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Abstract 

The Riccati transfer matrix method is employed in the elastostatic analysis of a repetitive 

structure subject to various loadings; the eigenvalues of particular terms featuring in the 

recursive relationships show why the method is numerically stable. 
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1.  Introduction 

A structure is said to be repetitive, or periodic, when its construction takes the form of a 

spatially repeated cell.  Since the manufacture and construction, or assembly, of such 

structures is also a repetitive process, they often represent a cost effective design solution in 

many mechanical, aerospace and civil engineering applications.  Eigenanalysis of the transfer 

matrix G of the single repeating cell provides an efficient means of characterising and 

analysing its elastostatic behaviour.  Non-unity eigenvalues are the rates of decay of self-

equilibrated loading, as anticipated by Saint-Venant’s principle, and occur as reciprocals 

according to whether decay is from left-to-right, or vice-versa.  Multiple unity eigenvalues 

pertain to the transmission of load, e.g. tension, or bending moment, as well as the rigid-body 

displacements and rotations; equivalent continuum properties, such as cross-sectional area, 

second moment of area and Poisson’s ratio, can be determined from the associated eigen- and 

principal vectors.  However, when a complete structure is to be analysed, one typically has a 

two-point boundary value problem (TPBVP).  Thus for a tip-loaded cantilever, the load vector 

at the tip, ( )NF , and the displacement vector at the fixed root, ( )0d , will be known; the 

displacement vector at the tip, ( )Nd , and the reaction force vector at the root, ( )0F , are 

unknowns.  Such problems are typically ill-conditioned.  In a recent paper (Stephen, 2009) the 

analysis of a cantilevered ten-cell repetitive pin-jointed structure subjected to tip-loading, and 

to distributed loading with an intermediate support, was described; the need to construct 
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powers of the transfer matrix, up to 10G , was seen to be the source of the ill-conditioning, and 

not the inversion of one partition of the stiffness matrix, as some authors have claimed.  This 

becomes abundantly clear when the cross-sectional state-vector of displacement and force 

components is expressed in terms of the participation coefficients of the eigen- and principal 

vectors, and spatial evolution is expressed in terms of powers of the Jordan canonical form.  In 

particular, the eigenvalues of G are unity with a multiplicity of six, 0.059596 , 0.070207−  and 

0.28292 , together with their reciprocals 16.780 , 14.244−  and 3.5346 , respectively; in the 

calculation of 10G , the term 10 1216.780 1.8 10≈ ×  then becomes dominant and will magnify 

any errors.  For a fifty-cell repetitive structure, a term 50 6116.780 1.7 10≈ ×  will render the 

method wholly inaccurate.  Metaphorically, while Saint-Venant’s principle (SVP) is 

physically applicable (self-equilibrating forces decay piecewise exponentially), it is not 

numerically applicable (numerical errors both decay and increase piecewise exponentially – 

obviously the latter prevails), at least in that formulation.   

 In the present paper, which should be read in conjunction with Stephen (2009), the 

Riccati transformation is employed to produce a numerically reliable formulation.  Moreover, 

the eigenvalues of particular terms in the recursive relationships reveal why the method is 

numerically stable – these are three unity eigenvalues, while the non-unity eigenvalues 

converge onto 0.059596 , 0.070207−  and 0.28292 , which are precisely those of Saint-Venant 

decay; again metaphorically, SVP is now both physically and numerically applicable.   

Horner and Pilkey (1978) provided one of the earliest applications of the Ricatti 

transformation within structural mechanics, but its use is by no means widespread, despite its 

evident numerical stability.  Xue (2003, 2004) employed the transform in terms of a stiffness 

equation transfer method in elastodynamic problems, while Stephen and Wang (2000), who 

were at that time unaware of the approach, attempted various force and displacement transfer 

matrix formulations for elastostatic problems related to the present structure.  Numerical 

issues associated with elastodynamic transfer matrix analysis of waveguides have recently 

been reported by Waki et al (2009).  On the other hand, the so-called algebraic Riccati 

equation is familiar to the control engineering community in relation to optimal control; the 

TPBVP then consists, typically, of a known initial state-vector ( )0x , and a control law ( )tu  

is sought to achieve some required final state ( )Tx  over some period of time T, which may be 

finite or infinite, subject to the minimisation of some cost-functional, J.  The TPBVP is 

replaced by two one-point boundary value problems, one solved backwards in time from the 
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final state ( )Tx , the second forward in time from the initial state ( )0x .  For the present 

structural mechanics example, this process is spatial rather than temporal.   

 

2.  Theory 

 The stiffness matrix K of the single cell relates the force and displacement vectors on 

either side as =F K d , or in partitioned form 

L LL LR L

R RL RR R

     
=     

     

F K K d

F K K d
,                                                (1) 

where the subscripts L and R denote left and right, respectively.  The transfer matrix G is 

determined from the stiffness matrix K according to 

1 1
dd dFR L LLR LL LR

1 1
Fd FFR L LRL RR LR LL RR LR

− −

− −

 − −       
= =        

− −− −       

G Gd d dK K K

G GF F FK K K K K K
,                       (2) 

or more compactly R L=s G s ; the force sign convention of finite element analysis (FEA) is 

employed, hence the negative force vector on the right-hand side of Eq. (2).  The transfer 

matrix thus describes how a state-vector evolves as one moves from the left-hand side of the 

cell to the right-hand side.  For an extended structure, it is more convenient to write this as  

( ) ( )1n n+ =s G s , which relates the state-vector on the right-hand side of the ( )1 thn +  cell to 

the state-vector on the right-hand side of the nth cell.  When an external force vector ( )ext nF  

is applied at the thn  nodal cross-section, Eq. (2) becomes (Stephen, 2009) 

( )

( )

( )

( ) ( )
dd dF dd dF

extFd FF Fd FF

1

1

n n

nn n

   +     
= −        

+         

0d G G d G G

FF G G F G G
.                                    (3) 

Now introduce the Riccati transform: write 

( ) ( ) ( ) ( )1 1 1 1n n n n+ = + + + +F R d g , and ( ) ( ) ( ) ( )n n n n= +F R d g ,              (4a,b) 

where R is the Riccati matrix, and g is a column vector of force components.  Next substitute 

(4b) into the first row of Eq. (3) to give 

( ) ( ) ( ) ( ) ( ) ( )dd dF dF ext
1n n n n n n + = + + − d G d G R d g G F                         (5) 

and both (4a) and (4b) into the second row to give 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )Fd FF FF ext
1 1 1n n n n n n n n + + + + = + + − R d g G d G R d g G F .           (6) 

Finally, employ Eq. (5) to eliminate ( )1n +d  from Eq. (6) to give 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

dd dF dF ext

Fd FF FF ext

1 1

.

n n n n n n n

n n n n n

  + + + − + + =  

 + + − 

R G d G R d g G F g

G d G R d g G F
                    (7) 

For this to be true for arbitrary ( )nd , one requires both  

( ) ( ) ( ) ( ) ( ) ( ) ( )dF dF ext FF FF ext1 1 1n n n n n n n+ − + + + = −R G g R G F g G g G F                      (8) 

and  

( ) ( ) ( ) ( )dd dF Fd FF1 1n n n n+ + + = +R G R G R G G R ,                             (9) 

and hence the recursive relationships 

( ) ( ) ( ) ( )
1

FF dF ext
1 1n n n n

−

= − + + +  g G R G g F                                       (10) 

and  

( ) ( ) ( )
1

FF dF dd Fd
1 1n n n

−

= − + + −      R G R G R G G ;                                      (11) 

these two equations lie at the heart of the “backward in space” process.  Note that the term 

( )
1

FF dF
1n

−

− +  G R G  is common to both expressions and, as will be seen, its eigenvalues 

reveal why the method is numerically stable.   

 

3.  Examples 

 The method is now applied to the two examples considered by Stephen (2009). 

3.1  Ten-cell tip-loaded cantilever 

At the free end, we know that ( ) [ ]
T

ext 10 0 1000 0 0 0 0= −F  and ( )10 ≠d 0 , so set 

( )10 =R 0  in Eq. (4), to give ( ) ( )ext10 10=g F .  The external load vector ( )ext nF  is zero for 

all other cross-sections, so Eq. (10) yields ( ) [ ] ( )
1

FF9 10
−

=g G g , 

( ) ( ) ( )
1

FF dF
8 9 9

−

= −  g G R G g , ( ) ( ) ( )
1

FF dF
7 8 8

−

= −  g G R G g , etc.   

Eq. (11) yields ( ) [ ]
1

FF Fd9
−

= −R G G , ( ) ( ) ( )
1

FF dF dd Fd
8 9 9

−

= − −      R G R G R G G , 

( ) ( ) ( )
1

FF dF dd Fd
7 8 8

−

= − −      R G R G R G G , etc. 

The solution process is to calculate recursively to ( )0R  and ( )0g ; since the root of the 

cantilever is assumed fully fixed, one has ( )0 =d 0 , so from Eq. (4), ( ) ( )0 0=F g ; this part of 

the process is “backward in space”.  To determine the displacement components at any cross-

section, one then employs Eq. (5), which is the “forward in space” process.  The eigenvalues 
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of the term ( )
1

FF dF
1n

−

− +  G R G  are shown in Table 1 for this ten-cell example (in fact, the 

number of cells is irrelevant); as one moves backward in space from the cantilever tip, the 

non-unity eigenvalues quickly converge onto 0.059596 , 0.070207−  and 0.28292 , which are 

precisely those of Saint-Venant decay.   

 

n+1 eigenvalues 

10 1,1,1, 0.1397, 0.1199, 0.5034−  

9 1,1,1, 0.0706, 0.0588, 0.3304−  

8 1,1,1, 0.0702, 0.0596, 0.2873−  

7 1,1,1, 0.0702, 0.0596, 0.2833−  

6 1,1,1, 0.0702, 0.0596, 0.2829−  

�  �  

 

Table 1.  Eigenvalues of ( )
1

FF dF
1n

−

− +  G R G  for ten-cell tip-loaded cantilever. 

 

The forward in space expression for the displacements, Eq. (5), can be written as 

( ) ( ) ( ) ( ) ( )dd dF dF ext
1n n n n n   + = + + −   d G G R d G g F                                 (12) 

and the term ( )dd dF
n + G G R  has the same eigenvalues as shown in Table 1, thus the 

numerical process, both backward and forward in space, may be regarded as an analogue of 

the physical application of SVP. 

 The method has also been applied to a fifty-cell tip-loaded cantilever, and the 

displacement components are in perfect agreement with what may be regarded as exact FEA 

predictions; in contrast, the approach described by Stephen (2009) for a fifty-cell structure was 

noted to be wholly inaccurate. 

 

3.2  Distributed loading with intermediate support 

 For the same ten-cell structure, one now has a vertical downward force of 1 kN applied 

at each cross-section, and a simple-support at the 7th nodal cross-section.  Thus 

( ) [ ]
T

ext 0 1000 0 0 0 0n = −F  for 1, 2, , 6, 8, 9,10n = � ; for 7n = , one has 

( ) [ ]
T

ext 7 0 1000 0 0 0 F= −F  where F is the unknown support reaction required to 
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reduce the vertical displacement of this node to zero.  The process again employs Eqs. (10) 

and (11) to calculate all the R matrices and ( )0g ; the latter now contains F as an unknown.  

Eq. (5) is then employed to calculate displacement vectors up to ( )7d , and the relevant 

component is calculated as 232527.5 31.8F− + ; for this to be zero requires 7312.13 NF = .  

The remainder of the calculation is then straightforward, and agreement with FE predictions is 

perfect. 

 

6.  Conclusions 

A recent paper, Stephen (2009), extended the transfer matrix approach to a repetitive (or 

periodic) structure subject to distributed loading, and with an intermediate support; numerical 

inaccuracies were clearly seen to be associated with powers of greater than unity eigenvalues 

of the transfer matrix.  In the present note, the same examples have been treated using the 

Riccati transfer matrix method, and the eigenvalues of particular terms within the recursive 

relationships show why the method is numerically stable.  
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Figure 1.  Ten-cell repetitive structure subject to distributed surface loading, with an 

intermediate support at the 7th  nodal cross-section.  Each downward arrow represents a force 

of 1 kN .   
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