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Abstract. The geometric superrigidity theorem states broadly, that for Γ in a

wide class of co-compact lattices, a non-constant, equivariant, harmonic map,

with target in a suitable non-positively curved manifold is a totally geodesic
embedding up to renormalisation. In this paper we propose a topological

analogue: for a wide class of manifolds every codimension-1, π1-injective map

is a finite cover of an embedding up to homotopy.

1. Introduction

We use superscripts to denote real dimension e.g. a manifold denoted Nk has
dimension k. Once the dimension is established we omit the superscript so that the
manifold Nk is also denoted N .

The presence of a group action on a space often allows one to promote an existing
structure to another of a more strictly controlled kind. Examples of this phenom-
enon in topology include Papakyriokopoulos’s sphere theorem, Waldhausen’s torus
theorem and the geometric superrigidity theorem of Mok et al. In this paper we
propose the following topological result which has features in common with them
all.

Theorem 1. Let Nn be a closed, orientable, aspherical topological manifold with
n even and n ≥ 6, satisfying the following properties:

(1) every cellular action of π1(N) on a CAT(0) cubical complex has a global
fixed point,

(2) the projective class group K̃0(C) vanishes for any finite extension C of
π1(N).

Given any closed, orientable, aspherical topological manifold Mn+1 and any π1-
injective, continuous function j : N → M , there is a diagram as follows which
commutes up to homotopy

N0

p

��

N

j

��

//h′
oo

N ′

i
��

M ′ oo
h // M

where:

(1) M ′, N0 are closed, orientable, aspherical, topological manifolds and h, h′ are
homotopy equivalences,
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(2) The map p : N0 → N ′ is a finite degree cover, and
(3) i : N ′ →M ′ is a two sided topological embedding.

If π1(M) and π1(N) both satisfy the Borel conjecture, or, alternatively, if π1(N)
satisfies the Borel conjecture and is square root closed in π1(M), then the homo-
topy equivalences h, h′ in Theorem 1 are homotopic to homeomorphisms and the
commutative diagram simplifies as below. In this case the theorem asserts that
every π1-injective codimension-1 map j : N → M factors, up to homotopy, as a
finite cover of a 2-sided embedding.

N

j

��

p◦h′

}}
N ′ � p

i◦h !!
M

Figure 1. When π1(M) and π1(N) satisfy the Borel conjecture
the map j factors up to homotopy as a finite cover, p ◦ h′, of an
embedding i ◦ h.

WE SHOULD EXPAND THIS SECTION A BIT TO EXPLAIN WHY THE
STATEMENT ABOUT HYPERBOLIC AND CAT(0) GROUPS IS TRUE (FI-
NITE EXTENSIONS OF FBOX GROUPS ARE FBOX, FINITE EXTENSIONS
OF HYPERBOLIC GROUPS ARE HYPERBOLIC, FINITE EXTENSIONS SIT
INSIDE WREATH PRODUCTS. The hypotheses on N are rigidity constraints
which, for example, are satisfied when N is a closed, orientable, Riemannian mani-
fold such that the universal cover Ñ is quaternionic hyperbolic space or the Cayley
hyperbolic plane. More generally, by [16], condition 1 is satisfied whenever π1(N)
satisfies Kazhdan’s property (T) and by the results of Bartels and Lück [1] condi-
tion 2 is satisfied when π1(N) is a word hyperbolic group or a CAT(0) group. (We
say that a group is CAT(0) if it admits a co-compact isometric proper action on a
finite dimensional CAT(0) space.) Hence we obtain as a corollary:

The topological superrigidity theorem. Let Mn+1 and Nn be closed, aspher-
ical, orientable topological manifolds with n even and n ≥ 6 such that π1(N) is
either a word hyperbolic or a CAT(0) group and satisfies Kazhdan’s property (T).
If M satisfies the Borel conjecture then every π1-injective map j : N → M is, a
finite cover of an embedding (up to homotopy).

We regard this as a topological counterpart to the celebrated geometric super-
rigidity theorem:

The Geometric Superrigidity Theorem (Ngaiming Mok, Yum-Tong Siu, Sai–

Kee Yeung, [14]). Let Ñ be a globally symmetric irreducible Riemann manifold of

non-compact type. Assume that either Ñ is of rank at least 2, or is the quaternionic
hyperbolic space of dimension at least 8 or the hyperbolic Cayley plane. Let H be a
cocompact discrete subgroup of the group of isometries of Ñ acting freely. Let M̃ be
a Riemann manifold. Let f be a non-constant H-equivariant harmonic map from
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Ñ to M̃ . When the rank of Ñ is at least 2, the Riemann sectional curvature is
assumed to be non-positive. When the rank of Ñ is one, the complexified sectional
curvature is assumed to be nonpositive. Then the covariant derivative of the differ-
ential of f is identically zero. As a consequence, f is a totally geodesic isometric
embedding (up to a renormalization constant).

To compare the two results note that the map j : N → M induces a π1(N)
-equivariant map between the universal covers. The constraint on the curvature
of the target M̃ in the geometric super rigidity theorem is dropped (together with

the requirement that the target is smooth) in favour of a statement that M̃ is
contractible and π1(M) satisfies the Borel conjecture. Instead of a harmonic map,
we start with a continuous function which is codimension-1. The conclusion that
the map is totally geodesic up to renormalisation is replaced by the conclusion that
it is a finite cover of an embedding up to homotopy. Deforming the map j to a
harmonic map in the same homotopy class allows us to combine the conclusions of
the two results to see that the embedding provided by Theorem 1 is homotopic to
a totally geodesic surface in M .

The reader may find it helpful in visualising the results to consider the analogous
statements in lower dimensions. First we consider the case of π1-injective loops
on a 2-torus T . The fundamental group π1(T ) is free abelian of rank 2 and so
any homotopy class of curves is represented by a pair of integers (m,n). It is an
elementary fact that a non-trivial curve is homotopic to a simple closed curve if and
only if the pair (m,n) is coprime, and it follows that in general a curve representing
a pair (a, b) is homotopic to a degree d cover of the embedded curve representing
the pair (a/d, b/d) where d = gcd(a, b). It follows that every closed π1-injective
curve is homotopic to a finite cover of an embedded loop. This is a direct analogue
of the topological super rigidity theorem.

Now, in contrast, consider the case of loops on a hyperbolic surface. Every
orientable hyperbolic surface Σ admits π1-injective maps γ : S1 → Σ which do not
factorise up to homotopy as a finite cover of an embedding. Recall that the free
homotopy class of a closed loop contains a unique geodesic, and that this minimises
the self intersection number for curves in that class; on the other hand, intersection
numbers are multiplicative on powers, and it follows that any self intersecting closed
geodesic which has intersection number 1 with some simple closed curve provides
a loop which does not finitely cover an embedded loop so the analogous statement
fails in this case, though we note that such surfaces do carry many splitting curves,
and these can often be obtained from immersed totally geodesic curves by the
somewhat different methods of cut and paste.

We note in passing that in dimension 3 the situation worsens: Kahn and Markovic
have recently proved, [9], that every hyperbolic 3-manifold contains an immersed
π1-injective surface, however, there are examples which do not contain any em-
bedded π1-injective surfaces. For example, in [17], Reid constructs a non-Haken
manifold M3 which admits a finite cover homeomorphic to a hyperbolic surface
bundle over S1. The fibre in the finite cover yields an immersed surface in M but
there are no embedded surfaces in M which it could cover so there is in general no
available analogue of topological super rigidity in low dimensions. This leaves open
the question of what happens in the case n = 4.
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The strategy in the proof of Theorem 1 is to first establish the existence of a
splitting of the fundamental group π1(M) over a suitable subgroup using methods
from geometric group theory. This result applies in the context of Poincaré duality
groups and is of independent interest.

Theorem 2. Let G be an orientable PDn group and H be an orientable PDn−1

subgroup of G. If every action of H on a CAT(0) cube complex has a global fixed
point (in particular, by [16], if H satisfies Kazhdan’s property (T)) , then G splits
over a subgroup C containing H as a finite index subgroup.

In a companion paper we give a group theoretic application of Theorem 2, ob-
taining a canonical decomposition of Poincaré duality groups over codimension-1
property (T) Poincaré duality subgroups. This may be viewed as an analogue of
the JSJ decomposition studied by Kropholler, Dunwoody, Scott and others.

While Theorem 1 is stated in the topological category the surgery technology
applied in this paper also works in the smooth category and if the map j is smooth
then the map i it constructs is smooth also. We will use this fact to deduce the
following obstruction result from Theorem 1.

Corollary 3. Let M4d+1 be a closed, orientable, aspherical, smooth manifold such
that d ≥ 2 and the first Betti number b1(M) is zero. Let N4d be a closed, orientable,
aspherical, smooth manifold with at least one non-zero Pontryagin number such that
π1(N) is either word hyperbolic or a CAT(0) group and satisfies Kazhdan’s property
(T). Then there are no π1-injective continuous maps f : N →M .

The paper is organised as follows. In order to extract the topological splitting of
Theorem 1 from the algebraic splitting furnished by Theorem 2 we will apply Borel
rigidity together with tools from surgery theory and Poincaré duality. In Section
2 we set up and prove Theorem 2 while in section 3 we outline the topological
ingredients required for the proof of Theorem 1. In Section 4 we present the proof
of Theorem 1, and in section 5 we give the proof of Corollary 3.

2. Splitting Poincaré duality groups

The proof of the main Theorem relies on ideas from geometric group theory,
surgery theory, homological algebra and rigidity theory. The first ingredient is a
strengthening of a result from geometric group theory which we proved in [10]. To
set up notation we will define Poincaré duality groups. For further details, we refer
the reader to [12].

Definition 4. Let R be a commutative ring with unity. A group G is said to be a
duality group of dimension n over R if there is an RG module DG such that one
has natural isomorphisms

Hk(G;A) ∼= Hn−k(G;DG ⊗R L)

for all k ∈ Z and for all RG modules L.
The module DG is called the dualising module and if in addition, DG is one-

dimensional then we say that G is a Poincaré duality group of dimension n over
R, or a PDn(R) group, for short. When G is the fundamental group of a closed
aspherical manifold M , the dualising module over Z is a trivial G module if and
only if M is orientable. We extend this to the definition of an orientable Poincaré
duality group over Z.
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Suppose G is a PDn(R) group. For any R-module L, consider the RG-module
L⊗R RG. By Section 9.2 of [2], we have

Hk(G;L⊗R RG) = 0, k 6= n and Hn(G;L⊗R RG) = DG ⊗R L.

In particular, when L = R, we have Hk(G;RG) = 0, k 6= n and Hn(G,RG) ∼= DG,
and in fact this is equivalent to the PDn condition, see [3, Section VIII, 10.1]. Hence
the cohomological dimension of G over R, written cdRG, is precisely n. Moreover,
setting R = Z and L = F2, we see that every PDn(Z) group is a PDn(F2) group.
We will follow the convention of writing PDn for PDn(Z).

The geometric and algebraic end invariants which play a crucial role in this
paper may be defined in terms of the cohomology groups of a group with exotic
coefficients. In order to define them we will need the following modules.

Let PG denote the collection of all subsets of G. Then, PG is an F2-vector space
with respect to the operation of symmetric difference. One checks that PG is also
a G module. Moreover, PG ∼= CoindG

1 F2. On the other hand

FH(G) = {A ⊆ G : A ⊆ HF for some finite set F}

is the F2G-module IndG
HPH. Similarly the power set P(H\G) of H\G and the

collection of finite subsets of H\G, written F(H\G) are F2[G] modules. In fact,

P(H\G) ∼= CoindG
HF2 and F(H\G) ∼= IndG

HF2.
We recall the following definitions:

Definition 5. For a subgroup H < G the algebraic end invariant ẽ(G,H) is defined

to be dimF2
(FH(G)\PG)

G
, and for an infinite index subgroup we have

ẽ(G,H) = 1 + dimF2
H1(G,FH(G))

Similarly the geometric end invariant is defined as

e(G,H) = dimF2
(F(H\G))\P(H\G))

G
.

Convention A group G is said to split over a subgroup H if G has one of the
following descriptions:
Case I (Free product with amalgamation) G = G1 ∗H G2 with G1 6= H 6= G2,
Case II (HNN extension) G = J∗H .

Theorem 2. Let G be an orientable PDn group and H be an orientable PDn−1

subgroup of G. If every action of H on a CAT(0) cube complex has a global fixed
point (in particular, by [16], if H satisfies Kazhdan’s property (T)) , then G splits
over a Poincaré duality subgroup C containing H as a finite index subgroup.

Proof. Let G and H be as in the statement of the theorem. As PDk groups are also
PDk(F2) groups, we may work over F2. Since the dualizing module Hn(G,F2G) ∼=
F2 is trivial the duality isomorphism gives Hk(G;FH(G)) ∼= Hn−k(G;FH(G)) for
all k ∈ Z so we have

H1(G,FH(G)) ∼= Hn−1(G,FH(G)) ∼= Hn−1(G, IndG
H(PH)) ∼= Hn−1(H,PH),

where the last isomorphism is given by Shapiro’s Lemma.
Since H is an orientable PDn−1 group, Hn−1(H,PH) ∼= H0(H,PH) ∼= F2,

hence, ẽ(G,H) = 2. We now invoke Lemma 2.5 of [12] to get a subgroup H ′ of at
most index 2 in H such that e(G,H ′)= ẽ(G,H)=2.



6 ADITI KAR AND GRAHAM A. NIBLO

Applying Sageev’s construction [18, Theorem 2.3] we obtain a CAT(0) cube
complex X such that G acts essentially on X and H ′ is the stabiliser of an oriented
codimension-1 hyperplane J . As H ′ has finite index in the group H the action of
H ′ on the CAT(0) cube complex J has a global fixed point. One now extracts from
the fixed point of the action, a proper H ′ almost invariant subset B of G such that
H ′BH ′ = B [18, Lemma 2.5].

The singularity obstruction SB(G,H ′), introduced in [15], is defined as the col-
lection {g ∈ G : gB ∩ B 6= ∅, gBc ∩ B 6= ∅, gB ∩ Bc 6= ∅ and gBc ∩ Bc 6= ∅},
where Bc = G\B. We now apply [11, Lemma 4.17] as follows to deduce that the
subgroup Kg = H ′ ∩ gH ′g−1 satisfies ẽ(G,Kg) ≥ 2.

When g ∈ (B∗)−1 ∩B∗ then gB ∩B is a Kg-almost invariant subset.
When g ∈ (B∗)−1 ∩B then gB ∩B∗ is a Kg-almost invariant subset.
When g ∈ B−1 ∩B∗ then gB∗ ∩B is a Kg-almost invariant subset.
When g ∈ B−1 ∩B∗ then gB∗ ∩B∗ is a Kg-almost invariant subset.

We will use this to show that the elements of SB(G,H ′) all lie in the commen-
surator of H ′, allowing us to apply the generalised Stallings’ theorem from [15].
Claim For any PDn(F2) group Γ with subgroup Γ′, if ẽ(Γ,Γ′) ≥ 2 then cdF2

Γ′

= n− 1.
Let Γ,Γ′ be as in Claim. If ẽ(Γ,Γ′) ≥ 2, then Γ′ has infinite index in Γ and so

by Strebel’s theorem cdF2Γ′ ≤ n − 1. We will show that in fact we have equality.
Suppose not and cdF2Γ′ ≤ n− 2.

As before ẽ(Γ,Γ′) ≥ 2 implies that H1(Γ, IndΓ
Γ′PΓ′) is non-zero. However, by

duality for Γ and Shapiro’s Lemma, we have H1(Γ, IndΓ
Γ′PΓ′) ∼= Hn−1(Γ′,PΓ′).

As cdF2Γ′ ≤ n − 2, there is a projective resolution P of F2 by F2Γ′-modules
of length n − 2. By definition, Hn−1(Γ′,PΓ′)) is the (n − 1)-th homology of the
complex P ⊗F2Γ′ PΓ′. Clearly, the latter vanishes, contradicting the fact that

H1(Γ, IndΓ
Γ′PΓ′) is non-zero. This proves the Claim.

Returning to the proof, we deduce from the Claim that if g ∈ SB(G,H ′) then
Kg has the same cohomological dimension as H ′ and as H ′g. It follows, again by
Strebel’s theorem that Kg has finite index in both. Hence, g lies in the commen-
surator CommG(H ′) of H ′ as required. Therefore by Theorem B of [15], G splits
over a subgroup C commensurable with H ′ and hence with H. More precisely, G
is either a non-trivial amalgamated free product G ∼= A ∗C B or an HNN extension
A∗C such that C and H are commensurable.

Now consider the action of G on the Bass-Serre tree for the splitting. Since H
is commensurable with an edge stabiliser, and G acts with no edge inversions, the
subgroup H fixes a vertex v so up to conjugation (and switching the roles of A,B if
necessary in the amalgamated free product case) we may assume that H lies in the
vertex stabiliser A. Now H is commensurable with an edge stabiliser Cg for some
g, but, a priori , having already taken a specific conjugate of A to ensure that A
contains H, it is not clear that H is commensurable with C. Suppose that Cg fixes
an edge e so that H ∩ Cg fixes both e and v. It then fixes the first edge e′ on the
geodesic from v to e. So the stabiliser of this edge is commensurable with H. Up to
conjugation within A this stabiliser is C, so we may express G as an amalgamated
free product G ∼= A ∗C B or as an HNN extension A∗C with H < A and so that H
and C are commensurable.
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By [4, Theorem V.8.2] we obtain a PDn pair (A,Ω), where Ω is the set of cosets
of C in A. There are two types of PDn pairs, the I-bundle type where Ω has two
elements and the general type where Ω is infinite.

As remarked in [12, Section 2.1], if (A,Ω) is of general type, then the subgroup
C is self-commensurating in A. If (A,Ω) is the I-bundle type and A acts trivially
on Ω then A = C. So C is self-commensurating in A in both these cases. As
commensurable subgroups have the same commensurators and H < A we conclude
in both these cases that H is a finite index subgroup of C as required.

It remains to consider the situation when (A,Ω) is of twisted I-bundle type i.e. A
acts non-trivially on Ω. Here it is no longer evident that C is self-commensurating
in A and the proof that H is a subgroup of C is slightly different. Recall that Ω is
a 2-element set and A acts nontrivially on Ω so that the stabiliser of any point in
Ω is isomorphic to C. This implies that C has index 2 in A and by [3, Proposition
VIII.10.2], A is a PDn−1 group. We argue that in this case A is non-orientable,
using the following observation.

Observation If (Γ,Ω) is an orientable PDn pair of I-bundle type in which Γ is an
orientable PDn−1 group then Γ acts trivially on Ω.

The proof given here of the observation above is due to Jonathan Cornick and
Peter Kropholler, and we are grateful to them for allowing us to include it. Consider
the long exact sequence of cohomology for the pair with coefficients in the integral
group ring ZΓ. Cohomology groups with these coefficients inherit an action of Γ.
We obtain the following short exact sequence

0→ Hn−1(Γ,ZΓ)→ Extn−1
ZΓ (ZΩ,ZΓ)→ Hn((Γ,Ω),ZΓ)→ 0.

The orientability of the pair (Γ,Ω) implies Hn((Γ,Ω),ZΓ) is isomorphic to the
trivial module Z. The orientability of Γ implies that Hn−1(Γ,ZΓ) is isomorphic to
the trivial module as well. From this it follows that the action of Γ on the middle
group Extn−1

ZΓ (ZΩ,ZΓ) is either trivial or of infinite order.
Let H be the stabiliser of one of the points of Ω. Let K be the unique maximal

orientable PDn−1 subgroup in H. The action of K on Extn−1
ZΓ (ZΩ,ZΓ) is trivial

and K has index at most 4 in Γ. From this it follows that Γ acts trivially on
Extn−1

ZΓ (ZΩ,ZΓ). In particular, Γ acts trivially on Ω. This proves the observation.
Returning to the proof of Theorem 2, we apply the observation with Γ = A. As

the pair (A,Ω) is of twisted I-bundle type, A must be non-orientable, so it has a
non-trivial dualising module D. Proposition VIII.10.2 of [3] says that any PDn−1

subgroup of A inherits its dualising module by restriction from the dualising module
of A, so A has a unique maximal orientable PDn−1 subgroup, A+. Since A is not
orientable A+ is a proper subgroup and since C is orientable C < A+. Finally since
the index [A :C] = 2 we conclude that A+ = C. Since H is also orientable, H < C
as required.

�

3. Prerequisites from Surgery Theory

In this section (and in particular in Lemmas 6 and 7 below), for a smooth (re-
spectively, PL or topological) manifold, submanifold means a smooth (respectively,
PL locally flat or topological locally flat) submanifold.

Let M,N be manifolds as in the statement of Theorem 1 and j : N →M a π1-
injective map. Then π1(N), π1(M) satisfy the hypotheses of Theorem 1 providing
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a splitting of π1(M) as either an amalgamated free product π1(M) = A ∗C B or
as an HNN extension A ∗C where π1(N) < C is a subgroup of finite index. In
[6] Capell provided tools to geometrise such a splitting. In particular he proved
that if C is square root closed in π1(M) then there is a closed aspherical embedded
submanifold i : N ′ ↪→ M such that i induces the inclusion of C in π1(M) and, by
Van Kampen’s theorem, induces the splitting of π1(M). Asphericity then yields
the homotopy commutative Figure 1 of the introduction.

The idea of Cappell’s proof is to use surgery techniques to build a cobordism
from M to a manifold M ′ which does split in the required way. This provides
the homotopy equivalences h, h′ required by Theorem 1 and Cappell’s square root
closed hypothesis on C can be used to promote the homotopy equivalences to a
homeomorphism M ∼= M ′, bypassing the need for π1(M) to satisfy the Borel con-
jecture. Since we prefer not to invoke either the Borel conjecture or the square root
closed hypothesis in our statement of Theorem 1 it is necessary to unpack the proof
of Cappell’s splitting theorem.

As usual, surgery below the middle dimension requires no additional hypotheses,
as is captured by the following lemma. We have amended the notation to fit our
situation:

Lemma 6. [6, Lemma I.1] Let Y be an (n+ 1) dimensional Poincaré complex and
X a codimension-1 sub-Poincaré complex with trivial normal bundle in Y and with
π1(X) → π1(Y ) injective. Let M be an (n + 1) dimensional closed manifold with
f : M → Y a homotopy equivalence, n ≥ 5. Assume we are given m < (n − 1)/2;
then f is homotopic to a map, which we continue to call f , which is transverse
regular to X (whence N ′ = f−1(X) is a codimension-1 submanifold of M) and
such that the restriction f |N ′ : N ′ → X induces isomorphisms πi(N

′) → πi(X),
i ≤ m.

Lemma 7 describes the obstruction to carrying out surgery in the middle dimen-
sion which by Lemma 8 is all that is then required. It is carried by the surgery

kernels Ki(N
′) defined in [6, Section I.4], and the projective class group K̃0(C)

appearing in Lemma 7 below. As recorded in the proof of [6, Lemma I.2], if
πi(f

−1(X))→ πi(X) is an isomorphism then Ki(N
′) = 0.

Lemma 7 (Lemma II.1 from [6]). Let n = 2k, M be a closed manifold and Y a
Poincaré complex of dimension (n + 1). Assume we are given X a sub-Poincaré
complex) of dimension n of Y with trivial normal bundle and with C = π1(X) <
π1(Y ). Assume further that f : M → Y is a homotopy equivalence transverse
regular to X with, writing N ′ = f−1(X), N ′ connected and π1(N ′) → π1(X) an
isomorphism and Ki(N

′) = 0 , i < k. Then letting Kk(N ′) = P ⊕ Q denote the
decomposition of ZC modules defined in [6] I.4,

(1) Kk(N ′) is a stably free ZC module and [P ] = −[Q]. Moreover,

in Case I, [P ] ∈ ker (K̃0(C)→ K̃0(G1)⊕ K̃0(G2)), and

in Case II, [P ] ∈ ker (K̃0(C)→ K̃0(J)).
(2) Any finite set of elements of P (respectively, Q) can be represented by em-

bedded disjoint framed spheres in N ′ for k > 2. The intersection pairing
of Kk(N ′) is trivial when restricted to P (resp; Q) and Q ∼= P ∗. Thus,
[P ] = −[P ∗].
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(3) If [P ] = 0, f is homotopic to a map f ′ with N ′ = f ′−1(X) → X k-
connected and so that, abusing notation by writing Kk(N ′) = P ⊕Q for the
decomposition of [6] I.4, P and Q are free ZC-modules.

Applying Lemma 6 up to dimension n/2−1 ensures the vanishing of the surgery

kernels Ki(N
′) while hypothesis 2 of Theorem 1 ensures the vanishing of K̃0(C) so

that [P ] = 0 as required by condition 3 of Lemma 7.
Cappell’s lemmas along with his Nilpotent Normal Cobordism Construction al-

low us to realise the splitting obtained in Theorem 2 by an embedded submanifold
N ′ in a homotopic manifold M ′ which is aspherical up to the middle dimension.
Given that we are working with Poincaré duality groups the following elementary
lemma from homotopy theory guarantees that this is sufficient to ensure that N ′ is
aspherical.

Lemma 8. Let Xn be a closed, orientable manifold and let k be the largest integer
less than or equal to n

2 . Suppose the universal cover X̃ of X is k-connected and
that G = π1(X) is a duality group of dimension n. Then πi(X) = {0} for all i ≥ 2.

Proof. Let X be a manifold as in the statement of the Lemma. Suppose that
πi(X) 6= {0} for some i ≥ 2 and choose the smallest such p. Evidently, X̃ is (p−1)-

connected. By the Hurewicz Theorem, Hi(X̃) = 0 for all i = 1, . . . , (p − 1) and

πp(X̃) ∼= Hp(X̃). Observe that k + 1 ≤ p ≤ n. Duality for orientable non-compact

manifolds implies that Hp(X̃) ∼= Hn−p
c (X̃). Here, H∗c (X̃) refers to the cohomology

with compact supports for X̃. We claim that Hn−p
c (X̃) ∼= Hn−p(G,ZG).

Recall that Hi
c(X̃) = lim−→K

Hi(X̃, X̃ −K), as K varies over compact subsets of

X̃ and hence is the i-th homology of the complex lim−→K
Hom(C(X̃, X̃ − K),Z).

Note that every element of lim−→K
Hom(C(X̃, X̃−K),Z) is represented by a module

homomorphism from C(X̃, X̃ −K) to Z for some compact K.

Recalling that G acts freely and properly on the universal cover X̃ with quotient
X, consider the partial augmented singular chain complex Cp(X̃) → Cp−1(X̃) →
. . . → C0(X̃) → Z → 0. Since X̃ is (p − 1)-connected this is a partial free G-
resolution of Z and may be completed to a projective resolution P . As the action
of G is proper, for i < p, the cohomology of the cocomplex HomG(C(X̃),ZG) is the
cohomology of X with local coefficients in ZG and hence is the i-th cohomology of
G with ZG coefficients.

We now show that for i < p, HomG(Ci(X̃),ZG) ∼= lim−→K
Hom(Ci(X̃, X̃ −K),Z),

where K varies over compact subsets of X̃. Let F ∈ HomG(Ci(X̃),ZG). As a Z-

module map, F : Ci(X̃)→ ZG is induced by the assignment σ 7→
∑

g fg(σ).g, where

the sum is finite and fg is a module homomorphism from Ci(X̃) to Z. A straightfor-
ward computation shows that F is aG-module homomorphism if and only if fg(σ) =

f1(g−1σ) for all g ∈ G. Note that f1 is zero outside of a compact subset K of X̃

and hence we have a map HomG(Ci(X̃),ZG)→ lim−→K
Hom(Ci(X̃, X̃−K),Z) given

by F 7→ f1. One checks that this is an isomorphism with inverse coming from the
prescription f 7→ (F : σ 7→

∑
g f(g−1σ).g) and hence Hn−p

c (X̃) ∼= Hn−p(G,ZG).

Finally, putting all the isomorphisms together, πp(X) ∼= Hn−p(G,ZG). As 0 ≤
n − p ≤ k − 1 and G is a duality group of dimension n group, Hi(G,ZG) = 0
except possibly when i = n, so in particular Hn−p(G,ZG) = 0 which contradicts
our hypothesis on πp(X). �
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4. Proof of Theorem 1

Proof. Let M and N be as in the statement of Theorem 1. Set G = π1(M) and
H = π1(N). Then G is an orientable PDn+1 group and H is an orientable PDn

subgroup of G and by Theorem 2, G splits as either a non-trivial amalgamated free
product G ∼= A∗CB or as an HNN extension A∗C such that C is a Poincaré duality
subgroup containing H as a subgroup of finite index.

In the case when the splitting is a non-trivial amalgamated free product, both
subgroups A,B have infinite index in G and Strebel’s theorem [19, Theorem 3.2]
shows that they both have cohomological dimension at most n. Since A,B both
contain C all three have cohomological dimension equal to n. In the case of the
HNN decomposition, again the subgroups A,C have cohomological dimension n.
By the Eilenberg-Ganea theorem, [7], since n > 2, the cohomological dimensions of
A, B and C are equal to the geometric dimensions of A, B and C respectively.

We now carry out the standard mapping cylinder construction of an Eilenberg
MacLane space for G. When the group G splits as an amalgamated free product
G = A ∗C B let XA, XB and XC denote the n-dimensional K(π, 1) complexes for
A, B and C. Note that these complexes may be taken to be simplicial complexes.
Since C is of type FP, we can apply the Mayer Vietoris sequence, to see that the
groups A and B are also of type FP so we may choose the complexes to be of finite
type.

Let φA : XC → XA and φB : XC → XB be maps inducing the inclusions
C ↪→ A and C ↪→ B. We construct the mapping cylinders MA,MB of these maps
and making the standard identifications yields a K(π, 1) for the group G which we
will denote by Y . In the case when G splits as an HNN extension we carry out a
similar process building a K(π, 1) from XA and XC × [−1, 1] by glueing the two
ends XC × {±1} to XA using maps which induce the two inclusions of C into A
defining the HNN extension. In either case we denote the K(π, 1) by Y .

Note that Y is a Poincaré complex, and moreover, the Poincaré subcomplex
XC ×{0} ⊂ Y cuts the neighbourhood XC × (−1/2, 1/2) ⊂ Y into two components
so that the normal bundle of XC in Y is trivial (see Introduction of [6]). By
construction, the composition XC → XC × {0} ↪→ Y is π1-injective. Applying
Lemma 6, we may replace f (up to homotopy) by a map, which we continue to
call f , which is transverse regular to XC × {0} and such that the restriction of f
to N ′ = f−1(XC × {0}) → XC induces isomorphisms πi(N

′) → πi(XC), for all
i ≤ (n/2 − 1). In particular, πi(N

′) = 0 for all i = 2, . . . , (n/2 − 1). Note that
the transverse regularity of f ensures that the pre-image N ′ is a codimension-1
submanifold of M . Our aim is to further modify the map f so that it remains
transverse regular and so that its restriction to N ′ induces an isomorphism on all
homotopy groups, thus making N ′ aspherical.

Recall that n is even so that n = 2k with k ≥ 3. As recorded in the proof of
Lemma I.2 of [6], the isomorphisms πi(N

′) → πi(XC), for all i ≤ (k − 1) ensure
that each of the modules Ki(N

′) for i ≤ k − 1 vanishes.
Since C is a torsion free finite extension of H, condition 2 of Theorem 1 ensures

the vanishing of K̃0(C). Invoking Lemma 7, we replace f by a map f ′ homotopic
to f which is transverse regular and such that π1(N ′) ∼= C where N ′ = f ′−1(X)
and the restriction of f ′ to N ′ is k-connected. In addition, both P and Q in
Kk(N ′) = P ⊕Q are free C-modules. This means that one can perform Cappell’s
Nilpotent Normal Cobordism Construction on M , a process we will now describe.
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Note that cutting M along N ′ we get a decomposition M = MA∪N ′MB in Case
I and M = MA/{N ′A ∼= N ′ ∼= N ′B} in Case II. The covering of M corresponding

to the image of π1(X)→ π1(Y ) ∼= π1(M) is labelled M̂ and the universal covering

of M is labelled M̃ . The group C = π1(N ′) acts by covering transformations on

M̃ , ML and MR (where M̃ = ML ∪Ñ ′ MR) with quotients being M̂ , Ml and Mr.

Hence, M̂ = Ml ∪N ′ Mr. Let I = [0, 1] and I ′ = [−2, 2]. We select a tubular

neighbourhood N ′ × I ′ of N ′ in M such that when the lift of N ′ to M̂ is extended
to a lift of N ′ × I ′, we have N ′ × {−2} ⊂Ml and N ′ × {2} ⊂Mr.

Let {xi}si=1 denote a π1(N ′)-free basis for P and let {yi}si=1 denote the dual
basis for Q under the intersection pairing of Kk(N ′). We choose disjoint framed
spheres {Xi}si=1 and {Yi}si=1 representing the bases for P and Q respectively. We
can assume given the choice of bases, that for i 6= j, Xi ∩ Yj = ∅ and for any i,
Xi intersects Yi in a point. We kill the spheres Xi by k-surgery on N ′ to obtain
a new manifold N ′P yielding a cobordism TP of N ′ with N ′P ; similarly killing the
spheres Yi by k-surgery we get a cobordism TQ of N ′ with a new manifold N ′Q.

Clearly, π1(N ′P ) ∼= C ∼= π1(N ′Q) and by Lemma 8 both N ′P , N
′
Q are aspherical and

thus homotopic to XC .
Now consider the trivial cobordism M × I. We will extend it to a cobordism

from M to M ′ by applying the cobordism extension lemma, gluing TP × [−2,−1]
to M × {1} along N ′ × [−2,−1] × {1} and glueing TQ × [1, 2] to M × {1} along
M × [1, 2].

N’ x [-2,-1] x {0}

M x {0}

M x {1}

N’ x [1,2] x {0}N’ x {0} x {0}

TP x id[-2,-1] TQ x id[1,2]

M’

M

TPQ

MA MB

Figure 2. Extending the trivial cobordism on M via surgery
along the spheres {Xi} and {Yj}.
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The boundary of the resulting manifold T has two components, one being M
and the other, a new manifold M ′ = (MA ∪N ′ TP ) ∪N ′

P
TPQ ∪N ′

Q
(TQ ∪N ′ MB)

where,
TPQ = (N ′P × [−2,−1]) ∪N ′

P
TP ∪N ′ (N ′ × [−1, 1]) ∪N ′ (TQ ∪N ′

Q
N ′Q × [1, 2]).

Observe that the manifold TPQ sits naturally inside M ′ and gives a cobordism
between N ′P and N ′Q. Moreover each of N ′P , N ′Q and TPQ is homotopic to XC . The

resulting cobordism T is homotopy equivalent to Y (say, via F : T → Y ) and F
restricts to a split homotopy equivalence h of M ′ with Y such that TPQ = h−1(XC).

Hence we obtain a manifold M ′ which is homotopic to M and split along XC ⊂ Y
via the embedded submanifold we continue to call N ′. Recall also that H is a finite
index subgroup of C. Hence, there is a finite cover N0 of N ′ with fundamental
group H. As N0 and N are aspherical manifolds with isomorphic fundamental
groups there exists a homotopy equivalence h′ between them. This completes the
proof of Theorem 1.

�

5. An application: Corollary 3

Recall the following classical fact: if M4d+1 is a smooth manifold such that the
first Betti number b1(M) of M is 0 and N4d has non-zero signature then there are no
immersions ofN into M . This follows using Hirzebruch’s signature theorem: since f
is a codimension-1 immersion, f∗: H4d(M,Q) → H4d(N,Q) maps the Hirzebruch
L-class Ld(M) onto Ld(N). It follows from Poincaré duality that H4d(M,Q) is
isomorphic to the torsion free part of H1(M). Therefore, the vanishing of b1(M)
forces Ld(N) to be zero. However Hirzebruch’s signature theorem says that Ld(N)
is equal to the signature of N . This applies, for example, to show that there are
no codimension-1 immersions of an orientable quaternionic hyperbolic or Cayley
hyperbolic manifold N4d into a smooth orientable aspherical manifold M4d+1 with
b1(M) = 0.

Appealing to the non-vanishing of Pontryagin numbers instead of the non-vanishing
of the signature, we obtain the following generalisation as a corollary to Theorem
1, which obstructs the existence of π1-injective continuous maps rather than im-
mersions. Note that while our hypotheses on N imply that it satisfies the Borel
conjecture so that we can take the homotopy equivalence h′ to be a homeomor-
phism, we do not assume in the statement that the target manifold satisfies the
Borel conjecture, nor do we assume Cappell’s square root closed hypothesis, since
in the proof we are applying Theorem 1 in its most general form.

Corollary 3. Let M4d+1 be a closed, orientable, aspherical, smooth manifold such
that d ≥ 2 and the first Betti number b1(M) is zero. Let N4d be a closed, orientable,
aspherical, smooth manifold with at least one non-zero Pontryagin number such that
π1(N) is either word hyperbolic or a CAT(0) group and satisfies Kazhdan’s property
(T). Then there are no π1-injective continuous maps f : N →M .

Proof. Carrying out the Cappell surgery arguments in the smooth category, the
proof of Theorem 1 shows that there is a 2-sided embedded smooth submanifold
N ′ in a smooth manifold M ′ homotopy equivalent to M that realises the splitting.
Furthermore, since π1(N) satisfies the Borel conjecture, the map p ◦ h′ : N → N ′

is a covering map. Now if N ′ is separating, write M1 for one of the connected
components of the manifold obtained from cutting M ′ along N ′. Then M1 is a
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smooth orientable manifold with boundary N ′ and hence N ′ bounds orientably.
This means that all Pontryagin numbers for N ′ must vanish. On the other hand
we are assuming that N has at least one non-zero Pontryagin number (for the case
when N is quaternionic or Cayley hyperbolic, see [13]). Since Pontryagin numbers
vary multiplicatively with degree on covering maps the Pontryagin numbers of N ′

are also non-zero and so N ′ cannot bound orientably. This means that N ′ cannot
be separating and so intersection with N ′ yields an element of infinite order in the
first cohomology of M ′. By duality and the universal coefficients theorem the first
Betti number b1(M ′) and hence b1(M) is non-zero. �
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