The University of Southampton
University of Southampton Institutional Repository

Basin-scale performance of a locally optimized marine ecosystem model

Basin-scale performance of a locally optimized marine ecosystem model
Basin-scale performance of a locally optimized marine ecosystem model
A marine ecosystem model, that had previously been calibrated in a one-dimensional (1D) mode against observations at three time-series and process-study sites simultaneously, is coupled to a three-dimensional (3D) circulation model of the North and Equatorial Atlantic. Compared to an experiment with a previously employed subjectively tuned ecosystem model, the new 3D-model does not only reduce the model-data misfit at those locations at which observations entered the 1D optimization procedure, but also at an oligotrophic site in the subtropics that had not been considered in the 1D calibration. Basin-scale gridded climatological data sets of nitrate, surface chlorophyll, and satellite-derived primary production also reveal a generally lower model-data misfit for the optimized model. The most significant improvement is found in terms of simulated primary production: on average, primary production is about 2.5 times higher in the optimized model which primarily results from the inclusion of a phytoplankton recycling pathway back to dissolved inorganic nitrogen. This recycling pathway also allows for a successful reproduction of nonvanishing surface nitrate concentrations over large parts of the subpolar North Atlantic. Apart from primary production, the parameter optimization reduces root-mean-square misfits by merely 10–25% and remaining misfits are still much larger than observational error estimates. These residual misfits can be attributed both to errors in the physical model component and to errors in the structure of the ecosystem model, which an objective estimation of ecosystem model parameters by data assimilation alone cannot resolve.
0022-2402
335-358
Oschlies, A.
1e17ff79-6084-4a56-b130-7d39dcd7568f
Schartau, M.
d43a9d16-4202-42fa-83a3-2147a14df490
Oschlies, A.
1e17ff79-6084-4a56-b130-7d39dcd7568f
Schartau, M.
d43a9d16-4202-42fa-83a3-2147a14df490

Oschlies, A. and Schartau, M. (2005) Basin-scale performance of a locally optimized marine ecosystem model. Journal of Marine Research, 63 (2), 335-358. (doi:10.1357/0022240053693680).

Record type: Article

Abstract

A marine ecosystem model, that had previously been calibrated in a one-dimensional (1D) mode against observations at three time-series and process-study sites simultaneously, is coupled to a three-dimensional (3D) circulation model of the North and Equatorial Atlantic. Compared to an experiment with a previously employed subjectively tuned ecosystem model, the new 3D-model does not only reduce the model-data misfit at those locations at which observations entered the 1D optimization procedure, but also at an oligotrophic site in the subtropics that had not been considered in the 1D calibration. Basin-scale gridded climatological data sets of nitrate, surface chlorophyll, and satellite-derived primary production also reveal a generally lower model-data misfit for the optimized model. The most significant improvement is found in terms of simulated primary production: on average, primary production is about 2.5 times higher in the optimized model which primarily results from the inclusion of a phytoplankton recycling pathway back to dissolved inorganic nitrogen. This recycling pathway also allows for a successful reproduction of nonvanishing surface nitrate concentrations over large parts of the subpolar North Atlantic. Apart from primary production, the parameter optimization reduces root-mean-square misfits by merely 10–25% and remaining misfits are still much larger than observational error estimates. These residual misfits can be attributed both to errors in the physical model component and to errors in the structure of the ecosystem model, which an objective estimation of ecosystem model parameters by data assimilation alone cannot resolve.

This record has no associated files available for download.

More information

Published date: 2005

Identifiers

Local EPrints ID: 16199
URI: http://eprints.soton.ac.uk/id/eprint/16199
ISSN: 0022-2402
PURE UUID: 38bc67f4-e9b4-46bd-ae76-d9f7003fbec7

Catalogue record

Date deposited: 27 Jun 2005
Last modified: 15 Mar 2024 05:46

Export record

Altmetrics

Contributors

Author: A. Oschlies
Author: M. Schartau

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×