-determination in the values of the Yukawa

coefficients in the interaction basis when given the CKM matrix elements and quark and

lepton masses. This is essentially because the CKM matrix only involves the left-handed

unitary transformations and so the full form of the left-handed and right-handed rotation

matrices required to diagonalize the quark masses is not known.
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Given this under-determination, the phenomenological approach most commonly

used is to make some assumption about the structure of the Yukawa matrix and explore

the experimental consequences for VCKM . For example, the very reasonable assumption

that the smallness of the mixing angles is due to the smallness of the mixing angles

in both the up and down left-handed bi-unitary matrices VdL and V†uL, allows one to

determine the mass matrix elements on and above the diagonal to good precision for the

down quarks and to lesser precision for the up quarks. Another common assumption is

that there are zero entries in the up and down quark Yukawa matrices called ‘texture

zeros’. These lead to relations for the VCKM elements in terms of ratios of quark masses,

which do not involve any unknown couplings and hence can be precisely tested.

Experimental data appears to favour a texture zero in the (1, 1) position of the up

and down Yukawa matrices λiju , λijd (in the interaction basis), and a promising form of

such a matrix is given below [80]:

λiju =


0 auε

3
u buε

3
u

auε
3
u cuε

2
u duε

2
u

? ? 1

λt λijd =


0 adε

3
d bdε

3
d

adε
3
d cdε

2
d ddε

2
d

? ? 1

λb (5.9)

where aq, bq, cq, dq with q = u, d are O(1) coefficients; λb and λt are the bottom and top

quark Yukawa coefficients; and the question marks indicate that the particular entry is

weakly constrained. The above matrices are written in a left-right notation, that is, the

left-handed fields Q label rows, and the right-handed fields dc and uc label the columns.

A fit to the data using this form of matrix was done in the third reference in [80] where

a number of different scenarios were found with different O(1) coefficients. For example,

one scenario has au = 1.0, bu = O(1), cu = 1.0, du = O(1); ad = 1.5, bd = 0.4, cd =

1.0, dd = 1.3 and λt = λb ≈ 0.5 if the matrix is assumed at the GUT scale.

Diagonalizing the above matrices gives the following mass hierarchies md,u : ms,c :

mb,t = ε4d,u : ε2d,u : 1. With εu,d ≈ 0.05, 0.15 then a good approximation to the observed

mass hierarchies is generated. The product of the unitary transformations that diago-

nalize the above Yukawa matrices from the left generate an accurate CKM matrix with

the following phenomenologically successful relations:

∣∣∣V33

V32

∣∣∣ ≈√md

ms
(5.10)

V21 ≈
ms

mb
(5.11)
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V12 ≈
√
md

ms
−
√
mu

mc
eiδ (5.12)

where Vij label the (i, j) entries of the CKM matrix V ij
CKM and δ is the CP violating

phase entering the Jarlskog invariant.

Note that these approximate relations between the CKM elements and the quark

masses are not explained in the Standard Model. However the Gatto-Sartori-Tonin

(GSO) relation [81] in Eq.5.12 is motivated by SO(10) GUTs since the SO(10) Yukawa

matrix λij is symmetric. With a symmetric form for the Yukawa matrix for the first

two families, and a texture zero in the (1, 1) element, this relation gives an excellent fit

to V12 with δ ≈ ±90◦. An SO(10) Yukawa matrix λij is symmetric since 16× 16× 10 is

a symmetric product [51] (16× 16 = 10s where 10s is a symmetric representation).

Although the simple U(1)F symmetry discussed in Section 5.6.1 produced a sym-

metric Yukawa matrix with an approximate texture zero in the (1, 1) element, it did not

generate the full form of the matrices in Eq.5.9 and so didn’t generate the correct CKM

matrix values. In particular the ratio of the (2, 2) and (2, 3) matrix elements in Eq.5.9

is not close to 1 which is required to generate the relation Eq.5.12 for the V21 entry. In

fact, in general, simple Abelian family symmetries are unable to relate the (2, 2) and

(2, 3) entries of the Yukawa matrix, which is seen as a failing of such family symmetries.

However, this relation is possible in family symmetries that are based on a non-Abelian

gauge group, which is the topic of the next Section.

5.6.3 Discrete non-Abelian Family Symmetries

Discrete non-Abelian family symmetries are family symmetries that are based on a

discrete non-Abelian symmetry group. In this Section an example of a discrete non-

Abelian family symmetry, called ∆27, is described that is taken from [74]. ∆27 is defined

as the semi-direct product group (Z3 × Z3) o Z3 ≡ Z ′3 o Z3 [82], which is a subgroup

of the continuous group SU(3).6 It only contains triplet and anti-triplet representations

(as well as a singlet representation), and Table 5.2 illustrates the way in which these

transform under the Z3 and Z ′3. The family symmetry is assumed to commute with an

SO(10) SUSY GUT and the 16 multiplets that contain the quarks and leptons are taken

to transform in the triplet representation of ∆27. The 10 multiplet that contains the up

and down Higgs fields on the other hand is taken to be a singlet of the family symmetry.7

6∆27 is in fact the smallest subgroup of SU(3) that contains complex representations.
7The ∆27 family symmetry is chosen rather than, for example, A4, since it allows complex represen-

tations whereas A4 only contains real representations. Complex representations are required in family
symmetry models in which the left-handed matter fields F and right-handed matter fields F c both
transform in triplet representations. This is to avoid the trivial combination FF ch.
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Component of Field Z3 Z ′3
φi=1 φ1 φ2

φi=2 αφ2 φ3

φi=3 α2φ3 φ1

Table 5.2: Transformation properties of triplet field φi under the non-Abelian discrete
group ∆27 = Z3 n Z ′3 where α is the cube root of unity. This table is taken from [74].

The ∆27 family symmetry then forbids all of the SO(10) Yukawa interactions λij16i16j10

since they are not ∆27 invariants. Instead these interactions are generated effectively

from higher-order ∆27 invariant operators that come from messenger diagrams which are

illustrated by Fig.5.1. This is analogous to the mechanism used to generate the Yukawa

interactions in the U(1)F family symmetry model in Section 5.6.1.

The higher order operators contain flavon fields that transform as triplets and anti-

triplets of ∆27. Six different flavon fields are used in this family symmetry: φ3, φ3, φ23,

φ1, φ123 and φ123 where the bar indicates that the flavons are anti-triplets of ∆27. The

Subscripts indicate the components of ∆27 that develop VEVs, that is:

〈φ3〉 ∝
(

0 0 1
)

〈φ1〉 ∝
(

1 0 0
)
〈φ123〉 ∝

(
1 1 1

)

〈φ3〉 ∝


0

0

1

 〈φ23〉 ∝


0

−1

1

 〈φ23〉 ∝


1

1

1


Together these flavon fields break the SU(3)F symmetry to nothing. The way in which

the flavon fields and quarks and leptons transform under ∆27 is given by Table 5.3

where an additional U(1) and Z2 symmetry is used to constrain the model. These

additional symmetries prevent any phenomenologically disastrous higher-order operators

but are flavour independent and therefore not family symmetries. For example, the

U(1) symmetry prevents the effective Yukawa operator 1
M2 16i16jφi123φ

j
3 from appearing

in Eq.7.2. The leading order operators that are allowed by the model defined by Table

5.3 are the following [74]:

WY uk =
Y3

M2
16i16j10φi3φ

j
3 (5.13)

+
Y2

M3
16i16j10φi23φ

j
23H45

+
Y1

M3
16i16j10φi23φ

i
123

where i, j, k = 1 . . . 3 are ∆27 indices.
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Field ∆27 U(1)R U(1) Z2

16 3 1 0 +
10 1 0 0 +
16 3 0 0 +
H45 1 0 2 +
φ123 3 0 -1 +
φ3 3 0 3 +
φ1 3 0 -4 -
φ3 3 0 0 -
φ23 3 0 -1 -
φ123 3 0 1 -

Table 5.3: This table illustrates the ∆27 family symmetry model described in Section
5.6.3. The 16 SO(10) multiplet contains the quarks and leptons, and the 10 multiplet
contains the up and down Higgs fields. U(1)R is an R-symmetry, and U(1) × Z2 are
additional symmetries that constrain the model and are family-independent. The table

is based on Table 2 in [74].

Once the flavon fields develop VEVs, effective SO(10) Yukawa interactions λij16i16j10

are produced with coefficients given by the ratio of the flavon field VEVs and the mes-

senger masses:

λij =


0 Y 1εδ Y 1εδ

Y 1εδ Y 2ε2 Y 2ε2

Y 1εδ Y 2ε2 Y 3

λ3

where 〈φ3〉/M ≡
√
λ3, 〈φ23〉/M ≡

√
λ3ε and 〈φ123〉/M ≡

√
λ3δ. As for the U(1)F

family symmetry in Section 5.6.1, the ∆27 messenger scale is actually assumed to exist

below the SO(10) symmetry breaking scale so that the messengers that couple to the

left-handed quarks can be heavier than those that couple to the right-handed quarks.

Similarly the mass Mu of the messengers that couple to the uci is assumed to be three

times greater than the mass Md of those that couple to dci . If 〈φ23〉 =
√
λ3εdMd and

〈φ123〉 =
√
λ3ε

2
dMd then the operators in Eq.5.13 generate the form of Yukawa matrix

given by Eq.5.9 but with the suppression factors ε, δ replaced with εd, ε2d and εu, εuεd
for the down quark and up quark Yukawa matrix respectively.

The (3, 3) entry in the up Yukawa matrix however will be 9 times smaller than

the equivalent entry in the down Yukawa matrix because of the VEV of φ3. This

would result in the top quark Yukawa coupling constant λt being much smaller than the

bottom Yukawa coupling constant λb at the ∆27 symmetry breaking scale, which, when

renormalized at the electroweak scale, would be in violation with experiment. Instead,

if the ∆27 symmetry breaking scale is just below the GUT scale, then we require that

λt ≈ λb ≈ 0.5. To achieve this the φ3 flavon is chosen to transform as 2 × 2 under the

SU(2)R subgroup of SO(10). In this case it may acquire VEVs au3 , ad3 in the up and
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down SU(2)R directions. Then, with au3/Mu ≈ ad3/Md ≈ 0.5, we have comparable top

and bottom Yukawa couplings λt ≈ λb ≈ 0.5 as required.8 The up and down versions of

the Yukawa matrix generated by the operators in Eq.5.13 then have the following form

[83]:9

λiju ∝


0 ε2uεd −ε2uεd
ε2uεd −2ε2u

εu
εd

2ε2u
εu
εd

−ε2uεd 2ε2u
εu
εd

1

λt, λijd ∝


0 ε3d −ε3d
ε3d ε2d −ε2d
−ε3d −ε2d 1

λb. (5.14)

Higher-order operators than those in Eq.5.13 that are allowed by Table 5.3 then modify

the (1, 2) and (1, 3) up and down quark Yukawa entries so that the full up and down

matrices agree with those given by Eq.5.9. These higher-order operators are [74]:

1
M5

16i16j10φi123φ
j
3(φm123φ1m)H45 (5.15)

+
1
M6

16i16j10φi123φ
j
123(φl3φ123l)(φ

m
3 φ123m)

where the O(1) coefficients are ignored.

Unlike the U(1)F family symmetry, the above ∆27 family symmetry model can thus

predict an accurate mass hierarchy and CKM matrix for the up and down quarks. The

∆27 model also generates the correct mass hierarchy for the charged leptons due to the

H45 scalar field in Eq.5.13. The VEV of H45 creates a factor of three in (2, 2), (2, 3)

and (3, 2) elements of the charged lepton mass matrix compared to the down quark

mass matrix. This occurs because the H45 is assumed to get a VEV in the hypercharge

direction and predominantly couples to the right-handed fields such that:

〈H45d
c〉

〈H45ec〉
≈ Y (dc)
Y (ec)

= 3.

The charged lepton Yukawa matrix that is generated by the operators in Eq.5.13 is the

following [83]:

λije ∝


0 ε3d −ε3d
ε3d 3ε2d −3ε2d
−ε3d −3ε2d 1

λb. (5.16)

Another advantage of the ∆27 family symmetry is that it offers a simple explanation

for why we have observed exactly three generations of quarks and leptons. This is

because they are taken to transform in the triplet representation, which becomes the
8This complicated mechanism for creating the third family Yukawa coupling constants is a failing of

general non-Abelian family symmetry models.
9The factor of three follows from the explanation of electric charge quantization in Grand Unified

Theories. That is, the magnitude of charge of the proton is equal to that of the electron because quarks
come in three colours.
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three generations once the ∆27 symmetry is broken to nothing. For family symmetries

based on a continuous non-Abelian symmetry such as SU(3) the quarks and leptons

could also be placed in a triplet representation which, once the family symmetry is

broken, effectively becomes the three generations. However, in this case we could have

just as easily put the quarks and leptons into a different SU(3) representation such as

a sextet which would decompose to six generations. In fact since there is an infinite

number of representations of SU(3), in principal, we could have put the quarks and

leptons into any number of representations. The number of representations present in

discrete groups on the other hand is, by definition finite, and some groups such as A4 only

have dimension one and (real) dimension three representations, significantly improving

the theoretical reasoning for why three generations have been observed.

Discrete symmetries are also well motivated from high-energy theories. For example,

discrete non-Abelian symmetries can arise after the compactification of extra spacial

dimensions, and this origin of discrete family symmetries has recently been studied in

the context of string theory [84].

5.6.4 Vacuum Alignment

If the above ∆27 family symmetry is to explain the quark and lepton masses and mixing

angles, then we must understand how and why the flavon fields in Eq.5.13 obtain VEVs

in certain ∆27 components. For the discrete non-Abelian ∆27 family symmetry a simple

mechanism that only involves the D-terms of the flavon fields is used to achieve the

desired alignment. This compares to the more complex mechanisms required for con-

tinuous non-Abelian family symmetries such as those based on the SU(3) group where

additional driving fields [83] are included that arrange the F-terms of the flavons to give

a scalar potential whose minimum has the desired vacuum alignment.

Since ∆27 is a discrete subgroup of SU(3), all operators that are invariants of SU(3)

are also invariants of ∆27. It is the additional operators that are allowed by Z3 n Z ′3

and not SU(3) however that determine the vacuum structure of the flavon fields if they

appear as higher order terms in the potential. This is because these terms prevent

it from being possible to rotate the vacuum expectation value of a triplet field to a

single direction, for example the 3 direction, which is conversely always possible for a

continuous SU(3) symmetry [74].

To make this more explicit, consider a general ∆27 triplet field φi. It will have a

SUSY breaking soft mass term in the Lagrangian of the form m2
φφ

i†φi which is invariant

under the approximate SU(3) symmetry. Radiative corrections may drive the mass

squared negative at some scale triggering a VEV for the field. At this stage, the VEV
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of φi can always be rotated to the 3 direction using the approximate SU(3) symmetry.

However this does not remain true if higher order terms from messenger field interactions

that are allowed by ∆27 but not SU(3) are included. For example suppose that the

leading higher order term in the potential is of the form m2
3/2(φ†φφ†φ). This has two

independent quartic ∆27 invariants: m′2φ φ
i†φiφ

j†φj and m′2φ φ
i†φiφ

i†φi where the former

is SU(3) invariant but the latter is not. The latter invariant has the potential to remove

the vacuum degeneracy in φi. For example, if m′2φ < 0 then the we must have 〈φ〉 ∝
(0, 0, 1)T , which defines the first component, whereas if m′2φ > 0 then we instead obtain

〈φ〉 ∝ (1, 1, 1)T /
√

3. The configuration 〈φ〉 ∝ (0,−1, 1)T /
√

2 can then be generated using

a leading higher order term that requires that the VEV be orthogonal to both (1, 0, 0)T

and (1, 1, 1)T . All these operators can be used to generate the VEV configurations of

the flavons used for the ∆27 family symmetry described in Section 5.6.3, that is, for the

flavons φ1, φ3, φ123, φ3, φ23 and φ123 [74]. These VEV configurations where used in

Eq.5.13.

5.7 Family Symmetries and Tri-Bi-Maximal Mixing

So far we have only been looking at how the quark masses and CKM elements can be

explained by family symmetries. In this Section family symmetries are instead used

to explain the recently observed neutrino masses and oscillations. The fact that latest

experimental data for the neutrino masses and oscillations, given in Section 5.3, contains

large errors however makes it difficult to determine what, if any, family symmetry is

responsible for the recent observations. To tackle this, the general approach taken is to

choose a particular form of MNS matrix VMNS and neutrino hierarchy that is consistent

with the present data. A particularly exciting form of the MNS matrix is a tri-bi-

maximal matrix in which the ν3 neutrino mass eigenstate is a ‘bi-maximal’ mixture of

the neutrino flavour eigenstates νµ and ντ , and the ν2 neutrino mass eigenstate is a

‘tri-maximal’ mixture of νe, νµ, ντ [20]. The tri-bi-maximal matrix is defined by:
|Ue1|2 |Ue2|2 |Ue3|2

|Uµ1|2 |Uµ2|2 |Uµ3|2

|Uτ1|2 |Uτ2|2 |Uτ3|2

 =


2
3

1
3 0

1
6

1
3

1
2

1
6

1
3

1
2

 (5.17)

where Ufe, with f = e, µ, τ and i = 1 . . . 3, are the MNS matrix elements. The lepton

mixing angles generated by this matrix are θ12 = sin−1( 1√
3
) = 35.2◦, θ23 = sin−1( 1√

2
) =

45◦, and θ13 = 0◦.
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∆27 U(1) Z2 Z ′2
Li 3 0 + +
hu 1 0 + +
νR1 1 2 - +
νR2 1 1 + -
νR3 1 0 + +
φ 1 1 + +
φ23 3 -2 - +
φ123 3 -1 + -

Table 5.4: A ∆27 × U(1)× Z2 × Z ′2 family symmetry that generates tri-bi-maximal
mixing for neutrinos via CSD.

This form of VMNS matrix is very different to the quark CKM matrix VCKM given

in Eq.5.5. Therefore, if we are to explain both VMNS and VCKM from a family symme-

try, either the family symmetry is acting differently in the quark and lepton sectors [85],

or the family symmetry is acting the same in both sectors but something else is distin-

guishing between them. If the family symmetry commutes with an SO(10) GUT then

we can only consider the latter scenario since quark and leptons are unified in the same

representation. In Section 5.3 the see-saw mechanism was motivated as being responsi-

ble for small neutrino masses and obviously distinguishes the quark and lepton sectors.

Indeed, when used in conjunction with certain family symmetries, this mechanism can

generate a tri-bi-maximal form for VMNS [85, 86]. The ∆27 family symmetry model in

[74] which was described in Section 5.6.3 uses a particular Type I see-saw mechanism

called constrained sequential dominance (CSD) [87] to generate a tri-bi-maximal VMNS

matrix. In CSD three right-handed neutrinos are assumed with a conventional hierarchi-

cal structure and, in the basis in which the Majorana mass matrix for the right-handed

neutrinos MRR is diagonal (see Eq.5.18), the Dirac Yukawa matrix for the neutrinos is

of the form given in Eq.5.18 below:

MLR =


0 B1 C1

A2 B2 C2

A3 B3 C3

 , MRR =


MA 0 0

0 MB 0

0 0 MC

 (5.18)

where A1 = 0, |A2| = |A3|, |B1| = |B2| = |B3|, A2B2 = A3B3, and MA �MB �MC .

The unitary matrix Vν that diagonalized MLL = MLRM−1
RRMT

LR can be shown to

be a tri-bi-maximal matrix Eq.5.17. Therefore, if the charged lepton Yukawa matrix is

diagonal in this basis, the VMNS matrix is also a tri-bi-maximal matrix. The equivalence

of the modulus of the (1, 2), (2, 2) and (3, 2) elements of the above CSD matrix (Eq.5.18)

suggests that a φ123 flavon is coupling to the left-handed neutrinos [87], where the VEV

of φ123 is given in Section 5.6.3. The equivalence of the (2, 1) and (3, 1) elements also
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suggests a φ23 flavon [87]. For example, to generate the matrices in Eq.5.18 required for

CSD we could assume a ∆27×U(1) family symmetry for which the left-handed neutrinos

are triplets of ∆27 but have zero U(1) charge, and the right-handed neutrinos νR1, νR2

and νR3 are singlets of ∆27 with +2, +1, and zero U(1) charges. The symmetries and

flavons of this model are illustrated in Table 5.4 and allow the following higher-order

operators:

WLR =
1
M
LiνR1huφ

i
23 +

1
M
LiνR2huφ

i
123

WRR =
1
M4

νR1ν
c
R1φ

4 +
1
M2

νR2ν
c
R2φ

2 + νR3ν
c
R3

where φ is a singlet of ∆27 that has a U(1) charge of −1 and develops a VEV which is

much smaller than M .

These operators would generate a diagonal right-handed Majorana with a hierar-

chical structure and a Dirac mass matrix given by Eq.5.18, which together create a

tri-bi-maximal matrix for the VMNS matrix provided that the charged lepton mass ma-

trix is diagonal. For the ∆27 family symmetry described in Section 5.6.3 however the

above operators cannot be included in the superpotential. This is because the ∆27 sym-

metry commutes with an SO(10) symmetry which requires that the charge-conjugated

neutrinos νc and left-handed neutrinos νL come from the same 16 representation and

thus must come from the same ∆27 representation. Instead the ∆27 family symmetry

uses the method of CSD to generate tri-bi-maximal mixing, but in a different basis to

the one in which the right-handed Majorana mass matrix is diagonal. This utilizes the

fact that the see-saw mechanism, and thus CSD, is invariant to the following non-unitary

transformations [88]:

MLR →MLRS−1, M−1
RR → SM−1

RRST (5.19)

where S is a non-unitary matrix that is not unique. These transformations leave the

effective low-energy neutrino mass matrix MLL given by Eq.5.6 invariant. The ∆27

family symmetry model uses the following MLR and MRR matrices [88]:

MRR =


MA MA 0

MA MA +MB 0

0 0 MC

 , (5.20)

MLR =


0 B C1

A B +A C2

−A B −A C3

 =


0 A −A
A 2A 0

−A 0 C3


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where A = B is used and symmetric matrices are assumed because of an SO(10) sym-

metry. The matrices MLR and MRR in the original CSD basis are then obtained by the

transformations in Eq.5.19 with the S matrix given by [88]:

S−1 =


1 −1 0

0 1 0

0 0 1


This illustrates that the MRR and MLR matrices used in the ∆27 family symmetry

model will generate the same see-saw mechanism as those in Eq.5.18. The SO(10)×∆27

operators in Eq.5.13 are responsible for generating the form of MLR in Eq.5.20. This

uses the fact that, contrary to the other messengers, the messengers that couple to the

right-handed neutrinos are anticipated to be much heavier than the messengers that

couple to the left-handed neutrinos. Then, given that right-handed neutrinos have zero

hypercharge, the operators in Eq.5.13 that couple to H45 are subdominant since the

VEV of H45 only picks out the left-handed messengers. The H45, in addition to the

see-saw mechanism, also distinguishes between the quark and lepton sectors.

The form of matrix MRR in Eq.5.20 is generated by the following Majorana opera-

tors in the SO(10)×∆27 model [74]:

WMaj =
1
MR

16i16j16i16j (5.21)

+
1
M5
R

16i16j16k16lφ23iφ23jφ
k
123φ

l
3

+
1
M5
R

16i16j16k16lφ123iφ123jφ
k
123φ

l
123

where 16 is a field of SO(10) that obtains a VEV in the right-handed neutrino direction.

The effective Majorana matrix for the left-handed neutrinos MLL in the SO(10)×
∆27 model is then generated by the see-saw mechanism MLRM−1

RRMT
LR where MLR and

MRR are of the form given by Eq.5.20. The unitary matrix Vν that diagonalizes this is

a tri-bi-maximal matrix due to CSD. From Section 5.3.1 the MNS matrix is given by

VMNS = VeLV
†
ν and therefore we require that VeL = 1 for it to be of tri-bi-maximal

form. However this is not the case in the SO(10)×∆27 model since the charged lepton

Yukawa matrix is not diagonal as illustrated by Eq.5.16. Since the off-diagonals of

Eq.5.16 are small however, the left-handed unitary matrix that diagonalizes it VeL is

close to diagonal and so VMNS does not differ significantly from a tri-bi-maximal form

[88]. The predicted lepton mixing angles are found in [74] and are in agreement with

experiment.
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5.8 Family Symmetries and SUSY Flavour Problems

Section 5.4 discussed how the flavour problem of the Standard Model is enlarged in

the MSSM because of the introduction of new undetermined free parameters in the

soft SUSY breaking Lagrangian. Phenomenology seems to be telling us that the off-

diagonal elements in the soft SUSY breaking Lagrangian should be smaller than the

diagonal elements in order to suppress SUSY induced flavour changing neutral currents.

However, in general, there is no a priori reason for why this should be the case.10

Extending the MSSM with a non-Abelian family symmetry can provide a resolution

to this SUSY flavour problem [22]. The non-Abelian family symmetries, when combined

appropriately with SUSY, can control the structure of the soft mass matrices (as well

as the Yukawa couplings), in such a way that SUSY induced flavour changing neutral

currents are naturally suppressed. For example, when extended with an SU(3) family

symmetry [22] the soft squark and slepton mass squared matrices in the MSSM would

have a universal form, proportional to unit matrices, in the limit that the family symme-

try is unbroken. However, in this limit the Yukawa and soft trilinear matrices vanish, so

the family symmetry must be spontaneously broken, leading simultaneously to flavour

in the Yukawa sector, and violations of universality in the soft SUSY breaking sector.

The violations of squark and slepton soft mass universality are therefore controlled by

the same order parameters ε that are responsible for the origin of Yukawa couplings,

resulting in the prediction of suppressed FCNCs. The SU(3) family symmetry thus pro-

vides simultaneously a solution to the flavour problem not only in the Standard Model

but also in its SUSY extensions such as the MSSM.

Another facet of the SUSY flavour issue is the so called SUSY CP problem stemming

from the fact that in general there could be large extra CP phases coming from the soft

SUSY breaking sector of the MSSM. However, the Standard Model accounts for the

observed CP violating effects to such a level of accuracy that we must impose stringent

bounds on such extra contributions to avoid conflict with experiment. This is, however,

often at odds with naturalness. In the SU(3) family symmetry models a potential

solution to the SUSY CP problem results if the origin of CP violation is due to the

spontaneous breaking of the SU(3) family symmetry via flavon vacuum expectation

values [22]. Such a scenario leads to suppressed SUSY induced CP violation since CP

is preserved in the symmetry limit, and once spontaneously broken, the CP violating

effects are in general suppressed in terms of powers of the symmetry breaking flavon

VEVs.

10Specific frameworks such as minimal supergravity (mSUGRA), under certain assumptions about the
hidden sector couplings that break SUSY, can predict universality of soft mass matrices.



Chapter 6

Exceptional Supersymmetric

Standard Models with Family

Symmetry

The purpose of the present Chapter is to extend the ME6SSM (and E6SSM) to include a

discrete non-Abelian family symmetry as a step towards solving the flavour problem in

these models. In particular, the ∆27 family symmetry [74] that was discussed in Section

5.6.3 is used. This is convenient since the U(1)N and U(1)X groups of the E6SSM and

ME6SSM are defined to allow a conventional see-saw mechanism, which, together with a

∆27 family symmetry, can generate small neutrino masses and tri-bi-maximal mixing. In

a model with a family symmetry the Higgs field’s VEV is used to generate the quark and

lepton masses, and so the model should ideally also explain the hierarchy problem, that

is, it must explain why electroweak symmetry breaking occurs at scales much smaller

than the Planck scale. This motivates extending the ME6SSM (and E6SSM) with a

family symmetry since in this model the Higgs mass is protected by supersymmetry and

there is no µ-problem or little hierarchy problem. Extending the MSSM or a simple

SO(10) SUSY GUT with a family symmetry on the other hand generically generates

models that suffer from the µ-problem.

The detailed strategy pursued is as follows. The ∆27 family symmetry used in the

SO(10) ×∆27 model described in Section 5.6.3 is introduced to the intermediate Pati-

Salam symmetry of the ME6SSM to build a model with a G4221 × ∆27 gauge group

where G4221 ≡ SU(4)PS × SU(2)L × SU(2)R ×U(1)ψ. The resulting model can explain

the observed mixing angles and mass spectrum of the quarks and leptons, provide a tri-

bimaximal mixing for the neutrinos, solve the µ-problem and small fine-tuning problem,

and does not involve doublet-triplet splitting. A novel feature of the model is that

98
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proton decay is suppressed in a new way by the assumed ∆27 family symmetry and an

E6 singlet.

Once a model based on the ME6SSM with ∆27 family symmetry is built we can

then relate this model to an E6SSM with ∆27 family symmetry model. This is because,

from Section 4.4.2, if g4 = g2R at the G4221 symmetry breaking scale, then the U(1)X
group of the ME6SSM becomes equivalent to the U(1)N group of the E6SSM. To achieve

g4 = g2R at the G4221 symmetry breaking scale we can add the H ′ and H
′ states of the

E6SSM to the ME6SSM so that the gauge coupling constants unify at the conventional

GUT scale. Thus by adding H ′ and H
′ to the ME6SSM with ∆27 family symmetry we

will generate a model based on the E6SSM with ∆27 family symmetry. It should be

emphasized however that the E6SSM formulated in this way is not exactly the E6SSM

described in Section 2.6, which shall be referred to as the ‘original’ E6SSM. This is

because the ‘new’ E6SSM is built on a Pati-Salam symmetry and so we cannot use the

ZL2 and ZB2 symmetries of the original E6SSM to forbid the proton decay induced by the

Higgs triplet fields. Instead the induced proton decay is suppressed by small Yukawa

couplings as in the ME6SSM. Thus, in the original E6SSM the Higgs triplets couple

as either diquarks or leptoquarks, whereas the highly suppressed couplings in the new

E6SSM imply long-lived TeV mass Higgs triplets with a lifetime typically about 0.1 sec

for example. This is the only phenomenological difference between the new and original

E6SSM. For convenience the ‘new’ E6SSM is just refereed to as the E6SSM in the rest

of this Chapter.

The resulting models are defined in Table 6.1 where, in addition to the Pati-Salam,

∆27 and U(1)ψ symmetries, extra discrete and Abelian symmetries are also applied

to constrain the models into realistic theories. This is most simply achieved by the

combined symmetries U(1)R × U(1) × Z2 × ZH2 , where U(1)R is an R-symmetry that

contains the R-parity of the MSSM as a subgroup. The U(1) × Z2 symmetries are

adapted from the ∆27 symmetry in Section 5.6.3, and the ZH2 is from the E6SSM and

ME6SSM.

The next Section reviews the ME6SSM and discusses how it can be extended with

the ∆27 family symmetry from Section 5.6.3. Sections 6.2-6.6 then investigate how

the different ME6SSM superpotential terms are modified by the inclusion of the ∆27

family symmetry. In particular, Section 6.2 illustrates how the Yukawa couplings are

generated in the new model. Section 6.3 looks at how the model predicts approximate

tri-bi-maximal mixing for leptons. Section 6.4 then discusses the effective µ-term in the

model and how the triplet higgsinos get mass. Section 6.5 describes how the ∆27 family

symmetry can be used to tame the proton decay induced by the Higgs triplets, and,

Section 6.6 discusses the origin of R-parity in the model. Section 6.7 then adds the H ′
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Field ∆27 SU(4)PS × SU(2)L × SU(2)R × U(1)ψ U(1)R U(1) Z2 ZH2
F 3 (4, 2, 1) 1

2
1 0 + -

F c 3 (4, 1, 2) 1
2

1 0 + -

h3 ; h1,2 1 (1, 2, 2)−1 0 0 + + ; -

D1,2,3 1 (6, 1, 1)−1 0 0 + -

S3 ; S1,2 1 (1, 1, 1)2 2 0 + + ; -

16H = HR, HL 3 (4, 1, 2) 1
2
, (4, 2, 1) 1

2
0 0 + +

16H = HR, HL 3 (4, 1, 2)− 1
2
, (4, 2, 1)− 1

2
0 0 + +

M 1 (1, 1, 1)0 2 0 + +

Σ 1 (1, 1, 1)0 0 5 - -

H45 1 (15, 1, 3)0 0 2 + +

φ123 3 (1, 1, 1)0 0 -1 + +

φ3 3 (1, 1, 1)0 0 3 + +

φ1 3 (1, 1, 1)0 0 -4 - +

φ3 3 (1, 1, 2× 2)0 0 0 - +

φ23 3 (1, 1, 1)0 0 -1 - +

φ123 3 (1, 1, 1)0 0 1 - +

Table 6.1: All the particles (excluding the messengers) contained in the ME6SSM
with a ∆27 family symmetry model. U(1)R×U(1)×Z2×ZH2 are additional constraining
symmetries that are family-independent. The addition of the H ′ and H

′
fields from

split G4221 representations generates a model based on the E6SSM with a ∆27 family
symmetry, where the E6 symmetry is broken via the Pati-Salam chain.

and H
′ states to create a model based on the E6SSM with ∆27 family symmetry, and

Sections 6.8 and 6.9 explore how the running of the ME6SSM and E6SSM gauge coupling

constants are modified by the inclusion of a ∆27 family symmetry. Finally, Section 6.10

concludes the Chapter.

6.1 The ME6SSM with a ∆27 Family Symmetry

In Section 5.6.3 a ∆27 family symmetry was applied to an SO(10) GUT to solve the

flavour problem of the Standard Model (and the MSSM). That is, the formulated

SO(10)×∆27 model explained the different masses and mixings of quarks and leptons

that we observe in particle experiments, but which are unexplained in the Standard

Model. This Section describes how this ∆27 family symmetry can be applied to the

ME6SSM, which was constructed in Chapter 4.

The ME6SSM is an E6 inspired supersymmetric theory where the E6 symmetry is

assumed to come from a non-QFT theory that is broken near the Planck scale. Between

the Planck scale and the conventional GUT scale however a conventional QFT is assumed

that has a G4221 gauge symmetry. This gauge symmetry must be a symmetry of a QFT

since its RGEs were used to predict gauge coupling unification at the Planck scale. The

G4221 symmetry is thus a symmetry of the ME6SSM whereas the E6 symmetry is not.

That is, the low-energy physics must obey a G4221 symmetry but not necessarily an E6
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symmetry. However, although E6 is not a symmetry of the ME6SSM, it is assumed to

contain the G4221 states that make up three copies of a fundamental 27 representation

of E6 at low energies.1

Since G4221 is a maximal subgroup of E6, the G4221 superpotential for three 27

representations is the same as the G4221 superpotential derived from the E6 superpo-

tential λijk27i27j27k, where i, j, k = 1 . . . 3 label the three copies and λijk are coupling

constants:

27i27j27k = FiF
c
j hk + FiFjDk + F ci F

c
jDk + Sihjhk + SiDjDk (6.1)

where the coupling constants λijk have been omitted for clarity.

If the ME6SSM is to be extended with a family symmetry then it must commute

with the G4221 symmetry but does not necessarily commute with an E6 symmetry. We

must therefore formulate a theory based on G4221 ×∆27. Sections 6.2-6.5.1 investigate

how the above ME6SSM superpotential terms are modified by the addition of a ∆27

family symmetry.

6.2 Yukawa Interactions

In the ME6SSM the quarks and leptons come from the Pati-Salam representations Fi
and F ci , and the Higgs fields that break the electroweak symmetry and give mass to

the quarks and lepton are defined as the third generation of the hi representations,

where i = 1 . . . 3. In the SO(10) × ∆27 model described in Section 5.6.3 the quarks

and leptons come from the fundamental spinor representation 16 of SO(10) and are

taken to transform as triplets of ∆27. The Higgs fields on the other hand come from

the fundamental representation 10 of SO(10) and are singlets of ∆27. The Pati-Salam

states contained in these SO(10) representations are the following: 16 = F + F c and

10 = h + D. Therefore, following the ∆27 family symmetry, the Fi and F ci of the

ME6SSM are taken to transform as ∆27 triplets, and h3 as a singlet. This forbids

the superpotential term λijFiF
c
j h3 in Eq.6.1, where λij are theoretically undetermined

Yukawa coefficients. Instead higher-order operators are allowed that contain ∆27 flavon

fields. The VEVs of these flavon fields then break the ∆27 family symmetry and generate

effective Yukawa interactions.
1Hypothetically, the E6 symmetry could, for example, be a symmetry of a string theory which is

broken via Wilson lines to the G4221 symmetry at the Planck scale. The G4221 states could then come
from different 27 E6 multiplets [58], which, if taken to come from the same E6 multiplets, do not commute
with an E6 symmetry.
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The same type of flavon fields that were used in Section 5.6.4 are assumed to couple

to the quarks and leptons. These flavon fields are φ3, φ23, φ123, φ1 and φ123 where the

subscripts denote the components of ∆27 that obtain VEVs. The leading higher-order

operators allowed by the symmetries are then:

Y 33

M2
R

FiF
c
j h3φ

i
3φ

j
3 (6.2)

Y 22

M3
R

FiF
c
j h3φ

i
23φ

j
23H45 (6.3)

1
M2
R

FiF
c
j h3(Y 13φ

i
123φ

j
23 + Y 31φ

j
123φ

i
23) (6.4)

1
M5
R

FiF
c
j h3(Y 12φ

i
3φ

j
123 + Y 21φ

j
3φ

i
123)(φk123φ1k)H45 (6.5)

Y 11

M6
R

FiF
c
j h3φ

i
123φ

j
123(φk3φ123k)(φ

l
3φ123l) (6.6)

where the Latin indices refer to the ∆27 symmetry, Y ij are order one coupling constants,

and MR is the mass of right-handed messengers, which is explained below. The H45

in Eq.6.3 and Eq.6.5 is a ∆27 singlet that transforms as (15, 1, 3)0 under the G4221

symmetry. (15, 1, 3) is the Pati-Salam component of the H45 field used in Section 5.6.3,

which is a 210 multiplet of SO(10). This field gets a VEV in the hypercharge direction

generating the Georgi-Jarlskog factor for Eq.6.3.

The high-order superpotential terms given by Eq.6.2-Eq.6.6 are assumed to come

from renormalizable, high-energy interactions involving heavy vector-like messengers

that transform in the same way as the quark and lepton fields under the G4221 sym-

metry. These messengers are integrated out of the high energy theory to generate the

above suppressed superpotential terms. To distinguish the Yukawa matrices for the up

and down quarks we require that the SU(2)R messengers dominate over the SU(2)L
messengers and, for the correct up and down Yukawa matrices, we require that the up

and down right-handed messengers have mass Mu and Md related by Mu ≈ 1
3Md. MR is

used to denote the right-handed messenger scale, which could be Mu or Md depending

on the interactions involved.

The above higher-order operators are essentially the Pati-Salam versions of the

higher-order Yukawa operators in Eq.5.13 and Eq.5.15 for the SO(10) × ∆27 model.

The SO(10) product 16 × 16 × 10 contains the following Pati-Salam products FF ch +

FFD+F cF cD and the operators that contain the products FFD and F cF cD were not

considered to be not important in the SO(10)×∆27 model since theD states can get GUT

scale masses from a doublet-triplet splitting mechanism. Section 5.6.3 showed that the

higher-order operators in Eq.5.13 and Eq.5.15 can create the experimentally observed

values of quark and (charged) lepton masses and CKM matrix elements. However,
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the operators in Eq.5.13 are invariant to an SO(10) GUT symmetry which causes the

Yukawa matrices Eq.5.14 to be (approximately) symmetrical. SO(10) is not a symmetry

of the ME6SSM and so there is no a prior reason why the Yukawa matrices generated

by the operators in Eq.6.2-Eq.6.6 are symmetrical. Instead the first three operators in

Eq.6.2-Eq.6.4 generate the following up and down quark Yukawa matrices [74]:

λijd ∝


0 Y 13ε3d −Y 13ε3d

Y 31ε3d ε2d −ε2d
−Y 31ε3d −ε2d ε23

λb, (6.7)

λiju ∝


0 Y 13ε2uεd −Y 13ε2uεd

Y 31ε2uεd −2ε2u
εu
εd

2ε2u
εu
εd

−Y 31ε2uεd 2ε2u
εu
εd

ε23

λt

where all higher-order coupling constants Y ij have been suppressed except for Y 13 and

Y 31 which are taken to be approximately the same for both the up and down quark

interactions. These matrices were obtained by assuming the same flavon VEV scales as

in Section 5.6.3. That is, the flavons φ3 +φ3, φ23 +φ1 and φ123 +φ123 get VEVs of order
√
λbMd,

√
λbεdMd and

√
λbε

2
dMd respectively.

Symmetrical up and down Yukawa matrices are required for the first two genera-

tions to generate the phenomenologically successful Gatto-Sartori-Tonin relation given

by Eq.5.12. This requires that Y 13 = Y 31 in Eq.6.3. One way to achieve this is to as-

sume that Fi and F ci come from the same E6 representation at the Planck scale so that

Y 13 = Y 31, and that the RGEs from the Planck scale to the ∆27 symmetry breaking

scale do not upset this relation. With this assumption and λt = λb ≈ 0.7, εu ≈ 0.05,

εd ≈ 0.15, then, the above matrices agree with those in Section 5.6.3, which, after radia-

tive corrections from a high energy scale, are able to generate quark masses and CKM

values that are in good agreement with the observed values once the corrections from

the higher order operators Eq.6.5 and Eq.6.6 are included.

It should be noted that in the ME6SSM the RGEs are very different from those

in the MSSM since there are three copies of a supersymmetric E6 27 multiplet below

the conventional GUT scale (and two additional electroweak doublets in the E6SSM

model) rather than just the MSSM particle spectrum. The Yukawa terms in the ∆27

model [74] were assumed to be formulated at the GUT scale and, after running the

assumed MSSM from the GUT scale to the electroweak scale, the results agree with the

observed quark and lepton mixing angles and masses. In the ME6SSM with ∆27 family

symmetry model the running effects will clearly be different, but the main features of

the low-energy spectrum are not expected to be qualitatively very different. Section 6.8
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investigates how the running of the gauge coupling constants in the ME6SSM is likely

to be modified by the ∆27 family symmetry.

6.3 Majorana Interactions

The U(1)X group of the ME6SSM is defined such that a conventional see-saw mecha-

nism can be used to generate small neutrino masses. The (4, 1, 2)− 1
2

particle, denoted

by HR, that breaks the G4221 symmetry once it develops a GUT-scale VEV, gives mass

to the right-handed neutrinos using the Planck suppressed operators 1
Mp
λijF ci F

c
jHRHR

(see Section 4.3.5). This non-renormalizable term, together with the Yukawa interaction

involving the neutrinos, can explain the small masses of the neutrinos but not the ob-

served hierarchical structure of neutrino masses and large mixing angles without setting

the couplings λij by hand.

In the SO(10)×∆27 model of Section 5.6.3, the particles that give mass to the right-

handed neutrinos transform as 16 of SO(10) and anti-triplets of ∆27. It is the (4, 1, 2)

Pati-Salam representation of these particles that obtains a VEV. With an anti-triplet

∆27 assignment, these particles dynamically generate the observed hierarchical structure

of neutrino masses and a tri-bi-maximal mixing using the CSD mechanism discussed in

Section 5.7. Following the ∆27 family symmetry model, the HR particle of the ME6SSM

is thus taken to transform as an anti-triplet of ∆27. The Majorana interactions allowed

by the symmetries are then:

WMaj =
1
MR

F ci F
c
jH

i
RH

j
R

+
1
M5
R

F ci F
c
j φ

i
23φ

j
23H

k
RH

l
Rφ123kφ3l

+
1
M5
R

F ci F
c
j φ

i
123φ

j
123H

k
RH

l
Rφ123kφ123l.

The above operators are exactly the relevant Pati-Salam versions of those in Eq.5.13

from Section 5.6.3 but with HR transforming in a (4, 1, 2) 1
2

representation of the G4221

symmetry rather than a (4, 1, 2) representation of the Pati-Salam symmetry. Together

with the neutrino and charged lepton Yukawa matrix generated by Eq.6.2-Eq.6.6, the

above interactions produce a VMNS matrix with approximate tri-bimaximal mixing and

a hierarchical structure of neutrino masses in agreement with the observed values [89]

exactly as discussed in Section 5.6.3. This is however reliant on the assumption made in

the previous Section that F and F c come from the same E6 representation so that the

Yukawa matrices are symmetrical.
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6.4 The µ-Term and Higgs Triplet Mass

In the ME6SSM and E6SSM the superpotential term S3h3h3 solves the µ-problem of

the MSSM if S3 obtains a vacuum expectation value at the TeV scale as discussed in

Sections 2.6 and 4.3.2. This term is not present in the SO(10) ×∆27 model described

in Section 5.6.3 and so we are free to take S3 to transform in any ∆27 representation.

Taking S3 to transform as a singlet under ∆27 allows the superpotential term S3h3h3

and thus keeps the simple solution to the µ-problem.

The S3D1,2,3D1,2,3 terms in the ME6SSM superpotential give mass to the D1,2,3

states once S3 develops a TeV scale VEV. This suggests that the D1,2,3 particles should

also transform as ∆27 singlets, so that they may all acquire TeV scale masses. If we

had instead assumed them to be ∆27 triplets then at least one of their masses would

be expected to be lower than the electroweak symmetry breaking scale, in violation of

the direct experimental limits. This is because we would expect the effective couplings

S3D1,2,3D1,2,3, with S3 obtaining a VEV at the TeV scale, to have a strongly hierarchical

mass structure, as in the case of ordinary quarks, with at least the first generation, D1,

possibly having a mass lower than the electroweak symmetry breaking scale. Instead,

with D1,2,3 as ∆27 singlets, they will all obtain TeV scale masses from the (unsuppressed)

superpotential terms S3D1,2,3D1,2,3. Similarly, the first two generations of h from the

fundamental 27 multiplets, denoted by h1,2, are taken to transform as ∆27 singlets so

that they obtain TeV scale masses from the S3h1,2h1,2 superpotential terms.2

6.5 Proton Decay and Higgs Triplet Decay

In the ME6SSM the superpotential terms λijkFiFjDk and λijkF ci F
c
jDk in Eq.6.1 are

forbidden by the ZH2 symmetry, under which Fi, F ci and Di are all odd. The terms are

instead generated effectively, but highly suppressed, from higher-order operators that

involve a new particle Σ that is odd under ZH2 and is a G4221 singlet. In Section 4.3.3

we found that if the level of suppression is of order 10−13 then the proton’s lifetime is

consistent with present experimental data, and the D states decay fast enough to avoid

any cosmological problems.

With Fi and F ci as ∆27 triplets and D1,2,3 as singlets, the terms λijkFiFjDk and

λijkF ci F
c
jDk are automatically forbidden by the ∆27 symmetry. Once the ∆27 family

symmetry is broken however, proton decay operators will reappear suppressed by flavon
2Note that the first two generations of h and D can fit inside a 10−1 multiplet of SO(10)×U(1)ψ, but

the third generations cannot due to opposite ZH2 parity assignments. Also note that the required TeV
scale VEV of S3 implies an effective µ-term of similar magnitude, leading to a slight tuning required for
electroweak symmetry breaking.
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and other VEVs, and it becomes a quantitative question whether these operators are

sufficiently suppressed. This suggets that a combination of the discrete ZH2 symmetry

and the ∆27 family symmetry can be used to create a 10−13 level of suppression.

With the ZH2 and ∆27 symmetries chosen as in Table 6.1, the only way to generate

the proton-decay inducing terms is from higher-order terms involving flavons (to repair

the ∆27 symmetry), and the E6 singlet Σ (to repair the ZH2 symmetry). Taking Σ to

have U(1) = +5 and Z2 = −1, the smallest suppressed proton decay terms are:

Wtrip =
1

MSM6
d

ΣD1,2,3FiFjφ
i
123φ

j
23(φ123kφ

k
3)(φ1lφ

l
3) + (Fi,j → F ci,j) (6.8)

+
1

MSM6
d

ΣD1,2,3(εijkF ci φ123jφ3k)(εlmnF cl φ1mφ
3n)(φ1lφ

l
123) + (Fi,j → F ci,j).

These operators are suppressed by the square of a string scale MS , which is taken to be

of order 1017.5 GeV. This assumes that the messengers that couple the Σ particle to the

F cF cD1,2,3 superpotential term are different to the messengers that couple the flavons

and HR to the quarks and leptons in the Yukawa and Majorana interactions of Sections

6.2 and 6.3. The former messengers are assumed to reside at the unification scale which

is taken to be MS ≈ 1017.5 GeV. This is further discussed in Section 6.8.

The effective terms F cF cD1,2,3 are then suppressed by a factor of about ε6dλt
〈Σ〉
MS

where
√
λt ≡ 〈φ3〉/MR. For εd ≈ 0.15,

√
λt ≈ 0.7, 〈Σ〉 ≈ 1010 GeV, and MS ≈ 1017.5

GeV, this suppression factor is around 10−13. From the discussion in Section 4.3.3

this level of suppression should be just sufficient to prevent proton decay from being

observable in present experiments if the Higgs triplets have mass greater than about 1.5

TeV. At the same time it should also be sufficient to permit the Higgs triplets to decay

with a lifetime smaller than 0.1s.

6.5.1 FCNCs From Additional Higgs-Doublet Fields

The other ‘Higgs generations’ h1,2 are taken to transform in the same way as the D
particles in Table 6.1. This forbids the interactions FF ch1,2 at tree-level but allows

higher-order operators that are equivalent to Eq.6.8 but with FFD and F cF cD replaced

with FF ch1,2. These higher-order operators become effective FF ch1,2 interactions at

low energies but with a suppression factor of order 10−13. Such operators will cause

FCNCs as discussed in Section 4.3.1 for the ME6SSM. However the level by which they

are suppressed puts them well within the present experimental limits.
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6.6 R-parity and HR +HR Mass

Not all the components of HR and HR obtain mass by absorbing the broken Pati-Salam

gauge bosons when they acquire vacuum expectation values in the right-handed neutrino

direction. To give the rest of HR and HR (and HL and HL from the SO(10) multiplets

16H and 16H) mass, a a singlet M has been included in Table 6.1. This singlet is

assumed to get a GUT scale VEV, giving mass to 16H + 16H from the superpotential

term M16H16H . Since M carries a U(1)R charge of +2, its VEV also breaks U(1)R to

an R-parity. This R-parity is a generalization of R-parity in the MSSM and keeps the

LSP stable, providing a dark matter candidate.

Note that the U(1)R symmetry of 16H used in Table 6.1 is different to that used in

the ME6SSM defined by Table 4.3. This R-symmetry prevents the bilinear term 16H16H
in the superpotential.

6.7 The E6SSM with a ∆27 Family Symmetry

As discussed at the start of this Chapter, if we introduce two additional electroweak

doublets H ′ and H
′ with TeV scale masses to the above ME6SSM with ∆27 family

symmetry then we can generate an E6SSM with ∆27 family symmetry model. All

the above operators of the ME6SSM with ∆27 family symmetry are also present in

this E6SSM model. However, gauge coupling unification now occurs at the GUT scale

(rather than the Planck or String Scale) where an E6 symmetry is assumed to exist. In

this case it is easier to understand how the Yukawa matrices Eq.6.7 can be symmetrical

since we don’t have to neglect any RGE effects from the Planck scale to the GUT scale.

Each type of Yukawa matrix will be symmetrical as long as the right-handed up quarks,

down quarks, charged leptons, and neutrinos come from the same E6 multiplet as their

left-handed counterparts, which is perfectly acceptable in the E6SSM.

To prevent the two additional electroweak doublets H ′ and H
′ from introducing

gauge anomalies for the U(1)N gauge group, they must have opposite U(1)N charges.

One possibility would be that H ′ and H
′ transform as (1, 2, 1)x and (1, 2, 1)−x under

G4221, but such multiplets cannot be derived from E6 multiplets making it difficult to

relate the E6SSM to any E6 symmetry. This requires that H ′ and H
′ must come from

split Pati-Salam representations. For example, H ′ could come from (1, 2, 2)x and H ′ from

(1, 2, 2)−x, or alternatively H ′ could come from (4, 2, 1)x and H ′ from (4, 1, 2)−x where x

is some U(1)ψ charge. If these split Pati-Salam multiplets come from 27 representations

of E6 then in the former case x = 1 whereas in the latter case x = 1/2. A mechanism
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is not provided to explains why the H ′ and H ′ are split from their Pati-Salam (and E6)

partners.

The symmetries of the model couple the E6 singlet Σ to the H ′ and H ′ through the

non-renormalizable term (1/MS)ΣΣH ′H ′. If Σ obtains a vacuum expectation value at

≈ 1010 GeV then this would give H ′ and H
′ approximately TeV scale masses so that

the Standard Model gauge couplings unify at the GUT scale and g4 = g2R at the G4221

symmetry breaking scale. It is emphasized that this is not a solution to the µ′-problem

however since the VEV of Σ has not been related to the (soft SUSY) TeV scale.

6.8 Unification and Symmetry Breaking in the ME6SSM

This Section describes how the pattern of symmetry breaking for the ME6SSM is mod-

ified when we apply a ∆27 family symmetry. In the ME6SSM the E6 symmetry is

assumed to be broken at the Planck scale to a left-right symmetric Pati-Salam gauge

group SU(4)×SU(2)L×SU(2)R×DLR (a maximal subgroup of SO(10)) and an Abelian

gauge group U(1)ψ. The left-right symmetric gauge group is then broken to the Standard

Model gauge group with an additional Abelian gauge group U(1)X , which is a combina-

tion of the charge of the U(1)ψ group, the diagonal generator τ3
R of the SU(2)R group,

and the diagonal generator associated with the U(1)B−L subgroup of SU(4) defined by

SU(4) → SU(3)c × U(1)B−L. This breaking is achieved by the ME6SSM equivalent

to the HR + HR particles from Section 6.3 gaining VEVs in the right-handed neutrino

directions. At the scale of this symmetry breaking the gauge couplings of the Abelian

groups U(1)B−L, U(1)τ3
R

and U(1)Y must satisfy Eq.3.4 with αB−L = α4 and ατ3
R

= α2R.

When the ∆27 family symmetry is introduced to the ME6SSM however, the pattern

of symmetry breaking is likely to change from the above discussion. This is due to

the inclusion of the higher-order messengers introduced by the ∆27 family symmetry.

From Section 5.6.3 we require that the messengers that couple to the right-handed up

quarks are heavier than the messengers that couple to the right-handed down quarks.

Since these messenger fields must come from the same G4221 then this difference in

mass can only occur once the SU(2)R symmetry is assumed to be broken. However, if

these messenger fields have mass equal to or lighter than the G4221 breaking scale then

they will cause the gauge coupling constants to blow up before they unify. To prevent

this from happening the SU(2)R group is assumed to be broken to its U(1)τ3
R

subgroup

at some higher energy scale. The right-handed messenger fields would then gain mass

at this higher energy scale and would not significantly alter the running of the gauge

coupling constants of the ME6SSM.
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The messengers that couple to the left-handed quarks must be heavier than their

right-handed counterparts. To prevent these messenger fields from upsetting the running

of the gauge coupling constants in the ME6SSM they are assumed to they gain mass

at the unification scale. This means that the SU(2)R breaking scale must be slightly

below the unification scale. Note that the difference in the mass of the left-handed and

right-handed messengers violates the left-right discrete symmetry of the ME6SSM and

will change the running of the gauge coupling constants.

The G4211 ≡ SU(4)×SU(2)L×U(1)τR ×U(1)ψ symmetry is broken by the VEV of

the HR +HR multiplets. This mixes the U(1)B−L×U(1)τR ×U(1)ψ groups to generate

the U(1)X and U(1)Y symmetries, as well as breaking SU(4) to the SU(3)c symmetry

of the Standard Model.3 The HR + HR particles also transform under the ∆27 family

symmetry and get VEVs in the third component so that they break the ∆27 symmetry

at the same scale as the G4211 symmetry. The remaining part of the family symmetry,

which is a subgroup of ∆27, will be broken by the VEV of the φ23 flavon at the scale

εdMd where the right-handed messengers mass Md should be above the ∆27 symmetry

breaking scale, otherwise wavefunction insertions of the invariant operator φ3φ
†
3/M

2
R on

a third family propagator can spoil the perturbative expansion if 〈φ3〉 > MR [90].

The scale of the E6 symmetry breaking in the ME6SSM is also expected to be

modified when the ∆27 symmetry is included. Instead of Planck scale E6 symmetry

breaking, the E6 symmetry is expected to be broken at a string scale. This is mainly due

to the number of additional particles (messengers) to the ME6SSM states at and above

the G4211 symmetry breaking scale, which are required for the ∆27 family symmetry to

accurately describe the observed quark and fermion masses and mixing angles. These

extra states cause the gauge coupling constants to increase rapidly above the G4211

symmetry breaking scale, bringing forward the unification scale. Other modifications

to the E6 symmetry breaking scale in the ME6SSM will come from the running of the

gauge coupling constant for the Abelian U(1)τ3
R

group, and the breaking of the left-right

discrete symmetry at the compactification scale.

The pattern of symmetry breaking in this case is thus expected to proceed as follows:

the SU(2)R group is broken to U(1)τ3
R

at a compactification scale MC , which, along

with the SU(4) × SU(2)L × U(1)ψ symmetry, is broken at a lower scale to G3211 ≡
SU(3)c × SU(2)L × U(1)Y × U(1)X by the HR + HR particles. The left-right discrete

symmetry DLR is also expected to be broken since the left-handed messengers are heavier

than and right-handed messengers. The pattern of symmetry breaking for the E6 group
3One could alternatively consider the VEV of H45 to break SU(4) to SU(3)c×U(1)B−L. This depends

on whether the VEV of H45 is chosen to be at a greater or smaller energy scale than the HR+HR VEV.
In [83] and (the second reference in) [90], for example, the H45 VEV is taken to be of order 3Md and
3εdMd respectively.
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Figure 6.1: The two-loop RGEs running of the gauge coupling constants for two
models based on the ME6SSM with ∆27 family symmetry. Both models are described
in detail in the main body of the text. The thickness of the lines indicates the error in

the coupling constants due to the experimental uncertainty in their initial values.

is summarized as:

E6

MS︷︸︸︷−→ G4221

MC︷︸︸︷→ G4211

MGUT︷︸︸︷−→ G3211

TeV︷︸︸︷−→ G321.

where the ∆27 family symmetry is also broken at MGUT .

6.8.1 Two-Loop RGEs Analysis

Unification of the gauge coupling constants may in fact no longer be possible when

all of these changes from the ME6SSM are calculated, but Fig.6.1 demonstrates that

gauge coupling unification still occurs for two simple models of the ME6SSM with ∆27

symmetry.

For both models the SU(2)R symmetry breaking scale is taken to be approximately

equal to the G4211 symmetry breaking scale. Both models therefore have an intermediate

G4221 symmetry as in the ME6SSM. However, for the model in the right panel of Fig.6.1,

the left-right discrete symmetry is assumed to be broken at the unification scale due to

the different masses for the left-handed and right-handed messengers. In both panels of

Fig.6.1 three copies of an E6 27 multiplet, which contain all the MSSM states as well as

new (non-MSSM) states, have mass at low energies are used and, following the ME6SSM,

effective MSSM and non-MSSM thresholds of 250 GeV and 1.5 TeV respectively are

assumed.

At the G4221 × ∆27 symmetry breaking scale, additional particles that break the

symmetry and play a part in the ∆27 family symmetry’s description of quark and lepton

masses are also assumed. In the left panel these extra particles are taken to consist of all
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the G4221 states from five copies of 27+27 multiplets, except for the (6, 1, 1) 1
2
+(6, 1, 1)− 1

2

states which we assume have mass at the unification scale, as well as all the flavons given

in Table 6.1 and a left-handed partner for φ3. The additional 27 + 27 states contain the

16H + 16H particles that break the G4221 × ∆27 symmetry and provide the Majorana

interactions, the 16+16 particles that give the H45 as a composite, and messengers that

also transform as a 16 + 16 of SO(10). The H45 is taken to be a composite of a 16 + 16

state since a fundamental H45 particle (and its left-handed partner) would affect the

running of the SU(4) gauge couplings by an amount that causes it to blow up before

any unification of gauge couplings is possible. We would also need to explain why the

rest of the 650 E6 multiplet, that contains the H45, have larger mass. On top of the

five copies of the 27 + 27 multiplets, additional Higgs messengers that transform as a

triplet and an anti-triplet of the ∆27 family symmetry are assumed. These are required

for unification of the gauge coupling constants.

The right panel assumes the same states as the left panel but without the left-

handed messengers as these are expected to get much larger masses than their right-

handed components. The scales of unification and G4221 symmetry breaking are at

1017.1, 1016.9 GeV and 1016.4, 1016.1 GeV for the left, right panel respectively. Since the

G4221 symmetry breaking scales are close to the Grand Unification scale in conventional

GUTs they are denoted by MGUT .

It should be emphasized that the above models do not represent accurate predic-

tions for the running of the gauge coupling constants of the ME6SSM with ∆27 family

symmetry and are only used to demonstrate that, with the inclusion of the ∆27 mes-

senger states to the ME6SSM, gauge coupling unification is still possible but at a scale

that is closer to the string scale than the Planck scale.

6.9 Unification and Symmetry Breaking in the E6SSM

Including the extra electroweak states H ′ and H
′ at the TeV scale, in addition to the

Pati-Salam representations of three copies of an E6 27 multiplet, causes the Standard

Model gauge coupling constants to unify at the conventional GUT scale (but with a

higher value than the MSSM prediction for the unification gauge coupling constant). At

the unification scale an E6 symmetry is assumed to exist. However, from Section 5.6.3

we require that the messengers that couple to the right-handed quarks are lighter than

the messengers that couple to the left-handed quarks. Since these messenger fields must

come from the same G4221 multiplet, then the difference in their mass would violate the

E6 symmetry.
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To overcome this problem the left-handed messengers are assumed to have a mass

equal to the GUT scale, and the up and down right-handed messenger fields are taken

to gain mass just below the conventional GUT scale. To compensate for the effect on

the running of the Standard Model gauge coupling constants caused by the right-handed

up and down messengers (which would upset unification), additional fields are included

that, together with the messenger fields, form complete SU(5) representations, which in

this case would be a complete 10+5. The extra fields below the GUT scale will increase

the MSSM prediction for the value of the unification gauge coupling constant but keep

the unification scale as the conventional GUT scale. Of course too many messengers, and

too small messenger masses, would cause the Standard Model gauge coupling constants

to blow up before they unify. Here it is simply assumed that the minimal number of

messengers required to generate the correct quark and lepton masses and mixing angles

does not prevent the unification of the Standard Model gauge coupling constants at the

GUT scale.

6.10 Conclusions

In this Chapter the ME6SSM and E6SSM have been extended to include a ∆27 family

symmetry which is broken just below the conventional GUT scale. To provide realistic

models additional U(1)×Z2×ZH2 ×U(1)R symmetries are also applied where U(1)R is an

R-symmetry which results in a conserved R-parity. The resulting supersymmetric models

solve a number of problems facing the MSSM, including the little fine-tuning problem,

the µ-problem and the SUSY flavour problem. The ∆27 family symmetry accounts for

the quark and lepton masses and mixing angles, with tri-bimaximal neutrino mixing

resulting from vacuum alignment and constrained sequential dominance. A particularly

attractive feature of the models is that the proton decay induced by the Higgs triplets

is naturally suppressed by the ∆27 family symmetry.



Chapter 7

Solving the Flavour Problem of

Supersymmetric Standard Models

with Three Higgs Families

In the previous Chapter the E6SSM and ME6SSM were extended with a ∆27 family

symmetry to solve the flavour problem. These models are more powerful than the

SO(10) × ∆27 model in Section 5.6.3 for example because they have the potential to

explain why the Higgs mass, which is indirectly related to the quark and lepton masses,

is much smaller than the Planck mass. This is because the E6 models do not contain

the µ-problem of the MSSM, whereas in the SO(10)×∆27 model for example, there is

nothing preventing the bilinear term µ10.10, which is the GUT version of the µ-term,

from being included in the superpotential.

However, although the family symmetry solves the flavour problem of the effective

MSSM states present in the E6SSM and ME6SSM, it does not explain the flavour of

the non-MSSM states present in these models. For example, the ∆27 family symmetry

accounts for the three generations of (up and down) quarks and (charged and neutral)

leptons in the E6SSM and ME6SSM, but does not explain why there are also three copies

of (up and down) Higgs fields, three copies of (D and D) Higgs triplet fields, and three

copies of MSSM singlet fields S.

In this Chapter a more ambitious application of a family symmetry is introduced

that solves the full flavour problem of the E6SSM. The approach taken is to assume that

all the E6SSM states that fill three complete 27 representations of E6 transform in triplet

representations of a ∆27 family symmetry. This then explains why there are exactly three

copies of all these fields in the E6SSM. Table 7.1 describes how all the states from a 27

113
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representation, as well as the flavons, transform under the family symmetry and the

additional symmetries that constrain the model. Only the E6SSM is concentrated on in

this Chapter, since, unlike the previous synthesis, the family symmetry cannot suppress

the proton decay induced by the Higgs triplets. The ZB2 or ZL2 symmetry of the E6SSM

is therefore used to avoid the induced proton decay, which violates a Pati-Salam gauge

symmetry.

Once the family symmetry is broken the full mass structure of the E6SSM is de-

termined, including the masses and mixings of the quarks and leptons. In particular

the model predicts tri-bi-maximal mixing for leptons, two almost degenerate LSPs and

two almost degenerate families of triplet higgsinos. The broken ∆27 family symmetry

also explains why only the third generation of the Higgs fields interacts with the quarks

and leptons, thus forbidding FCNCs that would be caused by the additional Higgs-like

families. The broken ∆27 family symmetry therefore provides a high-energy theoretical

understanding of the ZH2 symmetry which is somewhat ad hoc in the E6SSM and adds

an additional complication to the flavour problem of the model that is not present in the

MSSM or NMSSM. This method of avoiding FCNCs should, in theory, be applicable to

any general supersymmetric model with three families of Higgs fields, and this Chapter

only uses the E6SSM as an example of such a theory.

The outline of this Chapter is as follows. In Section 7.1 the renormalizable E6SSM

superpotential in the absence of any family symmetry is reviewed. The rest of the

Chapter is then divided into different sections which investigate how each term in this

superpotential is generated from the ∆27 family symmetry: Section 7.2 introduces the

non-renormalizable operators allowed by ∆27 that lead to the quark and lepton Yukawa

interactions with the Higgs fields, Section 7.3 illustrates how the ZH2 symmetry of the

E6SSM effectively emerges from the high-energy theory, Section 7.4 then discusses how

tri-bi-maximal mixing is generated from the ∆27 family symmetry and constrained se-

quential dominance, Section 7.5 describes how the effective µ-term of the MSSM and the

mass structure of the LSPs that are formed from the inert higgsinos and singlinos are

generated, Sections 7.6 and 7.7 explain the mass structure of the triplet higgsinos and

discusses their decay channels, and Section 7.8 introduces the vacuum alignment required

for the various ∆27 flavon fields. Finally, in Section 7.9, the Chapter is concluded.
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∆27 U(1) Z2 Zh2 ZS2 U(1)R
F 3 0 + + + 1
F c 3 0 + + + 1
h 3 0 + - + 0
D 3 0 + - + 0
S 3 0 + + - 0
φ3 3 0 - + + 0
φ23 3 -1 - + + 0
φ123 3 1 - + + 0
φ1 3 -4 - + + 0
φ3 3 3 + + + 0
φ123 3 -1 + + + 0
φh3 3 0 + - + 0
φS3 3 0 + + - 0
φ
h
3 3 0 + + + 0
φ
S
3 3 0 + + - 0

H45 1 2 + + + 0
HR 3 0 + + + 0
H ′ 1 0 + + + 1
H
′ 1 0 + + + 1

Table 7.1: This table illustrates how all the flavon fields and Pati-Salam states transform
under the ∆27 family symmetry and the additional constraining U(1)×Z2×Zh2 ×ZS2 symmetry.
An R-symmetry is also applied to the model which breaks to an R-parity once S3 obtains a

vacuum expectation value.

7.1 Review of E6SSM Superpotential

In terms of a Pati-Salam notation, and dropping all couplings and indices for clarity, the

E6SSM superpotential terms from the E6 tensor product 27× 27× 27 are the following:

27× 27× 27→ FF ch+ Shh+ SDD + FFD + F cF cD. (7.1)

The interactions between the quarks and leptons and the Higgs fields, λijkFiF cj hk, is the

subject of the next Section. Section 7.5 discusses the superpotential term λijkS
ihjhk

from which the MSSM effective µ-term is generated. Section 7.6 describes the term

λijkSiDjDk from which the Higgs triplet states get mass, and Section 7.7 looks at the

operators λijkFiFjDk + λijkF ci F
c
jDk which provide their decay channels.

The above operators are only written in a Pati-Salam notation for ease of notation.

The actual gauge symmetry of the model presented in this Chapter is the E6SSM gauge

symmetry SU(3)c×SU(2)L×U(1)Y ×U(1)N rather than a Pati-Salam gauge symmetry.

For the rest of this Chapter a Pati-Salam notation is used unless stated otherwise.
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7.2 The Effective Yukawa Operators

In the previous synthesis of the ∆27 family symmetry with the ME6SSM, the quarks

and leptons were taken to transform as triplets but the Higgs states were singlets. Here

instead the Higgs states are also taken to transform in a triplet representation to explain

why three Higgs doublet type fields are present in the E6SSM. This then allows the

E6SSM ×∆27 superpotential term εijkFiF
c
j hk where i, j, k = 1 . . . 3 are ∆27 indices

and εijk is the totally anti-symmetric tensor. This however contains operators such as

F1F
c
2h3 − F2F

c
1h3 which must be forbidden since they would give too large a mixing

between the first and second generation quarks. To forbid these terms the Higgs states

hi are taken to be odd under a new discrete symmetry called Zh2 , which forbids the entire

εijkFiF
c
j hk superpotential. To ‘repair’ the Zh2 symmetry, a ∆27 flavon denoted by φh3 is

included that transforms as an anti-triplet and is odd under Zh2 . Two flavons that are also

anti-triplets must then couple to the quarks and leptons to form a ∆27 invariant. Table

7.1 describes how the quarks, lepton, Higgs and all other the Pati-Salam states from a

27 representation transform under the family symmetry. It also contains the additional

symmetries that constrain the model such as Zh2 symmetry which distinguishes the Higgs

fields (but unlike ZH2 treats all three Higgs families identically) as well as the ∆27 flavon

fields.

The lowest order Yukawa superpotential consistent with the symmetries of Table

7.1 is:

WY uk ∼
1
M3

FiF
c
j hkφ

i
3φ

j
3(φh3)k (7.2)

+
1
M4

FiF
c
j hkφ

i
23φ

j
23(φh3)kH45

+
1
M3

FiF
c
j hk(φ

i
123φ

j
23 + φ

j
123φ

i
23)(φh3)k

+
1
M6

FiF
c
j hk(φ

i
123φ

j
3 + φ

j
123φ

i
3)(φm123φ1m)(φh3)kH45

+
1
M7

FiF
c
j hkφ

i
123φ

j
123(φl3φ123l)(φ

m
3 φ123m)(φh3)k

where all O(1) coupling constants are suppressed.

Note that the above superpotential is exactly that found in Section 5.6.3 but with

h3 replaced with hi(φ
h
3)i. This flavon field and φ3 are assumed to get a VEV in the third

component of ∆27, and the other flavon fields are equivalent to those used in the ∆27

family symmetry described in Section 5.6.3.
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Figure 7.1: This Figure contains the type of messenger diagram that provides the
dominant contribution to the Yukawa operators in Eq.7.2.

7.2.1 The Messenger Fields

The messenger fields Σ that are responsible for the suppression factors in Eq.7.2 include

fields that transform in the same way as quarks and leptons under the Standard Model

gauge group and as singlets, triplets and anti-triplets of ∆27. For convenience these

type of messenger fields are referred to as quark and lepton-like messengers ΣF,F c . In

addition there are also messengers that are singlets of ∆27 and transform in the same

way as Higgs fields under the Standard Model gauge group. These messenger fields are

called Higgs-like messengers Σh. All these messenger fields are taken to carry positive

Zh2 parity, and the Higgs-like messengers Σh are assumed to be heavier than the quark

and lepton-like messengers ΣF,F c so that the latter dominate the messenger diagrams.

Also, as in Chapters 5 and 6, the right-handed quark and lepton messengers ΣF c are

assumed to be heavier than their left-handed counterparts ΣF (except for the neutrino

messengers) so that the former dominate over the latter. The messenger diagrams are

illustrated by Fig.7.1.

To create a smaller hierarchy in the down quark sector compared to the up quark

sector, the mass of the 3 and 3 up and down Higgs messengers Mh
3 are assumed to

be equal, but the up right-handed quark messengers Σuc that are 3 and 3 and singlets

of SU(3) are taken to have a mass Mu that is greater than the mass of the right-

handed down quark messengers Σdc by approximately a factor of three. This then

creates εd = 3εu as in Chapters 6 and 7.

For the top Yukawa coupling constant to be greater than the bottom Yukawa cou-

pling constant the φ3 flavon is again taken to transform as a 3⊕1 of the SU(2)R subgroup

of E6, and its VEV is chosen so that 〈φ3〉/Md = 〈φ3〉/Mu. In terms of these messenger

masses, the VEV scales for the various flavon fields are then taken to be the following:

〈φh3〉
Mh

3

≈ 〈φ3〉
Mu

≈ 0.8,
〈φ23〉
Mu

≈ εd,
〈φ123〉
Mu

≈ ε2d (7.3)

where εd ≈ 0.15. At the GUT scale the Yukawa coupling for the top and bottom quark

is expected to be about 0.5 in third family Yukawa unification models based on the
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MSSM with large tanβ [80]. It is therefore assumed that 〈φh3〉/Mh
3 ≈ 〈φ3〉/Mu ≈ 0.8.

By comparison, in the model formulated in the previous Chapter, in which the Higgs is

a singlet, 〈φ3〉/Mu is assumed to be about 0.7 [74].

Inputting the above flavon VEVs into the superpotential given by Eq.7.2 generates

the effective Yukawa matrices given by 5.9 for the quarks and leptons, which were shown

to produce a realistic CKM matrix and realistic mass hierarchies for the up and down

quarks in Section 5.6.3. This is essentially because the superpotential in 5.9 is exactly

that found in Section 6.2 but with h3 replaced with hi(φ
h
3)i, which becomes h3 once φh3

gets a VEV.

7.3 Preventing Flavour Changing Neutral Currents

Note that since φh3 transforms under Zh2 it will only couple to the Higgs fields and not to

the quarks and leptons. This can be understood by considering the messenger diagrams

of the above higher-order operators where φh3 will only be allowed to attach itself to

the Higgs fields (and the Higgs-like messenger fields) if all the messenger fields are even

under Zh2 . This is illustrated by Fig.7.1. Once φh3 gets a VEV, only the third ‘generation’

of the up and down Higgs fields h3 will couple to the quarks and leptons. It is these up

and down Higgs fields which we therefore take to obtain electroweak scale VEVs, and

thus act like the up and down Higgs fields of the E6SSM.

The Zh2 and ∆27 symmetries prevent the first and second generation of Higgs fields

from interacting with the quarks and leptons at tree-level and so there can be no tree-

level FCNC processes involving the neutral scalar components of these fields. In the

E6SSM the ZH2 symmetry is applied to all the 27 fields except for the third generation

of Higgs fields and singlet fields to prevent the first and second generation of Higgs fields

from interacting with the quarks and leptons at tree-level. The Zh2 in this model is

therefore acting as the ZH2 symmetry of the E6SSM even though it does not distinguish

between the different Higgs fields.

This then illustrates how the flavour problem in general supersymmetric models

with three (up and down) Higgs fields can be solved: the model should be extended

with a family symmetry for which the Higgs are in a triplet representation. This then

explains why there are three Higgs doublets, and with the addition of a simple flavour-

independent Z2 symmetry, also explains why there are no FCNCs from the additional

Higgs fields. This can be achieved using the same family symmetry that generates the

masses and mixings of the leptons and quarks.
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7.4 Tri-Bi-Maximal Mixing

Tri-bi-maximal mixing for the leptons is created using the ∆27 family symmetry and

constrained sequential dominance exactly as in the previous E6SSM model with ∆27

family symmetry since the right-handed neutrino Majorana operators that are allowed

by the symmetries are again given by Eq.5.21. Table 7.1 illustrates how the HR fields

that give mass to the right-handed neutrinos transform under the symmetries of the

model.

7.5 The Effective µ-Term and Inert Higgsino and Singlino

Masses

The Pati-Salam superpotential term λijkSihjhk from Eq.7.1 is used in the E6SSM to

generate higgsino and singlino masses as well as an effective MSSM µ-term. In terms

of the Standard Model gauge group this superpotential term reduces to λijkSihujhdk

where hi and hd denote up and down Higgs fields. To explain why three copies of the

singlet fields S are in the E6SSM they are taken to form a triplet representation of

∆27. This then allows the E6SSM ×∆27 superpotential term εijkSihujhdk and forbids

terms such as S3hu3hd3, which is used by the E6SSM to generate an effective µ-term,

because of the ∆27 symmetry. To avoid this the singlet fields are taken to be odd under

a new ZS2 discrete symmetry which forbids all the εijkSihujhdk operators. To repair

this symmetry new flavon fields φS3 and φS3 are introduced that are odd under the ZS2
discrete symmetry and form anti-triplet and triplet representations respectively of ∆27.

The following higher-order operators are then allowed:

Wµ ∼
1
M3

Sihujhdk(φ
S
3 )i(φh3)j(φh3)k (7.4)

+
1
M2

εjklSihujhdk(φ
S
3 )i(φh3)l

+
1
M2

εijlSihujhdk(φS3 )l(φ
h
3)k +

1
M2

εijlSihukhdj(φS3 )l(φ
h
3)k

where φh3 is a 3 flavon that has even ZS2 parity but odd Zh2 parity. The scale of the

flavon VEVs are taken to be 〈φS3 〉/MS = εS , 〈φS3 〉/Mh = εS and 〈φh3〉/MS = εh where

MS is the mass scale of the singlet-like messengers, Mh is the mass scale of the Higgs-

like messengers and it is assumed that εS � 1. The messenger diagrams responsible

for generating the above higher-order operators are represented by Fig.7.2. All Higgs-

like and singlet-like messengers are assumed to carry even Zh2 parity but the Higgs-

messengers, unlike the singlet-messengers, can carry both odd and even ZS2 parity.



Chapter 7. Solving the Flavour Problem of Supersymmetric Standard Models with
Three Higgs Families 120

Figure 7.2: This Figure illustrates the type of messenger diagrams that provide the domi-
nant contribution to the effective µ-term and higgsino mass operators in Eq.7.4.

The first operator in Eq.7.4 is responsible for generating an effective µ-term for the

third family of Higgs fields once the flavons fields and the third family singlet field S3

obtain VEVs. Since only the third family of Higgs obtains a VEV, this effective µ-term

acts like the µ-term of the MSSM Higgs fields. The effective µ-term will have a value

(0.8)3〈S3〉, which will be approximately 1 TeV if 〈S3〉 = 2 TeV, which is consistent with

the experimental bound for the mass of a Z ′ (see Section 4.4.3).

The second and third operators in Eq.7.4 are responsible for providing mass to the

first and second families of higgsinos and singlinos once the third family of Higgs fields

and singlet field obtain VEVs. This results in a mixing between all of these states which

is represented by the following matrix:

M inert =

(
A22 A21

AT21 A11

)

This matrix is written in the basis (h̃0
d2, h̃

0
u2, S̃2|h̃0

d1, h̃
0
u1, S̃1) so that Aαβ are 3×3 matrices

where α, β = 1, 2. Because of the anti-symmetric tensor in the Eq.7.4 we find that

A11 = A22 = 0, whereas A21 is given by the following:

A21 =


0 εSεh〈S3〉 εS〈h3

u〉
εSεh〈S3〉 0 εS〈h3

d〉
εS〈h3

u〉 εS〈h3
d〉 0

 , (7.5)

where this matrix couples the states (h̃0
d2, h̃

0
u2, S̃2) to the states (h̃0

d1, h̃
0
u1, S̃1). In the

limit of exact Zh2 and ZS2 symmetry these higgsino and singlino states will decouple

from the usual inert USSM states such as the third family of Higgsinos, singlinos, wino

and hypercharge bino fields. A full discussion on the mixing between the usual USSM

states and the additional E6SSM states can be found in [91] where it is also shown that

the mixing between the U(1)N bino and Higgsino and singlino fields is expected to be

small.

The above Higgsino and singlino neutral states combine to form two degenerate

LSP states, approximately consisting of a Dirac state formed from (dropping the tildes)

S1 and S2, together with two generally heavier approximately degenerate Dirac states
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formed from h0
d1 and h0

u2 on the one hand and h0
d2 and h0

u1 on the other hand. With exact

R-parity the Dirac LSP state formed from S1 and S2 becomes a dark matter candidate.

However the masses of the degenerate LSPs S1 and S2 can be split if the first and second

generation of Higgs and singlet fields are distinguished from one another. One way of

achieving this is to assume that the flavon field φh3 gets small vacuum expectation values

in its first and second components of ∆27 such that 〈φh3〉T ∝ (δ1, δ2, 1) where δ1, δ2 � 1.

This might be expected to occur from higher-order operators that affect the vacuum

alignment of the fields. Two WIMPs that are almost degenerate in mass have been

recently used to explain the DAMA data [92].1 More work is required to determine

whether the model considered here can be used to explain this data.

Note that although the Zh2 and ZS2 symmetries of this model have combined to

operate in a similar manner to the original ZH2 symmetry of the E6SSM, they allow

fewer operators than the latter. The operators allowed by the original ZH2 symmetry

but which are not present in this model are S3huαhdα, Sαhuαhd3 and Sαhu3hdα. Such

operators are responsible for the A22 and A11 matrices being non-zero in the E6SSM.

7.6 Higgs Triplet Mass Terms

The Pati-Salam superpotential λijkSiDjDk, which is derived from the E6 superpotential

of the E6SSM given by Eq.7.1, is used in the E6SSM to give mass to the Higgs triplets

Di. In terms of a Standard Model gauge symmetry this operator becomes λijkSiDjDk

where D is a triplet of the strong force gauge group SU(3)c but D is an anti-triplet.

To explain the three copies of the D states in the E6SSM they are assumed to

transform in a triplet representation of ∆27. As for the Higgs doublet-like states, the

D are also taken to have odd Zh2 parity but even ZS2 parity. The allowed higher-order

operator thus mirrors the allowed operators that provide effective µ-terms for the Higgs

fields:

WD ∼
1
M3

SiDjDk(φ
S
3 )i(φh3)j(φh3)k (7.6)

+
1
M2

εjklSiDjDk(φ
S
3 )i(φh3)l

+
1
M2

εijlSiDjDk(φS3 )l(φ
h
3)k

+
1
M2

εijlSiDkDj(φS3 )l(φ
h
3)k.

1If 〈φh3 〉T ∝ (δ1, δ2, 1) then the first operator in Eq.7.4 will mix the Higgs doublet-like flavour eigen-
states h1, h2 and h3 so that the mass eigenstate hm3 is a mixture of all these Higgs doublet-like states.
When inserted into the operators in Eq.7.2, FCNCs will be generated by the additional Higgs doublet-
like fields. However, with δ1, δ2 � 1 then these FCNCs will be heavily suppressed and will be well
within experimental limits.
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The mass scale for the exotic-like messengers ΣD,D responsible for the operators in

Eq.7.6 however need not be the same as the Higgs messengers. The messenger scales are

defined such that MD = MD, 〈φh3〉/MD ≡ εD, 〈φh3〉/MS ≡ εD and 〈φS3 〉/MD ≡ ε′S . The

exotic-like messengers, like the Higgs-like messengers are also assumed to only have even

Zh2 parity and carry either even or odd ZS2 parity. The messenger diagrams that are

responsible for generating the higher-order operators in Eq.7.6 are analogous to those

in Fig.7.2 but with the Higgs fields and Higgs-like messenger fields replaced with exotic

fields and exotic-like messenger fields respectively.

The fermion components of the Higgs triplet fields (triplet higgsinos) thus obtain

mass once the flavons and S3 obtain an expectation value. The masses are written in

matrix form MDijDiDj where MDij is the following:2

MDij =


0 εSεD 0

εSεD 0 0

0 0 εSε
2
D + ε3D

 〈S3〉.

The parameters εS , εD and εD can then be chosen for the masses to be larger than

the experimental bound of 300 GeV. Two of the triplet higgsinos are predicted to be

degenerate in mass with the third also being degenerate in the approximation that

ε2D = εD and εD � εS . This mass structure is in stark contrast to the hierarchical

structure of the quarks and leptons despite all the states being triplets of the family

symmetry.

7.7 Higgs Triplet Decay and Proton Decay Suppression

If the triplet Higgs particles Di are taken to have the same ∆27, Zh2 and ZS2 quantum

numbers as the Higgs fields hi, then they can decay via the following non-renormalizable

operators:

WExotic ∼
1
M3

F ci F
c
jDkφ

i
3φ

j
3(φh3)k (7.7)

+
1
M4

(FiFj + F ci F
c
j )Dkφ

i
23φ

j
23(φh3)kH45

+
1
M3

(FiFj + F ci F
c
j )Dkφ

i
123φ

j
23(φh3)k

+
1
M3

(FiFj + F ci F
c
j )Dk(φ

i
123φ

j
3 + φ

i
3φ

j
123)(φm123φ1m)(φh3)kH45.

2The scalar components of the Higgs triplets will also obtain mass from soft terms in the SUSY-
breaking Lagrangian.
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However not all these operators can be allowed otherwise this would lead to very rapid

proton decay. Thus, either the ZB2 or ZL2 discrete symmetries that is used in the E6SSM

[17] are assumed. From Section 2.6.7, under the ZB2 symmetry the leptons and D

states are odd whereas, under the ZL2 symmetry, only the leptons are odd and all other

particles are even. Thus these symmetries differentiate between different fermion F, F c

components and therefore break the Pati-Salam gauge symmetry (but not the E6SSM

gauge symmetry).

In the limit that 〈φh3〉T ∝ (0, 0, 1) exactly, the decay channels of the Higgs triplets

states will be different to those of the E6SSM since only the third generation of the

Higgs triplets couples directly to quarks and leptons, whereas all three generations of

the Higgs triplets in the E6SSM interact directly with the quarks and leptons. The

difference between the two models occurs because the Higgs triplets transform under

Zh2 , which results in an effective ZH2 symmetry for only the first and second generation

of Higgs triplets. In the E6SSM however all three generations transform under ZH2 . This

application of the Zh2 symmetry results in the decay products of the first and second

generation of Higgs triplets always involving a singlet field Si.

If instead 〈φh3〉T ∝ (δ1, δ2, 1) as discussed in Section 7.5, then all the ∆27 components

of the Higgs triplets will mix via the mass terms presented in Section 7.6. This results

in the same Higgs triplets channels as used in the E6SSM but with some being more

suppressed since δ1, δ2 � 1.

7.8 Vacuum Alignment

The vacuum alignment assumed for the flavon fields φ3, φ23, and φ123 is assumed to be

the same as that discussed in Section 5.6.3. However this did not include the vacuum

alignment for the new flavon fields φh3 , φh3 , φS3 and φ
S
3 . For these additional flavon

fields to get the required direction of vacuum expectation values, the following D-terms

are used: m2
3/2((φh3)iφ3iφ

†
3i(φ

h†
3 )i) and m2

3/2(φi3φ
h
3iφ

h†
3i φ
†i
3 ) both with negative coefficients,

and similarly for the φS3 and φ
S
3 flavons. These terms cause φh3 and φh3 to get VEVs in

the same direction as the pre-aligned fields φ3i and φi3 respectively, which obtain their

vacuum structure from the operators analogous to those discussed in Section 5.6.4 and

are discussed in detail in [74].
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7.9 Conclusions

In the previous Chapter a ∆27 was applied to the ME6SSM and E6SSM with the purpose

of creating a model that can solve the flavour problems of the MSSM and SM. This was

motivated by the ability of the ME6SSM and E6SSM to explain the small Higgs mass in

comparison to the Planck mass. Together with the ∆27 family symmetry these models

can then explain the masses of the quarks and leptons and in particular why they are

small (compared to the Planck scale). However this come at the expense of additional

flavour introduced by the ME6SSM and E6SSM which were not fully explained by the

∆27 family symmetry. This extra flavour comes from the non-MSSM states such as

the additional Higgs doublet-like fields and Higgs triplet fields that are included in the

ME6SSM and E6SSM.

The purpose of this Chapter was to find an alternative application of a ∆27 which

can fully solve the flavour problem of the E6SSM and thus present a truly viable al-

ternative to the MSSM. This was achieved by taking all the E6SSM states that fill 27

multiplets, which includes the Higgs fields, to transform as triplets under the ∆27 family

symmetry. The breaking of the ∆27 family symmetry then resolves the fermion mass and

mixing puzzle present in the SM, the SUSY FCNC problems introduced by the MSSM,

and predicts the mass structure of the non-E6SSM states. The main phenomenological

predictions of the model are tri-bi-maximal mixing for leptons, two almost degenerate

LSPs and two almost degenerate families of triplet higgsinos.

A particular success of the model illustrated in this Chapter is that it demonstrates

how FCNC’s in models with three families of Higgs fields may be tamed by the same

family symmetry that predicts tri-bi-maximal lepton mixing and provides a solution to

the SUSY FCNC and CP problems. This is because the ∆27 family symmetry, together

with a vertical Zh2 symmetry, gives rise effectively to the ZH2 symmetry of the E6SSM,

which solves the flavour changing neutral current problem of the three families of Higgs

fields.

A disadvantage of the application of the ∆27 family symmetry presented in this

Chapter however is that it can only be used for the E6SSM and not the ME6SSM. This

is because this application, unlike that in the previous Chapter, does not suppress the

proton decay induced by the Higgs triplet fields D. Instead the induced proton decay

can only be suppressed by the method adopted by the E6SSM where discrete symmetries

are used to prevent the decay. This leaves the theoretically undesirable fields H ′ and

H
′ in the low-energy particle spectrum which introduce a µ′-problem as discussed in

Section 3.2.



Chapter 8

Conclusions and Outlook

The hierarchy problem remains a principal incentive for new physics beyond the Stan-

dard model and embedding the model in the MSSM is the most studied solution to this

problem. However, although this solves the instability of the Higgs mass against higher

energy physics, it does not adequately explain why its mass is small in the first place.

This is related to the µ-problem of the MSSM. Non-minimal supersymmetric models

inspired by an E6 symmetry on the other hand can naturally stabilize the Higgs mass

without introducing the µ-problem or little hierarchy problem of the MSSM. An example

is the E6SSM which contains three copies of a 27 representation of E6 and two addi-

tional electroweak doublets whose sole purpose is to generate gauge coupling unification

in the model. However, because these electroweak doublets come from incomplete E6

representations, they introduce a number of theoretical problems to the model.

In this work a new model called the ME6SSM has been proposed as an alternative to

the E6SSM that only contains complete E6 representations at low energies and so does

not contain any of the theoretical problems that come from incomplete representations.

As well as solving the hierarchy problem of the Standard Model, the ME6SSM also

predicts gauge coupling unification at the Planck scale, suggesting a potential unification

with quantum gravity.

Another motivation for physics beyond the Standard model (and the MSSM) comes

from the flavour problem, which has seen a renewed interest in recent years due to the

discovery of neutrino oscillations. In this work the E6SSM and ME6SSM have been

extended with a non-Abelian discrete family symmetry as a step towards solving the

flavour problem. The quantitatively new feature of the resulting models is that the

same family symmetry that explains the observed masses and mixings of the quarks and

leptons, including tri-bi-maximal mixing for leptons, also naturally tames the proton

125
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decay induced by Higgs triplet fields or the FCNCs mediated by the extended Higgs

sectors.

A failing of the ME6SSM (and E6SSM) however is that a low-energy ZH2 discrete

symmetry does not commute with an E6 symmetry if the chiral superfields comes from

the same high-energy E6 multiplets. If on the other hand the superfields come from

different E6 multiplets then a complicated mass splitting mechanism is required to allow

only three copies of a 27 representation to survive to low-energies. More work is therefore

required to relate the ME6SSM (and E6SSM) to the high-energy E6 symmetry.

One possibility may be to embed the models in a string inspired theory in which the

E6 symmetry is broken by compactification. Split E6 multiplets that together look like

complete E6 representations at low energies could then arise from Wilson-line symmetry

breaking for example [58]. This could also potentially explain the origin of the non-

Abelian discrete family symmetry [84].



Appendix A

β-Functions for the ME6SSM

All of the parameters of a renormalizable field theory can usefully be thought of as scale-

dependent entities. The scale dependence is described by simple differential equations

called renormalization group equations (RGEs). The rate of flow of a coupling constant

as a function of momentum is defined by the β-function:

β(g) =
dg(p; g)
d ln(p/M)

g(M ; g) = g

where M is a renormalization scale, and g(p) is called the running coupling constant

which is the coupling constant g obtained by integrating out degrees of freedom down to

the scale p. We can calculate the β-function of a gauge coupling constant for a general

quantum field theory to a given order of perturbation. Ignoring the small contributions

from any Yukawa couplings of the theory, the β-function of a gauge coupling constant

gi to two-loops is given by [93]:1

dαi
dt

= −biα2
i − α2

i

(∑
j

bijαj

)
(A.1)

⇒ d(1/αi)
dt

= bi +
∑
j

bijαj

where αi ≡ g2
i /(4π)2; t ≡ ln(p/M); bi and bij are group factors from the group repre-

sentations of the various particles of the quantum field theory; and the indices i and j

run over all the gauge coupling constants of the quantum field theory. The first term in

Eq.A.1 is the one-loop contribution and the second term is from two-loops.
1At one-loop the graph of 1/αi versus t is a straight line. At two-loops the graph is a curve that

is generally close to a straight line since the two-loop effects are respectively small by definition of
perturbation theory.
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For a non-supersymmetric quantum field theory the group factors bi and bij are the

following [93]:

bi = −11
3
Ci(G) +

2
3

∑
f

nfCi(rf ) +
1
6

∑
s

nsCi(rs) (A.2)

bij =
34
3
Ci(G)Cj=i(G)− 10

3

∑
f

nfCi(G)Cj=i(rf )− 1
3

∑
s

nsCi(G)Cj=i(rs)

− 2
∑
f

nfCi(rf )C2
j 6=i(rf )− 2

∑
s

nsCi(rs)C2
j 6=i(rs).

The first term in Eq.A.2 comes from the gauge bosons, and the second and third terms

come from all the chiral fermions and (real) scalars, respectively, that live in the different

irreducible representations rf and rs of the gauge group that has the gauge coupling

constant gi. nf , ns are the number of scalars and fermions that live in the representations

rf and rs of the gauge group. C(G)i is the Casmir operator for the adjoint representation

of the group, C(r)i is the Casmir operator for the irreducible representation r of the

group, and C2
i (r) is the quadratic Casmir operator for the irreducible representation r

of group that has the gauge coupling constant gi.

For an SU(N) group C(G) = N , and, for the defining fundamental representation

N and its conjugate N , C(N) = C(N) = 1/2. For an irreducible representation r of

SU(N) the quadratic Casmir operator is given by:

C2
i (r) =

C(r)id(G)i
d(r)i

where d(G)i is the dimension of the adjoint representation of SU(N) which is N2 − 1,

and d(r)i is the dimension of the irreducible representation r. For an Abelian group

U(1), C(G) = 0, and C(r) and C2(r) are replaced with Q2
i , the square of the charge of

the particle that couples to U(1).

In a supersymmetric quantum field theory bi and bij are given by the following [94]:

bi = −3Ci(Gi) +
∑
c

ncCi(rc) (A.3)

bij = −6Ci(G)Cj=i(G) + 2Ci(G)
∑
c

ncCj=i(rc)

+ 4
∑
c

ncCi(rc)C2
j 6=i(rc).
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In Eq.A.3 the first term is a vector supermultiplet contribution and the second term

comes from chiral supermultiplets where c labels the different chiral supermultiplets in

the supersymmetric quantum field theory.

Below the RGEs of the ME6SSM are calculated but with the U(1)X and U(1)ψ
groups ignored for simplicity. At energies below the TeV scale the ME6SSM is equivalent

to the Standard Model, above TeV it is a supersymmetric theory based on the gauge

group SU(3)c⊗SU(2)L⊗U(1)Y ⊗U(1)X , and above the GUT scale it is a supersymmetric

theory based on the gauge group SU(4)c⊗SU(2)L⊗SU(2)R⊗U(1)ψ. Each energy regime

is looked at in turn.

A.1 The Standard Model

The Standard Model contains the gauge coupling constants g1, g2 and g3 for the gauge

groups U(1)Y , SU(2)L and SU(3)c, where the hypercharge gauge coupling constant g1 is

GUT normalized. The bi and bij group factors for the Standard Model are given below:
b1

b2

b3

 =


0

22/3

−11

+ ng


4/3

4/3

4/3

+ nh


1/10

1/6

0



bij =


0 0 0

0 −136/3 0

0 0 −102

+ ng


19/5 3/5 44/15

1/5 49/3 4

11/30 3/2 76/3



+ nh


9/50 9/10 0

3/10 13/6 0

0 0 0


where ng are the number of generations of quarks and leptons, and nh are the number

of Higgs fields. In the Standard Model ng = 3 and nh = 1.

The gauge coupling constants in Section 3.6 are run from their initial values mea-

sured at the Z0 pole. Since the top quark is more massive than the Z0 vector boson

the initial RGEs do not depend on the top quark (its degrees of freedom have been

integrated out of the theory). The top quark contributes the following to the fermionic
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part of the group factors bi and bij :
b1

b2

b3

 =


1/30

1

1/3



bij =


1/600 3/40 1/3

1/20 49/4 4

1/60 3/4 19/3

 .

(A.4)

A.2 The ME6SSM below the GUT Scale

The group factors bi and bij for a supersymmetric quantum field theory with the gauge

group SU(3)c ⊗ SU(2)L ⊗ U(1)Y that contains the particles in the ME6SSM are the

following: 
b1

b2

b3

 =


0

−6

−9

+ ng


2

2

2

+ nh


3/10

1/2

0

+ nD


1/5

0

1/2



bij =


0 0 0

0 −24 0

0 0 −54

+ ng


38/15 6/5 88/15

2/5 14 8

11/15 3 68/3



+ nh


9/50 9/10 0

3/10 7/2 0

0 0 0

+ nD


4/75 0 16/15

0 0 0

2/15 0 17/3

 .

where ng is the number of generations of the quark and lepton supermultiplets, nh is

the number of Higgs-doublet supermultiplets, and nD is the number of Higgs triplet

superfields. In the MSSM ng = 3, nh = 2 and nD = nH′ = 0, whereas in the E6SSM,

ng = 3, nh = 8 (including the H ′ and H
′ states) and nD = 6. The ME6SSM below the

GUT scale contains ng = 3, and nh = nD = 6. Note that in the E6SSM and ME6SSM

the β-function for g3 is zero at one-loop order and receives a positive contribution at

two-loops. QCD therefore looses asymptotic freedom in these models because of the

additional states that are not in the MSSM.
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A.3 The ME6SSM above the GUT Scale

Above the GUT scale the ME6SSM is a supersymmetric field theory based on the gauge

group SU(4) ⊗ SU(2)L ⊗ SU(2)R ⊗ U(1)ψ. g4, g2R, g2L are defined to be the gauge

coupling constants of SU(2)R, SU(2)L and SU(4) respectively and the group factors are

the following:
b2R

b2L

b4

 =


−6

−6

−12

+ ng


2

2

2

+ nh


1

1

0

+ nD


0

0

1



bij =


−24 0 0

0 −24 0

0 0 −96

+ ng


14 0 15

0 14 15

3 3 31



+ nh


7 3 0

3 7 0

0 0 0

+ nD


0 0 0

0 0 0

0 0 18



+ nHR


14 0 15

0 0 0

3 0 31/2

+ nHL


0 0 0

0 14 15

0 3 31/2

 .

where now ng are the number of generations of the F = (4, 2, 1) and F c = (4, 1, 2) mul-

tiplets that contain the quarks and leptons; nh is the number of h = (1, 2, 2) multiplets

that contain Higgs fields; nD is the number of D = (6, 1, 1) triplet Higgs fields; nHL
is the number of HL = (4, 2, 1) and HL = (4, 2, 1) states; and nHR is the number of

HR = (4, 1, 2) and HR = (4, 1, 2) states. In the ME6SSM, ng = nh = nD = 3 and

nHL = nHR = 2.

All the above group factors bi and bij are used in Eq.A.1 to determine the two-loop

running of the gauge coupling constants in the ME6SSM. The results are plotted in

Fig.3.1 and Fig.4.1 where Fig.4.1 also uses the group factors for the U(1)X and U(1)ψ
groups which have not been included in this Appendix.
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The U(1)X Symmetry

Since the U(1)X group does not appear to have been considered in the literature, this

Appendix illustrates in detail how it is generated from a G4221 = SU(4) ⊗ SU(2)L ⊗
SU(2)R ⊗ U(1)ψ symmetry once HR = (4, 1, 2)− 1

2
and HR = (4, 1, 2) 1

2
obtain VEVs.

The G4221 symmetry is then broken to the G3211 = SU(3)c ⊗ SU(2)L ⊗U(1)Y ⊗U(1)X
symmetry.

The covariant derivative of the G4221 symmetry is given by:

Dµ = ∂µ + ig4T
m
4 Am4µ + ig2LT

s
LA

s
Lµ + ig2RT

r
RA

r
Rµ +

1√
6
igψTψAψµ (B.1)

where m = 1 . . . 15 and r, s = 1 . . . 3; Am4µ, AsLµ, ArRµ and Aψµ are the SU(4), SU(2)L,

SU(2)R and U(1)ψ quantum fields respectively; g4, g2L, g2R and gψ denote the universal

gauge coupling constants of the respective fields and Tm4 , T sL, T rR and Tψ represent their

generators. All of the Tm4 , T rR, T sL and Tψ generators are derived from components

of the E6 generators Ga, which are chosen to be E6 normalized, for the fundamental

representation 27, by:

Tr(Ga Gb) = 3δab (B.2)

where a, b = 1 . . . 78.

Then, with this normalization, the Pati-Salam generators Tm4 , T rR and T sL are nor-

malized for the fundamental representations of SU(4), SU(2)R and SU(2)L respectively,

132
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by:1

Tr(Tm4 Tn4 ) =
1
2
δmn,

T r(T rR T sR) = Tr(T rL T
s
L) =

1
2
δrs

where m,n = 1 . . . 15.

The U(1)ψ charge 1√
6
Tψ is a diagonal E6 generator, which is chosen to be the 78th

generator G78 = 1√
6
Tψ, and is therefore normalized by Eq.B.2 to give:

1
6

∑
27

T 2
ψ = 3 (B.3)

where the sum is over all the G4221 representations that make up the fundamental 27

multiplet of E6.

The scalar fields HR and HR are used to break G4221 to G3211. These are the

smallest G4221 multiplets that can be used to break the Pati-Salam symmetry directly

to the standard model gauge group. When HR and HR develop VEVs in the νR and

νc components respectively, they will break SU(4) → SU(3)c [61] and mix the field

associated with the remaining SU(4) diagonal generator, A15
4 , with the field associated

with the diagonal generator of SU(2)R, A3
R, and the U(1)ψ field Aψ. The rest of the

SU(4) and SU(2)R fields are given square mass proportional to υ2, the sum of the square

of the HR and HR VEVs.

The diagonal generators for the A15
4 and A3

R fields are T 15
4 and T 3

R. For the funda-

mental representations of SU(4) and SU(2)R respectively [51] :

T 15
4 =

√
3
2
diag(

1
6
,
1
6
,
1
6
,−1

2
), T 3

R = diag(
1
2
,−1

2
).

The part of the symmetry breaking G4221 to G3211 involving the diagonal generators

T 15
4 , T 3

R and Tψ is then equivalent to:

U(1)T 15
4
⊗ U(1)T 3

R
⊗ U(1)ψ → U(1)Y ⊗ U(1)X .

In the rest of this Appendix this particular symmetry breaking is explained in detail.

Using the G4221 covariant derivative, Eq.B.1, the covariant derivative for the U(1)T 15
4
⊗

1These normalizations are necessary for the Standard Model generators TSM of SU(3)c and SU(2)L
to be normalized in the conventional way: Tr(T dc T

e
c ) = 1

2
δde and Tr(T rLT

s
L) = 1

2
δrs for the fundamental

representations, where Tc and TL are the generators for the SU(3)c and SU(2)L groups respectively and
d, e = 1 . . . 8.
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U(1)T 3
R
⊗ U(1)ψ symmetry is:

Dµ = ∂µ + ig4T
15
4 A15

4µ + ig2RT
3
RA

3
Rµ +

1√
6
igψTψAψµ (B.4)

≡ ∂µ + igB−LTB−LA
15
4µ + ig2RT

3
RA

3
Rµ + igNψTψAψµ

where gB−L ≡
√

3
2g4, gNψ ≡ 1√

6
gψ, TB−L ≡

√
2
3T

15
4 = (B−L)

2 and B and L are baryon

and lepton number respectively.

In terms of the diagonal generators TB−L, T 3
R and Tψ, the νR component of HR and

the νc component of HR transform under U(1)T 15
4
⊗ U(1)T 3

R
⊗ U(1)ψ as:

νHR =
(
−1

2
,

1
2
, −1

2

)
, νc

H
=
(

1
2
, −1

2
,

1
2

)
. (B.5)

Therefore, once HR and HR get their VEVs, the square of the covariant derivative for

the A15
4 , A3

R and Aψ fields becomes:

∣∣∣Dµν
H
R

∣∣∣2 =
1
4
υ2

(
− gB−LA15

4µ + g2RA
3
Rµ − gNψAψµ

)2

where gB−L, g2R and gNψ are the gB−L, g2R and gNψ gauge coupling constants evaluated

at the G4221 symmetry breaking scale. The above squared covariant derivative can be

written in matrix form as:

1
4
υ2
(
A3
R A15

4 Aψ

)
g2

2R −g2R gB−L −g2R gNψ
−g2R gB−L g2

B−L gB−L gNψ
−g2R gNψ gB−L gNψ g2

Nψ




A3
R

A15
4

Aψ

 . (B.6)

Diagonalizing this matrix equation determines the mass eigenstate fields generated by

the mixing of the G4221 fields A3
R, A15

4 and Aψ. The 3 × 3 square mass mixing matrix

has two zero eigenvalues and one non-zero eigenvalue so that two massless gauge bosons

and one massive gauge boson appear to have been created by the mixing. The massive

gauge boson BH is the following mixture of G4221 fields:

BH =
1
b

(
− g2RA

3
R + gB−LA15

4 + gNψAψ
)

where b2 ≡ g2
2R + g2

B−L + g2
Nψ.

This massive field is an unique mass eigenstate field. However, the degeneracy in

the zero-eigenvalue eigenvectors of the square mass mixing matrix implies that all or-

thogonal combinations of any chosen two massless eigenstate fields also describe two

massless eigenstate fields. All the orthogonal combinations of two massless eigenstate
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fields are physically distinct and so the symmetry breaking mechanism does not gener-

ate two unique massless eigenstate fields.2 We therefore require something in addition

to this symmetry breaking mechanism that lifts the degeneracy of the zero-eigenvalue

eigenvectors and selects two unique massless gauge fields.

It is shown below that when we include the low-energy VEV of the S particle

from the third generation of the 27 multiplets, the degeneracy in the zero-eigenvalue

eigenvectors is lifted and the two massless gauge fields are uniquely chosen to be the

gauge field BY of the Standard Model hypercharge group and an (effectively massless)

gauge field that we call BX . The BY and BX gauge fields are generated from orthogonal

zero-eigenvalued eigenvectors of the above 3× 3 square mass mixing matrix and are the

following mixture of G4221 fields:

BY =
1
a

(
gB−LA3

R + g2RA
15
4

)
,

BX =
1
ab

(
g2RgNψA3

R − gB−LgNψA15
4 + (g2

2R + g2
B−L)Aψ

)
where a2 ≡ g2

2R + g2
B−L.

In terms of the diagonal generators TB−L, T 3
R and Tψ, the S particle transforms

under the U(1)T 15
4
⊗ U(1)T 3

R
⊗ U(1)ψ symmetry as:

S =
(

0, 0, 2
)
.

The S particle only couples to Aψ and so its VEV, s, therefore introduces a perturbation

proportional to s2/υ2 to the (3, 3) component of the 3× 3 square mass mixing matrix in

Eq.B.6. From Section 4.2.2, υ is determined to be of the order 1016 GeV and we require

that s ≈ 103 GeV for EW symmetry breaking.

Diagonalizing the 3×3 square mass mixing matrix with this extremely small pertur-

bation in the (3, 3) component determines the mass eigenstate fields to be the massless

hypercharge gauge field BY , and an extremely small mass gauge field and large mass

gauge field that can be taken to be the BX and BH gauge fields, respectively, in the

excellent approximation that s2/υ2 = 0.3

It is easy to see why the hypercharge gauge field of the Standard Model is the

exact massless gauge field of this symmetry breaking. The hypercharge field is the only

massless gauge field generated by the HR and HR VEVs that does not contain the Aψ
field and therefore the only massless gauge field that S does not couple to. If the Aψ field

is removed from the G4221 symmetry then the mixing of the remaining G4221 diagonal
2All the orthogonal combinations are physical since the kinetic term part of the Lagrangian is invariant

to orthogonal transformations of the fields.
3The VEV of the Standard Model Higgs field is ignored in this symmetry breaking.
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generators becomes equivalent to U(1)T 15
4
⊗ U(1)T 3

R
→ U(1)Y when HR and HR get

VEVs [61].

The mass eigenstate fields BY , BX and BH can be written in terms of the G4221

fields A3
R, A15

4 and Aψ in the following matrix form:
BY

BX

BH

 =


gB−L/a g2R/a 0

g2RgNψ/ab −gB−LgNψ/ab (g2
2R + g2

B−L)/ab

−g2R/b gB−L/b gNψ/b




A3
R

A15
4

Aψ

 . (B.7)

This orthogonal 3 × 3 matrix can be parameterized in terms of rotation and reflection

matrices in the following way:
1 0 0

0 c23 s23

0 −s23 c23




1 0 0

0 −1 0

0 0 1




c12 s12 0

−s12 c12 0

0 0 1

 =


c12 s12 0

c23s12 −c23c12 s23

−s23s12 s23c12 c23


where c12 = gB−L/a, s12 = g2R/a, c23 = gNψ/b and s23 = a/b. The mixing angles θ12

and θ23 are therefore given by tan θ12 = g2R/gB−L and tan θ23 = a/gNψ.

Taking the transpose of Eq.B.7, the G4221 fields A3
R, A15

4 and Aψ can be written in

terms of the mass eigenstate fields BY , BX and BH as:
A3
R

A15
4

Aψ

 =


c12 s12c23 −s12s23

s12 −c12c23 c12s23

0 s23 c23




BY

BX

BH

 .

Putting this matrix equation into the covariant derivative for the U(1)T 15
4
⊗ U(1)T 3

R
⊗

U(1)ψ symmetry, Eq.B.4, determines the covariant derivative for the massless gauge

fields BY and BX to be:

Dµ = ∂µ + igY Y BY µ + ig0
XXBXµ

where:

Y = T 3
R + TB−L = T 3

R + (B − L)/2

is the Standard Model hypercharge [61], and:4

X = (Tψ + T 3
R)− c2

12Y (B.8)

4Alternatively we could have defined X to be g2
2R(Tψ + T 3

R) + g2
B−L(Tψ − TB−L) and redefined g0

X

equivalently.
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is the non-normalized charge of the BX gauge field. gY and g0
X are the non-normalized

universal gauge coupling constants of the BY and BX fields respectively and, at the

G4221 symmetry breaking scale, are given by Eq.B.9 and Eq.B.10:5

gY =
g2R gB−L

a
(B.9)

g0
X =

a

b
gNψ. (B.10)

Eq.B.9 and Eq.B.10 can be written is terms of αY = g2Y
4π and α0

X = (g0X)2

4π , see Eq.3.3 and

Eq.4.11 in Section 4.2.1. The charges X and Y are not E6 normalized and the respective

charges are defined as TX and TY where:

TX = X/NX , TY = Y/NY

and the normalization constants NX and NY are given by:

N2
X = 7− 2c2

12 +
5
3
c4

12, N2
Y =

3
5

Note that the Abelian generator TY is just the conventional GUT normalized hyper-

charge. TX and TY have been E6 normalized using Eq.B.2 which is equivalent to:

∑
27

T 2
Y =

∑
27

T 2
X = 3

where the sum is over all the G3211 ≡ SU(3)c⊗SU(2)L⊗U(1)Y ⊗U(1)X representations

of the fundamental 27 E6 multiplet and U(1)X is the unitary group of the BX field.6

In terms of the E6 normalized charges TX and TY , the covariant derivative for the

BX and BY gauge fields becomes:

Dµ = ∂µ + ig1TYBY µ + igXTXBXµ (B.11)

where g1 and gX are the normalized universal gauge coupling constants of the BY and

BX fields respectively. At the G4221 symmetry breaking scale, the normalized gauge

coupling constants g1 and gX are the following combinations of G4221 gauge coupling

constants:

g1 = NY
g2R gB−L

a
, gX = NX

a

b
gNψ.

5Note that Eq.B.9 is the relation that gY must satisfy if the Pati-Salam symmetry, without the U(1)ψ,
was broken to the Standard Model gauge group using a Higgs boson that transforms as (4, 1, 2) and gets
a VEV in the νR direction.

6X and NX could have been defined differently as long as TX is the same. Here X has been defined
so that it can be written in terms of hypercharge Y .
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From Eq.B.8, the charge TX of the U(1)X group depends on the Pati-Salam gauge cou-

pling constants g2R and gB−L evaluated at the G4221 symmetry breaking scale. There-

fore, under the excellent approximation that s2/υ2 = 0, a massless gauge boson exists

that couples to particles with a charge that depends on the values that certain coupling

constants take at some high energy scale. Although this may be unusual, it does not

appear to pose any problems. Indeed, like any other quantum charge, TX is a dimension-

less constant that is independent of the energy scale at which the interaction between

the particle and the AX field occurs and, although the numbers that X takes may not

be able to be arranged into fractions like Y , they are still discrete and sum to zero for

a complete E6 representation. However, unlike conventional U(1) charges, TX is obvi-

ously very model dependent since different E6 models with an intermediate Pati-Salam

symmetry will, in general, contain different values of the gauge coupling constants g2R

and g4 evaluated at the G4221 symmetry breaking scale. It is easy to prove that it is

a general rule that, if three massless gauge fields are mixed, then at least two of the

resulting mass eigenstate fields must have a charge that depends on the value of the

original gauge coupling constants. Therefore this gauge coupling dependence is not pe-

culiar to the Higgs symmetry breaking mechanism discussed in this Appendix, but to

any symmetry breaking mechanism involving three fields.

In conclusion, this Appendix has illustrated how the G4221 ≡ SU(4) ⊗ SU(2)L ⊗
SU(2)R⊗U(1)ψ symmetry can be broken to the symmetry G3211 ≡ SU(3)c⊗SU(2)L⊗
U(1)Y ⊗ U(1)X when the G4221 multiplets HR, HR and S obtain vacuum expectation

values. Using the covariant derivatives for the G4221 symmetry, Eq.B.1, and the U(1)Y ⊗
U(1)X symmetry, Eq.B.11, the covariant derivative for the G3211 symmetry is given by:

Dµ = ∂µ + ig3T
n
3cA

n
3cµ + ig2LT

s
LA

s
Lµ + ig1TYBY µ + igXTXBXµ (B.12)

where An3c and Tn3c are the SU(3)c fields and generators derived from the SU(4) symmetry

respectively (with n = 1 . . . 8) and g3c is the universal gauge coupling constant of An3c.

This G3211 symmetry can be considered to be an effective high energy symmetry

under the assumption that the low-energy VEVs of the MSSM singlet S and MSSM

Higgs bosons can be neglected at higher energy scales.



Appendix C

FCNC Processes from Extended

Higgs Sectors

Models with extended Higgs sectors can potential contain tree-level FCNCs that are

mediated by the exchange of the neutral Higgs states [78]. In the Standard Model

and the MSSM, these effects are absent at the tree-level, since the coupling of the

quark-quark-Higgs mass eigenstates is flavour conserving. This arises from having the

Yukawa couplings proportional to the quark mass matrices, so that diagonalizing the

mass matrices also diagonalizes the Yukawas. This is illustrated below.

For a supersymmetric theory with three generations of up and down Higgs doublet-

like fields hiu and hid, where i = 1 . . . 3, the general superpotential involving the quarks

and Higgs fields is the following [95]:

W =
i=3∑
i=1

hiuuRYi
uuL +

i=3∑
i=1

hiddRYi
ddL

where the quark fields are column vectors in generation space, and the Yukawa couplings

Y i
q are 3×3 matrices in generation space. The index i labels the different generations of

Higgs doublet fields, not the different quark and lepton generations. Assuming that all

the Higgs fields have VEVs 〈hiu〉 ≡ υu, 〈hid〉 ≡ υd then the above superpotential becomes:

W = uRMuuL + dRMddL

where:

Mq ≡
i=3∑
i=1

Yi
qυ
i
q

with q = u, d.

139
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Figure C.1: This figure illustrates tree-level Feynman diagrams that contribute to
K0 −K0

mixing mediated by an extended Higgs sector.

The above superpotential is written in terms of the quark and lepton interaction

eigenstates (the eigenstates of the gauge symmetries of the model). To obtain the mass

eigenstates we must diagonalize the matrices Mu and Md. These are diagonalized as

the following:

Mu = VuRMuV
†
uL = diag(mu, mc, mt),

Md = VdRMdV
†
dL = diag(md, ms, mb)

where VuL, VdL, VuR and VdR are unitary matrices. The quark mass eigenstates

um and dm are then given in terms of the interaction eigenstates by the following

transformations:

umL = VuLuL umR = VuRuR,

dmL = VdLdL dmR = VdRdR.

The observable CKM matrix is then given by:

VCKM = V†uLVdL.

We can now re-write the interaction superpotential in terms of the quark mass eigen-

states:

W =
i=3∑
i=1

hiuu
m
R (V†uRYi

uVuL)umL +
i=3∑
i=1

hidd
m
R (V†dRYi

dVdL)dmL

≡
i=3∑
i=1

hiuu
m
RWi

uu
m
L +

i=3∑
i=1

hidd
m
RWi

dd
m
L (C.1)

where Wi
q ≡ V†qRYi

qVqL.

In the MSSM and the Standard Model the Yukawa couplings are proportional to the

mass matrices and so the Wi
q matrices become the identity matrix. This illustrates that

the Higgs fields do not mediate tree-level FCNCs. In models with extended Higgs sectors
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however the Higgs fields will, in general, interact with the quarks to generate tree-level

FCNCs with the interactions described by the matrices Wi
q in Eq.C.1. Fig.C.1 illustrates

this tree-level contribution for K0 − K
0 mixing. Of course we must also write the

Higgs fields in Eq.C.1 in terms of their mass eigenstates to find the physical interactions

between the Higgs fields and quarks that generate the observable tree-level FCNCs.

Since experimental data is in good agreement with the Standard Model predictions, the

potentially large contributions arising from the tree-level interactions must be suppressed

in order to have a model which is experimentally viable.

In the E6SSM and ME6SSm a ZH2 symmetry is applied to the first two generations

of Higgs fields huα, hdα where α = 1, 2. In the exact symmetry limit, ZH2 forbids these

Higgs doublets from interacting with the quarks and leptons, and so the quark mass

matrices are given by the product of the VEVs and Yukawa couplings of the hu3 and

hd3 Higgs fields. The mass matrices are thus proportional to the Yukawa matrices and

so there are no tree-level FCNCs that are mediated by neutral scalar Higgs fields.



Bibliography

[1] J. N. Bahcall, arXiv:physics/0406040; B. Pontecorvo, Sov. Phys. JETP 7 (1958) 172

[Zh. Eksp. Teor. Fiz. 34 (1957) 247]; B. Pontecorvo, Sov. Phys. JETP 26 (1968) 984

[Zh. Eksp. Teor. Fiz. 53 (1967) 1717]; L. Wolfenstein, Phys. Rev. D17 (1978) 2369;

S. Mikheyev and A. Yu. Smirnov, Sov. J. Nucl. Phys. 42 (1985) 913; Y. Fukuda et al.

[Super-Kamiokande Collaboration], Phys. Rev. Lett. 81, 1562 (1998); S. N. Ahmed

et al. [SNO Collaboration], arXiv:nucl-ex/0309004; K. Eguchi et al. [KamLAND Col-

laboration], Phys. Rev. Lett. 90 (2003) 021802 [arXiv:hep-ex/0212021]; J. Maricic

and J. G. Learned, Contemp. Phys. 46 (2005) 1; M. H. Ahn et al. [K2K Collabo-

ration], Phys. Rev. D 74 (2006) 072003 [arXiv:hep-ex/0606032]; M. Apollonio et al.

[CHOOZ Collaboration], Phys. Lett. B 466 (1999) 415 [arXiv:hep-ex/9907037].

[2] Rubin, V. & Ford, W. 1970, ApJ, 159, 379; Briel, U.G. and Henry, J.P. 1997,

arXiv:astro-ph/9711237; Bennett, C. et al. 2003, Astrophys. J. Suppl. 148, 97;

Adelman-McCarthy, J.K. et al 2005, astro-ph/0507711; Komatsu, E. et al. 2008,

arXiv:0803.0547.

[3] Perlmutter, S. et al. 1999, ApJ, 517, 565; Riess, A.G. et al. 1999, AJ, 118, 2675;

Riess, A.G. et al 2004, Astrophys. J. 607, 665.

[4] E. Gildener, S. Weinberg, Phys. Rev. D 13 (1976) 3333; E. Gildener, Phys. Rev.

D 14 (1976) 1667; L. Susskind, Phys. Rev. D 20, 2619 (1979); G. t Hooft, in Re-

cent developments in gauge theories, Proceedings of the NATO Advanced Summer

Institute, Cargese 1979, (Plenum, 1980).

[5] J. Ellis, S. Kelley, D.V. Nanopoulos, Phys. Lett. B 260 (1991) 131; P. Langacker,

M. Luo, Phys. Rev. D 44 (1991) 817; U. Amaldi, W. de Boer, H. Furstenau, Phys.

Lett. B 260 (1991) 447; F. Anselmo, L. Cifarelli, A. Peterman, A. Zichichi, Nuovo

Cimento 104A (1991) 1817, 105A (1992) 581.

[6] S. Dimopoulos and S. Raby, Nucl. Phys. B 192, 353 (1981); E. Witten, Nucl. Phys.

B 188, 513 (1981); M. Dine, W. Fischler and M. Srednicki, Nucl. Phys. B 189, 575

(1981); S. Dimopoulos and H. Georgi, Nucl. Phys. B 193, 150 (1981); N. Sakai, Z.

Phys. C 11, 153 (1981); R.K. Kaul and P. Majumdar, Nucl. Phys. B 199, 36 (1982).

142



Bibliography 143

[7] P. Langacker, N. Polonsky, Phys. Rev. D 52 (1995) 3081; P.H. Chankowski, Z.

Pluciennik, S. Pokorski, C.E. Vayonakis, Phys. Lett. B 358 (1995) 264; J. Bagger,

K. Matchev, D. Pierce, Phys. Lett. B 348 (1995) 443; S. Dimopoulos, S. Raby and

F. Wilczek, Phys. Rev. D 24 (1981) 1681.

[8] H. Georgi and S. L. Glashow, Phys. Rev. Lett. 32 (1974) 438.

[9] For example see Weinberg, The quantum theory of fields. Vol. 2: Modern applications,

Cambridge, UK: Univ. Pr. (1996) 489 p

[10] P. Minkowski, Phys Lett 67B 421 (1977); M. Gell-Mann, P. Ramond and R. Slansky

in Sanibel Talk, CALT-68-709, Feb 1979, and in Supergravity (North Holland, Ams-

terdam 1979); T. Yanagida in Proc. of the Workshop on Unified Theory and Baryon

Number of the Universe, KEK, Japan, 1979; S.L.Glashow, Cargese Lectures (1979);

R. N. Mohapatra and G. Senjanovic, Phys. Rev. Lett. 44 (1980) 912; J. Schechter

and J. W. Valle, Phys. Rev. D 25 (1982) 774

[11] M. Fukugita and T. Yanagida, Phys. Lett. B 174 (1986) 45; V. A. Kuzmin, V. A.

Rubakov and M. E. Shaposhnikov, Phys. Lett. B 155 (1985) 36; V. A. Rubakov and

M. E. Shaposhnikov, Usp. Fiz. Nauk, 166 (1996) 493.

[12] For example see D. J. H. Chung, L. L. Everett, G. L. Kane, S. F. King, J. D. Lykken

and L. T. Wang, Phys. Rept. 407 (2005) 1 [arXiv:hep-ph/0312378].

[13] For a recent review see S. P. Martin, arXiv:hep-ph/9709356.

[14] J. R. Ellis, J. F. Gunion, H. E. Haber, L. Roszkowski and F. Zwirner, Phys. Rev.

D 39 (1989) 844; D. Suematsu and Y. Yamagishi, Int. J. Mod. Phys. A 10 (1995)

4521 [arXiv:hep-ph/9411239]; M. Cvetic and P. Langacker, Mod. Phys. Lett. A 11

(1996) 1247 [arXiv:hep-ph/9602424]; D. Suematsu, Phys. Rev. D 59 (1999) 055017

[arXiv:hep-ph/9808409]; P. Langacker, arXiv:0801.1345 [hep-ph].

[15] J. E. Kim and H. P. Nilles, Phys. Lett. B 138 (1984) 150; E. J. Chun, J. E. Kim

and H. P. Nilles, Nucl. Phys. B 370 (1992) 105.

[16] P. Binetruy, S. Dawson, I. Hinchliffe, M. Sher, Nucl. Phys. B 273 (1986) 501; J.

R. Ellis, K. Enqvist, D. V. Nanopoulos, F. Zwirner, Nucl. Phys. B 276 (1986) 14;

L. E. Ibanez, J. Mas, Nucl. Phys. B 286 (1987) 107; J. F. Gunion, L. Roszkowski,

H. E. Haber, Phys. Lett. B 189 (1987) 409; H. E. Haber, M. Sher, Phys. Rev. D 35

(1987) 2206; J. R. Ellis, D. V. Nanopoulos, S. T. Petcov, F. Zwirner, Nucl. Phys.

B 283 (1987) 93; M. Drees, Phys. Rev. D 35 (1987) 2910; H. Baer, D. Dicus, M.

Drees, X. Tata, Phys. Rev. D 36 (1987) 1363; J. F. Gunion, L. Roszkowski, H. E.

Haber, Phys. Rev. D 38 (1988) 105.



Bibliography 144

[17] S. F. King, S. Moretti and R. Nevzorov, Phys. Rev. D 73 (2006) 035009 [arXiv:hep-

ph/0510419]; S. F. King, S. Moretti and R. Nevzorov, Phys. Lett. B 634 (2006) 278

[arXiv:hep-ph/0511256]; P. Athron, S. F. King, D. J. . Miller, S. Moretti, R. Nevzorov

and R. Nevzorov, arXiv:0901.1192 [hep-ph]; P. Athron, S. F. King, D. J. Miller,

S. Moretti and R. Nevzorov, arXiv:0904.2169 [hep-ph].

[18] H. Georgi and C. Jarlskog, Phys. Lett. B 86 (1979) 297.

[19] For recent reviews see e.g.: S. F. King, arXiv:0712.1750 [physics.pop-ph]; R. N. Mo-

hapatra and A. Y. Smirnov, Ann. Rev. Nucl. Part. Sci. 56 (2006) 569 [arXiv:hep-

ph/0603118]; R. N. Mohapatra et al., arXiv:hep-ph/0510213; S. F. King, Rept. Prog.

Phys. 67 (2004) 107 [arXiv:hep-ph/0310204]; G. Altarelli and F. Feruglio, New J.

Phys. 6 (2004) 106 [arXiv:hep-ph/0405048]; R. N. Mohapatra, “Understanding neu-

trino masses and mixings within the seesaw framework,” arXiv:hep-ph/0306016.

[20] P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett. B 458, 79 (1999)

[arXiv:hep-ph/9904297]; P. F. Harrison, D. H. Perkins and W. G. Scott, Phys. Lett.

B 530, 167 (2002) [arXiv:hep-ph/0202074].

[21] See for example: R. Barbieri, L. J. Hall, S. Raby and A. Romanino, Nucl. Phys.

B 493, 3 (1997) [arXiv:hep-ph/9610449]. M. C. Chen and K. T. Mahanthappa,

Phys. Rev. D 62, 113007 (2000) [arXiv:hep-ph/0005292]. G. Altarelli, F. Feruglio

and I. Masina, JHEP 0011, 040 (2000) [arXiv:hep-ph/0007254]. J. L. Chkareuli,

C. D. Froggatt and H. B. Nielsen, Nucl. Phys. B 626, 307 (2002) [arXiv:hep-

ph/0109156]. J. Kubo, A. Mondragon, M. Mondragon and E. Rodriguez-Jauregui,

Prog. Theor. Phys. 109, 795 (2003) [Erratum-ibid. 114, 287 (2005)] [arXiv:hep-

ph/0302196]. G. L. Kane, S. F. King, I. N. R. Peddie and L. Velasco-Sevilla, JHEP

0508, 083 (2005) [arXiv:hep-ph/0504038]. R. Dermisek and S. Raby, Phys. Lett.

B 622, 327 (2005) [arXiv:hep-ph/0507045]. R. Dermisek, M. Harada and S. Raby,

Phys. Rev. D 74, 035011 (2006) [arXiv:hep-ph/0606055].

[22] G. G. Ross and O. Vives, Phys. Rev. D 67 (2003) 095013 [arXiv:hep-ph/0211279];

G. G. Ross, L. Velasco-Sevilla and O. Vives, Nucl. Phys. B 692 (2004) 50 [arXiv:hep-

ph/0401064]; S. Antusch, S. F. King and M. Malinsky, arXiv:0708.1282 [hep-ph].

[23] S.L. Glashow, Nucl. Phys. 20, 579 (1961); S. Weinberg, Phys. Rev. Lett. 19, 1264

(1967); A. Salam, Elementary Particle Theory, eds.: Svartholm, Almquist, and Wik-

sells, Stockholm, 1968; S. Glashow, J. Iliopoulos, and L. Maiani, Phys. Rev. D2,

1285 (1970).

[24] M. E. Peskin and D. V. Schroeder, An Introduction To Quantum Field Theory,

Reading, USA: Addison-Wesley (1995) 842 p



Bibliography 145

[25] P.W. Higgs, Phys. Rev. Lett. 12, 132 (1964); idem., Phys. Rev. 145, 1156 (1966); F.

Englert and R. Brout, Phys. Rev. Lett. 13, 321 (1964); G.S. Guralnik, C.R. Hagen,

and T.W. Kibble, Phys. Rev. Lett. 13, 585 (1964).

[26] C. Amsler et al. [Particle Data Group], Phys. Lett. B 667 (2008) 1.

[27] N. Cabibbo et al., Nucl. Phys. B158, 295 (1979); See, e.g., G. Altarelli and G.

Isidori, Phys. Lett. B337, 141 (1994); J.A. Casas, J.R. Espinosa, and M. Quiros,

Phys. Lett. B342, 171 (1995) idem., Phys. Lett. B382, 374 (1996); T. Hambye and

K. Riesselmann, Phys. Rev. D55, 7255 (1997).

[28] P. Ramond, Phys. Rev. D 3, 2415 (1971); A. Neveu and J.H. Schwarz, Nucl. Phys.

B 31, 86 (1971); J.L. Gervais and B. Sakita, Nucl. Phys. B 34, 632 (1971); Yu. A.

Golfand and E. P. Likhtman, JETP Lett. 13, 323 (1971); J. Wess and B. Zumino,

Nucl. Phys. B 70 (1974) 39; D.V. Volkov and V.P. Akulov, Phys. Lett. B 46, 109

(1973).

[29] E. Witten, Nucl. Phys. B 188 (1981) 513; N. Sakai, Z. Phys. C 11 (1981) 153; S.

Dimopoulos, H. Georgi, Nucl. Phys. B 193 (1981) 150; R. K. Kaul, P. Majumdar,

Nucl. Phys. B 199 (1982) 36.

[30] P. Chankowski, J. Ellis and S. Pokorski, Phys. Lett. B 423 (1998) 327; R. Barbieri

and A. Strummia, Phys. Lett. B 433 (1998) 63; P. Chankowski, J. Ellis, M. Ole-

chowski and S. Pokorski, hep-ph/9808275; Kwok Lung Chan, Utpal Chattopadhyay,

and Pran Nath, hep-ph/9710473; G.L. Kane and S.F. King, Naturalness implications

of LEP results, Phys. Lett. B 451 (1999) 113 [hep-ph/9810374].

[31] For a complete review, see K. R. Dienes, Phys. Rept. 287 (1997) 447 [hep-

th/9602045].

[32] G. C. Cho and K. Hagiwara, Phys. Lett. B 419 (1998) 199 [hep-ph/9709279].

[33] H. Georgi, and S. L. Glashow Phys. Rev. D 6 (1972) 429.

[34] H. Georgi, in Particles and Fields 1974, ed. C. Carlson (Amer. Inst. of Physics,

New York 1975).
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