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N. Tzavidis∗ N. Salvati† M. Geraci‡ M. Bottai§

Abstract

The analysis of hierarchically structured data, for example longitudinal or geographi-
cally clustered data, is usually carried out by using random effects models. The primary
goal of random effects regression is to model the expected value of the conditional dis-
tribution of an outcome variable given a set of explanatory variables while accounting
for the dependence structure of hierarchical data. The expected value, however, may
not offer a complete picture of this conditional distribution. In this paper we propose
using linear M-quantile regression, to model other parts of the conditional distribu-
tion of the outcome variable given the covariates, which includes random intercepts to
account for the dependence of hierarchical data. The proposed random effects regres-
sion model extends M-quantile regression (Breckling and Chambers, 1988) and can
be viewed as an alternative to the quantile random effects model (Geraci and Bottai,
2007). M-estimation is synonymous with outlier-robust estimation. Consequently, the
proposed approach allows for robust estimation of both fixed and random effects. The
proposed M-estimation framework also includes expectile regression as a special case.
Expectile regression can potentially lead to efficiency gains when the use of outlier-
robust estimation methods is not justified but there is still interest in modelling not
only the centre but also other parts of the conditional distribution.

Fixed and random effects are estimated using maximum likelihood and inference for
estimators of the fixed and random effects parameters is discussed. The performance of
the proposed methods is evaluated in a series of simulation studies. Finally, we present
a case study where M-quantile and expectile random effects regression is employed for
analyzing repeated measures data collected from a rotary pursuit tracking experiment.

Keywords: influence function; linear mixed model; longitudinal data; M-estimation; ro-
bust estimation; quantile regression; repeated measures.

1 Introduction

Linear random effects regression is widely used in the analysis of hierarchical data, such
as, longitudinal or geographically clustered data (Singer and Willett, 2003; Rabe-Hesketh
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and Skrondal, 2008; Goldstein, 2003). The random effects regression models a location pa-
rameter, namely the expected value of the conditional distribution of an outcome variable
given a set of covariates. In many situations, however, the focus of the analysis extends
beyond modelling a location parameter and emphasis is also placed on modelling other
parts of this conditional distribution. The idea of modelling the quantiles of a conditional
distribution has a long history in statistics. The seminal paper by Koenker and Bassett
(1978) is usually regarded as the first detailed development of quantile regression. This can
be viewed as a generalization of median regression. In the same way, expectile regression
(Newey and Powell, 1987) is a quantile-like generalization of mean regression. M-quantile
regression (Breckling and Chambers, 1988) combines these two concepts within a com-
mon framework defined by a quantile-like generalization of regression based on influence
functions (M-regression).

Let us start with a motivating example that we will fully analyse later in this paper.
Data on reaction time and hand-eye coordination were collected on 108 members of the
public who visited the Human Systems Integration Laboratory at Naval Postgraduate
School in Monterey, California in October 1995. One experiment that demonstrates motor
learning and hand-eye coordination is rotary pursuit tracking. The subject’s task in this
experiment is to maintain contact with a target spot using a metal wand. Trials were
conducted for 15 seconds at a time, and the total contact time during the 15 seconds was
recorded. Four trials were recorded for each subject. The age and sex of each subject were
also recorded. The outcome variable is the total contact time and we are interested in
investigating its association with age and sex. Two examples of research questions that
we are interested in answering with this dataset are the following: (1) is the performance
in motor learning and hand eye coordination affected by age and/or sex? and (2) if so, do
the effects of age and/or sex depend on the level of performance itself? that is, are age
and/or sex differences the same among those who perform better and those who perform
worse? In analysing this dataset one must take into account its longitudinal structure and
one way for doing so is by using a linear growth curve model. However, the target of a
growth curve model in this case will be the expected value of the conditional distribution
of contact time given the set of covariates. In this respect, a growth curve model can help
in answering question 1 but not question 2. For answering question 2 we need a quantile
regression model that can handle hierarchical data.

Extensions of quantile regression for modelling dependent data have been considered
by Lipsitz et al. (1997), Koenker (2004), Karlsson (2008), Geraci and Bottai (2007), and
Liu and Bottai (2009). More specifically, Lipsitz et al. (1997) and Karlsson (2008) propose
marginal models targeting the overall trend, over subjects, for a given quantile. Koenker
(2004) proposes the use of penalized quantile regression. Geraci and Bottai (2007) pro-
pose a conditional model for quantile regression with random intercepts that uses the
asymmetric Laplace distribution (ALD) for modelling the conditional likelihood while the
distribution of the random effects is assumed to be Gaussian. Liu and Bottai (2009) fur-
ther extend the conditional model by Geraci and Bottai (2007) and propose a quantile
regression model with multiple random effects. The use of the ALD is mainly driven by
convenience as it provides a parametric link between maximum likelihood estimation and
minimizing the sum of absolute deviations.

To the best of our knowledge the existing literature on M-quantile regression can
not handle dependent data. Although approaches to robust estimation in random effects
models have been proposed by a series of authors (Huggins, 1993; Huggins and Loesch,
1998; Richardson and Welsh, 1995; Welsh and Richardson, 1997), these approaches focus
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only on modelling a location parameter at the centre of the conditional distribution rather
than the entire conditional distribution.

In this article we propose the use of a linear M-quantile random effects (random in-
tercepts) regression (MQRE) model for modelling the quantiles of the conditional distri-
bution of hierarchically structured data. One of the main advantages of the M-estimation
framework is that it easily allows for robust estimation of both fixed and random effects.
Nevertheless, robust estimation is not always justified and can potentially lead to a loss of
efficiency for the model parameters. Our approach is based on the use of influence functions
that depend on a tuning constant, which can be used to trade robustness for efficiency. As
the value of the tuning constant tends to zero, the proposed method converges to quantile
regression while as the value of the tuning constant increases, it tends to expectile regres-
sion (ERE). Expectile regression can be used to model the entire conditional distribution
of interest without employing robust estimation. This feature, not available in the quantile
regression offers added flexibility.

The structure of the paper is as follows. In Section 2 we revise quantile and M-quantile
regression models. Section 3 reviews random effects models and focuses specifically on
robust estimation. In Section 4 we present the M-quantile and expectile random effects
regression models (MQRE and ERE) and discuss maximum likelihood in detail. The esti-
mation algorithms are presented, approaches to inference are provided, and a small scale
simulation study is employed for assessing finite sample approximations. In Section 5 we
evaluate the MQRE and ERE regression models using model-based simulation studies,
under a range of data generating mechanisms. We further compare MQRE and ERE to
the quantile random effects model (QRRE) (Geraci and Bottai, 2007) aware of the fact
that this alternative model does not target identical distributional parameters. In Section
6 we present the results from an application of MQRE and ERE to repeated measures
data collected from a rotary pursuit tracking experiment. Finally, in Section 7 we conclude
the paper with some final remarks.

2 Quantile/M-quantile regression

The classical regression model summarises the behaviour of the mean of a random variable
y at each point in a set of covariates x (Mosteller and Tukey, 1977). This summary provides
a rather incomplete picture, in much the same way as the mean gives an incomplete picture
of a distribution. Instead, quantile regression summarises the behaviour of different parts
(e.g. quantiles) of the conditional distribution of y at each point in the set of the x’s.

In the linear case, quantile regression leads to a family of hyper-planes indexed by a
real number q ∈ (0, 1). For a given value of q, the corresponding model shows how the
qth quantile of the conditional distribution of y varies with x. For example, if q = 0.5
the quantile regression hyperplane shows how the median of the conditional distribution
changes with x. Similarly, for q = 0.1 the quantile regression hyperplane separates the
lower 10% of the conditional distribution from the remaining 90%.

Suppose (xTi , yi), i = 1, · · · , n is an independent random sample from a population,
where xTi are row p-vectors of a known design matrix X and yi is a scalar response variable
of a continuous random variable with unknown continuous cumulative distribution function
F . A linear regression model for the qth conditional quantile of yi given xi is

Qyi(q|xi) = xi
Tβq. (1)
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An estimate of the qth regression parameter βq is obtained by minimizing

n∑
i=1

[|yi − xTi βq|{(1− q)I(yi − xTi βq ≤ 0) + qI(yi − xTi βq > 0)}].

Solutions are usually obtained by linear programming methods (Koenker and D’Orey,
1987) and algorithms for fitting quantile regression are now available in standard statistical
software for example, the library quantreg in R (R Development Core Team, 2004), the
command qreg in Stata, and the procedure quantreg in SAS.

Quantile regression can be viewed as a generalization of median regression. In the
same way, expectile regression (Newey and Powell, 1987) is a ‘quantile-like’ generalization
of mean (i.e. standard) regression. M-quantile regression (Breckling and Chambers, 1988)
integrates these concepts within a common framework defined by a ‘quantile-like’ general-
ization of regression based on influence functions (M-regression). The M-quantile of order
q for the conditional density of y given the set of covariates x, f(y|x), is defined as the
solution MQy(q|x;ψ) of the estimating equation

∫
ψq(y −MQ)f(y|x)dy = 0, where ψq

denotes an asymmetric influence function, which is the derivative of an asymmetric loss
function ρq. A linear M-quantile regression model yi given xi is one where we assume that

MQyi(q|xi;ψ) = xi
Tβq. (2)

That is, we allow a different set of p regression parameters for each value of q ∈ (0, 1).
Estimates of βq are obtained by minimizing

n∑
i=1

ρq(yi − xi
Tβq). (3)

Different regression models can be defined as special cases of (3). In particular, using
different specifications for the asymmetric loss function ρq we can obtain the expectile,
M-quantile and quantile regression models as special cases. When ρq is the square loss
function we obtain the expectile regression model if q 6= 0.5 (Newey and Powell, 1987)
and the standard ordinary least squares regression if q = 0.5. When ρq is the Huber
loss function we obtain the M-quantile regression model (Breckling and Chambers, 1988).
Finally, when ρq is the loss function described by Koenker and Bassett (1978) we obtain
quantile regression.

Setting the first derivative of (3) leads to the following estimating equations

n∑
i=1

ψq(riq)xi = 0, (4)

where riq = yi − xTi βq, ψq(riq) = 2ψ(s−1riq){qI(riq > 0) + (1 − q)I(riq ≤ 0)} and
s > 0 is a suitable estimate of scale. For example, in the case of robust regression,
s = median|riq|/0.6745. Since the focus of our paper is on M-type estimation, one may use
different influence functions such as the Huber or the Hampel influence functions. For the
robust versions of our regression model, in this article we employ the Huber Proposal 2
influence function, ψ(u) = uI(−c ≤ u ≤ c) + c · sgn(u). Provided that the tuning constant
c is strictly greater than zero, estimates of βq are obtained using iterative weighted least
squares (IWLS). The steps of the algorithm for fitting the M-quantile regression model
(2) are as follows,
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1 Start with initial estimates of βq and s.
2 Estimate the residuals riq.
3 Define weights wiq = ψq(riq)/riq.
4 Update the estimate of βq using weighted least squares regression with weights wiq.
5 Iterate until convergence.

These steps can be implemented in R by a simple modification of the IWLS algorithm used
for fitting M-regression with function rlm (Venables and Ripley, 2002, section 8.3).

The IWLS algorithm used to fit an M-quantile regression model guarantees convergence
to a unique solution (Kokic et al., 1997) when a continuous monotone influence func-
tion (e.g. Huber Proposal 2 with c > 0) is used. The tuning constant c can be used to
trade robustness for efficiency in the M-quantile regression fit, with increasing robust-
ness/decreasing efficiency as we move towards quantile regression and decreasing robust-
ness/increasing efficiency as and we move towards expectile regression. The flexibility of
M-quantile regression is of particular importance for the present paper as this will allow
us to also define an expectile random effects regression model.

3 Models for hierarchically structured data

Suppose we have data on an outcome variable y and a set of covariates x for n individuals
clustered within d groups. A popular approach for modelling hierarchically structured data
is to use a random effects model. In the simplest case we can define a random intercepts
model

yij = xTijβ + zTj γ + εij , i = 1, ..., nj , j = 1, ...d, (5)

where xij is a vector of p auxiliary variables, β is a p× 1 vector of regression coefficients
and zj is a d × 1 vector of group indicators used for defining the random part of the
model. In addition, γ denotes a d × 1 vector of group-specific random effects, εij is the
individual random effect, and we assume that γ ∼ N(0, σ2γ), εij ∼ N(0, σ2ε ). A popular
approach for estimating the parameters of (5) is to employ maximum likelihood estimation.
Assuming normality for the error components, cov(γj , γj′) = 0, for j 6= j′, and ε ⊥ γ, the
log-likelihood function is

l(β, σ2γ , σ
2
ε ) = −1

2
log|V| − 1

2
(y −Xβ)TV−1(y −Xβ), (6)

where y is the n × 1 response vector, V = Σε + ZΣγZ
T , Σε = σ2ε In, Σγ = σ2γId, Z is

an n × d matrix of known positive constants. Here and throughout the paper In, Id are
identity matrices of size n and d, respectively. Estimates of β, γ, σ2γ , and σ2ε are obtained
by solving the estimating equations obtained by differentiating the log-likelihood with
respect to the parameters and setting these derivatives equal to zero (Goldstein, 2003). It
is easy to see that in (6) we assume a squared loss function. In practice, however, data may
contain outliers that invalidate the Gaussian assumptions. If normality is still assumed,
the estimated model parameters under (6) will be biased and inefficient (Richardson and
Welsh, 1995). One approach for robustifying the random effects model against departures
from normality is to use an alternative loss function in the log-likelihood function that
grows at slower rate than the squared loss function. This is the approach followed by
Huggins (1993), Huggins and Loesch (1998), Richardson and Welsh (1995), and Welsh and
Richardson (1997). In particular, robust maximum likelihood estimation for the random
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effects model is performed by maximizing the following log-likelihood function

l(β, σ2γ , σ
2
ε ) = −K1

2
log|V| − ρ{V−1/2(y −Xβ)}, (7)

where ρ is a loss function, ψ is its derivate and K1 = E[εψ(ε)T ] is computed over the
standard normal distribution. Robust estimates of β, σ2γ , and σ2ε are obtained by solving
the following estimating equations,

XTV−1/2ψ
{

V−1/2(y −Xβ)
}

= 0

1

2

{
V−1/2(y −Xβ)

}T
V−1/2ZZTV−1/2ψ

{
V−1/2(y −Xβ)

}
− K1

2
tr
[
V−1ZZT

]
= 0

1

2

{
V−1/2(y −Xβ)

}T
V−1/2V−1/2ψ

{
V−1/2(y −Xβ)

}
− K1

2
tr
[
V−1

]
= 0.

This is the maximum likelihood approach proposed by Richardson and Welsh (1995).
Robust estimates of the random effects can be obtained by solving the following estimating
equation with respect to γ (Fellner, 1986),

ZTΣ−1/2ε ψ{Σ−1/2ε (y −Xβ − Zγ)} −Σ−1/2γ ψ{Σ−1/2γ γ} = 0.

An alternative estimation approach that can potentially lead to more efficient estimates of
the variance components when there is a small number of groups or groups with a small
number of observations is the robust restricted maximum likelihood approach proposed
by Richardson and Welsh (1995) (see also Staudenmayer et al., 2009).

4 M-quantile and expectile random effects regression

With log-likelihood functions (6) and (7) we obtain respectively estimates of the parame-
ters of the random effects model (5) and of its robust version. In fact, with (6) and (7) the
target is respectively the expectation and a location parameter, close to the median, of
the conditional distribution of the outcome variable given a set of explanatory variables.
As stated in Section 2, on many occasions we are not only interested in describing the
relationship between y and x near the centre of this conditional distribution, but also at
other parts of the conditional distribution. In this section we propose extending the use
of asymmetric loss functions in the case of hierarchically structured data.

Unlike Geraci and Bottai (2007), who assumed that the data follow an asymmetric
Laplace distribution, here we remain within the M-estimation framework. Starting with
(7) we note that one approach for extending the idea of asymmetric weighting of residuals
in the case of hierarchical data is by defining the following modified Gaussian log-likelihood
function

l(βq, σ
2
γq , σ

2
εq) = −K1q

2
log|Vq| − ρq{V−1/2q (y −Xβq)}, (8)

where βq is the p × 1 vector of M-quantile regression coefficients, σεq and σγq are the
quantile-specific variance components. Here ρq(u) = 2ρ(u)(qI(u > 0) + (1 − q)I(u ≤ 0)

is a non-negative function and rq = V
−1/2
q (y −Xβq) is a vector of scaled residuals with

components rijq, Vq = Σεq + ZΣγqZ
T , Σγq = σ2γqId, Σεq = σ2εqIn.

On closer inspection, (6) and (7) can be obtained as special cases of (8) for specific
choices of ρq and q. In particular, when q = 0.5 and ρq is the square loss function we obtain
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(6) whereas when q = 0.5 and we use a loss function other than the square, for example the
Huber loss function, we obtain (7). For q values other than 0.5 and for different choices
of ρ the maximization of (8) will provide estimates of the fixed effects, βq, and of the
variance components, σεq , σγq , which can then be used for obtaining the MQRE or the
ERE fits. More specifically, using a square loss function in (8) at q 6= 0.5 results in an
expectile random effects fit whereas using the Huber loss function in (8) results in an M-
quantile random effects fit. The steps of the estimation algorithm are outlined in the next
section. With function (8) we therefore extend the idea of asymmetric weighting – positive
residuals are weighted by q and negative residuals by (1 − q) – used in fitting the single-
level M-quantile regression (Breckling and Chambers, 1988), to asymmetric weighting for
obtaining a regression fit for the entire conditional distribution f(y|x) accounting at the
same time for the dependence structure in hierarchical data.

One characteristic of M-quantile random effects regression is that in addition to ob-
taining quantile-specific estimates of fixed effects, we now also obtain quantile-specific
estimates of variance components. The easiest way of interpreting these quantile-specific
variance components is by focusing on a regression model without covariates. Using a
square loss function at q = 0.5, these variance components are the between and within
group variance around the mean. Similarly, using an alternative loss function, e.g. the
Huber one at q = 0.5, these variance components represent the between and within group
variance around a location parameter that is close to the median. For q 6= 0.5 the quantile-
specific variance components represent the between and within group variance around
conditional locations other than the median.

4.1 Estimation algorithm

1 Start by assuming that (σ2γq , σ
2
εq) are known.

2 Given these variance components, form the covariance matrix Vq, and estimate βq
by solving

XTV−1/2q ψq{V−1/2q (y −Xβq)} = 0 (9)

using IWLS. In this case,

β̂q = {(V−1/2q X)TWV−1/2q X}−1(V−1/2q X)TWV−1/2q y,

where W is the n × n matrix of weights obtained for unit i in group j as wij =
ψq(rijq)/rijq.

3 Use the estimates of βq to obtain estimates of the variance components. The ML
estimates of the variance components are obtained by maximizing (8) with respect
to (σ2γq , σ

2
εq). The corresponding score functions are:

1

2

{
V−1/2q (y −Xβq)

}T
V−1/2q ZZTV−1/2q ψq

{
V−1/2q (y −Xβq)

}
−K1q

2
tr
[
V−1q ZZT

]
= 0 (10)

1

2

{
V−1/2q (y −Xβq)

}T
V−1/2q V−1/2q ψq

{
V−1/2q (y −Xβq)

}
−K1q

2
tr
[
V−1q

]
= 0. (11)

For maximizing (8) we use the function constrOptim in R by supplying the log-
likelihood function and the score functions.
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4 Iterate steps 2 and 3 until convergence.
5 At convergence, estimates of the random effects at qth quantile fit are obtained by

solving the following estimating equation with respect to γq

ZTΣ−1/2εq ψq{Σ−1/2εq (y −Xβq − Zγq)} −Σ−1/2γq ψq{Σ−1/2γq γq} = 0. (12)

An alternative estimation approach that includes an adjustment to allow for the loss
of degrees of freedom incurred in estimating the fixed effects is the maximization of the
restricted version of the modified Gaussian log-likelihood (8). It can be used when the
number of groups of the number of observations within groups are small.

In practice the MQRE and ERE fits can be obtained by changing the value of the tuning
constant c in the influence function. Using for example the Huber influence function, and
setting this to the typical value c = 1.345 we obtain the MQRE regression fit while setting
c equal to an arbitrary large value results in the ERE regression fit. With c equal to an
arbitrary large value at q = 0.5 the ERE and the linear random effects (LRE) regression
fits are equivalent.

4.2 Inference

Distribution theory for the parameters of the linear random effects model when the Gaus-
sian assumptions hold has been studied by Hartley and Rao (1967) and Miller (1977). In
the presence of outliers, however, the Gaussian assumptions are violated and large sample
approximations are required. Huber (1967) proved consistency and asymptotic normality
of maximum likelihood estimators when (i) the true distribution underlying the obser-
vations does not belong to the parametric family defining the ML estimators, and (ii)
the second and higher derivatives of the likelihood function are not available. The work
of Huber (1967) is specifically linked to robust estimation problems and his arguments
are used by Welsh and Richardson (1997) for proposing approximate inference for the
robust ML estimators of the linear random effects model. Since the log-likelihood function
(8) is an extension of the log-likelihood function (7), a sketch of the evaluation of the

stochastic behaviour of ML estimators θ̂q = (β̂
T

q , σ̂
2
γq , σ̂

2
εq)

T is given in this section us-
ing the developments in Huber (1967) and Welsh and Richardson (1997). The estimators

θ̂q = (β̂
T

q , σ̂
2
γq , σ̂

2
εq)

T satisfy a set of estimating equations of the form

d∑
j=1

Φqj(θq) = 0, (13)

where Φqj(θq) =
(
ΦT
qjβq

,Φqjσ2
γq
,Φqjσ2

εq

)T
, for particular choices of Φqj(θq). Under a gen-

eral response distribution D, the estimator θ̂q satisfying (13) is estimating a root θq of

d∑
j=1

ED [Φqj(θq)] = 0. (14)

Provided that

−n−1
d∑
j=1

ED [∂Φqj(θq)/∂θq]→ G, (15)
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where the (p+ 2)× (p+ 2) matrix G is positive definite, and

n−1
d∑
j=1

ED
[
Φqj(θq)

TΦqj(θq)
]
→ F, (16)

a Taylor series approximation which holds uniformly in a neighborhood of θq is

θ̂q = θq + G−1n−1
d∑
j=1

Φqj(θq) + op(n
−1/2), as n→∞. (17)

Under the regularity conditions described by Huber (1967), it follows that

n1/2
(
θ̂q − θq

)
D−→ N

(
0,G−1F(G−1)T

)
, as n→∞. (18)

The components of the information matrix G and the variance of the normalized score
functions F for ML estimators are given in Appendix. The covariance matrix can be
consistently estimated by Ĝ−1F̂(Ĝ−1)T where the matrices Ĝ and F̂ are evaluated at θ̂q.

The variance of β̂q can be also estimated following Street et al. (1988),

V̂ (β̂q) =
(n− p)−1

∑d
j=1

∑nj
i=1 ψ

2
q (r̂ijq)[

n−1
∑d

j=1

∑nj
i=1 ψ

′
q(r̂ijq)

]2 (XT V̂−1q X)−1 (19)

where r̂ijq is the ith component of the vector r̂q = V̂
−1/2
q (y −Xβ̂q), ψ

2
q (r̂ijq) = ŵ2

ijq r̂
2
ijq,

ψ′q(r̂ijq) =
{
qI(0 < r̂ijq ≤ c) + (1 − q)I(c < r̂ijq ≤ 0)

}
and ŵijq is the final weight in the

IWLS process. An approximate confidence interval of level (1−α) for the βq fixed effects
is

β̂q ± z(1−α/2)
√
V̂ (β̂q), (20)

where z(1−α/2) denotes the (1− α/2) quantile of the standard normal distribution.
The variance of (σ̂2γq , σ̂

2
εq) is also obtained from (18). Following Pinheiro and Bates

(2000), an approximate confidence interval of level (1−α) for the variance components at
q is obtained using(

σ̂2γq exp

{
−z(1−α/2)

1

σ̂2γq
n−1/2

√
V̂ (σ̂2γq)

}
, σ̂2γq exp

{
+z(1−α/2)

1

σ̂2γq
n−1/2

√
V̂ (σ̂2γq)

})
(21)

and(
σ̂2εq exp

{
−z(1−α/2)

1

σ̂2εq
n−1/2

√
V̂ (σ̂2εq)

}
, σ̂2εq exp

{
+z(1−α/2)

1

σ̂2εq
n−1/2

√
V̂ (σ̂2εq)

})
.

(22)
An alternative approach for computing the variance of the estimated parameters and

for constructing confidence intervals is by using parametric bootstrap. A recent example of
using parametric bootstrap in the case of the robust random effects model is given by Sinha
and Rao (2009). The drawback of using bootstrap in the case of MQRE and ERE regression
is the computation time required for performing a large number of bootstrap replicates. We
have performed some limited empirical assessment of the parametric bootstrap procedure
and the results appear to be close to those obtained from the analytic approximations
presented earlier on in this section.
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4.3 Evaluating the asymptotic approximations

Before evaluating the performance of MQRE and of ERE regression, in this section we
assess the large sample approximations outlined in Section 4.2. To this end, we design a
small scale Monte-Carlo simulation study. Data are generated under the following location-
shift model

yij = 100 + 2x1ij + γj + εij , i = 1, . . . , 4, j = 1, . . . , 100,

where the values of x1 ∼ U [0, 15]. Different distributions have been considered for the error
terms εij (level 1) and γj (level 2). In particular, we consider two scenarios for generating
the error terms:
[0, 0] - No outliers: γ ∼ N(0, 16) and ε ∼ N(0, 36).
[ε, γ] - Outliers in both hierarchical levels: γ ∼ N(0, 16) for j = 1, . . . , 90, and γ ∼
N(0, 225) for j = 91, . . . , 100; ε ∼ δN(0, 36) + (1− δ)N(0, 1100) where δ ∼ Bn(0.9).

The tuning constant c is set to 1.345 for MQRE and to 100 for ERE. For this simulation
study, we replicateR = 1000 datasets. Since we are interested in inference under the correct
model, we present results only for the ERE under scenario [0,0] and results only for MQRE
under scenario [ε, γ]. The complete tables are not reported here but are available from the
authors upon request. To start with, Table 1 presents results on how well the variance of
the fixed effects and of the variance components is estimated. For each scenario and for
each estimator θ̂, at q = 0.25 and q = 0.5, Table 1 reports

(a) The Monte-Carlo variance,

S2(θ̂) = R−1
R∑
r=1

(θ̂(r) − θ̄)2,

where θ̂(r) is the estimated parameter at quantile q for the rth replication and θ̄ =
R−1

∑R
r=1 θ̂

(r).

(b) The estimated variance of β̂q, σ̂
2
γq and σ̂2εq averaged over the Monte-Carlo replica-

tions.
(c) The coverage rate of nominal 95 per cent confidence intervals and their mean length.

The coverage of these intervals is defined by the number of times the interval, defined
by the estimate of the parameter plus or minus twice its estimated variance, contains
the ‘true’ population parameter.

Under scenario [0, 0], the asymptotic variance of the estimators of ERE at q = 0.25
and q = 0.5 provide a good approximation to the true variances. In this case, there are
no outliers and hence there is no reason to employ robust estimation. Turning now to
the results for scenario [ε, γ], we note that the approximation to the true variance of
the estimated parameters of MQRE is overall satisfactory although there is a noticeable
underestimation of the variance of the level 2 variance component. These results can
potentially improve as the number of observations within groups and the number of groups
increases.

We now focus on the construction of confidence intervals. Figure 1 presents normal
probability plots of the estimates of the fixed effects and of the variance components under
the two scenarios. Under scenario [0, 0] we note that for all target parameters a normal
approximation is reasonable. Under scenario [ε, γ], a normal approximation appears to
be reasonable for the fixed effects and for the level 1 variance component. For the level
2 variance component there are some departures from normality but these are not very
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severe. This is supported by the fact that the coverage rates of normal confidence intervals
for the level 2 variance component are about 92% for both q = 0.25 and q = 0.5.

[Table 1 about here.]

[Figure 1 about here.]

5 Simulation Study

In this section we report Monte-Carlo simulation results that we carried out for assessing
the performance of MQRE and ERE at two quantiles, q = 0.25 and q = 0.5. Data are
generated under the following location-shift model

yij = 100 + 2x1ij + 3x2ij + γj + εij , i = 1, . . . , 6, j = 1, . . . , 100,

where the values of x1 ∼ U [0, 15], and the values of x2 are set equal to the values
x1j = 1, x2j = 2, . . . , x6j = 6, and are kept constant throughout the simulations. The
level 1 and level 2 error terms γj and εij are independently generated according to four
scenarios:
[0, 0] - No outliers: ε ∼ N(0, 36) and γ ∼ N(0, 16).
[ε, 0] - Outliers only at the individual level (level 1): ε ∼ δN(0, 36)+(1− δ)N(0, 1100) and
γ ∼ N(0, 16), where δ ∼ Bn(0.9).
[0, γ] - Outliers only at the group level (level 2): ε ∼ N(0, 36), γ ∼ N(0, 16) for j =
1, . . . , 90, and γ ∼ N(0, 225) for j = 91, . . . , 100.
[ε, γ] - Outliers in both hierarchical levels: error terms are generated as above but with
contamination at both levels.
Each scenario is independently replicated R = 500 times. Under scenario [0, 0] the as-
sumptions of the random effects model (5) are valid. Scenarios [ε, 0], [0, γ] and [ε, γ] define
situations under which the presence of outliers is likely and hence the Gaussian assump-
tions of model (5) are violated. The aim of this simulation study is two-fold. First, we
assess the ability of MQRE and ERE to account for the dependence structure of hierar-
chical data. Second, we compare MQRE to the quantile random effects (QRRE) model
proposed by Geraci and Bottai (2007). The tuning constant c is set at the same values
used for the simulation study described in Section 4.3.

Starting with the first aim, we compare the MQRE and the linear M -quantile (MQ)
regression model (see Section 2), for which we also use the Huber Proposal 2 influence
function with c = 1.345. Although both MQRE and MQ are robust to outliers, we expect
that MQRE will perform better than the single level M -quantile model when clustering is
present. At q = 0.5 MQRE is compared with the linear random effects (LRE) model (5).
We expect that when outliers are present, MQRE will perform better than the LRE. For
other quantiles we also compare the MQRE and ERE models. In this case ERE replaces
LRE and we expect that when outliers are present that MQRE will be superior. For
comparing the different methods we mainly focus on the fixed effects parameters. For each
regression parameter performance is assessed using the following indicators:

(a) Average Relative Bias (ARB) defined as

ARB(θ̂) = R−1
R∑
r=1

θ̂(r) − θ
θ

× 100,
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where θ̂(r) is the estimated parameter at quantile q for the rth replication and θ
is the corresponding ‘true’ value of this parameter. The empirical values of each
parameter are computed previously with 10, 000 Monte Carlo replicates to ensure
better accuracy, since they are the reference values.

(b) Relative Efficiencies (EFF) defined as

EFF (θ̂) =
S2
model(θ̂)

S2
MQRE(θ̂)

where S2(θ̂) = R−1
∑R

r=1(θ̂
(r) − θ̄)2 and θ̄ = R−1

∑R
r=1 θ̂

(r).

This efficiency measure is also used for comparing estimates of the variance components
obtained from the MQRE and LRE at q = 0.5 or the ERE at q = 0.25.

Table 2 reports the simulation results for estimators of the fixed effects under the
different approaches. Under the scenario [0,0] and quantile q = 0.5, the estimators of
the fixed effects from LRE are more efficient than the corresponding estimators from
MQ. This is expected because the LRE correctly models the two level structure present
in the synthetic population data. The estimators of the fixed effects of the LRE model
are also more efficient than the corresponding estimators from the MQRE. Under this
scenario there is no reason to employ outlier-robust estimation. Doing so results in paying
a premium that is reflected in the lower efficiency of the MQRE regression estimators. At
q = 0.25, the estimators of the fixed effects of the ERE are also more efficient that the
corresponding estimators of MQ and MQRE. This demonstrates the ability of the ERE
to extend the LRE model for modelling other quantiles.

The superior performance of MQRE is demonstrated in scenarios [ε, 0] and [ε, γ] where
outliers exist either at level 1, or at both hierarchical levels. In particular, in most cases
the estimators of the fixed effects from MQRE are more efficient than the corresponding
estimators from MQ or from LRE/ERE. These results provide evidence that using MQRE
regression protects against outlying values and it accounts for the dependence structure of
hierarchical data when modelling the conditional quantiles. Finally, it appears that having
outliers only at level 2 (scenario [0, γ]) does not have a severe effect on the efficiency of
the estimators of the fixed effects.

Table 2 also reports the efficiency of the estimators of the variance components and
the average over simulations under the four scenarios. We note that under contamination
there are large gains in efficiency when using MQRE instead of ERE at q = 0.25 or LRE at
q = 0.5. In contrast to this, under the [0, 0] ERE and LRE perform better than MQRE as
expected. In this case the robustness offered by MQRE is unnecessary and this is reflected
in the lower efficiency of the estimators of the variance components.

[Table 2 about here.]

Having assessed the performance of MQRE and ERE, in the second part of this section
we wish to compare the MQRE to the QRRE model (Geraci and Bottai, 2007). A direct
comparison is difficult because MQRE and ERE give M-quantile regression fits while on the
other hand QRRE aims at modelling ordinary quantiles. We therefore limit our comparison
to the median, the only parameter for which the two approaches are comparable. We
use two indicators, the Mean Average Squared Error (MASE) and the Mean Absolute
Deviation Error (MADE) respectively defined by
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MASE = (Rn)−1
n∑
i=1

R∑
r=1

(ŷ
(r)
iq − y

(r)
iq )2

MADE = (Rn)−1
n∑
i=1

R∑
r=1

|ŷ(r)iq − y
(r)
iq |,

where ŷ
(r)
iq is the predicted value of unit i at quantile q for the rth replication and y

(r)
iq is

the corresponding true value. The results of these experiments are presented in Table 3,
which shows MASE and MADE expressed as ratios to, respectively, MASE and MADE
obtained for MQRE. Note that at the median ERE and LRE models are equivalent. As
expected, LRE works well in scenario [0, 0]. In the presence of outliers, MQRE is overall
performing best and also appears to perform a bit better than the QRRE. This result
can be partially explained by the lack of robustness of the QRRE model to contamination
of the random effects. Also, the Monte Carlo approach adopted by Geraci and Bottai
(2007) for estimating the parameters of QRRE introduces additional variability to the
estimation process which can affect, on some occasions, the overall convergence of the
estimation algorithm. Alternative estimation algorithms based on numerical integration
techniques are currently being investigated. Finally, outliers at level 2 do not appear to have
a significant effect. These results indicate that in comparison to competitor models, MQRE
performs very well and that both the MQRE and QRRE provide reasonable quantile
random effects regression fits. As part of our empirical investigations we have also produced
results for the penalized quantile regression model (Koenker, 2004). These results are not
reported here, but in line with Geraci and Bottai (2007) we also find that the QRRE
model performs better than the penalized quantile regression model.

[Table 3 about here.]

6 A Case Study: Analysis of rotary pursuit tracking exper-
iment data

Discovery Day is a day set aside by the United States Naval Postgraduate School in
Monterey, California, to invite the general public into its laboratories. On Discovery Day,
21 October 1995, data on reaction time and hand-eye coordination were collected on
108 members of the public who visited the Human Systems Integration Laboratory. One
experiment that demonstrates motor learning and hand-eye coordination is rotary pursuit
tracking. The equipment used has a rotating disk with a 3/4 inches target spot. The
subject’s task is to maintain contact with the target spot with a metal wand. The target
spot on the circle tracker keeps constant speed in a circular path. The target spot on
the box tracker has varying speeds as it traverses the box, making the task potentially
more difficult. Trials were conducted for 15 seconds at a time, and the total contact time
during the 15 seconds was recorded. Four trials were recorded for each of 108 subjects thus
giving n = 432 observations in all. The age and sex of each subject were also recorded.
The outcome variable is the total contact time and we are interested in investigating its
association with age, sex, and shape.

Having each trial been recorded for all individuals, measurements of different trials
pertaining the same subject could be, in general, correlated. Therefore, appropriate meth-
ods that account for the dependence structure in the data must be employed. Ignoring the
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longitudinal structure, in fact, could lead to misleading results. We assess how this would
impact on our analysis by estimating the following simplified regressions (intercept-only
models): (a) MQRE regression (c = 1.345), (b) ERE regression (c = 100), (c) a single level
M-quantile regression (c = 1.345), and (d) a single level expectile regression (c = 100).
MQRE and ERE include subject-specific random effects (random intercepts) while the
single level regression models ignore the fact that for each subject we have repeated obser-
vations. The results are reported in Table 4. We see that failing to account for the repeated
measures design has an impact on the variance of the intercept term. In particular, the
variance of the intercept terms of the single level regression models is notably smaller
than the corresponding variance of MQRE and ERE. The results for ERE at q = 0.5 are
identical to those produced by the lme function in R and the results of the single level
expectile regression at q = 0.5 are identical to those produced by function lm in R. This
confirms that our algorithm reproduces the results of standard software.

[Table 4 about here.]

We now analyse the data by estimating MQRE and ERE regression fits at q ∈
{0.25, 0.5, 0.75}. In the fixed part of the linear predictor we include trial, sex (female=1,
male=0), age group (2 to 8, 9 to 11, 12 to 28, 29 to 38 and 39 to 52 years) of the individuals
and an indicator variable for the shape of the tracker (box=1, circle=0). The random part
is defined by a subject-specific intercept. Estimation is performed by using the maximum
likelihood estimation approach (see Section 4.1) and the Huber Proposal 2 influence func-
tion with c = 1.345 (MQRE) and c = 100 (ERE). The results are reported in Table 5 and
Figure 2. Figure 2 shows box-plots of the observed contact time for females and males. In
addition, it plots the estimated quantile lines of the contact time by age group for males
and females and for the different shapes of tracker by averaging the predictions under the
different M-quantile and expectile fits over trials.

Examining Figure 2, we detect the asymmetry of the distribution of contact time,
since the estimated quantile lines at q = 0.25 and q = 0.5 are closer than the estimated
quantile lines at q = 0.5 and q = 0.75. The positive asymmetry can be also observed in
the fixed effects estimates reported in Table 5. The estimated intercept at q = 0.5 is 1.49
for the MQRE and 1.57 for ERE. These two numbers are respectively estimates of the
median and mean of contact time at the first trial for the reference subject i.e. a male, in
age group 2 to 8 years that uses a circle tracker. Moreover, the estimates of the between
subjects variance component appear to be increasing with q with the estimates under the
MQRE model being smaller than the corresponding ERE estimates, which may indicate
the presence of outliers.

With MQRE and ERE we are also able to examine the impact of the different covariates
across quantiles. The effect of trial is positive since subjects’ performance improves over
time . In addition, the impact of trial appears to be constant across quantiles. Also, subjects
who use a circle as a tracker have higher contact times than those that use a box as a
tracker. Taking into account the standard errors of these estimates, the effect of shape
appears to be constant across quantiles i.e. individuals with higher contact times face the
same difficulties in using a box as a tracker as individuals with lower contact times. Overall,
males have better contact times than females. This gender gap, also illustrated by Figure
2, appears to be more evident in the middle rather than at the top end of the distribution.
In other words, the contact time is similar between the best-performing females and males.
Finally, age appears to have a non-linear effect. The contact time increases until age 28, is
stable between 28 and 38 years, and then decreases after 38 years (see Figure 2) with the
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the positive effect of age on contact time being more pronounced at the top end rather
than at the lower end of the distribution.

[Figure 2 about here.]

[Table 5 about here.]

7 Discussion

In this paper we propose the extension of M-quantile and expectile regression to M-quantile
and expectile random effects regression. Our proposed method combines M-quantile and
expectile regression for the analysis of dependent data. It inherits robustness to outliers
from the former and efficiency from the latter and permits to control directly the trade-off
between the two by means of a tuning constant. As illustrated in the real-data example,
the proposed approaches to modelling conditional quantiles may prove a useful alternative
to current approaches to the analysis of hierarchical data. In a simulation study specifically
designed to evaluate the impact of outliers on the robustness of the estimates, the proposed
methods appeared to perform consistently well across all scenarios considered. One limi-
tation of MQRE and ERE is that they allow for a very specific correlation structure. More
specifically, in this paper we considered regression models with random intercepts, which
is equivalent to assuming a uniform or exchangeable correlation structure. Although this
structure may be adequate in many applications with hierarchical data, it may be unsat-
isfactory for others. Future work will extend the proposed approaches for handling more
complex correlation structures including random coefficient models.

Appendix

In this Appendix we derive the information matrix and the normalized score functions for
obtaining the variance-covariance matrix of θq = (βTq , σ

2
γq , σ

2
εq)

T . The information matrix
Gn(θq) has components

Gnβqβq(θq) = n−1
d∑
j=1

XT
j V
−1/2
qj Ψ′qjV

−1/2
qj Xj , (A-1)

with Ψ′qj is a nj × nj diagonal matrix with the ith component equal to 2(1 − q)I(−c 6
rijq < 0) + 2qI(0 < rijq 6 c),

gnβqτkq (θq) =
1

2n

d∑
j=1

{
XT
j V
−1/2
qj

∂Vj

∂τkq
ψq

{
V
−1/2
qj (yj −XT

j βq)
}

+XT
j V
−1/2
qj Ψ′qjV

−1
qj

∂Vj

∂τkq
V
−1/2
qj (yj −XT

j βq)

}
(A-2)

where τ q = (σ2γq , σ
2
εq)

T ,

gnτkq τlq (θq) =
1

2n

d∑
j=1

{
(3/2)

{
V
−1/2
qj (yj −XT

j βq)
}T

V
−1/2
qj

∂Vqj

∂τkq
V−1qj

∂Vqj

∂τlq
V
−1/2
qj
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ψq

{
V
−1/2
qj (yj −XT

j βq)
}

+ (1/2)
{

V
−1/2
qj (yj −XT

j βq)
}T

V
−1/2
qj

∂Vqj

∂τkq
V
−1/2
qj Ψ′qj

V−1qj
∂Vqj
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V
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j βq)

}
−K1qtr

[
V−1qj

∂Vqj

∂τkq
V−1qj

∂Vqj

∂τlq

]
, (A-3)

where Gnβqβq(θq) is a p× p matrix, gnβqτkq (θq) is p× 1 vectors, and gnτkq τlq (θq) is scalar.
The matrix Gn(θq) of size (p+ 2)× (p+ 2) can be expressed as

Gn(θq) =


Gnβqβq(θq)

[
gnβqσ2

γq
(θq)

gnβqσ2
εq

(θq)

]
[

gnβqσ2
γq

(θq)

gnβqσ2
εq

(θq)

]T [
gnσ2

γq
σ2
γq

(θq) gnσ2
γq
σ2
εq

(θq)

gnσ2
εq
σ2
γq

(θq) gnσ2
εq
σ2
εq

(θq)

]
 . (A-4)

The variance-covariance matrix Fn(θq) of the normalized score functions is

Fnβqβq(θq) = n−1
d∑
j=1

{
XT
j V
−1/2
qj E

[
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, (A-5)
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The matrix Fn(θq) of size (p+ 2)× (p+ 2) can be expressed as
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Figure 1: Normal Q–Q plots of estimates of βq and σ2γq , σ
2
εq for quantiles q = 0.25, 0.5.

Estimated values are obtained from ERE with c = 100 (scenario [0, 0]) and MQRE with
c = 1.345 (scenario [ε, γ]).
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Figure 2: M-quantile fitted lines for circle (a) and box (b) tracker and expectile fitted lines
for circle (c) and box (d) tracker.
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Table 1: Coverage rates and average length of 95% confidence intervals, empirical standard
errors and estimated standard errors of β̂q and σ̂2γq , σ̂

2
εq for q = 0.25, 0.5 using MQRE

(scenario with outliers) and ERE (scenario with no outliers). The results are based on
1000 Monte Carlo replications for each of the two scenarios.

Estimator Coverage(%) Mean length Empirical s.e. Estimated s.e.

No outliers

q = 0.25

β̂0 92.8 3.164 0.888 0.807

β̂1 95.1 0.313 0.079 0.079
σ̂2γq 90.4 11.719 3.246 2.989

σ̂2εq 93.5 9.564 2.549 2.440

q = 0.5

β̂0 95.0 2.966 0.767 0.756

β̂1 94.7 0.296 0.075 0.075
σ̂2γq 93.0 14.063 3.666 3.587

σ̂2εq 94.0 11.494 2.911 2.935

Outliers

q = 0.25

β̂0 94.0 4.728 1.247 1.206

β̂1 95.3 0.468 0.120 0.119
σ̂2γq 92.3 41.129 11.709 10.492

σ̂2εq 91.0 30.605 8.957 7.807

q = 0.5

β̂0 92.7 3.698 1.037 0.943

β̂1 93.0 0.369 0.101 0.0942
σ̂2γq 92.5 40.113 11.383 10.233

σ̂2εq 93.5 30.757 7.954 7.846
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Table 2: Values of bias (ARB), efficiency (EFF), and average of point estimates over sim-
ulations of fixed effects and variance components under the four data generating scenarios
and the alternative regression fits: MQRE, MQ and ERE at q = 0.25. The LRE estimates
are also reported for comparisons with MQRE and MQ at q = 0.5. The results are based
on 500 Monte Carlo replications for each of the four scenarios.
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Table 3: MASE and MADE values for MQRE, LRE, and QRRE at q = 0.5 and for the
different data generating scenarios. The results are based on 500 Monte Carlo replications
for each of the four scenarios. The MASE and MADE of MQRE are equal to 1.00.

MASE MADE

[0, 0]

MQRE 1.00 1.00
QRRE 1.15 1.07
LRE 0.93 0.97

[ε, 0]

MQRE 1.00 1.00
QRRE 1.00 1.00
LRE 1.57 1.24

[0, γ]

MQRE 1.00 1.00
QRRE 1.25 1.12
LRE 1.00 1.00

[ε, γ]

MQRE 1.00 1.00
QRRE 1.23 1.12
LRE 2.20 1.44
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Table 4: Assessing the effect of the longitudinal structure by comparing the standard errors
of the MQRE and ERE random intercepts regression without covariates with those from
the corresponding single level regression models.

Constant σ̂2u σ̂2ε
Quantile MQRE

q = 0.25 1.67 (0.18) 2.92 (0.60) 0.55 (0.06)
q = 0.50 3.40 (0.23) 5.44 (0.95) 0.72 (0.07)
q = 0.75 5.34 (0.31) 5.62 (0.98) 0.76 (0.08)

M-quantile single level

q = 0.25 2.37 (0.10) - -
q = 0.50 3.49 (0.12) - -
q = 0.75 4.82 (0.15) - -

ERE

q = 0.25 2.06 (0.18) 3.42 (0.49) 0.65 (0.05)
q = 0.50 3.65 (0.23) 5.57 (0.78) 0.78 (0.06)
q = 0.75 5.37 (0.27) 5.04 (0.71) 0.71 (0.06)

Expectile single level

q = 0.25 2.59 (0.10) - -
q = 0.50 3.64 (0.12) - -
q = 0.75 4.85 (0.15) - -
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Table 5: Parameter estimates and corresponding standard error estimates in parentheses
for the rotary pursuit tracking experiment data. Estimates of the MQRE and ERE are
obtained using ML estimation. The baseline age group is (2,8).

Constant Trial Gender Shape Age1 Age2 Age3 Age4 σ̂2u σ̂2ε
Quantile MQRE

q = 0.25 0.43 0.33 -0.57 -1.08 1.62 2.84 4.30 2.60 1.53 0.44
(0.41) (0.03) (0.32) (0.33) (0.47) (0.48) (0.49) (0.49) (0.32) (0.04)

q = 0.50 1.49 0.35 -0.77 -1.19 1.76 3.43 5.20 3.30 1.97 0.50
(0.37) (0.03) (0.30) (0.30) (0.43) (0.44) (0.45) (0.45) (0.36) (0.05)

q = 0.75 2.80 0.35 -0.53 -1.56 2.18 4.27 6.26 4.22 2.31 0.47
(0.53) (0.04) (0.42) (0.43) (0.61) (0.63) (0.63) (0.64) (0.46) (0.05)

ERE

q = 0.25 0.58 0.35 -0.56 -1.34 1.73 3.15 4.58 2.93 1.59 0.47
(0.38) (0.03) (0.30) (0.31) (0.44) (0.45) (0.45) (0.45) (0.23) (0.04)

q = 0.50 1.57 0.36 -0.66 -1.44 1.88 3.57 5.16 3.47 2.11 0.56
(0.39) (0.03) (0.31) (0.31) (0.45) (0.46) (0.46) (0.47) (0.31) (0.04)

q = 0.75 3.07 0.36 -0.45 -1.72 2.19 4.22 6.08 4.27 2.47 0.45
(0.49) (0.03) (0.39) (0.40) (0.57) (0.58) (0.58) (0.59) (0.35) (0.03)
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