The University of Southampton
University of Southampton Institutional Repository

Semiconductor seeded fibre amplified sources of ultra short pulses

Semiconductor seeded fibre amplified sources of ultra short pulses
Semiconductor seeded fibre amplified sources of ultra short pulses
This thesis reports upon an experimental investigation of passively mode-locked optically pumped vertical-external-cavity surface-emitting semiconductor lasers (VECSEL). Mode-locked VECSELs are a compact source of ultra-short pulses at GHz repetition rates, with pulse lengths as short as 190 fs being generated directly from the laser. The VECSEL is a power scalable device offering spectral versatility through band gap engineering of semiconductor gain material.

Here, for the first time the technique of frequency resolved optical gating (FROG) has been used to record a second harmonic spectrogram of the VECSEL pulse train, from which the phase information of non-transform limited sub-picosecond pulses has been retrieved. I also report the characterisation of a single stage VECSEL seeded ytterbium-doped fibre amplifier, capable of increasing the average power of a VECSEL from 20 mW to over 1.5 W while maintaining the sub-picosecond duration of the pulse train. The amplifier is capable of operating at any repetition rate obtainable with a VECSEL, amplification is demonstrated here with 1 GHz and 6 GHz seeds.

Finally, the nonlinear evolution of VECSEL pulses inside a single stage fibre amplifier has been investigated. Computer modelling of the linear gain and nonlinear pulse propagation within a single fibre has been used to design an amplifier capable of producing pulses with a parabolic profile. The modelling reveals that a parabolic amplifier would produce spectrally broader linearly chirped pulses which could be compressed to below 100 fs, with average powers > 3 W. An experimental realisation of the parabolic amplifier will require a seed with average power greater than 100 mW, this could be achieved with a re-growth of an existing sample, QT1544.
Elsmere, Stephen Paul
801dc46c-5ec0-4c87-b268-e65d190fea2a
Elsmere, Stephen Paul
801dc46c-5ec0-4c87-b268-e65d190fea2a
Tropper, Anne
f3505426-e0d5-4e91-aed3-aecdb44b393c

Elsmere, Stephen Paul (2009) Semiconductor seeded fibre amplified sources of ultra short pulses. University of Southampton, School of Physics and Astronomy, Doctoral Thesis, 156pp.

Record type: Thesis (Doctoral)

Abstract

This thesis reports upon an experimental investigation of passively mode-locked optically pumped vertical-external-cavity surface-emitting semiconductor lasers (VECSEL). Mode-locked VECSELs are a compact source of ultra-short pulses at GHz repetition rates, with pulse lengths as short as 190 fs being generated directly from the laser. The VECSEL is a power scalable device offering spectral versatility through band gap engineering of semiconductor gain material.

Here, for the first time the technique of frequency resolved optical gating (FROG) has been used to record a second harmonic spectrogram of the VECSEL pulse train, from which the phase information of non-transform limited sub-picosecond pulses has been retrieved. I also report the characterisation of a single stage VECSEL seeded ytterbium-doped fibre amplifier, capable of increasing the average power of a VECSEL from 20 mW to over 1.5 W while maintaining the sub-picosecond duration of the pulse train. The amplifier is capable of operating at any repetition rate obtainable with a VECSEL, amplification is demonstrated here with 1 GHz and 6 GHz seeds.

Finally, the nonlinear evolution of VECSEL pulses inside a single stage fibre amplifier has been investigated. Computer modelling of the linear gain and nonlinear pulse propagation within a single fibre has been used to design an amplifier capable of producing pulses with a parabolic profile. The modelling reveals that a parabolic amplifier would produce spectrally broader linearly chirped pulses which could be compressed to below 100 fs, with average powers > 3 W. An experimental realisation of the parabolic amplifier will require a seed with average power greater than 100 mW, this could be achieved with a re-growth of an existing sample, QT1544.

Text
StevesThesis.pdf - Other
Download (19MB)

More information

Published date: May 2009
Organisations: University of Southampton

Identifiers

Local EPrints ID: 161221
URI: http://eprints.soton.ac.uk/id/eprint/161221
PURE UUID: 1001cb8e-4610-4dad-bed5-037105d848f5

Catalogue record

Date deposited: 28 Jul 2010 15:48
Last modified: 14 Mar 2024 01:59

Export record

Contributors

Author: Stephen Paul Elsmere
Thesis advisor: Anne Tropper

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×