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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF PHYSICS AND ASTRONOMY

Doctor of Philosophy

E¢ INSPIRED SUPERSYMMETRIC STANDARD MODELS
by Richard Howl

This work investigates extensions to the Standard Model that are inspired by supersym-
metric models with an Eg gauge group. The models are non-minimal supersymmetric
theories which keep the Higgs mass stable against the quantum corrections from higher
energy physics, but do not contain the u-problem or little hierarchy problem of the Mini-
mal Supersymmetric Standard Model (MSSM). Also, unlike conventional Grand Unified
Theories, the Eg inspired models do not contain any doublet-triplet splitting and the
Minimal Eg Supersymmetric Model (MEgSSM) only contains complete Eg multiplets at
low energies. A particularly exciting feature of the MEgSSM is the prediction of gauge
coupling unification at the Planck scale rather than the conventional GUT scale, hinting

at a potential unification of the Standard Model forces with quantum gravity.

If extended with a discrete non-Abelian family symmetry, the Eg inspired models
can explain the masses and mixings of the quarks and leptons that are observed in
particle experiments. These are not understood in the Standard Model since they are
free parameters, creating a flavour problem for the theory. Extending the Standard
Model or MSSM with a family symmetry offers an attractive resolution to the flavour
problem, and the recent discovery of neutrino oscillations, which indicate a high-level of
symmetry in the lepton mixings, has led to a renewed interest in these models. However,
explaining why the Higgs mass is small is essential in these models since it sets the scale
for the quark and lepton masses. This motivates the synthesis of a family symmetry with
the Eg inspired supersymmetric models, which resolves a number of problems facing the
Standard Model including the hierarchy problem and the flavour problem. A particular
success of the resulting models is their ability to suppress proton decay and flavour
changing neutral currents, from supersymmetry and extended Higgs sectors, using the

same family symmetry that is responsible for a tri-bi-maximal mixing of leptons.
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Chapter 1

Introduction

1.1 Beyond the Standard Model

For more than thirty years the Standard Model has provided the most accurate descrip-
tion of particle physics and there has been little direct experimental evidence to suggest
that the model should be replaced with a new theory. However, the Standard Model
cannot explain the recent discovery of neutrino oscillations [1], which suggests that the
theory must be modified. Mounting cosmological evidence for dark matter and dark

energy also suggests that the model is incomplete [2, 3].

Although it has been experimentally successful, the Standard Model has long been
considered to be unsatisfactory in a number of theoretical areas. For example, it is
incompatible with General Relativity, our most accurate theory of gravity, and the Higgs
mass is unstable with the addition of higher energy physics [4]. There is also a lack of
explanation for the observed structure of quark and lepton masses and CKM matrix
elements, introducing a flavour problem to the theory. The most popular solution to the
instability of the Higgs mass is to treat the Standard Model as a low-energy effective
field theory of the Minimal Supersymmetric Standard Model (MSSM) [5], which is the
minimal application of supersymmetry to the Standard Model. In the MSSM each
Standard Model particle is given a supersymmetric partner so that there is an equal
number of boson and fermion degrees of freedom. The Higgs mass is then stable because

the quantum corrections from the fermions and bosons cancel [6].

As well as stabilizing the Higgs mass, the MSSM also hints at solutions to a num-
ber of other failings of the Standard Model. For example, the MSSM (with R-parity
conserved) potentially provides a candidate for dark matter since the lightest supersym-

metric particle (LSP) is stable and should be weakly interacting [5]. The MSSM also
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indicates the existence of a new theory at a very high-energy scale which provides new
insights into many theoretical problems of the Standard Model. If the MSSM gauge
coupling constants are run to high energies they meet at approximately 3 x 106 GeV,
which is called the GUT scale [7]. This suggests that the strong nuclear force and the
electroweak force unify at this high-energy scale and that the MSSM is a low-energy

approximation to a supersymmetric Grand Unified Theory [8].

Supersymmetric Grand Unified Theories (SUSY GUTSs) based on gauge groups such
as SO(10) and FEg can explain the mysterious anomaly cancellations of the Standard
Model and the quantization of electric charge [9]. They can also predict right-handed
neutrinos which, since they do not take part in the gauge interactions of the Stan-
dard Model, would be expected to obtain GUT scale masses. A conventional see-saw
mechanism then predicts small neutrino masses [10], and the out-of-equilibrium decays
of right-handed neutrinos can explain baryon asymmetry through Sphaleron processes
[11].

However, despite its obvious attractions, the standard paradigm of SUSY GUTs
based on the MSSM faces some serious shortcomings. On the one hand, the failure
to discover superpartners or the Higgs boson by the LEP and the Tevatron indicates
that the scale of SUSY breaking must be higher than previously thought, leading to
fine-tuning at the per cent level [12]. On the other hand experimental limits on proton
decay and the requirement of Higgs doublet-triplet splitting provides some theoretical
challenges at the high scale. Related to the doublet-triplet splitting problem is the origin
of u, the SUSY Higgs and Higgsino mass parameter, which from phenomenology must
be of order the SUSY breaking scale, but which a priori is independent of the SUSY
breaking scale [13].

An elegant solution to the p-problem is to extend the particle content of the MSSM
by introducing a new field S that is a singlet of the Standard Model gauge group and
couples to the MSSM Higgs doublets such that its dynamically generated vacuum expec-
tation value (VEV) provides an effective TeV scale p-term that is related to the breaking
of supersymmetry [14]. In such theories there is also an advantage to be gained by intro-
ducing an additional low-energy Abelian gauge group U(1) since, without a U(1) gauge
group, a Goldstone boson would be created by the singlet field’s VEV [15]. The U(1)
group also explains why there is no explicit p-term and why S does not get a large

Majorana mass.

SUSY GUTs based on an Eg gauge group naturally contain additional U(1) groups
and Standard Model singlets S [16]. This suggests that supersymmetric models based on
an Eg gauge symmetry can be alternatives to the MSSM that do not contain a u-problem.

A low-energy model that is inspired by an Eg SUSY GUT is the Eg supersymmetric
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Standard Model (EgSSM) [17]. This model does not contain the p-problem or the
little hierarchy problem of the MSSM. However, an unsatisfactory aspect of the EgSSM
is that, to obtain gauge coupling unification at the GUT scale, the EgSSM contains
two electroweak doublets H’ and H that do not form complete Eg representations
and reintroduce a p’-problem and a doublet-triplet splitting problem. In this work
a new model called the Minimal Eg Supersymmetric Standard Model (MEgSSM) is
introduced that only contains complete Eg representations but still predicts unification
of the Standard Model gauge coupling constants. This model contains all the benefits
of the EgSSM such as a stable Higgs field and no p-problem, little hierarchy problem or
doublet-triplet splitting but does not reintroduce any of these problems. In the MEgSSM
the gauge coupling constants are predicted to unify at the Planck scale rather than the
GUT scale suggesting a potential unification of the Standard Model forces with quantum
gravity.

Another failing of simple SUSY GUTs is their inability to explain the quark and
lepton masses and mixing angles that are observed in particle experiments. Since quarks
and leptons are unified (or partially unified) into the same representations of the simple
gauge group, Grand Unified Theories predict relations between the quark and lepton
masses. However they do not explain why there are three generations of quarks and
leptons, and why these generations have a strong hierarchical structure. Further, only
the unification of the quark and lepton Yukawa couplings for the heaviest generation is

successful when renormalized at the electroweak scale [18].

The lack of understanding of quark and lepton masses has seen renewed interest in
recent years due to the observation of neutrino masses and lepton mixing angles [19]. An
elegant solution to explaining the smallness of neutrino masses is the conventional see-
saw mechanism, which naturally occur in Grand Unified Theories such as SO(10) or Eg.
When combined with a family symmetry this mechanism can also explain the large lepton
mixing angles which are, at present, consistent with a tri-bi-maximal symmetry [20].
Family symmetries control the Yukawa couplings of the quarks and leptons to the Higgs
field, and discrete non-Abelian family symmetry such as As7 are particularly successful
at explaining the quark and lepton masses and mixing angles [21]. When applied to
supersymmetric theories, non-Abelian family symmetries also provide a solution to the
SUSY flavour and CP problems [22]. Extending SUSY GUTs with a family symmetry
is thus very successful at resolving the flavour problem of the Standard Model (and
MSSM).

In models with a family symmetry the Higgs VEV sets the (upper) scale of the
quark and lepton masses and so the Higgs mass must be small (of order the electroweak

symmetry) in these models. This strongly suggests extending the EgSSM or MEgSSM
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with a family symmetry and in this work the MEgSSM and EgSSM are chosen to be
extended with a Ag; family symmetry. The resulting models solve many of the theo-
retical and experimental problems facing the Standard Model. For example, the Higgs
mass is stable, the quark and lepton masses and mixing angles are explained, a dark
matter candidate is provided, and, in the MEgSSM models, the gauge coupling constants
unify at the Planck scale, which implies unification of the Standard Model forces with

quantum gravity.

1.2 Structure of Thesis

This thesis is organised as follows: In Chapter 2 the Higgs mechanism of the Standard
Model is reviewed and the supersymmetric solution to the instability of the Higgs mass is
discussed. Supersymmetric Grand Unified Theories are then motivated and the EgSSM
is analysed in the context of the u-problem of the MSSM. Chapter 3 introduces the p’'-
problem of the EgSSM and explains how the Standard Model gauge coupling constants
can unify in a SUSY Eg GUT that only contains complete representations of Eg, which is
equivalent to the particle spectrum of the EgSSM but without the additional electroweak
doublets H' and H . Chapter 4 uses the results of Chapter 3 to develop an alternative
to the EgSSM called the MEgSSM that resolves the u-problem of the MSSM without
reintroducing this problem. Chapter 5 describes the lack of explanation of quark and
lepton models in the Standard Model and introduces family symmetries as a potential
resolution to this problem. Chapter 6 then extends the EgSSM and MEgSSM with a
simple discrete non-Abelian family symmetry to solve the flavour problem of the MSSM
and SM. In Chapter 7 a family symmetry is applied to the EgSSM that fully resolves the
flavour problem of the model and illustrates how the flavour changing neutral currents
from supersymmetric theories with extended Higgs sectors can be suppressed. The

overall conclusions to this thesis then follow in Chapter 8.

Appendix A illustrates the two-loop G-functions that are used in Chapters 3 and 4
for the MEgSSM. Appendix B describes the origin of the U(1) x group of the MEgSSM in
detail, and finally, Appendix C reviews how flavour changing neutral currents (FCNCs)

are introduced in models with extended Higgs sectors.



Chapter 2

The Higgs Field and

Supersymmetry

2.1 The Standard Model

The Standard Model is a quantum field theory that is based on the local gauge group
SU(3)exSU(2)r, xU(1)y where SU(3), describes the strong nuclear force and SU(2), x
U(1)y describes the unified electroweak force. The symmetry of the electroweak force
SU(2)rxU(1)y is spontaneously broken in the Standard Model to the weak nuclear force
W, Z% and the electromagnetic force U(1)e, [23]. Classically a scalar field called the
Higgs field takes on a nonzero global value, which does not respect the SU(2)y x U(1)y
symmetry, at every point in space and causes the symmetry to be broken. This is
analogous to a ferromagnet in statistical mechanics that is subjected to an external field
with a directional character, which breaks the spatial invariance of the magnet. The

material for this Section is based on that in [24].

2.1.1 Spontaneous Symmetry Breaking

To illustrate how the electroweak symmetry is broken, consider the Lagrangian of a U(1)
gauge field and a charged complex scalar field h:

1
L=—-

1B+ D2 = V(B) (21)

where F},, is the field strength of the U(1) gauge field A,; D,, is the covariant derivative
of the scalar field, which describes the interaction between the scalar and gauge fields;

and V' (h) is the potential of the scalar field. The field strength and covariant derivative
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are given by Eq.2.2 and Eq.2.3 respectively, and Eq.2.4 represents the most general form

for V(h) which provides a renormalizable theory.

Fu = 0,4, — 9,4, (2.2)
D, =8, +1igQnA, (2.3)
V(h) = p?nth + A(hTh)? (2.4)

where ¢ is the gauge coupling constant of U(1); @}, is the charge of the scalar field h;

and p? and \ are coupling constants.

The above scalar potential V' (h) for 4? > 0 and A > 0 is plotted in the left panel
of Fig.2.1. In this case the minimum potential energy of the scalar field is at the origin
of the potential and respects the U(1) gauge symmetry. However, if we instead assume
that 2 < 0, then the minimum of the potential is no longer at the origin, as illustrated
by the right panel of Fig.2.1. The scalar field will oscillate around its minimum potential
energy and it is therefore useful to expand around the minimum hg by redefining h such
that h(x) = ho + H(x), where the local U(1) gauge symmetry has been used to make
h(x) real-valued at every point z.! The kinetic energy of the scalar field, given by |D,h|?

in Eq.2.1, now contains a mass term for the U(1) gauge field in the new coordinates:
DA = (O + FQRRAA -

Therefore, if the scalar field lives near the minimum of its potential with x? < 0, the
U(1) gauge symmetry appears to be spontaneously broken, that is, the gauge boson
acquires a mass and there is no U(1) symmetry. The non-zero value of the scalar field’s
potential energy hg is called the scalar’s vacuum expectation value (VEV), and is given
by:

—u2

S (2.5)

v =

By interacting with the complex scalar field h over all space, the U(1) gauge field has

thus acquired a mass at every point in space.

2.1.2 Electroweak Symmetry Breaking

This argument can be extend to the non-Abelian electroweak theory SU(2)r x U(1)y.
In this case the complex scalar field, called the Higgs field h, transforms in the spinor

representation of SU(2)., and has Y =  hypercharge [25]. The covariant derivative of

'Eq.2.1 is invariant under a local U(1) transformation: ¢(z) — e @ ¢(z) and A, (z) — A, (z) —
ﬁaua(w). We can choose «a(z) so that ¢(x) is real-valued at every pint z. This is called the unitarity
gauge.
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— e

FIGURE 2.1: Shape of the scalar potential V (h) where the left panel is for y? > 0 and
the right panel is for 2 < 0. h; and ho denote the real and imaginary parts of the
complex scalar field h.

the scalar field is then:
1
D,h = 8Mh + iggLTgWguh + iigyByuh (2.6)

where W}, and By, are the SU(2),, and U(1)y gauge fields respectively, and the SU(2)L

generators T} are given by %aa where 0% are the Pauli matrices with a =1...3.

The Form of the potential V(h) is taken to be the same as in Eq.2.4 and so the
scalar field h again obtains a VEV (h). We can use the freedom of SU(2)r, rotations to
write this VEV in any SU(2);, component, for example:

()

Expanding around the minimum of the scalar potential, the Kinetic Energy of the

where v = _2—‘/‘\2 from Eq.2.5.

Higgs field, given by the mod square of the covariant derivative, then contains the

following SU(2)1, x U(1)y gauge field mass terms:

1 1 0
(o) o)t o) (1) en
v
v° 2 12 2 2 |2 3 2
:Z[Q2L|WLM‘ +92L‘WLM‘ + ’_92LW# + gy By | }

The VEV of h therefore generates mass terms for the SU(2); fields associated with
the Pauli matrices 7!, 72; and mixes the hypercharge field By with the SU(2). field
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associated with 73. The mixing of the A% field and By can be written as the matrix
product +0?BTMB where BT = ( By W} ), and M is given by:

( 932/ —92L9Y )
~gngy G )
The fields W} and By are the eigenstates of the SU(2); x U(1)y interactions but,
since they are mixed by the above mass terms, they cannot be the same as the mass
eigenstates. These are instead found by diagonalizing the above matrix M. The diagonal
matrix D of M is defined by D = VMV where V is the matrix (vi,vs) of the

eigenvectors v and vy of M. The matrix product inBTMB can therefore be written

as iv2ATDA where A = VI'B contains the mass eigenstates of the fields and is given

by:
A7 B cosf sin6 By
70 —sinf cosf w3,
where tan 6 = gy /gor,. The eigenstate A7 corresponds to a zero eigenvalue for M and is

therefore a massless field, whereas the Z° field has acquired a mass my given by:

1
my = 1U2(9§L + %) (2.8)

N | =

Replacing the interaction eigenstates with the above mass eigenstate in the covariant

derivative Eq.2.6 then gives:

. g — . 921
Duzau—zﬁ(W:T++WuT ) —i

where I/V#i = %(Wj F zWi) and T* = (o' +i0?). The coupling constant e and the

generator Qen, are defined by the following:

s HZM (T? — sin? 0Qem) — ieA,Qem

e = gor sinb, (2.9)
Qem =T} +Y. (2.10)

The generator Q¢,, leaves the scalar field’s vacuum invariant and so it is not affected
by the VEV of the scalar field which explains why A, remains massless. The SU(2)r, x
U(1)y electroweak symmetry has thus been spontaneously broken to the symmetry of
electromagnetism U(1)en,. The electroweak force is therefore broken in the Standard
Model because the vacuum in which all particle interactions takes place is not actually
empty but is instead filled with a condensate of particles from the Higgs field. The
W=, Z9 bosons continuously interact with the Higgs field as they travel through the
vacuum, which appears to give them mass. In fact the Higgs field effectively ‘slows

down’ anything that interacts with it, and in the Standard Model all fundamental mass
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comes from the Higgs field. The way in which the Higgs field gives mass to the quarks
and leptons is described in detail in Chapter 5.

Eq.2.10 enables us to determine the hypercharge Y of the various fields in the
Standard Model by measuring their electric charge. However we could have just as
easily defined hypercharge as:

Y = N(Q—T}) (2.11)

where N is any real number, as long as we also redefine the gauge coupling constant
gy as gy /N so that the strength of interaction remains the same. In Section 2.4.1 a

particular choice of N is introduced that is motivated by higher energy physics.

Eq.2.9 defines the gauge coupling constant of electromagnetism (at the electroweak
symmetry breaking scale) in terms of the hypercharge and SU(2), gauge coupling con-

stants. This can be re-written as:

1 1 1
= (2.12)
Qe Qgr, ay

where a = g2 /4. This boundary condition applies at the electroweak symmetry break-

ing scale.

2.1.3 The Hierarchy Problem

The previous Section illustrated that if we rewrite the covariant derivative Eq.2.6 in
terms of the Higgs field’s oscillation around its VEV h = (h) + H then mass terms
appear for the electroweak gauge fields. Likewise, if we rewrite the whole Lagrangian
describing the scalar and the SU(2)r x U(1)y gauge fields, then we also find a mass

term for the scalar field’s oscillation H in the scalar potential V'(h):

V(h) = (p* + 6 ) H? + - -
1

Egm%{HQ—i—---

where my = —2u% = 4\? and p? < 0.

The quantum of the field h(z) is called the Higgs boson and has a classical mass
mpyg. Just as with the vector bosons, the mass of this field comes from the product of
the VEV of the complex scalar field h and a renormalizable coupling constant. However
unlike for the vector bosons the renormalizable coupling constant X is, at the time of
writing, undetermined by experiment. This is because the Higgs boson has not yet been
observed, although it is hoped to be found at the upcoming Large Hadron Collider in
CERN. The present experimental limit on the Higgs boson’s mass is set by LEP to be
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mpy > 114.4 GeV at 95% CL [26].2 The Tevatron has also given an exclusion region
of 160 — 170 GeV at 95% CL [26]. Theoretical arguments based on the perturbativity
of the theory can also be used to place approximate upper and lower bounds upon
the Higgs boson’s mass [27]. For example, for large Higgs boson masses the coupling
A rises with energy and so the theory would eventually become non-perturbative. The
requirement that this does not occur below a given energy scale A defines an upper bound
for the Higgs mass. A lower bound is obtained from the study of quantum corrections
to the Standard Model and from requiring the effective potential to be positive definite.
These theoretical bounds imply that if the Standard Model is to be perturbative up to
Mgyt = 10'6 GeV, the Higgs boson mass should be within about 130 and 190 GeV
[27].3

Since we haven’t yet observed the Higgs boson then we cannot say for definite if the
Standard Model’s explanation of electroweak symmetry breaking is correct. However its
successful description of the W* and ZY bosons and the fact that it also provides the
quarks and leptons with mass suggests that, if it isn’t correct, then the true mechanism
of electroweak symmetry breaking must be very similar to that in the Standard Model.
There is an awkward element about the Standard Model Higgs mechanism however.
This arises when we investigate the quantum corrections to the Higgs boson’s mass
and find that the square of the Higgs boson’s mass m%{ receives enormous quantum
corrections from the virtual effects of every particle that couples to it [4]. This is not
a problem so much for the Standard Model itself since the theory is renormalizable,
but instead implies a rather disturbing sensitivity of the Higgs potential to new physics
in almost any imaginable extension of the Standard Model. This is because quantum
corrections to the Higgs boson’s mass from new physics would not be eliminated without
the physically unjustifiable tuning of counter-terms specifically for that purpose.* In fact
m%{ is sensitive to the masses of the heaviest particles that H couples to, so that, if the
mass scale of these fields is very large, its effects on the Standard Model do not decouple
but instead make it difficult to understand why m%{ is so small. This problem arises
even if there is no direct coupling between the Standard Model Higgs boson and the

unknown heavy physics.

This would of course not be a problem if there was no new physics beyond the
Standard Model, but this is considered to be very unlikely, particular in light of the

expected need for a quantum mechanical description of gravity. We therefore anticipate

2For a SUSY theory the limit is myg > 92.8 GeV for the lightest Higgs.

3Indirect experimental bounds for the Standard Model Higgs boson mass are obtained from fits to
precision measurements of electroweak observables, and to the measured top and W* masses. These
measurements are sensitive to the logarithm of the Higgs mass, and the latest indirect bounds are:
129770 GeV [26].

4If one introduces a momentum cut-off Ayy rather than using dimensional regularization then the
quantum corrections to m%{ scale as A?JV.
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that, when we include higher energy physics such as quantum gravity, the Higgs mass
becomes unstable. Theoretically then we expect that the Higgs mass should be similar
to the Planck mass and electroweak symmetry breaking should occur near the Planck
scale, which is of course not what we observe experimentally. This is generically called
the hierarchy problem of the Standard Model [4].

2.2 Supersymmetry

The Higgs field is very important since it sets the scale of everything in the Standard
Model, and given that we expect new physics to occur at higher energies, then we must
somehow stabilize the Higgs field. Thus, the Standard Model is expected to be embedded
in a more fundamental theory which will stabilize the hierarchy between the electroweak
scale and the Planck scale in a natural way. The material for this Section is based on
that in [13].

The instability of the Higgs mass turns out to be a general property of scalar fields
in quantum field theories since, unlike fermions and vector bosons, their mass is not
protected from a chiral or gauge symmetry.> This suggests that an approach to stabi-
lizing the Higgs mass is to introduce a symmetry for scalar fields. One such symmetry
is supersymmetry [28], which transforms a bosonic state into a fermionic state and vice

versa: 6

Q' or Q|Boson >= |Fermion >, Q' or Q|Fermion >= [Boson >

where @ and Q' are fermionic operators (anti-commuting spinors) since they carry spin

angular momentum 1/2. This illustrates that supersymmetry is a spacetime symmetry.

Supersymmetry protects the mass of scalar particles from the virtual effects of heavy
particles by cancelling the various contributions to the quantum corrections [28]. For
example, at one loop there is a relative minus sign between the fermion and boson
contributions to Am%] and so, by introducing a boson for every fermion and vice-versa,
the contributions to the Higgs mass cancel. This cancellation occurs to all orders of

perturbation theory and so the Higgs mass becomes stable.

The single particle states of a supersymmetric theory fall into irreducible repre-
sentations of the supersymmetry algebra called supermultiplets. Each supermultiplet

contains both fermion and boson states, which are commonly known as superpartners

®Chiral symmetry requires that the quantum corrections to a fermion’s mass are proportional to the
mass itself, resulting in much smaller tuning than quantum corrections to scalar masses.

50nly the simplest type of supersymmetric algebra, N = 1 supersymmetry is considered in this work,
where N refers to the number of supersymmetries (the number of distinct copies of Q, Q").
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of each other. Since the generators of supersymmetry commute with the generators of
gauge transformations, particles in the same supermultiplet must also be in the same

representation of the gauge group.

2.3 The Minimal Supersymmetric Standard Model

The Minimal Supersymmetric Standard Model (MSSM) [5] is the result of what is gener-
ally considered to be the simplest application of supersymmetry to the Standard Model.
In the MSSM every particle of the Standard Model has a supersymmetric partner called
a sparticle. For example, the quarks and leptons have scalar partners called squarks and
sleptons that together make up chiral supermultiplets, and the Standard Model gauge
bosons have fermionic partners, called gauginos, that together form vector supermulti-

plets.

The Higgs sector of the MSSM however does not just contain the Standard Model
Higgs and its fermionic superpartner. Instead it contains two Higgs chiral supermulti-
plets called the up and down Higgs supermultiplets h, and hg. Two Higgs fields rather
than one are principally required so that the gauge anomalies for the electroweak gauge
symmetry cancel. If these didn’t cancel then the model would be an inconsistent quan-
tum field theory. The cancellation of gauge anomalies includes the requirement that
Tr[(T3)%Y] = Tr[Y?®] = 0, where traces run over all the left-handed Weyl fermionic
degrees of freedom in the theory. In the Standard Model, these conditions are already
satisfied by the known quarks and leptons, but a fermionic partner of a Higgs field must
be a weak isodoublet with weak hypercharge Y = 1/2 or Y = —1/2. In either case the
fermion will make a non-zero contribution to the traces and spoil anomaly cancellation.
This can be avoided however if there are two Higgs supermultiplets with opposite hy-
percharge so that the total contribution to the anomaly traces from the two fermionic

members of the Higgs chiral supermultiplets vanishes.

2.3.1 The MSSM Superpotential

The superpotential of a supersymmetric model lists all the non-gauge interactions for
particles that live in the chiral supermultiplets of the model. The form of the non-gauge
couplings, including the mass terms, is highly restricted by the requirement that the

action that is invariant under supersymmetry transformations is renormalizable. The
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superpotential of the MSSM is given below:’
Wirssm = NI QiuShy + NJ QidSha + N9 LieShqg + puhyha (2.13)

where Q;, L;, €, u§ and df are the quark and lepton chiral supermultiplets; )\Zj, )\ilj, PV S
are renormalizable parameters; 7,7 = 1...3 are flavour indices; and ¢ denotes a charge-
conjugate of a left-handed field. Wiy gsas is the supersymmetric version of the Yukawa
interactions of the Standard Model.

Other terms, which are allowed by the gauge symmetry of the MSSM, are not present
in the MSSM superpotential because of a discrete Zs symmetry called R-parity. These
terms are LLhg, QLd®, Lh,, which arise because L and hg are identical under the MSSM
gauge group, and u°d®d®. These operators would cause phenomenological problems such

as rapid proton decay if they aren’t forbidden or heavily suppressed.

The first three terms in Eq.2.15 illustrate that two Higgs fields are also required so
as to give mass to both the up and down the quarks and charged leptons. If h,, develops
a VEV then it will give mass to the up quarks, and if hy also develops a VEV then it
will give mass to the down quarks and charged leptons. Terms such as Qu°h}, Qd°h;,
and Qe°h;, are forbidden in the superpotential since it must be analytic in the chiral

superfields.

The phyhg term in the superpotential, called the p-term, can be written out as
1(hy)a(ha)ge®® where a, B are SU(2)., indices. Terms such as hjh, or hihg are for-
bidden in the superpotential since again it must be analytic. The p-term is therefore
the supersymmetric version of the Higgs boson mass in the Standard Model potential

Eq.2.4. The full Higgs potential in the MSSM is reviewed in Section 2.3.3.

2.3.2 Soft Supersymmetry Breaking

The theory described so far is in strong violation of experimental data since supersym-
metry requires that the mass of all superpartners is equal and so we should have observed
the various squarks and sleptons in particle accelerators. In the MSSM this problem is
avoided by including explicit mass terms for the scalar particles of the chiral supermulti-
plets and the fermion particles of the vector supermultiplets. These explicit mass terms
then break supersymmetry but maintain a hierarchy between the electroweak scale and

the Planck (or any other very large) mass scale [29].8 Excluding the gaugino mass terms,

"If we include three right-handed neutrinos v then there would also be an additional term )\f,j Lil/; .

8From a theoretical perspective we expect that supersymmetry should be an exact symmetry that is
broken spontaneously. That is, the underlying model should have a Lagrangian density that is invariant
under supersymmetry, but a vacuum state that is not, analogous to the electroweak symmetry breaking
in the Standard Model.
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the supersymmetry-breaking couplings in the MSSM are the following:

LMESM — _ (ai9RQuh, — a/j*Qdehy — a*Qethy + c.c.) (2.14)
— QlmE)*Q; = L))’ Ly — e} (mif i
— def(mi)2de; — ¢€l (e

—mj, hihy —mj, hiha — (bhuhg + c.c.)

where a tilde denotes the scalar component of the chiral superfield.

It has been shown rigorously that a softly broken supersymmetric theory with L,
as given by Eq.2.14 is free of quadratic divergences for quantum corrections to scalar

masses to all orders in perturbation theory [29].

The soft masses in the above equation allow for the Standard Model superpartners
(except for the Higgs’ superpartners, called the higgsinos) to have a mass which, if large
enough, would prevent them from being observable in previous experiments. However,
these masses cannot be too large since the Higgs mass is sensitive to the mass difference
between the superpartners of a supermultiplet. The fact that we haven’t yet observed
the superpartners of the Standard Model or Higgs boson introduces a little hierarchy
problem to the MSSM [30)].

2.3.3 The Higgs Potential

The scalar potential V (¢, ¢') of a supersymmetric theory is divided into ‘F-term’ and
‘D-term’ contributions:
- 1
T\ i, - a Ha
V(g ¢) = F E+2za:D D
where the sum is over the gauge interactions of the theory; I are complex auxiliary
fields; and D are gauge auxiliary fields. The auxiliary fields are just book-keeping
devices that are introduced to the supersymmetry algebra to make it consistent off-
shell. They therefore do not have a kinetic term and can be eliminated on-shell using
their algebraic equation of motion. The F-terms are fixed by Yukawa couplings and

fermion mass terms, and the D-terms are fixed by the gauge interactions.
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Ignoring the soft SUSY breaking terms, the Higgs potential of the MSSM would be
the following:

V= [R5 + (8512 + gl + [hg [?)

1 _
+ 5B+ g2 + 2 — RGP — iy )

1 * — %
+§Q%L‘h$h2 + hohg ™|
The terms proportional to |p|? come from the F-terms, and the terms proportional to
g% and g%, are the D-term contributions. Since |u|? > 0 this potential takes the form
of that in Fig.2.1 for each Higgs field. The minimum of the potential would therefore
occur at the origin with [h)]| = |hJ] = 0 and there would be no electroweak symmetry
breaking. However, the full Higgs potential of the MSSM also includes the soft SUSY
breaking terms for the Higgs fields and is given by:

V= (|l +mi ) (hol? + [R5 + (lf® + mi, )[R + |hy 1) (2.15)
1
+ [b(hthy — BORY) + c.c] + 5g%Lyhjhf}l* + hOn

(g + GRS + A2 — W32 g )2

With the above soft SUSY terms introduced, the Higgs potential can now have a mini-
mum at which [h9| = |hJ] # 0 and the electroweak symmetry is spontaneously broken.
This is effectively because the mass terms for the up (and down) Higgs fields can now
be negative since mfbu and m%d, unlike |p|? can be negative parameters. The form of the
potential then becomes a generalization of that in Fig.2.1 which represents the Higgs po-
tential of the Standard Model. Thus the soft SUSY breaking terms are not just required
to explain the absence of Standard Model superpartners at previous experiments, but

also to break the electroweak symmetry in an analogous way to the Standard Model.

Assuming that the Higgs field obtains a vacuum expectation value and using the

freedom of SU(2)r, x U(1)y gauge transformations we can simplify Eq.2.15 to:

V (hy, ha) =

—~

lwl? + mi )RS+ (|ul® + mi,)[hg|* — (bR ARG + c.c)

+ (g3 + 99) (|hul” — [hal*)?

| =

where h0 and hg are real and positive. CP cannot be spontaneously broken by the
Higgs scalar potential, since the VEVs and b can be simultaneously chosen real, as a

convention.

For V to really have a minimum the potential must be bounded from below for

arbitrarily large values of the scalar fields. In general the scalar quartic interactions in
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V will stabilize the potential for almost all arbitrarily large values of hY and hg but,
for the special directions in field space |hS| = |hY|, the quartic contributions to V are
identically zero. Such directions in field space are called D-flat directions, because along
them the part of the scalar potential coming from D-terms vanishes. In order for the
potential to be bounded from below, the quadratic part of the scalar potential must be

positive along the D-flat directions. This requires:
2 2 2
2b < 2|p|® +my,, +my,,. (2.16)

Then, for V to have a stable minimum (or for 2Y = hY = 0 to be an unstable minimum)
we require that one linear combination of h? and hg has a negative squared mass near

hS = hY = 0. This results in:
0" > (|uf* + mi, ) (ul* + mi,)- (2.17)

The above inequalities are the necessary conditions for h? and hg to get non-zero VEVs
and we can now require that they are compatible with the observed phenomenology
of electroweak symmetry breaking. That is, the Higgs’ VEVs must satisfy the MSSM
version of the of the Standard Model condition given by Eq.2.8:

vi =0+ 02 =2m% /(g3 + g%) ~ (174 GeV)? (2.18)

where v, = (hY) and vy = (hY). The ratio of the up and down Higgs VEVs is conven-

tionally denoted by tan § = v, /vg and is an unknown parameter.

Thus, as long as certain conditions are met, the Higgs potential of the MSSM can
break the electroweak symmetry analogous to how it is broken in the Standard Model.
This is achieved without the quantum corrections from higher energy physics upsetting

the results, that is, the Higgs mass is stable in this theory.

2.4 Supersymmetric Grand Unified Theories

In the previous Section the instability of the Standard Model Higgs field to the addition
of higher energy physics led us to consider the Standard Model to be an effective low-
energy approximation to the MSSM. In this Section we will find that certain aspects of
the MSSM then naturally lead us to consider it to be a low-energy approximation to a
theory that is, on a logarithmic scale, close to the Planck scale. This new theory solves
a number of mysteries about the Standard Model and MSSM such as the quantization

of electric charge and gauge anomaly cancellation.
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FIGURE 2.2: Two-loop running of the gauge coupling constants in the Standard Model.

a1 = g1/47 is the GUT normalized U(1l)y gauge coupling constant, as = gor /47 is

the SU(2);, gauge coupling constant, and as = gs./4w is the gauge coupling constant

of SU(3).. The green lines describe the running of the gauge coupling constants in the

Standard Model between the mass of the Z° boson and top quark. The thickness of the

lines indicates the experimental uncertainty in the initial values of the gauge coupling
constants.

2.4.1 Gauge Coupling Unification in the MSSM

If the Standard Model is considered to be an effective approximation to a higher energy
theory then the SU(3). x SU(2)r x U(1)y gauge coupling constants can usefully be
thought of as energy-dependent entities. Using the Standard Model renormalization
group equations one can calculate how the gauge coupling constants run with energy to
a given order in perturbation theory, and if we run gauge couplings to higher energies
then, depending on the normalization chosen for the definition of hypercharge in Eq.2.11,
they can meet at a very high-energy scale.” The unification of gauge coupling constants
would unlikely be a coincidence and would instead imply that something new occurs at
the unification scale. A strong possibility is that a theory based on a semi-simple gauge
group such as SU(5) spontaneously breaks to the Standard Model gauge group at the
unification scale, analogous to how SU(2)r x U(1)y breaks to U (1), [18]. Such a theory
is called a Grand Unified Theory (GUT) and would of course have just a single gauge
coupling constant. However, if SU(3), x SU(2)r x U(1l)y comes from a semi-simple
gauge group then the normalization of hypercharge is automatically fixed [9]. This is

because Y like T and T3, must come from the generators of the semi-simple group.

For any simple compact Lie group, there is a conventional choice of generators T,

with totally antisymmetric structure constants, which in each reducible or irreducible

9If the hypercharge normalization N in Eq.2.11 is taken to be ,/% then the gauge couplings unify
at ~ 10'7 GeV to one-loop, and 4 x 10'® GeV to two-loops [31, 32].
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FIGURE 2.3: Running of the SU(3)., SU(2)r and GUT normalized U(1)y gauge cou-

pling constants for the MSSM using two-loop renormalization group equations. The

pink lines are the running of the gauge coupling constants of the Standard Model, below
the assumed scale of supersymmetry.

representation D satisfy the following normalization condition:
Tr[T,Ty] = Npdgp.

If the Standard Model gauge symmetries come from a single gauge group then we must
therefore have Tr(T,)? = Tr(Tyr)? = Tr(Y)? where T,, To, and Y are the generators
of SU(3)., SU(2)r, and U(1)y respectively, and the trace is over all the fermions. These
are given by Tr(1.)? = 6g3, Tr(Ty)? = 6g3; and Tr(Y?) = 10g3 which sets g3 =
gor = (5/3)952/ at the GUT scale. Thus the normalization constant in Eq.2.11 is given
by N = \/g so that in this case hypercharge is defined as:

Y = \/E(Qem - T3)- (2'19)

If we run the SU(3), x SU(2)r, x U(1)y gauge coupling constants in the Standard Model
with this hypercharge normalization to higher energies, assuming that there are no new
particles, then they come close to unifying at a high energy scale, but just miss each

other. This is illustrated by Fig.2.2 to two-loops in perturbation theory.

If the MSSM is used instead of the Standard Model however then the SU(3). x
SU(2)r, x U(1)y gauge couplings almost exactly unify at an energy scale of ~ 3 x 106
GeV, which is illustrated to two-loops by Fig.2.3 [7]. This is under the assumption that
there is nothing between the SUSY scale, around 1 TeV, and the so-called GUT scale

~ 3 x 10'® GeV. The huge energy region between these two scales is generically called
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the Grand Desert.Y

This suggests that the MSSM is a low-energy approximation to a supersymmetric
theory with a semi-simple gauge group that spontaneously breaks at ~ 3 x 10 GeV.
Such a theory is called a SUSY GUT and the next Section provides a brief review for
the SU(5) and SO(10) SUSY GUTs.

2.4.2 SU(5) and SO(10) SUSY GUTs

The smallest simple Lie group that contains SU(3) x SU(2) x U(1) as a subgroup
is SU(5). In an SU(5) GUT the Standard Model gauge bosons (and gauginos) are
then unified in the adjoint representation, which has dimension 24 [8]. If SU(5) is
spontaneously broken to the Standard Model gauge group at 3 x 10'6 GeV, then the
gauge bosons that are not part of the Standard Model would get mass at this high-energy
scale, in an analogous way to how W* and Z° get mass from electroweak symmetry

breaking.

Just as the MSSM gauge supermultiplets are unified in an SU(5) SUSY GUT, so
too are the quark and lepton supermultiplets, although this is only a partial unification.
In SU(5) the quarks and leptons fit neatly into the representations 10 + 5. The 10 rep-
resentation contains one generation of the left-handed up and down quarks (Q), charged
conjugated up quarks (u®) and leptons (e¢); whereas the 5 contains one generation of
the left-handed leptons (L) and charged-conjugated down quarks (d°). In total then
three copies of 10 + 5 are required to replicate the MSSM matter content. The up and
down Higgs doublets must also come from SU(5) representations and the smallest ones

available are 5 for h, and 5 for hg.

Another promising SUSY GUT is that based on the SO(10) gauge group.!! Unlike
in SU(5) SUSY GUTs, one generation of quarks and leptons are unified in a single
representation. This is the fundamental spinor representation 16 and three copies of
this representation are therefore required. As well as one generations of quarks and
leptons, the 16 representation also contains a Standard Model singlet which can be
identified as a right-handed neutrino. This particle can be used to explain the resent

discovery of neutrino oscillations which is discussed in more detail in Chapter 5.

101f complete GUT representations are at a particular scale which lies between these two scales then
the unification of gauge coupling constants will still occur at around 10'® GeV provided that the coupling
constants remain in the perturbative regime.

"The Lie group involved is not really the special orthogonal group S 0(10), but rather its double cover
Spin(10).
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The MSSM Higgs doublets are also unified into the same SO(10) representation,
which is the fundamental representation 10. The MSSM superpotential is then con-
tained in the simple SO(10) tensor product 16 x 16 x 10 for the three copies of the
16 representation. This automatically forbids the R-parity violating operators of the
MSSM further illustrating that the MSSM appears to fit neatly inside an SO(10) SUSY
GUT.

Another virtue of the SO(10) GUT is its explanation for gauge anomaly cancellation
in the Standard Model (and MSSM). This is discussed in the next subsection.

2.4.3 Anomaly Cancellation

In theoretical physics a gauge anomaly is a quantum mechanical effect (usually a one-loop
diagram) which invalidates the gauge symmetry of a quantum field theory. Therefore
all gauge anomalies must cancel out, and this is indeed what happens in the Standard
Model. The anomaly in vector gauge anomalies (in gauge symmetries whose gauge boson
is a vector) is a chiral anomaly and can be calculated exactly at one-loop level using

a Feynman diagram with a chiral fermion running in the loop with N external gauge

bosons attached to the loop where N = 1 + d/2 and d is the spacetime dimension.!?
The anomaly is proportional to the completely symmetric constant factor dgpe:
1
dabc = §TT [{Tay Tb}Tc} (220)

where T}, is the representation of the gauge algebra on the set of all left-handed fermion
and anti-fermion fields, and T'r denotes a sum over these fermion and antifermion species.
This condition may be satisfied for any gauge group if the fermion fields furnish a suitable
reducible or irreducible representation of the group. In addition, there are some gauge

groups for which the above is satisfied for fermions in any representation of the group.

The condition is obviously satisfied if the left-handed fermion (and anti-fermion)
fields furnish a representation T; of the gauge algebra that is equivalent to its complex
conjugate such that:

(iT,)* = S(iT,)S™*

or equivalently:
77 = —s1,571. (2.21)

Inserting this into Eq.2.20 gives dup. = —dape- Such a representation 7, may be ei-

ther real or pseudoreal, and there is therefore no anomaly for gauge algebras that have

12 Anomalies occur only in even spacetime dimensions, and since d = 4 in the Standard Model, the
diagram involved is a triangle diagram with axial and vector currents at one of its vertices.
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only real or pseudoreal representations, namely SO(2n + 1) (including SU(2) = SO(3),
SO(4n) for n > 2, G, Fy, E; and Eg) [9]. A few other algebras also have only represen-
tations for which du;. vanishes, even though some representations are neither real nor
pseudoreal [33]. These are SO(4n + 2) (except for SO(2) = U(1) and SO(6) = SU(4))
and Eg. Anomalies are thus only possible for gauge algebras that include SU(n) (for
n > 3) or U(1) factors.

Given that the Standard Model is based on the gauge group SU(3) x SU(2) x
U(1) then the we must rely on the gauge anomalies due to the various quarks and
leptons cancelling to make the theory free of anomalies. Fortunately this is exactly
what happens. However, from the point of view of the Standard Model, this cancellation
amongst the quarks and leptons is mysterious since the apparently arbitrary quantum
numbers of the quarks and leptons are just right for the Standard Model to be free of

anomalies.

From the point of view of Grand Unified Theories however the cancellation of gauge
anomalies in the Standard Model can be neatly understood by noting that SU(3) x
SU(2) x U(1) may be embedded in SO(10) [34]. All of the representations of SO(10)
are anomaly-free, so the same property is inherited by any reducible representation of
SU(3) x SU(2) x U(1) that furnishes a complete representation of SO(10). As noted
in Section 2.4.2, it turns out that the left-handed fields of a single generation of quarks,
leptons, antiquarks and antileptons plus one additional (SU(3)xSU(2) xU(1))-singlet (a
right-handed neutrino) forms a complete 16-dimensional representation of SO(10) (the
fundamental spinor representation). The singlet would not contribute to such anomalies,

and so there are no anomalies in the gauge symmetries of the Standard Model.

The cancellation of gauge anomalies in the MSSM from the point of view of SUSY
GUTs is perhaps less obvious since the left-handed fermions of the MSSM do not come
from complete SO(10) representations. This is because the MSSM Higgsinos come from
a fundamental 10 representation of SO(10) but, as discussed further in Section 2.4.5.2,
their triplet higgsino partners are missing in the MSSM. However, since the triplet
higgsinos transform as a (3, 1)_% and (3, 1)§ under SU(3). x SU(2)p x U(1)y, they
form conjugate representations under the Standard Model gauge group and so their

gauge anomalies cancel.
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2.4.4 Radiative Symmetry Breaking

In Section 2.1.1 we found that the parameter 2 must be negative for the Standard Model
Higgs field to obtain a VEV in order to break the electroweak symmetry. Similarly
in the MSSM the conditions for electroweak symmetry breaking Eq.2.16-Eq.2.17 are
helped by m}%u (and m%d) being negative. However, although there is nothing stopping
us choosing these parameters to be negative, it seems a little unnatural, especially when
every other parameter in the scalar potential is anticipated to be positive.'? A solution
to this naturalness problem is obtained by using the fact that, just as the gauge coupling
constants can run with energy, so also can these Standard Model and MSSM parameters.
Assuming the grand desert between the MSSM and GUT scales, it has been shown that
m%u can run negative at a low energy scale such as the electroweak energy scales if it
starts from a positive value at the GUT scale [35]. This occurs in particular for m%u
because the top Yukawa coupling is expected to be O(1), which reduces the effective

value of 'm,%u as the energy scale of interest decreases. In models with tan 3 > 1 however,

m%d can also run negative since the bottom Yukawa constant is also large in these models.

Generating a negative value for m%u (and m%d) in this way is called radiative elec-
troweak symmetry breaking and helps to explain why the electroweak scale is so much
smaller than the GUT or Planck scales as it takes a large energy region for m%u (and m%d)
to run negative from a positive value at the GUT scale (assuming an MSSM spectrum

and a Grand Desert).

Radiative electroweak symmetry breaking is particularly well motivated by super-
gravity theories [35]. These are quantum field theories in which supersymmetry is consid-
ered to be a local rather than a global symmetry and offer a candidate for the unification
of the Standard Model forces with gravity. In simple supergravity models all the soft
SUSY breaking parameters are equal and positive at the GUT scale but run differently
with energy to the electroweak scale. Together with the size of the top and bottom

Yukawa couplings this then explains why only miu (and m%d) run negative and not
2

other soft MSSM parameters such as the square mass for the selectron m?.

2.4.5 Proton Decay and Doublet-Triplet Splitting
2.4.5.1 Gauge Mediated Proton Decay

Since the quarks and leptons are unified in representations of a GUT’s gauge group G,

interactions with the gauge bosons of G will introduce processes involving violations of

13For example we wouldn’t want mtg < 0 otherwise it might induce a VEV for the stop and thus break
the strong nuclear force.
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baryon and lepton number. This can then lead to proton decay, which has not been
observed experimentally. The interactions that lead to proton decay are d = 6 operators

that conserve B — L so that the proton always decays into an antilepton.

The gauge bosons that mediate proton decay are the ones that are not present in the
Standard Model and are expected to get GUT scale masses once the symmetry group
G is spontaneously broken. The proton decay interactions will therefore be suppressed
by the GUT scale masses of the gauge bosons and we can a naive model-independent
estimation for the mass of the superheavy gauge bosons using the experimental lower

bound on the proton lifetime [36]. Using:

5
my

~ 2
\%4

and 7(p — 7et) > 1.6 x 103 yrs then a naive lower bound on the superheavy gauge
boson masses is My > (2.57 — 3.23) x 10'5 GeV for agyr = 1/40 — 1/25. This is just
below the GUT scale 3 x 10'6 GeV and therefore general SUSY GUTSs are within present

experimental limits for proton decay mediated by the gauge bosons.

2.4.5.2 Higgs Triplets

Just as the quarks, leptons and gauge bosons come from GUT representations, so must
the MSSM Higgs fields h,, and hg. For example, in SUSY SU(5) h,, fits into a 5 rep-
resentation, called 5,, whereas hgy comes from a 5 representation called 5;. The MSSM

superpotential then comes from the SU(5) superpotential:
A910;10,5, + A710,5,54 + 115,54 (2.22)

where i, j label the three generations, )\ff, )\ilj are coupling constants, and p is an SU(5)
generalization of the MSSM p-parameter. Since these SU(5) Higgs representations are
of dimension five they must contain particles other than each MSSM Higgs field. These
particles are coloured states called Higgs triplets, which are denoted by D and D, and
transform as (3, 1)_% and (3, 1)% respectively under the SU(3).x SU(2)r xU(1)y gauge
group. This is not just peculiar to the SU(5), all GUTs contain coloured partners to
Higgs doublets. This is due to the unification of SU(3). with SU(2)r x U(1)y in GUTs.

Since the MSSM Higgs fields and Higgs triplet fields come from the same GUT mul-
tiplet they would be expected to have the same or very similar mass, which should be
near to the electroweak scale. However, if we include the Higgs triplet supermultiplets
D and D at low energies then the SU(3). x SU(2), x U(1)y gauge coupling constants
no longer unify. This is a failing of simple GUT's since they don’t predict gauge coupling
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unification, which is the very thing that is required for their existence. Even worse,
because of their interactions with the quarks and leptons due to the SU(5) superpoten-
tial Eq.2.22, electroweak scale Higgs triplets would cause rapid proton decay in great

violation with what we observe in nature [37].

In traditional GUTs this problem is solved by splitting the mass of the MSSM
Higgs doublets and their coloured GUT partners. If the Higgs triplets have a GUT scale
mass then they obviously won’t interfere with the running of the MSSM gauge coupling
constants and so won’t upset unification. Generally this also pushes the induced proton
decay rate just beyond the experimental limits [36]. This however leaves the question
of how Higgs triplets have GUT scale mass but MSSM Higgs doublets have electroweak
scale mass. This is called the doublet-triplet splitting problem.

In an SO(10) theory, there is potential solution to the doublet-triplet splitting prob-
lem known as the 'Dimopoulos-Wilczek’ mechanism [38]. In SO(10) the SU(5) repre-
sentations 5, and 5; are contained in a single fundamental 10 representation. The
doublet-triplet splitting can be achieved by coupling this vector to an adjoint Higgs rep-
resentation 45y. The VEV of the 455, when written in the fundamental representation,
can take the form (455) o diag(al,a2,a3, a4, ab) @ iTe, where there is no requirement
that the trace ¥;a; vanishes. Thus one can have (45y) o diag(0,0,0,1,1) ® i which
is just proportional to the SO(10) generator B — L. Such a VEV will give mass to the
triplets in 10 while leaving the doublets massless. This is not possible in SU(5) since

the adjoint field can only have a VEV that is traceless.

However, to arrange for the VEV to align along this direction (and still not mess
up the other details of the model) often requires very contrived models. Also, because
the adjoint of SO(10) in the fundamental representation is a 10 x 10 antisymmetric
matrix, two distinct 10 representations must appear in the coupling 10:455105. Thus
four Higgs doublets, not two, are left massless which would destroy the unification of
gauge couplings. The mechanism must then be complicated by the existence of an

explicit mass term M 102109 where M 2 Mayr.

Other methods to solving the problems introduced by Higgs triplet fields are moti-
vated by higher energy theories such as string theory. For example, the compactification
of extra dimensions via Wilson-line symmetry breaking or orbifolding can be used to

split the Higgs triplets from the Higgs doublets.
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2.5 The py-problem of the MSSM

Although the MSSM solves the instability of the Higgs mass to higher energy physics,
it does not explain why the Higgs mass is so small in the first place (why electroweak
symmetry breaking occurs at energies much smaller than the Planck scale). The pre-
diction of gauge coupling unification at 3 x 1016 GeV for the MSSM led us to consider
the MSSM to be an effective low-energy approximation to a SUSY GUT. Radiative elec-
troweak symmetry breaking in a SUSY GUT can then shed light on why electroweak
symmetry breaking occurs at a scale much smaller than the GUT scale, since RGEs
can cause m,zlu to run negative well below the GUT scale. However, this condition is
not all that is required for the Higgs field to break the electroweak symmetry. From
Section 2.3.3 we found that the Higgs potential also depends on the SUSY respecting
parameter u. Therefore to fully understand why the electroweak symmetry breaking

scale is much lower than the GUT or Planck scale we need to understand the origin of

this parameter.'*

We can write the necessary conditions Eq.2.16 and Eq.2.17 for the Higgs potential
to have a minimum in terms of m2Z and tan 3 using the phenomenological condition

Eq.2.18. These two conditions can then be solved to obtain the following [13]:

2 2
m —m
L T Bt SR .2

V1 —sin?(2)

where sin(24) is given by:

2b
sin(20) = .
(26) m%u + m%d + 2|pl?

Eq.2.23 highlights a slight peculiarity of the MSSM. Without miraculous cancellations,
all of the Lagrangian parameters miu,miu,b and |u|? ought to be within an order
of magnitude or two of mzzo. However, in the MSSM, g is a supersymmetry-respecting
parameter that appears in the superpotential, while b, m,%u and mid are supersymmetry-
breaking parameters that appear in the soft SUSY potential. Thus there is no a priori
reason for the y parameter to have a numerical value close to m%u, m%d or b since they
are conceptually distinct. Furthermore, given that p is a dimensional parameter (the
only dimensional parameter) that is supersymmetry-respecting, we might expect it take
a value close to the cut-off scale of the MSSM, which is anticipated to be the GUT or
Planck scale at =~ 10'6 GeV or ~ 10! GeV respectively. The fact that the p-parameter

The origin of the pu-parameter is also related to the doublet-triplet splitting problem since, in grand
unified theories, this term is upgraded to a term that also gives mass to the Higgs triplets.
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appears to be related to the soft SUSY breaking scale, and not to the Planck or GUT
scales, is called the p-problem of the MSSM.

The rest of this Section reviews non-minimal supersymmetric extensions of the Stan-
dard Models. that resolve the u-problem of the MSSM.

2.5.1 The Next-to-Minimal Supersymmetric Standard Model

An elegant solution to the u-problem is to extend the Higgs sector of the MSSM by
introducing a Standard Model singlet field S that couples to the Higgs doublets to
generate the term Shyhg in the superpotential. An effective MSSM p-term would then
be generated if S gains a VEV. We will see in the next Section that the VEV of this
singlet field can be related to the soft SUSY mass scale and thus an effective MSSM
u-term can be related to the soft SUSY mass scale. With the bare pu-term forbidden,
the p-problem of the MSSM would then be resolved.

However, by forbidding the pu-term of the MSSM and introducing the trilinear term
Shyhg, one creates a global U(1) symmetry called a Pecci-Quinn symmetry for the su-
perpotential under which the singlet field is charged [39]. A Goldstone boson, which
has not been observed in experiments, would therefore be created by the VEV of S [40].
In the Next-to-Minimal Supersymmetric Standard Model (NMSSM) [41] the unwanted
Goldstone boson is avoided by explicitly breaking the global U(1) symmetry with a S3
term in the superpotential. However, such an approach is accompanied by additional
problems. For example, the S3 term introduces a Z3 discrete symmetry associated with
the NMSSM superpotential which should lead to the formation of domain walls in the
early universe between regions which were causally disconnected during the period of
electroweak symmetry breaking [42]. Such domain structure of vacuum create unac-
ceptably large anisotropies in the cosmic microwave background radiation [43]. In an
attempt to break the Z3 symmetry, operators suppressed by powers of the Planck scale
could be introduced. But it has been shown that these operators give rise to quadrat-
ically divergent tadpole contributions, which destabilise the mass hierarchy once again
[44].

2.5.2 The USSM

An alternative way to avoid the Goldstone boson is to gauge the global U(1) symmetry
[15]. This can be achieved by assuming a local U(1) symmetry, denoted by U(1)’, in
addition to the Standard model gauge symmetry SU(3).x SU(2)r xU(1)y, for which the

field S has a non-zero charge. Supersymmetric models that contain a U(1)" symmetry
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and a charged Standard Model singlet S field are generically called USSMs. If S gains
a VEV in these models, then the U(1)’ gauge group eats the Goldstone boson, resulting
in an observable massive Z’. So far a Z’ vector boson has not been detected in particle

experiments, which puts a lower limit on its mass of 500 — 600 GeV [45].

The U(1)’ gauge group forbids the MSSM p-term phy, hg in the USSM superpotential
and replaces it with AgSh,hg where \g is a dimensionless coupling constant. The S3 of
the NMSSM is also forbidden by the U(1)" symmetry. The soft SUSY breaking sector of
the USSM contains a soft mass term for the S field m%|S|* and the b-term of the MSSM
is replaced with aSbShghg where ag is a dimensional parameter. The singlet field’s pure

scalar potential is therefore given by [46]:

12

V(S) = m3IS]” + T-(QslSI*)?

where ¢’ is the gauge coupling constant of the U(1)" gauge field, and Qg is the U(1)
charge of the singlet field. The quartic terms are from D-term contributions which
stabilize the potential and are for obvious reasons not present in the NMSSM.!'® If
m% < 0 then minimum of the potential is at:

2

m
e —— (2.24)
9°Q%

The VEV of the singlet field S is therefore determined by minimizing a potential that
depends on a soft SUSY breaking parameter and so the value of the effective parameter
1 is no longer conceptually distinct from the mechanism of SUSY breaking and should
take a value close to the soft SUSY mass scale. The p-problem of the MSSM is thus
resolved in the USSM. Also, there is also no longer an unknown dimensional parameter
in the superpotential which would be expected to take a value close to the GUT or

Planck scales.

2.6 The EzSSM

2.6.1 Motivation

As described in Section 2.4.3 the gauge symmetries of a quantum field theory must be
anomaly free for the theory to be consistent. We must therefore make sure that, when
we add a U(1)’ group to the Standard Model, the gauge symmetry does not contain any
gauge anomalies. The importance of gauge anomalies in determining models has already

been encountered in Section 2.3 where it was shown that two Higgs chiral supermultiplets

15The NMSSM uses the S term to stabilize the potential instead.
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Ql L Twale v h, [ hg | D]|D][S|H[H

1 1 2 1 1 1 1 1 1 1
Y g9l -3]35|1]0] 35 |-5]-5]35]|0]-5]3
N[1][21]2 0 -2|-3]-=2[-3[5] 2 | -2

TABLE 2.1: List of the U(1) 5 and U(1)y charges for the EgSSM chiral supermultiplets.

are required in the MSSM rather than just one. Similarly, for a general U (1)’ symmetry,
new fields in addition to the S field must be introduced to make it anomaly free. In
general however, the required number and type of new fields is not fixed and often
requires either the presence of exotic chiral supermultiplets [47] or family-non-universal
U(1)’ couplings [48]. Any family dependence of the U (1)’ charges would result in flavour
changing neutral currents (FCNCs) mediated by the Z’, which can manifest themselves

in rare B decays and B — B mixing [49].

2.6.2 The U(1)y Group

If the U(1)" symmetry comes from a GUT group such as SO(10) or Eg however then
the gauge anomalies will automatically cancel as long as complete GUT representations
survive to the U(1)" symmetry breaking scale. This fixes the number and type of fields
required to cancel the anomalies. In particular, SUSY GUTs based on an Eg gauge group
turn out to be very promising candidates for USSM models that have no gauge anoma-
lies [16]. Eg is the only exceptional Lie group that has complex representations and
therefore the only exceptional group that can be used as a GUT in four dimensions.'® A
supersymmetric model that is inspired by an Eg SUSY GUT is the Exceptional Super-
symmetric Standard Model (EgSSM) [17]. The U(1)" symmetry of the EgSSM is called
the U(1)x group and arises from the following symmetry breaking chain [50]:

E6 — SO(lO) X U(l)w
— SU(5) x U(1)y x U(1)y
— SU(?))C X SU(Q)L X U(l)y X U(l)N

where SO(10) x U(1)y is a maximal subgroup of Eg, SU(5) x U(1), is a maximal
subgroup of SO(10) [51], and the above symmetry breaking is assumed to take place at
the GUT scale. The U(1)y group is defined as the linear combination of the U(1), and
U(1), groups for which the right-handed neutrinos are not charged. This combination
is defined as:

U(1)y cos@+U(1)ysinf

18 Complex representations are required for the theory to be chiral.
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where 0 = tan—1 v/15.

2.6.3 Matter Spectrum

The U(1)y charge assignments are the same for each generation of matter and so the
model does not suffer from the FCNC problem of general U(1)" symmetries. In the
E¢SSM one generation of quarks and leptons is unified into a fundamental Eg represen-
tation, which has dimension 27. The fundamental representation of Eg decomposes to

the following SO(10) representations:
27 — 16 + 10 + 1. (2.25)

The fundamental SO(10) representation contains Higgs doublet and triplet chiral super-
multiplets as in conventional SO(10) SUSY GUTs: 10 = hy +hg+ D+ D. The effective
MSSM p-term is thus forbidden by the Eg symmetry since 27 x 27 is not an Eg invariant.
For the U(1)y group to be anomaly free, complete irreducible Eg representations must
survive to low energies, and since three generations of quarks and leptons have been
observed, three copies of a 27 Eg representation are assumed in the EgSSM. The U(1)
group of the EgSSM is therefore automatically anomaly free if the particle content forms
complete irreducible representations of Eg. However, two additional electroweak doublet
states H' and H are also included in the EgSSM which form incomplete Eg representa-
tions but, since the H' and ' states have opposite U(1)y charges, the gauge anomalies
cancel in an analogous way to how the gauge anomalies from h, and hy cancel in the
MSSM. In total the EgSSM therefore contains the following SU(3), x SU(2)r, x U(1)y

representations:
3x 2T+ H H =3(Q, u¢, d°, L, ¢, v°) + 3(hu, hq) +3(D, D)+3S+H H

where S denotes the SO(10) singlet in Eq.2.25.

There are thus three generations of quarks and leptons, three copies of (up and
down) Higgs doublets and triplets, and three singlet fields S. Table 4.5 contains the
U(1)n charges of all the above EgSSM particles. Only the ‘third generation’ of the up
and down Higgs-like fields, denoted by h,3 and hgsz, are defined to obtain electroweak
scale VEVs and thus act like the MSSM Higgs fields. The other generations of the up
and down Higgs-like fields do not get VEVs and so do not contribute to electroweak
symmetry breaking (or the quark and lepton masses). Only the third generation of the
singlet fields S is likewise taken to obtain a VEV, which generates the effective u-term
of the MSSM, as discussed in Sections 2.5.1 and 2.5.2.
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2.6.4 The Effective MSSM Yukawa Interactions

In the EgSSM the effective MSSM Yukawa interactions between the quarks, leptons and
Higgs fields come from the Eg tensor product 27 x 27 x 27 which decomposes to the
SO(10) tensor products 16 x 16 x 10 and 1 x 10 x 10. For the three generations this Eg

product can be written as the following:
NIR2T7,27,27), = N9%16;16,;105, + A7%1;10,10y (2.26)

where A\9¥ is a coupling constant and 4, j,k = 1...3 label the three generations.

The SO(10) tensor product Aijk16i16j10k. can be written as )\ij316i16j103
—I—)\ija16i16j 10, where o = 1, 2. In the EgSSM the effective MSSM Yukawa interactions
are contained in \¥3 16;16,103 since the third Higgs doublet generations h,3 and hg3
come from the 103 representation, and are the only Higgs fields that are assumed to get

electroweak scale VEVs and thus give mass to the quarks and leptons.

2.6.5 Non-Higgs Doublets

The interactions /\ija16,~16j 10, will create tree-level flavour changing neutral currents
due to the exchange of the first and second generation (non-Higgs) doublets h,, and
hdo. These interactions will violate experimental data unless they are suppressed or
forbidden. Appendix C discusses these types of interactions in more detail. The EgSSM
includes a discrete Z> symmetry called ZQH that forbids the operators Aij“16i16j10a.
All EgSSM states are assumed to be odd under this discrete symmetry except the third
generation of Higgs doublets and the third generation of MSSM singlets S3. In Section
2.6.7 it is shown that the ZZ symmetry is a broken symmetry of the EgSSM however,
which can reintroduce these interactions but, as long as the couplings between hqq, hga
and the first and second generation of quarks and leptons are sufficiently suppressed,
then no experimental observations will be violated. For example, in order to suppress
the contribution of new particles and interactions to the K° — & oscillations and to
the muon decay channel g — e~ e'Te™ in accordance with experimental limits, it is
necessary to assume that the Yukawa couplings of hyq, hda to the quarks of the first and
second generations are less than 10~* and their couplings to the leptons of the first two
generations are smaller than 1073. The couplings to the third generation on the other

hand can be as large as 107
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The fact that only the Higgs doublets h,3 and hg3 couple to the quarks and leptons
(in the limit of an exact Z{I ) can be used to explain why only these Higgs fields get elec-
troweak VEVs. This is because only their soft masses can be driven negative by the top

(and bottom) Yukawa coupling, generating radiative electroweak symmetry breaking.

2.6.6 The Effective MSSM p-term

The )\ijkliloj 104 term in Eq.2.26 can be written as the following:
A9F1,10,105 = A333593103103 + AP S310,105 + A*735,105103 (2.27)

+XPY8,10510, + A335,103103.

The ZH symmetry that was introduced in the previous Section forbids the interactions
of the second line, leaving only A33353105103, )\3aﬁ5310a10g and )\aﬂ35a105103. Since
only the third generation of the singlet fields S3 is assumed to get a VEV, which breaks
the U(1)y symmetry, the operator Sshyshgs in S3103103 generates an effective MSSM
p-term. The VEV of S3 also gives mass to the first and second generation higgsinos
e, hae because of the operators S3hyuahas in S310,105. The fermionic partners of the
singlet fields S, singlinos, obtain mass from the operators Sqhy,ghgs and Syhaghys in
S0105103.

The operator A% kliloj 104, in Eq.2.27 also includes the term A3 SgD,-Ej which gives
mass to the Higgs triplets D; and D; because of the VEV of S3. In the EgSSM the Yukawa
coupling constant for the SgDiEj operator can contribute to the renormalization group
evolution of the soft singlet mass m%s driving it negative from a positive value at the
GUT scale and thus triggering S to gain a VEV [52, 53]. This mechanism for generating
a VEV for S3 is analogous to radiative symmetry breaking used in some extensions to

the MSSM as discussed in Section .

In addition to solving the p-problem of the MSSM, the little hierarchy problem of
the MSSM should also be resolved by the MEgSSM. This is because there are extra
particles below the conventional GUT scale of 106 GeV that are not contained in the
MSSM. These extra particles are from the three copies of the 27 FEg multiplet. Due
to Renormalization Group effects, the extra states increase the value of the Yukawa
coupling constant for Ssh,shgs at low energies, and hence increase the mass of the

lightest CP even Higgs boson [54].
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2.6.7 Proton Decay and Higgs Triplet Decay

The GUT partners of the Higgs doublets, called the Higgs triplets, D; and D; do not
have equal and opposite U (1) charges and so their contributions to a gauge anomaly do
not cancel. Therefore these particles cannot have GUT scale masses as in conventional
GUTs, and instead must obtain electroweak or TeV scale masses. The operators given by
A\ k16i16j 10% in Eq.2.26 contain interactions between the Higgs triplets and the quarks

and leptons, which are the following:

Wy, = )\ng,QJQk + /\%kﬁzdjui (2.28)
Wa = M Divsdf, + NiI¥ DieSuf, + A DiL; Q.

If all of these interactions are allowed then baryon number is violated and, if the Higgs
triplets have TeV scale masses or lower, then the proton will decay with a lifetime much
shorter than that observed. However if all of the above interactions are forbidden, thus
avoiding rapid proton decay, then the Higgs triplets D; and D; can’t decay. The Higgs
triplets are then stable, strongly interacting particles with small masses. Any heavy
stable particle would have been copiously produced during the very early epochs of the
Big Bang. The strong (or electromagnetically) interacting fermions and bosons which
survive annihilation would subsequently have been confined in heavy hadrons which
would annihilate further. The remaining heavy hadrons originating from the Big Bang
should be present in terrestrial matter and there are very strong upper limits on the
abundances of nuclear isotopes which contain such stable relics in the mass range from
1 GeV to 10 TeV. Different experiments set limits on their relative concentrations from
1071% to 1073 per nucleon [55]. At the same time various theoretical estimations [56]
show that if remnant particles exist in nature today their concentration is expected to
be at the level of 107'° per nucleon. Therefore Eg inspired models with stable Higgs

triplets are ruled out.

However, if either W; or Ws are forbidden, with the other allowed, then rapid proton
decay can be avoided and the Higgs triplets can still decay. A Z, discrete symmetry
is used in the EgSSM to achieve this scenario. This Z, symmetry can be used in two
ways: either the leptons are odd under Z5 (in which case the symmetry is called ZQL)
so that Wy is forbidden but Wj is allowed, or the leptons and Higgs triplets are odd (in
which case the symmetry is called Z) so that 1 is forbidden but W5 is allowed. The
former case with only W; allowed is called Model I whereas the latter case with only
Wy allowed is called Model II.

Neither Z& nor ZP commute with the Eg symmetry if all the states of the EgSSM
(excluding the H' and ﬁ/) come from just three copies of a 27 multiplet. Instead, for
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either the Zé: or ZQB symmetry to commute with Eg, the quarks and leptons must come
from different 27 multiplets to each other. These different multiplets are denoted here
by 2752 and 27Z~L where ¢ = 1...3 respectively. In the case of ZQB the Higgs triplets
and quarks must also come from different Eg multiplets. If the Eg symmetry in the
EgSSM is a conventional SUSY GUT then a mechanism is required that explains why
only the leptons (and Higgs triplets for Z2) of 27 survive to low-energies but the other
states do not, and why the quarks and not the leptons of 27?2 survive to low-energies.
This is similar to the doublet-triplet splitting problem facing conventional GUTs but is
expected to be more troublesome since the leptons in 274 would also have to be split

from the Higgs-doublet states. At present no mechanism has been provided.

An alternative possibility is that the Eg is as a symmetry of a string theory or a
quantum field theory that has extra dimensions.!” Different 27 representations from
different Eg multiplets could then potentially arise from the compactification of extra
dimensions. For example, by orbifolding the extra dimensions or using Wilson-line
symmetry breaking to break the Eg symmetry. Again no particular mechanism has
been found to explain the splitting required by the Z2L or ZQB symmetries in the EgSSM,
and this work does not attempt to resolve this problem. Instead a particular unknown

mechanism, perhaps string inspired, that solves this problem is assumed.

Another issue arises from the ZJ! symmetry discussed in Section 2.6.5. Since all the
27 states were assumed to have odd Z{I parity except for the third generation of Higgs
and singlet fields, both W7 and W5 are forbidden by ZQH . In the EgSSM it is assumed
that Z4! is a broken symmetry that allows either Wi or W3 or both. A solution to this
problem is proposed in Chapter 7 where an effective Z{I symmetry arises from a family
symmetry that allows W; and Wy. Other possible solutions include replacing Z4 with
a Zs symmetry under which only hy, ha, S1 and Sy are odd, or giving the D; even Zf

parity.

2.6.8 H’ and H Interactions

As well as the particles from three copies of a 27 Eg representation, the EgSSM also
contains two additional electroweak doublet particles H' and H' that form incomplete
Eg representations. These are required for the unification of gauge coupling constants

as discussed in Section 2.6.10. If the H' and H come from a 27 and 27 representation

'"The E¢ symmetry could exist at the Planck scale where it is broken to SO(10) which then breaks
to the Standard Model gauge group at the GUT scale.
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FIGURE 2.4: Two-loop running of the SU(3). x SU(2)r x U(1)y gauge coupling con-
stants in a theory with three copies of low-energy complete 27 multiplets of Eg.

of Eg, denoted by 27" and ﬁ/, then the following Fg respecting interactions are allowed:

W' = W/ H'H + p/"H L + NvfhysH' + NeShgs H' (2.29)
+ MU R H + N e hao H' .

If odd under Z4 and ZI or ZP then the operators in the second line of Eq.2.29 are
forbidden. Adding another Zy symmetry called Z} for which only H’ and H' then just

—/

allows the term p/H'H

2.6.9 Eg-Violating Operators

Since the discrete symmetries Z3 and ZZ (or ZP2) do not commute with the Eg symmetry
if the EgSSM particles (except for H' and ﬁ/) only come from three complete 27 Eg
multiplets, then we must also consider the operators involving these particles that would
otherwise violate the Eg symmetry. In both Model I and II (with the Z) symmetry) the
only operator that disrespects the E¢ symmetry is M;;viv; which is a Majorana mass

term for the right-handed neutrinos.

2.6.10 Gauge Coupling Unification in the E4SSM

To cancel gauge anomalies of the U(1)y group, three copies of 27 Eg representations
survive to low-energies which contain three generations of quarks and leptons. If we
run the gauge coupling constants with energy using this matter spectrum then they

will never meet, as illustrated by Fig.2.4. We have thus lost one of the most important
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FIGURE 2.5: The two-loop running of the gauge coupling constants for the EgSSM.

The particle content of this theory is equivalent to three copies of Eg 27 multiplets and

two additional electroweak doublets H' and H’. The thickness of the lines represents
the experimental error in the gauge coupling constants.

predictions of the MSSM and the inspiration for a model based on an Eg unified gauge

symmetry.

To rectify this, two additional electroweak doublet states, denoted by H’ and F’, are
included at low-energies. With these extra states included the matter spectrum of the
EgSSM then looks like the MSSM but with three additional complete SU(5) multiplets
(5+5+1). The gauge coupling constants will now meet at the conventional GUT scale
since we have just added complete GUT states to the MSSM, which is illustrated by
Fig.2.5. Note that, although, gauge coupling unification still occurs at the GUT scale
(at least at one-loop order), the value of the unified gauge coupling constant is now much
larger than it is in the MSSM [57]. However the unified coupling still in the perturbative
regime and is similar in size to the QCD coupling at the electroweak symmetry breaking

scale.



Chapter 3

Intermediate Symmetries and

Gauge Coupling Unification

3.1 Introduction

In the previous Chapter an Eg inspired supersymmetric model called the EgSSM was
proposed as an alternative to the Standard Model. This was motivated by the instability
of the Higgs mechanism in the Standard Model to higher energy physics. In the EgSSM
(and MSSM) the Higgs mechanism is protected by supersymmetry which cancels all the
quantum corrections from fermions and bosons to all orders in perturbation theory. The
EgSSM also resolves the p-problem associated with the Higgs mass in the MSSM. This
is achieved without the additional problems of theories such as the NMSSM for example
which predicts the formation of domain walls in the early Universe. However a failing
of the EgSSM, called the p/-problem, is highlighted in Section 3.2 which questions the
theoretical naturalness of its solution to the p-problem. The purpose of this Chapter is

to resolve the p/-problem of the EgSSM.

3.2 The p/-Problem of the EsSSM

In Section 2.6 we found that, since the SU(3).xSU(2),xU(1)y xU(1) y gauge symmetry
of the EgSSM is derived from an Eg symmetry, and the quarks and leptons are contained
in fundamental 27 representations of Eg, three copies of 27 multiplets must survive to
low energies for the theory to be free of gauge anomalies. Unfortunately however three
copies of low-energy 27 multiplets do not lead to gauge coupling unification, making it

difficult to connect the theory to a high energy Eg symmetry. To solve this problem new

36
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particles called H' and H' that transform as electroweak doublets are included at the
TeV scale so that the particle content of EgSSM resembles the MSSM but with complete
SU(5) multiplets that do not upset gauge coupling unification. These new particles must
be related to the high-energy Eg symmetry, and since they have opposite U(1)x charges
so that the additional Abelian group is anomaly free, the simplest possibility is that
they come from a 27 and 27 multiplet respectively (called 27" and 27'). This then leaves
the question of why the rest of the SU(3). x SU(2), x U(1)y x U(1)y states from these

Eg multiplets do not contribute to the running of the gauge coupling constants.

One possibility is that the rest of the 27" and 27 states gain mass at the GUT scale
due to a mechanism that is similar to the doublet-triplet splitting mechanisms used in
conventional SUSY GUTs. However, there are more states in the 27’ and 27 multiplets
than just the coloured partners of H' and H . For example, in both Eg multiplets 27’
and 27 there are states that transform in the same way as H' and " respectively under
SU3). x SU(2)r, x U(1)y but just have different U (1) charges. Explaining why these
particles get GUT masses whereas H' and q" get TeV masses would be particularly

1

tricky and at present there is no solution to this problem." This is referred to as the

27 27 splitting problem.

The H' and H states also introduce a problem analogous to the p-problem of the
MSSM. The mass parameter p’ in the EgSSM superpotential Eq.2.29 should not be too
large otherwise it spoils gauge coupling, but on the other hand it cannot be too small
since ' H' H is solely responsible for the mass of the charged and neutral components of
the H' and H fermions. In fact we typically require p/ ~ O(1TeV) just as p =~ O(1TeV)
is required in the MSSM. Unfortunately however we cannot use the U(1)y gauge group
to solve this y/-problem since the bilinear term z/H'H has zero overall U(1)y charge.
If we wish to solve the p/-problem in a similar way to how the p-problem of the MSSM
is solved in the EgSSM then we must introduce another U(1) gauge symmetry and a
new Eg singlet field that is charged under the U(1) symmetry. Thus we would have to

look for a larger gauge group than Eg.

Within SUGRA models the term p/ H'H " in the superpotential can be induced
just after the breakdown of local SUSY if the Kahler potential contains an extra term
(Z(H ’F/) + h.c.). This mechanism is analogous to the same one that can used to solve
the p-problem of the MSSM [59]. But in models based on an Eg symmetry, the bilin-
ear terms involving hg and h, are forbidden by the Eg symmetry both in the Kéahler

potential and superpotential since they transform in a 27 representation. As a result

! An alternative could be to use a doublet-triplet splitting mechanism that results from the compactifi-
cation of extra dimensions. For example, orbifolding or Wilson-line symmetry breaking in string inspired
theories can split Higgs triplets from Higgs doublets [58]. Explaining why three full 27 representations
are present in the low-energy theory but only one electroweak doublet from another 27 representation
is also light is likely to be particularly difficult however.
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the mechanism mentioned above cannot be applied for the generation of ph,hg in the
EgSSM superpotential. However this mechanism may be used to give mass to the non-
Higgs doublets H' and H' from additional 27" and 27 since the corresponding bilinear
terms are allowed by the Fg symmetry both in the Kéhler potential and superpotential.
However it is somewhat unappealing that the principal motivation of the EgSSM, to
solve the p-problem of the MSSM, requires the use of a mechanism that can be used as

an alternative to solving this problem instead.

On the other hand the only purpose of including the H' and H' states however is
to achieve gauge coupling unification at Mgyt ~ 106 GeV. This allows the possibility
of removing these states from the spectrum and thus avoiding the p/-problem and the
27, 27 mass-splitting problem altogether. Of course we must then search for alternative
methods of achieving gauge coupling unification, which is the subject of the rest of this

Chapter.

3.3 Intermediate Symmetries

An alternative to including the H’ and H states at a low-energy scale is to change
the gauge symmetry of the EgSSM at a high-energy scale. This would then change the
RGEs and the gauge coupling constants of the theory. We can then choose a gauge
symmetry such that its gauge coupling constants run with energy until they unify at
some high-energy scale, where an Eg would be anticipated to exist. In this case the
pattern of symmetry breaking from the Eg unification scale down to the electroweak

symmetry breaking scale would be the following:

Mg Mg TeV EW
~SN1e 7" = ~
B = IS = Grsssm — G321 — G'31 (3.1)

where G31 = SU(3)e X U(1)em; G321 = SU(3)e x SU(2), x U(1)y; Grgssm = SU(3)c %
SU((2)L xU(1)y xU(1)n is the gauge symmetry of the EgSSM; IS is the new gauge sym-
metry, which is called an intermediate symmetry; and Mg, and Mg are respectively the
high-energy scales at which the Eg and IS symmetries are broken respectively. Starting
from the Standard Model gauge symmetry, the gauge coupling constants would run to
the EgSSM scale, where they are joined with a U(1)y gauge coupling constant, and then
continue to run to the scale Mg where they are replaced with the gauge couplings of

IS. The IS gauge couplings then take over which run until they meet at Mg,.

Since the H' and H states would no longer be required, the supersymmetric theory
would just contain three copies of a 27 Eg multiplet. We therefore need to search for a

symmetry IS that provides unification of the gauge coupling constants in a theory that
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contains three copies of a 27 multiplet. This symmetry must obviously be large enough
to contain the EgSSM gauge symmetry, but small enough to fit inside an Eg symmetry.

That is, Gggssam must be a subgroup of IS, and IS must be a subgroup of Eg.

Unification in supersymmetric models containing three 27 representations of the
gauge group Eg was recently considered in [60]. In this paper the authors assumed an
intermediate Pati-Salam gauge group SU (4) x SU(2) 1, x SU(2) g with a left-right discrete
symmetry at the scale 10'® GeV. At this scale the Standard Model (SM) couplings satisfy
a1 = ag where o and g are the U(1)y and SU(2). gauge coupling constants. The
resulting Pati-Salam gauge couplings then subsequently meet at a higher energy scale
of about 10'® GeV.

This suggests that the IS symmetry could be the Pati-Salam symmetry Gaoo =
SU(4) x SU(2)r, x SU(2)r. However, as will be shown in Section 3.5.2, the condition
a1 = ag cannot be consistently applied at the Pati-Salam breaking scale and thus the
analysis in [60] is incorrect. Instead it will be shown that the Pati-Salam breaking scale
must be about an order of magnitude larger than the crossing point a; = s, close
to Maur ~ 1016 GeV, with full unification close to M, ~ 10" GeV. In this case the
Standard Model gauge coupling constants will run up to Mgy where they are replaced
with the G422 gauge coupling constants, which run until they unify at M. This is
illustrated by Fig.3.1 which is discussed in more detail in Section 3.6.

A Pati-Salam gauge symmetry Ggo0 is not large enough to contain Gggssas as a
subgroup however and so cannot by itself by the IS symmetry in Eq.3.1. In Chapter 4
it is shown that if the G422 gauge group is extended with an extra U(1) group, called
U(1)y, then it can contain Ggessar as a subgroup. However in this Chapter the U(1)y
and U(1), groups are initially ignored to simplify the analysis. This is done because
there is no experimental data for a U(1)y gauge coupling constant and so it will not
help to determine the unification scale. U(1), is thus considered to be broken at the

Planck scale in this Chapter.

In the next Section a short introduction to the Pati-Salam Symmetry is provided
before the pattern of symmetry breaking and RGEs of the intermediate Pati-Salam

symmetry are analysed in Sections and respectively.
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3.4 Pati-Salam Gauge Symmetry

The Pati-Salam symmetry was first introduced by Jogesh Pati and Abdus Salam in 1974
as a possible extension to the Standard Model gauge group [61]. Under this symmetry
the Standard Model leptons are considered to be the ‘4th colour’ of the SU(4) symme-
try. Together with the left-handed quarks, the left-handed leptons form the Pati-Salam
representation (4,2, 1), denoted by F', whereas the charge-conjugated quark and lepton
fields form the (4,1, 2) representation, denoted by F¢. This can be represented by the

following matrix notation:

Foo = (4,2,1) = " Mo T e )
d, dy e
dy e
up Ve
where u fields are left-handed; u¢ stands for charge-conjugated left-handed fields; r, g, b

stand for colours of SU(3).; a =1...4 is an SU(4) index which labels the columns of
the matrices; and a,y = 1,2 are SU(2), and SU(2)g indices respectively that label the

STESE
Q

C
u”"

S
Qo @0

_ de
Fio=(1,1,2) = ( "

rows of the matrix.

The (4,1, 2) representation also contains a state that is not in the Standard Model.
It is a singlet of the Standard Model and is an SU(2)g partner to the charge-conjugated
electron e®. This particle is therefore a charge-conjugated neutrino, and since we expect
it to have a mass near 102716 GeV in conventional see-saw mechanisms (see Section
5.3.1), we might anticipate that a Pati-Salam symmetry is broken around these high-

energy scales.

The SU(2)r group only couples to right-handed fermions just as the SU(2), group
only couples to left-handed fermions. The Pati-Salam symmetry, unlike the Standard
Model, thus respects parity. A discrete left-right symmetry called Dypr can be further
applied to the G422 gauge group under which the matter multiplets transform as ¢, — ¢f
where g denotes any matter multiplet, and the gauge groups SU(2)1, and SU(2) g become
interchanged [62].

A supersymmetric Pati-Salam symmetry also looks like a promising extension to

the MSSM since the Higgs fields can come from the complete representation (1,2, 2):

ht R
v =(1,2,2) = *
RS hy
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where the SU(2), index « labels the rows, and the SU(2) g index v labels the columns.?

3.5 Pattern of Symmetry Breaking

The two step pattern of gauge group symmetry breaking analysed in this Section is:

M, Mgyt
E6 —_ G422 X DLR —_ G321 (32)

where G321 = SU(3). x SU(2)r, x U(1)y. The first stage of symmetry breaking close to
M, will not be considered since it is likely to be a quantum gravity theory. Whatever
this quantum gravity theory is, it will involve some high-energy threshold effects, which
will depend on the details of the high energy theory, and which is not considered in

following analysis.

3.5.1 The Pati-Salam Higgs Sector

The second stage of symmetry breaking close to Mgy is within the realm of conven-
tional quantum field theory, and requires a Higgs sector, in addition to the assumed
matter content of three 27 representations of the gauge group FEg, to break the Pati-
Salam symmetry to the Standard Model gauge group. In order to break the Pati-Salam
symmetry G20 to G301 at Mgyr the minimal Higgs sector required are the G490 rep-
resentations Hg = (4,1,2) and Hr = (4,1,2). When these particles obtain VEVs
in the right-handed neutrino directions they break the SU(4) x SU(2)r symmetry to
SU(3). x U(1)y with the desired hypercharge assignments, as discussed later.

Although a Higgs sector consisting of Hr and H g is perfectly adequate for breaking
Pati-Salam symmetry, it does not satisfy Dppr. If we wish to satisfy this symmetry we
must therefore also consider an extended Higgs sector including their left-right symmetric
partners. A minimal left-right symmetric Higgs sector capable of breaking Pati-Salam
symmetry consists of the SO(10) Higgs states 16 and 16y. If complete Eg multiplets
are demanded in the entire theory below M), then the Pati-Salam breaking Higgs sector
at Mgyr may be assumed to be 27y and 27g. Therefore in the following analysis two
possible Higgs sectors are considered which contribute to the SUSY beta functions in
the region between Mgy and My, namely either the SO(10) states 16 + 165 or the Fjg

states 27y + 27, where it is understood that only the Pati-Salam gauge group exists

2Note that for the Higgs fields the hypercharge generator Y is equivalent to the T3 generator of
SU(2)r (see Section 3.5.2). The matrix can therefore be constructed by considering the T5; and Y
charges for each Higgs component.
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in this region, and these Higgs representations must be decomposed under the Pati-
Salam gauge group. No such Higgs sectors were included in the analysis in [60]. For
the analysis which involves the 16 + 16 states, the rest of the SO(10) representations
that together with the 16 + 16y states make up complete Fg representations (such as
a 27 and 27) are assumed to be at or above the Eg breaking scale and so do not affect

the running of the gauge coupling constants below the unification scale.

3.5.2 Pati-Salam Symmetry Breaking

When Hp and Hp (contained in either the SO(10) states 16y + 165 or Eg states
27 +275) develop VEVs in the right-handed neutrino directions they break the SU(4) x
SU(2) g symmetry to SU(3). x U(1)y with the desired hypercharge assignments. Six of
the SU(4) and two of the SU(2)g fields are then given masses related to the VEV of the
Higgs bosons and the gauge bosons associated with the 7' and T}% generators are rotated
by the Higgs bosons to create one heavy gauge boson and the gauge boson associated with
U(1)y. In breaking SU(4) x SU(2)g to SU(3). x U(1)y the SM hypercharge generator
is a combination of the diagonal generator T = \/g diag(3, %, %,—3) of SU(4) and
the diagonal generator of SU(2)g, Th = 1 diag(1,-1). T = \/g(B — L)/2 where B
and L are the baryon and lepton number assignments of each Standard Model particle.
Comparing these diagonal generators to the hypercharge values we must have Y = T]% +
(B — L)/2. Then, analogous to the electroweak symmetry breaking condition Eq.2.12,
one finds the following relation between the hypercharge gauge coupling constant gy

and the SU(4) and SU(2)g gauge coupling constants g4 and gor respectively:

1 1 1
— =+ (3.3)
ay  aar oy

g g3 93
where ay = 75, asgp = 72 and oy = 7%,

Because the Pati-Salam symmetry, and hence the standard model, is assumed to
come from an Ejg group, then all the charges and generators should be correctly nor-
malized.® In this case the conventional standard model hypercharge assignments must
be modified by a factor of \/g as discussed in Section 2.4.1. Therefore Eq.3.3 should be

rewritten in terms of the ‘GUT’ normalized hypercharge g1 = \/é gy:

5 3 2
S =" 4= (3.4)
ay Q2R Q4

3The Fs generators G* are chosen to be normalized by Tr(G*G?) = 36°. Tt then follows that the
Pati-Salam and standard model operators are conventionally normalized by Tr(T aTty = %5”. See
Appendix B for more detail.
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FicUure 3.1: Two-loop Planck Scale Unification in two supersymmetric models that
contain three generations of SUSY 27 particles, and an intermediate left-right symmet-
ric Pati-Salam symmetry. Both models are described in the main body of the text.
Near to the conventional GUT scale the a3 gauge coupling constant becomes the ay
gauge coupling constant of SU(4), and the SU(2)g gauge coupling constant asp is the
combination of the a; and a3 gauge coupling constants given by Eq.3.4.

where a1 = %. Eq.3.4 is the boundary condition for the gauge couplings at the Pati-
Salam symmetry breaking scale, in this case Mgyr. Due to left-right symmetry, at
the Pati-Salam symmetry breaking scale we have the additional boundary condition
agr, = agg. In [60] it was assumed that at the Pati-Salam symmetry breaking scale
a1 = a1, = asr which disagrees with Eq.3.4, since oy # asp, = agg at this scale. This

is discussed further in the next Section.

3.6 Two-loop analysis of gauge coupling unification

In this Section a SUSY two-loop RG analysis of the gauge couplings is performed, corre-
sponding to the pattern of symmetry breaking discussed in the previous Section. Three
complete 27 SUSY representations of the group Eg are assumed in the spectrum which
survive down to low energies, but, unlike the original EgSSM, there are no additional
H, H' states so the gauge couplings are not expected to converge at Mgyr. Instead, the
pattern of symmetry breaking shown in Eq.3.2 is envisaged, where above the Pati-Salam
symmetry breaking scale Mgy we assume, in addition to the three 27 representations, a
Pati-Salam symmetry breaking Higgs sector of either the SO(10) states 16 + 16 or Eg
states 27y + 27g which are assumed to gain masses of order the Pati-Salam symmetry

breaking scale Mgy, leaving only the three 27 matter representations below this scale.

For the present RG analysis, the couplings are run up from low energies to high
energies, using as input the SM couplings measured on the Z-pole at LEP, which are as
follows [26]: a1 (Mz) = 0.016947(6), aa(Mz) = 0.033813(27) and as(Mz) = 0.1187(20).
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The general two-loop beta functions used to run the gauge couplings are given in Ap-

pendix A.

From Mz up to an assumed MSSM threshold energy of 250 GeV only the non-
SUSY SM spectrum is assumed including a top quark threshold at 172 GeV. From 250
GeV to 1.5 TeV all the states of the MSSM are included. From 1.5 TeV up to the
Pati-Salam symmetry breaking scale the remaining states which fill out three complete
SUSY 27 representations are included. The assumed threshold energies correspond to
those in [57], where a full discussion of MSSM and EgSSM threshold effects is given.
The only difference is that here the H’ ,F/ states of the EgSSM are not included, so the
gauge couplings do not converge at Mgyr. Instead Mgy is taken to be the Pati-Salam

symmetry breaking scale, which is determined as follows.

In the previous Section the relation in Eq.3.4 between the hypercharge and Pati-
Salam coupling constants at the Pati-Salam symmetry breaking scale was discussed.
This can be turned into a boundary condition involving purely G321 couplings constants
at the Pati-Salam breaking scale, since SU(3). comes from SU(4) so a3 = ay at this
scale, and, as remarked, Dpr symmetry requires that asp = a9 at the Pati-Salam

symmetry breaking scale. Therefore Eq.3.4 can be re-expressed as:
—=—+—. (3.5)

Having specified the low-energy matter content, and thresholds, Eq.3.5 allows a unique
determination of the Pati-Salam breaking scale, by simply running up the gauge cou-
plings until the condition is satisfied. In practice, ag runs quite slowly (its one loop
beta-function is zero), while the inverse hypercharge coupling decreases most rapidly
and the condition is satisfied for a Pati-Salam symmetry breaking scale about an order
of magnitude higher than the crossing point of o; and ag assumed in [60]. Assuming
the above matter content and threshold corrections, the Pati-Salam symmetry is found
to be broken at Mgyr = 1016444 GeV as illustrated in Fig.3.1. This is close to the
conventional GUT energy scale, and justifies the use of the notation Mgy to denote

the Pati-Salam breaking scale.

Above the scale Mgy the two Pati-Salam gauge couplings, namely a4 and aop, =
QaR, are run up including, in addition to the three SUSY 27 matter representations, also a
Pati-Salam SUSY Higgs breaking sector consisting of either the SO(10) states 16 +16y
or Fg states 27y + 27p. Fig.3.1 illustrates the running of the gauge coupling constants,
where the left panel includes the 16y + 16y fields while the right-panel contains the

271 + 27x fields. The Pati-Salam couplings are found to converge at either 108:83(7)
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GeV or 1018979 GeV for the left and right-panels respectively.* These values are close
to the Planck scale M, = 1.2 x 1019 GeV, and suggests a Planck scale unification of all

forces with gravity.

The value of the gauge coupling constant at the unification scales 10'%83(7) GeV or
1018970 GeV is ap = 0.166(7) or ap = 0.321(46) for the 165 + 16 or 27y + 27y
particle spectra, respectively. These values of the unified gauge coupling at the Planck
scale are much larger than the conventional values of agyr, and indeed are larger even

than az(Myz), however they are still in the perturbative regime.

Of course there are expected to be large threshold corrections coming from Planck
scale physics which are not included in this analysis. Indeed, we would expect that QFT
breaks down as we approach the Planck scale, so that the RG analysis ceases to be valid
as we approach the Planck scale. The precise energy scale F ., at which quantum field
theories of gravity are expected to break down and new physics takes over is discussed in
[63] based on estimates of the scale of violation of (tree-level) unitarity. An upper bound
for this new physics energy scale is given by E2,,, = 20[G(%NS +N;+4Ny )]~ where N,
Ny and Ny are the number of scalars, fermions and vectors respectively that gravity
couples to. Assuming three low-energy 27 multiplets, FE,., would be equal to 1086
GeV which sets an upper bound for the scale at which the above quantum field theory
analysis (and with any corrections from effective quantum gravity theories included)
can no longer be trusted. In the above RGEs analysis the gauge coupling constants are
predicted to be very close to one another at this scale, and if they are extrapolated,
they will unify just below M,,. That is, the RGEs have been naively extrapolated up to
M, even though new physics associated with quantum gravity must enter an order of
magnitude below this. The fact that the two PS couplings are very close to each other at
Few, and are on a convergent trajectory must be regarded, at best, as a suggestive hint
of a unification of the gauge fields with gravity in this approach. For other discussions

of Planck scale unification of gauge coupling constants see for example [64].

3.7 Conclusions

This Chapter looked at how gauge coupling unification can be achieved in a supersym-
metric model with three copies of 27 Eg multiplets at low energies. It was found that, if
the Standard Model gauge group becomes a left-right symmetric Pati-Salam gauge group

near the conventional GUT scale, then unification at the planck scale is possible. The

It the Dpr symmetry is dropped then, with a minimal Pati-Salam Higgs content consisting of just
Hpr and Hpg, the equation S5 -3 4 a% at the Pati-Salam scale would predict that the Pati-Salam

aq Q2R
symmetry is broken at 10'**() GeV and that unification would occur at 10'*72(1%) GeV.



Chapter 3. Intermediate Symmetries and Gauge Coupling Unification 46

motivation for considering this pattern of symmetry breaking was to find an alternative
to including the additional electroweak doublets H' and H' at the TeV scale which is
used in the EgSSM to achieve gauge coupling unification. A alternative method was
sought because H' and H' introduce a number of theoretical problems in the EgSSM,
namely the y/-problem and the 277, 27 splitting problem. No such problems should exist

in a theory with just complete Eg representations.



Chapter 4

The Minimal Exceptional
Supersymmetric Standard Model

4.1 Motivation

The previous Chapter looked at how gauge coupling unification could be achieved in
a supersymmetric theory with only three complete 27 Eg multiplets surviving to low
energies. This then paves a way for a new Eg inspired supersymmetric model that can
solve the p-problem of the MSSM but without the additional complications introduced
by the additional H' and H' states of the Eg¢SSM. However, for the model to solve
the p-problem we must make sure that a MSSM singlet field S and an additional U(1)
gauge group can survive to low energies. This is the topic of the present Chapter in
which a Minimal Fg Supersymmetric Standard Model (MEgSSM) is proposed that is
based on three low-energy 27 Eg representations. This allows Planck scale unification
and provides a solution to the u-problem and doublet-triplet splitting problem, without

re-introducing either of these problems.

Above the conventional GUT scale the MEgSSM is embedded into a left-right sym-
metric supersymmetric Pati-Salam model with an additional U(1) gauge group, called
U(1)y, arising from an Es gauge group broken near the Planck scale. For simplicity
the previous analysis in Section 3.6 assumed that the U(1), gauge group was broken
at the Planck scale. Here it is instead assumed that U(1), remains unbroken down to
Mgyt and that below Mgyr an additional U(1)x gauge group, consisting of a novel
and non-trivial linear combination of U(1), and two Pati-Salam generators, survives
down to low energies. Eventually U(1)x is broken at the TeV scale by the same singlet

that also generates the effective p term, resulting in a new low-energy Z’ gauge boson.

47
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The U(1)x group is not in general the same as the U(1)y group of the EgSSM.
However, both groups are low-energy U(1)’ groups that allow for a conventional see-saw
mechanism since the right-handed neutrinos have zero charge. The U(1)x group of the
MEgSSM thus acts like the U(1)y group of the EgSSM.

This Chapter is divided up as follows. In Section 4.2 the chain of symmetry breaking
used to derive the MEgSSM is described and the origin of the U(1)x symmetry is
discussed. In Section 4.2.2 the two-loop renormalization group running of the gauge
coupling constants of the MEgSSM is calculated. In Section 4.3 the superpotential of
the MEgSSM is discussed and the suppression of proton decay is illustrated. Section
4.4 then discusses the phenomenology of the Z’ of the MEgSSM and compares it to the
Z' of the EgSSM to discover how they can be distinguished by their different couplings,
which enables the two models to be resolved experimentally. Then finally Section 4.5

concludes the Chapter.

4.2 Chain of Symmetry Breaking

The two step pattern of gauge group symmetry breaking that is analysed in this Chapter

is the following:
My Mgur

Es— Ga221 X DLrp — G3211 (4.1)

where the gauge groups are defined by:

Gann = SU(4) x SUQ2)L x SU2)r x U(1)y,
G3211 = SU(?))C X SU(Q)L X U(l)y X U(l)X (4.2)

and it has been assumed that the first stage of symmetry breaking happens close to
the Planck scale and that the second stage happens close to the conventional GUT
scale. The first stage of symmetry breaking is based on the maximal Fg subgroup
SO(10) x U(1)y and the maximal SO(10) subgroup Gaze x Dpr corresponding to a
Pati-Salam symmetry with Dpgr being a discrete left-right symmetry. The difference
between the pattern of symmetry breaking assumed in this Section to that assumed in
Section 3.5 is the inclusion of the U(1),, symmetry, which enables a U(1)" group called
U(1)x to appear after the G 4221 symmetry is broken.

The first stage of symmetry breaking close to M), will not be considered explicitly for
the same reasoning given in Section 3.5, i.e. quantum field theory is expected to break-

down near M,. Under Es — Gu221 the fundamental Eg representation 27 decomposes
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as:
21 - F+F°+h+D+ S (4.3)

where F' = (4,2, 1)% contains one family of the left-handed quarks and leptons, F¢ =
(4,1,2) 1
includes a charge-conjugated neutrino; h = (1,2, 2)_1 contains the MSSM Higgs doublets
hy and hg; D = (6,1,1)_; contains two Higgs triplets; and S = (1,1,1)2 is a MSSM

singlet. The subscripts are related to the U(1), symmetry’s charge assignments which

can contain one family of the charge-conjugated quarks and leptons, which

are discussed further in Appendix B.

The second stage of symmetry breaking close to Mgy is within the realm of con-
ventional quantum field theory and requires some sort of Higgs sector in addition to the
assumed matter content of three 27 representations of the gauge group Eg. In order to
break the symmetry G4o01 to G211 at Mgy, the minimal Higgs sector required is pro-
vided by the G4o91 representations Hp = (4, 1,5)% and Hr = (4,1,2)_1.} These fields

2

are the G201 equivalent to the Gygo fields Hg = (4,1,2) and Hg = (4, 1,2) described in
Section 3.5.1. When these particles obtain VEVs in the right-handed neutrino directions
(Hg) = (v5) and (Hg) = (V) they break the SU(4) x SU(2)r x U(1),, symmetry to
SU@3). x U(l)y x U(1)x. Six of the off-diagonal SU(4) and two of the off-diagonal
SU(2)r fields receive masses related to the VEV of the Higgs bosons. The gauge bosons
associated with the diagonal SU(4) generator T;°, the diagonal SU(2)r generator T
and the U(1),, generator Ty, are rotated by the Higgs bosons to create one heavy gauge
boson and two massless gauge bosons associated with U(1)y and U(1)x. The part of

the symmetry breaking G021 to G3011 involving the diagonal generators is then:
U(l)T415 X U(I)Tg X U(1)¢ — U(l)y X U(l)X. (4.4)

Note that this is a generalization of the symmetry breaking found in the Standard Model
U(l)Tg x U(1)y — U(1)em described in Section 2.6.6 where U(l)Tg is the subgroup of
SU(2)y, that is associated with the diagonal generator T;. The charges of the “right-
handed neutrino” component of the Higgs which gets the VEV are:

PR ENEEN

n Appendix B it is shown that the symmetry breaking Gaz21 to G211 also requires an MSSM singlet
S from a 27 multiplet of Es to get a low-energy VEV. The VEV of this MSSM singlet is also used to
solve the p problem.
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under the corresponding correctly Eg normalized diagonal generators:?

3 111 1 1
T15—_\[ jag( ==, —2), Th= = diag(1,~1), Ty/V. 4.
4 9 dzag(676767 2)7 R 9 dZCLg( ) )7 1/1/\/6 ( 6)

Appendix B discusses the symmetry breaking in Eq.4.4 in detail. To simplify the discus-

sion here it is observed that T1° = \/g % where B and L are the baryon and lepton

number assignments of each Standard Model particle. The Higgs charges can then be

1 1 1

H

i z 4.7
VR < 27 27 2) ( )

under the corresponding generators Tp_; = %, Tg and Ty. It is then clear to see

written as

why the hypercharge generator Y is preserved by the Higgs Hg and H g since

(B-1)

Y =Tp+ >

(4.8)
takes a zero value for the right-handed neutrino and anti-neutrino Higgs components
which develop VEVs. The generator Y thus leaves the vacuum invariant and its associ-

ated gauge field remains massless.

From the analysis in Section 3.5.2, Eq.4.8 provides a relation between the hyper-
charge gauge coupling constant gy and the SU(4) and SU(2) g gauge coupling constants
g4 and gop, which is given by Eq.3.3. The GUT normalized version of this relation is then
given by Eq.3.4. This is a boundary condition for the gauge couplings at the Pati-Salam
symmetry breaking scale, in this case Mgyr. Due to the left-right symmetry Dprg,
at the (G4901 symmetry breaking scale we also have the additional boundary condition

oy, = aigr, which is used in Eq.3.5.

4.2.1 The Additional Abelian Gauge Group

Hypercharge Y is not the only Abelian generator that is preserved by this Higgs sector.
The Higgs Hr and Hpr VEVs also preserve the combinations of generators Ty + T}% and
Ty — Tp—r, which together form the charge X of the U(1)x group. This is discussed in
Appendix B where the charge X is chosen to be defined by:3

X =(Ty+T3) — Y (4.9)

*Note that the Eg generators G* have been taken to be normalized by Tr(G*G®) = 35°°. Tt then
follows that the Pati-Salam and standard model operators are conventionally normalized by Tr(T“Tb) =
%6‘”’. The correctly normalized E¢ generator corresponding to U(1)y is Ty /+/6 where Ty, corresponds
to the charges in Eq.4.3. See Appendix B for more detail.

3 Alternatively we could have defined X to be g2z (Ty +T3) +g%_1(Ty —Tr_1).
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where c19 = cos A2 and the mixing angle is given by

3
tanfio = 92k y  9gB-L = \/; 94, (4.10)

9gB—-L

where the Eg normalized Pati-Salam coupling constants gop and g4 are evaluated at the
G4991 symmetry breaking scale Mgyr. Note that this Abelian generator X depends on
the values that the Pati-Salam coupling constants take at a particular energy scale. It is
easy to prove that it is a general rule that, if three massless gauge fields are mixed, then
at least two of the resulting mass eigenstate fields must have a charge that depends on
the value of the original gauge coupling constants. See Appendix B for more discussion

on this unusual aspect of X.

The gauge coupling constant g% of U(1)x may be expressed in terms of the SU(4),
SU(2)r and U(1)y gauge coupling constants g4, gor and gy, as:

1 1 1
S (4.11)
ax gy g4t Q2R
012 2 2 2
0 _ (9%) _ 9%nR. — 9a. _ %
where Ox = 4 > Q2R = T 4 =y and Qo = I -

Just as Ty = \/gY is the GUT normalized hypercharge, we can define a GUT (in

this case Eg) normalized generator for X as:

1
Ty = —X 4.12
X =Ny (4.12)

where, from the discussion in Appendix B, the normalization constant Nx is given by:

N%=7-23,+ gcﬁg. (4.13)
In terms of the Eg normalized generator Tx = X /Ny, the normalized gauge coupling
constant gx is defined by gx = g())(NX so that ax = o&N)Q(. Thus Eq.4.11 can be
written as: A2 6 )
X _ 4, _ - (4.14)
ax ay  3ag + 20R
This boundary condition applies at the symmetry breaking scale Mgy and is analogous
to the boundary condition for the normalized hypercharge gauge coupling constant g;
given by Eq.3.5. Table 4.1 lists the values that the generators Y, Tp_p, T }3%, Ty and
Ty + Tg (and therefore X) take for the G3211 representations of the 27 multiplet. Note
that both T, + T]% and Y are zero for v¢ and therefore neither By or Bx couple to
right-handed neutrinos. This is a consequence of Goldstone’s theorem [65] since the

right-handed neutrino comes from the same (G49001 representation as the Higgs boson

component that gets a VEV to break the symmetry.
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Q| L | u® | d®|e| v | hy | hg| D|D]S
S B i B B
R N S E i B B o e e
Y Jg|=2|-53[35 |1]0]3 |-5]-53]35]0

T,+Tp s s 0o 1 [1]o0|-2]-35]-1]-1]2

TABLE 4.1: List of the Tg_ = %, TI?%, Ty, hypercharge Y = Tp_1 + Tl?i, and
Ty +T % charge assignments for the G3211 representations of the 27 multiplet of Ejg.

The U(1)x associated with the preserved generator in Eq.4.9 is an anomaly-free
gauge group which plays the same role in solving the p problem as the U(1)y of the
E¢SSM since it allows the coupling Shyhg that generates an effective p term, while
forbidding S® and the phyhg (see Section 2.6). U(1)x is broken by the S singlet VEV
near the TeV scale, yielding a physical Z' which may be observed at the LHC. It also
allows for a conventional see-saw mechanism since right-handed neutrinos have zero

U(1)x charge.

4.2.2 Two-Loop RGEs Analysis for U(1)x

The previous Chapter investigated the SUSY two-loop RG analysis corresponding to
the pattern of symmetry breaking discussed in Section 3.5. For simplicity this analysis
excluded the running of the gauge coupling constant of U(1)x. The running of this
gauge coupling constant is important however to determine its value at the electroweak
scale, which is required to understand its phenomenology. It will also affect the running
of the other gauge coupling constants at the two-loop order. However it is shown that
this effect is negligible and so the results of Section 3.6 are not significantly modified,

and it was a good approximation to ignore it.

This Section performs a SUSY two-loop RG analysis of the gauge coupling constants,
corresponding to the pattern of symmetry breaking discussed in the Section 4.2. It is
assumed that there are three complete 27 SUSY representations of the gauge group Fg
which survive down to low energies. Above the G4291 symmetry breaking scale Mgy,
the minimal left-right symmetric Higgs sector capable of breaking the G291 symmetry
consists of the SO(10) x U(1), Higgs states (16H)% and (EHL%, where (16H)% =
(4,2, 1)% + (4, 1,2)% and (16H)_% = (4,2, 1)_% + (4, 1,2)_% is assumed in addition to
the three 27 representations. The components which get VEVs are Hr = (4,1,2) 1
and Hr = (4, 1,2)7%. If complete Fg multiplets are demanded in the entire theory
below M), then the Pati-Salam breaking Higgs sector at Mgy may be assumed to be

275 and 27p. For the analysis which involves the 165 + 165 states, the rest of the
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SO(10) representations that together with the 16y + 16 states make up complete Eg
representations (such as a 27 and 27) are assumed to be at or above the Eg breaking scale
and so do not affect the running of the gauge coupling constants below the unification

scale.

The running of the gauge coupling constants at two-loops is therefore investigated
for an Fg theory that contains three complete 27 multiplets at low energies and either
the SO(10) x U(1), states (16H)% + (EH)_% or the Eg states 27y + 27y above the
G921 symmetry breaking scale. The Eg symmetry is assumed to be broken to a left-
right symmetric G401 gauge symmetry, which is then broken to the Standard Model
gauge group and a U(1)x group as described in Section 4.2.

As discussed in Section 3.5.2 the relation in Eq.3.4 between the hypercharge and
Pati-Salam gauge coupling constants at the GG4001 symmetry breaking scale can be turned
into a boundary condition involving purely Standard Model gauge couplings constants
at the Gy991 breaking scale as given by Eq.3.5. This is because SU(3). comes from
SU(4) so s = ay at this scale, and, as remarked, the Dyr symmetry requires that
aor = aof, at the G991 symmetry breaking scale. It is also argued that having specified
the low energy matter content and thresholds, Eq.3.5 allows a unique determination of
the Pati-Salam breaking scale, by running up the gauge couplings until the condition is

satisfied.

However the symmetry breaking pattern is slightly different in this Chapter since
a U(1)x symmetry has been included at two-loops the running of the U(1)x gauge
coupling constant will change the running of the Standard Model gauge coupling con-
stants, and the charge of the U(1)x group T’x depends on the values that the g4 and gar
coupling constants take at the G4201 symmetry breaking scale, which is written into the
cosine c15 of the mixing angle tan 612 = gor/gp—r. This upsets the unique determination

of the Pati-Salam scale using Eq.3.5.

The running of the gauge coupling constants to two-loops is therefore calculated as
follows: First the U(1)x and U(1), symmetries are ignored and the two-loop running
found in Section 3.6 is used to determine the unification scale. Using one-loop RGEs, the
U(1), gauge coupling is then run down from this unification scale and the U(1)x gauge
coupling is determined at the G 4991 symmetry breaking scale Mgy from the boundary
condition in Eq.4.11. The U(1)x gauge coupling is then run down to the TeV scale to
give a value for the U(1)x gauge coupling constant at low energies (unlike the Standard
Model gauge couplings we do not know the value of the U(1)x value at low-energies

since it has not been observed).
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FIGURE 4.1: Two-loop RGEs running of the gauge coupling constants in two MEgSSM
toy models that are described in the main body of the text. The thickness of the lines
represents the experimental uncertainty in the initial values of the coupling constants.
The blue lines represent the Pati-Salam inverse gauge coupling constants 1/ay and
1/aer, = 1/asr. Near to the conventional GUT scale the SU(3). gauge coupling
constant ag becomes the SU(4) gauge coupling constant a4, and the SU(2)r and
U(1)y gauge coupling constants aopg and o, are the combination of the SU(3)., U(1)y
and U(1)x gauge coupling constants as, a3 and ax given by Eq.3.4 and Eq.4.14.

Given this one-loop value for the U(1)x gauge coupling constant at the TeV scale,
all the gauge coupling constants are then run up to the unification scale using two-
loop RGEs. Since this is performed at the two-loop order however, the running of the
U(1)x symmetry will affect the running of the SU(3). x SU(2)r x U(1)y gauge coupling
constants so that the values for g4 and gsog calculated from Eq.3.5 will now differ from
those found when we ignored the U(1)x symmetry, and the unification scale will be
slightly modified. Using the new values for g4 and gop the process is repeated by re-
calculating T'x and running the U(1), gauge coupling using one-loop RGEs down from
the new unification scale to determine the value of the U(1)x gauge coupling constant
at low energies. Again this new value is used to re-calculate the running of the gauge
couplings to two-loops and determine the unification scale. This process is repeated until
the g4 and gop values and unification scale no longer change to within four significant

figures.

After this recursion of the two-loop RGE analysis it is calculated that, with either
(16H)% + (TGH)_% or 27y + 27y included above the G221 symmetry breaking scale, c2,
is equal to 0.71 to two significant figures. However, for convenience the physical value
of ¢2, is taken to be equal to % (= 0.71) so that T'x can be written in terms of fractions.
Using this value of 0%2 in equation Eq.B.8, T'x is calculated for all the standard model
particles of the three low-energy 27 multiplets. The values that T'x, Ty and T take
for the particles of the 27 multiplets are given in Table 4.2, where T is the generator

associated with the U(1)x group in the EgSSM.
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The results are shown in Fig.4.1. The left-panel illustrates the running of the gauge
coupling constants for the Eg theory that contains the SO(10) x U(1)y, states (16H)% +
(16q)_ 1 particles. A low-energy effective threshold of 250 GeV for the MSSM states is
used in this model and therefore an effective threshold of (6 x 250) = 1.5 TeV is assumed
for the rest of states of the three complete 27 multiplets. This was also assumed in Section
3.6, which follows the analysis of effective MSSM thresholds from [57]. The right-panel
of Fig.4.1 is for the Fg theory that contains the Fg states 27y + 27y. The MSSM
threshold must be increased to 350 GeV (and hence the 1.5 TeV threshold is increased
to 2.1 TeV) in this model to ensure unification for the gauge coupling constants of the

G921 symmetry.

The gauge couplings are run up from low energies to high energies, using as input
the SM gauge coupling constants measured on the Z-pole at LEP, which are as follows
[26]: a1 (Mz) = 0.016947(6), aa(Mz) = 0.033813(27) and as(Mz) = 0.1187(20). The
general two-loop beta functions used to run the gauge couplings are described in Ap-
pendix A. Using a two-loop renormalization group analysis, it is calculated that the
G221 symmetry is broken at 10'6453) GeV or 10164063) GeV and that gauge coupling
unification occurs at 10'89°®) GeV or 10191909 GeV for the models that contain the
SO(10) x U(1)y, states (16H)% + (165)_1 or Eg states 27 + 27y respectively.

1
2

The value of the gauge coupling constant at the unification scales 10'89°®) GeV
or 10191000) GeV is ap = 0.183(10) or ap = 0.432(121) for the (165)1 + (167)
2

27y + 27y particle spectra, respectively. The values of the unified gauge coupling at

_10r
2
the Planck scale are much larger than the conventional values of agyr and indeed are
larger even than as(Myz), however they are still in the perturbative regime. Of course
there are expected to be large threshold corrections coming from Planck scale physics

which are not included in this analysis.

In terms of a logarithmic scale, the Pati-Salam symmetry breaking scale and uni-
fication scale have not been significantly changed from the results of Section 3.6 which
ignored the U(1)x and U(1), symmetries. Planck scale unification and a GUT scale

Pati-Salam symmetry breaking are still predicted.

4.3 The ME;SSM

In this Section a realistic MEgSSM is formulated, focussing on the model building issues.
The MEgSSM has a more ‘minimal’ particle content than the EgSSM since it only
contains three complete 27 multiplets at low energies, whereas the EgSSM contains two

additional EW doublets which can be considered as states of incomplete 27 and 27 Eg
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Q L u’ d° e ve Iy ha D D S
T I 2 1 I 1 1 T
TSI NS RIS B I SRR I I R
21 7 21 21 7 7 7 21 21
N 1 2 1 2 1 0 -2 -3 -2 -3 5
Ty | 0.129 | -0.387 | -0.516 | 0.258 | 0.775 | 0 | 0.387 | -0.387 | -0.258 | 0.258 0
Tx | 0.150 | 0.338 | 0.188 | 0.301 | 0.113 | 0 | -0.338 | -0.451 | -0.301 | -0.489 | 0.789
Tn | 0.158 | 0.316 | 0.158 | 0.316 | 0.158 | 0 | -0.316 | -0.474 | -0.316 | -0.474 | 0.791

TABLE 4.2: The values that the charges Y, X and N take for the all the G3211
representations of the Eg 27 multiplet. Y is hypercharge, X is the charge of U(1)x for
the model presented in Section 4.2.2, and N is the charge associated with the U(1)y
group in the EgSSM. The respective GUT normalized charges Ty, T'x and Ty are also
given. Nx and X have been calculated for the case when c3, = 5/7 which, to two
significant figures, agrees with the RGEs analysis in Section 4.2.2.

multiplets. From the previous RGEs analysis, unification of the G4901 gauge coupling
constants occurs near the Planck scale where an Fg symmetry should in principle exist.
However, given the expected strength of quantum gravity at this scale, it is likely that any
such Fg symmetry is for all practical purposes broken by gravitational effects. Therefore,
the model that is proposed in this Section is chosen to not respect an Eg symmetry but
instead obey the (G4201 symmetry that exists between the conventional GUT and Planck
scales where quantum gravity effects are anticipated to not be so significant. G4991 must
be a symmetry of the model since its RGEs were used to determine the scale of gauge
coupling unification in Section 4.2.2. The Eg symmetry on the other hand was never

used.

Under Eg — SO(10) x U(1)y, — G221, the fundamental Eg representation breaks

into the following: 27 — 161 +10_1+ 193 — F+ F°4+h+D+.S. Including three families
2

contained in three 27; reps, then, without further constraints on the theory, the allowed

couplings are contained in the tensor products:

where 4,7,k = 1...3 are family indices. However not all these terms are desirable since
the presence of extra Higgs doublets can give rise to flavour changing neutral currents
(FCNCs) and the presence of light Higgs triplets can induce proton decay. Therefore
extra symmetries are required to control the couplings, a suitable choice being the R-
symmetry and the discrete Z4 symmetry displayed in Table 4.3, which reduces the
allowed couplings to those shown in Table 4.4, where the lowest order non-renormalizable

terms are displayed. The physics of the allowed and suppressed terms are now discussed.



Chapter 4. The Minimal Exceptional Supersymmetric Standard Model 57

field | SU4) x SU2), x SU2)rxU(1)y | U)g | Z&
F;, Ff (4,2,1);, (4,1 2)1 1 —
h3, ha (1,2 2)_1 0 +,—
S3, Sa (1,1,1)2 2 +, —

D; (6,1 1) 1 0 -
Hr, Hp (4, 1)%,(11 )% 2 +
Hp, Hg (4,2,1)_ %7(41 2)_ 1 0 +

TABLE 4.3: All the charge assignments for the G 49221 representations of the MEgSSM,
where i = 1...3 is a family index and a = 1,2. The U(1) is an R-symmetry and Zf
distinguishes the third family Higgs which get VEVs. The superpotential terms that
are allowed by these symmetries are given in Table 4.4. The h3 supermultiplet contains
the MSSM Higgs bosons and S5 is the MSSM singlet that generates an effective p-term.

4.3.1 Suppressed Flavour Changing Neutral Currents

The F;Fjhs superpotential terms are taken to contain the MSSM Yukawa couplings
since, as in the EgSSM, the third generation hg is assumed to contain the MSSM-like
Higgs doublets h, and hg that gain electroweak VEVs. The other h, states are taken
to not get VEVs and will cause FCNCs unless the superpotential term F;Fjhq, where
a = 1,2, is forbidden or highly suppressed by some new symmetry [17]. These terms are
forbidden using a Zf discrete symmetry that respects the G291 symmetry but not the

Planck-scale Eg symmetry since the latter is assumed to be broken by quantum gravity.

Under this ZH symmetry the ‘matter particles’ F; and Ff and ‘non-Higgs’ particles
he are taken to have Z& = —1 and the MSSM Higgs doublets from h3 are assumed to
have Z4 = +1. The FCNC inducing terms F;F “hq are therefore forbidden by the zH
symmetry and the effective MSSM superpotential terms F;F 7hs are allowed. The fact
that only the third generation of Higgs doublets hs couple strongly to the quark and
leptons could explain why only these electroweak doublet fields gain VEVs as discussed
in Section 2.6.4 for the EgSSM.

The Z¥ symmetry used here forbids the FCNCs in the same way that the Zi
symmetry of the EgSSM forbids the FCNCs from the h, ‘non-Higgs’ particles in that
model [17]. However, it is shown later that, although the F;Ffh, terms are forbidden at
the renormalizable level by Z2H , they are still generated from non-renormalizable terms,

which are heavily suppressed so that the induced FCNCs are not significant.

Note that the Z{T does not commute with an Eg symmetry if all the MEgSSM sates
come from only complete representations of Eg. It is assumed that the Fg symmetry
may not be respected by low-energy symmetries as it is broken by quantum gravity
effects. For example if the MEgSSM sates come from four incomplete 27 representations

then Z{ will commute with Eg, which could be explained by compactification of higher
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dimensions in a quantum gravity theory such as string theory. Such higher energy effects

are not considered here however.

4.3.2 The pu-Term and Exotic Mass Terms

Following the EgSSM, only the third generation of the S; states is assumed to get a
vacuum expectation value so that the S3hshs term, from the (G499 superpotential term
Sihjhy, will generate an effective MSSM p-term. For this term to be allowed by the
Z{I symmetry, the S5 particles must have Z{I = +1. No Goldstone boson is created by
the VEV of S3 since it is charged under the local U(1)x group. Instead a Z’ boson is

created whose phenomenology is discussed in Section 4.4.

In addition to solving the p-problem of the MSSM, the little hierarchy problem of
the MSSM should also be resolved by the MEgSSM. This is because there are extra
particles below the conventional GUT scale of 106 GeV that are not contained in the
MSSM. These extra particles are from the three copies of the 27 Eg multiplet and form
two copies of a 5 + 5 of the SU(5) subgroup of Fg, and one Higgs triplet particle. Due
to Renormalization Group effects, the extra states increase the value of the Yukawa
coupling constant for Sshshs at low energies, and hence increase the mass of the lightest
CP even Higgs boson [17].

The S35 particle is also used to give mass to the ‘non-Higgs’ particles h, and Higgs
triplet particles D; via the terms S3hohg and S3D;D; respectively where 3 = 1,2. For
general U(1)" models, the S3D;D; superpotential term has been shown to induce a VEV
for the singlet S3 so that it can generate an effective u-term [52, 53]. From Table 4.4 the
SoD;iDj and Syhgh~ (where v = 1,2) superpotential terms are forbidden at tee-level so
that the S, particles should not acquire VEVs. These S, particles will instead get mass
from the S,hgh3z superpotential terms where S, has ZH = —1. This is exactly the same

as in the EgSSM, which was reviewed in Section 2.6.6.

4.3.3 Exotic Decay and Suppressed Proton Decay

The remaining G4201 superpotential terms to be discussed from Eq.4.15 are F;F;Dj,
and FyFDy. These will cause rapid proton decay in this model unless they are highly
suppressed or forbidden by some symmetry [17, 38]. Under G221 — G321 these terms

decompose to the following:

FFD — QQD + QLD (4.16)
FCF°D — u¢d°D + ue°D + d°v¢D
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Allowed couplings Physics
FiF5hs MSSM superpotential
Sshshsg Effective MSSM p-term
Szhahg h, mass
SgDiDj Dz mass
Sahghs S, mass
MLPE(FI-FJ-D,c + F{F{Dy,) | Allows D; and proton decay
MLPEFiF jcha Heavily suppressed FCNCs
MLPZSQD{D]- Harmless
MLPESah@hV Harmless
MLPZSahghg Harmless
ar B Fy HRHR V¢ mass
o EFHOH Harmless

TABLE 4.4: The G4921 superpotential terms that are obtained from all the renormaliz-
able and first-order non-renormalizable Eg tensor products of 27;, the SO(10) x U (1),
states (16p)1 + (176H)7% (that are assumed to derive from a 27 + 27), and 3, that

are allowed by the ZX and U(1)g symmetries of the MEgSSM. 4,5,k = 1...3 and
a, 3,7 = 1,2 are family indices.

where D = (3,1)_ 1 D = (3, 1)§ and the family indices and coupling constants have
been dropped for ease of notation. These operators are also found in the EgSSM and are
separated into the superpotentials Wi and W5 in Eq.2.28 in Section 2.6.7. In the EgSSM
a ZZL or ZQB discrete symmetry forbids W7 or Ws respectively as discussed in detail in
Section 2.6.7. This forbids the otherwise induced proton decay and also allows the D and
D states to decay. Unfortunately however we cannot use the Z£ or ZP symmetry in the
MEgSSM since they do not commute with the Pati-Salam gauge symmetry.* Therefore

a different method to avoid rapid proton decay is required.

The F;F;jDy, and FF;Dy, superpotential terms cannot be forbidden altogether since
the D; particles would become stable, strongly interacting particles with TeV scale
masses. Such particles cannot exist in nature and in fact could potentially cause prob-
lems for nucleosynthesis even if they are unstable with a lifetime greater than just 0.1s
[56]. This was discussed in more detail in Section 2.6.7 for the EgSSM. Forbidding
F;F; Dy, over FfFjCDk or vice versa would not help either since both terms contain parts
of Wi and Wy as illustrated by Eq.4.16.

The Standard Model representations of Dy, are often found to some degree in other
GUTs and the rapid proton decay problems are often solved using some doublet-triplet
splitting mechanism that gives large (above the GUT scale) mass to the analogue of

the D; (triplet) particles, but EW mass to the Higgs doublets. Section 2.4.5 describes

47ZE and Z£ can commute with Gaz21 if the quarks and leptons are taken to come from separate F
and F° representations. This would be difficult to explain using a conventional field theory however.
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such a mechanism in more detail. However, in this model we cannot give a large mass
to the D; particles because gauge anomalies would then exist, due to the U(1)x group,
and Planck scale unification would be lost. Also, as discussed above, the D; particles
can be used to help induce a VEV for the S3 particle, around the TeV scale, if they
contribute to the low energy theory. We must therefore highly suppress the F;F;D;,
and F7F;Dj, superpotential terms using a small Yukawa coupling constant rather than
using the general GUT method of creating large D; masses. In this case the Yukawa
couplings of the quarks and leptons to Higgs doublets and Higgs triplets are ‘split’ rather
than their masses. To achieve this the F;F;Dy and FfF;Dj superpotential terms are
forbidden at the tree-level but generated from the non-renormalizable terms Y F;F;D;,
and LF;7FDy, where X is an Ejg singlet, by taking both ¥ and D; to have Zf = —1.
These non-renormalizable superpotential terms are expected to survive from the Planck
scale and so will likely be suppressed by a factor of 1/M,,. We can therefore control the
degree of suppression of the F5F; Dy, and F;F;Dy, terms by choosing the energy scale at
which ¥ gets a VEV. The level of suppression, and therefore the > VEV scale, must be
such that the induced proton decay has a rate smaller than present experimental limits,

but the D; states still decay faster than 0.1s.

In Section 4.3.3.1 the minimum level of suppression required for the proton’s lifetime
to be within experimental limits is estimated. This is then compared to the maximum
level of suppression required for the D; particles’ lifetime to be greater than 0.1s which

is estimated in Section 4.3.3.2.

4.3.3.1 Proton Decay

The superpotential terms AFFD and AF°FD (with the family indices dropped for
simplicity) cause proton decay through d = 5 and d = 6 operators [36, 66|, and the most
stringent experimental limits on the proton’s lifetime are set by the d = 5 p — KT¥
and d = 6 p — 7T decay channels, which are 1.6 x 1033 years and 5.0 x 10%? years
respectively [26]. The d = 6 operators are found in all simple GUTs (including non-
SUSY GUTs) and a dimensional analysis estimate for the decay width of the proton is
[36]:
5

m
Ty ~ [ApuApdl* —f (4.17)
mp

where mp, m,, are the mass of the D; particles and proton respectively; and Ap,, Apq are
the strength of couplings between the D; mass eigenstate and the up quark (and charged
lepton) and down quark mass eigenstates. Taking mp = 1.5 TeV in Eq.4.17 for example
requires that A < 10713 for the proton’s lifetime to be greater than 5.0 x 1033 years in

the approximation that Ap, = Apg = A. In the MEgSSM this suppression A will be
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approximately given by (X)/M, so that (X) < 10° GeV for the d = 6 decay p — 7’e™ to
be within experimental limits. Of course this is only a rough order of magnitude estimate
and assumes that the operators M%DZFFD and ﬁpEFCFCD represent the interactions

between the D, quark and lepton mass eigenstates.

The d = 5 operators are only found in SUSY GUTs since they contain the coloured
partners to the higgsinos (the ‘triplet higgsinos’) and must be dressed with squarks and
sleptons to generate proton decay [36]. These operators only exist if the supersymmetric
theory contains a mass term that mixes the coloured partners to the up higgsinos with
the coloured partners to the down higgsinos. In the MEgSSM this mass term is provided
by S3D;D; once S gets a VEV. The matrix element for the d = 5 decay channel p — K0
can be found in [36, 67] and is proportional to Apy,Aps/mpmsysy where mgysy is the
mass scale for the Standard Model’s superpartners. For the lifetime of the proton to be
within experimental limits, it was found that mp > 7.6 x 10'% GeV was required for a
Yukawa suppression of order Apy,Apg where Ap,, and Apg are the Yukawa couplings of the
up and down quark with the SUSY Higgs fields [67]. This suppression can be estimated
as mymg/mymy ~ 1071% which sets an upper limit for the Yukawa suppression used in
[67]. This result can then be scaled to obtain an estimate for the suppression required
in the case that mp = 1.5 TeV rather than mp 2> 7.6 x 10'6 GeV:

mp
/\2 ~ %‘Ahu/\hd,

where X is the suppression factor of the superpotential terms FFD and FCF°D in the
MEgSSM; mp = 7.6 x 106 GeV; mp = 1.5 TeV and the scale mgysy used in [67] is
assumed to be roughly the same as that in the MEgSSM. With | A, Ang| =~ 10710 then

A < 10712 is required for the d = 5 decay p — K7 to be within experimental limits.

The d = 5 decay channel is thus less constraining than the d = 6 decay channel when
the mass of the Higgs triplets is equal to 1.5 TeV. This is the opposite to what is found
in conventional SUSY GUTs where the d = 5 channels set stringent limits on the mass
of the triplet higgsinos. For example the d = 6 channels generically require mp ~ 10!
GeV whereas, as stated above, the d = 5 channels can require mp ~ 7.6 x 106 GeV.
The reason that this is not the case in the MEgSSM is because mgysy = mp so that

the matrix elements of the d = 5 and d = 6 channels converge.

In summary the proton decay requires that the terms FFD and F¢F¢D in the
MEgSSM superpotential are suppressed by a factor of A = 10~ or smaller, which is set
by the d = 6 channel p — 7¥¥.
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4.3.3.2 Higgs Triplet Decay

The effective superpotential terms F; F; Dy, and Fichch, generated from ﬁpEFiﬂpk and
ﬁpZﬂcﬂ¢Dk, are the only source for the D; particles to decay. Assuming that m; < mp,
where my is the mass of the heaviest stop, the D Standard Model representation of the
G221 D particle will predominantly decay through the channel D — ¢ 4 b [17]. Using
the standard 2-body decay kinematic formula [26] it is estimated that the decay rate for
D — ¢+ b, under the assumption that my < my, is:

2

2

— m=
D_—taq.
2mtp,

1 m
I~ 2
d 3272 M|

At tree-level, a rough order of magnitude estimate of the matrix M for the D — ¢ + b
decay channel gives:

IM|? ~ 2(m3 — m%))\Q.
Taking the mass of the stop to be around the TeV scale, it is estimated that the F;F;D;,
and FfF7Dy operators must be multiplied by an effective Yukawa coupling A that is

greater than 10~!3 for the D; particles to have a lifetime less than 0.1s.°

The superpotential terms AFFD and AFCFD are effectively generated from the
Planck-suppressed operators Mip‘jF FD and ﬁpEF ¢F°D, and so the Yukawa coupling A
is effectively given by (X)/M,. To avoid cosmological difficulties from the D; particles,
the above analysis shows that (X) > 105 GeV, and to avoid experimentally observable
proton decay we require that (X) < 10° GeV. It is therefore assumed that () ~ 109
GeV and that the generated level of suppression is compatible with both proton decay
and Higgs triplet decay.

This small allowed window of couplings warrants a more detailed analysis of both
proton decay and triplet decay since it will lead to testable predictions for proton decay
and the MEgSSM. The TeV scale Higgs triplet states, which would be quasi-stable at
colliders, would also lead to striking signatures at the LHC [68].

4.3.4 R-Symmetry and R-Parity

To ensure that the LSP is stable in this model, so that it is a candidate for dark matter,
an R-parity is derived from the U(1)g symmetry [69], which commutes with the G291
symmetry but not the Eg symmetry because the latter may not be respected by low-

energy symmetries as it is assumed to be broken by quantum gravity effects. To allow

°If the stop has a mass m; > 1.5 TeV then a suppression of 107! would be required. The stop must
therefore have a mass smaller than 1.5 TeV in the MEgSSM.
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the G4221 superpotential terms, which respect the Zf discrete symmetry, and to derive a
generalization of the MSSM R-parity, the G4201 supermultiplets of the three 27 Eg have
the following U(1)r R-charge assignments: F; and Ff have R = +1; h3, ho, D; and ¥
have R = 0; and S3 and S, have R = 42 (see table 4.3). The 16 state also has R = +2
so that, when it gets a VEV, the U(1)g is broken to a Z discrete symmetry called Z£.
Under this Zf symmetry the scalar components of F;, F¥ and the fermionic components
of hy (the MSSM sparticles) all have Z& = —1 while the fermionic components of Fj
and Ff and the scalar components of hz (the MSSM particles) all have Z£ = +1. The
Z8 symmetry is therefore equivalent to the R-parity of the MSSM for the F;, Ff and

hs supermultiplets.

The hq, D;, S; and ¥ supermultiplets are not in the MSSM. All the scalar com-
ponents of these ‘new’ supermultiplets can be shown to have Zf = 41 while all the
fermionic components have Zf” = —1. Therefore F; and F} are the only supermultiplets
in the theory which have Z& = +1 for their fermionic components and Z& = —1 for their
scalar components. This Z& symmetry therefore stops the ‘non-MSSM’ particles from
allowing the MSSM LSP to decay as well as operating as the R-parity of the MSSM.

The introduction of the Zf symmetry thus ensures a stable dark matter candidate.

Note that the Zf symmetry in Table 4.3 is equivalent to an MSSM matter-parity.
Therefore, if it was left unbroken, it would also prevent the MSSM LSP from decaying.
However, as discussed in Section 4.3.1, the ZJ symmetry is broken by the Ej singlet ¥
at around 10° GeV generating the effective operators FiFDy, F{F; Dy and F; F;hq that
disrespect Z4, and enabling the MSSM LSP to decay. Hence the ZJ* symmetry must
be introduced in addition to the Zéq symmetry so that the MSSM LSP is stable.

4.3.5 Neutrino Mass

The above R-charge assignments forbid phenomenologically-problematic terms and allow
the charge-conjugated neutrinos, from F¢, to obtain a large Majorana mass O(Mg/M,)
from a MipFiCFJ»C(EH)_%(EH)_% = MLPE»CFJ-CHRHR superpotential term. This term will
create a conventional see-saw mechanism for the left-handed neutrinos together with the
superpotential term Fz-chhg.

The operators MLPFZ'CFJ‘C(EH)*% (EHL% = MipFiCFjCHRHR and MipFiFjﬁLﬁL, which
is phenomenologically harmless, are the only superpotential terms that contain inter-
actions between the three 27 Eg multiplets and the (16H)% + (16p)_ 1 multiplets. In
Section 4.2.2 the RGEs analysis was performed for two MEgSSM toy models, one with
16 + 167 and the other with 27 + 27g. If the 27y + 27 states are included above

the G4221 symmetry breaking scale than an additional Zs symmetry must be added to
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Table 4.3 to prevent any phenomenologically problematic terms between these states
and the quarks and leptons. Including incomplete Eg states above the G4901 symmetry
breaking is considered acceptable here because they are split from their Eg particles by
~ 103 orders of magnitude. This is compared to the splitting between the mass of the

top and up quark which is ~ 10° orders of magnitude.

4.4 Phenomenology of the new Z’ in the MEsSSM

This Section investigates certain phenomenological implications of the Z’ gauge boson in
the MEgSSM. The results are compared to those calculated for the Z’ in the EgSSM to
see if a possible distinction can be made between the two models in future experiments.
The covariant derivatives for the EgSSM and MEgSSM symmetries below the GUT scale
are first reviewed and then the different U (1)’ groups from the two models are compared.
In Section 4.4.3 the mixing between the Z’ of the MEgSSM and the Standard Model Z
gauge boson is then calculated and shown to be negligible as in the EgSSM. In Section
4.4.4 the axial and vector couplings of the Z’ to the low energy particle spectrum are
calculated and it is shown that the charged lepton vector couplings do differ in the
E¢SSM and MEgSSM, which could potentially lead to a distinction between the two

models in future experiments.

4.4.1 The 7' of the E¢SSM

In the EgSSM the Eg symmetry is not broken through a Pati-Salam intermediate sym-
metry but instead breaks to SU(3). x SU(2)r x U(1l)y x U(1)n via a Eg — SO(10) x
U(l)y — SU(5) x U(1)y x U(1)y symmetry breaking chain. The covariant derivative
for the SU(3). x SU(2)r, x U(1)y x U(1) symmetry can be written as:

D'u = a'u + ’L'ggT?:LcAgc# + ig2LT£Aiu + ’L'ngyBy‘u + Z'gNTNBN,u (4.18)

where n = 1...8 and s = 1...3; A%, Aj

Seur A, By and By, are the SU(3)., SU(2)r,

U(1)y and U(1)x quantum fields respectively; g3, gor, g1 and gy denote the universal
gauge coupling constants of the respective fields and T3, T}, Ty and Ty represent their
generators. At low energies the U(1l)y gauge group will be broken giving rise to a

massive Z' gauge boson associated with the EgSSM.

The gy gauge coupling constant is equal to g1 to an excellent approximation [17],
independent of the energy scale of interest. This is to be compared to the universal
gauge coupling constant gy of the group U(1)x in the models presented in this Section,

which is always less than g;.



Chapter 4. The Minimal Exceptional Supersymmetric Standard Model 65

Similar to Ty and T'x, we can split T into an Eg normalization constant Ny and a
non-normalized charge N so that Ty = N/Ny where the conventional choice is NJQV =40
and N = 1x + 5T, where x = 2V/10T), [17].

4.4.2 The Z' of the MEz;SSM

The covariant derivative of the G4921 symmetry is discussed in Appendix B and is given
by Eq.B.1 as:

. . . 1.
Dy = 0y +igaTy" AY}, + igor T A}, + i92RTR AR, + %zg¢T¢A¢H

where m = 1...15 and r,s = 1...3; A}, AL, and Ay, are the SU(4), SU(2)r and
U(1)y quantum fields respectively; g4, gor and gy denote the universal gauge coupling

constants of the respective fields; and T}", T and T, represent their generators.

The covariant derivative of the G3211 symmetry is also derived in Appendix B and

is given by Eq.B.12 as:
DM = 6.“ + ig3T?Z:A§cu + iggLTiASLN + ingyBY“ + Z'ngxBX“ (4.19)

wheren =1...8and s =1...3; and By, and Tx are the gauge field of the U (1) x group
and its (Eg normalized) charge respectively. At low energies the U(1)x gauge group will

be broken, giving rise to a massive Z’' gauge boson associated with the MEgSSM.

As is clear from Table 4.2, for ¢3, = %, the T'x and T charges are different for
all of the (G3211 representations of the 27 multiplets. However, in the limit c%z = %,
corresponding to gop = g4 at the G4901 symmetry breaking scale, then Tx and Ty
become identical.5 This can be seen if one sets JoR = G4 = \/ggB_L in Eq.4.9 and
Eq.4.13, in which case T'x is given by:

1 (71 ) E(59)]

= % [TX + Vﬁ(Tw/\fﬁ)]

= Ty cos O + (Ty/V6)sin
=Tn

S Although T'x and T are identical for ¢}, = 3/5, X and N and hence Nx and Ny are not. However,
we could have defined X and Nx differently so that they agree with N and Nx when ¢35 = 3/5.
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where § = arctan v/15 and T}, is the Eg normalized charge for the U(1), group, which
is defined by SO(10) — SU(5) x U(1), [50] 7.

In the EgSSM the U(1) y group is defined as the linear combination of the two groups
U(1), and U(1) for which the right-handed neutrino is a singlet of the symmetry [17].
This linear combination is U(1), cos@ + U(1), sinf, where § = arctan /15 [17], which
is the same linear combination of U(1), and U(1)y that U(1)x becomes if gr = g4
as shown above. Thus if gg = g4 at the G901 symmetry breaking scale, then the
covariant derivative for the EgSSM, Eq.4.18, and the covariant derivative for Gsa11,
Eq.4.19, become equivalent because of the reasons stated above. However, in the Fg
theories proposed in Section 4.2.2, 0%2 ~ % not % so that, in general, one expects gr # g4
at the G291 symmetry breaking scale in realistic models. This way of relating the EgSSM
and the MEgSSM (i.e. by setting g4 = gor at the G291 symmetry breaking scale) is
utilized in Chapter 6.

It is clearly of interest to try to distinguish the Z’ of the EgSSM from that of
the MEgSSM, since the former one is associated with GUT scale unification, while the
latter is associated with Planck scale unification. In the remainder of this Section the
phenomenology of the new Z’' of the MEgSSM is discussed and compared to that of
the EgSSM. In principle, different Z’ gauge bosons can be distinguished at the LHC
by measuring the leptonic forward-backward charge asymmetries as discussed in [70]

(providing the mass of the Z’ is not much larger than about 2 TeV).

4.4.3 Mixing between Z and the Z’' of the MEgSSM

This Section investigates the mixing between the Z gauge boson and the Z' gauge
boson of U(1)x which is generated once the Higgs doublets h, and hy from hg get
vacuum expectation values and break the electroweak symmetry. When the MSSM
singlet particle S from the low-energy 27 multiplets of the MEgSSM gets a VEV, the
U(1)x group will be broken and a heavy Z’ gauge boson will be produced. Then, when
hy, and hg get VEVs, the SU(2)r, x U(1)y symmetry will be broken to U(1)en and a
heavy neutral Z gauge boson, which is the following mixture of the SU(2); and U(1)y
fields: Z,, = Wj’ cos Oy — Ay sin Oy where Oy is the Electroweak (EW) symmetry mixing
angle. Since h,, and hy transform under U(1)x, they couple to Z’ and so mix the Z’ and
Z gauge bosons when they get VEVs. After S, hy, and hg get VEVs the mass squared

"When gor, = g2r = g4 the Pati-Salam generators can be thought of as SO(10) generators, on the
same footing as the SU(5) and U(1),, generators when their gauge couplings are equal, as in the EgSSM.
In this limit the above argument shows that there is no distinction between U(1)ny and U(1)x.
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mixing matrix for the Z and Z’ gauge bosons is given by [71]:

5 M% 5M?
My, =
ZZ/ 2 2
sM? M2,

where:

M3 = (g5, + g3)(Y")?vp
M3, = g v [(T)? cos® B+ (T52)? sin? B] + g% (T%)*s”

SM? = \/g%L + g%, gx Yh(T)}é1 cos? 3 — T)}? sin? ﬂ)v%

and Y is the magnitude of the h, and hy Higgs bosons’ hypercharge; Thl, T)}? and Tj?
are the values that the Fg normalized U(1)x charge, T, takes for the hy, hy and S
states respectively; gor, and gy are the SU(2)r and (non-GUT normalized) hypercharge
gauge coupling constants evaluated at the EW symmetry breaking scale;® gx is the
U(1)x gauge coupling constant evaluated at the U(1)x symmetry breaking scale; s is
the VEV of the MSSM singlet S; v, = {/vZ + vfl and tan § = 5—5 where v, and vy are

the vacuum expectation values for the h, and hy MSSM Higgs bosons respectively.

The mass eigenstates generated by this mass mixing matrix are:

Z1=2ZcosOyz + 7' sin 6y

Zo=—Zsnlz5 + Z,COSQZZ/

with masses M7 , = S| MZ+M2Z, ¥ \/(M% — M2,) + 46 M* | respectively, and mixing
le tan(207,) = 20

angle tan(2607z/) M2, 0I%

In terms of the above mixing angle the covariant derivative for the mass eigenstate

gauge bosons Z; and Zs is:

COS HZZ’

V95 + 95

+i<gXTX cosOz .z +

D, =0, —i—i< (g%LTg — g%Y) —gxTx sinHZZ/>Z1#

sin 0z 7
ﬁ(g%L - Q%Y)> Zoy
\V 9y T %L

where gy and gor, are evaluated at the EW symmetry breaking scale and gx is evaluated
at the scale at which S gets a VEV to break the U(1)x symmetry. Phenomenology
constrains the mixing angle 6z to be typically less than 2 —3 x 1073 [72] and the mass
of the extra neutral gauge boson to be heavier than 500 — 600 GeV [45]. It is calculated

8The non-GUT normalized hypercharge coupling constant gy is identified as gy = \/g gi.
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that, if the S particle gets a VEV at 1.5 TeV in the MEgSSM, then 6, = 3 x 1072 and
My = 544 GeV so that phenomenologically acceptable values are therefore produced
for s > 1.5 TeV. This vacuum expectation value is consistent with the RGEs analysis in

Section 4.2.2 and the scale of electroweak symmetry breaking.

Since the mixing angle 67z is very small in the MEgSSM, the two mass eigenstate
gauge bosons can be approximated to be just Z and Z’. These are the neutral gauge
bosons of the broken SU(2); x U(1)y and U(1)x symmetries respectively. The above

covariant derivative is then simplified to:

v
9%+ 951

4.4.4 Axial and Vector Couplings for 7’ in the MEgSSM

D, =0,+i Zu(95. T3 — gvY) +igx Z,Tx.

If the mixing between the Z and Z’ gauge bosons is ignored, then the most general
Lagrangian for the U(1)x group is [73]:

1

9x " ' ‘ 1 sin
EX = §MZ/Z/V’ZL — 7Zw17#(f\l/ _ f}475)szL . *F/“VF;“/ B
i

2

1 F™E,,
where F'" and F" are the field strength tensors for U(1)x and U(1)y respectively;
1; are the chiral fermions; and f{/ and fi are their vector and axial charges which are
given by fi, = N—lx(X}: + X4) and f4 = ﬁ(X}J — X%) where X7, and Xg are the X
charges for the left-handed and right-handed particles respectively.

4.4.4.1 Kinetic Term

The %F ' F,, term in the above Lagrangian represents the kinetic term mixing for
the two Abelian symmetries U(1)y and U(1)x. In general, the kinetic term mixing for
two Abelian gauge groups is non-zero because the field strength tensor is gauge-invariant
for an Abelian theory. However, if both Abelian groups come from a simple gauge group,
such as Ejg, then sin y is equal to zero at the tree-level, although non-zero elements could
arise at higher orders if the trace of the U(1) charges is not equal to zero for the states
lighter than the energy scale of interest [73]. The trace of the U(1)y and U(1)x charges
is given by:

T (Ty Tx) = >, (T} T%).
i=chiral fields

This trace is only non-zero if incomplete GUT multiplets are present in the low-energy

particle spectrum. There are no low-energy incomplete Fg multiplets in the MEgSSM
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u d e v D h S

fv/Nx | g—gchh | —5+gcha | —g+5ch | g +acia | 3ch | —1+ch 2

fa/Nx [ 5+3¢h | 5 —5¢h 5= 3Cth |5+ 5ch —2 —2 2
fv —0.0376 | —0.1503 0.2255 0.3382 | 0.1879 | —0.1127 | 0.7892
fa 0.3382 0.4510 0.4510 0.3382 | —0.7892 | —0.7892 | 0.7892
f8 0.0278 —0.1637 0.1081 0.2996 0.1359 | —0.1915 | 0.7906
fg 0.2996 0.4910 0.4910 0.2996 | —0.7906 | —0.7906 | 0.7906

TABLE 4.5: The axial f4 and vector fy U(l)x charge assignments for the Gsa11

representations of the complete 27 Eg multiplet in the MEgSSM. The assignments for a

general MEgSSM model and for the model presented in Section 4.2.2, which has %, =

5/7, are both given. The Eg normalization factor N is given by N3 = 7—2c}, + 3cf,.

The axial and vector U(1)y charge assignments f{» and f4 in the EgSSM are also
included.

and so siny = 0 at the tree-level and at higher orders in this particular case. There is

therefore no kinetic term mixing for the U(1)y and U(1)x groups in the MEgSSM.

In the EgSSM the two additional EW doublets H' and H from incomplete Eg 27’
and 27 multiplets are kept light. In this case, sin y has a non-zero value, which leads
to a kinetic term mixing for the U(1)ny and U(1)y fields. This can be eliminated by
means of a non-unitary transformation of the two U(1) gauge fields [17]. In terms of
the new gauge variables, one has the same gauge coupling constant and charge as the
hypercharge field, and so can be identified with the hypercharge field By, whereas the
other has a gauge coupling constant that is a particular combination of the U(1)y and
U(1)y charge. This results in the charge of the other U(1) field being dependent on the
U(1l)y and U(1)n gauge coupling constants. This is similar to the fact that the U(1)x

charge depends on the g4 and gop gauge coupling constants.

4.4.4.2 Interaction with the Fermions

The second term in the U(1)y Lagrangian Lx represents the interaction between the
Z'" gauge boson and the fermions. Table 4.5 lists the vector and axial U(1)x charges
for the G4921 representations of the complete 27 low-energy Eg multiplets in a general
Eg theory and the MEgSSM, which has ¢, = 5/7. The vector and axial U(1)y charges
of the EgSSM for the low-energy 27 multiplets are also listed for a comparison. The
differences between the values of the vector and axial couplings of the two Z’ gauge
bosons of the U(1)x and U(1)x groups are due to the difference in value between the
Fg normalized Tx and Ty charges and the fact that the kinetic term mixing between
the U(1)y and the U(1)" groups is non-zero in the EgSSM but zero in the MEgSSM. The

largest difference between the vector and axial couplings of U(1)x and U(1)y exists for
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the charged leptons where the vector coupling for U(1)x is a factor of two larger than
for U(1)n.

As noted above the vector and axial U(1)x charges depends on the value c?, and
therefore the value of the g4 and gop gauge coupling constants at the G4901 symmetry
breaking scale. The presence of additional threshold corrections at the Planck scale will
not change the Pati-Salam breaking scale or the values of the Standard Model gauge
couplings at this scale to one-loop order. However, since these quantities are determined
by running up the couplings from low energies, there will be some sensitivity to TeV
scale threshold corrections. Since the vector and axial vector couplings of the Z’ are
determined from the values of the gauge couplings at the Pati-Salam breaking scale,
there will therefore be little sensitivity to Planck scale threshold corrections on the

determined vector and axial vector couplings of the Z'.

4.5 Conclusions

In this Chapter an Eg inspired supersymmetric model called the Minimal Eg Super-
symmetric Standard Model (MEgSSM) was introduced. This model is based on three
low-energy 27 Eg representations and which has many attractive features compared to
the MSSM. In particular it provides a solution to the p problem and doublet-triplet
splitting problem, without re-introducing either of these problems. In addition, the

model also resolves the little fine-tuning problem of the MSSM.

Above the conventional GUT scale the MEgSSM is embedded into a left-right sym-
metric Supersymmetric Pati-Salam model, which allows complete gauge unification at
the Planck scale, subject to gravitational uncertainties. At low energies there is an ad-
ditional U(1)x gauge group, consisting of a novel and non-trivial linear combination of
one Abelian and two non-Abelian Pati-Salam generators. The U(1)x is broken at the
TeV scale by the same singlet that also generates the effective p-term, resulting in a
new low energy Z' gauge boson. The Z’ of the MEgSSM (produced via the Pati-Salam
breaking chain of Eg, where Eg is broken at the Planck scale) was compared to the Z’ of
the E¢SSM (from the SU(5) breaking chain of Eg, where Ejg is broken at the GUT scale)
in Section 4.4.4.2 where it was shown that they could be (in principal) distinguished by
their axial and vector different couplings. The possible discovery of such Z’ gauge bosons
is straightforward at the LHC and the different couplings should enable the two models
to be resolved experimentally. In particular, the most significant difference between the
vector and axial couplings of the Z’ of the EgSSM and MEgSSM is in the vector coupling
of the charges leptons, which is twice as large in the MEgSSM as in the EgSSM.
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In Section 4.3 an R-symmetry and discrete Z{f symmetry were introduced that
address the potential major phenomenological problems such as flavour changing neutral
currents and proton decay, which would otherwise be introduced to the theory by Higgs
triplets and extra non-Higgs doublets from the three copies of the 27 multiplet. In the
MEgSSM, right-handed Majorana masses of the correct order of magnitude can naturally
arise from the Higgs mechanism that breaks the intermediate Pati-Salam and U(1)y,
symmetry to the standard model and U(1)x gauge group, leading to a conventional

see-saw mechanism.

In conclusion, the MEgSSM has clear advantages over both the MSSM and NMSSM,
and even the EgSSM, which make it a serious candidate SUSY Standard Model. It also
has a certain elegance in the way that the low energy theory contains only complete 27
representations that also allow for anomaly cancellation of the gauged U(1)x. It has
been shown that the potentially dangerous couplings of the exotic particles can readily
be tamed by simple symmetries, leading to interesting predictions at the LHC of exotic
colour triplet fermions (triplet higgsinos) and a new Z’ with distinctive couplings. The
discovery and study of such new particles could potentially provide a glimpse into the

physics of unification at the Planck scale.



Chapter 5

Family Symmetries and the

Flavour Problem

The previous Chapter demonstrated that the MEgSSM can successfully resolve the hier-
archy problem of the Standard Model, that is, it can explain why the scale of electroweak
symmetry breaking and the Higgs boson’s mass are small compared to the GUT scale.
However, although this model adequately explains the mass of the W*, Z° bosons and
the anticipated mass of the Higgs boson, it does not address the flavour problem in
particle physics. That is, it does not provide an adequate explanation for the structure

of quark and lepton masses and mixing angles that we observe in particle experiments.

In the Standard Model the quark and lepton masses are created by the VEV of
the Higgs field in a similar way to how the W* and Z° bosons obtain mass, and most
theories that attempt to explain the structure of the quark and lepton masses retain
this Standard Model approach. It is therefore essential that, if these theories are to fully
address the flavour problem, then they must also explain why the Higgs boson’s mass is
small. The MEgSSM thus provides a working extension to the Standard Model to which

one can introduce new physics that solves the flavour problem in particle physics.

In the past decade, the flavour problem has been enriched by the discovery of neu-
trino masses and mixings, leading to an explosion of interest in this area [19]. A common
approach is to suppose that the quarks and leptons are described by some family sym-
metry which is spontaneously broken at a high-energy scale [21]. In particular, the
approximately tri-bi-maximal nature of lepton mixing provides a renewed motivation
for the notion that the Yukawa couplings are controlled by a spontaneously broken non-
Abelian family symmetry which spans all three families. Also, small neutrino masses
have long been predicted by conventional see-saw mechanisms and, when combined with

family symmetries, can lead naturally to tri-bi-maximal mixing. Grand Unified theories

72
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based on SO(10) and Eg naturally contain such see-saw mechanisms suggesting that
they should be extended with a family symmetry. The fact that the MEgSSM is an
Eg inspired supersymmetric model that contains a see-saw mechanism, and solves the
hierarchy problem, implies that it should be extended with a family symmetry to solve

the flavour problem.

In this Chapter the flavour problem in particle physics is reviewed and a brief in-
troduction is given on how the this problem is resolved in SUSY GUTs that have been
extended with a family symmetry. In particular, the As7 family symmetry model in
[74], which is based on an SO(10) SUSY GUT, is reviewed and described. Chapter 6
then extends the MEgSSM (and EgSSM) with a discrete non-Abelian family symmetry

to generate viable models that can resolve the flavour problem of particle physics.

The layout of this Chapter is as follows. Section 5.1 reviews the mechanism used in
the Standard Model to generate quark and lepton masses, and highlights its flavour prob-
lem. Section 5.3 then shows how the Standard Model can be extended to describe the
recent observations of neutrino oscillations. Sections 5.4 and 5.5 illustrate how this mech-
anism is modified in the MSSM and simple SUSY GUTSs such as SO(10). Section 5.6
reviews how family symmetries can explain quark and charged lepton masses and CKM
matrix elements. Section 5.6.3 then introduces a discrete non-Abelian family symmetry
called Ag7 which will be implemented in Chapters 6 and 7. Section 5.7 demonstrates
how this family symmetry predicts tri-bi-maximal mixing using constrained sequential
dominance, and finally, in Section 5.8 a short review is given on how non-Abelian family

symmetries can solve the SUSY flavour and CP problems.

5.1 Quark and Lepton Masses in the Standard Model

In addition to the Higgs field and the SU(3). x SU(2)r, x U(1l)y gauge bosons, the
Standard Model also contains fermions called quarks and leptons that transform under
its gauge symmetry. The quarks are defined as the fermions that couple to the SU(3).
gauge bosons and are therefore said to come in three colours, whereas the leptons have
no SU(3). interactions and are therefore colourless. The way in which the quarks and
leptons transform under the Standard Model gauge symmetry is described by their
different SU(3). x SU(2)r, x U(1)y representations. Each quark and lepton comes in
three copies called generations where each generation transforms in the same way under

the gauge symmetries but has a different mass.

The general Lagrangian for a QFT involving fermion and gauge fields contains the

covariant derivative term @z”y“Duw which describes the interaction between a Dirac
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fermion ¢ and gauge fields A}, where D, = 0, +igT* Aj,. This term splits into separate
parts for the left-handed and right-handed fermion chiralities v;, and ¥g:

EiVuD/ﬂ/} = @Li'YuD;ﬂ/JL + @RiDuaud)R'

We can therefore assign ¢y, and 1g to different representations of the gauge group, and
this is exactly what we have in the Standard Model where the gauge bosons of SU(2)y,
only couple to left-handed chirality states of quarks and leptons. Explicitly, the left-
handed quarks @; and left-handed leptons L; form the following SU(3).xSU(2),xU(1)y

representations:

Qi—<di>—(372)é; i—( . )—(172)_;

where ¢ = 1...3 labels the different generation of the quarks and leptons (for example,

us denotes the left-handed top quark t), whereas the right-handed quarks ug, dg and

leptons er transform as:!

u}% = (37 1)%7 33 = (37 1)— ) elé = (17 1)—1~

=

Unlike the covariant derivative term however, the bare Dirac mass term ma1) cannot
be split into separate parts for the left-handed and right-handed helicity states. Instead

one obtains the following mixed mass terms:

mpp = m(Y Y + YpiL).

This means that bare fermion mass terms cannot be written down for the quarks and
leptons in the Standard Model since these would be forbidden by global gauge invariants.
For example, m¢(erer+eger) is forbidden since ey, and er belong to different SU(2), x
U(1)y representations. Without mass terms for the different quarks and leptons we
would therefore expect that all quarks and leptons should be massless, which is in strong

violation with experimental observations.

Fortunately the Higgs field provides a solution to this problem. Just as the Higgs
field gives mass to three of the SU(2)r x U(1)y gauge bosons through its various gauge
interactions, the Higgs field can also give mass to the quarks and leptons through its
Yukawa interactions. The Yukawa interactions that are allowed by the gauge symmetry

of the Standard Model are represented by the following Lagrangian:

Lyw = N] Qidrjh! + XIQiuipih + N Lieg;ht + h.c. (5.1)

!By definition there is no right-handed neutrino vg in the Standard Model.
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where i,7 = 1...3 label the three different generations of each quark and lepton; and
Qhu’ = epQ*hPu’ where a,b=1...2 are SU(2)r indices.

When we insert the Higgs field VEV v, the above terms become:

)\iljvdLﬂRj + ,\jf'vuLij + /\éjveLiéRj + h.c.

= miljdLZ‘aRj + mYurig; + mPerier; + h.c. (5.2)
where mgj = )\lev, mij = )\ijv and mij = éj v are 3 X 3 matrices called mass matrices.
The terms in Eq.5.2 look like effective dirac mass terms for all the quarks and leptons
with each mass given by the product of the particular strength of the interaction with the
Higgs field (the Yukawa coupling constant) and the Higgs field’s VEV. We are therefore
effectively treating the left-handed and right-handed chirality states as different physical
states which are mixed to form Dirac fermions by the Higgs field’s VEV. In many ways
it is a spectacular result that the Higgs field is in just the right representation to break

electroweak symmetry and give mass to all the quarks and leptons.

5.2 The Flavour Problem

Although the Higgs mechanism in the Standard Model can explain why the quarks
and leptons have mass, it does not adequately explain the large differences between
the masses that we observe in experiments. For example, the mass of up quark is
observed to be 1.5 — 3.3 MeV [26] whereas the top quark, which has exactly the same
SU(3)e x SU(2)r x U(1)y representations, has mass 169.0 — 173.6 GeV [26]. In the
Standard Model the strength of interaction between the top quark and the Higgs field
must therefore be 10° orders of magnitude greater than the up quark’s interaction. This
huge difference is unexplained since the Yukawa coupling constants are renormalizable
parameters and so are not predicted by the theory (they are free parameters). Instead we
would expect that each copy of a particular quark or lepton has approximately the same

mass and that all the masses are of order the scale of electroweak symmetry breaking.

The physical mass of a charged lepton is just the pole of its propagator and can
therefore be measured directly. However, since quarks are confined inside hadrons, their
masses cannot be measured directly. Instead the only way to determine the quark masses
is through the study of their impact on hadron properties. The quark mass parameters
in the QCD and electroweak Lagrangians depend both on the renormalization scheme
adopted to define the theory and on the scale parameter u. This dependence reflects
the fact that a bare quark is surrounded by a cloud of gluons and quark-antiquark pairs.

To get the relative magnitudes of different quark masses in a physically meaningful way,
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one has to describe all quark masses in the same scheme and at the same scale. It is
instructive to consider the light and heavy quark masses at the scale y = Myzo, the
mass of the Z° boson, by adopting the M S scheme. The advantage of choosing Mo as
the reference scale is that, for scales above Mo, extensions of the standard model may
naturally appear, and for scales below Mo, the strong-interaction coupling constant as
is sizable. The latest experimental values for the quark and charged lepton masses are
the following [26]:

m, = 0.9-2.9 MeV mg = 18-53 MeV m, = 0.5110 MeV
me = 530-680 MeV ms; = 35-100 MeV ~m, = 1057 MeV
my = 168-180 GeV my = 2.8-3.0 GeV m, = 1777 GeV

where the leptons masses are given to four significant figures and the quark masses have
been scaled to p = Mo in the M S scheme as discussed above. To get a proper sense of
the hierarchy involved with is useful to rewrite the above masses as approximate ratios

between the different quark and lepton generations:

my i me s my ~ 1:(0.05)2 : (0.05)*
my s mg s mg A~ 1:(0.15)%: (0.15)4
mr i my s me = 1:3(0.15)% : (0.15)%/3.

Although only approximate, these illustrate that the three generations obey a strong
hierarchical structure, and each hierarchy is slightly different for the different types of
SU(3)e x SU(2)r, x U(1)y fermions.

5.2.1 The CKM Matrix

The interactions between the gauge bosons and the quarks and leptons is highly re-
stricted by the local gauge symmetry since ordinary derivatives are just replaced with
covariant derivatives. This does not allow any mixing between the various quark and
lepton generations. The coupling of the Higgs field to the quarks and leptons however
does not follow from a gauge principle and so does not have any such restrictions. The
Higgs couplings will therefore, in general, mix the different generations of quarks and

leptons.

We could consider the Lagrangian for the Yukawa operators in Eq.5.1 to be part
of the full Standard Model Lagrangian, which includes the quark and lepton gauge
interactions. It then seems natural to assume that the full Lagrangian is written in

terms of the interaction basis (the basis in which the quarks and leptons are defined to
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be the eigenstates of the SU(3). x SU(2)r x U(1)y gauge symmetry). However, since
the couplings of the Higgs field to the quarks and leptons do not follow from a gauge
principle, this basis may not may not be the same as the mass basis (the basis in which
the quarks and leptons are defined to be the mass eigenstates, which are equivalent to
the eigenstates of the mass matrices in Eq.5.1). In this Section it is shown that, although
the interaction eigenstates of the strong force are equivalent to the mass eigenstates, the

interaction eigenstates of the charged weak force are not.

For ease of notation we can rewrite Eq.5.1 so that the Yukawa couplings A% are
written as 3 X 3 matrices and the fermions are column vectors in generation space.

Eq.5.1 then becomes the following:
ﬁq + L = —(HRMddL +urM,uy, + egMcey, + hc) (5.3)

In general the Yukawa matrices are 3 x 3 complex matrices and such matrices are diago-
nalized by two different unitary matrices acting from the left and the right. For example,

the up quark Yukawa matrix is diagonalized by:

where V1, and Vg are Unitary matrices and M, = diag(m,, me, m¢). If we insert

Eq.5.4 into Eq.5.3, we can define the up quark mass eigenstates by:

m —
Uup = VuRuR

u’L” = VuLuL

and equivalently for diL, d% and ei, e}é. Written in terms of the quark and lepton mass

eigenstates, the Yukawa interactions are:
Ly+ L) = —(dpMgdP + TEM T +ERM.eT + h.c.).

When we also rewrite the fermion gauge interactions (covariant derivatives) of the Stan-
dard Model Lagrangian in terms of the mass eigenstates we find that everything is
invariant except for the fermion couplings to the W+ vector bosons, which transforms
as the following:

1
L ﬁL’y“dL — 7ﬁTLn’)/MVCKMd7Ln

WET VR V2
where Vogy = Vl 1 Var, is the Cabibbo-Kobayashi-Maskawa (CKM) Matrix [75]. The

fermion couplings to the W vector bosons is not invariant to this change of basis

essentially because the SU(2)1 gauge interactions only couple to left-handed fields.
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The above CKM matrix can be parameterized by three rotation angles and one
complex phase that is CP violating. A popular parametrization is the following:
—id
C12€13 512€13 513€
IVerm| = | —s12c23 — 128235136 1203 — S12823513¢ 7 sa3c13

d

. s
512823 — C12€23513€"°  —C12523 — S12C23513€"  C23C13

where ¢;; = cos0;;, s;; = sinf;; and 0 is the CP violating phase. The angles 612, 013,
023 are defined as the mixing angles of the various quark fields. The latest experiment

values for the CKM matrix elements are given below [26]:

0.97419 4 0.00022  0.2257 £ 0.0010  0.00359 = 0.00016
'Voram|~ | 02256 £0.0010 0.97334 £0.00023  0.0415 & 0.0011 (5.5)
0.00874 £ 0.00037  0.0407 £ 0.0010  0.999133 % 0.000044

and J ~ (3.05 £ 0.20) x 107°. J is the Jarlskog invariant and is related to the CP

violating phase by = 0126236%3812823813 sin d.

Note that the CKM matrix is not diagonal and so the quark eigenstates of the
(charged) weak nuclear force are not the same as the quark mass eigenstates. The
matrix is almost diagonal however and so the two bases do not differ by very much.
There also appears to be a small amount of symmetry in the CKM matrix: it is almost
symmetrical and the closer the quark generations are in mass, the larger the CKM entry
(and mixing angle). We also find that there are approximate relations between the CKM
elements and the quark masses, which will be discussed in Section 5.6.2. These relations
and the symmetries of the CKM matrix (as well as the quark and lepton masses) are

not explained in the Standard Model.

5.3 Neutrino Masses

Unlike the quarks, the leptons are not predicted to have mixing angles in the Standard
Model and there is no analogous matrix to the quark CKM matrix. This is because
there are no right-handed neutrinos in the Standard Model and so neutrinos are massless
particles. Therefore there is no left-handed unitary matrix V,, that transforms between

the neutrino mass and interaction eigenstates.

In recent years however there has been growing experimental evidence that neutrinos
are not massless and that leptons have large mixing angles [19]. The present experimental

data is given below where only the difference between the squares of neutrino masses has
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been observed, and the lepton mixing angles contain substantial errors (see B. Kayser
in [26]):

sin?(2612) = 0.87 & 0.03 m3, = (7.59 £ 0.20) x 107 eV?
sin?(2653) > 0.92 Im3,| = (2.43 £ 0.13) x 1073 eV?
sin?(26013) < 0.19 (90% CL).

This suggests that right-handed neutrinos should be included in the Standard Model
so that the Yukawa interactions contain operators such as )\,i,juLiﬁth where 1,7 are
generation indices.? In that case, when we re-write the modified Standard Model La-
grangian in terms of the mass basis, the charged weak interactions contain a matrix
analogous to the quark CKM matrix for the leptons given by VLT,LVeL which is called
the Maki-Nakagawa-Sakata (MNS) matrix [76].

If we assume that there are no large cancellations between the neutrino masses then
we expect that the absolute neutrinos masses are of order 1072 eV. This is approxi-
mately 10 orders of magnitude smaller than the electroweak symmetry breaking scale
and is thus inadequately explained by the Standard Model Higgs mechanism with only

operators such as )\,i,jz/LiPth included in the Lagrangian.

5.3.1 The Conventional See-Saw Mechanism

The neutrinos that are observed (as missing energy) in electroweak processes only act like
left-handed neutrinos and not right-handed neutrinos. This can be explained by the fact
that right-handed neutrinos would not have any Standard Model gauge interactions since
they transform in the trivial singlet representation (1, 1)¢ of SU(3). x SU(2)r, x U(1)y.
A Majorana mass term for the right-handed neutrinos MrrvrV% can thus be included
in the Standard Model Lagrangian where Mpp is a dimensional parameter, which could
take a very large value without upsetting the experimental evidence that supports the
Standard Model. If we think of the right-handed and left-handed neutrinos as separate
particles (mixed by their Higgs coupling) then this mass term could give a large mass to
the right-handed neutrinos, which would explain why we haven’t observed their missing
energy in experiments, and, in conjunction with the Dirac mass term generated by the
Higgs field’s VEV, give very small masses to the neutrinos that we observe as missing
energy. For example, if we add three right-handed neutrinos to the Standard Model,

all with Majorana masses, then, ignoring the gauge interactions, the Lagrangian for the

2There are other ways of modifying the Standard Model to generate neutrino masses, such as including
SU(2)r-triplet Higgs states. However including right-handed neutrinos is considered to be the most
natural explanation for neutrino masses.
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neutrinos would be the following:
)\,iijLiﬁth—i- MgRI/RZ‘ﬁ%j + h.c.

We can rewrite this as a 2 x 2 block matrix:

( . ) 0 MEJR fCLj
I\ M Mg )\ )

where 0 is a 3 X 3 matrix of zeros. Diagonalizing the above matrix in the approximation
that M]?R < MgR we obtain effective Majorana mass terms for the left-handed and

right-handed neutrino states:

VLi VRi 0o M Zm
RR Rj

where, the superscript m denotes the mass eigenstates, and, in matrix notation, the

left-handed Majorana masses are given by:
My, = M M M7 . (5.6)

This mechanism for generating effective Majorana masses for the left-handed neutrinos
is called the Type I or conventional see-saw mechanism [10]. As an example of the
scales involved we can simplify Eq.5.6 by assuming that there is only one generation of
neutrinos rather than three, and take the Dirac mass My to be of order the weak scale
~ 80 GeV. Then to generate an effective left-handed mass My, of order 1073 eV, we
would require that Mgp =~ 10'6 GeV, which is of order the GUT scale. This then gives
further credence to the idea that the Standard Model is a low-energy approximation to

a grand unified theory such as SO(10). This is further discussed in Section 5.5.

By diagonalizing My, in Eq.5.6 we finally end up with the mass basis for the left-
handed neutrinos. The SU(2);, gauge interactions are not invariant to this change of
basis and we obtain the MNS matrix, which is analogous to the quark CKM matrix.
This matrix is given by the product of the (single) unitary matrix V,, that diagonalizes
My, and the unitary matrix V.; that diagonalizes the charged lepton mass matrix
from the left. Note that the see-saw mechanism has the potential to explain why the
lepton mixing angles are so different to the quark mixing angles since the right-handed
Majorana neutrino mass terms break the quark-lepton symmetry introduced by the
Dirac neutrino mass terms. However, the see-saw mechanism by itself cannot explain

why the lepton mixing angles appear to be so different to one another.
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5.4 Quark and Lepton Masses in the MSSM

In the MSSM the quark and lepton masses come from the Yukawa interactions in the
superpotential given by Eq.2.15 where the up quark masses are generated by the VEV of
the up Higgs field h, whereas the down quark and charged lepton masses are generated
by the VEV of the down Higgs field hy. The VEV of the additional Higgs field introduces
a new parameter for determining the quark and lepton masses that is not present in the
Standard Model. This could potentially be used to explain why the mass of the bottom
quark my, is smaller than the mass of the top quark m;. For example, the top and bottom
Yukawa coupling constants could both be O(1) so that the mass of the top quark is of
order the up Higgs VEV v, and the mass of the bottom quark is of order the down
Higgs VEV vg. A particular scalar potential could then create v, > vg, which would
explain why m; > my. However, the extra Higgs VEV does not provide any new insight
into why the different quarks and leptons have a hierarchical mass structure since this
still requires a hierarchical structure for the renormalizable Yukawa coupling constants,

which are free parameters of the theory.

In fact with the introduction of TeV scale SUSY the flavour problem increases
dramatically due to the undetermined superpartner masses, mixings and phases that
must also be explained [77]. Indeed in SUSY extensions of the SM there are typically
about a hundred or so additional physical parameters associated with the soft SUSY
breaking Lagrangian, depending on the precise nature of the SUSY SM and the origin

of neutrino masses and mixings in the SUSY context.

Experimental data seems to imply that the off-diagonal elements of the soft SUSY
breaking Lagrangian should be smaller than the diagonal elements, but there is no a prior
reason why this should be the case. This is called the SUSY flavour problem. There is
also a so-called SUSY CP problem stemming from the fact that, in general, there could
be large extra CP phases coming from the soft SUSY breaking sector of the MSSM.
However, the Standard Model accounts for the observed CP violating effects to such a
level of accuracy that one must impose stringent bounds on such extra contributions to

avoid conflict with experiment[77]. This is, however, often at odds with naturalness.

5.5 Quark and Lepton Masses in SUSY GUTs

Since Grand Unified Theories unify quarks and leptons into representations of the semi-
simple gauge group, the number of renormalizable Yukawa coupling constants is reduced
and relations between different quark and lepton Yukawa couplings are introduced. For

example, in the simple SO(10) GUT all the Standard Model quarks and leptons come
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from three copies of the fundamental spinor representation, which has dimension 16.
Since the MSSM Higgs fields come from the fundamental 10 representation, all the
Standard Model Yukawa interactions are embedded into the SO(10) tensor product
i 16;16,10 where 4,j label the number of generations. This leads to the unification
of the Yukawa coupling constants (written in the mass basis) for each generation of
up quarks, down quarks and charged leptons. For example, for the third generation we
obtain the relation Ay = Ay = A, where A\, Ay and A, are the Yukawa coupling constants
for the top quark, bottom quark and tau lepton in the mass basis.?. When renormalized
at the electroweak scale the relation \p/A; = 1 agrees well with experiment. For large

tan § the relation \;/\, = 1 also works well when renormalized at the electroweak scale.

However, the equivalent relations for the first and second generations are not suc-
cessful when renormalized at the electroweak scale. A common approach to resolving
this problem is to extend the simple SO(10) GUT with a new scalar field, denoted by
H,s, that only couples to the second generation of the quarks and leptons such that,
when the field obtains a VEV, the (2,2) component of the charged lepton Yukawa ma-
trix \Y becomes three times larger than the equivalent component of the down quark
Yukawa matrix )\le. If Hy5 is a fundamental scalar field then the smallest dimensional
representation it can be is a 45 of SU(5) which comes from a 210 of SO(10) [51]. The
factor of three that the Hys VEV generates is related to the fact that quarks come in

three colours.

When we diagonalize the charged lepton and down quark Yukawa matrix in this
case we end up with the relations A, = 3\ and A. = \y/3, which work very well when
renormalized at the electroweak scale [18]. This leaves the GUT relations A, = Ag
and A, = As. If modified to A, = A\g/3 and A\, = A/3 then these also work well at
the electroweak scale but are difficult to generate in SO(10) GUTs. In Section 5.6 a

mechanism is introduced that generates these relations just below the GUT scale instead.

Fifteen of the sixteen components of the fundamental spinor representation of SO(10)
form one generation of the Standard Model particles. The remaining component is a
right-handed neutrino. SO(10) GUTs thus predict that right-handed neutrinos exist
and that neutrinos have non-zero masses. The right-handed neutrinos can only obtain a
mass once the SO(10) symmetry is broken and GUT scale see-saw mechanisms, which
can explain the recently observed neutrino masses as discussed in Section 5.3.1, are thus
well motivated in SO(10) GUTs.

3Theoretically at the electroweak scale i‘—i’ =
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5.6 Family Symmetries

Although Grand Unified Theories, particularly those based on an SO(10) symmetry,
improve the explanation provided by the Standard Model for the observed mass structure
of the quarks and leptons (by relating the Yukawa couplings of the quarks and leptons
that are contained in the same generation), they do not help with understanding why
the different generations of the quarks and leptons have hierarchical masses. Inspired
by the success of the extra Higgs field in the MSSM for explaining the difference in the
top and bottom quark masses, one possibility could be to extend the Higgs sector of
an SO(10) SUSY GUT such that there are two Higgs fields for each quark and lepton
generation. Each Higgs field could then perhaps couple differently to the various quarks
and leptons because of new gauge or global symmetries. The hierarchical structure of
the quark and lepton masses might then be explained by a hierarchical structure of
the VEVs of the Higgs fields, which would result from a particular Higgs potential and

radiative electroweak symmetry breaking.

A number of problems occur if we extend the Higgs sector of the Standard Model
and equivalently the MSSM however. In general, extra Higgs fields generate large flavour
changing neutral currents for the quarks and leptons which strongly violate experimental
data [78], and is the reason for the Z4 discrete symmetry in the MEgSSM and EgSSM
models, which is expected to prevent the first and second Higgs-doublet generations
from obtaining VEVs.4

The problems caused by extended Higgs sectors suggest that the quark and lepton
masses are the result of a very different mechanism. One possibility is that extra physics
is somehow controlling the Yukawa couplings of the quarks and leptons to the Standard
Model Higgs field that explains why they take such different values. This can be achieved
by extending the Standard Model with a family symmetry [21]. In these models the
quarks and leptons are chosen to transform under the family symmetry so that some
or all of the Yukawa interactions of the Standard Model are forbidden in the classical
Lagrangian. Instead the Yukawa interactions are generated effectively once the family
symmetry is spontaneously broken by the VEVs of additional scalar fields. This is then
like an extension of the method used by the Standard Model in which the bare Dirac
mass terms are generated effectively once the electroweak symmetry is broken by the
Higgs VEV. Extending SUSY GUTs with a family symmetry can also help to solve the
flavour problem of the MSSM as described in Section 5.8.

4Gauge coupling unification in the MSSM with two Higgs fields also suggests that no more Higgs
fields exist at the electroweak scale.
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U)r

163 0
162 1
161 3

10 0

0] -1

TABLE 5.1: This table illustrates a simple SO(10) SUSY GUT with a U(1)p family

symmetry.

5.6.1 Abelian Family Symmetries

An example of a simple family symmetry is a gauged U(1) symmetry, called U(1)p,
which couples to the different quark and lepton generations with different charges, but
doesn’t couple to the Higgs field. This symmetry forbids the Standard Model Yukawa
interactions such as Quh and we instead assume that the quarks, leptons and Higgs
fields couple to very massive particles H through interactions such as Y QhH and Yu®pH
where Y is some coefficient and ¢ is an additional scalar field that carries a U(1)r charge
and is generically called a flavon. Since the H particles, called messenger fields, are much
heavier than the electroweak scale we can, to a good approximation, remove them from
the theory so that the quarks and leptons interact with the Higgs fields through higher-
order operators such as %Quchgb where M is the mass of the particles H and Y is some
coupling constant which we assume to be O(1). The type of interactions that reduce to
%Qu%d) at lower energy scales are illustrated by the Froggart-Nielsen diagrams [79],
an example of which is given by Fig.5.1. This is analogous to the Fermi description of
the weak nuclear interactions where the W* and Z° vector bosons are removed from
the electroweak theory of the Standard Model to leave non-renormalizable interactions
between the quarks and leptons. The Fermi theory is an accurate approximation to the
electroweak theory at energies much smaller than the mass of W* and Z° since these

particles can be integrated out of the theory.

If the flavon field ¢ obtains a VEV, spontaneously breaking the U(1)r symmetry,

then the higher-order operators become effective Standard Model Yukawa interactions
Y{¢)
M

where we expect Y to be O(1). The Standard Model Yukawa coefficients are thus

such as %Quch.‘r’ In this example the effective Yukawa coefficient is given by

determined as the ratio of the scale of the spontaneous breakdown of the U(1)r family
symmetry and the mass of the messenger fields. By assigning the different quark and

lepton generations with different U(1)r charges we can then generate all of the Standard

5The scale of the flavon VEV, although smaller than the messenger scale, must be significantly larger
than the electroweak scale otherwise the family symmetry would generate rapid transitions between the
various quark and lepton generations, which has not been observed.
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Model Yukawa interactions in this way. Table 5.1 gives an example of a particular U(1)p
symmetry applied to an SO(10) SUSY GUT. This U(1)r symmetry allows the following
higher-order operators where the messengers have been integrated out to leave behind

a mass suppression factor M:

1 1
Wy ke = V3316316510 + MY2316216310¢ + WY2216216210¢2 (5.7)

1 1 1
+ Wyl?’wl 16310¢° + Wymml 162100* + Wyﬂml 16110¢°.

When we insert the ¢ field’s VEV the operators in Eq.5.7 become effective Yukawa
operators \/16;16;10 with coefficients A\ given by different powers of € = (¢)/M. We

can write all these Yukawa coefficients in matrix form:

Y11€6 Y12€4 Y1363
N =| yi2et y2e yBe | (5.8)
Y13€3 Y236 Y33

To obtain the physical mass eigenstates we must diagonalize this matrix and, if
we assume that all coefficients Y;? have the same value Y, then the diagonal matrix
of Eq.5.8 is approximately given by diag(e*, ¢2,1)Y. Therefore, with Y = O(1) and
e =~ 0.05 or € &~ 0.15, the U(1)p symmetry produces approximately the correct mass
hierarchy for the up or down quarks respectively. If a Hys scalar field attaches itself to
the #162 16210¢2 operator then the correct hierarchy for the charged leptons can also

be generated if € =~ 0.15 for the reasons given in Section 5.5.

To generate different e factors for the down quarks and up quarks we could assume
that the family symmetry is broken below the GUT scale so that the mass M, of the
messenger fields that couple to right-handed up quarks are different to the mass M, of the
messenger fields that couple to the right-handed down quarks. For this to be allowed the
SU(2) g subgroup of SO(10) must of course be broken before the messenger scale. If we
first take the messenger fields that couple to the left-handed quarks to be much heavier
than those that couple to the right-handed quarks, then the mass suppression factors in
Eq.5.7 will predominantly come from the latter messengers fields. The terms in Eq.5.7
would then be split into sperate terms for the right-handed up and down quark fields.
For example, the term #16216210¢2 will decompose to ﬁgqughu¢2 + M%gdighdﬁ,
% % respectively once

¢ develops a VEV. If (¢) = 0.15My; and M, = 3M, then the correct e factors are

generated.

which generates different e factors given by €, = and €5 =
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FIGURE 5.1: An example of a Froggatt-Nielsen supergraph that generates quark and
lepton masses. ¢ represents a flavon field that obtains a VEV, x the messengers that
can be integrated out of the theory at low energies, and ¥ the quarks and leptons.

The operators in Eq.5.7 then should really be written in terms of the Standard
Model gauge group rather than the SO(10) (and SU(2)r) gauge group. However it
is assumed that the messenger scale is so close to the SO(10) scale that the SO(10)
predictions are approximately correct. For instance, a symmetrical Yukawa matrix is

still assumed. The SO(10) notation is thus kept for convenience.

5.6.2 Yukawa Matrices

The product of the left-handed unitary matrices that diagonalize the up and down
quark Yukawa matrices generated by the operators in Eq.5.7 will give an effective CKM
matrix. This is because the quark and lepton eigenstates of the U(1)r family symmetry
are the same as the interaction eigenstates of Eq.5.1, since the U(1)p symmetry is a
gauge symmetry. Thus, by diagonalizing the Yukawa matrix Eq.5.8 we are transforming
from the interaction basis to the mass basis, and this change of basis generates the
CKM matrix as discussed in Section 5.2.1. Unfortunately the effective CKM matrix
generated by above U(1)r symmetry does not agree with experiment, but, if we could
determine the form of the up and down quark Yukawa matrices in the interaction basis
that reproduces the observed CKM matrix (and mass hierarchies) when transformed to
the mass basis, then all we would have to do is search for a new family symmetry that
generates this particular form of up and down quark Yukawa matrices. However, while
the quark mass matrices and the CKM matrix are intimately related, measurement of
the eigenvalues of the mass matrices and the matrix elements of Vg s is not sufficient
to determine the structure of the full mass matrix and of the matrix of Yukawa couplings
giving rise to them. That is, there is an under-determination in the values of the Yukawa
coefficients in the interaction basis when given the CKM matrix elements and quark and
lepton masses. This is essentially because the CKM matrix only involves the left-handed
unitary transformations and so the full form of the left-handed and right-handed rotation

matrices required to diagonalize the quark masses is not known.
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Given this under-determination, the phenomenological approach most commonly
used is to make some assumption about the structure of the Yukawa matrix and explore
the experimental consequences for Vogar. For example, the very reasonable assumption
that the smallness of the mixing angles is due to the smallness of the mixing angles
in both the up and down left-handed bi-unitary matrices Vg7, and VL 1, allows one to
determine the mass matrix elements on and above the diagonal to good precision for the
down quarks and to lesser precision for the up quarks. Another common assumption is
that there are zero entries in the up and down quark Yukawa matrices called ‘texture
zeros’. These lead to relations for the Vog s elements in terms of ratios of quark masses,

which do not involve any unknown couplings and hence can be precisely tested.

Experimental data appears to favour a texture zero in the (1,1) position of the up

and down Yukawa matrices )\Zj, )\ilj (in the interaction basis), and a promising form of

such a matrix is given below [80]:

0 aues byes 0 ages bac
)\;‘Lj = aueg Cuez duei )\t )\27 == ad€3 Cdﬁg ddf?[ )‘b (59)
? ? 1 ? ? 1

where ag, by, ¢q, dg with ¢ = u,d are O(1) coefficients; A, and \; are the bottom and top
quark Yukawa coefficients; and the question marks indicate that the particular entry is
weakly constrained. The above matrices are written in a left-right notation, that is, the
left-handed fields @ label rows, and the right-handed fields d¢ and u® label the columns.
A fit to the data using this form of matrix was done in the third reference in [80] where
a number of different scenarios were found with different O(1) coefficients. For example,
one scenario has a, = 1.0, b, = O(1), ¢, = 1.0, d, = O(1); ag = 1.5, bg = 0.4, ¢4 =
1.0, dg = 1.3 and Ay = A\p = 0.5 if the matrix is assumed at the GUT scale.

Diagonalizing the above matrices gives the following mass hierarchies mgq, : ms :
Myt = efl’u : eiu : 1. With €, 4 ~ 0.05,0.15 then a good approximation to the observed
mass hierarchies is generated. The product of the unitary transformations that diago-
nalize the above Yukawa matrices from the left generate an accurate CKM matrix with

the following phenomenologically successful relations:

Va3 mq

2~ — 5.10
V32 mg ( )
Vo, ~ 28 (5.11)
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Vig e ) 1T i (5.12)
Mg Me

where V;; label the (4, j) entries of the CKM matrix Vci,jKM and ¢ is the CP violating

phase entering the Jarlskog invariant.

Note that these approximate relations between the CKM elements and the quark
masses are not explained in the Standard Model. However the Gatto-Sartori-Tonin
(GSO) relation [81] in Eq.5.12 is motivated by SO(10) GUTs since the SO(10) Yukawa
matrix AY is symmetric. With a symmetric form for the Yukawa matrix for the first
two families, and a texture zero in the (1, 1) element, this relation gives an excellent fit
to Vig with § =~ £90°. An SO(10) Yukawa matrix A%/ is symmetric since 16 x 16 x 10 is

a symmetric product [51] (16 x 16 = 10, where 105 is a symmetric representation).

Although the simple U(1)r symmetry discussed in Section 5.6.1 produced a sym-
metric Yukawa matrix with an approximate texture zero in the (1, 1) element, it did not
generate the full form of the matrices in Eq.5.9 and so didn’t generate the correct CKM
matrix values. In particular the ratio of the (2,2) and (2, 3) matrix elements in Eq.5.9
is not close to 1 which is required to generate the relation Eq.5.12 for the Vo1 entry. In
fact, in general, simple Abelian family symmetries are unable to relate the (2,2) and
(2,3) entries of the Yukawa matrix, which is seen as a failing of such family symmetries.
However, this relation is possible in family symmetries that are based on a non-Abelian

gauge group, which is the topic of the next Section.

5.6.3 Discrete non-Abelian Family Symmetries

Discrete non-Abelian family symmetries are family symmetries that are based on a
discrete non-Abelian symmetry group. In this Section an example of a discrete non-
Abelian family symmetry, called Ag7, is described that is taken from [74]. Agz is defined
as the semi-direct product group (Z3 x Z3) X Z3 = Zy X Z3 [82], which is a subgroup
of the continuous group SU(3).% It only contains triplet and anti-triplet representations
(as well as a singlet representation), and Table 5.2 illustrates the way in which these
transform under the Z3 and Z5. The family symmetry is assumed to commute with an
SO(10) SUSY GUT and the 16 multiplets that contain the quarks and leptons are taken
to transform in the triplet representation of Ag7. The 10 multiplet that contains the up

and down Higgs fields on the other hand is taken to be a singlet of the family symmetry.”

5A97 is in fact the smallest subgroup of SU(3) that contains complex representations.

"The Ayr family symmetry is chosen rather than, for example, A4, since it allows complex represen-
tations whereas A4 only contains real representations. Complex representations are required in family
symmetry models in which the left-handed matter fields F' and right-handed matter fields F° both
transform in triplet representations. This is to avoid the trivial combination F'F¢h.
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Component of Field | Z3 | Z}
Pi=1 ¢ | 92
Gi=2 agy | ¢3
Gi=3 o?¢3 | P

TABLE 5.2: Transformation properties of triplet field ¢; under the non-Abelian discrete
group Ag7r = Z3 X Z5 where « is the cube root of unity. This table is taken from [74].

The Aoz family symmetry then forbids all of the SO(10) Yukawa interactions A¥16;16,10
since they are not Aoy invariants. Instead these interactions are generated effectively
from higher-order Aoy invariant operators that come from messenger diagrams which are
illustrated by Fig.5.1. This is analogous to the mechanism used to generate the Yukawa

interactions in the U(1)p family symmetry model in Section 5.6.1.

The higher order operators contain flavon fields that transform as triplets and anti-
triplets of Ag7. Six different flavon fields are used in this family symmetry: ¢3, ¢5, ¢23,
@1, ¢123 and @193 where the bar indicates that the flavons are anti-triplets of Ag7. The

Subscripts indicate the components of As7 that develop VEVs, that is:

@) x (00 1) oo (100) (ux(11 1)

0 1
(¢3) x| 0 (dag) ox | —1 (dog) ox | 1
1 1

Together these flavon fields break the SU(3)r symmetry to nothing. The way in which
the flavon fields and quarks and leptons transform under As7 is given by Table 5.3
where an additional U(1) and Zy symmetry is used to constrain the model. These
additional symmetries prevent any phenomenologically disastrous higher-order operators
but are flavour independent and therefore not family symmetries. For example, the
U(1) symmetry prevents the effective Yukawa operator ﬁ16i16j¢§23q5§ from appearing
in Eq.7.2. The leading order operators that are allowed by the model defined by Table
5.3 are the following [74]:

Wy ak = %1@1@10@3% (5.13)

+ %161-1@10533@31[145

e

o 16;16;10¢936) 93

where 4,7,k = 1...3 are Aoy indices.
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Field A27 U(l)R U(l) ZQ
16 3 1 0 +
10 1 0 0 +
16 3 0 0 +
Hys 1 0 2 +

b123 | 3 0 -1+
o3 3 0 3 +
P1 3 0 -4 -
o 3 0 0 -
b3 | 3 0 1] -

D123 3 0 1 -

TABLE 5.3: This table illustrates the Ay7 family symmetry model described in Section

5.6.3. The 16 SO(10) multiplet contains the quarks and leptons, and the 10 multiplet

contains the up and down Higgs fields. U(1)g is an R-symmetry, and U(1) X Zy are

additional symmetries that constrain the model and are family-independent. The table
is based on Table 2 in [74].

Once the flavon fields develop VEVs, effective SO(10) Yukawa interactions A/ 16;16,;10
are produced with coefficients given by the ratio of the flavon field VEVs and the mes-
senger masses:

0 Y'ed Y'es
M= vl Y22 Y22 | A3
Yies Y22 Y3

where (¢3)/M = /A3, ($g3)/M = /Aze and (d193)/M = /A36. As for the U(1)p

family symmetry in Section 5.6.1, the Ay; messenger scale is actually assumed to exist
below the SO(10) symmetry breaking scale so that the messengers that couple to the
left-handed quarks can be heavier than those that couple to the right-handed quarks.
Similarly the mass M, of the messengers that couple to the uf is assumed to be three
times greater than the mass My of those that couple to df. If (523) = Vse4M, and
(¢193) = VA3e2My then the operators in Eq.5.13 generate the form of Yukawa matrix
given by Eq.5.9 but with the suppression factors €, § replaced with €4, e?l and €,, €,€64

for the down quark and up quark Yukawa matrix respectively.

The (3,3) entry in the up Yukawa matrix however will be 9 times smaller than
the equivalent entry in the down Yukawa matrix because of the VEV of ¢;. This
would result in the top quark Yukawa coupling constant A\; being much smaller than the
bottom Yukawa coupling constant Ay at the Asy symmetry breaking scale, which, when
renormalized at the electroweak scale, would be in violation with experiment. Instead,
if the Ag7 symmetry breaking scale is just below the GUT scale, then we require that
At & Ay = 0.5. To achieve this the ¢4 flavon is chosen to transform as 2 x 2 under the

SU(2)g subgroup of SO(10). In this case it may acquire VEVs a¥%, a? in the up and
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down SU(2)g directions. Then, with a¥%/M, ~ a%/M, =~ 0.5, we have comparable top
and bottom Yukawa couplings \; =~ A\, ~ 0.5 as required.® The up and down versions of
the Yukawa matrix generated by the operators in Eq.5.13 then have the following form
[83]:9

2 2 3 3
0 €.€d —€.€4 0 € —€y
Ay o eq —263% 263% At A o e & —&& | N (5.14)
—€2eq 263%’; 1 —e3 —e5 1

Higher-order operators than those in Eq.5.13 that are allowed by Table 5.3 then modify
the (1,2) and (1,3) up and down quark Yukawa entries so that the full up and down
matrices agree with those given by Eq.5.9. These higher-order operators are [74]:

1 —i  —j M
ﬁmi16j10¢123¢%(¢123¢1m)ﬂ45 (5'15)

1 i i . em
+W16i16j10¢123¢]123(¢3¢1231)(¢3 ®123m)

where the O(1) coefficients are ignored.

Unlike the U(1)r family symmetry, the above Ag7 family symmetry model can thus
predict an accurate mass hierarchy and CKM matrix for the up and down quarks. The
Ao7 model also generates the correct mass hierarchy for the charged leptons due to the
Hys scalar field in Eq.5.13. The VEV of Hus creates a factor of three in (2,2), (2,3)
and (3,2) elements of the charged lepton mass matrix compared to the down quark
mass matrix. This occurs because the Hys is assumed to get a VEV in the hypercharge

direction and predominantly couples to the right-handed fields such that:

(Hasd?) Y (d)

(Hise) ~ V() >

The charged lepton Yukawa matrix that is generated by the operators in Eq.5.13 is the
following [83]:

) 0 62 —62
Mool & 32 —3e2 | o (5.16)

76% *363 1
Another advantage of the Ag7 family symmetry is that it offers a simple explanation

for why we have observed exactly three generations of quarks and leptons. This is

because they are taken to transform in the triplet representation, which becomes the

8This complicated mechanism for creating the third family Yukawa coupling constants is a failing of
general non-Abelian family symmetry models.

9The factor of three follows from the explanation of electric charge quantization in Grand Unified
Theories. That is, the magnitude of charge of the proton is equal to that of the electron because quarks
come in three colours.
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three generations once the Aoy symmetry is broken to nothing. For family symmetries
based on a continuous non-Abelian symmetry such as SU(3) the quarks and leptons
could also be placed in a triplet representation which, once the family symmetry is
broken, effectively becomes the three generations. However, in this case we could have
just as easily put the quarks and leptons into a different SU(3) representation such as
a sextet which would decompose to six generations. In fact since there is an infinite
number of representations of SU(3), in principal, we could have put the quarks and
leptons into any number of representations. The number of representations present in
discrete groups on the other hand is, by definition finite, and some groups such as A4 only
have dimension one and (real) dimension three representations, significantly improving

the theoretical reasoning for why three generations have been observed.

Discrete symmetries are also well motivated from high-energy theories. For example,
discrete non-Abelian symmetries can arise after the compactification of extra spacial
dimensions, and this origin of discrete family symmetries has recently been studied in

the context of string theory [84].

5.6.4 Vacuum Alignment

If the above Ag7 family symmetry is to explain the quark and lepton masses and mixing
angles, then we must understand how and why the flavon fields in Eq.5.13 obtain VEVs
in certain A7 components. For the discrete non-Abelian Aoy family symmetry a simple
mechanism that only involves the D-terms of the flavon fields is used to achieve the
desired alignment. This compares to the more complex mechanisms required for con-
tinuous non-Abelian family symmetries such as those based on the SU(3) group where
additional driving fields [83] are included that arrange the F-terms of the flavons to give

a scalar potential whose minimum has the desired vacuum alignment.

Since Agy is a discrete subgroup of SU(3), all operators that are invariants of SU (3)
are also invariants of Ag7. It is the additional operators that are allowed by Z3 x Z
and not SU(3) however that determine the vacuum structure of the flavon fields if they
appear as higher order terms in the potential. This is because these terms prevent
it from being possible to rotate the vacuum expectation value of a triplet field to a
single direction, for example the 3 direction, which is conversely always possible for a

continuous SU(3) symmetry [74].

To make this more explicit, consider a general As; triplet field ¢;. It will have a
SUSY breaking soft mass term in the Lagrangian of the form migb“qbi which is invariant
under the approximate SU(3) symmetry. Radiative corrections may drive the mass

squared negative at some scale triggering a VEV for the field. At this stage, the VEV
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of ¢; can always be rotated to the 3 direction using the approximate SU(3) symmetry.
However this does not remain true if higher order terms from messenger field interactions
that are allowed by Ag7 but not SU(3) are included. For example suppose that the
leading higher order term in the potential is of the form mg /Q(QZ)TQZ)QZ)TQS). This has two
independent quartic Aoy invariants: mé?d)“@d)“d)j and mf§¢”¢iq§”qﬁi where the former
is SU(3) invariant but the latter is not. The latter invariant has the potential to remove
the vacuum degeneracy in ¢;. For example, if mg < 0 then the we must have (¢) x
(0,0,1)T, which defines the first component, whereas if m;? > 0 then we instead obtain
(¢) x (1,1,1)T /+/3. The configuration (¢) o (0, —1,1)7 /+/2 can then be generated using
a leading higher order term that requires that the VEV be orthogonal to both (1,0,0)”
and (1,1,1)7. All these operators can be used to generate the VEV configurations of
the flavons used for the As7 family symmetry described in Section 5.6.3, that is, for the
flavons ¢1, ¢3, d123, P3, o3 and ¢iag [74]. These VEV configurations where used in
Eq.5.13.

5.7 Family Symmetries and Tri-Bi-Maximal Mixing

So far we have only been looking at how the quark masses and CKM elements can be
explained by family symmetries. In this Section family symmetries are instead used
to explain the recently observed neutrino masses and oscillations. The fact that latest
experimental data for the neutrino masses and oscillations, given in Section 5.3, contains
large errors however makes it difficult to determine what, if any, family symmetry is
responsible for the recent observations. To tackle this, the general approach taken is to
choose a particular form of MNS matrix Vasng and neutrino hierarchy that is consistent
with the present data. A particularly exciting form of the MNS matrix is a tri-bi-
maximal matrix in which the v3 neutrino mass eigenstate is a ‘bi-maximal’ mixture of
the neutrino flavour eigenstates v, and v, and the 15 neutrino mass eigenstate is a

‘tri-maximal’ mixture of ve, v, vr [20]. The tri-bi-maximal matrix is defined by:

‘Uel|2 |Ue2’2 |Ue3|2
|Uu1‘2 ‘Uu2|2 |Uu3‘2 =
|Uv7'1|2 |U7'2|2 |U7'3’2

(5.17)

D= D= WIN
Wl Wl Wl
= = O

where Uy, with f = e,pu,7 and 7 = 1...3, are the MNS matrix elements. The lepton
mixing angles generated by this matrix are 615 = sin_l(%) =35.2°, O3 = sin_l(%) =
450, and 013 =0°.
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Aoy |UM) | Zy | 24
L; 3 0 + | +
hay 1 0 + | +
VR1 1 2 - +
VR2 1 1 + -
VR3 1 0 + +
o | 1 1 [+ [+
o | 3 | 2 | - |+
$ro3 | 3 st S M

TABLE 5.4: A Agy x U(1) x Zy x Z§ family symmetry that generates tri-bi-maximal
mixing for neutrinos via CSD.

This form of Vj;yg matrix is very different to the quark CKM matrix Vogas given
in Eq.5.5. Therefore, if we are to explain both Vj;nys and Vog s from a family symme-
try, either the family symmetry is acting differently in the quark and lepton sectors [85],
or the family symmetry is acting the same in both sectors but something else is distin-
guishing between them. If the family symmetry commutes with an SO(10) GUT then
we can only consider the latter scenario since quark and leptons are unified in the same
representation. In Section 5.3 the see-saw mechanism was motivated as being responsi-
ble for small neutrino masses and obviously distinguishes the quark and lepton sectors.
Indeed, when used in conjunction with certain family symmetries, this mechanism can
generate a tri-bi-maximal form for Visnys [85, 86]. The Ag7 family symmetry model in
[74] which was described in Section 5.6.3 uses a particular Type I see-saw mechanism
called constrained sequential dominance (CSD) [87] to generate a tri-bi-maximal Vsng
matrix. In CSD three right-handed neutrinos are assumed with a conventional hierarchi-
cal structure and, in the basis in which the Majorana mass matrix for the right-handed
neutrinos Mgp is diagonal (see Eq.5.18), the Dirac Yukawa matrix for the neutrinos is

of the form given in Eq.5.18 below:

0 Bl Cl MA 0 0
MLR = A2 By Cz 3 MRR = 0 Mpg 0 (5'18)
As B3y Cj 0 0 Mc

where A; = 0, ’A2| = ‘A3|, |Bl| = |BQ| = ‘Bg|, AoBy = A3B3, and My < Mp < M.

The unitary matrix V, that diagonalized My, = My RM}T{}%MgR can be shown to
be a tri-bi-maximal matrix Eq.5.17. Therefore, if the charged lepton Yukawa matrix is
diagonal in this basis, the Vjs g matrix is also a tri-bi-maximal matrix. The equivalence
of the modulus of the (1,2), (2,2) and (3, 2) elements of the above CSD matrix (Eq.5.18)
suggests that a @55 flavon is coupling to the left-handed neutrinos [87], where the VEV

of @93 is given in Section 5.6.3. The equivalence of the (2,1) and (3,1) elements also
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suggests a ¢q3 flavon [87]. For example, to generate the matrices in Eq.5.18 required for
CSD we could assume a Ag7 x U(1) family symmetry for which the left-handed neutrinos
are triplets of Ag7 but have zero U(1) charge, and the right-handed neutrinos vg1, vgo
and vgs are singlets of Aoy with +2, +1, and zero U(1) charges. The symmetries and
flavons of this model are illustrated in Table 5.4 and allow the following higher-order
operators:
Wir = iLWRl hudys + iLiVRZhu$i123
M M

1 1

4 2

4 2
WRR = —ZVRIVE1®" + —5VR2VRe®” + VR3VER3
M M

where ¢ is a singlet of Ag7 that has a U(1) charge of —1 and develops a VEV which is

much smaller than M.

These operators would generate a diagonal right-handed Majorana with a hierar-
chical structure and a Dirac mass matrix given by FEq.5.18, which together create a
tri-bi-maximal matrix for the Vjsns matrix provided that the charged lepton mass ma-
trix is diagonal. For the Aoy family symmetry described in Section 5.6.3 however the
above operators cannot be included in the superpotential. This is because the Ag; sym-
metry commutes with an SO(10) symmetry which requires that the charge-conjugated
neutrinos ¢ and left-handed neutrinos v;, come from the same 16 representation and
thus must come from the same As7 representation. Instead the As; family symmetry
uses the method of CSD to generate tri-bi-maximal mixing, but in a different basis to
the one in which the right-handed Majorana mass matrix is diagonal. This utilizes the
fact that the see-saw mechanism, and thus CSD, is invariant to the following non-unitary

transformations [88]:
-1 ~1 -1gT
Myr — MaS™, Mgk — SM;LS (5.19)

where S is a non-unitary matrix that is not unique. These transformations leave the
effective low-energy neutrino mass matrix My given by Eq.5.6 invariant. The Aoy

family symmetry model uses the following Mz and Mppr matrices [88]:

M4 M4 0
Mgpr=| My Musy+Mp 0 ; (5.20)
0 0 Mg
0 B 1 0 A —A
M;r = A B+ A Oy = A 24 0

A B-A Cy —A 0 G
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where A = B is used and symmetric matrices are assumed because of an SO(10) sym-
metry. The matrices Mg and Mgpg in the original CSD basis are then obtained by the
transformations in Eq.5.19 with the S matrix given by [88]:

1 -1
St=l0 1 o0
0 0 1

This illustrates that the Mrr and Mg matrices used in the As; family symmetry
model will generate the same see-saw mechanism as those in Eq.5.18. The SO(10) x Agr
operators in Eq.5.13 are responsible for generating the form of My in Eq.5.20. This
uses the fact that, contrary to the other messengers, the messengers that couple to the
right-handed neutrinos are anticipated to be much heavier than the messengers that
couple to the left-handed neutrinos. Then, given that right-handed neutrinos have zero
hypercharge, the operators in Eq.5.13 that couple to Hys are subdominant since the
VEV of Hys only picks out the left-handed messengers. The Hys, in addition to the

see-saw mechanism, also distinguishes between the quark and lepton sectors.

The form of matrix Mgp in Eq.5.20 is generated by the following Majorana opera-
tors in the SO(10) x Ag7 model [74]:

1 o
Wataj = 3-16'16/T6:T6; (5.21)

| PR
+ W16216J 16y, 16[¢23i¢23j¢]f23¢é
R

1 o
+ 775 16' 16716 16,61 53: 0103 o dlas
R

where 16 is a field of SO(10) that obtains a VEV in the right-handed neutrino direction.

The effective Majorana matrix for the left-handed neutrinos My in the SO(10) x
Ao7 model is then generated by the see-saw mechanism My, RME}aMzR where Mg and
Mpgpg are of the form given by Eq.5.20. The unitary matrix V,, that diagonalizes this is
a tri-bi-maximal matrix due to CSD. From Section 5.3.1 the MNS matrix is given by
Vuns = VeLV,,Jr and therefore we require that V. = 1 for it to be of tri-bi-maximal
form. However this is not the case in the SO(10) x Ag; model since the charged lepton
Yukawa matrix is not diagonal as illustrated by Eq.5.16. Since the off-diagonals of
Eq.5.16 are small however, the left-handed unitary matrix that diagonalizes it V., is
close to diagonal and so Vjsng does not differ significantly from a tri-bi-maximal form
[88]. The predicted lepton mixing angles are found in [74] and are in agreement with

experiment.
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5.8 Family Symmetries and SUSY Flavour Problems

Section 5.4 discussed how the flavour problem of the Standard Model is enlarged in
the MSSM because of the introduction of new undetermined free parameters in the
soft SUSY breaking Lagrangian. Phenomenology seems to be telling us that the off-
diagonal elements in the soft SUSY breaking Lagrangian should be smaller than the
diagonal elements in order to suppress SUSY induced flavour changing neutral currents.

However, in general, there is no a priori reason for why this should be the case.'®

Extending the MSSM with a non-Abelian family symmetry can provide a resolution
to this SUSY flavour problem [22]. The non-Abelian family symmetries, when combined
appropriately with SUSY, can control the structure of the soft mass matrices (as well
as the Yukawa couplings), in such a way that SUSY induced flavour changing neutral
currents are naturally suppressed. For example, when extended with an SU(3) family
symmetry [22] the soft squark and slepton mass squared matrices in the MSSM would
have a universal form, proportional to unit matrices, in the limit that the family symme-
try is unbroken. However, in this limit the Yukawa and soft trilinear matrices vanish, so
the family symmetry must be spontaneously broken, leading simultaneously to flavour
in the Yukawa sector, and violations of universality in the soft SUSY breaking sector.
The violations of squark and slepton soft mass universality are therefore controlled by
the same order parameters ¢ that are responsible for the origin of Yukawa couplings,
resulting in the prediction of suppressed FCNCs. The SU(3) family symmetry thus pro-
vides simultaneously a solution to the flavour problem not only in the Standard Model

but also in its SUSY extensions such as the MSSM.

Another facet of the SUSY flavour issue is the so called SUSY CP problem stemming
from the fact that in general there could be large extra CP phases coming from the soft
SUSY breaking sector of the MSSM. However, the Standard Model accounts for the
observed CP violating effects to such a level of accuracy that we must impose stringent
bounds on such extra contributions to avoid conflict with experiment. This is, however,
often at odds with naturalness. In the SU(3) family symmetry models a potential
solution to the SUSY CP problem results if the origin of CP violation is due to the
spontaneous breaking of the SU(3) family symmetry via flavon vacuum expectation
values [22]. Such a scenario leads to suppressed SUSY induced CP violation since CP
is preserved in the symmetry limit, and once spontaneously broken, the CP violating
effects are in general suppressed in terms of powers of the symmetry breaking flavon
VEVs.

1%8pecific frameworks such as minimal supergravity (mSUGRA), under certain assumptions about the
hidden sector couplings that break SUSY, can predict universality of soft mass matrices.



Chapter 6

Exceptional Supersymmetric
Standard Models with Family
Symmetry

The purpose of the present Chapter is to extend the MEgSSM (and EgSSM) to include a
discrete non-Abelian family symmetry as a step towards solving the flavour problem in
these models. In particular, the Ay; family symmetry [74] that was discussed in Section
5.6.3 is used. This is convenient since the U(1)y and U(1)x groups of the EgSSM and
MEgSSM are defined to allow a conventional see-saw mechanism, which, together with a
Ao7 family symmetry, can generate small neutrino masses and tri-bi-maximal mixing. In
a model with a family symmetry the Higgs field’s VEV is used to generate the quark and
lepton masses, and so the model should ideally also explain the hierarchy problem, that
is, it must explain why electroweak symmetry breaking occurs at scales much smaller
than the Planck scale. This motivates extending the MEgSSM (and EgSSM) with a
family symmetry since in this model the Higgs mass is protected by supersymmetry and
there is no p-problem or little hierarchy problem. Extending the MSSM or a simple
SO(10) SUSY GUT with a family symmetry on the other hand generically generates
models that suffer from the p-problem.

The detailed strategy pursued is as follows. The Ao7 family symmetry used in the
SO(10) x Agy model described in Section 5.6.3 is introduced to the intermediate Pati-
Salam symmetry of the MEgSSM to build a model with a G991 X Agy gauge group
where G201 = SU(4)ps x SU(2), x SU(2)r x U(1)y. The resulting model can explain
the observed mixing angles and mass spectrum of the quarks and leptons, provide a tri-
bimaximal mixing for the neutrinos, solve the u-problem and small fine-tuning problem,

and does not involve doublet-triplet splitting. A novel feature of the model is that

98
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proton decay is suppressed in a new way by the assumed Ay; family symmetry and an

F singlet.

Once a model based on the MEgSSM with Ag; family symmetry is built we can
then relate this model to an EgSSM with Ay; family symmetry model. This is because,
from Section 4.4.2, if g4 = gar at the G291 symmetry breaking scale, then the U(1)x
group of the MEgSSM becomes equivalent to the U(1)y group of the EgSSM. To achieve
g4 = gor at the G401 symmetry breaking scale we can add the H' and ' states of the
EgSSM to the MEgSSM so that the gauge coupling constants unify at the conventional
GUT scale. Thus by adding H' and H to the MEgSSM with Ag7 family symmetry we
will generate a model based on the EgSSM with Aoy family symmetry. It should be
emphasized however that the EgSSM formulated in this way is not exactly the EgSSM
described in Section 2.6, which shall be referred to as the ‘original’ EgSSM. This is
because the ‘new’ EgSSM is built on a Pati-Salam symmetry and so we cannot use the
ZL and Z8 symmetries of the original EgSSM to forbid the proton decay induced by the
Higgs triplet fields. Instead the induced proton decay is suppressed by small Yukawa
couplings as in the MEgSSM. Thus, in the original EgSSM the Higgs triplets couple
as either diquarks or leptoquarks, whereas the highly suppressed couplings in the new
EgSSM imply long-lived TeV mass Higgs triplets with a lifetime typically about 0.1 sec
for example. This is the only phenomenological difference between the new and original
EgSSM. For convenience the ‘new’ EgSSM is just refereed to as the EgSSM in the rest
of this Chapter.

The resulting models are defined in Table 6.1 where, in addition to the Pati-Salam,
A7 and U(1)y symmetries, extra discrete and Abelian symmetries are also applied
to constrain the models into realistic theories. This is most simply achieved by the
combined symmetries U(1)r x U(1) x Zy x ZH where U(1)g is an R-symmetry that
contains the R-parity of the MSSM as a subgroup. The U(1) X Zs symmetries are
adapted from the Ag; symmetry in Section 5.6.3, and the Z is from the EgSSM and
MEgSSM.

The next Section reviews the MEgSSM and discusses how it can be extended with
the Agy family symmetry from Section 5.6.3. Sections 6.2-6.6 then investigate how
the different MEgSSM superpotential terms are modified by the inclusion of the Agy;
family symmetry. In particular, Section 6.2 illustrates how the Yukawa couplings are
generated in the new model. Section 6.3 looks at how the model predicts approximate
tri-bi-maximal mixing for leptons. Section 6.4 then discusses the effective p-term in the
model and how the triplet higgsinos get mass. Section 6.5 describes how the Aoy family
symmetry can be used to tame the proton decay induced by the Higgs triplets, and,
Section 6.6 discusses the origin of R-parity in the model. Section 6.7 then adds the H’
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TABLE 6.1: All the particles (excluding the messengers) contained in the MEgSSM
with a Ay family symmetry model. U(1)g xU(1)x Zy x Z3 are additional constraining

symmetries that are family-independent. The addition of the H’ and ' fields from
split G201 representations generates a model based on the EgSSM with a Ag; family
symmetry, where the Fg symmetry is broken via the Pati-Salam chain.

and H' states to create a model based on the EgSSM with Ag7 family symmetry, and
Sections 6.8 and 6.9 explore how the running of the MEgSSM and EgSSM gauge coupling
constants are modified by the inclusion of a Ayy family symmetry. Finally, Section 6.10

concludes the Chapter.

6.1 The ME;SSM with a Ay; Family Symmetry

In Section 5.6.3 a A7 family symmetry was applied to an SO(10) GUT to solve the
flavour problem of the Standard Model (and the MSSM). That is, the formulated
SO(10) x Ag7 model explained the different masses and mixings of quarks and leptons
that we observe in particle experiments, but which are unexplained in the Standard
Model. This Section describes how this Aoy family symmetry can be applied to the
MEgSSM, which was constructed in Chapter 4.

The MEgSSM is an Eg inspired supersymmetric theory where the Eg symmetry is
assumed to come from a non-QFT theory that is broken near the Planck scale. Between
the Planck scale and the conventional GUT scale however a conventional QF T is assumed
that has a G4201 gauge symmetry. This gauge symmetry must be a symmetry of a QFT
since its RGEs were used to predict gauge coupling unification at the Planck scale. The
G4221 symmetry is thus a symmetry of the MEgSSM whereas the Eg symmetry is not.

That is, the low-energy physics must obey a (G4921 symmetry but not necessarily an Eg
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symmetry. However, although Eg is not a symmetry of the MEgSSM, it is assumed to
contain the G901 states that make up three copies of a fundamental 27 representation

of Eg at low energies.!

Since G4091 is a maximal subgroup of Eg, the G4901 superpotential for three 27
representations is the same as the G4991 superpotential derived from the Eg superpo-
tential )\ijk27i27j27k, where 7,7,k = 1...3 label the three copies and A7* are coupling

constants:
27i27j27k = Fifyphk + EFjDk; + FiCFjC'Dk + Sihjhk + SiDjDk (6.1)

where the coupling constants A¥* have been omitted for clarity.

If the MEgSSM is to be extended with a family symmetry then it must commute
with the G221 symmetry but does not necessarily commute with an Eg symmetry. We
must therefore formulate a theory based on G991 X Ag7. Sections 6.2-6.5.1 investigate
how the above MEgSSM superpotential terms are modified by the addition of a Aoy

family symmetry.

6.2 Yukawa Interactions

In the MEgSSM the quarks and leptons come from the Pati-Salam representations F;
and FY, and the Higgs fields that break the electroweak symmetry and give mass to
the quarks and lepton are defined as the third generation of the h; representations,
where ¢ = 1...3. In the SO(10) x Ay; model described in Section 5.6.3 the quarks
and leptons come from the fundamental spinor representation 16 of SO(10) and are
taken to transform as triplets of As7. The Higgs fields on the other hand come from
the fundamental representation 10 of SO(10) and are singlets of Agy. The Pati-Salam
states contained in these SO(10) representations are the following: 16 = F' + F*¢ and
10 = h + D. Therefore, following the As; family symmetry, the F; and F} of the
MEgSSM are taken to transform as As7 triplets, and hg as a singlet. This forbids
the superpotential term A\ F;F jchg in Eq.6.1, where \¥ are theoretically undetermined
Yukawa coefficients. Instead higher-order operators are allowed that contain As7 flavon
fields. The VEVs of these flavon fields then break the Aoy family symmetry and generate

effective Yukawa interactions.

'Hypothetically, the Eg symmetry could, for example, be a symmetry of a string theory which is
broken via Wilson lines to the G4221 symmetry at the Planck scale. The G4221 states could then come
from different 27 E¢ multiplets [58], which, if taken to come from the same Eg multiplets, do not commute
with an Eg symmetry.
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The same type of flavon fields that were used in Section 5.6.4 are assumed to couple
to the quarks and leptons. These flavon fields are ¢s, o3, P13, @1 and @123 where the
subscripts denote the components of As7 that obtain VEVs. The leading higher-order

operators allowed by the symmetries are then:

33
Y22
i) FiF$hsdysdhs Hus (6.3)
L Ry (VG B + Y Gh) 6.4)
M2 i hs( Bro3Prs P123%23 (6.
— i Fha(Y 205803 + Y6 o H 6.5
M5 5 (Y205 8003 + Y2 Bab103) (Brasdi) Has (6.5)
11
M — il ha P13 Bras (B drosk) (Bydros1) (6.6)

where the Latin indices refer to the Ay7 symmetry, Y% are order one coupling constants,
and Mpg is the mass of right-handed messengers, which is explained below. The Hys
in Eq.6.3 and Eq.6.5 is a Ag; singlet that transforms as (15,1,3)¢ under the Ggo91
symmetry. (15,1, 3) is the Pati-Salam component of the Hys field used in Section 5.6.3,
which is a 210 multiplet of SO(10). This field gets a VEV in the hypercharge direction
generating the Georgi-Jarlskog factor for Eq.6.3.

The high-order superpotential terms given by Eq.6.2-Eq.6.6 are assumed to come
from renormalizable, high-energy interactions involving heavy vector-like messengers
that transform in the same way as the quark and lepton fields under the Gy291 sym-
metry. These messengers are integrated out of the high energy theory to generate the
above suppressed superpotential terms. To distinguish the Yukawa matrices for the up
and down quarks we require that the SU(2)r messengers dominate over the SU(2)p,
messengers and, for the correct up and down Yukawa matrices, we require that the up
and down right-handed messengers have mass M, and My related by M, ~ %Md. Mg is
used to denote the right-handed messenger scale, which could be M, or My depending

on the interactions involved.

The above higher-order operators are essentially the Pati-Salam versions of the
higher-order Yukawa operators in Eq.5.13 and Eq.5.15 for the SO(10) x A7 model.
The SO(10) product 16 x 16 x 10 contains the following Pati-Salam products F'F¢h +
FFD+ FCF®D and the operators that contain the products F F'D and F°F°D were not
considered to be not important in the SO(10) x Ag7 model since the D states can get GUT
scale masses from a doublet-triplet splitting mechanism. Section 5.6.3 showed that the
higher-order operators in Eq.5.13 and Eq.5.15 can create the experimentally observed

values of quark and (charged) lepton masses and CKM matrix elements. However,
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the operators in Eq.5.13 are invariant to an SO(10) GUT symmetry which causes the
Yukawa matrices Eq.5.14 to be (approximately) symmetrical. SO(10) is not a symmetry
of the MEgSSM and so there is no a prior reason why the Yukawa matrices generated
by the operators in Eq.6.2-Eq.6.6 are symmetrical. Instead the first three operators in
Eq.6.2-Eq.6.4 generate the following up and down quark Yukawa matrices [74]:

0 Yl —yl3ed
Moo | v3S 2 —€2 Abs (6.7)
—Y?’lei —6(21 e%
0 Yie2e;, —Y13e¢y
N9 o Y3lele, —263% 263% At
—Y3le2e, 26%% €2

where all higher-order coupling constants Y/ have been suppressed except for Y13 and
Y3l which are taken to be approximately the same for both the up and down quark
interactions. These matrices were obtained by assuming the same flavon VEV scales as

in Section 5.6.3. That is, the flavons ¢ + @3, dgs + @1 and ¢yg3 + 123 get VEVs of order
VAyMy, \/ ApegMy and \/)\b€§Md respectively.

Symmetrical up and down Yukawa matrices are required for the first two genera-
tions to generate the phenomenologically successful Gatto-Sartori-Tonin relation given
by Eq.5.12. This requires that Y2 = Y3! in Eq.6.3. One way to achieve this is to as-
sume that F; and Ff come from the same Eg representation at the Planck scale so that
Y13 = ¥3! and that the RGEs from the Planck scale to the Ag; symmetry breaking
scale do not upset this relation. With this assumption and A\; = A\ = 0.7, ¢, =~ 0.05,
€4 ~ 0.15, then, the above matrices agree with those in Section 5.6.3, which, after radia-
tive corrections from a high energy scale, are able to generate quark masses and CKM
values that are in good agreement with the observed values once the corrections from

the higher order operators Eq.6.5 and Eq.6.6 are included.

It should be noted that in the MEgSSM the RGEs are very different from those
in the MSSM since there are three copies of a supersymmetric Fg 27 multiplet below
the conventional GUT scale (and two additional electroweak doublets in the EgSSM
model) rather than just the MSSM particle spectrum. The Yukawa terms in the Agz
model [74] were assumed to be formulated at the GUT scale and, after running the
assumed MSSM from the GUT scale to the electroweak scale, the results agree with the
observed quark and lepton mixing angles and masses. In the MEgSSM with Ag7 family
symmetry model the running effects will clearly be different, but the main features of

the low-energy spectrum are not expected to be qualitatively very different. Section 6.8



Chapter 6. Ezxceptional Supersymmetric Standard Models with Family Symmetry 104

investigates how the running of the gauge coupling constants in the MEgSSM is likely
to be modified by the Ag7 family symmetry.

6.3 Majorana Interactions

The U(1)x group of the MEgSSM is defined such that a conventional see-saw mecha-
nism can be used to generate small neutrino masses. The (4,1,2)_ 1 particle, denoted
by Hpg, that breaks the G4291 symmetry once it develops a GUT-scale VEV, gives mass
to the right-handed neutrinos using the Planck suppressed operators Mip/\ij FiCFjCH rHR
(see Section 4.3.5). This non-renormalizable term, together with the Yukawa interaction
involving the neutrinos, can explain the small masses of the neutrinos but not the ob-
served hierarchical structure of neutrino masses and large mixing angles without setting

the couplings A by hand.

In the SO(10) x Ag7 model of Section 5.6.3, the particles that give mass to the right-
handed neutrinos transform as 16 of SO(10) and anti-triplets of Ag7. It is the (4,1,2)
Pati-Salam representation of these particles that obtains a VEV. With an anti-triplet
A7 assignment, these particles dynamically generate the observed hierarchical structure
of neutrino masses and a tri-bi-maximal mixing using the CSD mechanism discussed in
Section 5.7. Following the Aoy family symmetry model, the Hp particle of the MEgSSM
is thus taken to transform as an anti-triplet of As7. The Majorana interactions allowed
by the symmetries are then:

1
Mpg

1 .
+ 5 FOF] 0o Hp Hpdn2si b1

R

1 . .

+ WFich¢$123¢]123HJk%H§%¢123k¢123l-

R

Wiraj = ~——FfFCHR HY,

The above operators are exactly the relevant Pati-Salam versions of those in Eq.5.13
from Section 5.6.3 but with Hp transforming in a (4,1, 2) 1 representation of the Gya21
symmetry rather than a (4, 1,2) representation of the Pati-Salam symmetry. Together
with the neutrino and charged lepton Yukawa matrix generated by Eq.6.2-Eq.6.6, the
above interactions produce a Vjsng matrix with approximate tri-bimaximal mixing and
a hierarchical structure of neutrino masses in agreement with the observed values [89]
exactly as discussed in Section 5.6.3. This is however reliant on the assumption made in
the previous Section that F' and F¢ come from the same Eg representation so that the

Yukawa matrices are symmetrical.
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6.4 The y-Term and Higgs Triplet Mass

In the MEgSSM and EgSSM the superpotential term Sshshs solves the p-problem of
the MSSM if S3 obtains a vacuum expectation value at the TeV scale as discussed in
Sections 2.6 and 4.3.2. This term is not present in the SO(10) x Ag7 model described
in Section 5.6.3 and so we are free to take S5 to transform in any Aoy representation.
Taking S3 to transform as a singlet under Ao7 allows the superpotential term Sshshs

and thus keeps the simple solution to the p-problem.

The S3D123D1,2,3 terms in the MEgSSM superpotential give mass to the Dj 3
states once S3 develops a TeV scale VEV. This suggests that the Dy o 3 particles should
also transform as Aoy singlets, so that they may all acquire TeV scale masses. If we
had instead assumed them to be Aoy triplets then at least one of their masses would
be expected to be lower than the electroweak symmetry breaking scale, in violation of
the direct experimental limits. This is because we would expect the effective couplings
S3D1,2.3D1,2,3, with S3 obtaining a VEV at the TeV scale, to have a strongly hierarchical
mass structure, as in the case of ordinary quarks, with at least the first generation, D1,
possibly having a mass lower than the electroweak symmetry breaking scale. Instead,
with D 23 as Agy singlets, they will all obtain TeV scale masses from the (unsuppressed)
superpotential terms S3D; 2 3D; 23. Similarly, the first two generations of h from the
fundamental 27 multiplets, denoted by hi 2, are taken to transform as Aoz singlets so

that they obtain TeV scale masses from the S3hi 2h; 2 superpotential terms.2

6.5 Proton Decay and Higgs Triplet Decay

In the MEgSSM the superpotential terms )\iijiFjDk and )\iijichch in Eq.6.1 are
forbidden by the Z4 symmetry, under which F;, Ff and D; are all odd. The terms are
instead generated effectively, but highly suppressed, from higher-order operators that
involve a new particle ¥ that is odd under ZQH and is a Gy901 singlet. In Section 4.3.3
we found that if the level of suppression is of order 10~ then the proton’s lifetime is
consistent with present experimental data, and the D states decay fast enough to avoid

any cosmological problems.

With F; and FY as Agy triplets and Dq 23 as singlets, the terms )\ijkEFjDk and
)\iijfF ]?Dk are automatically forbidden by the As7; symmetry. Once the Ag; family

symmetry is broken however, proton decay operators will reappear suppressed by flavon

*Note that the first two generations of h and D can fit inside a 10_; multiplet of SO(10) x U (1), but
the third generations cannot due to opposite ZZ' parity assignments. Also note that the required TeV
scale VEV of S3 implies an effective u-term of similar magnitude, leading to a slight tuning required for
electroweak symmetry breaking.



Chapter 6. Ezxceptional Supersymmetric Standard Models with Family Symmetry 106

and other VEVs, and it becomes a quantitative question whether these operators are
sufficiently suppressed. This suggets that a combination of the discrete ZQH symmetry

and the Ag; family symmetry can be used to create a 1073 level of suppression.

With the Z& and Ay; symmetries chosen as in Table 6.1, the only way to generate
the proton-decay inducing terms is from higher-order terms involving flavons (to repair
the Aoy symmetry), and the Eg singlet X (to repair the ZH symmetry). Taking ¥ to
have U(1) = +5 and Zs = —1, the smallest suppressed proton decay terms are:

1 i = —k —
Wirip = WZDLZSFJ}am%s(¢123k¢3)(¢>1z¢3) + (Fij — F7)) (6.8)
d
1 y _
+ ———— D1 5 3(€ 7 F a3 b ) (€ Ff d1m ™) (dudrog) + (Fij — F)).
Mg M?

These operators are suppressed by the square of a string scale Mg, which is taken to be
of order 10’75 GeV. This assumes that the messengers that couple the 3 particle to the
F€F€Dq 23 superpotential term are different to the messengers that couple the flavons
and Hp to the quarks and leptons in the Yukawa and Majorana interactions of Sections
6.2 and 6.3. The former messengers are assumed to reside at the unification scale which

is taken to be Mg ~ 10'7®> GeV. This is further discussed in Section 6.8.

The effective terms FF°D1 o3 are then suppressed by a factor of about 62)\,5%
where /i = (#3)/Mg. For eq =~ 0.15, /A = 0.7, (X) ~ 100 GeV, and Mg ~ 10175
GeV, this suppression factor is around 107'3. From the discussion in Section 4.3.3
this level of suppression should be just sufficient to prevent proton decay from being
observable in present experiments if the Higgs triplets have mass greater than about 1.5
TeV. At the same time it should also be sufficient to permit the Higgs triplets to decay

with a lifetime smaller than 0.1s.

6.5.1 FCNCs From Additional Higgs-Doublet Fields

The other ‘Higgs generations’ hj o are taken to transform in the same way as the D
particles in Table 6.1. This forbids the interactions FF°hi o at tree-level but allows
higher-order operators that are equivalent to Eq.6.8 but with FF'D and F¢F¢D replaced
with F'F°hy2. These higher-order operators become effective F'F°h; o interactions at
low energies but with a suppression factor of order 10~'3. Such operators will cause
FCNCs as discussed in Section 4.3.1 for the MEgSSM. However the level by which they

are suppressed puts them well within the present experimental limits.



Chapter 6. Ezceptional Supersymmetric Standard Models with Family Symmetry 107

6.6 R-parity and Hp + Hp Mass

Not all the components of Hr and H  obtain mass by absorbing the broken Pati-Salam
gauge bosons when they acquire vacuum expectation values in the right-handed neutrino
direction. To give the rest of Hr and Hp (and Hy, and H, from the SO(10) multiplets
16 and 16) mass, a a singlet M has been included in Table 6.1. This singlet is
assumed to get a GUT scale VEV, giving mass to 16y + 165 from the superpotential
term M165165. Since M carries a U(1)g charge of +2, its VEV also breaks U(1)g to
an R-parity. This R-parity is a generalization of R-parity in the MSSM and keeps the
LSP stable, providing a dark matter candidate.

Note that the U(1)r symmetry of 16 used in Table 6.1 is different to that used in
the MEgSSM defined by Table 4.3. This R-symmetry prevents the bilinear term 1616

in the superpotential.

6.7 The E4SSM with a Ay; Family Symmetry

As discussed at the start of this Chapter, if we introduce two additional electroweak
doublets H' and H with TeV scale masses to the above MEgSSM with As7 family
symmetry then we can generate an FEgSSM with Agy family symmetry model. All
the above operators of the MEgSSM with Aoy family symmetry are also present in
this EgSSM model. However, gauge coupling unification now occurs at the GUT scale
(rather than the Planck or String Scale) where an Eg symmetry is assumed to exist. In
this case it is easier to understand how the Yukawa matrices Eq.6.7 can be symmetrical
since we don’t have to neglect any RGE effects from the Planck scale to the GUT scale.
Each type of Yukawa matrix will be symmetrical as long as the right-handed up quarks,
down quarks, charged leptons, and neutrinos come from the same Eg multiplet as their

left-handed counterparts, which is perfectly acceptable in the EgSSM.

To prevent the two additional electroweak doublets H' and H' from introducing
gauge anomalies for the U(1)y gauge group, they must have opposite U(1)y charges.
One possibility would be that H' and H transform as (1,2,1), and (1,2,1)_, under
G4921, but such multiplets cannot be derived from FEg multiplets making it difficult to
relate the EgSSM to any Eg symmetry. This requires that H' and H' must come from
split Pati-Salam representations. For example, H' could come from (1,2, 2), and H from
(1,2,2)_,, or alternatively H' could come from (4,2, 1), and H' from (4,1,2)_, where x
is some U(1), charge. If these split Pati-Salam multiplets come from 27 representations

of Eg then in the former case = 1 whereas in the latter case x = 1/2. A mechanism
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is not provided to explains why the H’ and H are split from their Pati-Salam (and Eg)

partners.

The symmetries of the model couple the Eg singlet X to the H' and " through the
non-renormalizable term (1/Mg)XXH' H'. If ¥ obtains a vacuum expectation value at
~ 10'° GeV then this would give H’ and " approximately TeV scale masses so that
the Standard Model gauge couplings unify at the GUT scale and g4 = gor at the G221
symmetry breaking scale. It is emphasized that this is not a solution to the u/-problem
however since the VEV of ¥ has not been related to the (soft SUSY) TeV scale.

6.8 Unification and Symmetry Breaking in the MEsSSM

This Section describes how the pattern of symmetry breaking for the MEgSSM is mod-
ified when we apply a Aoy family symmetry. In the MEgSSM the Fg symmetry is
assumed to be broken at the Planck scale to a left-right symmetric Pati-Salam gauge
group SU(4)x SU(2)r x SU(2)g x Drr (a maximal subgroup of SO(10)) and an Abelian
gauge group U(1),. The left-right symmetric gauge group is then broken to the Standard
Model gauge group with an additional Abelian gauge group U(1)x, which is a combina-
tion of the charge of the U(1), group, the diagonal generator 73 of the SU(2)x group,
and the diagonal generator associated with the U(1)p_y, subgroup of SU(4) defined by
SU4) — SU(@3). x U(1)p—r. This breaking is achieved by the MEgSSM equivalent
to the Hp + H R particles from Section 6.3 gaining VEVs in the right-handed neutrino
directions. At the scale of this symmetry breaking the gauge couplings of the Abelian
groups U(1)p_r, U(l)n% and U(1)y must satisfy Eq.3.4 with ap_j = a4 and 03 = R

When the Ag7 family symmetry is introduced to the MEgSSM however, the pattern
of symmetry breaking is likely to change from the above discussion. This is due to
the inclusion of the higher-order messengers introduced by the Ag; family symmetry.
From Section 5.6.3 we require that the messengers that couple to the right-handed up
quarks are heavier than the messengers that couple to the right-handed down quarks.
Since these messenger fields must come from the same (G4201 then this difference in
mass can only occur once the SU(2)r symmetry is assumed to be broken. However, if
these messenger fields have mass equal to or lighter than the G 4991 breaking scale then
they will cause the gauge coupling constants to blow up before they unify. To prevent
this from happening the SU(2)g group is assumed to be broken to its U (1)723 subgroup
at some higher energy scale. The right-handed messenger fields would then gain mass
at this higher energy scale and would not significantly alter the running of the gauge

coupling constants of the MEgSSM.
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The messengers that couple to the left-handed quarks must be heavier than their
right-handed counterparts. To prevent these messenger fields from upsetting the running
of the gauge coupling constants in the MEgSSM they are assumed to they gain mass
at the unification scale. This means that the SU(2)g breaking scale must be slightly
below the unification scale. Note that the difference in the mass of the left-handed and
right-handed messengers violates the left-right discrete symmetry of the MEgSSM and

will change the running of the gauge coupling constants.

The Gyo11 = SU(4) x SU(2)r, x U(1)7, x U(1)y symmetry is broken by the VEV of
the Hp + H g multiplets. This mixes the U(1)p_r, x U(1), x U(1)y groups to generate
the U(1)x and U(1)y symmetries, as well as breaking SU(4) to the SU(3). symmetry
of the Standard Model.> The Hp + H  particles also transform under the Ay; family
symmetry and get VEVs in the third component so that they break the Aoy symmetry
at the same scale as the G4211 symmetry. The remaining part of the family symmetry,
which is a subgroup of Ag7, will be broken by the VEV of the ¢,; flavon at the scale
€aMy where the right-handed messengers mass My should be above the As7 symmetry
breaking scale, otherwise wavefunction insertions of the invariant operator $3$£ /M]% on

a third family propagator can spoil the perturbative expansion if (¢5) > Mg [90].

The scale of the Fg symmetry breaking in the MEgSSM is also expected to be
modified when the As7 symmetry is included. Instead of Planck scale Eg symmetry
breaking, the Eg symmetry is expected to be broken at a string scale. This is mainly due
to the number of additional particles (messengers) to the MEgSSM states at and above
the G211 symmetry breaking scale, which are required for the As7 family symmetry to
accurately describe the observed quark and fermion masses and mixing angles. These
extra states cause the gauge coupling constants to increase rapidly above the G4o11
symmetry breaking scale, bringing forward the unification scale. Other modifications
to the Eg symmetry breaking scale in the MEgSSM will come from the running of the
gauge coupling constant for the Abelian U ( 1)T}3>c group, and the breaking of the left-right

discrete symmetry at the compactification scale.

The pattern of symmetry breaking in this case is thus expected to proceed as follows:
the SU(2)gr group is broken to U (1)713% at a compactification scale M¢, which, along
with the SU(4) x SU(2)r, x U(1)y symmetry, is broken at a lower scale to Gsa11 =
SU(3). x SU(2)r, x U(1)y x U(1)x by the Hg + Hp particles. The left-right discrete
symmetry Dy g is also expected to be broken since the left-handed messengers are heavier

than and right-handed messengers. The pattern of symmetry breaking for the Eg group

30ne could alternatively consider the VEV of Hys to break SU(4) to SU(3).xU(1)5—r. This depends
on whether the VEV of Hys is chosen to be at a greater or smaller energy scale than the Hr + Hr VEV.
In [83] and (the second reference in) [90], for example, the Hys VEV is taken to be of order 3My and
3eq My respectively.
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FIGURE 6.1: The two-loop RGEs running of the gauge coupling constants for two

models based on the MEgSSM with As; family symmetry. Both models are described

in detail in the main body of the text. The thickness of the lines indicates the error in
the coupling constants due to the experimental uncertainty in their initial values.

is summarized as:

Mg Mc Maur TeV
~= =~ ~= =
Ee¢— G4221"— " G211 — G3211 — G321.

where the As7 family symmetry is also broken at Mgyr.

6.8.1 Two-Loop RGEs Analysis

Unification of the gauge coupling constants may in fact no longer be possible when
all of these changes from the MEgSSM are calculated, but Fig.6.1 demonstrates that
gauge coupling unification still occurs for two simple models of the MFEgSSM with Agy;

Symmetry.

For both models the SU(2)r symmetry breaking scale is taken to be approximately
equal to the G4211 symmetry breaking scale. Both models therefore have an intermediate
G4921 symmetry as in the MEgSSM. However, for the model in the right panel of Fig.6.1,
the left-right discrete symmetry is assumed to be broken at the unification scale due to
the different masses for the left-handed and right-handed messengers. In both panels of
Fig.6.1 three copies of an Fg 27 multiplet, which contain all the MSSM states as well as
new (non-MSSM) states, have mass at low energies are used and, following the MEgSSM,
effective MSSM and non-MSSM thresholds of 250 GeV and 1.5 TeV respectively are

assumed.

At the G991 X Aoy symmetry breaking scale, additional particles that break the
symmetry and play a part in the Aoz family symmetry’s description of quark and lepton

masses are also assumed. In the left panel these extra particles are taken to consist of all
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the G 4291 states from five copies of 27+27 multiplets, except for the (6, 1, 1)% +(6,1, 1)7%
states which we assume have mass at the unification scale, as well as all the flavons given
in Table 6.1 and a left-handed partner for ¢5. The additional 27 + 27 states contain the
16y + 16y particles that break the Gyo91 X Ag7 symmetry and provide the Majorana
interactions, the 16 + 16 particles that give the Hys as a composite, and messengers that
also transform as a 16 + 16 of SO(10). The Hyj is taken to be a composite of a 16 + 16
state since a fundamental Hys particle (and its left-handed partner) would affect the
running of the SU(4) gauge couplings by an amount that causes it to blow up before
any unification of gauge couplings is possible. We would also need to explain why the
rest of the 650 Eg multiplet, that contains the Hys, have larger mass. On top of the
five copies of the 27 + 27 multiplets, additional Higgs messengers that transform as a
triplet and an anti-triplet of the Ay; family symmetry are assumed. These are required

for unification of the gauge coupling constants.

The right panel assumes the same states as the left panel but without the left-
handed messengers as these are expected to get much larger masses than their right-
handed components. The scales of unification and G4291 symmetry breaking are at
10171, 10169 GeV and 10164, 10161 GeV for the left, right panel respectively. Since the
(4921 symmetry breaking scales are close to the Grand Unification scale in conventional
GUTs they are denoted by Mgyr.

It should be emphasized that the above models do not represent accurate predic-
tions for the running of the gauge coupling constants of the MEgSSM with Aoy family
symmetry and are only used to demonstrate that, with the inclusion of the A7 mes-
senger states to the MEgSSM, gauge coupling unification is still possible but at a scale

that is closer to the string scale than the Planck scale.

6.9 Unification and Symmetry Breaking in the EsSSM

Including the extra electroweak states H' and H' at the TeV scale, in addition to the
Pati-Salam representations of three copies of an Eg 27 multiplet, causes the Standard
Model gauge coupling constants to unify at the conventional GUT scale (but with a
higher value than the MSSM prediction for the unification gauge coupling constant). At
the unification scale an Fg symmetry is assumed to exist. However, from Section 5.6.3
we require that the messengers that couple to the right-handed quarks are lighter than
the messengers that couple to the left-handed quarks. Since these messenger fields must
come from the same (G4991 multiplet, then the difference in their mass would violate the

E¢ symmetry.
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To overcome this problem the left-handed messengers are assumed to have a mass
equal to the GUT scale, and the up and down right-handed messenger fields are taken
to gain mass just below the conventional GUT scale. To compensate for the effect on
the running of the Standard Model gauge coupling constants caused by the right-handed
up and down messengers (which would upset unification), additional fields are included
that, together with the messenger fields, form complete SU(5) representations, which in
this case would be a complete 10+ 5. The extra fields below the GUT scale will increase
the MSSM prediction for the value of the unification gauge coupling constant but keep
the unification scale as the conventional GUT scale. Of course too many messengers, and
too small messenger masses, would cause the Standard Model gauge coupling constants
to blow up before they unify. Here it is simply assumed that the minimal number of
messengers required to generate the correct quark and lepton masses and mixing angles
does not prevent the unification of the Standard Model gauge coupling constants at the
GUT scale.

6.10 Conclusions

In this Chapter the MEgSSM and EgSSM have been extended to include a Ao7 family
symmetry which is broken just below the conventional GUT scale. To provide realistic
models additional U(1) x Zy x Z x U (1) g symmetries are also applied where U(1)g is an
R-symmetry which results in a conserved R-parity. The resulting supersymmetric models
solve a number of problems facing the MSSM, including the little fine-tuning problem,
the p-problem and the SUSY flavour problem. The As7 family symmetry accounts for
the quark and lepton masses and mixing angles, with tri-bimaximal neutrino mixing
resulting from vacuum alignment and constrained sequential dominance. A particularly
attractive feature of the models is that the proton decay induced by the Higgs triplets
is naturally suppressed by the As7 family symmetry.



Chapter 7

Solving the Flavour Problem of
Supersymmetric Standard Models
with Three Higgs Families

In the previous Chapter the EgSSM and MEgSSM were extended with a Ag7 family
symmetry to solve the flavour problem. These models are more powerful than the
SO(10) x Agy model in Section 5.6.3 for example because they have the potential to
explain why the Higgs mass, which is indirectly related to the quark and lepton masses,
is much smaller than the Planck mass. This is because the Eg models do not contain
the p-problem of the MSSM, whereas in the SO(10) x Ag7 model for example, there is
nothing preventing the bilinear term ©10.10, which is the GUT version of the p-term,

from being included in the superpotential.

However, although the family symmetry solves the flavour problem of the effective
MSSM states present in the E¢SSM and MEgSSM, it does not explain the flavour of
the non-MSSM states present in these models. For example, the Ayy family symmetry
accounts for the three generations of (up and down) quarks and (charged and neutral)
leptons in the EgSSM and MEgSSM, but does not explain why there are also three copies
of (up and down) Higgs fields, three copies of (D and D) Higgs triplet fields, and three
copies of MSSM singlet fields S.

In this Chapter a more ambitious application of a family symmetry is introduced
that solves the full flavour problem of the E¢gSSM. The approach taken is to assume that
all the EgSSM states that fill three complete 27 representations of Eg transform in triplet
representations of a Aoy family symmetry. This then explains why there are exactly three
copies of all these fields in the EgSSM. Table 7.1 describes how all the states from a 27

113
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representation, as well as the flavons, transform under the family symmetry and the
additional symmetries that constrain the model. Only the E¢SSM is concentrated on in
this Chapter, since, unlike the previous synthesis, the family symmetry cannot suppress
the proton decay induced by the Higgs triplets. The Z£ or Z{ symmetry of the EgSSM
is therefore used to avoid the induced proton decay, which violates a Pati-Salam gauge

symimetry.

Once the family symmetry is broken the full mass structure of the EgSSM is de-
termined, including the masses and mixings of the quarks and leptons. In particular
the model predicts tri-bi-maximal mixing for leptons, two almost degenerate LSPs and
two almost degenerate families of triplet higgsinos. The broken Ag; family symmetry
also explains why only the third generation of the Higgs fields interacts with the quarks
and leptons, thus forbidding FCNCs that would be caused by the additional Higgs-like
families. The broken As7 family symmetry therefore provides a high-energy theoretical
understanding of the ZJ! symmetry which is somewhat ad hoc in the EgSSM and adds
an additional complication to the flavour problem of the model that is not present in the
MSSM or NMSSM. This method of avoiding FCNCs should, in theory, be applicable to
any general supersymmetric model with three families of Higgs fields, and this Chapter

only uses the EgSSM as an example of such a theory.

The outline of this Chapter is as follows. In Section 7.1 the renormalizable EgSSM
superpotential in the absence of any family symmetry is reviewed. The rest of the
Chapter is then divided into different sections which investigate how each term in this
superpotential is generated from the Ag; family symmetry: Section 7.2 introduces the
non-renormalizable operators allowed by As7 that lead to the quark and lepton Yukawa
interactions with the Higgs fields, Section 7.3 illustrates how the Z4 symmetry of the
EgSSM effectively emerges from the high-energy theory, Section 7.4 then discusses how
tri-bi-maximal mixing is generated from the Aoy family symmetry and constrained se-
quential dominance, Section 7.5 describes how the effective u-term of the MSSM and the
mass structure of the LSPs that are formed from the inert higgsinos and singlinos are
generated, Sections 7.6 and 7.7 explain the mass structure of the triplet higgsinos and
discusses their decay channels, and Section 7.8 introduces the vacuum alignment required

for the various Aoz flavon fields. Finally, in Section 7.9, the Chapter is concluded.
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A UMW) [ Zo | Z2 ] 25 [ U(R

F | 3 0o |+ |+ |+ 1
Fe | 3 0o |+ |+ |+ 1
h 3 0o |+ -]+ 0
D | 3 0o |+ -]+ 0
S 3 0 [+ ]+ | - 0
o3 3 0 -+ |+ 0
P23 | 3 -1 -+ |+ 0
p123 | 3 1 -+ |+ 0
) 3 4 - |+ |+ 0
b3 | 3 3 |+ + |+ 0
b1a3 | 3 e S i M i e 0
oh | 3 0 |+ ] - | + 0
o3 | 3 0 |+ |+ | - 0
el 3] o [+ +]+] o
el 3] o [+]+]- 0
Hys | 1 2 |+ ]+ |+ 0
Hr | 3 0 + |+ | + 0
H | 1 0o |+ |+ |+ 1
H | 1 0 |+ |+ |+ 1

TABLE 7.1: This table illustrates how all the flavon fields and Pati-Salam states transform

under the Ay7 family symmetry and the additional constraining U (1) x Zz x Z¥ x Z5 symmetry.

An R-symmetry is also applied to the model which breaks to an R-parity once Ss obtains a
vacuum expectation value.

7.1 Review of EgSSM Superpotential

In terms of a Pati-Salam notation, and dropping all couplings and indices for clarity, the

EgSSM superpotential terms from the Eg tensor product 27 x 27 x 27 are the following:
27 x 27T x 27 — FF°h+ Shh+ SDD + FFD + F°F°D. (7.1)

The interactions between the quarks and leptons and the Higgs fields, N9 F; F° jchk, is the
subject of the next Section. Section 7.5 discusses the superpotential term )\Z-ijihj hk
from which the MSSM effective p-term is generated. Section 7.6 describes the term
)\iijiDjDk from which the Higgs triplet states get mass, and Section 7.7 looks at the
operators )\iijiFjDk + N kFicF Dy, which provide their decay channels.

The above operators are only written in a Pati-Salam notation for ease of notation.
The actual gauge symmetry of the model presented in this Chapter is the EgSSM gauge
symmetry SU(3), x SU(2)r xU(1)y x U(1)y rather than a Pati-Salam gauge symmetry.

For the rest of this Chapter a Pati-Salam notation is used unless stated otherwise.
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7.2 The Effective Yukawa Operators

In the previous synthesis of the Ay; family symmetry with the MEgSSM, the quarks
and leptons were taken to transform as triplets but the Higgs states were singlets. Here
instead the Higgs states are also taken to transform in a triplet representation to explain
why three Higgs doublet type fields are present in the EgSSM. This then allows the
E¢SSM xAs7 superpotential term eiijiIthk where 4,5,k = 1...3 are Ayr indices
and €* is the totally anti-symmetric tensor. This however contains operators such as
F1FShy — FyoFYhg which must be forbidden since they would give too large a mixing
between the first and second generation quarks. To forbid these terms the Higgs states
h; are taken to be odd under a new discrete symmetry called Z%, which forbids the entire
€ kFichhk superpotential. To ‘repair’ the Z;‘ symmetry, a As7 flavon denoted by 5;1 is
included that transforms as an anti-triplet and is odd under Z%. Two flavons that are also
anti-triplets must then couple to the quarks and leptons to form a As; invariant. Table
7.1 describes how the quarks, lepton, Higgs and all other the Pati-Salam states from a
27 representation transform under the family symmetry. It also contains the additional
symmetries that constrain the model such as Zél symmetry which distinguishes the Higgs
fields (but unlike Z47 treats all three Higgs families identically) as well as the Ay7 flavon
fields.

The lowest order Yukawa superpotential consistent with the symmetries of Table
7.1 is:

1
M3
1
M

1 S Y T R
+ WEthk(ébuzﬂébé?) + ¢{23¢23)(¢g)k
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where all O(1) coupling constants are suppressed.

Note that the above superpotential is exactly that found in Section 5.6.3 but with
hs replaced with h; @g)l This flavon field and ¢4 are assumed to get a VEV in the third
component of Ag7, and the other flavon fields are equivalent to those used in the Aoz

family symmetry described in Section 5.6.3.
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FiGURE 7.1: This Figure contains the type of messenger diagram that provides the
dominant contribution to the Yukawa operators in Eq.7.2.

7.2.1 The Messenger Fields

The messenger fields 3 that are responsible for the suppression factors in Eq.7.2 include
fields that transform in the same way as quarks and leptons under the Standard Model
gauge group and as singlets, triplets and anti-triplets of As7. For convenience these
type of messenger fields are referred to as quark and lepton-like messengers X g pe. In
addition there are also messengers that are singlets of Ag7 and transform in the same
way as Higgs fields under the Standard Model gauge group. These messenger fields are
called Higgs-like messengers ;. All these messenger fields are taken to carry positive
Zg parity, and the Higgs-like messengers >, are assumed to be heavier than the quark
and lepton-like messengers X pe so that the latter dominate the messenger diagrams.
Also, as in Chapters 5 and 6, the right-handed quark and lepton messengers Y pe are
assumed to be heavier than their left-handed counterparts ¥ (except for the neutrino
messengers) so that the former dominate over the latter. The messenger diagrams are

illustrated by Fig.7.1.

To create a smaller hierarchy in the down quark sector compared to the up quark
sector, the mass of the 3 and 3 up and down Higgs messengers M?fl are assumed to
be equal, but the up right-handed quark messengers 3,c that are 3 and 3 and singlets
of SU(3) are taken to have a mass M that is greater than the mass of the right-
handed down quark messengers Y4 by approximately a factor of three. This then

creates €5 = 3¢, as in Chapters 6 and 7.

For the top Yukawa coupling constant to be greater than the bottom Yukawa cou-
pling constant the ¢5 flavon is again taken to transform as a 3@ 1 of the SU(2) g subgroup
of Eg, and its VEV is chosen so that (¢3)/My = (¢3)/M,. In terms of these messenger
masses, the VEV scales for the various flavon fields are then taken to be the following:

(@) _ (Bs)

Mp T Mv

~

(Pa3) ~ e (P123) ~ 2 (7.3)

~ 0.8, Mu d» Mu d

where €5 ~ 0.15. At the GUT scale the Yukawa coupling for the top and bottom quark

is expected to be about 0.5 in third family Yukawa unification models based on the
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MSSM with large tan 5 [80]. It is therefore assumed that <$§>/M§L ~ (p3)/M™ ~ 0.8.
By comparison, in the model formulated in the previous Chapter, in which the Higgs is
a singlet, (@3)/M" is assumed to be about 0.7 [74].

Inputting the above flavon VEVs into the superpotential given by Eq.7.2 generates
the effective Yukawa matrices given by 5.9 for the quarks and leptons, which were shown
to produce a realistic CKM matrix and realistic mass hierarchies for the up and down
quarks in Section 5.6.3. This is essentially because the superpotential in 5.9 is exactly
that found in Section 6.2 but with h3 replaced with h; (63)2, which becomes hg once 6’:.}
gets a VEV.

7.3 Preventing Flavour Changing Neutral Currents

Note that since 5? transforms under Z% it will only couple to the Higgs fields and not to
the quarks and leptons. This can be understood by considering the messenger diagrams
of the above higher-order operators where 5’; will only be allowed to attach itself to
the Higgs fields (and the Higgs-like messenger fields) if all the messenger fields are even
under Z;l. This is illustrated by Fig.7.1. Once 5’; gets a VEV, only the third ‘generation’
of the up and down Higgs fields h3 will couple to the quarks and leptons. It is these up
and down Higgs fields which we therefore take to obtain electroweak scale VEVs, and
thus act like the up and down Higgs fields of the EgSSM.

The Z% and Ag; symmetries prevent the first and second generation of Higgs fields
from interacting with the quarks and leptons at tree-level and so there can be no tree-
level FCNC processes involving the neutral scalar components of these fields. In the
E¢SSM the Z2H symmetry is applied to all the 27 fields except for the third generation
of Higgs fields and singlet fields to prevent the first and second generation of Higgs fields
from interacting with the quarks and leptons at tree-level. The Z% in this model is
therefore acting as the Z4 symmetry of the EgSSM even though it does not distinguish
between the different Higgs fields.

This then illustrates how the flavour problem in general supersymmetric models
with three (up and down) Higgs fields can be solved: the model should be extended
with a family symmetry for which the Higgs are in a triplet representation. This then
explains why there are three Higgs doublets, and with the addition of a simple flavour-
independent Z5 symmetry, also explains why there are no FCNCs from the additional
Higgs fields. This can be achieved using the same family symmetry that generates the

masses and mixings of the leptons and quarks.
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7.4 Tri-Bi-Maximal Mixing

Tri-bi-maximal mixing for the leptons is created using the Ao7 family symmetry and
constrained sequential dominance exactly as in the previous EgSSM model with Asy
family symmetry since the right-handed neutrino Majorana operators that are allowed
by the symmetries are again given by Eq.5.21. Table 7.1 illustrates how the Hp fields
that give mass to the right-handed neutrinos transform under the symmetries of the

model.

7.5 The Effective u-Term and Inert Higgsino and Singlino

Masses

The Pati-Salam superpotential term )\iijihjhk from Eq.7.1 is used in the EgSSM to
generate higgsino and singlino masses as well as an effective MSSM p-term. In terms
of the Standard Model gauge group this superpotential term reduces to )\"ijihujhdk
where h; and hy denote up and down Higgs fields. To explain why three copies of the
singlet fields S are in the EgSSM they are taken to form a triplet representation of
Ao7. This then allows the EgSSM x Ao7 superpotential term eiijihujhdk and forbids
terms such as Sshy3hgs, which is used by the EgSSM to generate an effective p-term,
because of the Ay symmetry. To avoid this the singlet fields are taken to be odd under
a new Zg discrete symmetry which forbids all the eiijihujhdk operators. To repair
this symmetry new flavon fields 559 and gbg are introduced that are odd under the Z2S
discrete symmetry and form anti-triplet and triplet representations respectively of Asr.

The following higher-order operators are then allowed:

Wi~ < Siuihai(33)! (G () (74)

1 . — S
+ 573 Sihughan(35)'(65)
1 .. —h 1 .. —h
+ Wﬁl]lsihujhdk(¢§)l(¢3)k + Wﬁl]lsihukhdj(fbg)l((b;%)k
where gbg is a 3 flavon that has even ZQS parity but odd Zél parity. The scale of the
flavon VEVs are taken to be (¢5)/Ms = eg, ($§>/Mh = €g and (52)/1\45 = €, where
Mg is the mass scale of the singlet-like messengers, M}, is the mass scale of the Higgs-
like messengers and it is assumed that eg < 1. The messenger diagrams responsible
for generating the above higher-order operators are represented by Fig.7.2. All Higgs-

like and singlet-like messengers are assumed to carry even Zél parity but the Higgs-

messengers, unlike the singlet-messengers, can carry both odd and even Zﬁg parity.
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FIGURE 7.2: This Figure illustrates the type of messenger diagrams that provide the domi-
nant contribution to the effective pu-term and higgsino mass operators in Eq.7.4.

The first operator in Eq.7.4 is responsible for generating an effective p-term for the
third family of Higgs fields once the flavons fields and the third family singlet field S5
obtain VEVs. Since only the third family of Higgs obtains a VEV, this effective u-term
acts like the u-term of the MSSM Higgs fields. The effective p-term will have a value
(0.8)3(S3), which will be approximately 1 TeV if (S3) = 2 TeV, which is consistent with

the experimental bound for the mass of a Z’ (see Section 4.4.3).

The second and third operators in Eq.7.4 are responsible for providing mass to the
first and second families of higgsinos and singlinos once the third family of Higgs fields
and singlet field obtain VEVs. This results in a mixing between all of these states which

is represented by the following matrix:

Minert _ A22 A21
Ay An

This matrix is written in the basis (hY,, k%5, S2|h;, A0, S1) so that A,g are 3x 3 matrices
where o, = 1,2. Because of the anti-symmetric tensor in the Eq.7.4 we find that
Aq1 = Ao = 0, whereas As; is given by the following:
0 €5€h<53> Es<hi>
Al = | esen(S3) 0 es(hd) | (7.5)
es(hd)  es(hd) 0

where this matrix couples the states (hYy, h0y, S2) to the states (h);,h%;, S1). In the
limit of exact Z%L and Ziq symmetry these higgsino and singlino states will decouple
from the usual inert USSM states such as the third family of Higgsinos, singlinos, wino
and hypercharge bino fields. A full discussion on the mixing between the usual USSM
states and the additional E¢SSM states can be found in [91] where it is also shown that
the mixing between the U(1)x bino and Higgsino and singlino fields is expected to be

small.

The above Higgsino and singlino neutral states combine to form two degenerate
LSP states, approximately consisting of a Dirac state formed from (dropping the tildes)

S1 and Ss, together with two generally heavier approximately degenerate Dirac states
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formed from A, and hY, on the one hand and hQ, and kY, on the other hand. With exact
R-parity the Dirac LSP state formed from S7 and Sy becomes a dark matter candidate.
However the masses of the degenerate LSPs S and S5 can be split if the first and second
generation of Higgs and singlet fields are distinguished from one another. One way of
achieving this is to assume that the flavon field ¢§ gets small vacuum expectation values
in its first and second components of Ag7 such that (¢8)T oc (61,89, 1) where &1, 52 < 1.
This might be expected to occur from higher-order operators that affect the vacuum
alignment of the fields. Two WIMPs that are almost degenerate in mass have been
recently used to explain the DAMA data [92].) More work is required to determine

whether the model considered here can be used to explain this data.

Note that although the Z} and Z5 symmetries of this model have combined to
operate in a similar manner to the original Z symmetry of the EgSSM, they allow
fewer operators than the latter. The operators allowed by the original Z& symmetry
but which are not present in this model are Sshyahda, Sahuahds and Sqhyshg,. Such

operators are responsible for the Asy and A matrices being non-zero in the EgSSM.

7.6 Higgs Triplet Mass Terms

The Pati-Salam superpotential A% kSiDjDk, which is derived from the Eg superpotential
of the EgSSM given by Eq.7.1, is used in the EgSSM to give mass to the Higgs triplets
D;. In terms of a Standard Model gauge symmetry this operator becomes )\iijiDjﬁk
where D is a triplet of the strong force gauge group SU(3). but D is an anti-triplet.

To explain the three copies of the D states in the EgSSM they are assumed to
transform in a triplet representation of As7. As for the Higgs doublet-like states, the
D are also taken to have odd Zél parity but even ZQS parity. The allowed higher-order
operator thus mirrors the allowed operators that provide effective p-terms for the Higgs

fields:

1 P R N
Wi ~ 575 5iDiDi(63)'(63) (35)" (7.6)

L ke gy (75vi(4sh
+ e %SiD;Dy(¢3)" (3
L g . (4SY, Ak
+ e €7 S;D;jDy.(93)1(¢3)
1 zleD ﬁ SN Tk
+ At Pk i(#3)1(03)".

f (¢5)T o (61,02,1) then the first operator in Eq.7.4 will mix the Higgs doublet-like flavour eigen-
states h1, he and hs so that the mass eigenstate h3" is a mixture of all these Higgs doublet-like states.
When inserted into the operators in Eq.7.2, FCNCs will be generated by the additional Higgs doublet-
like fields. However, with 01, d2 < 1 then these FCNCs will be heavily suppressed and will be well
within experimental limits.
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The mass scale for the exotic-like messengers 3 DD responsible for the operators in
Eq.7.6 however need not be the same as the Higgs messengers. The messenger scales are
defined such that Mp = M, (52)/]\4,3 = ep, (¢4)/Ms =ep and (¢3)/Mp = €. The
exotic-like messengers, like the Higgs-like messengers are also assumed to only have even
7% parity and carry either even or odd Zég parity. The messenger diagrams that are
responsible for generating the higher-order operators in Eq.7.6 are analogous to those
in Fig.7.2 but with the Higgs fields and Higgs-like messenger fields replaced with exotic

fields and exotic-like messenger fields respectively.

The fermion components of the Higgs triplet fields (triplet higgsinos) thus obtain
mass once the flavons and S3 obtain an expectation value. The masses are written in

matrix form MP4 D,;D; where M Dij is the following:?

0 €SED 0
MPi = €SED 0 0 <SS>
0 0 6562D + e?l’)

The parameters €g, €p and €p can then be chosen for the masses to be larger than
the experimental bound of 300 GeV. Two of the triplet higgsinos are predicted to be
degenerate in mass with the third also being degenerate in the approximation that
e% = €p and €p <K €g. This mass structure is in stark contrast to the hierarchical
structure of the quarks and leptons despite all the states being triplets of the family

symimetry.

7.7 Higgs Triplet Decay and Proton Decay Suppression

If the triplet Higgs particles D; are taken to have the same As7, Zg and 225 quantum
numbers as the Higgs fields h;, then they can decay via the following non-renormalizable
operators:

1 c e T8 Td Thk
s FEFS Dy 8h(83) (7.7)

—_  —n 7h
FiFj + E’CFJ‘C)Dkﬁb;3¢]23(¢3)kH45

WE:totic ~

T

1 —i —j ~h
+ W(FiFj + E’CFJ'C)Dk¢Z123¢%3(¢3)k

1 —i = =i\ m —
+ W(EFJ + ECFJ‘C)Dk(%Q:sCf’é + ¢3¢]123)(¢123¢1m)(¢§)kH45-

2The scalar components of the Higgs triplets will also obtain mass from soft terms in the SUSY-
breaking Lagrangian.
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However not all these operators can be allowed otherwise this would lead to very rapid
proton decay. Thus, either the ZQB or Z2L discrete symmetries that is used in the EgSSM
[17] are assumed. From Section 2.6.7, under the ZF symmetry the leptons and D
states are odd whereas, under the ZZ symmetry, only the leptons are odd and all other
particles are even. Thus these symmetries differentiate between different fermion F, F*©
components and therefore break the Pati-Salam gauge symmetry (but not the EgSSM

gauge symmetry).

In the limit that (¢%)T o (0,0,1) exactly, the decay channels of the Higgs triplets
states will be different to those of the EgSSM since only the third generation of the
Higgs triplets couples directly to quarks and leptons, whereas all three generations of
the Higgs triplets in the EgSSM interact directly with the quarks and leptons. The
difference between the two models occurs because the Higgs triplets transform under
Zg, which results in an effective Zf symmetry for only the first and second generation
of Higgs triplets. In the EgSSM however all three generations transform under Z47. This
application of the Zé‘ symmetry results in the decay products of the first and second

generation of Higgs triplets always involving a singlet field S;.

If instead (%) o (1,2, 1) as discussed in Section 7.5, then all the Aoy components
of the Higgs triplets will mix via the mass terms presented in Section 7.6. This results
in the same Higgs triplets channels as used in the EgSSM but with some being more

suppressed since 1, dg9 < 1.

7.8 Vacuum Alignment

The vacuum alignment assumed for the flavon fields ¢g, ¢g3, and ¢,o3 is assumed to be
the same as that discussed in Section 5.6.3. However this did not include the vacuum
alignment for the new flavon fields ¢%, 53, ¢35 and 55 For these additional flavon
fields to get the required direction of vacuum expectation values, the following D-terms
are used: m3 /2(@;)%3@; (5’3”)@) and m3 /2 ($;¢§Zq§]§j 5?) both with negative coefficients,
and similarly for the gb§ and 5}? flavons. These terms cause E{ and gbg to get VEVs in
the same direction as the pre-aligned fields ¢4; and ¢4 respectively, which obtain their
vacuum structure from the operators analogous to those discussed in Section 5.6.4 and

are discussed in detail in [74].
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7.9 Conclusions

In the previous Chapter a A7 was applied to the MEgSSM and E¢SSM with the purpose
of creating a model that can solve the flavour problems of the MSSM and SM. This was
motivated by the ability of the MEgSSM and EgSSM to explain the small Higgs mass in
comparison to the Planck mass. Together with the Aoy family symmetry these models
can then explain the masses of the quarks and leptons and in particular why they are
small (compared to the Planck scale). However this come at the expense of additional
flavour introduced by the MEgSSM and EgSSM which were not fully explained by the
Ag7 family symmetry. This extra flavour comes from the non-MSSM states such as
the additional Higgs doublet-like fields and Higgs triplet fields that are included in the
MEgSSM and EgSSM.

The purpose of this Chapter was to find an alternative application of a Ag7 which
can fully solve the flavour problem of the EgSSM and thus present a truly viable al-
ternative to the MSSM. This was achieved by taking all the EgSSM states that fill 27
multiplets, which includes the Higgs fields, to transform as triplets under the Ao7 family
symmetry. The breaking of the Aoy family symmetry then resolves the fermion mass and
mixing puzzle present in the SM, the SUSY FCNC problems introduced by the MSSM,
and predicts the mass structure of the non-EgSSM states. The main phenomenological
predictions of the model are tri-bi-maximal mixing for leptons, two almost degenerate

LSPs and two almost degenerate families of triplet higgsinos.

A particular success of the model illustrated in this Chapter is that it demonstrates
how FCNC’s in models with three families of Higgs fields may be tamed by the same
family symmetry that predicts tri-bi-maximal lepton mixing and provides a solution to
the SUSY FCNC and CP problems. This is because the Aoy family symmetry, together
with a vertical Z} symmetry, gives rise effectively to the Z41 symmetry of the EgSSM,

which solves the flavour changing neutral current problem of the three families of Higgs

fields.

A disadvantage of the application of the As; family symmetry presented in this
Chapter however is that it can only be used for the EgSSM and not the MEgSSM. This
is because this application, unlike that in the previous Chapter, does not suppress the
proton decay induced by the Higgs triplet fields D. Instead the induced proton decay
can only be suppressed by the method adopted by the EgSSM where discrete symmetries
are used to prevent the decay. This leaves the theoretically undesirable fields H' and
H' in the low-energy particle spectrum which introduce a p/-problem as discussed in

Section 3.2.



Chapter 8

Conclusions and Outlook

The hierarchy problem remains a principal incentive for new physics beyond the Stan-
dard model and embedding the model in the MSSM is the most studied solution to this
problem. However, although this solves the instability of the Higgs mass against higher
energy physics, it does not adequately explain why its mass is small in the first place.
This is related to the p-problem of the MSSM. Non-minimal supersymmetric models
inspired by an Eg symmetry on the other hand can naturally stabilize the Higgs mass
without introducing the p-problem or little hierarchy problem of the MSSM. An example
is the EgSSM which contains three copies of a 27 representation of Eg and two addi-
tional electroweak doublets whose sole purpose is to generate gauge coupling unification
in the model. However, because these electroweak doublets come from incomplete Eg

representations, they introduce a number of theoretical problems to the model.

In this work a new model called the MEgSSM has been proposed as an alternative to
the EgSSM that only contains complete Eg representations at low energies and so does
not contain any of the theoretical problems that come from incomplete representations.
As well as solving the hierarchy problem of the Standard Model, the MEgSSM also
predicts gauge coupling unification at the Planck scale, suggesting a potential unification

with quantum gravity.

Another motivation for physics beyond the Standard model (and the MSSM) comes
from the flavour problem, which has seen a renewed interest in recent years due to the
discovery of neutrino oscillations. In this work the EgSSM and MEgSSM have been
extended with a non-Abelian discrete family symmetry as a step towards solving the
flavour problem. The quantitatively new feature of the resulting models is that the
same family symmetry that explains the observed masses and mixings of the quarks and

leptons, including tri-bi-maximal mixing for leptons, also naturally tames the proton
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decay induced by Higgs triplet fields or the FCNCs mediated by the extended Higgs

sectors.

A failing of the MEgSSM (and EgSSM) however is that a low-energy Z discrete
symmetry does not commute with an Eg symmetry if the chiral superfields comes from
the same high-energy Eg multiplets. If on the other hand the superfields come from
different Eg multiplets then a complicated mass splitting mechanism is required to allow
only three copies of a 27 representation to survive to low-energies. More work is therefore

required to relate the MEgSSM (and EgSSM) to the high-energy Eg symmetry.

One possibility may be to embed the models in a string inspired theory in which the
Eg¢ symmetry is broken by compactification. Split Eg multiplets that together look like
complete Eg representations at low energies could then arise from Wilson-line symmetry
breaking for example [58]. This could also potentially explain the origin of the non-

Abelian discrete family symmetry [84].



Appendix A

f-Functions for the MEgSSM

All of the parameters of a renormalizable field theory can usefully be thought of as scale-
dependent entities. The scale dependence is described by simple differential equations
called renormalization group equations (RGEs). The rate of flow of a coupling constant

as a function of momentum is defined by the G-function:

__ dg(p;g) _
= M' =
where M is a renormalization scale, and g(p) is called the running coupling constant
which is the coupling constant g obtained by integrating out degrees of freedom down to
the scale p. We can calculate the S-function of a gauge coupling constant for a general
quantum field theory to a given order of perturbation. Ignoring the small contributions

from any Yukawa couplings of the theory, the -function of a gauge coupling constant

gi to two-loops is given by [93]:!

da; o _ Z _
dO; = —bia? — 0%2( : bijaj> (Al)
d(1/q; _
- (d/ta):bi*}j:bijaj

where @; = g?/(47)%; t = In(p/M); b; and b;; are group factors from the group repre-
sentations of the various particles of the quantum field theory; and the indices 7 and j
run over all the gauge coupling constants of the quantum field theory. The first term in

Eq.A.1 is the one-loop contribution and the second term is from two-loops.

! At one-loop the graph of 1/a; versus t is a straight line. At two-loops the graph is a curve that
is generally close to a straight line since the two-loop effects are respectively small by definition of
perturbation theory.
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For a non-supersymmetric quantum field theory the group factors b; and b;; are the
following [93]:

11 2 1
b= -5 Gi(G) + 5 ;nfcm) + 5 2 mCilr) (4.2)
10
bij = C(G) anC Ci=i(ry) Zns i(G)Cj=i(rs)
—2% nCi(rf)C;4i(ry) 22”8 Cjsi(rs).
7

The first term in Eq.A.2 comes from the gauge bosons, and the second and third terms
come from all the chiral fermions and (real) scalars, respectively, that live in the different
irreducible representations 7y and rs of the gauge group that has the gauge coupling
constant g;. nys, ng are the number of scalars and fermions that live in the representations
rr and 74 of the gauge group. C(G); is the Casmir operator for the adjoint representation
of the group, C(r); is the Casmir operator for the irreducible representation r of the
group, and C?(r) is the quadratic Casmir operator for the irreducible representation r

of group that has the gauge coupling constant g;.

For an SU(N) group C(G) = N, and, for the defining fundamental representation
N and its conjugate N, C(N) = C(N) = 1/2. For an irreducible representation r of
SU(N) the quadratic Casmir operator is given by:

where d(G); is the dimension of the adjoint representation of SU(N) which is N? — 1,
and d(r); is the dimension of the irreducible representation r. For an Abelian group
U(1), C(G) =0, and C(r) and C?(r) are replaced with Q?, the square of the charge of
the particle that couples to U(1).

In a supersymmetric quantum field theory b; and b;; are given by the following [94]:

bi = —3Ci(Gi) + Y _neCi(re) (A.3)

bZ’j = —GCz(G)C + QC ch j=i 7"6

+4 Z neCi(re) Cf zi(re)-
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In Eq.A.3 the first term is a vector supermultiplet contribution and the second term
comes from chiral supermultiplets where ¢ labels the different chiral supermultiplets in

the supersymmetric quantum field theory.

Below the RGEs of the MEgSSM are calculated but with the U(1)x and U(1)y
groups ignored for simplicity. At energies below the T'eV scale the MEgSSM is equivalent
to the Standard Model, above TeV it is a supersymmetric theory based on the gauge
group SU(3).@SU(2),@U(1)y®@U(1) x, and above the GUT scale it is a supersymmetric
theory based on the gauge group SU(4).®SU(2)®SU(2)r®@U(1),. Each energy regime

is looked at in turn.

A.1 The Standard Model

The Standard Model contains the gauge coupling constants g1, go and gs for the gauge
groups U(1)y, SU(2)r, and SU(3)., where the hypercharge gauge coupling constant g is
GUT normalized. The b; and b;; group factors for the Standard Model are given below:

by 0 4/3 1/10
bo | =1 22/3 | +ng| 4/3 | +nn| 1/6
b ~11 4/3 0
0 0 0 19/5 3/5 44/15
by=10 —136/3 0 |+n,| 1/5 49/3 4
0 0  —102 11/30 3/2  76/3
9/50 9/10 0
+n, | 3/10 13/6 0
0 0 O

where ny are the number of generations of quarks and leptons, and nj, are the number
of Higgs fields. In the Standard Model ny = 3 and nj;, = 1.

The gauge coupling constants in Section 3.6 are run from their initial values mea-
sured at the Z° pole. Since the top quark is more massive than the Z° vector boson
the initial RGEs do not depend on the top quark (its degrees of freedom have been
integrated out of the theory). The top quark contributes the following to the fermionic
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part of the group factors b; and b;;:

by 1/30
bg - 1
b3 1/3
1/600 3/40 1/3
bij =1 1/20 49/4 4

1/60 3/4 19/3
(A.4)

A.2 The MEzSSM below the GUT Scale

The group factors b; and b;; for a supersymmetric quantum field theory with the gauge
group SU(3). ® SU(2)r ® U(1)y that contains the particles in the MEgSSM are the

following:

by 0 2 3/10 1/5
by | = -6 | +ng| 2 | +na| 1/2 | +np 0
b3 -9 2 0 1/2
0 0 0 38/15 6/5 88/15
bij=10 —24 0 +ng 2/5 14 8
0 0 -h54 11/15 3 68/3
9/50 9/10 0 4/75 0 16/15
+np | 3/10 7/2 0 [ +np o 0 0
0 0 0 2/15 0 17/3

where ng is the number of generations of the quark and lepton supermultiplets, ny, is
the number of Higgs-doublet supermultiplets, and np is the number of Higgs triplet
superfields. In the MSSM n, = 3, nj, = 2 and np = ng = 0, whereas in the EgSSM,
ng = 3, nj, = 8 (including the H' and H states) and np = 6. The MEgSSM below the
GUT scale contains ny = 3, and nj, = np = 6. Note that in the EgSSM and MEgSSM
the (-function for g3 is zero at one-loop order and receives a positive contribution at
two-loops. QCD therefore looses asymptotic freedom in these models because of the

additional states that are not in the MSSM.
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A.3 The MEgSSM above the GUT Scale

Above the GUT scale the MEgSSM is a supersymmetric field theory based on the gauge
group SU(4) ® SU(2), ® SU(2)r ® U(1)y. g4, g2r, gor are defined to be the gauge
coupling constants of SU(2)g, SU(2)r, and SU(4) respectively and the group factors are
the following:

bor —6 2 1 0
bor, | = —6 +ng|l 2 | +nn| 1 | +np| O
by —12 2 0 1
-24 0 0 14 0 15
bij = 0 =24 0 + ng 0 14 15
0 0 —-96 3 3 31
7 30 0 0 0
+np|l 3 7 0 | +np)] 0 0 O
000 0 0 18
14 0 15 0 O 0
+NHR 0 0 0 +ng, | 0 14 15
3 0 31/2 0 3 31/2

where now ng are the number of generations of the F' = (4,2,1) and F° = (4, 1,2) mul-
tiplets that contain the quarks and leptons; ny, is the number of h = (1,2,2) multiplets
that contain Higgs fields; np is the number of D = (6,1,1) triplet Higgs fields; ng,
is the number of Hy, = (4,2,1) and Hy = (4,2,1) states; and ny, is the number of
Hr = (4,1,2) and Hr = (4,1,2) states. In the MEgSSM, n, = np = np = 3 and

ng, = NH = 2.

All the above group factors b; and b;; are used in Eq.A.1 to determine the two-loop
running of the gauge coupling constants in the MEgSSM. The results are plotted in
Fig.3.1 and Fig.4.1 where Fig.4.1 also uses the group factors for the U(1)x and U(1)y

groups which have not been included in this Appendix.



Appendix B

The U(1)x Symmetry

Since the U(1)x group does not appear to have been considered in the literature, this
Appendix illustrates in detail how it is generated from a Ga1 = SU(4) ® SU(2)r ®
SU((2)r @ U(1)y symmetry once Hr = (4, 1,2)7% and Hr = (4, 1,?)% obtain VEVs.
The G4221 symmetry is then broken to the Gs211 = SU(3). @ SU(2), @ U(1)y @ U(1)x

symimetry.

The covariant derivative of the G4201 symmetry is given by:
. . . 1.
Dy = 0y +igaTy" AY}, + igor T} A}, + i92RTR AR, + %zg¢T¢A¢M (B.1)

where m = 1...15 and r,s = 1...3; A}, Aiu, A%u and Ay, are the SU(4), SU(2)r,
SU(2)r and U(1)y quantum fields respectively; g, gar, g2r and gy, denote the universal
gauge coupling constants of the respective fields and 13", T}, T, and T}, represent their
generators. All of the T", Ty, T} and T, generators are derived from components
of the Fg generators G%, which are chosen to be Eg normalized, for the fundamental
representation 27, by:

Tr(G* G°) = 36% (B.2)
where a,b=1...78.

Then, with this normalization, the Pati-Salam generators 77", T and T} are nor-

malized for the fundamental representations of SU(4), SU(2)r and SU(2), respectively,
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by:!
1
Tr(T)" Ty) = iémn,
1
Tr(Tgp Tp) =Tr(T7 T7) = -0"°

2

where m,n =1...15.

The U(1)y charge %Tw is a diagonal Eg generator, which is chosen to be the 78th

1

78 _
generator G'° = 7

Ty, and is therefore normalized by Eq.B.2 to give:

1 2
G > 17 =3 (B.3)
27

where the sum is over all the G4901 representations that make up the fundamental 27

multiplet of Ejg.

The scalar fields Hir and Hp are used to break Guoo1 to Gszii;. These are the
smallest G4001 multiplets that can be used to break the Pati-Salam symmetry directly
to the standard model gauge group. When Hgi and Hp develop VEVs in the vi and
v¢ components respectively, they will break SU(4) — SU(3). [61] and mix the field
associated with the remaining SU(4) diagonal generator, AL, with the field associated
with the diagonal generator of SU(2)g, A%, and the U(1), field Ay. The rest of the
SU(4) and SU(2) g fields are given square mass proportional to v, the sum of the square
of the Hg and Hp VEVs.

The diagonal generators for the A}° and A% fields are 7}° and T5. For the funda-

mental representations of SU(4) and SU(2)g respectively [51] :

3 111 1 11
T15:\/>d' ==, T =diag(=,—=).
4 5 W95 55 73)  Tr=diag(5—3)

The part of the symmetry breaking G991 to Gs211 involving the diagonal generators

T3, T}% and T is then equivalent to:
UL © ULy ® U(L)y = ULy 2 U(L)x.

In the rest of this Appendix this particular symmetry breaking is explained in detail.

Using the G4991 covariant derivative, Eq.B.1, the covariant derivative for the U (1)T415 ®

!These normalizations are necessary for the Standard Model generators Tisas of SU(3)c and SU(2) 1

to be normalized in the conventional way: Tr(T2T¢) = %6‘16 and Tr(TiT7) = %5“ for the fundamental

representations, where T, and T, are the generators for the SU(3). and SU(2)r groups respectively and
d,e=1...8.
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U(l)TI:; ® U(1)y symmetry is:

. . 1.
D,=0,+ zg4T415A}12 + zggRT%ABj%ﬂ + %ZngwAdm (B.4)

= Oy +igp-1Tp_L AL, + igarTH AR, + ignyTy Ay,

where gg_1 = \@g4, Ny = %gw, Tg_1 = \/ng = (B;L) and B and L are baryon

and lepton number respectively.

In terms of the diagonal generators Tg_r,, Tg and Ty, the vg component of Hr and
the v¢ component of Hp transform under U © U(l)Tg @ U(1)y as:

1 1 1 1 1 1
H c
_(_- - _= = (= —= 2. B.5
v < 27 2’ 2)’ ' (2’ 2’ 2) (B.5)
Therefore, once Hr and H g get their VEVs, the square of the covariant derivative for
the AL, A% and Ay, fields becomes:

2 1 ?
\Duyg ‘ = 4v2< — g5-1AL, + 82rARy, — gzwAw)

where gp_1,, gor and gy, are the gp_1,, g2r and gy, gauge coupling constants evaluated
at the G491 symmetry breaking scale. The above squared covariant derivative can be

written in matrix form as:

1 83r —82R 8B-L —82R BNy A3,
1U2 ( Ap AP Ay ) —82R 8B-L 851 gB-L Ny AP | (B.6)
—82Rr 8Ny 8B-L 8Ny 5 Ay

Diagonalizing this matrix equation determines the mass eigenstate fields generated by
the mixing of the G491 fields A%, A}f’ and Ay. The 3 x 3 square mass mixing matrix
has two zero eigenvalues and one non-zero eigenvalue so that two massless gauge bosons
and one massive gauge boson appear to have been created by the mixing. The massive

gauge boson By is the following mixture of G001 fields:

1

By = 5( — @rAY +gp AP + gszAw)

where b? = g%R + g%_L + gJQ\,w.

This massive field is an unique mass eigenstate field. However, the degeneracy in
the zero-eigenvalue eigenvectors of the square mass mixing matrix implies that all or-
thogonal combinations of any chosen two massless eigenstate fields also describe two

massless eigenstate fields. All the orthogonal combinations of two massless eigenstate



Appendix B. The U(1)x Symmetry 135

fields are physically distinct and so the symmetry breaking mechanism does not gener-
ate two unique massless eigenstate fields.? We therefore require something in addition
to this symmetry breaking mechanism that lifts the degeneracy of the zero-eigenvalue

eigenvectors and selects two unique massless gauge fields.

It is shown below that when we include the low-energy VEV of the S particle
from the third generation of the 27 multiplets, the degeneracy in the zero-eigenvalue
eigenvectors is lifted and the two massless gauge fields are uniquely chosen to be the
gauge field By of the Standard Model hypercharge group and an (effectively massless)
gauge field that we call Bx. The By and Bx gauge fields are generated from orthogonal
zero-eigenvalued eigenvectors of the above 3 x 3 square mass mixing matrix and are the

following mixture of (G4991 fields:

1
By = - (gB_LA% + ngA};5)7
1

Bx = p (gQRgNwA?}z —gp_1gNp AL + (855 + ng—L)Aw)

where a? = g%R + g%_L.

In terms of the diagonal generators Tp_r, T ]3{ and Ty, the S particle transforms
under the U(1)71s ® U(l)Tg ®@ U(1)y symmetry as:

S = (0, 0, 2).

The S particle only couples to Ay, and so its VEV, s, therefore introduces a perturbation
proportional to s?/v? to the (3,3) component of the 3 x 3 square mass mixing matrix in
Eq.B.6. From Section 4.2.2, v is determined to be of the order 10'® GeV and we require
that s ~ 10 GeV for EW symmetry breaking.

Diagonalizing the 3 x 3 square mass mixing matrix with this extremely small pertur-
bation in the (3,3) component determines the mass eigenstate fields to be the massless
hypercharge gauge field By, and an extremely small mass gauge field and large mass
gauge field that can be taken to be the Bx and By gauge fields, respectively, in the

excellent approximation that s?/v? = 0.3

It is easy to see why the hypercharge gauge field of the Standard Model is the
exact massless gauge field of this symmetry breaking. The hypercharge field is the only
massless gauge field generated by the Hr and Hr VEVs that does not contain the Ay
field and therefore the only massless gauge field that S does not couple to. If the A, field

is removed from the G991 symmetry then the mixing of the remaining G201 diagonal

2 All the orthogonal combinations are physical since the kinetic term part of the Lagrangian is invariant
to orthogonal transformations of the fields.
3The VEV of the Standard Model Higgs field is ignored in this symmetry breaking.
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generators becomes equivalent to U(1)p1s ® U(l)Tg — U(1)y when Hgr and Hp get
VEVs [61].

The mass eigenstate fields By, Bx and By can be written in terms of the G4991

fields A%, A}® and A, in the following matrix form:

By gB-1/a gor/a 0 A3,
Bx | = | gereny/ab —gp_rgny/ab (g5p +8%_;)/ab AP |- (BT
Bu —g2r/b gB—1/b gny/b Ay

This orthogonal 3 x 3 matrix can be parameterized in terms of rotation and reflection

matrices in the following way:

1 0 0 1 0 O c12 S12 0 C19 S12 0
0 co3 s93 0 -1 0 —s12 ci2 0 | = €23512  —C23C12  $923
0 —S8923 (€23 0 0 1 0 0 1 —S8923S512 523C12 C23

where ci12 = gp_1/a, s12 = 82r/a, c23 = 8Ny /b and sg3 = a/b. The mixing angles 612

and o3 are therefore given by tan 012 = gor/gp—r, and tan bz = a/gny.

Taking the transpose of Eq.B.7, the G4901 fields A?I’%, A}® and Ay can be written in

terms of the mass eigenstate fields By, Bx and By as:

3

A Cl2 512023 —812523 By
1 _

AP | = s12 —ciaces  c12823 Bx

Ay 0 523 23 By

Putting this matrix equation into the covariant derivative for the U(1)p1s @ U (1)Tg ®
U(1)y symmetry, Eq.B.4, determines the covariant derivative for the massless gauge
fields By and Bx to be:

D, =0, +igyY By, +igk X Bx,

where:

Y =T} +Tp =Tp+(B-1L1)/2

is the Standard Model hypercharge [61], and:*

X =(Ty+T3) — Y (B.8)

4 Alternatively we could have defined X to be gig(Ty +T5) + g5_1(Ty — Te—1) and redefined g%
equivalently.
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is the non-normalized charge of the Bx gauge field. gy and gg(- are the non-normalized
universal gauge coupling constants of the By and Bx fields respectively and, at the

G4991 symmetry breaking scale, are given by Eq.B.9 and Eq.B.lO:5

v = 82R 8B-L (B.9)
a
0 @
gx = 38Ny (B.10)
2 0 \2
Eq.B.9 and Eq.B.10 can be written is terms of ay = % and oeg( = (gi;) , see Eq.3.3 and

Eq.4.11 in Section 4.2.1. The charges X and Y are not Eg normalized and the respective

charges are defined as T'x and Ty where:
Tx = X/Nx, Ty =Y/Ny

and the normalization constants Nx and Ny are given by:

5 3
N)Q(:7—20%2+§Cilza N{ = =
Note that the Abelian generator Ty is just the conventional GUT normalized hyper-

charge. T'x and Ty have been Fg normalized using Eq.B.2 which is equivalent to:

YT => T =3
27 27

where the sum is over all the G311 = SU(3).®@SU(2),®@U(1)y @ U (1) x representations
of the fundamental 27 Eg multiplet and U(1)y is the unitary group of the Bx field.

In terms of the Fg normalized charges Tx and Ty, the covariant derivative for the

Bx and By gauge fields becomes:
DM = 6M -+ ingyByu + igXTXBXu (Bll)

where g1 and gx are the normalized universal gauge coupling constants of the By and
Bx fields respectively. At the Gg921 symmetry breaking scale, the normalized gauge
coupling constants g; and gx are the following combinations of G921 gauge coupling

constants:

g2R 8B-L a
g = NYT, gx = Nx 38Nv-

"Note that Eq.B.9 is the relation that gy must satisfy if the Pati-Salam symmetry, without the U(1)y,
was broken to the Standard Model gauge group using a Higgs boson that transforms as (4, 1,2) and gets
a VEV in the vgr direction.

5X and Nx could have been defined differently as long as Tx is the same. Here X has been defined
so that it can be written in terms of hypercharge Y.
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From Eq.B.8, the charge T'x of the U(1)x group depends on the Pati-Salam gauge cou-
pling constants gor and gp_1, evaluated at the (G4991 symmetry breaking scale. There-
fore, under the excellent approximation that s2/v? = 0, a massless gauge boson exists
that couples to particles with a charge that depends on the values that certain coupling
constants take at some high energy scale. Although this may be unusual, it does not
appear to pose any problems. Indeed, like any other quantum charge, T’x is a dimension-
less constant that is independent of the energy scale at which the interaction between
the particle and the Ax field occurs and, although the numbers that X takes may not
be able to be arranged into fractions like Y, they are still discrete and sum to zero for
a complete Fjg representation. However, unlike conventional U(1) charges, Tx is obvi-
ously very model dependent since different Fg models with an intermediate Pati-Salam
symmetry will, in general, contain different values of the gauge coupling constants gsop
and g4 evaluated at the G401 symmetry breaking scale. It is easy to prove that it is
a general rule that, if three massless gauge fields are mixed, then at least two of the
resulting mass eigenstate fields must have a charge that depends on the value of the
original gauge coupling constants. Therefore this gauge coupling dependence is not pe-
culiar to the Higgs symmetry breaking mechanism discussed in this Appendix, but to

any symmetry breaking mechanism involving three fields.

In conclusion, this Appendix has illustrated how the G421 = SU(4) ® SU(2); ®
SU(2)r®U(1), symmetry can be broken to the symmetry Gsa11 = SU(3). @ SU(2)r ®
U(l)y ® U(1)x when the Gyz01 multiplets Hg, Hr and S obtain vacuum expectation
values. Using the covariant derivatives for the G4221 symmetry, Eq.B.1, and the U(1)y ®
U(1)x symmetry, Eq.B.11, the covariant derivative for the G211 symmetry is given by:

D‘u = 8# + ig:;T:?cAgcu -+ iggLTzASLM + ingyByu + igXTXBXu (B12)

where A%, and T3, are the SU(3). fields and generators derived from the SU(4) symmetry

respectively (with n = 1...8) and g3, is the universal gauge coupling constant of A%,.

This G3211 symmetry can be considered to be an effective high energy symmetry
under the assumption that the low-energy VEVs of the MSSM singlet .S and MSSM

Higgs bosons can be neglected at higher energy scales.
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FCNC Processes from Extended
Higgs Sectors

Models with extended Higgs sectors can potential contain tree-level FCNCs that are
mediated by the exchange of the neutral Higgs states [78]. In the Standard Model
and the MSSM, these effects are absent at the tree-level, since the coupling of the
quark-quark-Higgs mass eigenstates is flavour conserving. This arises from having the
Yukawa couplings proportional to the quark mass matrices, so that diagonalizing the

mass matrices also diagonalizes the Yukawas. This is illustrated below.

For a supersymmetric theory with three generations of up and down Higgs doublet-
like fields R, and hil, where ¢ = 1...3, the general superpotential involving the quarks
and Higgs fields is the following [95]:

W =Y hiupYiu,+> hidrYidy

i=1 i=1

where the quark fields are column vectors in generation space, and the Yukawa couplings
Yqi are 3 x 3 matrices in generation space. The index ¢ labels the different generations of
Higgs doublet fields, not the different quark and lepton generations. Assuming that all
the Higgs fields have VEVs (h!) = v, (hl)) = v4 then the above superpotential becomes:

W =urM,uy, + HRMddL

where:
=3
_ i
M, = E Yqvq
i=1

with ¢ = u, d.
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Figure C.1: This figure illustrates tree-level Feynman diagrams that contribute to
KK’ mixing mediated by an extended Higgs sector.

The above superpotential is written in terms of the quark and lepton interaction
eigenstates (the eigenstates of the gauge symmetries of the model). To obtain the mass
eigenstates we must diagonalize the matrices M, and M. These are diagonalized as

the following:

M, = VuRMuVLL = diag(my, me, my),

Mg = VigMyVh, = diag(ma, ms, my)

where V1, Vg, Vur and Vg are unitary matrices. The quark mass eigenstates

m

u” and d™ are then given in terms of the interaction eigenstates by the following

transformations:

u7L" =V.ug u% = Vy,Rrug,

T=Vgrdp d7 = Vgrdpg.
The observable CKM matrix is then given by:
Vegm = VLLVdL-

We can now re-write the interaction superpotential in terms of the quark mass eigen-

states:

= =3

Z VARV YV ul + > hidy (VY Ve )dr
=1
1=3

= Z WAEWiuy + > hidy Widy (C.1)
=1 =1

where Wi = VI, Yiv,,.

In the MSSM and the Standard Model the Yukawa couplings are proportional to the
mass matrices and so the Wfl matrices become the identity matrix. This illustrates that

the Higgs fields do not mediate tree-level FCNCs. In models with extended Higgs sectors
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however the Higgs fields will, in general, interact with the quarks to generate tree-level
FCNCs with the interactions described by the matrices Wé in Eq.C.1. Fig.C.1 illustrates
this tree-level contribution for KO — K° mixing. Of course we must also write the
Higgs fields in Eq.C.1 in terms of their mass eigenstates to find the physical interactions
between the Higgs fields and quarks that generate the observable tree-level FCNCs.
Since experimental data is in good agreement with the Standard Model predictions, the
potentially large contributions arising from the tree-level interactions must be suppressed

in order to have a model which is experimentally viable.

In the EgSSM and MEgSSm a Z& symmetry is applied to the first two generations
of Higgs fields hyqa, hdo where a = 1,2. In the exact symmetry limit, ZQH forbids these
Higgs doublets from interacting with the quarks and leptons, and so the quark mass
matrices are given by the product of the VEVs and Yukawa couplings of the h,s and
hgs Higgs fields. The mass matrices are thus proportional to the Yukawa matrices and

so there are no tree-level FCNCs that are mediated by neutral scalar Higgs fields.
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